portaudio/qa/loopback/src/test_audio_analyzer.c

719 lines
23 KiB
C

/*
* PortAudio Portable Real-Time Audio Library
* Latest Version at: http://www.portaudio.com
*
* Copyright (c) 1999-2010 Phil Burk and Ross Bencina
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* The text above constitutes the entire PortAudio license; however,
* the PortAudio community also makes the following non-binding requests:
*
* Any person wishing to distribute modifications to the Software is
* requested to send the modifications to the original developer so that
* they can be incorporated into the canonical version. It is also
* requested that these non-binding requests be included along with the
* license above.
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "qa_tools.h"
#include "audio_analyzer.h"
#include "test_audio_analyzer.h"
#include "write_wav.h"
#include "biquad_filter.h"
#define FRAMES_PER_BLOCK (64)
#define PRINT_REPORTS 0
#define TEST_SAVED_WAVE (0)
/*==========================================================================================*/
/**
* Detect a single tone.
*/
static int TestSingleMonoTone( void )
{
int result = 0;
PaQaSineGenerator generator;
PaQaRecording recording;
float buffer[FRAMES_PER_BLOCK];
double sampleRate = 44100.0;
int maxFrames = ((int)sampleRate) * 1;
int samplesPerFrame = 1;
int stride = 1;
int done = 0;
double freq = 234.5;
double amp = 0.5;
double mag1, mag2;
// Setup a sine oscillator.
PaQa_SetupSineGenerator( &generator, freq, amp, sampleRate );
result = PaQa_InitializeRecording( &recording, maxFrames, (int) sampleRate );
QA_ASSERT_EQUALS( "PaQa_InitializeRecording failed", 0, result );
done = 0;
while (!done)
{
PaQa_EraseBuffer( buffer, FRAMES_PER_BLOCK, samplesPerFrame );
PaQa_MixSine( &generator, buffer, FRAMES_PER_BLOCK, stride );
done = PaQa_WriteRecording( &recording, buffer, FRAMES_PER_BLOCK, samplesPerFrame );
}
mag1 = PaQa_CorrelateSine( &recording, freq, sampleRate, 0, recording.numFrames, NULL );
QA_ASSERT_CLOSE( "exact frequency match", amp, mag1, 0.01 );
mag2 = PaQa_CorrelateSine( &recording, freq * 1.23, sampleRate, 0, recording.numFrames, NULL );
QA_ASSERT_CLOSE( "wrong frequency", 0.0, mag2, 0.01 );
PaQa_TerminateRecording( &recording );
return 0;
error:
PaQa_TerminateRecording( &recording);
return 1;
}
/*==========================================================================================*/
/**
* Mix multiple tones and then detect them.
*/
static int TestMixedMonoTones( void )
{
int i;
int result = 0;
#define NUM_TONES (5)
PaQaSineGenerator generators[NUM_TONES];
PaQaRecording recording;
float buffer[FRAMES_PER_BLOCK];
double sampleRate = 44100.0;
int maxFrames = ((int)sampleRate) * 1;
int samplesPerFrame = 1;
double baseFreq = 234.5;
double amp = 0.1;
double mag2;
int stride = samplesPerFrame;
int done = 0;
// Setup a sine oscillator.
for( i=0; i<NUM_TONES; i++ )
{
PaQa_SetupSineGenerator( &generators[i], PaQa_GetNthFrequency( baseFreq, i ), amp, sampleRate );
}
result = PaQa_InitializeRecording( &recording, maxFrames, (int) sampleRate );
QA_ASSERT_EQUALS( "PaQa_InitializeRecording failed", 0, result );
done = 0;
while (!done)
{
PaQa_EraseBuffer( buffer, FRAMES_PER_BLOCK, samplesPerFrame );
for( i=0; i<NUM_TONES; i++ )
{
PaQa_MixSine( &generators[i], buffer, FRAMES_PER_BLOCK, stride );
}
done = PaQa_WriteRecording( &recording, buffer, FRAMES_PER_BLOCK, samplesPerFrame );
}
for( i=0; i<NUM_TONES; i++ )
{
double mag = PaQa_CorrelateSine( &recording, PaQa_GetNthFrequency( baseFreq, i), sampleRate, 0, recording.numFrames, NULL );
QA_ASSERT_CLOSE( "exact frequency match", amp, mag, 0.01 );
}
mag2 = PaQa_CorrelateSine( &recording, baseFreq * 0.87, sampleRate, 0, recording.numFrames, NULL );
QA_ASSERT_CLOSE( "wrong frequency", 0.0, mag2, 0.01 );
PaQa_TerminateRecording( &recording );
return 0;
error:
PaQa_TerminateRecording( &recording);
return 1;
}
/*==========================================================================================*/
/**
* Generate a recording with added or dropped frames.
*/
static void MakeRecordingWithAddedFrames( PaQaRecording *recording, PaQaTestTone *testTone, int glitchPosition, int framesToAdd )
{
PaQaSineGenerator generator;
#define BUFFER_SIZE 512
float buffer[BUFFER_SIZE];
int frameCounter = testTone->startDelay;
int stride = 1;
// Record some initial silence.
int done = PaQa_WriteSilence( recording, testTone->startDelay );
// Setup a sine oscillator.
PaQa_SetupSineGenerator( &generator, testTone->frequency, testTone->amplitude, testTone->sampleRate );
while (!done)
{
int framesThisLoop = BUFFER_SIZE;
if( frameCounter == glitchPosition )
{
if( framesToAdd > 0 )
{
// Record some frozen data without advancing the sine generator.
done = PaQa_RecordFreeze( recording, framesToAdd );
frameCounter += framesToAdd;
}
else if( framesToAdd < 0 )
{
// Advance sine generator a few frames.
PaQa_MixSine( &generator, buffer, 0 - framesToAdd, stride );
}
}
else if( (frameCounter < glitchPosition) && ((frameCounter + framesThisLoop) > glitchPosition) )
{
// Go right up to the glitchPosition.
framesThisLoop = glitchPosition - frameCounter;
}
if( framesThisLoop > 0 )
{
PaQa_EraseBuffer( buffer, framesThisLoop, testTone->samplesPerFrame );
PaQa_MixSine( &generator, buffer, framesThisLoop, stride );
done = PaQa_WriteRecording( recording, buffer, framesThisLoop, testTone->samplesPerFrame );
}
frameCounter += framesThisLoop;
}
}
/*==========================================================================================*/
/**
* Generate a clean recording.
*/
static void MakeCleanRecording( PaQaRecording *recording, PaQaTestTone *testTone )
{
PaQaSineGenerator generator;
#define BUFFER_SIZE 512
float buffer[BUFFER_SIZE];
int stride = 1;
// Record some initial silence.
int done = PaQa_WriteSilence( recording, testTone->startDelay );
// Setup a sine oscillator.
PaQa_SetupSineGenerator( &generator, testTone->frequency, testTone->amplitude, testTone->sampleRate );
// Generate recording with good phase.
while (!done)
{
PaQa_EraseBuffer( buffer, BUFFER_SIZE, testTone->samplesPerFrame );
PaQa_MixSine( &generator, buffer, BUFFER_SIZE, stride );
done = PaQa_WriteRecording( recording, buffer, BUFFER_SIZE, testTone->samplesPerFrame );
}
}
/*==========================================================================================*/
/**
* Generate a recording with pop.
*/
static void MakeRecordingWithPop( PaQaRecording *recording, PaQaTestTone *testTone, int popPosition, int popWidth, double popAmplitude )
{
int i;
MakeCleanRecording( recording, testTone );
// Apply glitch to good recording.
if( (popPosition + popWidth) >= recording->numFrames )
{
popWidth = (recording->numFrames - popPosition) - 1;
}
for( i=0; i<popWidth; i++ )
{
float good = recording->buffer[i+popPosition];
float bad = (good > 0.0) ? (good - popAmplitude) : (good + popAmplitude);
recording->buffer[i+popPosition] = bad;
}
}
/*==========================================================================================*/
/**
* Detect one phase error in a recording.
*/
static int TestDetectSinglePhaseError( double sampleRate, int cycleSize, int latencyFrames, int glitchPosition, int framesAdded )
{
int result = 0;
PaQaRecording recording;
PaQaTestTone testTone;
PaQaAnalysisResult analysisResult = { 0.0 };
int framesDropped = 0;
int maxFrames = ((int)sampleRate) * 2;
testTone.samplesPerFrame = 1;
testTone.sampleRate = sampleRate;
testTone.frequency = sampleRate / cycleSize;
testTone.amplitude = 0.5;
testTone.startDelay = latencyFrames;
result = PaQa_InitializeRecording( &recording, maxFrames, (int) sampleRate );
QA_ASSERT_EQUALS( "PaQa_InitializeRecording failed", 0, result );
MakeRecordingWithAddedFrames( &recording, &testTone, glitchPosition, framesAdded );
PaQa_AnalyseRecording( &recording, &testTone, &analysisResult );
if( framesAdded < 0 )
{
framesDropped = -framesAdded;
framesAdded = 0;
}
#if PRINT_REPORTS
printf("\n=== Dropped Frame Analysis ===================\n");
printf(" expected actual\n");
printf(" latency: %10.3f %10.3f\n", (double)latencyFrames, analysisResult.latency );
printf(" num added frames: %10.3f %10.3f\n", (double)framesAdded, analysisResult.numAddedFrames );
printf(" added frames at: %10.3f %10.3f\n", (double)glitchPosition, analysisResult.addedFramesPosition );
printf(" num dropped frames: %10.3f %10.3f\n", (double)framesDropped, analysisResult.numDroppedFrames );
printf(" dropped frames at: %10.3f %10.3f\n", (double)glitchPosition, analysisResult.droppedFramesPosition );
#endif
QA_ASSERT_CLOSE( "PaQa_AnalyseRecording latency", latencyFrames, analysisResult.latency, 0.5 );
QA_ASSERT_CLOSE( "PaQa_AnalyseRecording framesAdded", framesAdded, analysisResult.numAddedFrames, 1.0 );
QA_ASSERT_CLOSE( "PaQa_AnalyseRecording framesDropped", framesDropped, analysisResult.numDroppedFrames, 1.0 );
// QA_ASSERT_CLOSE( "PaQa_AnalyseRecording glitchPosition", glitchPosition, analysisResult.glitchPosition, cycleSize );
PaQa_TerminateRecording( &recording );
return 0;
error:
PaQa_TerminateRecording( &recording);
return 1;
}
/*==========================================================================================*/
/**
* Test various dropped sample scenarios.
*/
static int TestDetectPhaseErrors( void )
{
int result;
result = TestDetectSinglePhaseError( 44100, 200, 477, -1, 0 );
if( result < 0 ) return result;
/*
result = TestDetectSinglePhaseError( 44100, 200, 77, -1, 0 );
if( result < 0 ) return result;
result = TestDetectSinglePhaseError( 44100, 200, 83, 3712, 9 );
if( result < 0 ) return result;
result = TestDetectSinglePhaseError( 44100, 280, 83, 3712, 27 );
if( result < 0 ) return result;
result = TestDetectSinglePhaseError( 44100, 200, 234, 3712, -9 );
if( result < 0 ) return result;
result = TestDetectSinglePhaseError( 44100, 200, 2091, 8923, -2 );
if( result < 0 ) return result;
result = TestDetectSinglePhaseError( 44100, 120, 1782, 5772, -18 );
if( result < 0 ) return result;
// Note that if the frequency is too high then it is hard to detect single dropped frames.
result = TestDetectSinglePhaseError( 44100, 200, 500, 4251, -1 );
if( result < 0 ) return result;
*/
return 0;
}
/*==========================================================================================*/
/**
* Detect one pop in a recording.
*/
static int TestDetectSinglePop( double sampleRate, int cycleSize, int latencyFrames, int popPosition, int popWidth, double popAmplitude )
{
int result = 0;
PaQaRecording recording;
PaQaTestTone testTone;
PaQaAnalysisResult analysisResult = { 0.0 };
int maxFrames = ((int)sampleRate) * 2;
testTone.samplesPerFrame = 1;
testTone.sampleRate = sampleRate;
testTone.frequency = sampleRate / cycleSize;
testTone.amplitude = 0.5;
testTone.startDelay = latencyFrames;
result = PaQa_InitializeRecording( &recording, maxFrames, (int) sampleRate );
QA_ASSERT_EQUALS( "PaQa_InitializeRecording failed", 0, result );
MakeRecordingWithPop( &recording, &testTone, popPosition, popWidth, popAmplitude );
PaQa_AnalyseRecording( &recording, &testTone, &analysisResult );
#if PRINT_REPORTS
printf("\n=== Pop Analysis ===================\n");
printf(" expected actual\n");
printf(" latency: %10.3f %10.3f\n", (double)latencyFrames, analysisResult.latency );
printf(" popPosition: %10.3f %10.3f\n", (double)popPosition, analysisResult.popPosition );
printf(" popAmplitude: %10.3f %10.3f\n", popAmplitude, analysisResult.popAmplitude );
printf(" cycleSize: %6d\n", cycleSize );
printf(" num added frames: %10.3f\n", analysisResult.numAddedFrames );
printf(" added frames at: %10.3f\n", analysisResult.addedFramesPosition );
printf(" num dropped frames: %10.3f\n", analysisResult.numDroppedFrames );
printf(" dropped frames at: %10.3f\n", analysisResult.droppedFramesPosition );
#endif
QA_ASSERT_CLOSE( "PaQa_AnalyseRecording latency", latencyFrames, analysisResult.latency, 0.5 );
QA_ASSERT_CLOSE( "PaQa_AnalyseRecording popPosition", popPosition, analysisResult.popPosition, 10 );
if( popWidth > 0 )
{
QA_ASSERT_CLOSE( "PaQa_AnalyseRecording popAmplitude", popAmplitude, analysisResult.popAmplitude, 0.1 * popAmplitude );
}
PaQa_TerminateRecording( &recording );
return 0;
error:
PaQa_SaveRecordingToWaveFile( &recording, "bad_recording.wav" );
PaQa_TerminateRecording( &recording);
return 1;
}
/*==========================================================================================*/
/**
* Analyse recording with a DC offset.
*/
static int TestSingleInitialSpike( double sampleRate, int stepPosition, int cycleSize, int latencyFrames, double stepAmplitude )
{
int i;
int result = 0;
// Account for highpass filter offset.
int expectedLatency = latencyFrames + 1;
PaQaRecording recording;
PaQaRecording hipassOutput = { 0 };
BiquadFilter hipassFilter;
PaQaTestTone testTone;
PaQaAnalysisResult analysisResult = { 0.0 };
int maxFrames = ((int)sampleRate) * 2;
testTone.samplesPerFrame = 1;
testTone.sampleRate = sampleRate;
testTone.frequency = sampleRate / cycleSize;
testTone.amplitude = -0.5;
testTone.startDelay = latencyFrames;
result = PaQa_InitializeRecording( &recording, maxFrames, (int) sampleRate );
QA_ASSERT_EQUALS( "PaQa_InitializeRecording failed", 0, result );
result = PaQa_InitializeRecording( &hipassOutput, maxFrames, (int) sampleRate );
QA_ASSERT_EQUALS( "PaQa_InitializeRecording failed", 0, result );
MakeCleanRecording( &recording, &testTone );
// Apply DC step.
for( i=stepPosition; i<recording.numFrames; i++ )
{
recording.buffer[i] += stepAmplitude;
}
// Use high pass as a DC blocker!
BiquadFilter_SetupHighPass( &hipassFilter, 10.0 / sampleRate, 0.5 );
PaQa_FilterRecording( &recording, &hipassOutput, &hipassFilter );
testTone.amplitude = 0.5;
PaQa_AnalyseRecording( &hipassOutput, &testTone, &analysisResult );
#if PRINT_REPORTS
printf("\n=== InitialSpike Analysis ===================\n");
printf(" expected actual\n");
printf(" latency: %10.3f %10.3f\n", (double)expectedLatency, analysisResult.latency );
printf(" popPosition: %10.3f\n", analysisResult.popPosition );
printf(" popAmplitude: %10.3f\n", analysisResult.popAmplitude );
printf(" amplitudeRatio: %10.3f\n", analysisResult.amplitudeRatio );
printf(" cycleSize: %6d\n", cycleSize );
printf(" num added frames: %10.3f\n", analysisResult.numAddedFrames );
printf(" added frames at: %10.3f\n", analysisResult.addedFramesPosition );
printf(" num dropped frames: %10.3f\n", analysisResult.numDroppedFrames );
printf(" dropped frames at: %10.3f\n", analysisResult.droppedFramesPosition );
#endif
QA_ASSERT_CLOSE( "PaQa_AnalyseRecording latency", expectedLatency, analysisResult.latency, 4.0 );
QA_ASSERT_EQUALS( "PaQa_AnalyseRecording no pop from step", -1, (int) analysisResult.popPosition );
PaQa_TerminateRecording( &recording );
PaQa_TerminateRecording( &hipassOutput );
return 0;
error:
PaQa_SaveRecordingToWaveFile( &recording, "bad_step_original.wav" );
PaQa_SaveRecordingToWaveFile( &hipassOutput, "bad_step_hipass.wav" );
PaQa_TerminateRecording( &recording);
PaQa_TerminateRecording( &hipassOutput );
return 1;
}
/*==========================================================================================*/
/**
* Test various dropped sample scenarios.
*/
static int TestDetectPops( void )
{
int result;
// No pop.
result = TestDetectSinglePop( 44100, 200, 477, -1, 0, 0.0 );
if( result < 0 ) return result;
// short pop
result = TestDetectSinglePop( 44100, 300, 810, 3987, 1, 0.5 );
if( result < 0 ) return result;
// medium long pop
result = TestDetectSinglePop( 44100, 300, 810, 9876, 5, 0.5 );
if( result < 0 ) return result;
// short tiny pop
result = TestDetectSinglePop( 44100, 250, 810, 5672, 1, 0.05 );
if( result < 0 ) return result;
return 0;
}
/*==========================================================================================*/
/**
* Test analysis when there is a DC offset step before the sine signal.
*/
static int TestInitialSpike( void )
{
int result;
//( double sampleRate, int stepPosition, int cycleSize, int latencyFrames, double stepAmplitude )
// No spike.
result = TestSingleInitialSpike( 44100, 32, 100, 537, 0.0 );
if( result < 0 ) return result;
// Small spike.
result = TestSingleInitialSpike( 44100, 32, 100, 537, 0.1 );
if( result < 0 ) return result;
// short pop like Ross's error.
result = TestSingleInitialSpike( 8000, 32, 42, 2000, 0.1 );
if( result < 0 ) return result;
// Medium spike.
result = TestSingleInitialSpike( 44100, 40, 190, 3000, 0.5 );
if( result < 0 ) return result;
// Spike near sine.
//result = TestSingleInitialSpike( 44100, 2900, 140, 3000, 0.1 );
if( result < 0 ) return result;
return 0;
}
#if TEST_SAVED_WAVE
/*==========================================================================================*/
/**
* Simple test that writes a sawtooth waveform to a file.
*/
static int TestSavedWave()
{
int i,j;
WAV_Writer writer;
int result = 0;
#define NUM_SAMPLES (200)
short data[NUM_SAMPLES];
short saw = 0;
result = Audio_WAV_OpenWriter( &writer, "test_sawtooth.wav", 44100, 1 );
if( result < 0 ) goto error;
for( i=0; i<15; i++ )
{
for( j=0; j<NUM_SAMPLES; j++ )
{
data[j] = saw;
saw += 293;
}
result = Audio_WAV_WriteShorts( &writer, data, NUM_SAMPLES );
if( result < 0 ) goto error;
}
result = Audio_WAV_CloseWriter( &writer );
if( result < 0 ) goto error;
return 0;
error:
printf("ERROR: result = %d\n", result );
return result;
}
#endif /* TEST_SAVED_WAVE */
/*==========================================================================================*/
/**
* Easy way to generate a sine tone recording.
*/
void PaQa_FillWithSine( PaQaRecording *recording, double sampleRate, double freq, double amp )
{
PaQaSineGenerator generator;
float buffer[FRAMES_PER_BLOCK];
int samplesPerFrame = 1;
int stride = 1;
int done = 0;
// Setup a sine oscillator.
PaQa_SetupSineGenerator( &generator, freq, amp, sampleRate );
done = 0;
while (!done)
{
PaQa_EraseBuffer( buffer, FRAMES_PER_BLOCK, samplesPerFrame );
PaQa_MixSine( &generator, buffer, FRAMES_PER_BLOCK, stride );
done = PaQa_WriteRecording( recording, buffer, FRAMES_PER_BLOCK, samplesPerFrame );
}
}
/*==========================================================================================*/
/**
* Generate a tone then knock it out using a filter.
* Also check using filter slightly off tune to see if some energy gets through.
*/
static int TestNotchFilter( void )
{
int result = 0;
PaQaRecording original = { 0 };
PaQaRecording filtered = { 0 };
BiquadFilter notchFilter;
double sampleRate = 44100.0;
int maxFrames = ((int)sampleRate) * 1;
double freq = 234.5;
double amp = 0.5;
double mag1, mag2, mag3;
result = PaQa_InitializeRecording( &original, maxFrames, (int) sampleRate );
QA_ASSERT_EQUALS( "PaQa_InitializeRecording failed", 0, result );
PaQa_FillWithSine( &original, sampleRate, freq, amp );
//result = PaQa_SaveRecordingToWaveFile( &original, "original.wav" );
//QA_ASSERT_EQUALS( "PaQa_SaveRecordingToWaveFile failed", 0, result );
mag1 = PaQa_CorrelateSine( &original, freq, sampleRate, 0, original.numFrames, NULL );
QA_ASSERT_CLOSE( "exact frequency match", amp, mag1, 0.01 );
// Filter with exact frequency.
result = PaQa_InitializeRecording( &filtered, maxFrames, (int) sampleRate );
QA_ASSERT_EQUALS( "PaQa_InitializeRecording failed", 0, result );
BiquadFilter_SetupNotch( &notchFilter, freq / sampleRate, 0.5 );
PaQa_FilterRecording( &original, &filtered, &notchFilter );
result = PaQa_SaveRecordingToWaveFile( &filtered, "filtered1.wav" );
QA_ASSERT_EQUALS( "PaQa_SaveRecordingToWaveFile failed", 0, result );
mag2 = PaQa_CorrelateSine( &filtered, freq, sampleRate, 0, filtered.numFrames, NULL );
QA_ASSERT_CLOSE( "should eliminate tone", 0.0, mag2, 0.01 );
// Filter with mismatched frequency.
BiquadFilter_SetupNotch( &notchFilter, 1.07 * freq / sampleRate, 2.0 );
PaQa_FilterRecording( &original, &filtered, &notchFilter );
//result = PaQa_SaveRecordingToWaveFile( &filtered, "badfiltered.wav" );
//QA_ASSERT_EQUALS( "PaQa_SaveRecordingToWaveFile failed", 0, result );
mag3 = PaQa_CorrelateSine( &filtered, freq, sampleRate, 0, filtered.numFrames, NULL );
QA_ASSERT_CLOSE( "should eliminate tone", amp*0.26, mag3, 0.01 );
PaQa_TerminateRecording( &original );
PaQa_TerminateRecording( &filtered );
return 0;
error:
PaQa_TerminateRecording( &original);
PaQa_TerminateRecording( &filtered );
return 1;
}
/*==========================================================================================*/
/**
*/
int PaQa_TestAnalyzer( void )
{
int result;
#if TEST_SAVED_WAVE
// Write a simple wave file.
if ((result = TestSavedWave()) != 0) return result;
#endif /* TEST_SAVED_WAVE */
// Generate single tone and verify presence.
if ((result = TestSingleMonoTone()) != 0) return result;
// Generate prime series of tones and verify presence.
if ((result = TestMixedMonoTones()) != 0) return result;
// Detect dropped or added samples in a sine wave recording.
if ((result = TestDetectPhaseErrors()) != 0) return result;
// Test to see if notch filter can knock out the test tone.
if ((result = TestNotchFilter()) != 0) return result;
// Detect pops that get back in phase.
if ((result = TestDetectPops()) != 0) return result;
// Test to see if the latency detector can be tricked like it was on Ross' Windows machine.
if ((result = TestInitialSpike()) != 0) return result;
return 0;
}