mirror of
https://github.com/pocoproject/poco.git
synced 2025-05-20 13:05:32 +02:00

- SF [1621372] Build Scripts (all Windows scripts consolidated in one) - eliminated warnings in sqlite3.c - updated components file
82932 lines
2.7 MiB
82932 lines
2.7 MiB
/******************************************************************************
|
|
** This file is an amalgamation of many separate C source files from SQLite
|
|
** version 3.5.5. By combining all the individual C code files into this
|
|
** single large file, the entire code can be compiled as a one translation
|
|
** unit. This allows many compilers to do optimizations that would not be
|
|
** possible if the files were compiled separately. Performance improvements
|
|
** of 5% are more are commonly seen when SQLite is compiled as a single
|
|
** translation unit.
|
|
**
|
|
** This file is all you need to compile SQLite. To use SQLite in other
|
|
** programs, you need this file and the "sqlite3.h" header file that defines
|
|
** the programming interface to the SQLite library. (If you do not have
|
|
** the "sqlite3.h" header file at hand, you will find a copy in the first
|
|
** 4801 lines past this header comment.) Additional code files may be
|
|
** needed if you want a wrapper to interface SQLite with your choice of
|
|
** programming language. The code for the "sqlite3" command-line shell
|
|
** is also in a separate file. This file contains only code for the core
|
|
** SQLite library.
|
|
**
|
|
** This amalgamation was generated on 2008-01-31 16:37:58 UTC.
|
|
*/
|
|
|
|
/* +++ Added for Poco::Data::SQLite Windows build. */
|
|
#if defined(_MSC_VER)
|
|
#pragma warning( disable : 4018) /* conversion from 'double' to 'int', possible loss of data */
|
|
#pragma warning( disable : 4244) /* signed/unsigned mismatch */
|
|
#define _CRT_SECURE_NO_WARNINGS
|
|
#endif
|
|
/* --- Added for Poco::Data::SQLite Windows build. */
|
|
|
|
#define SQLITE_CORE 1
|
|
#define SQLITE_AMALGAMATION 1
|
|
#ifndef SQLITE_PRIVATE
|
|
# define SQLITE_PRIVATE static
|
|
#endif
|
|
#ifndef SQLITE_API
|
|
# define SQLITE_API
|
|
#endif
|
|
/************** Begin file sqliteInt.h ***************************************/
|
|
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** Internal interface definitions for SQLite.
|
|
**
|
|
** @(#) $Id: sqliteInt.h,v 1.658 2008/01/30 16:14:23 drh Exp $
|
|
*/
|
|
#ifndef _SQLITEINT_H_
|
|
#define _SQLITEINT_H_
|
|
|
|
/*
|
|
** The macro unlikely() is a hint that surrounds a boolean
|
|
** expression that is usually false. Macro likely() surrounds
|
|
** a boolean expression that is usually true. GCC is able to
|
|
** use these hints to generate better code, sometimes.
|
|
*/
|
|
#if defined(__GNUC__) && 0
|
|
# define likely(X) __builtin_expect((X),1)
|
|
# define unlikely(X) __builtin_expect((X),0)
|
|
#else
|
|
# define likely(X) !!(X)
|
|
# define unlikely(X) !!(X)
|
|
#endif
|
|
|
|
|
|
/*
|
|
** These #defines should enable >2GB file support on Posix if the
|
|
** underlying operating system supports it. If the OS lacks
|
|
** large file support, or if the OS is windows, these should be no-ops.
|
|
**
|
|
** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any
|
|
** system #includes. Hence, this block of code must be the very first
|
|
** code in all source files.
|
|
**
|
|
** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
|
|
** on the compiler command line. This is necessary if you are compiling
|
|
** on a recent machine (ex: RedHat 7.2) but you want your code to work
|
|
** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
|
|
** without this option, LFS is enable. But LFS does not exist in the kernel
|
|
** in RedHat 6.0, so the code won't work. Hence, for maximum binary
|
|
** portability you should omit LFS.
|
|
**
|
|
** Similar is true for MacOS. LFS is only supported on MacOS 9 and later.
|
|
*/
|
|
#ifndef SQLITE_DISABLE_LFS
|
|
# define _LARGE_FILE 1
|
|
# ifndef _FILE_OFFSET_BITS
|
|
# define _FILE_OFFSET_BITS 64
|
|
# endif
|
|
# define _LARGEFILE_SOURCE 1
|
|
#endif
|
|
|
|
|
|
/************** Include sqliteLimit.h in the middle of sqliteInt.h ***********/
|
|
/************** Begin file sqliteLimit.h *************************************/
|
|
/*
|
|
** 2007 May 7
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
**
|
|
** This file defines various limits of what SQLite can process.
|
|
**
|
|
** @(#) $Id: sqliteLimit.h,v 1.6 2007/12/17 16:20:07 drh Exp $
|
|
*/
|
|
|
|
/*
|
|
** The maximum length of a TEXT or BLOB in bytes. This also
|
|
** limits the size of a row in a table or index.
|
|
**
|
|
** The hard limit is the ability of a 32-bit signed integer
|
|
** to count the size: 2^31-1 or 2147483647.
|
|
*/
|
|
#ifndef SQLITE_MAX_LENGTH
|
|
# define SQLITE_MAX_LENGTH 1000000000
|
|
#endif
|
|
|
|
/*
|
|
** This is the maximum number of
|
|
**
|
|
** * Columns in a table
|
|
** * Columns in an index
|
|
** * Columns in a view
|
|
** * Terms in the SET clause of an UPDATE statement
|
|
** * Terms in the result set of a SELECT statement
|
|
** * Terms in the GROUP BY or ORDER BY clauses of a SELECT statement.
|
|
** * Terms in the VALUES clause of an INSERT statement
|
|
**
|
|
** The hard upper limit here is 32676. Most database people will
|
|
** tell you that in a well-normalized database, you usually should
|
|
** not have more than a dozen or so columns in any table. And if
|
|
** that is the case, there is no point in having more than a few
|
|
** dozen values in any of the other situations described above.
|
|
*/
|
|
#ifndef SQLITE_MAX_COLUMN
|
|
# define SQLITE_MAX_COLUMN 2000
|
|
#endif
|
|
|
|
/*
|
|
** The maximum length of a single SQL statement in bytes.
|
|
** A value of zero means there is no limit.
|
|
*/
|
|
#ifndef SQLITE_MAX_SQL_LENGTH
|
|
# define SQLITE_MAX_SQL_LENGTH 0
|
|
#endif
|
|
|
|
/*
|
|
** The maximum depth of an expression tree. This is limited to
|
|
** some extent by SQLITE_MAX_SQL_LENGTH. But sometime you might
|
|
** want to place more severe limits on the complexity of an
|
|
** expression. A value of 0 (the default) means do not enforce
|
|
** any limitation on expression tree depth.
|
|
*/
|
|
#ifndef SQLITE_MAX_EXPR_DEPTH
|
|
# define SQLITE_MAX_EXPR_DEPTH 1000
|
|
#endif
|
|
|
|
/*
|
|
** The maximum number of terms in a compound SELECT statement.
|
|
** The code generator for compound SELECT statements does one
|
|
** level of recursion for each term. A stack overflow can result
|
|
** if the number of terms is too large. In practice, most SQL
|
|
** never has more than 3 or 4 terms. Use a value of 0 to disable
|
|
** any limit on the number of terms in a compount SELECT.
|
|
*/
|
|
#ifndef SQLITE_MAX_COMPOUND_SELECT
|
|
# define SQLITE_MAX_COMPOUND_SELECT 500
|
|
#endif
|
|
|
|
/*
|
|
** The maximum number of opcodes in a VDBE program.
|
|
** Not currently enforced.
|
|
*/
|
|
#ifndef SQLITE_MAX_VDBE_OP
|
|
# define SQLITE_MAX_VDBE_OP 25000
|
|
#endif
|
|
|
|
/*
|
|
** The maximum number of arguments to an SQL function.
|
|
*/
|
|
#ifndef SQLITE_MAX_FUNCTION_ARG
|
|
# define SQLITE_MAX_FUNCTION_ARG 100
|
|
#endif
|
|
|
|
/*
|
|
** The maximum number of in-memory pages to use for the main database
|
|
** table and for temporary tables. The SQLITE_DEFAULT_CACHE_SIZE
|
|
*/
|
|
#ifndef SQLITE_DEFAULT_CACHE_SIZE
|
|
# define SQLITE_DEFAULT_CACHE_SIZE 2000
|
|
#endif
|
|
#ifndef SQLITE_DEFAULT_TEMP_CACHE_SIZE
|
|
# define SQLITE_DEFAULT_TEMP_CACHE_SIZE 500
|
|
#endif
|
|
|
|
/*
|
|
** The maximum number of attached databases. This must be at least 2
|
|
** in order to support the main database file (0) and the file used to
|
|
** hold temporary tables (1). And it must be less than 32 because
|
|
** we use a bitmask of databases with a u32 in places (for example
|
|
** the Parse.cookieMask field).
|
|
*/
|
|
#ifndef SQLITE_MAX_ATTACHED
|
|
# define SQLITE_MAX_ATTACHED 10
|
|
#endif
|
|
|
|
|
|
/*
|
|
** The maximum value of a ?nnn wildcard that the parser will accept.
|
|
*/
|
|
#ifndef SQLITE_MAX_VARIABLE_NUMBER
|
|
# define SQLITE_MAX_VARIABLE_NUMBER 999
|
|
#endif
|
|
|
|
/* Maximum page size. The upper bound on this value is 32768. This a limit
|
|
** imposed by the necessity of storing the value in a 2-byte unsigned integer
|
|
** and the fact that the page size must be a power of 2.
|
|
*/
|
|
#ifndef SQLITE_MAX_PAGE_SIZE
|
|
# define SQLITE_MAX_PAGE_SIZE 32768
|
|
#endif
|
|
|
|
|
|
/*
|
|
** The default size of a database page.
|
|
*/
|
|
#ifndef SQLITE_DEFAULT_PAGE_SIZE
|
|
# define SQLITE_DEFAULT_PAGE_SIZE 1024
|
|
#endif
|
|
#if SQLITE_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
|
|
# undef SQLITE_DEFAULT_PAGE_SIZE
|
|
# define SQLITE_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
|
|
#endif
|
|
|
|
/*
|
|
** Ordinarily, if no value is explicitly provided, SQLite creates databases
|
|
** with page size SQLITE_DEFAULT_PAGE_SIZE. However, based on certain
|
|
** device characteristics (sector-size and atomic write() support),
|
|
** SQLite may choose a larger value. This constant is the maximum value
|
|
** SQLite will choose on its own.
|
|
*/
|
|
#ifndef SQLITE_MAX_DEFAULT_PAGE_SIZE
|
|
# define SQLITE_MAX_DEFAULT_PAGE_SIZE 8192
|
|
#endif
|
|
#if SQLITE_MAX_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
|
|
# undef SQLITE_MAX_DEFAULT_PAGE_SIZE
|
|
# define SQLITE_MAX_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Maximum number of pages in one database file.
|
|
**
|
|
** This is really just the default value for the max_page_count pragma.
|
|
** This value can be lowered (or raised) at run-time using that the
|
|
** max_page_count macro.
|
|
*/
|
|
#ifndef SQLITE_MAX_PAGE_COUNT
|
|
# define SQLITE_MAX_PAGE_COUNT 1073741823
|
|
#endif
|
|
|
|
/*
|
|
** Maximum length (in bytes) of the pattern in a LIKE or GLOB
|
|
** operator.
|
|
*/
|
|
#ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH
|
|
# define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000
|
|
#endif
|
|
|
|
/************** End of sqliteLimit.h *****************************************/
|
|
/************** Continuing where we left off in sqliteInt.h ******************/
|
|
|
|
/*
|
|
** For testing purposes, the various size limit constants are really
|
|
** variables that we can modify in the testfixture.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
#undef SQLITE_MAX_LENGTH
|
|
#undef SQLITE_MAX_COLUMN
|
|
#undef SQLITE_MAX_SQL_LENGTH
|
|
#undef SQLITE_MAX_EXPR_DEPTH
|
|
#undef SQLITE_MAX_COMPOUND_SELECT
|
|
#undef SQLITE_MAX_VDBE_OP
|
|
#undef SQLITE_MAX_FUNCTION_ARG
|
|
#undef SQLITE_MAX_VARIABLE_NUMBER
|
|
#undef SQLITE_MAX_PAGE_SIZE
|
|
#undef SQLITE_MAX_PAGE_COUNT
|
|
#undef SQLITE_MAX_LIKE_PATTERN_LENGTH
|
|
|
|
#define SQLITE_MAX_LENGTH sqlite3MAX_LENGTH
|
|
#define SQLITE_MAX_COLUMN sqlite3MAX_COLUMN
|
|
#define SQLITE_MAX_SQL_LENGTH sqlite3MAX_SQL_LENGTH
|
|
#define SQLITE_MAX_EXPR_DEPTH sqlite3MAX_EXPR_DEPTH
|
|
#define SQLITE_MAX_COMPOUND_SELECT sqlite3MAX_COMPOUND_SELECT
|
|
#define SQLITE_MAX_VDBE_OP sqlite3MAX_VDBE_OP
|
|
#define SQLITE_MAX_FUNCTION_ARG sqlite3MAX_FUNCTION_ARG
|
|
#define SQLITE_MAX_VARIABLE_NUMBER sqlite3MAX_VARIABLE_NUMBER
|
|
#define SQLITE_MAX_PAGE_SIZE sqlite3MAX_PAGE_SIZE
|
|
#define SQLITE_MAX_PAGE_COUNT sqlite3MAX_PAGE_COUNT
|
|
#define SQLITE_MAX_LIKE_PATTERN_LENGTH sqlite3MAX_LIKE_PATTERN_LENGTH
|
|
|
|
extern int sqlite3MAX_LENGTH;
|
|
extern int sqlite3MAX_COLUMN;
|
|
extern int sqlite3MAX_SQL_LENGTH;
|
|
extern int sqlite3MAX_EXPR_DEPTH;
|
|
extern int sqlite3MAX_COMPOUND_SELECT;
|
|
extern int sqlite3MAX_VDBE_OP;
|
|
extern int sqlite3MAX_FUNCTION_ARG;
|
|
extern int sqlite3MAX_VARIABLE_NUMBER;
|
|
extern int sqlite3MAX_PAGE_SIZE;
|
|
extern int sqlite3MAX_PAGE_COUNT;
|
|
extern int sqlite3MAX_LIKE_PATTERN_LENGTH;
|
|
#endif
|
|
|
|
|
|
/*
|
|
** The SQLITE_THREADSAFE macro must be defined as either 0 or 1.
|
|
** Older versions of SQLite used an optional THREADSAFE macro.
|
|
** We support that for legacy
|
|
*/
|
|
#if !defined(SQLITE_THREADSAFE)
|
|
#if defined(THREADSAFE)
|
|
# define SQLITE_THREADSAFE THREADSAFE
|
|
#else
|
|
# define SQLITE_THREADSAFE 1
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
** We need to define _XOPEN_SOURCE as follows in order to enable
|
|
** recursive mutexes on most unix systems. But Mac OS X is different.
|
|
** The _XOPEN_SOURCE define causes problems for Mac OS X we are told,
|
|
** so it is omitted there. See ticket #2673.
|
|
**
|
|
** Later we learn that _XOPEN_SOURCE is poorly or incorrectly
|
|
** implemented on some systems. So we avoid defining it at all
|
|
** if it is already defined or if it is unneeded because we are
|
|
** not doing a threadsafe build. Ticket #2681.
|
|
**
|
|
** See also ticket #2741.
|
|
*/
|
|
#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE
|
|
# define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */
|
|
#endif
|
|
|
|
#if defined(SQLITE_TCL) || defined(TCLSH)
|
|
# include <tcl.h>
|
|
#endif
|
|
|
|
/*
|
|
** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
|
|
** Setting NDEBUG makes the code smaller and run faster. So the following
|
|
** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1
|
|
** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out
|
|
** feature.
|
|
*/
|
|
#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
|
|
# define NDEBUG 1
|
|
#endif
|
|
|
|
/************** Include sqlite3.h in the middle of sqliteInt.h ***************/
|
|
/************** Begin file sqlite3.h *****************************************/
|
|
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This header file defines the interface that the SQLite library
|
|
** presents to client programs. If a C-function, structure, datatype,
|
|
** or constant definition does not appear in this file, then it is
|
|
** not a published API of SQLite, is subject to change without
|
|
** notice, and should not be referenced by programs that use SQLite.
|
|
**
|
|
** Some of the definitions that are in this file are marked as
|
|
** "experimental". Experimental interfaces are normally new
|
|
** features recently added to SQLite. We do not anticipate changes
|
|
** to experimental interfaces but reserve to make minor changes if
|
|
** experience from use "in the wild" suggest such changes are prudent.
|
|
**
|
|
** The official C-language API documentation for SQLite is derived
|
|
** from comments in this file. This file is the authoritative source
|
|
** on how SQLite interfaces are suppose to operate.
|
|
**
|
|
** The name of this file under configuration management is "sqlite.h.in".
|
|
** The makefile makes some minor changes to this file (such as inserting
|
|
** the version number) and changes its name to "sqlite3.h" as
|
|
** part of the build process.
|
|
**
|
|
** @(#) $Id: sqlite.h.in,v 1.282 2008/01/31 16:36:40 drh Exp $
|
|
*/
|
|
#ifndef _SQLITE3_H_
|
|
#define _SQLITE3_H_
|
|
#include <stdarg.h> /* Needed for the definition of va_list */
|
|
|
|
/*
|
|
** Make sure we can call this stuff from C++.
|
|
*/
|
|
#if 0
|
|
extern "C" {
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Add the ability to override 'extern'
|
|
*/
|
|
#ifndef SQLITE_EXTERN
|
|
# define SQLITE_EXTERN extern
|
|
#endif
|
|
|
|
/*
|
|
** Make sure these symbols where not defined by some previous header
|
|
** file.
|
|
*/
|
|
#ifdef SQLITE_VERSION
|
|
# undef SQLITE_VERSION
|
|
#endif
|
|
#ifdef SQLITE_VERSION_NUMBER
|
|
# undef SQLITE_VERSION_NUMBER
|
|
#endif
|
|
|
|
/*
|
|
** CAPI3REF: Compile-Time Library Version Numbers {F10010}
|
|
**
|
|
** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in
|
|
** the sqlite3.h file specify the version of SQLite with which
|
|
** that header file is associated.
|
|
**
|
|
** The "version" of SQLite is a strong of the form "X.Y.Z".
|
|
** The phrase "alpha" or "beta" might be appended after the Z.
|
|
** The X value is major version number always 3 in SQLite3.
|
|
** The X value only changes when backwards compatibility is
|
|
** broken and we intend to never break
|
|
** backwards compatibility. The Y value is the minor version
|
|
** number and only changes when
|
|
** there are major feature enhancements that are forwards compatible
|
|
** but not backwards compatible. The Z value is release number
|
|
** and is incremented with
|
|
** each release but resets back to 0 when Y is incremented.
|
|
**
|
|
** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()].
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F10011} The SQLITE_VERSION #define in the sqlite3.h header file
|
|
** evaluates to a string literal that is the SQLite version
|
|
** with which the header file is associated.
|
|
**
|
|
** {F10014} The SQLITE_VERSION_NUMBER #define resolves to an integer
|
|
** with the value (X*1000000 + Y*1000 + Z) where X, Y, and
|
|
** Z are the major version, minor version, and release number.
|
|
*/
|
|
#define SQLITE_VERSION "3.5.5"
|
|
#define SQLITE_VERSION_NUMBER 3005005
|
|
|
|
/*
|
|
** CAPI3REF: Run-Time Library Version Numbers {F10020}
|
|
** KEYWORDS: sqlite3_version
|
|
**
|
|
** These features provide the same information as the [SQLITE_VERSION]
|
|
** and [SQLITE_VERSION_NUMBER] #defines in the header, but are associated
|
|
** with the library instead of the header file. Cautious programmers might
|
|
** include a check in their application to verify that
|
|
** sqlite3_libversion_number() always returns the value
|
|
** [SQLITE_VERSION_NUMBER].
|
|
**
|
|
** The sqlite3_libversion() function returns the same information as is
|
|
** in the sqlite3_version[] string constant. The function is provided
|
|
** for use in DLLs since DLL users usually do not have direct access to string
|
|
** constants within the DLL.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F10021} The [sqlite3_libversion_number()] interface returns an integer
|
|
** equal to [SQLITE_VERSION_NUMBER].
|
|
**
|
|
** {F10022} The [sqlite3_version] string constant contains the text of the
|
|
** [SQLITE_VERSION] string.
|
|
**
|
|
** {F10023} The [sqlite3_libversion()] function returns
|
|
** a pointer to the [sqlite3_version] string constant.
|
|
*/
|
|
SQLITE_EXTERN const char sqlite3_version[];
|
|
SQLITE_API const char *sqlite3_libversion(void);
|
|
SQLITE_API int sqlite3_libversion_number(void);
|
|
|
|
/*
|
|
** CAPI3REF: Test To See If The Library Is Threadsafe {F10100}
|
|
**
|
|
** SQLite can be compiled with or without mutexes. When
|
|
** the SQLITE_THREADSAFE C preprocessor macro is true, mutexes
|
|
** are enabled and SQLite is threadsafe. When that macro os false,
|
|
** the mutexes are omitted. Without the mutexes, it is not safe
|
|
** to use SQLite from more than one thread.
|
|
**
|
|
** There is a measurable performance penalty for enabling mutexes.
|
|
** So if speed is of utmost importance, it makes sense to disable
|
|
** the mutexes. But for maximum safety, mutexes should be enabled.
|
|
** The default behavior is for mutexes to be enabled.
|
|
**
|
|
** This interface can be used by a program to make sure that the
|
|
** version of SQLite that it is linking against was compiled with
|
|
** the desired setting of the SQLITE_THREADSAFE macro.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F10101} The [sqlite3_threadsafe()] function returns nonzero if
|
|
** SQLite was compiled with its mutexes enabled or zero
|
|
** if SQLite was compiled with mutexes disabled.
|
|
*/
|
|
SQLITE_API int sqlite3_threadsafe(void);
|
|
|
|
/*
|
|
** CAPI3REF: Database Connection Handle {F12000}
|
|
** KEYWORDS: {database connection}
|
|
**
|
|
** Each open SQLite database is represented by pointer to an instance of the
|
|
** opaque structure named "sqlite3". It is useful to think of an sqlite3
|
|
** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and
|
|
** [sqlite3_open_v2()] interfaces are its constructors
|
|
** and [sqlite3_close()] is its destructor. There are many other interfaces
|
|
** (such as [sqlite3_prepare_v2()], [sqlite3_create_function()], and
|
|
** [sqlite3_busy_timeout()] to name but three) that are methods on this
|
|
** object.
|
|
*/
|
|
typedef struct sqlite3 sqlite3;
|
|
|
|
|
|
/*
|
|
** CAPI3REF: 64-Bit Integer Types {F10200}
|
|
** KEYWORDS: sqlite_int64 sqlite_uint64
|
|
**
|
|
** Because there is no cross-platform way to specify 64-bit integer types
|
|
** SQLite includes typedefs for 64-bit signed and unsigned integers.
|
|
**
|
|
** The sqlite3_int64 and sqlite3_uint64 are the preferred type
|
|
** definitions. The sqlite_int64 and sqlite_uint64 types are
|
|
** supported for backwards compatibility only.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F10201} The [sqlite_int64] and [sqlite3_int64] types specify a
|
|
** 64-bit signed integer.
|
|
**
|
|
** {F10202} The [sqlite_uint64] and [sqlite3_uint64] types specify
|
|
** a 64-bit unsigned integer.
|
|
*/
|
|
#ifdef SQLITE_INT64_TYPE
|
|
typedef SQLITE_INT64_TYPE sqlite_int64;
|
|
typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
|
|
#elif defined(_MSC_VER) || defined(__BORLANDC__)
|
|
typedef __int64 sqlite_int64;
|
|
typedef unsigned __int64 sqlite_uint64;
|
|
#else
|
|
typedef long long int sqlite_int64;
|
|
typedef unsigned long long int sqlite_uint64;
|
|
#endif
|
|
typedef sqlite_int64 sqlite3_int64;
|
|
typedef sqlite_uint64 sqlite3_uint64;
|
|
|
|
/*
|
|
** If compiling for a processor that lacks floating point support,
|
|
** substitute integer for floating-point
|
|
*/
|
|
#ifdef SQLITE_OMIT_FLOATING_POINT
|
|
# define double sqlite3_int64
|
|
#endif
|
|
|
|
/*
|
|
** CAPI3REF: Closing A Database Connection {F12010}
|
|
**
|
|
** This routine is the destructor for the [sqlite3] object.
|
|
**
|
|
** Applications should [sqlite3_finalize | finalize] all
|
|
** [prepared statements] and
|
|
** [sqlite3_blob_close | close] all [sqlite3_blob | BLOBs]
|
|
** associated with the [sqlite3] object prior
|
|
** to attempting to close the [sqlite3] object.
|
|
**
|
|
** <todo>What happens to pending transactions? Are they
|
|
** rolled back, or abandoned?</todo>
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F12011} The [sqlite3_close()] interface destroys an [sqlite3] object
|
|
** allocated by a prior call to [sqlite3_open()],
|
|
** [sqlite3_open16()], or [sqlite3_open_v2()].
|
|
**
|
|
** {F12012} The [sqlite3_close()] function releases all memory used by the
|
|
** connection and closes all open files.
|
|
**
|
|
** {F12013} If the database connection contains
|
|
** [prepared statements] that have not been
|
|
** finalized by [sqlite3_finalize()], then [sqlite3_close()]
|
|
** returns [SQLITE_BUSY] and leaves the connection open.
|
|
**
|
|
** {F12014} Giving sqlite3_close() a NULL pointer is a harmless no-op.
|
|
**
|
|
** LIMITATIONS:
|
|
**
|
|
** {U12015} The parameter to [sqlite3_close()] must be an [sqlite3] object
|
|
** pointer previously obtained from [sqlite3_open()] or the
|
|
** equivalent, or NULL.
|
|
**
|
|
** {U12016} The parameter to [sqlite3_close()] must not have been previously
|
|
** closed.
|
|
*/
|
|
SQLITE_API int sqlite3_close(sqlite3 *);
|
|
|
|
/*
|
|
** The type for a callback function.
|
|
** This is legacy and deprecated. It is included for historical
|
|
** compatibility and is not documented.
|
|
*/
|
|
typedef int (*sqlite3_callback)(void*,int,char**, char**);
|
|
|
|
/*
|
|
** CAPI3REF: One-Step Query Execution Interface {F12100}
|
|
**
|
|
** The sqlite3_exec() interface is a convenient way of running
|
|
** one or more SQL statements without a lot of C code. The
|
|
** SQL statements are passed in as the second parameter to
|
|
** sqlite3_exec(). The statements are evaluated one by one
|
|
** until either an error or an interrupt is encountered or
|
|
** until they are all done. The 3rd parameter is an optional
|
|
** callback that is invoked once for each row of any query results
|
|
** produced by the SQL statements. The 5th parameter tells where
|
|
** to write any error messages.
|
|
**
|
|
** The sqlite3_exec() interface is implemented in terms of
|
|
** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
|
|
** The sqlite3_exec() routine does nothing that cannot be done
|
|
** by [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
|
|
** The sqlite3_exec() is just a convenient wrapper.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F12101} The [sqlite3_exec()] interface evaluates zero or more UTF-8
|
|
** encoded, semicolon-separated, SQL statements in the
|
|
** zero-terminated string of its 2nd parameter within the
|
|
** context of the [sqlite3] object given in the 1st parameter.
|
|
**
|
|
** {F12104} The return value of [sqlite3_exec()] is SQLITE_OK if all
|
|
** SQL statements run successfully.
|
|
**
|
|
** {F12105} The return value of [sqlite3_exec()] is an appropriate
|
|
** non-zero error code if any SQL statement fails.
|
|
**
|
|
** {F12107} If one or more of the SQL statements handed to [sqlite3_exec()]
|
|
** return results and the 3rd parameter is not NULL, then
|
|
** the callback function specified by the 3rd parameter is
|
|
** invoked once for each row of result.
|
|
**
|
|
** {F12110} If the callback returns a non-zero value then [sqlite3_exec()]
|
|
** will aborted the SQL statement it is currently evaluating,
|
|
** skip all subsequent SQL statements, and return [SQLITE_ABORT].
|
|
** <todo>What happens to *errmsg here? Does the result code for
|
|
** sqlite3_errcode() get set?</todo>
|
|
**
|
|
** {F12113} The [sqlite3_exec()] routine will pass its 4th parameter through
|
|
** as the 1st parameter of the callback.
|
|
**
|
|
** {F12116} The [sqlite3_exec()] routine sets the 2nd parameter of its
|
|
** callback to be the number of columns in the current row of
|
|
** result.
|
|
**
|
|
** {F12119} The [sqlite3_exec()] routine sets the 3rd parameter of its
|
|
** callback to be an array of pointers to strings holding the
|
|
** values for each column in the current result set row as
|
|
** obtained from [sqlite3_column_text()].
|
|
**
|
|
** {F12122} The [sqlite3_exec()] routine sets the 4th parameter of its
|
|
** callback to be an array of pointers to strings holding the
|
|
** names of result columns as obtained from [sqlite3_column_name()].
|
|
**
|
|
** {F12125} If the 3rd parameter to [sqlite3_exec()] is NULL then
|
|
** [sqlite3_exec()] never invokes a callback. All query
|
|
** results are silently discarded.
|
|
**
|
|
** {F12128} If an error occurs while parsing or evaluating any of the SQL
|
|
** statements handed to [sqlite3_exec()] then [sqlite3_exec()] will
|
|
** return an [error code] other than [SQLITE_OK].
|
|
**
|
|
** {F12131} If an error occurs while parsing or evaluating any of the SQL
|
|
** handed to [sqlite3_exec()] and if the 5th parameter (errmsg)
|
|
** to [sqlite3_exec()] is not NULL, then an error message is
|
|
** allocated using the equivalent of [sqlite3_mprintf()] and
|
|
** *errmsg is made to point to that message.
|
|
**
|
|
** {F12134} The [sqlite3_exec()] routine does not change the value of
|
|
** *errmsg if errmsg is NULL or if there are no errors.
|
|
**
|
|
** {F12137} The [sqlite3_exec()] function sets the error code and message
|
|
** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()].
|
|
**
|
|
** LIMITATIONS:
|
|
**
|
|
** {U12141} The first parameter to [sqlite3_exec()] must be an valid and open
|
|
** [database connection].
|
|
**
|
|
** {U12142} The database connection must not be closed while
|
|
** [sqlite3_exec()] is running.
|
|
**
|
|
** {U12143} The calling function is should use [sqlite3_free()] to free
|
|
** the memory that *errmsg is left pointing at once the error
|
|
** message is no longer needed.
|
|
**
|
|
** {U12145} The SQL statement text in the 2nd parameter to [sqlite3_exec()]
|
|
** must remain unchanged while [sqlite3_exec()] is running.
|
|
*/
|
|
SQLITE_API int sqlite3_exec(
|
|
sqlite3*, /* An open database */
|
|
const char *sql, /* SQL to be evaluted */
|
|
int (*callback)(void*,int,char**,char**), /* Callback function */
|
|
void *, /* 1st argument to callback */
|
|
char **errmsg /* Error msg written here */
|
|
);
|
|
|
|
/*
|
|
** CAPI3REF: Result Codes {F10210}
|
|
** KEYWORDS: SQLITE_OK {error code} {error codes}
|
|
**
|
|
** Many SQLite functions return an integer result code from the set shown
|
|
** here in order to indicates success or failure.
|
|
**
|
|
** See also: [SQLITE_IOERR_READ | extended result codes]
|
|
*/
|
|
#define SQLITE_OK 0 /* Successful result */
|
|
/* beginning-of-error-codes */
|
|
#define SQLITE_ERROR 1 /* SQL error or missing database */
|
|
#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */
|
|
#define SQLITE_PERM 3 /* Access permission denied */
|
|
#define SQLITE_ABORT 4 /* Callback routine requested an abort */
|
|
#define SQLITE_BUSY 5 /* The database file is locked */
|
|
#define SQLITE_LOCKED 6 /* A table in the database is locked */
|
|
#define SQLITE_NOMEM 7 /* A malloc() failed */
|
|
#define SQLITE_READONLY 8 /* Attempt to write a readonly database */
|
|
#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/
|
|
#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
|
|
#define SQLITE_CORRUPT 11 /* The database disk image is malformed */
|
|
#define SQLITE_NOTFOUND 12 /* NOT USED. Table or record not found */
|
|
#define SQLITE_FULL 13 /* Insertion failed because database is full */
|
|
#define SQLITE_CANTOPEN 14 /* Unable to open the database file */
|
|
#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */
|
|
#define SQLITE_EMPTY 16 /* Database is empty */
|
|
#define SQLITE_SCHEMA 17 /* The database schema changed */
|
|
#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */
|
|
#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */
|
|
#define SQLITE_MISMATCH 20 /* Data type mismatch */
|
|
#define SQLITE_MISUSE 21 /* Library used incorrectly */
|
|
#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
|
|
#define SQLITE_AUTH 23 /* Authorization denied */
|
|
#define SQLITE_FORMAT 24 /* Auxiliary database format error */
|
|
#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */
|
|
#define SQLITE_NOTADB 26 /* File opened that is not a database file */
|
|
#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */
|
|
#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */
|
|
/* end-of-error-codes */
|
|
|
|
/*
|
|
** CAPI3REF: Extended Result Codes {F10220}
|
|
** KEYWORDS: {extended error code} {extended error codes}
|
|
** KEYWORDS: {extended result codes}
|
|
**
|
|
** In its default configuration, SQLite API routines return one of 26 integer
|
|
** [SQLITE_OK | result codes]. However, experience has shown that
|
|
** many of these result codes are too course-grained. They do not provide as
|
|
** much information about problems as programmers might like. In an effort to
|
|
** address this, newer versions of SQLite (version 3.3.8 and later) include
|
|
** support for additional result codes that provide more detailed information
|
|
** about errors. The extended result codes are enabled or disabled
|
|
** for each database connection using the [sqlite3_extended_result_codes()]
|
|
** API.
|
|
**
|
|
** Some of the available extended result codes are listed here.
|
|
** One may expect the number of extended result codes will be expand
|
|
** over time. Software that uses extended result codes should expect
|
|
** to see new result codes in future releases of SQLite.
|
|
**
|
|
** The SQLITE_OK result code will never be extended. It will always
|
|
** be exactly zero.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F10223} The symbolic name for an extended result code always contains
|
|
** a related primary result code as a prefix.
|
|
**
|
|
** {F10224} Primary result code names contain a single "_" character.
|
|
**
|
|
** {F10225} Extended result code names contain two or more "_" characters.
|
|
**
|
|
** {F10226} The numeric value of an extended result code contains the
|
|
** numeric value of its corresponding primary result code it
|
|
** its least significant 8 bits.
|
|
*/
|
|
#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8))
|
|
#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8))
|
|
#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8))
|
|
#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8))
|
|
#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8))
|
|
#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8))
|
|
#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8))
|
|
#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8))
|
|
#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8))
|
|
#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8))
|
|
#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8))
|
|
#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8))
|
|
|
|
/*
|
|
** CAPI3REF: Flags For File Open Operations {F10230}
|
|
**
|
|
** These bit values are intended for use in then
|
|
** 3rd parameter to the [sqlite3_open_v2()] interface and
|
|
** in the 4th parameter to the xOpen method of the
|
|
** [sqlite3_vfs] object.
|
|
*/
|
|
#define SQLITE_OPEN_READONLY 0x00000001
|
|
#define SQLITE_OPEN_READWRITE 0x00000002
|
|
#define SQLITE_OPEN_CREATE 0x00000004
|
|
#define SQLITE_OPEN_DELETEONCLOSE 0x00000008
|
|
#define SQLITE_OPEN_EXCLUSIVE 0x00000010
|
|
#define SQLITE_OPEN_MAIN_DB 0x00000100
|
|
#define SQLITE_OPEN_TEMP_DB 0x00000200
|
|
#define SQLITE_OPEN_TRANSIENT_DB 0x00000400
|
|
#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800
|
|
#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000
|
|
#define SQLITE_OPEN_SUBJOURNAL 0x00002000
|
|
#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000
|
|
|
|
/*
|
|
** CAPI3REF: Device Characteristics {F10240}
|
|
**
|
|
** The xDeviceCapabilities method of the [sqlite3_io_methods]
|
|
** object returns an integer which is a vector of the these
|
|
** bit values expressing I/O characteristics of the mass storage
|
|
** device that holds the file that the [sqlite3_io_methods]
|
|
** refers to.
|
|
**
|
|
** The SQLITE_IOCAP_ATOMIC property means that all writes of
|
|
** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
|
|
** mean that writes of blocks that are nnn bytes in size and
|
|
** are aligned to an address which is an integer multiple of
|
|
** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
|
|
** that when data is appended to a file, the data is appended
|
|
** first then the size of the file is extended, never the other
|
|
** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
|
|
** information is written to disk in the same order as calls
|
|
** to xWrite().
|
|
*/
|
|
#define SQLITE_IOCAP_ATOMIC 0x00000001
|
|
#define SQLITE_IOCAP_ATOMIC512 0x00000002
|
|
#define SQLITE_IOCAP_ATOMIC1K 0x00000004
|
|
#define SQLITE_IOCAP_ATOMIC2K 0x00000008
|
|
#define SQLITE_IOCAP_ATOMIC4K 0x00000010
|
|
#define SQLITE_IOCAP_ATOMIC8K 0x00000020
|
|
#define SQLITE_IOCAP_ATOMIC16K 0x00000040
|
|
#define SQLITE_IOCAP_ATOMIC32K 0x00000080
|
|
#define SQLITE_IOCAP_ATOMIC64K 0x00000100
|
|
#define SQLITE_IOCAP_SAFE_APPEND 0x00000200
|
|
#define SQLITE_IOCAP_SEQUENTIAL 0x00000400
|
|
|
|
/*
|
|
** CAPI3REF: File Locking Levels {F10250}
|
|
**
|
|
** SQLite uses one of these integer values as the second
|
|
** argument to calls it makes to the xLock() and xUnlock() methods
|
|
** of an [sqlite3_io_methods] object.
|
|
*/
|
|
#define SQLITE_LOCK_NONE 0
|
|
#define SQLITE_LOCK_SHARED 1
|
|
#define SQLITE_LOCK_RESERVED 2
|
|
#define SQLITE_LOCK_PENDING 3
|
|
#define SQLITE_LOCK_EXCLUSIVE 4
|
|
|
|
/*
|
|
** CAPI3REF: Synchronization Type Flags {F10260}
|
|
**
|
|
** When SQLite invokes the xSync() method of an
|
|
** [sqlite3_io_methods] object it uses a combination of the
|
|
** these integer values as the second argument.
|
|
**
|
|
** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
|
|
** sync operation only needs to flush data to mass storage. Inode
|
|
** information need not be flushed. The SQLITE_SYNC_NORMAL means
|
|
** to use normal fsync() semantics. The SQLITE_SYNC_FULL flag means
|
|
** to use Mac OS-X style fullsync instead of fsync().
|
|
*/
|
|
#define SQLITE_SYNC_NORMAL 0x00002
|
|
#define SQLITE_SYNC_FULL 0x00003
|
|
#define SQLITE_SYNC_DATAONLY 0x00010
|
|
|
|
|
|
/*
|
|
** CAPI3REF: OS Interface Open File Handle {F11110}
|
|
**
|
|
** An [sqlite3_file] object represents an open file in the OS
|
|
** interface layer. Individual OS interface implementations will
|
|
** want to subclass this object by appending additional fields
|
|
** for their own use. The pMethods entry is a pointer to an
|
|
** [sqlite3_io_methods] object that defines methods for performing
|
|
** I/O operations on the open file.
|
|
*/
|
|
typedef struct sqlite3_file sqlite3_file;
|
|
struct sqlite3_file {
|
|
const struct sqlite3_io_methods *pMethods; /* Methods for an open file */
|
|
};
|
|
|
|
/*
|
|
** CAPI3REF: OS Interface File Virtual Methods Object {F11120}
|
|
**
|
|
** Every file opened by the [sqlite3_vfs] xOpen method contains a pointer to
|
|
** an instance of the this object. This object defines the
|
|
** methods used to perform various operations against the open file.
|
|
**
|
|
** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or
|
|
** [SQLITE_SYNC_FULL]. The first choice is the normal fsync().
|
|
* The second choice is an
|
|
** OS-X style fullsync. The SQLITE_SYNC_DATA flag may be ORed in to
|
|
** indicate that only the data of the file and not its inode needs to be
|
|
** synced.
|
|
**
|
|
** The integer values to xLock() and xUnlock() are one of
|
|
** <ul>
|
|
** <li> [SQLITE_LOCK_NONE],
|
|
** <li> [SQLITE_LOCK_SHARED],
|
|
** <li> [SQLITE_LOCK_RESERVED],
|
|
** <li> [SQLITE_LOCK_PENDING], or
|
|
** <li> [SQLITE_LOCK_EXCLUSIVE].
|
|
** </ul>
|
|
** xLock() increases the lock. xUnlock() decreases the lock.
|
|
** The xCheckReservedLock() method looks
|
|
** to see if any database connection, either in this
|
|
** process or in some other process, is holding an RESERVED,
|
|
** PENDING, or EXCLUSIVE lock on the file. It returns true
|
|
** if such a lock exists and false if not.
|
|
**
|
|
** The xFileControl() method is a generic interface that allows custom
|
|
** VFS implementations to directly control an open file using the
|
|
** [sqlite3_file_control()] interface. The second "op" argument
|
|
** is an integer opcode. The third
|
|
** argument is a generic pointer which is intended to be a pointer
|
|
** to a structure that may contain arguments or space in which to
|
|
** write return values. Potential uses for xFileControl() might be
|
|
** functions to enable blocking locks with timeouts, to change the
|
|
** locking strategy (for example to use dot-file locks), to inquire
|
|
** about the status of a lock, or to break stale locks. The SQLite
|
|
** core reserves opcodes less than 100 for its own use.
|
|
** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available.
|
|
** Applications that define a custom xFileControl method should use opcodes
|
|
** greater than 100 to avoid conflicts.
|
|
**
|
|
** The xSectorSize() method returns the sector size of the
|
|
** device that underlies the file. The sector size is the
|
|
** minimum write that can be performed without disturbing
|
|
** other bytes in the file. The xDeviceCharacteristics()
|
|
** method returns a bit vector describing behaviors of the
|
|
** underlying device:
|
|
**
|
|
** <ul>
|
|
** <li> [SQLITE_IOCAP_ATOMIC]
|
|
** <li> [SQLITE_IOCAP_ATOMIC512]
|
|
** <li> [SQLITE_IOCAP_ATOMIC1K]
|
|
** <li> [SQLITE_IOCAP_ATOMIC2K]
|
|
** <li> [SQLITE_IOCAP_ATOMIC4K]
|
|
** <li> [SQLITE_IOCAP_ATOMIC8K]
|
|
** <li> [SQLITE_IOCAP_ATOMIC16K]
|
|
** <li> [SQLITE_IOCAP_ATOMIC32K]
|
|
** <li> [SQLITE_IOCAP_ATOMIC64K]
|
|
** <li> [SQLITE_IOCAP_SAFE_APPEND]
|
|
** <li> [SQLITE_IOCAP_SEQUENTIAL]
|
|
** </ul>
|
|
**
|
|
** The SQLITE_IOCAP_ATOMIC property means that all writes of
|
|
** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
|
|
** mean that writes of blocks that are nnn bytes in size and
|
|
** are aligned to an address which is an integer multiple of
|
|
** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
|
|
** that when data is appended to a file, the data is appended
|
|
** first then the size of the file is extended, never the other
|
|
** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
|
|
** information is written to disk in the same order as calls
|
|
** to xWrite().
|
|
*/
|
|
typedef struct sqlite3_io_methods sqlite3_io_methods;
|
|
struct sqlite3_io_methods {
|
|
int iVersion;
|
|
int (*xClose)(sqlite3_file*);
|
|
int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
|
|
int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst);
|
|
int (*xTruncate)(sqlite3_file*, sqlite3_int64 size);
|
|
int (*xSync)(sqlite3_file*, int flags);
|
|
int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize);
|
|
int (*xLock)(sqlite3_file*, int);
|
|
int (*xUnlock)(sqlite3_file*, int);
|
|
int (*xCheckReservedLock)(sqlite3_file*);
|
|
int (*xFileControl)(sqlite3_file*, int op, void *pArg);
|
|
int (*xSectorSize)(sqlite3_file*);
|
|
int (*xDeviceCharacteristics)(sqlite3_file*);
|
|
/* Additional methods may be added in future releases */
|
|
};
|
|
|
|
/*
|
|
** CAPI3REF: Standard File Control Opcodes {F11310}
|
|
**
|
|
** These integer constants are opcodes for the xFileControl method
|
|
** of the [sqlite3_io_methods] object and to the [sqlite3_file_control()]
|
|
** interface.
|
|
**
|
|
** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This
|
|
** opcode cases the xFileControl method to write the current state of
|
|
** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
|
|
** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
|
|
** into an integer that the pArg argument points to. This capability
|
|
** is used during testing and only needs to be supported when SQLITE_TEST
|
|
** is defined.
|
|
*/
|
|
#define SQLITE_FCNTL_LOCKSTATE 1
|
|
|
|
/*
|
|
** CAPI3REF: Mutex Handle {F17110}
|
|
**
|
|
** The mutex module within SQLite defines [sqlite3_mutex] to be an
|
|
** abstract type for a mutex object. The SQLite core never looks
|
|
** at the internal representation of an [sqlite3_mutex]. It only
|
|
** deals with pointers to the [sqlite3_mutex] object.
|
|
**
|
|
** Mutexes are created using [sqlite3_mutex_alloc()].
|
|
*/
|
|
typedef struct sqlite3_mutex sqlite3_mutex;
|
|
|
|
/*
|
|
** CAPI3REF: OS Interface Object {F11140}
|
|
**
|
|
** An instance of this object defines the interface between the
|
|
** SQLite core and the underlying operating system. The "vfs"
|
|
** in the name of the object stands for "virtual file system".
|
|
**
|
|
** The iVersion field is initially 1 but may be larger for future
|
|
** versions of SQLite. Additional fields may be appended to this
|
|
** object when the iVersion value is increased.
|
|
**
|
|
** The szOsFile field is the size of the subclassed [sqlite3_file]
|
|
** structure used by this VFS. mxPathname is the maximum length of
|
|
** a pathname in this VFS.
|
|
**
|
|
** Registered vfs modules are kept on a linked list formed by
|
|
** the pNext pointer. The [sqlite3_vfs_register()]
|
|
** and [sqlite3_vfs_unregister()] interfaces manage this list
|
|
** in a thread-safe way. The [sqlite3_vfs_find()] interface
|
|
** searches the list.
|
|
**
|
|
** The pNext field is the only fields in the sqlite3_vfs
|
|
** structure that SQLite will ever modify. SQLite will only access
|
|
** or modify this field while holding a particular static mutex.
|
|
** The application should never modify anything within the sqlite3_vfs
|
|
** object once the object has been registered.
|
|
**
|
|
** The zName field holds the name of the VFS module. The name must
|
|
** be unique across all VFS modules.
|
|
**
|
|
** {F11141} SQLite will guarantee that the zFilename string passed to
|
|
** xOpen() is a full pathname as generated by xFullPathname() and
|
|
** that the string will be valid and unchanged until xClose() is
|
|
** called. {END} So the [sqlite3_file] can store a pointer to the
|
|
** filename if it needs to remember the filename for some reason.
|
|
**
|
|
** {F11142} The flags argument to xOpen() includes all bits set in
|
|
** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()]
|
|
** or [sqlite3_open16()] is used, then flags includes at least
|
|
** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. {END}
|
|
** If xOpen() opens a file read-only then it sets *pOutFlags to
|
|
** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be
|
|
** set.
|
|
**
|
|
** {F11143} SQLite will also add one of the following flags to the xOpen()
|
|
** call, depending on the object being opened:
|
|
**
|
|
** <ul>
|
|
** <li> [SQLITE_OPEN_MAIN_DB]
|
|
** <li> [SQLITE_OPEN_MAIN_JOURNAL]
|
|
** <li> [SQLITE_OPEN_TEMP_DB]
|
|
** <li> [SQLITE_OPEN_TEMP_JOURNAL]
|
|
** <li> [SQLITE_OPEN_TRANSIENT_DB]
|
|
** <li> [SQLITE_OPEN_SUBJOURNAL]
|
|
** <li> [SQLITE_OPEN_MASTER_JOURNAL]
|
|
** </ul> {END}
|
|
**
|
|
** The file I/O implementation can use the object type flags to
|
|
** changes the way it deals with files. For example, an application
|
|
** that does not care about crash recovery or rollback, might make
|
|
** the open of a journal file a no-op. Writes to this journal are
|
|
** also a no-op. Any attempt to read the journal return SQLITE_IOERR.
|
|
** Or the implementation might recognize the a database file will
|
|
** be doing page-aligned sector reads and writes in a random order
|
|
** and set up its I/O subsystem accordingly.
|
|
**
|
|
** SQLite might also add one of the following flags to the xOpen
|
|
** method:
|
|
**
|
|
** <ul>
|
|
** <li> [SQLITE_OPEN_DELETEONCLOSE]
|
|
** <li> [SQLITE_OPEN_EXCLUSIVE]
|
|
** </ul>
|
|
**
|
|
** {F11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
|
|
** deleted when it is closed. {F11146} The [SQLITE_OPEN_DELETEONCLOSE]
|
|
** will be set for TEMP databases, journals and for subjournals.
|
|
** {F11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened
|
|
** for exclusive access. This flag is set for all files except
|
|
** for the main database file. {END}
|
|
**
|
|
** {F11148} At least szOsFile bytes of memory is allocated by SQLite
|
|
** to hold the [sqlite3_file] structure passed as the third
|
|
** argument to xOpen. {END} The xOpen method does not have to
|
|
** allocate the structure; it should just fill it in.
|
|
**
|
|
** {F11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
|
|
** to test for the existance of a file,
|
|
** or [SQLITE_ACCESS_READWRITE] to test to see
|
|
** if a file is readable and writable, or [SQLITE_ACCESS_READ]
|
|
** to test to see if a file is at least readable. {END} The file can be a
|
|
** directory.
|
|
**
|
|
** {F11150} SQLite will always allocate at least mxPathname+1 byte for
|
|
** the output buffers for xGetTempname and xFullPathname. {F11151} The exact
|
|
** size of the output buffer is also passed as a parameter to both
|
|
** methods. {END} If the output buffer is not large enough, SQLITE_CANTOPEN
|
|
** should be returned. As this is handled as a fatal error by SQLite,
|
|
** vfs implementations should endeavor to prevent this by setting
|
|
** mxPathname to a sufficiently large value.
|
|
**
|
|
** The xRandomness(), xSleep(), and xCurrentTime() interfaces
|
|
** are not strictly a part of the filesystem, but they are
|
|
** included in the VFS structure for completeness.
|
|
** The xRandomness() function attempts to return nBytes bytes
|
|
** of good-quality randomness into zOut. The return value is
|
|
** the actual number of bytes of randomness obtained. The
|
|
** xSleep() method cause the calling thread to sleep for at
|
|
** least the number of microseconds given. The xCurrentTime()
|
|
** method returns a Julian Day Number for the current date and
|
|
** time.
|
|
*/
|
|
typedef struct sqlite3_vfs sqlite3_vfs;
|
|
struct sqlite3_vfs {
|
|
int iVersion; /* Structure version number */
|
|
int szOsFile; /* Size of subclassed sqlite3_file */
|
|
int mxPathname; /* Maximum file pathname length */
|
|
sqlite3_vfs *pNext; /* Next registered VFS */
|
|
const char *zName; /* Name of this virtual file system */
|
|
void *pAppData; /* Pointer to application-specific data */
|
|
int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*,
|
|
int flags, int *pOutFlags);
|
|
int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir);
|
|
int (*xAccess)(sqlite3_vfs*, const char *zName, int flags);
|
|
int (*xGetTempname)(sqlite3_vfs*, int nOut, char *zOut);
|
|
int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut);
|
|
void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename);
|
|
void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg);
|
|
void *(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol);
|
|
void (*xDlClose)(sqlite3_vfs*, void*);
|
|
int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut);
|
|
int (*xSleep)(sqlite3_vfs*, int microseconds);
|
|
int (*xCurrentTime)(sqlite3_vfs*, double*);
|
|
/* New fields may be appended in figure versions. The iVersion
|
|
** value will increment whenever this happens. */
|
|
};
|
|
|
|
/*
|
|
** CAPI3REF: Flags for the xAccess VFS method {F11190}
|
|
**
|
|
** {F11191} These integer constants can be used as the third parameter to
|
|
** the xAccess method of an [sqlite3_vfs] object. {END} They determine
|
|
** the kind of what kind of permissions the xAccess method is
|
|
** looking for. {F11192} With SQLITE_ACCESS_EXISTS, the xAccess method
|
|
** simply checks to see if the file exists. {F11193} With
|
|
** SQLITE_ACCESS_READWRITE, the xAccess method checks to see
|
|
** if the file is both readable and writable. {F11194} With
|
|
** SQLITE_ACCESS_READ the xAccess method
|
|
** checks to see if the file is readable.
|
|
*/
|
|
#define SQLITE_ACCESS_EXISTS 0
|
|
#define SQLITE_ACCESS_READWRITE 1
|
|
#define SQLITE_ACCESS_READ 2
|
|
|
|
/*
|
|
** CAPI3REF: Enable Or Disable Extended Result Codes {F12200}
|
|
**
|
|
** The sqlite3_extended_result_codes() routine enables or disables the
|
|
** [SQLITE_IOERR_READ | extended result codes] feature of SQLite.
|
|
** The extended result codes are disabled by default for historical
|
|
** compatibility.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F12201} Each new [database connection] has the
|
|
** [extended result codes] feature
|
|
** disabled by default.
|
|
**
|
|
** {F12202} The [sqlite3_extended_result_codes(D,F)] interface will enable
|
|
** [extended result codes] for the
|
|
** [database connection] D if the F parameter
|
|
** is true, or disable them if F is false.
|
|
*/
|
|
SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff);
|
|
|
|
/*
|
|
** CAPI3REF: Last Insert Rowid {F12220}
|
|
**
|
|
** Each entry in an SQLite table has a unique 64-bit signed
|
|
** integer key called the "rowid". The rowid is always available
|
|
** as an undeclared column named ROWID, OID, or _ROWID_ as long as those
|
|
** names are not also used by explicitly declared columns. If
|
|
** the table has a column of type INTEGER PRIMARY KEY then that column
|
|
** is another an alias for the rowid.
|
|
**
|
|
** This routine returns the rowid of the most recent
|
|
** successful INSERT into the database from the database connection
|
|
** shown in the first argument. If no successful inserts
|
|
** have ever occurred on this database connection, zero is returned.
|
|
**
|
|
** If an INSERT occurs within a trigger, then the rowid of the
|
|
** inserted row is returned by this routine as long as the trigger
|
|
** is running. But once the trigger terminates, the value returned
|
|
** by this routine reverts to the last value inserted before the
|
|
** trigger fired.
|
|
**
|
|
** An INSERT that fails due to a constraint violation is not a
|
|
** successful insert and does not change the value returned by this
|
|
** routine. Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
|
|
** and INSERT OR ABORT make no changes to the return value of this
|
|
** routine when their insertion fails. When INSERT OR REPLACE
|
|
** encounters a constraint violation, it does not fail. The
|
|
** INSERT continues to completion after deleting rows that caused
|
|
** the constraint problem so INSERT OR REPLACE will always change
|
|
** the return value of this interface.
|
|
**
|
|
** For the purposes of this routine, an insert is considered to
|
|
** be successful even if it is subsequently rolled back.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F12221} The [sqlite3_last_insert_rowid()] function returns the
|
|
** rowid of the most recent successful insert done
|
|
** on the same database connection and within the same
|
|
** trigger context, or zero if there have
|
|
** been no qualifying inserts on that connection.
|
|
**
|
|
** {F12223} The [sqlite3_last_insert_rowid()] function returns
|
|
** same value when called from the same trigger context
|
|
** immediately before and after a ROLLBACK.
|
|
**
|
|
** LIMITATIONS:
|
|
**
|
|
** {U12232} If separate thread does a new insert on the same
|
|
** database connection while the [sqlite3_last_insert_rowid()]
|
|
** function is running and thus changes the last insert rowid,
|
|
** then the value returned by [sqlite3_last_insert_rowid()] is
|
|
** unpredictable and might not equal either the old or the new
|
|
** last insert rowid.
|
|
*/
|
|
SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);
|
|
|
|
/*
|
|
** CAPI3REF: Count The Number Of Rows Modified {F12240}
|
|
**
|
|
** This function returns the number of database rows that were changed
|
|
** or inserted or deleted by the most recently completed SQL statement
|
|
** on the connection specified by the first parameter. Only
|
|
** changes that are directly specified by the INSERT, UPDATE, or
|
|
** DELETE statement are counted. Auxiliary changes caused by
|
|
** triggers are not counted. Use the [sqlite3_total_changes()] function
|
|
** to find the total number of changes including changes caused by triggers.
|
|
**
|
|
** A "row changes" is a change to a single row of a single table
|
|
** caused by an INSERT, DELETE, or UPDATE statement. Rows that
|
|
** are changed as side effects of REPLACE constraint resolution,
|
|
** rollback, ABORT processing, DROP TABLE, or by any other
|
|
** mechanisms do not count as direct row changes.
|
|
**
|
|
** A "trigger context" is a scope of execution that begins and
|
|
** ends with the script of a trigger. Most SQL statements are
|
|
** evaluated outside of any trigger. This is the "top level"
|
|
** trigger context. If a trigger fires from the top level, a
|
|
** new trigger context is entered for the duration of that one
|
|
** trigger. Subtriggers create subcontexts for their duration.
|
|
**
|
|
** Calling [sqlite3_exec()] or [sqlite3_step()] recursively does
|
|
** not create a new trigger context.
|
|
**
|
|
** This function returns the number of direct row changes in the
|
|
** most recent INSERT, UPDATE, or DELETE statement within the same
|
|
** trigger context.
|
|
**
|
|
** So when called from the top level, this function returns the
|
|
** number of changes in the most recent INSERT, UPDATE, or DELETE
|
|
** that also occurred at the top level.
|
|
** Within the body of a trigger, the sqlite3_changes() interface
|
|
** can be called to find the number of
|
|
** changes in the most recently completed INSERT, UPDATE, or DELETE
|
|
** statement within the body of the same trigger.
|
|
** However, the number returned does not include in changes
|
|
** caused by subtriggers since they have their own context.
|
|
**
|
|
** SQLite implements the command "DELETE FROM table" without
|
|
** a WHERE clause by dropping and recreating the table. (This is much
|
|
** faster than going through and deleting individual elements from the
|
|
** table.) Because of this optimization, the deletions in
|
|
** "DELETE FROM table" are not row changes and will not be counted
|
|
** by the sqlite3_changes() or [sqlite3_total_changes()] functions.
|
|
** To get an accurate count of the number of rows deleted, use
|
|
** "DELETE FROM table WHERE 1" instead.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F12241} The [sqlite3_changes()] function returns the number of
|
|
** row changes caused by the most recent INSERT, UPDATE,
|
|
** or DELETE statement on the same database connection and
|
|
** within the same trigger context, or zero if there have
|
|
** not been any qualifying row changes.
|
|
**
|
|
** LIMITATIONS:
|
|
**
|
|
** {U12252} If a separate thread makes changes on the same database connection
|
|
** while [sqlite3_changes()] is running then the value returned
|
|
** is unpredictable and unmeaningful.
|
|
*/
|
|
SQLITE_API int sqlite3_changes(sqlite3*);
|
|
|
|
/*
|
|
** CAPI3REF: Total Number Of Rows Modified {F12260}
|
|
***
|
|
** This function returns the number of row changes caused
|
|
** by INSERT, UPDATE or DELETE statements since the database handle
|
|
** was opened. The count includes all changes from all trigger
|
|
** contexts. But the count does not include changes used to
|
|
** implement REPLACE constraints, do rollbacks or ABORT processing,
|
|
** or DROP table processing.
|
|
** The changes
|
|
** are counted as soon as the statement that makes them is completed
|
|
** (when the statement handle is passed to [sqlite3_reset()] or
|
|
** [sqlite3_finalize()]).
|
|
**
|
|
** SQLite implements the command "DELETE FROM table" without
|
|
** a WHERE clause by dropping and recreating the table. (This is much
|
|
** faster than going
|
|
** through and deleting individual elements form the table.) Because of
|
|
** this optimization, the change count for "DELETE FROM table" will be
|
|
** zero regardless of the number of elements that were originally in the
|
|
** table. To get an accurate count of the number of rows deleted, use
|
|
** "DELETE FROM table WHERE 1" instead.
|
|
**
|
|
** See also the [sqlite3_changes()] interface.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F12261} The [sqlite3_total_changes()] returns the total number
|
|
** of row changes caused by INSERT, UPDATE, and/or DELETE
|
|
** statements on the same [database connection], in any
|
|
** trigger context, since the database connection was
|
|
** created.
|
|
**
|
|
** LIMITATIONS:
|
|
**
|
|
** {U12264} If a separate thread makes changes on the same database connection
|
|
** while [sqlite3_total_changes()] is running then the value
|
|
** returned is unpredictable and unmeaningful.
|
|
*/
|
|
SQLITE_API int sqlite3_total_changes(sqlite3*);
|
|
|
|
/*
|
|
** CAPI3REF: Interrupt A Long-Running Query {F12270}
|
|
**
|
|
** This function causes any pending database operation to abort and
|
|
** return at its earliest opportunity. This routine is typically
|
|
** called in response to a user action such as pressing "Cancel"
|
|
** or Ctrl-C where the user wants a long query operation to halt
|
|
** immediately.
|
|
**
|
|
** It is safe to call this routine from a thread different from the
|
|
** thread that is currently running the database operation. But it
|
|
** is not safe to call this routine with a database connection that
|
|
** is closed or might close before sqlite3_interrupt() returns.
|
|
**
|
|
** If an SQL is very nearly finished at the time when sqlite3_interrupt()
|
|
** is called, then it might not have an opportunity to be interrupted.
|
|
** It might continue to completion.
|
|
** An SQL operation that is interrupted will return
|
|
** [SQLITE_INTERRUPT]. If the interrupted SQL operation is an
|
|
** INSERT, UPDATE, or DELETE that is inside an explicit transaction,
|
|
** then the entire transaction will be rolled back automatically.
|
|
** A call to sqlite3_interrupt() has no effect on SQL statements
|
|
** that are started after sqlite3_interrupt() returns.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F12271} The [sqlite3_interrupt()] interface will force all running
|
|
** SQL statements associated with the same database connection
|
|
** to halt after processing at most one additional row of
|
|
** data.
|
|
**
|
|
** {F12272} Any SQL statement that is interrupted by [sqlite3_interrupt()]
|
|
** will return [SQLITE_INTERRUPT].
|
|
**
|
|
** LIMITATIONS:
|
|
**
|
|
** {U12279} If the database connection closes while [sqlite3_interrupt()]
|
|
** is running then bad things will likely happen.
|
|
*/
|
|
SQLITE_API void sqlite3_interrupt(sqlite3*);
|
|
|
|
/*
|
|
** CAPI3REF: Determine If An SQL Statement Is Complete {F10510}
|
|
**
|
|
** These routines are useful for command-line input to determine if the
|
|
** currently entered text seems to form complete a SQL statement or
|
|
** if additional input is needed before sending the text into
|
|
** SQLite for parsing. These routines return true if the input string
|
|
** appears to be a complete SQL statement. A statement is judged to be
|
|
** complete if it ends with a semicolon token and is not a fragment of a
|
|
** CREATE TRIGGER statement. Semicolons that are embedded within
|
|
** string literals or quoted identifier names or comments are not
|
|
** independent tokens (they are part of the token in which they are
|
|
** embedded) and thus do not count as a statement terminator.
|
|
**
|
|
** These routines do not parse the SQL and
|
|
** so will not detect syntactically incorrect SQL.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F10511} The sqlite3_complete() and sqlite3_complete16() functions
|
|
** return true (non-zero) if and only if the last
|
|
** non-whitespace token in their input is a semicolon that
|
|
** is not in between the BEGIN and END of a CREATE TRIGGER
|
|
** statement.
|
|
**
|
|
** LIMITATIONS:
|
|
**
|
|
** {U10512} The input to sqlite3_complete() must be a zero-terminated
|
|
** UTF-8 string.
|
|
**
|
|
** {U10513} The input to sqlite3_complete16() must be a zero-terminated
|
|
** UTF-16 string in native byte order.
|
|
*/
|
|
SQLITE_API int sqlite3_complete(const char *sql);
|
|
SQLITE_API int sqlite3_complete16(const void *sql);
|
|
|
|
/*
|
|
** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {F12310}
|
|
**
|
|
** This routine identifies a callback function that might be
|
|
** invoked whenever an attempt is made to open a database table
|
|
** that another thread or process has locked.
|
|
** If the busy callback is NULL, then [SQLITE_BUSY]
|
|
** or [SQLITE_IOERR_BLOCKED]
|
|
** is returned immediately upon encountering the lock.
|
|
** If the busy callback is not NULL, then the
|
|
** callback will be invoked with two arguments. The
|
|
** first argument to the handler is a copy of the void* pointer which
|
|
** is the third argument to this routine. The second argument to
|
|
** the handler is the number of times that the busy handler has
|
|
** been invoked for this locking event. If the
|
|
** busy callback returns 0, then no additional attempts are made to
|
|
** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned.
|
|
** If the callback returns non-zero, then another attempt
|
|
** is made to open the database for reading and the cycle repeats.
|
|
**
|
|
** The presence of a busy handler does not guarantee that
|
|
** it will be invoked when there is lock contention.
|
|
** If SQLite determines that invoking the busy handler could result in
|
|
** a deadlock, it will go ahead and return [SQLITE_BUSY] or
|
|
** [SQLITE_IOERR_BLOCKED] instead of invoking the
|
|
** busy handler.
|
|
** Consider a scenario where one process is holding a read lock that
|
|
** it is trying to promote to a reserved lock and
|
|
** a second process is holding a reserved lock that it is trying
|
|
** to promote to an exclusive lock. The first process cannot proceed
|
|
** because it is blocked by the second and the second process cannot
|
|
** proceed because it is blocked by the first. If both processes
|
|
** invoke the busy handlers, neither will make any progress. Therefore,
|
|
** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
|
|
** will induce the first process to release its read lock and allow
|
|
** the second process to proceed.
|
|
**
|
|
** The default busy callback is NULL.
|
|
**
|
|
** The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED]
|
|
** when SQLite is in the middle of a large transaction where all the
|
|
** changes will not fit into the in-memory cache. SQLite will
|
|
** already hold a RESERVED lock on the database file, but it needs
|
|
** to promote this lock to EXCLUSIVE so that it can spill cache
|
|
** pages into the database file without harm to concurrent
|
|
** readers. If it is unable to promote the lock, then the in-memory
|
|
** cache will be left in an inconsistent state and so the error
|
|
** code is promoted from the relatively benign [SQLITE_BUSY] to
|
|
** the more severe [SQLITE_IOERR_BLOCKED]. This error code promotion
|
|
** forces an automatic rollback of the changes. See the
|
|
** <a href="http://www.sqlite.org/cvstrac/wiki?p=CorruptionFollowingBusyError">
|
|
** CorruptionFollowingBusyError</a> wiki page for a discussion of why
|
|
** this is important.
|
|
**
|
|
** There can only be a single busy handler defined for each database
|
|
** connection. Setting a new busy handler clears any previous one.
|
|
** Note that calling [sqlite3_busy_timeout()] will also set or clear
|
|
** the busy handler.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F12311} The [sqlite3_busy_handler()] function replaces the busy handler
|
|
** callback in the database connection identified by the 1st
|
|
** parameter with a new busy handler identified by the 2nd and 3rd
|
|
** parameters.
|
|
**
|
|
** {F12312} The default busy handler for new database connections is NULL.
|
|
**
|
|
** {F12314} When two or more database connection share a common cache,
|
|
** the busy handler for the database connection currently using
|
|
** the cache is invoked when the cache encounters a lock.
|
|
**
|
|
** {F12316} If a busy handler callback returns zero, then the SQLite
|
|
** interface that provoked the locking event will return
|
|
** [SQLITE_BUSY].
|
|
**
|
|
** {F12318} SQLite will invokes the busy handler with two argument which
|
|
** are a copy of the pointer supplied by the 3rd parameter to
|
|
** [sqlite3_busy_handler()] and a count of the number of prior
|
|
** invocations of the busy handler for the same locking event.
|
|
**
|
|
** LIMITATIONS:
|
|
**
|
|
** {U12319} A busy handler should not call close the database connection
|
|
** or prepared statement that invoked the busy handler.
|
|
*/
|
|
SQLITE_API int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);
|
|
|
|
/*
|
|
** CAPI3REF: Set A Busy Timeout {F12340}
|
|
**
|
|
** This routine sets a [sqlite3_busy_handler | busy handler]
|
|
** that sleeps for a while when a
|
|
** table is locked. The handler will sleep multiple times until
|
|
** at least "ms" milliseconds of sleeping have been done. {F12343} After
|
|
** "ms" milliseconds of sleeping, the handler returns 0 which
|
|
** causes [sqlite3_step()] to return [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED].
|
|
**
|
|
** Calling this routine with an argument less than or equal to zero
|
|
** turns off all busy handlers.
|
|
**
|
|
** There can only be a single busy handler for a particular database
|
|
** connection. If another busy handler was defined
|
|
** (using [sqlite3_busy_handler()]) prior to calling
|
|
** this routine, that other busy handler is cleared.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F12341} The [sqlite3_busy_timeout()] function overrides any prior
|
|
** [sqlite3_busy_timeout()] or [sqlite3_busy_handler()] setting
|
|
** on the same database connection.
|
|
**
|
|
** {F12343} If the 2nd parameter to [sqlite3_busy_timeout()] is less than
|
|
** or equal to zero, then the busy handler is cleared so that
|
|
** all subsequent locking events immediately return [SQLITE_BUSY].
|
|
**
|
|
** {F12344} If the 2nd parameter to [sqlite3_busy_timeout()] is a positive
|
|
** number N, then a busy handler is set that repeatedly calls
|
|
** the xSleep() method in the VFS interface until either the
|
|
** lock clears or until the cumulative sleep time reported back
|
|
** by xSleep() exceeds N milliseconds.
|
|
*/
|
|
SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);
|
|
|
|
/*
|
|
** CAPI3REF: Convenience Routines For Running Queries {F12370}
|
|
**
|
|
** Definition: A <b>result table</b> is memory data structure created by the
|
|
** [sqlite3_get_table()] interface. A result table records the
|
|
** complete query results from one or more queries.
|
|
**
|
|
** The table conceptually has a number of rows and columns. But
|
|
** these numbers are not part of the result table itself. These
|
|
** numbers are obtained separately. Let N be the number of rows
|
|
** and M be the number of columns.
|
|
**
|
|
** A result table is an array of pointers to zero-terminated
|
|
** UTF-8 strings. There are (N+1)*M elements in the array.
|
|
** The first M pointers point to zero-terminated strings that
|
|
** contain the names of the columns.
|
|
** The remaining entries all point to query results. NULL
|
|
** values are give a NULL pointer. All other values are in
|
|
** their UTF-8 zero-terminated string representation as returned by
|
|
** [sqlite3_column_text()].
|
|
**
|
|
** A result table might consists of one or more memory allocations.
|
|
** It is not safe to pass a result table directly to [sqlite3_free()].
|
|
** A result table should be deallocated using [sqlite3_free_table()].
|
|
**
|
|
** As an example of the result table format, suppose a query result
|
|
** is as follows:
|
|
**
|
|
** <blockquote><pre>
|
|
** Name | Age
|
|
** -----------------------
|
|
** Alice | 43
|
|
** Bob | 28
|
|
** Cindy | 21
|
|
** </pre></blockquote>
|
|
**
|
|
** There are two column (M==2) and three rows (N==3). Thus the
|
|
** result table has 8 entries. Suppose the result table is stored
|
|
** in an array names azResult. Then azResult holds this content:
|
|
**
|
|
** <blockquote><pre>
|
|
** azResult[0] = "Name";
|
|
** azResult[1] = "Age";
|
|
** azResult[2] = "Alice";
|
|
** azResult[3] = "43";
|
|
** azResult[4] = "Bob";
|
|
** azResult[5] = "28";
|
|
** azResult[6] = "Cindy";
|
|
** azResult[7] = "21";
|
|
** </pre></blockquote>
|
|
**
|
|
** The sqlite3_get_table() function evaluates one or more
|
|
** semicolon-separated SQL statements in the zero-terminated UTF-8
|
|
** string of its 2nd parameter. It returns a result table to the
|
|
** pointer given in its 3rd parameter.
|
|
**
|
|
** After the calling function has finished using the result, it should
|
|
** pass the pointer to the result table to sqlite3_free_table() in order to
|
|
** release the memory that was malloc-ed. Because of the way the
|
|
** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
|
|
** function must not try to call [sqlite3_free()] directly. Only
|
|
** [sqlite3_free_table()] is able to release the memory properly and safely.
|
|
**
|
|
** The sqlite3_get_table() interface is implemented as a wrapper around
|
|
** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access
|
|
** to any internal data structures of SQLite. It uses only the public
|
|
** interface defined here. As a consequence, errors that occur in the
|
|
** wrapper layer outside of the internal [sqlite3_exec()] call are not
|
|
** reflected in subsequent calls to [sqlite3_errcode()] or
|
|
** [sqlite3_errmsg()].
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F12371} If a [sqlite3_get_table()] fails a memory allocation, then
|
|
** it frees the result table under construction, aborts the
|
|
** query in process, skips any subsequent queries, sets the
|
|
** *resultp output pointer to NULL and returns [SQLITE_NOMEM].
|
|
**
|
|
** {F12373} If the ncolumn parameter to [sqlite3_get_table()] is not NULL
|
|
** then [sqlite3_get_table()] write the number of columns in the
|
|
** result set of the query into *ncolumn if the query is
|
|
** successful (if the function returns SQLITE_OK).
|
|
**
|
|
** {F12374} If the nrow parameter to [sqlite3_get_table()] is not NULL
|
|
** then [sqlite3_get_table()] write the number of rows in the
|
|
** result set of the query into *nrow if the query is
|
|
** successful (if the function returns SQLITE_OK).
|
|
**
|
|
** {F12376} The [sqlite3_get_table()] function sets its *ncolumn value
|
|
** to the number of columns in the result set of the query in the
|
|
** sql parameter, or to zero if the query in sql has an empty
|
|
** result set.
|
|
*/
|
|
SQLITE_API int sqlite3_get_table(
|
|
sqlite3*, /* An open database */
|
|
const char *sql, /* SQL to be evaluated */
|
|
char ***pResult, /* Results of the query */
|
|
int *nrow, /* Number of result rows written here */
|
|
int *ncolumn, /* Number of result columns written here */
|
|
char **errmsg /* Error msg written here */
|
|
);
|
|
SQLITE_API void sqlite3_free_table(char **result);
|
|
|
|
/*
|
|
** CAPI3REF: Formatted String Printing Functions {F17400}
|
|
**
|
|
** These routines are workalikes of the "printf()" family of functions
|
|
** from the standard C library.
|
|
**
|
|
** The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
|
|
** results into memory obtained from [sqlite3_malloc()].
|
|
** The strings returned by these two routines should be
|
|
** released by [sqlite3_free()]. Both routines return a
|
|
** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
|
|
** memory to hold the resulting string.
|
|
**
|
|
** In sqlite3_snprintf() routine is similar to "snprintf()" from
|
|
** the standard C library. The result is written into the
|
|
** buffer supplied as the second parameter whose size is given by
|
|
** the first parameter. Note that the order of the
|
|
** first two parameters is reversed from snprintf(). This is an
|
|
** historical accident that cannot be fixed without breaking
|
|
** backwards compatibility. Note also that sqlite3_snprintf()
|
|
** returns a pointer to its buffer instead of the number of
|
|
** characters actually written into the buffer. We admit that
|
|
** the number of characters written would be a more useful return
|
|
** value but we cannot change the implementation of sqlite3_snprintf()
|
|
** now without breaking compatibility.
|
|
**
|
|
** As long as the buffer size is greater than zero, sqlite3_snprintf()
|
|
** guarantees that the buffer is always zero-terminated. The first
|
|
** parameter "n" is the total size of the buffer, including space for
|
|
** the zero terminator. So the longest string that can be completely
|
|
** written will be n-1 characters.
|
|
**
|
|
** These routines all implement some additional formatting
|
|
** options that are useful for constructing SQL statements.
|
|
** All of the usual printf formatting options apply. In addition, there
|
|
** is are "%q", "%Q", and "%z" options.
|
|
**
|
|
** The %q option works like %s in that it substitutes a null-terminated
|
|
** string from the argument list. But %q also doubles every '\'' character.
|
|
** %q is designed for use inside a string literal. By doubling each '\''
|
|
** character it escapes that character and allows it to be inserted into
|
|
** the string.
|
|
**
|
|
** For example, so some string variable contains text as follows:
|
|
**
|
|
** <blockquote><pre>
|
|
** char *zText = "It's a happy day!";
|
|
** </pre></blockquote>
|
|
**
|
|
** One can use this text in an SQL statement as follows:
|
|
**
|
|
** <blockquote><pre>
|
|
** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
|
|
** sqlite3_exec(db, zSQL, 0, 0, 0);
|
|
** sqlite3_free(zSQL);
|
|
** </pre></blockquote>
|
|
**
|
|
** Because the %q format string is used, the '\'' character in zText
|
|
** is escaped and the SQL generated is as follows:
|
|
**
|
|
** <blockquote><pre>
|
|
** INSERT INTO table1 VALUES('It''s a happy day!')
|
|
** </pre></blockquote>
|
|
**
|
|
** This is correct. Had we used %s instead of %q, the generated SQL
|
|
** would have looked like this:
|
|
**
|
|
** <blockquote><pre>
|
|
** INSERT INTO table1 VALUES('It's a happy day!');
|
|
** </pre></blockquote>
|
|
**
|
|
** This second example is an SQL syntax error. As a general rule you
|
|
** should always use %q instead of %s when inserting text into a string
|
|
** literal.
|
|
**
|
|
** The %Q option works like %q except it also adds single quotes around
|
|
** the outside of the total string. Or if the parameter in the argument
|
|
** list is a NULL pointer, %Q substitutes the text "NULL" (without single
|
|
** quotes) in place of the %Q option. {END} So, for example, one could say:
|
|
**
|
|
** <blockquote><pre>
|
|
** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
|
|
** sqlite3_exec(db, zSQL, 0, 0, 0);
|
|
** sqlite3_free(zSQL);
|
|
** </pre></blockquote>
|
|
**
|
|
** The code above will render a correct SQL statement in the zSQL
|
|
** variable even if the zText variable is a NULL pointer.
|
|
**
|
|
** The "%z" formatting option works exactly like "%s" with the
|
|
** addition that after the string has been read and copied into
|
|
** the result, [sqlite3_free()] is called on the input string. {END}
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F17403} The [sqlite3_mprintf()] and [sqlite3_vmprintf()] interfaces
|
|
** return either pointers to zero-terminated UTF-8 strings held in
|
|
** memory obtained from [sqlite3_malloc()] or NULL pointers if
|
|
** a call to [sqlite3_malloc()] fails.
|
|
**
|
|
** {F17406} The [sqlite3_snprintf()] interface writes a zero-terminated
|
|
** UTF-8 string into the buffer pointed to by the second parameter
|
|
** provided that the first parameter is greater than zero.
|
|
**
|
|
** {F17407} The [sqlite3_snprintf()] interface does not writes slots of
|
|
** its output buffer (the second parameter) outside the range
|
|
** of 0 through N-1 (where N is the first parameter)
|
|
** regardless of the length of the string
|
|
** requested by the format specification.
|
|
**
|
|
*/
|
|
SQLITE_API char *sqlite3_mprintf(const char*,...);
|
|
SQLITE_API char *sqlite3_vmprintf(const char*, va_list);
|
|
SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...);
|
|
|
|
/*
|
|
** CAPI3REF: Memory Allocation Subsystem {F17300}
|
|
**
|
|
** The SQLite core uses these three routines for all of its own
|
|
** internal memory allocation needs. "Core" in the previous sentence
|
|
** does not include operating-system specific VFS implementation. The
|
|
** windows VFS uses native malloc and free for some operations.
|
|
**
|
|
** The sqlite3_malloc() routine returns a pointer to a block
|
|
** of memory at least N bytes in length, where N is the parameter.
|
|
** If sqlite3_malloc() is unable to obtain sufficient free
|
|
** memory, it returns a NULL pointer. If the parameter N to
|
|
** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
|
|
** a NULL pointer.
|
|
**
|
|
** Calling sqlite3_free() with a pointer previously returned
|
|
** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
|
|
** that it might be reused. The sqlite3_free() routine is
|
|
** a no-op if is called with a NULL pointer. Passing a NULL pointer
|
|
** to sqlite3_free() is harmless. After being freed, memory
|
|
** should neither be read nor written. Even reading previously freed
|
|
** memory might result in a segmentation fault or other severe error.
|
|
** Memory corruption, a segmentation fault, or other severe error
|
|
** might result if sqlite3_free() is called with a non-NULL pointer that
|
|
** was not obtained from sqlite3_malloc() or sqlite3_free().
|
|
**
|
|
** The sqlite3_realloc() interface attempts to resize a
|
|
** prior memory allocation to be at least N bytes, where N is the
|
|
** second parameter. The memory allocation to be resized is the first
|
|
** parameter. If the first parameter to sqlite3_realloc()
|
|
** is a NULL pointer then its behavior is identical to calling
|
|
** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc().
|
|
** If the second parameter to sqlite3_realloc() is zero or
|
|
** negative then the behavior is exactly the same as calling
|
|
** sqlite3_free(P) where P is the first parameter to sqlite3_realloc().
|
|
** Sqlite3_realloc() returns a pointer to a memory allocation
|
|
** of at least N bytes in size or NULL if sufficient memory is unavailable.
|
|
** If M is the size of the prior allocation, then min(N,M) bytes
|
|
** of the prior allocation are copied into the beginning of buffer returned
|
|
** by sqlite3_realloc() and the prior allocation is freed.
|
|
** If sqlite3_realloc() returns NULL, then the prior allocation
|
|
** is not freed.
|
|
**
|
|
** The memory returned by sqlite3_malloc() and sqlite3_realloc()
|
|
** is always aligned to at least an 8 byte boundary. {END}
|
|
**
|
|
** The default implementation
|
|
** of the memory allocation subsystem uses the malloc(), realloc()
|
|
** and free() provided by the standard C library. {F17382} However, if
|
|
** SQLite is compiled with the following C preprocessor macro
|
|
**
|
|
** <blockquote> SQLITE_MEMORY_SIZE=<i>NNN</i> </blockquote>
|
|
**
|
|
** where <i>NNN</i> is an integer, then SQLite create a static
|
|
** array of at least <i>NNN</i> bytes in size and use that array
|
|
** for all of its dynamic memory allocation needs. {END} Additional
|
|
** memory allocator options may be added in future releases.
|
|
**
|
|
** In SQLite version 3.5.0 and 3.5.1, it was possible to define
|
|
** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
|
|
** implementation of these routines to be omitted. That capability
|
|
** is no longer provided. Only built-in memory allocators can be
|
|
** used.
|
|
**
|
|
** The windows OS interface layer calls
|
|
** the system malloc() and free() directly when converting
|
|
** filenames between the UTF-8 encoding used by SQLite
|
|
** and whatever filename encoding is used by the particular windows
|
|
** installation. Memory allocation errors are detected, but
|
|
** they are reported back as [SQLITE_CANTOPEN] or
|
|
** [SQLITE_IOERR] rather than [SQLITE_NOMEM].
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F17303} The [sqlite3_malloc(N)] interface returns either a pointer to
|
|
** newly checked-out block of at least N bytes of memory
|
|
** that is 8-byte aligned,
|
|
** or it returns NULL if it is unable to fulfill the request.
|
|
**
|
|
** {F17304} The [sqlite3_malloc(N)] interface returns a NULL pointer if
|
|
** N is less than or equal to zero.
|
|
**
|
|
** {F17305} The [sqlite3_free(P)] interface releases memory previously
|
|
** returned from [sqlite3_malloc()] or [sqlite3_realloc()],
|
|
** making it available for reuse.
|
|
**
|
|
** {F17306} A call to [sqlite3_free(NULL)] is a harmless no-op.
|
|
**
|
|
** {F17310} A call to [sqlite3_realloc(0,N)] is equivalent to a call
|
|
** to [sqlite3_malloc(N)].
|
|
**
|
|
** {F17312} A call to [sqlite3_realloc(P,0)] is equivalent to a call
|
|
** to [sqlite3_free(P)].
|
|
**
|
|
** {F17315} The SQLite core uses [sqlite3_malloc()], [sqlite3_realloc()],
|
|
** and [sqlite3_free()] for all of its memory allocation and
|
|
** deallocation needs.
|
|
**
|
|
** {F17318} The [sqlite3_realloc(P,N)] interface returns either a pointer
|
|
** to a block of checked-out memory of at least N bytes in size
|
|
** that is 8-byte aligned, or a NULL pointer.
|
|
**
|
|
** {F17321} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first
|
|
** copies the first K bytes of content from P into the newly allocated
|
|
** where K is the lessor of N and the size of the buffer P.
|
|
**
|
|
** {F17322} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first
|
|
** releases the buffer P.
|
|
**
|
|
** {F17323} When [sqlite3_realloc(P,N)] returns NULL, the buffer P is
|
|
** not modified or released.
|
|
**
|
|
** LIMITATIONS:
|
|
**
|
|
** {U17350} The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
|
|
** must be either NULL or else a pointer obtained from a prior
|
|
** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that has
|
|
** not been released.
|
|
**
|
|
** {U17351} The application must not read or write any part of
|
|
** a block of memory after it has been released using
|
|
** [sqlite3_free()] or [sqlite3_realloc()].
|
|
**
|
|
*/
|
|
SQLITE_API void *sqlite3_malloc(int);
|
|
SQLITE_API void *sqlite3_realloc(void*, int);
|
|
SQLITE_API void sqlite3_free(void*);
|
|
|
|
/*
|
|
** CAPI3REF: Memory Allocator Statistics {F17370}
|
|
**
|
|
** SQLite provides these two interfaces for reporting on the status
|
|
** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
|
|
** the memory allocation subsystem included within the SQLite.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F17371} The [sqlite3_memory_used()] routine returns the
|
|
** number of bytes of memory currently outstanding
|
|
** (malloced but not freed).
|
|
**
|
|
** {F17373} The [sqlite3_memory_highwater()] routine returns the maximum
|
|
** value of [sqlite3_memory_used()]
|
|
** since the highwater mark was last reset.
|
|
**
|
|
** {F17374} The values returned by [sqlite3_memory_used()] and
|
|
** [sqlite3_memory_highwater()] include any overhead
|
|
** added by SQLite in its implementation of [sqlite3_malloc()],
|
|
** but not overhead added by the any underlying system library
|
|
** routines that [sqlite3_malloc()] may call.
|
|
**
|
|
** {F17375} The memory highwater mark is reset to the current value of
|
|
** [sqlite3_memory_used()] if and only if the parameter to
|
|
** [sqlite3_memory_highwater()] is true. The value returned
|
|
** by [sqlite3_memory_highwater(1)] is the highwater mark
|
|
** prior to the reset.
|
|
*/
|
|
SQLITE_API sqlite3_int64 sqlite3_memory_used(void);
|
|
SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
|
|
|
|
/*
|
|
** CAPI3REF: Compile-Time Authorization Callbacks {F12500}
|
|
**
|
|
** This routine registers a authorizer callback with a particular
|
|
** database connection, supplied in the first argument.
|
|
** The authorizer callback is invoked as SQL statements are being compiled
|
|
** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
|
|
** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. At various
|
|
** points during the compilation process, as logic is being created
|
|
** to perform various actions, the authorizer callback is invoked to
|
|
** see if those actions are allowed. The authorizer callback should
|
|
** return SQLITE_OK to allow the action, [SQLITE_IGNORE] to disallow the
|
|
** specific action but allow the SQL statement to continue to be
|
|
** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
|
|
** rejected with an error. If the authorizer callback returns
|
|
** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
|
|
** then [sqlite3_prepare_v2()] or equivalent call that triggered
|
|
** the authorizer will fail with an error message.
|
|
**
|
|
** When the callback returns [SQLITE_OK], that means the operation
|
|
** requested is ok. When the callback returns [SQLITE_DENY], the
|
|
** [sqlite3_prepare_v2()] or equivalent call that triggered the
|
|
** authorizer will fail with an error message explaining that
|
|
** access is denied. If the authorizer code is [SQLITE_READ]
|
|
** and the callback returns [SQLITE_IGNORE] then the prepared
|
|
** statement is constructed to insert a NULL value in place of
|
|
** the table column that would have
|
|
** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE]
|
|
** return can be used to deny an untrusted user access to individual
|
|
** columns of a table.
|
|
**
|
|
** The first parameter to the authorizer callback is a copy of
|
|
** the third parameter to the sqlite3_set_authorizer() interface.
|
|
** The second parameter to the callback is an integer
|
|
** [SQLITE_COPY | action code] that specifies the particular action
|
|
** to be authorized. The third through sixth
|
|
** parameters to the callback are zero-terminated strings that contain
|
|
** additional details about the action to be authorized.
|
|
**
|
|
** An authorizer is used when preparing SQL statements from an untrusted
|
|
** source, to ensure that the SQL statements do not try to access data
|
|
** that they are not allowed to see, or that they do not try to
|
|
** execute malicious statements that damage the database. For
|
|
** example, an application may allow a user to enter arbitrary
|
|
** SQL queries for evaluation by a database. But the application does
|
|
** not want the user to be able to make arbitrary changes to the
|
|
** database. An authorizer could then be put in place while the
|
|
** user-entered SQL is being prepared that disallows everything
|
|
** except SELECT statements.
|
|
**
|
|
** Only a single authorizer can be in place on a database connection
|
|
** at a time. Each call to sqlite3_set_authorizer overrides the
|
|
** previous call. Disable the authorizer by installing a NULL callback.
|
|
** The authorizer is disabled by default.
|
|
**
|
|
** Note that the authorizer callback is invoked only during
|
|
** [sqlite3_prepare()] or its variants. Authorization is not
|
|
** performed during statement evaluation in [sqlite3_step()].
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F12501} The [sqlite3_set_authorizer(D,...)] interface registers a
|
|
** authorizer callback with database connection D.
|
|
**
|
|
** {F12502} The authorizer callback is invoked as SQL statements are
|
|
** being compiled
|
|
**
|
|
** {F12503} If the authorizer callback returns any value other than
|
|
** [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] then
|
|
** the [sqlite3_prepare_v2()] or equivalent call that caused
|
|
** the authorizer callback to run shall fail with an
|
|
** [SQLITE_ERROR] error code and an appropriate error message.
|
|
**
|
|
** {F12504} When the authorizer callback returns [SQLITE_OK], the operation
|
|
** described is coded normally.
|
|
**
|
|
** {F12505} When the authorizer callback returns [SQLITE_DENY], the
|
|
** [sqlite3_prepare_v2()] or equivalent call that caused the
|
|
** authorizer callback to run shall fail
|
|
** with an [SQLITE_ERROR] error code and an error message
|
|
** explaining that access is denied.
|
|
**
|
|
** {F12506} If the authorizer code (the 2nd parameter to the authorizer
|
|
** callback) is [SQLITE_READ] and the authorizer callback returns
|
|
** [SQLITE_IGNORE] then the prepared statement is constructed to
|
|
** insert a NULL value in place of the table column that would have
|
|
** been read if [SQLITE_OK] had been returned.
|
|
**
|
|
** {F12507} If the authorizer code (the 2nd parameter to the authorizer
|
|
** callback) is anything other than [SQLITE_READ], then
|
|
** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY].
|
|
**
|
|
** {F12510} The first parameter to the authorizer callback is a copy of
|
|
** the third parameter to the [sqlite3_set_authorizer()] interface.
|
|
**
|
|
** {F12511} The second parameter to the callback is an integer
|
|
** [SQLITE_COPY | action code] that specifies the particular action
|
|
** to be authorized.
|
|
**
|
|
** {F12512} The third through sixth parameters to the callback are
|
|
** zero-terminated strings that contain
|
|
** additional details about the action to be authorized.
|
|
**
|
|
** {F12520} Each call to [sqlite3_set_authorizer()] overrides the
|
|
** any previously installed authorizer.
|
|
**
|
|
** {F12521} A NULL authorizer means that no authorization
|
|
** callback is invoked.
|
|
**
|
|
** {F12522} The default authorizer is NULL.
|
|
*/
|
|
SQLITE_API int sqlite3_set_authorizer(
|
|
sqlite3*,
|
|
int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
|
|
void *pUserData
|
|
);
|
|
|
|
/*
|
|
** CAPI3REF: Authorizer Return Codes {F12590}
|
|
**
|
|
** The [sqlite3_set_authorizer | authorizer callback function] must
|
|
** return either [SQLITE_OK] or one of these two constants in order
|
|
** to signal SQLite whether or not the action is permitted. See the
|
|
** [sqlite3_set_authorizer | authorizer documentation] for additional
|
|
** information.
|
|
*/
|
|
#define SQLITE_DENY 1 /* Abort the SQL statement with an error */
|
|
#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
|
|
|
|
/*
|
|
** CAPI3REF: Authorizer Action Codes {F12550}
|
|
**
|
|
** The [sqlite3_set_authorizer()] interface registers a callback function
|
|
** that is invoked to authorizer certain SQL statement actions. The
|
|
** second parameter to the callback is an integer code that specifies
|
|
** what action is being authorized. These are the integer action codes that
|
|
** the authorizer callback may be passed.
|
|
**
|
|
** These action code values signify what kind of operation is to be
|
|
** authorized. The 3rd and 4th parameters to the authorization
|
|
** callback function will be parameters or NULL depending on which of these
|
|
** codes is used as the second parameter. The 5th parameter to the
|
|
** authorizer callback is the name of the database ("main", "temp",
|
|
** etc.) if applicable. The 6th parameter to the authorizer callback
|
|
** is the name of the inner-most trigger or view that is responsible for
|
|
** the access attempt or NULL if this access attempt is directly from
|
|
** top-level SQL code.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F12551} The second parameter to an
|
|
** [sqlite3_set_authorizer | authorizer callback is always an integer
|
|
** [SQLITE_COPY | authorizer code] that specifies what action
|
|
** is being authorized.
|
|
**
|
|
** {F12552} The 3rd and 4th parameters to the
|
|
** [sqlite3_set_authorizer | authorization callback function]
|
|
** will be parameters or NULL depending on which
|
|
** [SQLITE_COPY | authorizer code] is used as the second parameter.
|
|
**
|
|
** {F12553} The 5th parameter to the
|
|
** [sqlite3_set_authorizer | authorizer callback] is the name
|
|
** of the database (example: "main", "temp", etc.) if applicable.
|
|
**
|
|
** {F12554} The 6th parameter to the
|
|
** [sqlite3_set_authorizer | authorizer callback] is the name
|
|
** of the inner-most trigger or view that is responsible for
|
|
** the access attempt or NULL if this access attempt is directly from
|
|
** top-level SQL code.
|
|
*/
|
|
/******************************************* 3rd ************ 4th ***********/
|
|
#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */
|
|
#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */
|
|
#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */
|
|
#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */
|
|
#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */
|
|
#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */
|
|
#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */
|
|
#define SQLITE_CREATE_VIEW 8 /* View Name NULL */
|
|
#define SQLITE_DELETE 9 /* Table Name NULL */
|
|
#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */
|
|
#define SQLITE_DROP_TABLE 11 /* Table Name NULL */
|
|
#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */
|
|
#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */
|
|
#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */
|
|
#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */
|
|
#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */
|
|
#define SQLITE_DROP_VIEW 17 /* View Name NULL */
|
|
#define SQLITE_INSERT 18 /* Table Name NULL */
|
|
#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */
|
|
#define SQLITE_READ 20 /* Table Name Column Name */
|
|
#define SQLITE_SELECT 21 /* NULL NULL */
|
|
#define SQLITE_TRANSACTION 22 /* NULL NULL */
|
|
#define SQLITE_UPDATE 23 /* Table Name Column Name */
|
|
#define SQLITE_ATTACH 24 /* Filename NULL */
|
|
#define SQLITE_DETACH 25 /* Database Name NULL */
|
|
#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */
|
|
#define SQLITE_REINDEX 27 /* Index Name NULL */
|
|
#define SQLITE_ANALYZE 28 /* Table Name NULL */
|
|
#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */
|
|
#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */
|
|
#define SQLITE_FUNCTION 31 /* Function Name NULL */
|
|
#define SQLITE_COPY 0 /* No longer used */
|
|
|
|
/*
|
|
** CAPI3REF: Tracing And Profiling Functions {F12280}
|
|
**
|
|
** These routines register callback functions that can be used for
|
|
** tracing and profiling the execution of SQL statements.
|
|
**
|
|
** The callback function registered by sqlite3_trace() is invoked at
|
|
** various times when an SQL statement is being run by [sqlite3_step()].
|
|
** The callback returns a UTF-8 rendering of the SQL statement text
|
|
** as the statement first begins executing. Additional callbacks occur
|
|
** as each triggersubprogram is entered. The callbacks for triggers
|
|
** contain a UTF-8 SQL comment that identifies the trigger.
|
|
**
|
|
** The callback function registered by sqlite3_profile() is invoked
|
|
** as each SQL statement finishes. The profile callback contains
|
|
** the original statement text and an estimate of wall-clock time
|
|
** of how long that statement took to run.
|
|
**
|
|
** The sqlite3_profile() API is currently considered experimental and
|
|
** is subject to change or removal in a future release.
|
|
**
|
|
** The trigger reporting feature of the trace callback is considered
|
|
** experimental and is subject to change or removal in future releases.
|
|
** Future versions of SQLite might also add new trace callback
|
|
** invocations.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F12281} The callback function registered by [sqlite3_trace()] is
|
|
** whenever an SQL statement first begins to execute and
|
|
** whenever a trigger subprogram first begins to run.
|
|
**
|
|
** {F12282} Each call to [sqlite3_trace()] overrides the previously
|
|
** registered trace callback.
|
|
**
|
|
** {F12283} A NULL trace callback disables tracing.
|
|
**
|
|
** {F12284} The first argument to the trace callback is a copy of
|
|
** the pointer which was the 3rd argument to [sqlite3_trace()].
|
|
**
|
|
** {F12285} The second argument to the trace callback is a
|
|
** zero-terminated UTF8 string containing the original text
|
|
** of the SQL statement as it was passed into [sqlite3_prepare_v2()]
|
|
** or the equivalent, or an SQL comment indicating the beginning
|
|
** of a trigger subprogram.
|
|
**
|
|
** {F12287} The callback function registered by [sqlite3_profile()] is invoked
|
|
** as each SQL statement finishes.
|
|
**
|
|
** {F12288} The first parameter to the profile callback is a copy of
|
|
** the 3rd parameter to [sqlite3_profile()].
|
|
**
|
|
** {F12289} The second parameter to the profile callback is a
|
|
** zero-terminated UTF-8 string that contains the complete text of
|
|
** the SQL statement as it was processed by [sqlite3_prepare_v2()]
|
|
** or the equivalent.
|
|
**
|
|
** {F12290} The third parameter to the profile callback is an estimate
|
|
** of the number of nanoseconds of wall-clock time required to
|
|
** run the SQL statement from start to finish.
|
|
*/
|
|
SQLITE_API void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
|
|
SQLITE_API void *sqlite3_profile(sqlite3*,
|
|
void(*xProfile)(void*,const char*,sqlite3_uint64), void*);
|
|
|
|
/*
|
|
** CAPI3REF: Query Progress Callbacks {F12910}
|
|
**
|
|
** This routine configures a callback function - the
|
|
** progress callback - that is invoked periodically during long
|
|
** running calls to [sqlite3_exec()], [sqlite3_step()] and
|
|
** [sqlite3_get_table()]. An example use for this
|
|
** interface is to keep a GUI updated during a large query.
|
|
**
|
|
** If the progress callback returns non-zero, the opertion is
|
|
** interrupted. This feature can be used to implement a
|
|
** "Cancel" button on a GUI dialog box.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F12911} The callback function registered by [sqlite3_progress_handler()]
|
|
** is invoked periodically during long running calls to
|
|
** [sqlite3_step()].
|
|
**
|
|
** {F12912} The progress callback is invoked once for every N virtual
|
|
** machine opcodes, where N is the second argument to
|
|
** the [sqlite3_progress_handler()] call that registered
|
|
** the callback. <todo>What if N is less than 1?</todo>
|
|
**
|
|
** {F12913} The progress callback itself is identified by the third
|
|
** argument to [sqlite3_progress_handler()].
|
|
**
|
|
** {F12914} The fourth argument [sqlite3_progress_handler()] is a
|
|
*** void pointer passed to the progress callback
|
|
** function each time it is invoked.
|
|
**
|
|
** {F12915} If a call to [sqlite3_step()] results in fewer than
|
|
** N opcodes being executed,
|
|
** then the progress callback is never invoked. {END}
|
|
**
|
|
** {F12916} Every call to [sqlite3_progress_handler()]
|
|
** overwrites any previously registere progress handler.
|
|
**
|
|
** {F12917} If the progress handler callback is NULL then no progress
|
|
** handler is invoked.
|
|
**
|
|
** {F12918} If the progress callback returns a result other than 0, then
|
|
** the behavior is a if [sqlite3_interrupt()] had been called.
|
|
*/
|
|
SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
|
|
|
|
/*
|
|
** CAPI3REF: Opening A New Database Connection {F12700}
|
|
**
|
|
** These routines open an SQLite database file whose name
|
|
** is given by the filename argument.
|
|
** The filename argument is interpreted as UTF-8
|
|
** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16
|
|
** in the native byte order for [sqlite3_open16()].
|
|
** An [sqlite3*] handle is usually returned in *ppDb, even
|
|
** if an error occurs. The only exception is if SQLite is unable
|
|
** to allocate memory to hold the [sqlite3] object, a NULL will
|
|
** be written into *ppDb instead of a pointer to the [sqlite3] object.
|
|
** If the database is opened (and/or created)
|
|
** successfully, then [SQLITE_OK] is returned. Otherwise an
|
|
** error code is returned. The
|
|
** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
|
|
** an English language description of the error.
|
|
**
|
|
** The default encoding for the database will be UTF-8 if
|
|
** [sqlite3_open()] or [sqlite3_open_v2()] is called and
|
|
** UTF-16 in the native byte order if [sqlite3_open16()] is used.
|
|
**
|
|
** Whether or not an error occurs when it is opened, resources
|
|
** associated with the [sqlite3*] handle should be released by passing it
|
|
** to [sqlite3_close()] when it is no longer required.
|
|
**
|
|
** The [sqlite3_open_v2()] interface works like [sqlite3_open()]
|
|
** except that it acccepts two additional parameters for additional control
|
|
** over the new database connection. The flags parameter can be
|
|
** one of:
|
|
**
|
|
** <ol>
|
|
** <li> [SQLITE_OPEN_READONLY]
|
|
** <li> [SQLITE_OPEN_READWRITE]
|
|
** <li> [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]
|
|
** </ol>
|
|
**
|
|
** The first value opens the database read-only.
|
|
** If the database does not previously exist, an error is returned.
|
|
** The second option opens
|
|
** the database for reading and writing if possible, or reading only if
|
|
** if the file is write protected. In either case the database
|
|
** must already exist or an error is returned. The third option
|
|
** opens the database for reading and writing and creates it if it does
|
|
** not already exist.
|
|
** The third options is behavior that is always used for [sqlite3_open()]
|
|
** and [sqlite3_open16()].
|
|
**
|
|
** If the filename is ":memory:", then an private
|
|
** in-memory database is created for the connection. This in-memory
|
|
** database will vanish when the database connection is closed. Future
|
|
** version of SQLite might make use of additional special filenames
|
|
** that begin with the ":" character. It is recommended that
|
|
** when a database filename really does begin with
|
|
** ":" that you prefix the filename with a pathname like "./" to
|
|
** avoid ambiguity.
|
|
**
|
|
** If the filename is an empty string, then a private temporary
|
|
** on-disk database will be created. This private database will be
|
|
** automatically deleted as soon as the database connection is closed.
|
|
**
|
|
** The fourth parameter to sqlite3_open_v2() is the name of the
|
|
** [sqlite3_vfs] object that defines the operating system
|
|
** interface that the new database connection should use. If the
|
|
** fourth parameter is a NULL pointer then the default [sqlite3_vfs]
|
|
** object is used.
|
|
**
|
|
** <b>Note to windows users:</b> The encoding used for the filename argument
|
|
** of [sqlite3_open()] and [sqlite3_open_v2()] must be UTF-8, not whatever
|
|
** codepage is currently defined. Filenames containing international
|
|
** characters must be converted to UTF-8 prior to passing them into
|
|
** [sqlite3_open()] or [sqlite3_open_v2()].
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F12701} The [sqlite3_open()], [sqlite3_open16()], and
|
|
** [sqlite3_open_v2()] interfaces create a new
|
|
** [database connection] associated with
|
|
** the database file given in their first parameter.
|
|
**
|
|
** {F12702} The filename argument is interpreted as UTF-8
|
|
** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16
|
|
** in the native byte order for [sqlite3_open16()].
|
|
**
|
|
** {F12703} A successful invocation of [sqlite3_open()], [sqlite3_open16()],
|
|
** or [sqlite3_open_v2()] writes a pointer to a new
|
|
** [database connection] into *ppDb.
|
|
**
|
|
** {F12704} The [sqlite3_open()], [sqlite3_open16()], and
|
|
** [sqlite3_open_v2()] interfaces return [SQLITE_OK] upon success,
|
|
** or an appropriate [error code] on failure.
|
|
**
|
|
** {F12706} The default text encoding for a new database created using
|
|
** [sqlite3_open()] or [sqlite3_open_v2()] will be UTF-8.
|
|
**
|
|
** {F12707} The default text encoding for a new database created using
|
|
** [sqlite3_open16()] will be UTF-16.
|
|
**
|
|
** {F12709} The [sqlite3_open(F,D)] interface is equivalent to
|
|
** [sqlite3_open_v2(F,D,G,0)] where the G parameter is
|
|
** [SQLITE_OPEN_READWRITE]|[SQLITE_OPEN_CREATE].
|
|
**
|
|
** {F12711} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the
|
|
** bit value [SQLITE_OPEN_READONLY] then the database is opened
|
|
** for reading only.
|
|
**
|
|
** {F12712} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the
|
|
** bit value [SQLITE_OPEN_READWRITE] then the database is opened
|
|
** reading and writing if possible, or for reading only if the
|
|
** file is write protected by the operating system.
|
|
**
|
|
** {F12713} If the G parameter to [sqlite3_open(v2(F,D,G,V)] omits the
|
|
** bit value [SQLITE_OPEN_CREATE] and the database does not
|
|
** previously exist, an error is returned.
|
|
**
|
|
** {F12714} If the G parameter to [sqlite3_open(v2(F,D,G,V)] contains the
|
|
** bit value [SQLITE_OPEN_CREATE] and the database does not
|
|
** previously exist, then an attempt is made to create and
|
|
** initialize the database.
|
|
**
|
|
** {F12717} If the filename argument to [sqlite3_open()], [sqlite3_open16()],
|
|
** or [sqlite3_open_v2()] is ":memory:", then an private,
|
|
** ephemeral, in-memory database is created for the connection.
|
|
** <todo>Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required
|
|
** in sqlite3_open_v2()?</todo>
|
|
**
|
|
** {F12719} If the filename is an empty string, then a private, ephermeral
|
|
** on-disk database will be created.
|
|
** <todo>Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required
|
|
** in sqlite3_open_v2()?</todo>
|
|
**
|
|
** {F12721} The [database connection] created by
|
|
** [sqlite3_open_v2(F,D,G,V)] will use the
|
|
** [sqlite3_vfs] object identified by the V parameter, or
|
|
** the default [sqlite3_vfs] object is V is a NULL pointer.
|
|
*/
|
|
SQLITE_API int sqlite3_open(
|
|
const char *filename, /* Database filename (UTF-8) */
|
|
sqlite3 **ppDb /* OUT: SQLite db handle */
|
|
);
|
|
SQLITE_API int sqlite3_open16(
|
|
const void *filename, /* Database filename (UTF-16) */
|
|
sqlite3 **ppDb /* OUT: SQLite db handle */
|
|
);
|
|
SQLITE_API int sqlite3_open_v2(
|
|
const char *filename, /* Database filename (UTF-8) */
|
|
sqlite3 **ppDb, /* OUT: SQLite db handle */
|
|
int flags, /* Flags */
|
|
const char *zVfs /* Name of VFS module to use */
|
|
);
|
|
|
|
/*
|
|
** CAPI3REF: Error Codes And Messages {F12800}
|
|
**
|
|
** The sqlite3_errcode() interface returns the numeric
|
|
** [SQLITE_OK | result code] or [SQLITE_IOERR_READ | extended result code]
|
|
** for the most recent failed sqlite3_* API call associated
|
|
** with [sqlite3] handle 'db'. If a prior API call failed but the
|
|
** most recent API call succeeded, the return value from sqlite3_errcode()
|
|
** is undefined.
|
|
**
|
|
** The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
|
|
** text that describes the error, as either UTF8 or UTF16 respectively.
|
|
** Memory to hold the error message string is managed internally.
|
|
** The application does not need to worry with freeing the result.
|
|
** However, the error string might be overwritten or deallocated b
|
|
** subsequent calls to other SQLite interface functions.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F12801} The [sqlite3_errcode(D)] interface returns the numeric
|
|
** [SQLITE_OK | result code] or
|
|
** [SQLITE_IOERR_READ | extended result code]
|
|
** for the most recent failed interface call associated
|
|
** with [sqlite3] handle D.
|
|
**
|
|
** {U12802} If a prior API call failed but the most recent API call
|
|
** succeeded, the return value from [sqlite3_errcode()],
|
|
** [sqlite3_errmsg()], and [sqlite3_errmsg16()] are undefined.
|
|
**
|
|
** {F12803} The [sqlite3_errmsg(D)] and [sqlite3_errmsg16(D)]
|
|
** interfaces return English-language text that describes
|
|
** the error in the mostly recently failed interface call,
|
|
** encoded as either UTF8 or UTF16 respectively.
|
|
**
|
|
** {U12804} The strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()]
|
|
** are only valid until the next SQLite interface call.
|
|
**
|
|
** {F12807} Calls to [sqlite3_errcode()], [sqlite3_errmsg()], and
|
|
** [sqlite3_errmsg16()] themselves do not affect the
|
|
** results of future invocations of these routines.
|
|
**
|
|
** {F12808} Calls to API routines that do not return an error code
|
|
** (example: [sqlite3_data_count()]) do not
|
|
** change the error code or message returned by
|
|
** [sqlite3_errcode()], [sqlite3_errmsg()], or [sqlite3_errmsg16()].
|
|
**
|
|
** {F12809} Interfaces that are not associated with a specific
|
|
** [database connection] (examples:
|
|
** [sqlite3_mprintf()] or [sqlite3_enable_shared_cache()]
|
|
** do not change the values returned by
|
|
** [sqlite3_errcode()], [sqlite3_errmsg()], or [sqlite3_errmsg16()].
|
|
*/
|
|
SQLITE_API int sqlite3_errcode(sqlite3 *db);
|
|
SQLITE_API const char *sqlite3_errmsg(sqlite3*);
|
|
SQLITE_API const void *sqlite3_errmsg16(sqlite3*);
|
|
|
|
/*
|
|
** CAPI3REF: SQL Statement Object {F13000}
|
|
** KEYWORDS: {prepared statement} {prepared statements}
|
|
**
|
|
** An instance of this object represent single SQL statements. This
|
|
** object is variously known as a "prepared statement" or a
|
|
** "compiled SQL statement" or simply as a "statement".
|
|
**
|
|
** The life of a statement object goes something like this:
|
|
**
|
|
** <ol>
|
|
** <li> Create the object using [sqlite3_prepare_v2()] or a related
|
|
** function.
|
|
** <li> Bind values to host parameters using
|
|
** [sqlite3_bind_blob | sqlite3_bind_* interfaces].
|
|
** <li> Run the SQL by calling [sqlite3_step()] one or more times.
|
|
** <li> Reset the statement using [sqlite3_reset()] then go back
|
|
** to step 2. Do this zero or more times.
|
|
** <li> Destroy the object using [sqlite3_finalize()].
|
|
** </ol>
|
|
**
|
|
** Refer to documentation on individual methods above for additional
|
|
** information.
|
|
*/
|
|
typedef struct sqlite3_stmt sqlite3_stmt;
|
|
|
|
/*
|
|
** CAPI3REF: Compiling An SQL Statement {F13010}
|
|
**
|
|
** To execute an SQL query, it must first be compiled into a byte-code
|
|
** program using one of these routines.
|
|
**
|
|
** The first argument "db" is an [database connection]
|
|
** obtained from a prior call to [sqlite3_open()], [sqlite3_open_v2()]
|
|
** or [sqlite3_open16()].
|
|
** The second argument "zSql" is the statement to be compiled, encoded
|
|
** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2()
|
|
** interfaces uses UTF-8 and sqlite3_prepare16() and sqlite3_prepare16_v2()
|
|
** use UTF-16. {END}
|
|
**
|
|
** If the nByte argument is less
|
|
** than zero, then zSql is read up to the first zero terminator.
|
|
** If nByte is non-negative, then it is the maximum number of
|
|
** bytes read from zSql. When nByte is non-negative, the
|
|
** zSql string ends at either the first '\000' or '\u0000' character or
|
|
** until the nByte-th byte, whichever comes first. {END}
|
|
**
|
|
** *pzTail is made to point to the first byte past the end of the
|
|
** first SQL statement in zSql. These routines only compiles the first
|
|
** statement in zSql, so *pzTail is left pointing to what remains
|
|
** uncompiled.
|
|
**
|
|
** *ppStmt is left pointing to a compiled [prepared statement] that can be
|
|
** executed using [sqlite3_step()]. Or if there is an error, *ppStmt may be
|
|
** set to NULL. If the input text contains no SQL (if the input
|
|
** is and empty string or a comment) then *ppStmt is set to NULL.
|
|
** {U13018} The calling procedure is responsible for deleting the
|
|
** compiled SQL statement
|
|
** using [sqlite3_finalize()] after it has finished with it.
|
|
**
|
|
** On success, [SQLITE_OK] is returned. Otherwise an
|
|
** [error code] is returned.
|
|
**
|
|
** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are
|
|
** recommended for all new programs. The two older interfaces are retained
|
|
** for backwards compatibility, but their use is discouraged.
|
|
** In the "v2" interfaces, the prepared statement
|
|
** that is returned (the [sqlite3_stmt] object) contains a copy of the
|
|
** original SQL text. {END} This causes the [sqlite3_step()] interface to
|
|
** behave a differently in two ways:
|
|
**
|
|
** <ol>
|
|
** <li>
|
|
** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
|
|
** always used to do, [sqlite3_step()] will automatically recompile the SQL
|
|
** statement and try to run it again. If the schema has changed in
|
|
** a way that makes the statement no longer valid, [sqlite3_step()] will still
|
|
** return [SQLITE_SCHEMA]. But unlike the legacy behavior,
|
|
** [SQLITE_SCHEMA] is now a fatal error. Calling
|
|
** [sqlite3_prepare_v2()] again will not make the
|
|
** error go away. Note: use [sqlite3_errmsg()] to find the text
|
|
** of the parsing error that results in an [SQLITE_SCHEMA] return. {END}
|
|
** </li>
|
|
**
|
|
** <li>
|
|
** When an error occurs,
|
|
** [sqlite3_step()] will return one of the detailed
|
|
** [error codes] or [extended error codes].
|
|
** The legacy behavior was that [sqlite3_step()] would only return a generic
|
|
** [SQLITE_ERROR] result code and you would have to make a second call to
|
|
** [sqlite3_reset()] in order to find the underlying cause of the problem.
|
|
** With the "v2" prepare interfaces, the underlying reason for the error is
|
|
** returned immediately.
|
|
** </li>
|
|
** </ol>
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F13011} The [sqlite3_prepare(db,zSql,...)] and
|
|
** [sqlite3_prepare_v2(db,zSql,...)] interfaces interpret the
|
|
** text in their zSql parameter as UTF-8.
|
|
**
|
|
** {F13012} The [sqlite3_prepare16(db,zSql,...)] and
|
|
** [sqlite3_prepare16_v2(db,zSql,...)] interfaces interpret the
|
|
** text in their zSql parameter as UTF-16 in the native byte order.
|
|
**
|
|
** {F13013} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)]
|
|
** and its variants is less than zero, then SQL text is
|
|
** read from zSql is read up to the first zero terminator.
|
|
**
|
|
** {F13014} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)]
|
|
** and its variants is non-negative, then nBytes bytes
|
|
** SQL text is read from zSql.
|
|
**
|
|
** {F13015} In [sqlite3_prepare_v2(db,zSql,N,P,pzTail)] and its variants
|
|
** if the zSql input text contains more than one SQL statement
|
|
** and pzTail is not NULL, then *pzTail is made to point to the
|
|
** first byte past the end of the first SQL statement in zSql.
|
|
** <todo>What does *pzTail point to if there is one statement?</todo>
|
|
**
|
|
** {F13016} A successful call to [sqlite3_prepare_v2(db,zSql,N,ppStmt,...)]
|
|
** or one of its variants writes into *ppStmt a pointer to a new
|
|
** [prepared statement] or a pointer to NULL
|
|
** if zSql contains nothing other than whitespace or comments.
|
|
**
|
|
** {F13019} The [sqlite3_prepare_v2()] interface and its variants return
|
|
** [SQLITE_OK] or an appropriate [error code] upon failure.
|
|
*/
|
|
SQLITE_API int sqlite3_prepare(
|
|
sqlite3 *db, /* Database handle */
|
|
const char *zSql, /* SQL statement, UTF-8 encoded */
|
|
int nByte, /* Maximum length of zSql in bytes. */
|
|
sqlite3_stmt **ppStmt, /* OUT: Statement handle */
|
|
const char **pzTail /* OUT: Pointer to unused portion of zSql */
|
|
);
|
|
SQLITE_API int sqlite3_prepare_v2(
|
|
sqlite3 *db, /* Database handle */
|
|
const char *zSql, /* SQL statement, UTF-8 encoded */
|
|
int nByte, /* Maximum length of zSql in bytes. */
|
|
sqlite3_stmt **ppStmt, /* OUT: Statement handle */
|
|
const char **pzTail /* OUT: Pointer to unused portion of zSql */
|
|
);
|
|
SQLITE_API int sqlite3_prepare16(
|
|
sqlite3 *db, /* Database handle */
|
|
const void *zSql, /* SQL statement, UTF-16 encoded */
|
|
int nByte, /* Maximum length of zSql in bytes. */
|
|
sqlite3_stmt **ppStmt, /* OUT: Statement handle */
|
|
const void **pzTail /* OUT: Pointer to unused portion of zSql */
|
|
);
|
|
SQLITE_API int sqlite3_prepare16_v2(
|
|
sqlite3 *db, /* Database handle */
|
|
const void *zSql, /* SQL statement, UTF-16 encoded */
|
|
int nByte, /* Maximum length of zSql in bytes. */
|
|
sqlite3_stmt **ppStmt, /* OUT: Statement handle */
|
|
const void **pzTail /* OUT: Pointer to unused portion of zSql */
|
|
);
|
|
|
|
/*
|
|
** CAPIREF: Retrieving Statement SQL {F13100}
|
|
**
|
|
** This intereface can be used to retrieve a saved copy of the original
|
|
** SQL text used to create a [prepared statement].
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F13101} If the [prepared statement] passed as
|
|
** the an argument to [sqlite3_sql()] was compiled
|
|
** compiled using either [sqlite3_prepare_v2()] or
|
|
** [sqlite3_prepare16_v2()],
|
|
** then [sqlite3_sql()] function returns a pointer to a
|
|
** zero-terminated string containing a UTF-8 rendering
|
|
** of the original SQL statement.
|
|
**
|
|
** {F13102} If the [prepared statement] passed as
|
|
** the an argument to [sqlite3_sql()] was compiled
|
|
** compiled using either [sqlite3_prepare()] or
|
|
** [sqlite3_prepare16()],
|
|
** then [sqlite3_sql()] function returns a NULL pointer.
|
|
**
|
|
** {F13103} The string returned by [sqlite3_sql(S)] is valid until the
|
|
** [prepared statement] S is deleted using [sqlite3_finalize(S)].
|
|
*/
|
|
SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);
|
|
|
|
/*
|
|
** CAPI3REF: Dynamically Typed Value Object {F15000}
|
|
**
|
|
** SQLite uses the sqlite3_value object to represent all values
|
|
** that are or can be stored in a database table.
|
|
** SQLite uses dynamic typing for the values it stores.
|
|
** Values stored in sqlite3_value objects can be
|
|
** be integers, floating point values, strings, BLOBs, or NULL.
|
|
*/
|
|
typedef struct Mem sqlite3_value;
|
|
|
|
/*
|
|
** CAPI3REF: SQL Function Context Object {F16001}
|
|
**
|
|
** The context in which an SQL function executes is stored in an
|
|
** sqlite3_context object. A pointer to an sqlite3_context
|
|
** object is always first parameter to application-defined SQL functions.
|
|
*/
|
|
typedef struct sqlite3_context sqlite3_context;
|
|
|
|
/*
|
|
** CAPI3REF: Binding Values To Prepared Statements {F13500}
|
|
**
|
|
** In the SQL strings input to [sqlite3_prepare_v2()] and its
|
|
** variants, literals may be replace by a parameter in one
|
|
** of these forms:
|
|
**
|
|
** <ul>
|
|
** <li> ?
|
|
** <li> ?NNN
|
|
** <li> :VVV
|
|
** <li> @VVV
|
|
** <li> $VVV
|
|
** </ul>
|
|
**
|
|
** In the parameter forms shown above NNN is an integer literal,
|
|
** VVV alpha-numeric parameter name.
|
|
** The values of these parameters (also called "host parameter names"
|
|
** or "SQL parameters")
|
|
** can be set using the sqlite3_bind_*() routines defined here.
|
|
**
|
|
** The first argument to the sqlite3_bind_*() routines always
|
|
** is a pointer to the [sqlite3_stmt] object returned from
|
|
** [sqlite3_prepare_v2()] or its variants. The second
|
|
** argument is the index of the parameter to be set. The
|
|
** first parameter has an index of 1. When the same named
|
|
** parameter is used more than once, second and subsequent
|
|
** occurrences have the same index as the first occurrence.
|
|
** The index for named parameters can be looked up using the
|
|
** [sqlite3_bind_parameter_name()] API if desired. The index
|
|
** for "?NNN" parameters is the value of NNN.
|
|
** The NNN value must be between 1 and the compile-time
|
|
** parameter SQLITE_MAX_VARIABLE_NUMBER (default value: 999).
|
|
** See <a href="limits.html">limits.html</a> for additional information.
|
|
**
|
|
** The third argument is the value to bind to the parameter.
|
|
**
|
|
** In those
|
|
** routines that have a fourth argument, its value is the number of bytes
|
|
** in the parameter. To be clear: the value is the number of <u>bytes</u>
|
|
** in the value, not the number of characters. The number
|
|
** of bytes does not include the zero-terminator at the end of strings.
|
|
** If the fourth parameter is negative, the length of the string is
|
|
** number of bytes up to the first zero terminator.
|
|
**
|
|
** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and
|
|
** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or
|
|
** string after SQLite has finished with it. If the fifth argument is
|
|
** the special value [SQLITE_STATIC], then SQLite assumes that the
|
|
** information is in static, unmanaged space and does not need to be freed.
|
|
** If the fifth argument has the value [SQLITE_TRANSIENT], then
|
|
** SQLite makes its own private copy of the data immediately, before
|
|
** the sqlite3_bind_*() routine returns.
|
|
**
|
|
** The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
|
|
** is filled with zeros. A zeroblob uses a fixed amount of memory
|
|
** (just an integer to hold it size) while it is being processed.
|
|
** Zeroblobs are intended to serve as place-holders for BLOBs whose
|
|
** content is later written using
|
|
** [sqlite3_blob_open | increment BLOB I/O] routines. A negative
|
|
** value for the zeroblob results in a zero-length BLOB.
|
|
**
|
|
** The sqlite3_bind_*() routines must be called after
|
|
** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and
|
|
** before [sqlite3_step()].
|
|
** Bindings are not cleared by the [sqlite3_reset()] routine.
|
|
** Unbound parameters are interpreted as NULL.
|
|
**
|
|
** These routines return [SQLITE_OK] on success or an error code if
|
|
** anything goes wrong. [SQLITE_RANGE] is returned if the parameter
|
|
** index is out of range. [SQLITE_NOMEM] is returned if malloc fails.
|
|
** [SQLITE_MISUSE] might be returned if these routines are called on a
|
|
** virtual machine that is the wrong state or which has already been finalized.
|
|
** Detection of misuse is unreliable. Applications should not depend
|
|
** on SQLITE_MISUSE returns. SQLITE_MISUSE is intended to indicate a
|
|
** a logic error in the application. Future versions of SQLite might
|
|
** panic rather than return SQLITE_MISUSE.
|
|
**
|
|
** See also: [sqlite3_bind_parameter_count()],
|
|
** [sqlite3_bind_parameter_name()], and
|
|
** [sqlite3_bind_parameter_index()].
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F13506} The [sqlite3_prepare | SQL statement compiler] recognizes
|
|
** tokens of the forms "?", "?NNN", "$VVV", ":VVV", and "@VVV"
|
|
** as SQL parameters, where NNN is any sequence of one or more
|
|
** digits and where VVV is any sequence of one or more
|
|
** alphanumeric characters or "::" optionally followed by
|
|
** a string containing no spaces and contained within parentheses.
|
|
**
|
|
** {F13509} The initial value of an SQL parameter is NULL.
|
|
**
|
|
** {F13512} The index of an "?" SQL parameter is one larger than the
|
|
** largest index of SQL parameter to the left, or 1 if
|
|
** the "?" is the leftmost SQL parameter.
|
|
**
|
|
** {F13515} The index of an "?NNN" SQL parameter is the integer NNN.
|
|
**
|
|
** {F13518} The index of an ":VVV", "$VVV", or "@VVV" SQL parameter is
|
|
** the same as the index of leftmost occurances of the same
|
|
** parameter, or one more than the largest index over all
|
|
** parameters to the left if this is the first occurrance
|
|
** of this parameter, or 1 if this is the leftmost parameter.
|
|
**
|
|
** {F13521} The [sqlite3_prepare | SQL statement compiler] fail with
|
|
** an [SQLITE_RANGE] error if the index of an SQL parameter
|
|
** is less than 1 or greater than SQLITE_MAX_VARIABLE_NUMBER.
|
|
**
|
|
** {F13524} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,V,...)]
|
|
** associate the value V with all SQL parameters having an
|
|
** index of N in the [prepared statement] S.
|
|
**
|
|
** {F13527} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,...)]
|
|
** override prior calls with the same values of S and N.
|
|
**
|
|
** {F13530} Bindings established by [sqlite3_bind_text | sqlite3_bind(S,...)]
|
|
** persist across calls to [sqlite3_reset(S)].
|
|
**
|
|
** {F13533} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
|
|
** [sqlite3_bind_text(S,N,V,L,D)], or
|
|
** [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds the first L
|
|
** bytes of the blob or string pointed to by V, when L
|
|
** is non-negative.
|
|
**
|
|
** {F13536} In calls to [sqlite3_bind_text(S,N,V,L,D)] or
|
|
** [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds characters
|
|
** from V through the first zero character when L is negative.
|
|
**
|
|
** {F13539} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
|
|
** [sqlite3_bind_text(S,N,V,L,D)], or
|
|
** [sqlite3_bind_text16(S,N,V,L,D)] when D is the special
|
|
** constant [SQLITE_STATIC], SQLite assumes that the value V
|
|
** is held in static unmanaged space that will not change
|
|
** during the lifetime of the binding.
|
|
**
|
|
** {F13542} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
|
|
** [sqlite3_bind_text(S,N,V,L,D)], or
|
|
** [sqlite3_bind_text16(S,N,V,L,D)] when D is the special
|
|
** constant [SQLITE_TRANSIENT], the routine makes a
|
|
** private copy of V value before it returns.
|
|
**
|
|
** {F13545} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
|
|
** [sqlite3_bind_text(S,N,V,L,D)], or
|
|
** [sqlite3_bind_text16(S,N,V,L,D)] when D is a pointer to
|
|
** a function, SQLite invokes that function to destroy the
|
|
** V value after it has finished using the V value.
|
|
**
|
|
** {F13548} In calls to [sqlite3_bind_zeroblob(S,N,V,L)] the value bound
|
|
** is a blob of L bytes, or a zero-length blob if L is negative.
|
|
*/
|
|
SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
|
|
SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double);
|
|
SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int);
|
|
SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
|
|
SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int);
|
|
SQLITE_API int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*));
|
|
SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
|
|
SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
|
|
SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
|
|
|
|
/*
|
|
** CAPI3REF: Number Of SQL Parameters {F13600}
|
|
**
|
|
** This routine can be used to find the number of SQL parameters
|
|
** in a prepared statement. SQL parameters are tokens of the
|
|
** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
|
|
** place-holders for values that are [sqlite3_bind_blob | bound]
|
|
** to the parameters at a later time.
|
|
**
|
|
** This routine actually returns the index of the largest parameter.
|
|
** For all forms except ?NNN, this will correspond to the number of
|
|
** unique parameters. If parameters of the ?NNN are used, there may
|
|
** be gaps in the list.
|
|
**
|
|
** See also: [sqlite3_bind_blob|sqlite3_bind()],
|
|
** [sqlite3_bind_parameter_name()], and
|
|
** [sqlite3_bind_parameter_index()].
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F13601} The [sqlite3_bind_parameter_count(S)] interface returns
|
|
** the largest index of all SQL parameters in the
|
|
** [prepared statement] S, or 0 if S
|
|
** contains no SQL parameters.
|
|
*/
|
|
SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*);
|
|
|
|
/*
|
|
** CAPI3REF: Name Of A Host Parameter {F13620}
|
|
**
|
|
** This routine returns a pointer to the name of the n-th
|
|
** SQL parameter in a [prepared statement].
|
|
** SQL parameters of the form ":AAA" or "@AAA" or "$AAA" have a name
|
|
** which is the string ":AAA" or "@AAA" or "$VVV".
|
|
** In other words, the initial ":" or "$" or "@"
|
|
** is included as part of the name.
|
|
** Parameters of the form "?" or "?NNN" have no name.
|
|
**
|
|
** The first host parameter has an index of 1, not 0.
|
|
**
|
|
** If the value n is out of range or if the n-th parameter is
|
|
** nameless, then NULL is returned. The returned string is
|
|
** always in the UTF-8 encoding even if the named parameter was
|
|
** originally specified as UTF-16 in [sqlite3_prepare16()] or
|
|
** [sqlite3_prepare16_v2()].
|
|
**
|
|
** See also: [sqlite3_bind_blob|sqlite3_bind()],
|
|
** [sqlite3_bind_parameter_count()], and
|
|
** [sqlite3_bind_parameter_index()].
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F13621} The [sqlite3_bind_parameter_name(S,N)] interface returns
|
|
** a UTF-8 rendering of the name of the SQL parameter in
|
|
** [prepared statement] S having index N, or
|
|
** NULL if there is no SQL parameter with index N or if the
|
|
** parameter with index N is an anonymous parameter "?" or
|
|
** a numbered parameter "?NNN".
|
|
*/
|
|
SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);
|
|
|
|
/*
|
|
** CAPI3REF: Index Of A Parameter With A Given Name {F13640}
|
|
**
|
|
** Return the index of an SQL parameter given its name. The
|
|
** index value returned is suitable for use as the second
|
|
** parameter to [sqlite3_bind_blob|sqlite3_bind()]. A zero
|
|
** is returned if no matching parameter is found. The parameter
|
|
** name must be given in UTF-8 even if the original statement
|
|
** was prepared from UTF-16 text using [sqlite3_prepare16_v2()].
|
|
**
|
|
** See also: [sqlite3_bind_blob|sqlite3_bind()],
|
|
** [sqlite3_bind_parameter_count()], and
|
|
** [sqlite3_bind_parameter_index()].
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F13641} The [sqlite3_bind_parameter_index(S,N)] interface returns
|
|
** the index of SQL parameter in [prepared statement]
|
|
** S whose name matches the UTF-8 string N, or 0 if there is
|
|
** no match.
|
|
*/
|
|
SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
|
|
|
|
/*
|
|
** CAPI3REF: Reset All Bindings On A Prepared Statement {F13660}
|
|
**
|
|
** Contrary to the intuition of many, [sqlite3_reset()] does not
|
|
** reset the [sqlite3_bind_blob | bindings] on a
|
|
** [prepared statement]. Use this routine to
|
|
** reset all host parameters to NULL.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F13661} The [sqlite3_clear_bindings(S)] interface resets all
|
|
** SQL parameter bindings in [prepared statement] S
|
|
** back to NULL.
|
|
*/
|
|
SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*);
|
|
|
|
/*
|
|
** CAPI3REF: Number Of Columns In A Result Set {F13710}
|
|
**
|
|
** Return the number of columns in the result set returned by the
|
|
** [prepared statement]. This routine returns 0
|
|
** if pStmt is an SQL statement that does not return data (for
|
|
** example an UPDATE).
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F13711} The [sqlite3_column_count(S)] interface returns the number of
|
|
** columns in the result set generated by the
|
|
** [prepared statement] S, or 0 if S does not generate
|
|
** a result set.
|
|
*/
|
|
SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt);
|
|
|
|
/*
|
|
** CAPI3REF: Column Names In A Result Set {F13720}
|
|
**
|
|
** These routines return the name assigned to a particular column
|
|
** in the result set of a SELECT statement. The sqlite3_column_name()
|
|
** interface returns a pointer to a zero-terminated UTF8 string
|
|
** and sqlite3_column_name16() returns a pointer to a zero-terminated
|
|
** UTF16 string. The first parameter is the
|
|
** [prepared statement] that implements the SELECT statement.
|
|
** The second parameter is the column number. The left-most column is
|
|
** number 0.
|
|
**
|
|
** The returned string pointer is valid until either the
|
|
** [prepared statement] is destroyed by [sqlite3_finalize()]
|
|
** or until the next call sqlite3_column_name() or sqlite3_column_name16()
|
|
** on the same column.
|
|
**
|
|
** If sqlite3_malloc() fails during the processing of either routine
|
|
** (for example during a conversion from UTF-8 to UTF-16) then a
|
|
** NULL pointer is returned.
|
|
**
|
|
** The name of a result column is the value of the "AS" clause for
|
|
** that column, if there is an AS clause. If there is no AS clause
|
|
** then the name of the column is unspecified and may change from
|
|
** one release of SQLite to the next.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F13721} A successful invocation of the [sqlite3_column_name(S,N)]
|
|
** interface returns the name
|
|
** of the Nth column (where 0 is the left-most column) for the
|
|
** result set of [prepared statement] S as a
|
|
** zero-terminated UTF-8 string.
|
|
**
|
|
** {F13723} A successful invocation of the [sqlite3_column_name16(S,N)]
|
|
** interface returns the name
|
|
** of the Nth column (where 0 is the left-most column) for the
|
|
** result set of [prepared statement] S as a
|
|
** zero-terminated UTF-16 string in the native byte order.
|
|
**
|
|
** {F13724} The [sqlite3_column_name()] and [sqlite3_column_name16()]
|
|
** interfaces return a NULL pointer if they are unable to
|
|
** allocate memory memory to hold there normal return strings.
|
|
**
|
|
** {F13725} If the N parameter to [sqlite3_column_name(S,N)] or
|
|
** [sqlite3_column_name16(S,N)] is out of range, then the
|
|
** interfaces returns a NULL pointer.
|
|
**
|
|
** {F13726} The strings returned by [sqlite3_column_name(S,N)] and
|
|
** [sqlite3_column_name16(S,N)] are valid until the next
|
|
** call to either routine with the same S and N parameters
|
|
** or until [sqlite3_finalize(S)] is called.
|
|
**
|
|
** {F13727} When a result column of a [SELECT] statement contains
|
|
** an AS clause, the name of that column is the indentifier
|
|
** to the right of the AS keyword.
|
|
*/
|
|
SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N);
|
|
SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N);
|
|
|
|
/*
|
|
** CAPI3REF: Source Of Data In A Query Result {F13740}
|
|
**
|
|
** These routines provide a means to determine what column of what
|
|
** table in which database a result of a SELECT statement comes from.
|
|
** The name of the database or table or column can be returned as
|
|
** either a UTF8 or UTF16 string. The _database_ routines return
|
|
** the database name, the _table_ routines return the table name, and
|
|
** the origin_ routines return the column name.
|
|
** The returned string is valid until
|
|
** the [prepared statement] is destroyed using
|
|
** [sqlite3_finalize()] or until the same information is requested
|
|
** again in a different encoding.
|
|
**
|
|
** The names returned are the original un-aliased names of the
|
|
** database, table, and column.
|
|
**
|
|
** The first argument to the following calls is a [prepared statement].
|
|
** These functions return information about the Nth column returned by
|
|
** the statement, where N is the second function argument.
|
|
**
|
|
** If the Nth column returned by the statement is an expression
|
|
** or subquery and is not a column value, then all of these functions
|
|
** return NULL. These routine might also return NULL if a memory
|
|
** allocation error occurs. Otherwise, they return the
|
|
** name of the attached database, table and column that query result
|
|
** column was extracted from.
|
|
**
|
|
** As with all other SQLite APIs, those postfixed with "16" return
|
|
** UTF-16 encoded strings, the other functions return UTF-8. {END}
|
|
**
|
|
** These APIs are only available if the library was compiled with the
|
|
** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
|
|
**
|
|
** {U13751}
|
|
** If two or more threads call one or more of these routines against the same
|
|
** prepared statement and column at the same time then the results are
|
|
** undefined.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F13741} The [sqlite3_column_database_name(S,N)] interface returns either
|
|
** the UTF-8 zero-terminated name of the database from which the
|
|
** Nth result column of [prepared statement] S
|
|
** is extracted, or NULL if the the Nth column of S is a
|
|
** general expression or if unable to allocate memory
|
|
** to store the name.
|
|
**
|
|
** {F13742} The [sqlite3_column_database_name16(S,N)] interface returns either
|
|
** the UTF-16 native byte order
|
|
** zero-terminated name of the database from which the
|
|
** Nth result column of [prepared statement] S
|
|
** is extracted, or NULL if the the Nth column of S is a
|
|
** general expression or if unable to allocate memory
|
|
** to store the name.
|
|
**
|
|
** {F13743} The [sqlite3_column_table_name(S,N)] interface returns either
|
|
** the UTF-8 zero-terminated name of the table from which the
|
|
** Nth result column of [prepared statement] S
|
|
** is extracted, or NULL if the the Nth column of S is a
|
|
** general expression or if unable to allocate memory
|
|
** to store the name.
|
|
**
|
|
** {F13744} The [sqlite3_column_table_name16(S,N)] interface returns either
|
|
** the UTF-16 native byte order
|
|
** zero-terminated name of the table from which the
|
|
** Nth result column of [prepared statement] S
|
|
** is extracted, or NULL if the the Nth column of S is a
|
|
** general expression or if unable to allocate memory
|
|
** to store the name.
|
|
**
|
|
** {F13745} The [sqlite3_column_origin_name(S,N)] interface returns either
|
|
** the UTF-8 zero-terminated name of the table column from which the
|
|
** Nth result column of [prepared statement] S
|
|
** is extracted, or NULL if the the Nth column of S is a
|
|
** general expression or if unable to allocate memory
|
|
** to store the name.
|
|
**
|
|
** {F13746} The [sqlite3_column_origin_name16(S,N)] interface returns either
|
|
** the UTF-16 native byte order
|
|
** zero-terminated name of the table column from which the
|
|
** Nth result column of [prepared statement] S
|
|
** is extracted, or NULL if the the Nth column of S is a
|
|
** general expression or if unable to allocate memory
|
|
** to store the name.
|
|
**
|
|
** {F13748} The return values from
|
|
** [sqlite3_column_database_name|column metadata interfaces]
|
|
** are valid
|
|
** for the lifetime of the [prepared statement]
|
|
** or until the encoding is changed by another metadata
|
|
** interface call for the same prepared statement and column.
|
|
**
|
|
** LIMITATIONS:
|
|
**
|
|
** {U13751} If two or more threads call one or more
|
|
** [sqlite3_column_database_name|column metadata interfaces]
|
|
** the same [prepared statement] and result column
|
|
** at the same time then the results are undefined.
|
|
*/
|
|
SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int);
|
|
SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
|
|
SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt*,int);
|
|
SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
|
|
SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
|
|
SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);
|
|
|
|
/*
|
|
** CAPI3REF: Declared Datatype Of A Query Result {F13760}
|
|
**
|
|
** The first parameter is a [prepared statement].
|
|
** If this statement is a SELECT statement and the Nth column of the
|
|
** returned result set of that SELECT is a table column (not an
|
|
** expression or subquery) then the declared type of the table
|
|
** column is returned. If the Nth column of the result set is an
|
|
** expression or subquery, then a NULL pointer is returned.
|
|
** The returned string is always UTF-8 encoded. {END}
|
|
** For example, in the database schema:
|
|
**
|
|
** CREATE TABLE t1(c1 VARIANT);
|
|
**
|
|
** And the following statement compiled:
|
|
**
|
|
** SELECT c1 + 1, c1 FROM t1;
|
|
**
|
|
** Then this routine would return the string "VARIANT" for the second
|
|
** result column (i==1), and a NULL pointer for the first result column
|
|
** (i==0).
|
|
**
|
|
** SQLite uses dynamic run-time typing. So just because a column
|
|
** is declared to contain a particular type does not mean that the
|
|
** data stored in that column is of the declared type. SQLite is
|
|
** strongly typed, but the typing is dynamic not static. Type
|
|
** is associated with individual values, not with the containers
|
|
** used to hold those values.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F13761} A successful call to [sqlite3_column_decltype(S,N)]
|
|
** returns a zero-terminated UTF-8 string containing the
|
|
** the declared datatype of the table column that appears
|
|
** as the Nth column (numbered from 0) of the result set to the
|
|
** [prepared statement] S.
|
|
**
|
|
** {F13762} A successful call to [sqlite3_column_decltype16(S,N)]
|
|
** returns a zero-terminated UTF-16 native byte order string
|
|
** containing the declared datatype of the table column that appears
|
|
** as the Nth column (numbered from 0) of the result set to the
|
|
** [prepared statement] S.
|
|
**
|
|
** {F13763} If N is less than 0 or N is greater than or equal to
|
|
** the number of columns in [prepared statement] S
|
|
** or if the Nth column of S is an expression or subquery rather
|
|
** than a table column or if a memory allocation failure
|
|
** occurs during encoding conversions, then
|
|
** calls to [sqlite3_column_decltype(S,N)] or
|
|
** [sqlite3_column_decltype16(S,N)] return NULL.
|
|
*/
|
|
SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int);
|
|
SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
|
|
|
|
/*
|
|
** CAPI3REF: Evaluate An SQL Statement {F13200}
|
|
**
|
|
** After an [prepared statement] has been prepared with a call
|
|
** to either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or to one of
|
|
** the legacy interfaces [sqlite3_prepare()] or [sqlite3_prepare16()],
|
|
** then this function must be called one or more times to evaluate the
|
|
** statement.
|
|
**
|
|
** The details of the behavior of this sqlite3_step() interface depend
|
|
** on whether the statement was prepared using the newer "v2" interface
|
|
** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy
|
|
** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the
|
|
** new "v2" interface is recommended for new applications but the legacy
|
|
** interface will continue to be supported.
|
|
**
|
|
** In the lagacy interface, the return value will be either [SQLITE_BUSY],
|
|
** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
|
|
** With the "v2" interface, any of the other [SQLITE_OK | result code]
|
|
** or [SQLITE_IOERR_READ | extended result code] might be returned as
|
|
** well.
|
|
**
|
|
** [SQLITE_BUSY] means that the database engine was unable to acquire the
|
|
** database locks it needs to do its job. If the statement is a COMMIT
|
|
** or occurs outside of an explicit transaction, then you can retry the
|
|
** statement. If the statement is not a COMMIT and occurs within a
|
|
** explicit transaction then you should rollback the transaction before
|
|
** continuing.
|
|
**
|
|
** [SQLITE_DONE] means that the statement has finished executing
|
|
** successfully. sqlite3_step() should not be called again on this virtual
|
|
** machine without first calling [sqlite3_reset()] to reset the virtual
|
|
** machine back to its initial state.
|
|
**
|
|
** If the SQL statement being executed returns any data, then
|
|
** [SQLITE_ROW] is returned each time a new row of data is ready
|
|
** for processing by the caller. The values may be accessed using
|
|
** the [sqlite3_column_int | column access functions].
|
|
** sqlite3_step() is called again to retrieve the next row of data.
|
|
**
|
|
** [SQLITE_ERROR] means that a run-time error (such as a constraint
|
|
** violation) has occurred. sqlite3_step() should not be called again on
|
|
** the VM. More information may be found by calling [sqlite3_errmsg()].
|
|
** With the legacy interface, a more specific error code (example:
|
|
** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
|
|
** can be obtained by calling [sqlite3_reset()] on the
|
|
** [prepared statement]. In the "v2" interface,
|
|
** the more specific error code is returned directly by sqlite3_step().
|
|
**
|
|
** [SQLITE_MISUSE] means that the this routine was called inappropriately.
|
|
** Perhaps it was called on a [prepared statement] that has
|
|
** already been [sqlite3_finalize | finalized] or on one that had
|
|
** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could
|
|
** be the case that the same database connection is being used by two or
|
|
** more threads at the same moment in time.
|
|
**
|
|
** <b>Goofy Interface Alert:</b>
|
|
** In the legacy interface,
|
|
** the sqlite3_step() API always returns a generic error code,
|
|
** [SQLITE_ERROR], following any error other than [SQLITE_BUSY]
|
|
** and [SQLITE_MISUSE]. You must call [sqlite3_reset()] or
|
|
** [sqlite3_finalize()] in order to find one of the specific
|
|
** [error codes] that better describes the error.
|
|
** We admit that this is a goofy design. The problem has been fixed
|
|
** with the "v2" interface. If you prepare all of your SQL statements
|
|
** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead
|
|
** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()], then the
|
|
** more specific [error codes] are returned directly
|
|
** by sqlite3_step(). The use of the "v2" interface is recommended.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F13202} If [prepared statement] S is ready to be
|
|
** run, then [sqlite3_step(S)] advances that prepared statement
|
|
** until to completion or until it is ready to return another
|
|
** row of the result set or an interrupt or run-time error occurs.
|
|
**
|
|
** {F15304} When a call to [sqlite3_step(S)] causes the
|
|
** [prepared statement] S to run to completion,
|
|
** the function returns [SQLITE_DONE].
|
|
**
|
|
** {F15306} When a call to [sqlite3_step(S)] stops because it is ready
|
|
** to return another row of the result set, it returns
|
|
** [SQLITE_ROW].
|
|
**
|
|
** {F15308} If a call to [sqlite3_step(S)] encounters an
|
|
** [sqlite3_interrupt|interrupt] or a run-time error,
|
|
** it returns an appropraite error code that is not one of
|
|
** [SQLITE_OK], [SQLITE_ROW], or [SQLITE_DONE].
|
|
**
|
|
** {F15310} If an [sqlite3_interrupt|interrupt] or run-time error
|
|
** occurs during a call to [sqlite3_step(S)]
|
|
** for a [prepared statement] S created using
|
|
** legacy interfaces [sqlite3_prepare()] or
|
|
** [sqlite3_prepare16()] then the function returns either
|
|
** [SQLITE_ERROR], [SQLITE_BUSY], or [SQLITE_MISUSE].
|
|
*/
|
|
SQLITE_API int sqlite3_step(sqlite3_stmt*);
|
|
|
|
/*
|
|
** CAPI3REF: Number of columns in a result set {F13770}
|
|
**
|
|
** Return the number of values in the current row of the result set.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F13771} After a call to [sqlite3_step(S)] that returns
|
|
** [SQLITE_ROW], the [sqlite3_data_count(S)] routine
|
|
** will return the same value as the
|
|
** [sqlite3_column_count(S)] function.
|
|
**
|
|
** {F13772} After [sqlite3_step(S)] has returned any value other than
|
|
** [SQLITE_ROW] or before [sqlite3_step(S)] has been
|
|
** called on the [prepared statement] for
|
|
** the first time since it was [sqlite3_prepare|prepared]
|
|
** or [sqlite3_reset|reset], the [sqlite3_data_count(S)]
|
|
** routine returns zero.
|
|
*/
|
|
SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);
|
|
|
|
/*
|
|
** CAPI3REF: Fundamental Datatypes {F10265}
|
|
** KEYWORDS: SQLITE_TEXT
|
|
**
|
|
** {F10266}Every value in SQLite has one of five fundamental datatypes:
|
|
**
|
|
** <ul>
|
|
** <li> 64-bit signed integer
|
|
** <li> 64-bit IEEE floating point number
|
|
** <li> string
|
|
** <li> BLOB
|
|
** <li> NULL
|
|
** </ul> {END}
|
|
**
|
|
** These constants are codes for each of those types.
|
|
**
|
|
** Note that the SQLITE_TEXT constant was also used in SQLite version 2
|
|
** for a completely different meaning. Software that links against both
|
|
** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT not
|
|
** SQLITE_TEXT.
|
|
*/
|
|
#define SQLITE_INTEGER 1
|
|
#define SQLITE_FLOAT 2
|
|
#define SQLITE_BLOB 4
|
|
#define SQLITE_NULL 5
|
|
#ifdef SQLITE_TEXT
|
|
# undef SQLITE_TEXT
|
|
#else
|
|
# define SQLITE_TEXT 3
|
|
#endif
|
|
#define SQLITE3_TEXT 3
|
|
|
|
/*
|
|
** CAPI3REF: Results Values From A Query {F13800}
|
|
**
|
|
** These routines form the "result set query" interface.
|
|
**
|
|
** These routines return information about
|
|
** a single column of the current result row of a query. In every
|
|
** case the first argument is a pointer to the
|
|
** [prepared statement] that is being
|
|
** evaluated (the [sqlite3_stmt*] that was returned from
|
|
** [sqlite3_prepare_v2()] or one of its variants) and
|
|
** the second argument is the index of the column for which information
|
|
** should be returned. The left-most column of the result set
|
|
** has an index of 0.
|
|
**
|
|
** If the SQL statement is not currently point to a valid row, or if the
|
|
** the column index is out of range, the result is undefined.
|
|
** These routines may only be called when the most recent call to
|
|
** [sqlite3_step()] has returned [SQLITE_ROW] and neither
|
|
** [sqlite3_reset()] nor [sqlite3_finalize()] has been call subsequently.
|
|
** If any of these routines are called after [sqlite3_reset()] or
|
|
** [sqlite3_finalize()] or after [sqlite3_step()] has returned
|
|
** something other than [SQLITE_ROW], the results are undefined.
|
|
** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
|
|
** are called from a different thread while any of these routines
|
|
** are pending, then the results are undefined.
|
|
**
|
|
** The sqlite3_column_type() routine returns
|
|
** [SQLITE_INTEGER | datatype code] for the initial data type
|
|
** of the result column. The returned value is one of [SQLITE_INTEGER],
|
|
** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value
|
|
** returned by sqlite3_column_type() is only meaningful if no type
|
|
** conversions have occurred as described below. After a type conversion,
|
|
** the value returned by sqlite3_column_type() is undefined. Future
|
|
** versions of SQLite may change the behavior of sqlite3_column_type()
|
|
** following a type conversion.
|
|
**
|
|
** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
|
|
** routine returns the number of bytes in that BLOB or string.
|
|
** If the result is a UTF-16 string, then sqlite3_column_bytes() converts
|
|
** the string to UTF-8 and then returns the number of bytes.
|
|
** If the result is a numeric value then sqlite3_column_bytes() uses
|
|
** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
|
|
** the number of bytes in that string.
|
|
** The value returned does not include the zero terminator at the end
|
|
** of the string. For clarity: the value returned is the number of
|
|
** bytes in the string, not the number of characters.
|
|
**
|
|
** Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
|
|
** even empty strings, are always zero terminated. The return
|
|
** value from sqlite3_column_blob() for a zero-length blob is an arbitrary
|
|
** pointer, possibly even a NULL pointer.
|
|
**
|
|
** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes()
|
|
** but leaves the result in UTF-16 in native byte order instead of UTF-8.
|
|
** The zero terminator is not included in this count.
|
|
**
|
|
** These routines attempt to convert the value where appropriate. For
|
|
** example, if the internal representation is FLOAT and a text result
|
|
** is requested, [sqlite3_snprintf()] is used internally to do the conversion
|
|
** automatically. The following table details the conversions that
|
|
** are applied:
|
|
**
|
|
** <blockquote>
|
|
** <table border="1">
|
|
** <tr><th> Internal<br>Type <th> Requested<br>Type <th> Conversion
|
|
**
|
|
** <tr><td> NULL <td> INTEGER <td> Result is 0
|
|
** <tr><td> NULL <td> FLOAT <td> Result is 0.0
|
|
** <tr><td> NULL <td> TEXT <td> Result is NULL pointer
|
|
** <tr><td> NULL <td> BLOB <td> Result is NULL pointer
|
|
** <tr><td> INTEGER <td> FLOAT <td> Convert from integer to float
|
|
** <tr><td> INTEGER <td> TEXT <td> ASCII rendering of the integer
|
|
** <tr><td> INTEGER <td> BLOB <td> Same as for INTEGER->TEXT
|
|
** <tr><td> FLOAT <td> INTEGER <td> Convert from float to integer
|
|
** <tr><td> FLOAT <td> TEXT <td> ASCII rendering of the float
|
|
** <tr><td> FLOAT <td> BLOB <td> Same as FLOAT->TEXT
|
|
** <tr><td> TEXT <td> INTEGER <td> Use atoi()
|
|
** <tr><td> TEXT <td> FLOAT <td> Use atof()
|
|
** <tr><td> TEXT <td> BLOB <td> No change
|
|
** <tr><td> BLOB <td> INTEGER <td> Convert to TEXT then use atoi()
|
|
** <tr><td> BLOB <td> FLOAT <td> Convert to TEXT then use atof()
|
|
** <tr><td> BLOB <td> TEXT <td> Add a zero terminator if needed
|
|
** </table>
|
|
** </blockquote>
|
|
**
|
|
** The table above makes reference to standard C library functions atoi()
|
|
** and atof(). SQLite does not really use these functions. It has its
|
|
** on equavalent internal routines. The atoi() and atof() names are
|
|
** used in the table for brevity and because they are familiar to most
|
|
** C programmers.
|
|
**
|
|
** Note that when type conversions occur, pointers returned by prior
|
|
** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
|
|
** sqlite3_column_text16() may be invalidated.
|
|
** Type conversions and pointer invalidations might occur
|
|
** in the following cases:
|
|
**
|
|
** <ul>
|
|
** <li><p> The initial content is a BLOB and sqlite3_column_text()
|
|
** or sqlite3_column_text16() is called. A zero-terminator might
|
|
** need to be added to the string.</p></li>
|
|
**
|
|
** <li><p> The initial content is UTF-8 text and sqlite3_column_bytes16() or
|
|
** sqlite3_column_text16() is called. The content must be converted
|
|
** to UTF-16.</p></li>
|
|
**
|
|
** <li><p> The initial content is UTF-16 text and sqlite3_column_bytes() or
|
|
** sqlite3_column_text() is called. The content must be converted
|
|
** to UTF-8.</p></li>
|
|
** </ul>
|
|
**
|
|
** Conversions between UTF-16be and UTF-16le are always done in place and do
|
|
** not invalidate a prior pointer, though of course the content of the buffer
|
|
** that the prior pointer points to will have been modified. Other kinds
|
|
** of conversion are done in place when it is possible, but sometime it is
|
|
** not possible and in those cases prior pointers are invalidated.
|
|
**
|
|
** The safest and easiest to remember policy is to invoke these routines
|
|
** in one of the following ways:
|
|
**
|
|
** <ul>
|
|
** <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
|
|
** <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
|
|
** <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
|
|
** </ul>
|
|
**
|
|
** In other words, you should call sqlite3_column_text(), sqlite3_column_blob(),
|
|
** or sqlite3_column_text16() first to force the result into the desired
|
|
** format, then invoke sqlite3_column_bytes() or sqlite3_column_bytes16() to
|
|
** find the size of the result. Do not mix call to sqlite3_column_text() or
|
|
** sqlite3_column_blob() with calls to sqlite3_column_bytes16(). And do not
|
|
** mix calls to sqlite3_column_text16() with calls to sqlite3_column_bytes().
|
|
**
|
|
** The pointers returned are valid until a type conversion occurs as
|
|
** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
|
|
** [sqlite3_finalize()] is called. The memory space used to hold strings
|
|
** and blobs is freed automatically. Do <b>not</b> pass the pointers returned
|
|
** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
|
|
** [sqlite3_free()].
|
|
**
|
|
** If a memory allocation error occurs during the evaluation of any
|
|
** of these routines, a default value is returned. The default value
|
|
** is either the integer 0, the floating point number 0.0, or a NULL
|
|
** pointer. Subsequent calls to [sqlite3_errcode()] will return
|
|
** [SQLITE_NOMEM].
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F13803} The [sqlite3_column_blob(S,N)] interface converts the
|
|
** Nth column in the current row of the result set for
|
|
** [prepared statement] S into a blob and then returns a
|
|
** pointer to the converted value.
|
|
**
|
|
** {F13806} The [sqlite3_column_bytes(S,N)] interface returns the
|
|
** number of bytes in the blob or string (exclusive of the
|
|
** zero terminator on the string) that was returned by the
|
|
** most recent call to [sqlite3_column_blob(S,N)] or
|
|
** [sqlite3_column_text(S,N)].
|
|
**
|
|
** {F13809} The [sqlite3_column_bytes16(S,N)] interface returns the
|
|
** number of bytes in the string (exclusive of the
|
|
** zero terminator on the string) that was returned by the
|
|
** most recent call to [sqlite3_column_text16(S,N)].
|
|
**
|
|
** {F13812} The [sqlite3_column_double(S,N)] interface converts the
|
|
** Nth column in the current row of the result set for
|
|
** [prepared statement] S into a floating point value and
|
|
** returns a copy of that value.
|
|
**
|
|
** {F13815} The [sqlite3_column_int(S,N)] interface converts the
|
|
** Nth column in the current row of the result set for
|
|
** [prepared statement] S into a 32-bit signed integer and
|
|
** returns a copy of that integer.
|
|
**
|
|
** {F13818} The [sqlite3_column_int64(S,N)] interface converts the
|
|
** Nth column in the current row of the result set for
|
|
** [prepared statement] S into a 64-bit signed integer and
|
|
** returns a copy of that integer.
|
|
**
|
|
** {F13821} The [sqlite3_column_text(S,N)] interface converts the
|
|
** Nth column in the current row of the result set for
|
|
** [prepared statement] S into a zero-terminated UTF-8
|
|
** string and returns a pointer to that string.
|
|
**
|
|
** {F13824} The [sqlite3_column_text16(S,N)] interface converts the
|
|
** Nth column in the current row of the result set for
|
|
** [prepared statement] S into a zero-terminated 2-byte
|
|
** aligned UTF-16 native byte order
|
|
** string and returns a pointer to that string.
|
|
**
|
|
** {F13827} The [sqlite3_column_type(S,N)] interface returns
|
|
** one of [SQLITE_NULL], [SQLITE_INTEGER], [SQLITE_FLOAT],
|
|
** [SQLITE_TEXT], or [SQLITE_BLOB] as appropriate for
|
|
** the Nth column in the current row of the result set for
|
|
** [prepared statement] S.
|
|
**
|
|
** {F13830} The [sqlite3_column_value(S,N)] interface returns a
|
|
** pointer to the [sqlite3_value] object that for the
|
|
** Nth column in the current row of the result set for
|
|
** [prepared statement] S.
|
|
*/
|
|
SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
|
|
SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
|
|
SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
|
|
SQLITE_API double sqlite3_column_double(sqlite3_stmt*, int iCol);
|
|
SQLITE_API int sqlite3_column_int(sqlite3_stmt*, int iCol);
|
|
SQLITE_API sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
|
|
SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
|
|
SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
|
|
SQLITE_API int sqlite3_column_type(sqlite3_stmt*, int iCol);
|
|
SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
|
|
|
|
/*
|
|
** CAPI3REF: Destroy A Prepared Statement Object {F13300}
|
|
**
|
|
** The sqlite3_finalize() function is called to delete a
|
|
** [prepared statement]. If the statement was
|
|
** executed successfully, or not executed at all, then SQLITE_OK is returned.
|
|
** If execution of the statement failed then an
|
|
** [error code] or [extended error code]
|
|
** is returned.
|
|
**
|
|
** This routine can be called at any point during the execution of the
|
|
** [prepared statement]. If the virtual machine has not
|
|
** completed execution when this routine is called, that is like
|
|
** encountering an error or an interrupt. (See [sqlite3_interrupt()].)
|
|
** Incomplete updates may be rolled back and transactions cancelled,
|
|
** depending on the circumstances, and the
|
|
** [error code] returned will be [SQLITE_ABORT].
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F11302} The [sqlite3_finalize(S)] interface destroys the
|
|
** [prepared statement] S and releases all
|
|
** memory and file resources held by that object.
|
|
**
|
|
** {F11304} If the most recent call to [sqlite3_step(S)] for the
|
|
** [prepared statement] S returned an error,
|
|
** then [sqlite3_finalize(S)] returns that same error.
|
|
*/
|
|
SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt);
|
|
|
|
/*
|
|
** CAPI3REF: Reset A Prepared Statement Object {F13330}
|
|
**
|
|
** The sqlite3_reset() function is called to reset a
|
|
** [prepared statement] object.
|
|
** back to its initial state, ready to be re-executed.
|
|
** Any SQL statement variables that had values bound to them using
|
|
** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
|
|
** Use [sqlite3_clear_bindings()] to reset the bindings.
|
|
**
|
|
** {F11332} The [sqlite3_reset(S)] interface resets the [prepared statement] S
|
|
** back to the beginning of its program.
|
|
**
|
|
** {F11334} If the most recent call to [sqlite3_step(S)] for
|
|
** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE],
|
|
** or if [sqlite3_step(S)] has never before been called on S,
|
|
** then [sqlite3_reset(S)] returns [SQLITE_OK].
|
|
**
|
|
** {F11336} If the most recent call to [sqlite3_step(S)] for
|
|
** [prepared statement] S indicated an error, then
|
|
** [sqlite3_reset(S)] returns an appropriate [error code].
|
|
**
|
|
** {F11338} The [sqlite3_reset(S)] interface does not change the values
|
|
** of any [sqlite3_bind_blob|bindings] on [prepared statement] S.
|
|
*/
|
|
SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt);
|
|
|
|
/*
|
|
** CAPI3REF: Create Or Redefine SQL Functions {F16100}
|
|
** KEYWORDS: {function creation routines}
|
|
**
|
|
** These two functions (collectively known as
|
|
** "function creation routines") are used to add SQL functions or aggregates
|
|
** or to redefine the behavior of existing SQL functions or aggregates. The
|
|
** difference only between the two is that the second parameter, the
|
|
** name of the (scalar) function or aggregate, is encoded in UTF-8 for
|
|
** sqlite3_create_function() and UTF-16 for sqlite3_create_function16().
|
|
**
|
|
** The first argument is the [database connection] that holds the
|
|
** SQL function or aggregate is to be added or redefined. If a single
|
|
** program uses more than one database handle internally, then SQL
|
|
** functions or aggregates must be added individually to each database
|
|
** handle with which they will be used.
|
|
**
|
|
** The second parameter is the name of the SQL function to be created
|
|
** or redefined.
|
|
** The length of the name is limited to 255 bytes, exclusive of the
|
|
** zero-terminator. Note that the name length limit is in bytes, not
|
|
** characters. Any attempt to create a function with a longer name
|
|
** will result in an SQLITE_ERROR error.
|
|
**
|
|
** The third parameter is the number of arguments that the SQL function or
|
|
** aggregate takes. If this parameter is negative, then the SQL function or
|
|
** aggregate may take any number of arguments.
|
|
**
|
|
** The fourth parameter, eTextRep, specifies what
|
|
** [SQLITE_UTF8 | text encoding] this SQL function prefers for
|
|
** its parameters. Any SQL function implementation should be able to work
|
|
** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be
|
|
** more efficient with one encoding than another. It is allowed to
|
|
** invoke sqlite3_create_function() or sqlite3_create_function16() multiple
|
|
** times with the same function but with different values of eTextRep.
|
|
** When multiple implementations of the same function are available, SQLite
|
|
** will pick the one that involves the least amount of data conversion.
|
|
** If there is only a single implementation which does not care what
|
|
** text encoding is used, then the fourth argument should be
|
|
** [SQLITE_ANY].
|
|
**
|
|
** The fifth parameter is an arbitrary pointer. The implementation
|
|
** of the function can gain access to this pointer using
|
|
** [sqlite3_user_data()].
|
|
**
|
|
** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are
|
|
** pointers to C-language functions that implement the SQL
|
|
** function or aggregate. A scalar SQL function requires an implementation of
|
|
** the xFunc callback only, NULL pointers should be passed as the xStep
|
|
** and xFinal parameters. An aggregate SQL function requires an implementation
|
|
** of xStep and xFinal and NULL should be passed for xFunc. To delete an
|
|
** existing SQL function or aggregate, pass NULL for all three function
|
|
** callback.
|
|
**
|
|
** It is permitted to register multiple implementations of the same
|
|
** functions with the same name but with either differing numbers of
|
|
** arguments or differing perferred text encodings. SQLite will use
|
|
** the implementation most closely matches the way in which the
|
|
** SQL function is used.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F16103} The [sqlite3_create_function16()] interface behaves exactly
|
|
** like [sqlite3_create_function()] in every way except that it
|
|
** interprets the zFunctionName argument as
|
|
** zero-terminated UTF-16 native byte order instead of as a
|
|
** zero-terminated UTF-8.
|
|
**
|
|
** {F16106}
|
|
*/
|
|
SQLITE_API int sqlite3_create_function(
|
|
sqlite3 *db,
|
|
const char *zFunctionName,
|
|
int nArg,
|
|
int eTextRep,
|
|
void *pApp,
|
|
void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
|
|
void (*xStep)(sqlite3_context*,int,sqlite3_value**),
|
|
void (*xFinal)(sqlite3_context*)
|
|
);
|
|
SQLITE_API int sqlite3_create_function16(
|
|
sqlite3 *db,
|
|
const void *zFunctionName,
|
|
int nArg,
|
|
int eTextRep,
|
|
void *pApp,
|
|
void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
|
|
void (*xStep)(sqlite3_context*,int,sqlite3_value**),
|
|
void (*xFinal)(sqlite3_context*)
|
|
);
|
|
|
|
/*
|
|
** CAPI3REF: Text Encodings {F10267}
|
|
**
|
|
** These constant define integer codes that represent the various
|
|
** text encodings supported by SQLite.
|
|
*/
|
|
#define SQLITE_UTF8 1
|
|
#define SQLITE_UTF16LE 2
|
|
#define SQLITE_UTF16BE 3
|
|
#define SQLITE_UTF16 4 /* Use native byte order */
|
|
#define SQLITE_ANY 5 /* sqlite3_create_function only */
|
|
#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */
|
|
|
|
/*
|
|
** CAPI3REF: Obsolete Functions
|
|
**
|
|
** These functions are all now obsolete. In order to maintain
|
|
** backwards compatibility with older code, we continue to support
|
|
** these functions. However, new development projects should avoid
|
|
** the use of these functions. To help encourage people to avoid
|
|
** using these functions, we are not going to tell you want they do.
|
|
*/
|
|
SQLITE_API int sqlite3_aggregate_count(sqlite3_context*);
|
|
SQLITE_API int sqlite3_expired(sqlite3_stmt*);
|
|
SQLITE_API int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
|
|
SQLITE_API int sqlite3_global_recover(void);
|
|
SQLITE_API void sqlite3_thread_cleanup(void);
|
|
SQLITE_API int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64);
|
|
|
|
/*
|
|
** CAPI3REF: Obtaining SQL Function Parameter Values {F15100}
|
|
**
|
|
** The C-language implementation of SQL functions and aggregates uses
|
|
** this set of interface routines to access the parameter values on
|
|
** the function or aggregate.
|
|
**
|
|
** The xFunc (for scalar functions) or xStep (for aggregates) parameters
|
|
** to [sqlite3_create_function()] and [sqlite3_create_function16()]
|
|
** define callbacks that implement the SQL functions and aggregates.
|
|
** The 4th parameter to these callbacks is an array of pointers to
|
|
** [sqlite3_value] objects. There is one [sqlite3_value] object for
|
|
** each parameter to the SQL function. These routines are used to
|
|
** extract values from the [sqlite3_value] objects.
|
|
**
|
|
** These routines work just like the corresponding
|
|
** [sqlite3_column_blob | sqlite3_column_* routines] except that
|
|
** these routines take a single [sqlite3_value*] pointer instead
|
|
** of an [sqlite3_stmt*] pointer and an integer column number.
|
|
**
|
|
** The sqlite3_value_text16() interface extracts a UTF16 string
|
|
** in the native byte-order of the host machine. The
|
|
** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
|
|
** extract UTF16 strings as big-endian and little-endian respectively.
|
|
**
|
|
** The sqlite3_value_numeric_type() interface attempts to apply
|
|
** numeric affinity to the value. This means that an attempt is
|
|
** made to convert the value to an integer or floating point. If
|
|
** such a conversion is possible without loss of information (in other
|
|
** words if the value is a string that looks like a number)
|
|
** then the conversion is done. Otherwise no conversion occurs. The
|
|
** [SQLITE_INTEGER | datatype] after conversion is returned.
|
|
**
|
|
** Please pay particular attention to the fact that the pointer that
|
|
** is returned from [sqlite3_value_blob()], [sqlite3_value_text()], or
|
|
** [sqlite3_value_text16()] can be invalidated by a subsequent call to
|
|
** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
|
|
** or [sqlite3_value_text16()].
|
|
**
|
|
** These routines must be called from the same thread as
|
|
** the SQL function that supplied the sqlite3_value* parameters.
|
|
** Or, if the sqlite3_value* argument comes from the [sqlite3_column_value()]
|
|
** interface, then these routines should be called from the same thread
|
|
** that ran [sqlite3_column_value()].
|
|
**
|
|
*/
|
|
SQLITE_API const void *sqlite3_value_blob(sqlite3_value*);
|
|
SQLITE_API int sqlite3_value_bytes(sqlite3_value*);
|
|
SQLITE_API int sqlite3_value_bytes16(sqlite3_value*);
|
|
SQLITE_API double sqlite3_value_double(sqlite3_value*);
|
|
SQLITE_API int sqlite3_value_int(sqlite3_value*);
|
|
SQLITE_API sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
|
|
SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value*);
|
|
SQLITE_API const void *sqlite3_value_text16(sqlite3_value*);
|
|
SQLITE_API const void *sqlite3_value_text16le(sqlite3_value*);
|
|
SQLITE_API const void *sqlite3_value_text16be(sqlite3_value*);
|
|
SQLITE_API int sqlite3_value_type(sqlite3_value*);
|
|
SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*);
|
|
|
|
/*
|
|
** CAPI3REF: Obtain Aggregate Function Context {F16210}
|
|
**
|
|
** The implementation of aggregate SQL functions use this routine to allocate
|
|
** a structure for storing their state.
|
|
** {F16211} The first time the sqlite3_aggregate_context() routine is
|
|
** is called for a particular aggregate, SQLite allocates nBytes of memory
|
|
** zeros that memory, and returns a pointer to it.
|
|
** {F16212} On second and subsequent calls to sqlite3_aggregate_context()
|
|
** for the same aggregate function index, the same buffer is returned. {END}
|
|
** The implementation
|
|
** of the aggregate can use the returned buffer to accumulate data.
|
|
**
|
|
** {F16213} SQLite automatically frees the allocated buffer when the aggregate
|
|
** query concludes. {END}
|
|
**
|
|
** The first parameter should be a copy of the
|
|
** [sqlite3_context | SQL function context] that is the first
|
|
** parameter to the callback routine that implements the aggregate
|
|
** function.
|
|
**
|
|
** This routine must be called from the same thread in which
|
|
** the aggregate SQL function is running.
|
|
*/
|
|
SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);
|
|
|
|
/*
|
|
** CAPI3REF: User Data For Functions {F16240}
|
|
**
|
|
** {F16241} The sqlite3_user_data() interface returns a copy of
|
|
** the pointer that was the pUserData parameter (the 5th parameter)
|
|
** of the the [sqlite3_create_function()]
|
|
** and [sqlite3_create_function16()] routines that originally
|
|
** registered the application defined function. {END}
|
|
**
|
|
** {U16243} This routine must be called from the same thread in which
|
|
** the application-defined function is running.
|
|
*/
|
|
SQLITE_API void *sqlite3_user_data(sqlite3_context*);
|
|
|
|
/*
|
|
** CAPI3REF: Function Auxiliary Data {F16270}
|
|
**
|
|
** The following two functions may be used by scalar SQL functions to
|
|
** associate meta-data with argument values. If the same value is passed to
|
|
** multiple invocations of the same SQL function during query execution, under
|
|
** some circumstances the associated meta-data may be preserved. This may
|
|
** be used, for example, to add a regular-expression matching scalar
|
|
** function. The compiled version of the regular expression is stored as
|
|
** meta-data associated with the SQL value passed as the regular expression
|
|
** pattern. The compiled regular expression can be reused on multiple
|
|
** invocations of the same function so that the original pattern string
|
|
** does not need to be recompiled on each invocation.
|
|
**
|
|
** {F16271}
|
|
** The sqlite3_get_auxdata() interface returns a pointer to the meta-data
|
|
** associated by the sqlite3_set_auxdata() function with the Nth argument
|
|
** value to the application-defined function.
|
|
** {F16272} If no meta-data has been ever been set for the Nth
|
|
** argument of the function, or if the cooresponding function parameter
|
|
** has changed since the meta-data was set, then sqlite3_get_auxdata()
|
|
** returns a NULL pointer.
|
|
**
|
|
** {F16275} The sqlite3_set_auxdata() interface saves the meta-data
|
|
** pointed to by its 3rd parameter as the meta-data for the N-th
|
|
** argument of the application-defined function. {END} Subsequent
|
|
** calls to sqlite3_get_auxdata() might return this data, if it has
|
|
** not been destroyed.
|
|
** {F16277} If it is not NULL, SQLite will invoke the destructor
|
|
** function given by the 4th parameter to sqlite3_set_auxdata() on
|
|
** the meta-data when the corresponding function parameter changes
|
|
** or when the SQL statement completes, whichever comes first. {END}
|
|
**
|
|
** In practice, meta-data is preserved between function calls for
|
|
** expressions that are constant at compile time. This includes literal
|
|
** values and SQL variables.
|
|
**
|
|
** These routines must be called from the same thread in which
|
|
** the SQL function is running.
|
|
*/
|
|
SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N);
|
|
SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));
|
|
|
|
|
|
/*
|
|
** CAPI3REF: Constants Defining Special Destructor Behavior {F10280}
|
|
**
|
|
** These are special value for the destructor that is passed in as the
|
|
** final argument to routines like [sqlite3_result_blob()]. If the destructor
|
|
** argument is SQLITE_STATIC, it means that the content pointer is constant
|
|
** and will never change. It does not need to be destroyed. The
|
|
** SQLITE_TRANSIENT value means that the content will likely change in
|
|
** the near future and that SQLite should make its own private copy of
|
|
** the content before returning.
|
|
**
|
|
** The typedef is necessary to work around problems in certain
|
|
** C++ compilers. See ticket #2191.
|
|
*/
|
|
typedef void (*sqlite3_destructor_type)(void*);
|
|
#define SQLITE_STATIC ((sqlite3_destructor_type)0)
|
|
#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1)
|
|
|
|
/*
|
|
** CAPI3REF: Setting The Result Of An SQL Function {F16400}
|
|
**
|
|
** These routines are used by the xFunc or xFinal callbacks that
|
|
** implement SQL functions and aggregates. See
|
|
** [sqlite3_create_function()] and [sqlite3_create_function16()]
|
|
** for additional information.
|
|
**
|
|
** These functions work very much like the
|
|
** [sqlite3_bind_blob | sqlite3_bind_*] family of functions used
|
|
** to bind values to host parameters in prepared statements.
|
|
** Refer to the
|
|
** [sqlite3_bind_blob | sqlite3_bind_* documentation] for
|
|
** additional information.
|
|
**
|
|
** {F16402} The sqlite3_result_blob() interface sets the result from
|
|
** an application defined function to be the BLOB whose content is pointed
|
|
** to by the second parameter and which is N bytes long where N is the
|
|
** third parameter.
|
|
** {F16403} The sqlite3_result_zeroblob() inerfaces set the result of
|
|
** the application defined function to be a BLOB containing all zero
|
|
** bytes and N bytes in size, where N is the value of the 2nd parameter.
|
|
**
|
|
** {F16407} The sqlite3_result_double() interface sets the result from
|
|
** an application defined function to be a floating point value specified
|
|
** by its 2nd argument.
|
|
**
|
|
** {F16409} The sqlite3_result_error() and sqlite3_result_error16() functions
|
|
** cause the implemented SQL function to throw an exception.
|
|
** {F16411} SQLite uses the string pointed to by the
|
|
** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
|
|
** as the text of an error message. {F16412} SQLite interprets the error
|
|
** message string from sqlite3_result_error() as UTF8. {F16413} SQLite
|
|
** interprets the string from sqlite3_result_error16() as UTF16 in native
|
|
** byte order. {F16414} If the third parameter to sqlite3_result_error()
|
|
** or sqlite3_result_error16() is negative then SQLite takes as the error
|
|
** message all text up through the first zero character.
|
|
** {F16415} If the third parameter to sqlite3_result_error() or
|
|
** sqlite3_result_error16() is non-negative then SQLite takes that many
|
|
** bytes (not characters) from the 2nd parameter as the error message.
|
|
** {F16417} The sqlite3_result_error() and sqlite3_result_error16()
|
|
** routines make a copy private copy of the error message text before
|
|
** they return. {END} Hence, the calling function can deallocate or
|
|
** modify the text after they return without harm.
|
|
**
|
|
** {F16421} The sqlite3_result_toobig() interface causes SQLite
|
|
** to throw an error indicating that a string or BLOB is to long
|
|
** to represent. {F16422} The sqlite3_result_nomem() interface
|
|
** causes SQLite to throw an exception indicating that the a
|
|
** memory allocation failed.
|
|
**
|
|
** {F16431} The sqlite3_result_int() interface sets the return value
|
|
** of the application-defined function to be the 32-bit signed integer
|
|
** value given in the 2nd argument.
|
|
** {F16432} The sqlite3_result_int64() interface sets the return value
|
|
** of the application-defined function to be the 64-bit signed integer
|
|
** value given in the 2nd argument.
|
|
**
|
|
** {F16437} The sqlite3_result_null() interface sets the return value
|
|
** of the application-defined function to be NULL.
|
|
**
|
|
** {F16441} The sqlite3_result_text(), sqlite3_result_text16(),
|
|
** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
|
|
** set the return value of the application-defined function to be
|
|
** a text string which is represented as UTF-8, UTF-16 native byte order,
|
|
** UTF-16 little endian, or UTF-16 big endian, respectively.
|
|
** {F16442} SQLite takes the text result from the application from
|
|
** the 2nd parameter of the sqlite3_result_text* interfaces.
|
|
** {F16444} If the 3rd parameter to the sqlite3_result_text* interfaces
|
|
** is negative, then SQLite takes result text from the 2nd parameter
|
|
** through the first zero character.
|
|
** {F16447} If the 3rd parameter to the sqlite3_result_text* interfaces
|
|
** is non-negative, then as many bytes (not characters) of the text
|
|
** pointed to by the 2nd parameter are taken as the application-defined
|
|
** function result.
|
|
** {F16451} If the 4th parameter to the sqlite3_result_text* interfaces
|
|
** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
|
|
** function as the destructor on the text or blob result when it has
|
|
** finished using that result.
|
|
** {F16453} If the 4th parameter to the sqlite3_result_text* interfaces
|
|
** or sqlite3_result_blob is the special constant SQLITE_STATIC, then
|
|
** SQLite assumes that the text or blob result is constant space and
|
|
** does not copy the space or call a destructor when it has
|
|
** finished using that result.
|
|
** {F16454} If the 4th parameter to the sqlite3_result_text* interfaces
|
|
** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
|
|
** then SQLite makes a copy of the result into space obtained from
|
|
** from [sqlite3_malloc()] before it returns.
|
|
**
|
|
** {F16461} The sqlite3_result_value() interface sets the result of
|
|
** the application-defined function to be a copy the [sqlite3_value]
|
|
** object specified by the 2nd parameter. {F16463} The
|
|
** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
|
|
** so that [sqlite3_value] specified in the parameter may change or
|
|
** be deallocated after sqlite3_result_value() returns without harm.
|
|
**
|
|
** {U16491} These routines are called from within the different thread
|
|
** than the one containing the application-defined function that recieved
|
|
** the [sqlite3_context] pointer, the results are undefined.
|
|
*/
|
|
SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
|
|
SQLITE_API void sqlite3_result_double(sqlite3_context*, double);
|
|
SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int);
|
|
SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int);
|
|
SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*);
|
|
SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*);
|
|
SQLITE_API void sqlite3_result_int(sqlite3_context*, int);
|
|
SQLITE_API void sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
|
|
SQLITE_API void sqlite3_result_null(sqlite3_context*);
|
|
SQLITE_API void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
|
|
SQLITE_API void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
|
|
SQLITE_API void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
|
|
SQLITE_API void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
|
|
SQLITE_API void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
|
|
SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n);
|
|
|
|
/*
|
|
** CAPI3REF: Define New Collating Sequences {F16600}
|
|
**
|
|
** {F16601}
|
|
** These functions are used to add new collation sequences to the
|
|
** [sqlite3*] handle specified as the first argument.
|
|
**
|
|
** {F16602}
|
|
** The name of the new collation sequence is specified as a UTF-8 string
|
|
** for sqlite3_create_collation() and sqlite3_create_collation_v2()
|
|
** and a UTF-16 string for sqlite3_create_collation16(). {F16603} In all cases
|
|
** the name is passed as the second function argument.
|
|
**
|
|
** {F16604}
|
|
** The third argument may be one of the constants [SQLITE_UTF8],
|
|
** [SQLITE_UTF16LE] or [SQLITE_UTF16BE], indicating that the user-supplied
|
|
** routine expects to be passed pointers to strings encoded using UTF-8,
|
|
** UTF-16 little-endian or UTF-16 big-endian respectively. {F16605} The
|
|
** third argument might also be [SQLITE_UTF16_ALIGNED] to indicate that
|
|
** the routine expects pointers to 16-bit word aligned strings
|
|
** of UTF16 in the native byte order of the host computer.
|
|
**
|
|
** {F16607}
|
|
** A pointer to the user supplied routine must be passed as the fifth
|
|
** argument. {F16609} If it is NULL, this is the same as deleting the collation
|
|
** sequence (so that SQLite cannot call it anymore).
|
|
** {F16611} Each time the application
|
|
** supplied function is invoked, it is passed a copy of the void* passed as
|
|
** the fourth argument to sqlite3_create_collation() or
|
|
** sqlite3_create_collation16() as its first parameter.
|
|
**
|
|
** {F16612}
|
|
** The remaining arguments to the application-supplied routine are two strings,
|
|
** each represented by a (length, data) pair and encoded in the encoding
|
|
** that was passed as the third argument when the collation sequence was
|
|
** registered. {END} The application defined collation routine should
|
|
** return negative, zero or positive if
|
|
** the first string is less than, equal to, or greater than the second
|
|
** string. i.e. (STRING1 - STRING2).
|
|
**
|
|
** {F16615}
|
|
** The sqlite3_create_collation_v2() works like sqlite3_create_collation()
|
|
** excapt that it takes an extra argument which is a destructor for
|
|
** the collation. {F16617} The destructor is called when the collation is
|
|
** destroyed and is passed a copy of the fourth parameter void* pointer
|
|
** of the sqlite3_create_collation_v2().
|
|
** {F16618} Collations are destroyed when
|
|
** they are overridden by later calls to the collation creation functions
|
|
** or when the [sqlite3*] database handle is closed using [sqlite3_close()].
|
|
*/
|
|
SQLITE_API int sqlite3_create_collation(
|
|
sqlite3*,
|
|
const char *zName,
|
|
int eTextRep,
|
|
void*,
|
|
int(*xCompare)(void*,int,const void*,int,const void*)
|
|
);
|
|
SQLITE_API int sqlite3_create_collation_v2(
|
|
sqlite3*,
|
|
const char *zName,
|
|
int eTextRep,
|
|
void*,
|
|
int(*xCompare)(void*,int,const void*,int,const void*),
|
|
void(*xDestroy)(void*)
|
|
);
|
|
SQLITE_API int sqlite3_create_collation16(
|
|
sqlite3*,
|
|
const char *zName,
|
|
int eTextRep,
|
|
void*,
|
|
int(*xCompare)(void*,int,const void*,int,const void*)
|
|
);
|
|
|
|
/*
|
|
** CAPI3REF: Collation Needed Callbacks {F16700}
|
|
**
|
|
** {F16701}
|
|
** To avoid having to register all collation sequences before a database
|
|
** can be used, a single callback function may be registered with the
|
|
** database handle to be called whenever an undefined collation sequence is
|
|
** required.
|
|
**
|
|
** {F16702}
|
|
** If the function is registered using the sqlite3_collation_needed() API,
|
|
** then it is passed the names of undefined collation sequences as strings
|
|
** encoded in UTF-8. {F16703} If sqlite3_collation_needed16() is used, the names
|
|
** are passed as UTF-16 in machine native byte order. {F16704} A call to either
|
|
** function replaces any existing callback.
|
|
**
|
|
** {F16705} When the callback is invoked, the first argument passed is a copy
|
|
** of the second argument to sqlite3_collation_needed() or
|
|
** sqlite3_collation_needed16(). {F16706} The second argument is the database
|
|
** handle. {F16707} The third argument is one of [SQLITE_UTF8],
|
|
** [SQLITE_UTF16BE], or [SQLITE_UTF16LE], indicating the most
|
|
** desirable form of the collation sequence function required.
|
|
** {F16708} The fourth parameter is the name of the
|
|
** required collation sequence. {END}
|
|
**
|
|
** The callback function should register the desired collation using
|
|
** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
|
|
** [sqlite3_create_collation_v2()].
|
|
*/
|
|
SQLITE_API int sqlite3_collation_needed(
|
|
sqlite3*,
|
|
void*,
|
|
void(*)(void*,sqlite3*,int eTextRep,const char*)
|
|
);
|
|
SQLITE_API int sqlite3_collation_needed16(
|
|
sqlite3*,
|
|
void*,
|
|
void(*)(void*,sqlite3*,int eTextRep,const void*)
|
|
);
|
|
|
|
/*
|
|
** Specify the key for an encrypted database. This routine should be
|
|
** called right after sqlite3_open().
|
|
**
|
|
** The code to implement this API is not available in the public release
|
|
** of SQLite.
|
|
*/
|
|
SQLITE_API int sqlite3_key(
|
|
sqlite3 *db, /* Database to be rekeyed */
|
|
const void *pKey, int nKey /* The key */
|
|
);
|
|
|
|
/*
|
|
** Change the key on an open database. If the current database is not
|
|
** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the
|
|
** database is decrypted.
|
|
**
|
|
** The code to implement this API is not available in the public release
|
|
** of SQLite.
|
|
*/
|
|
SQLITE_API int sqlite3_rekey(
|
|
sqlite3 *db, /* Database to be rekeyed */
|
|
const void *pKey, int nKey /* The new key */
|
|
);
|
|
|
|
/*
|
|
** CAPI3REF: Suspend Execution For A Short Time {F10530}
|
|
**
|
|
** {F10531} The sqlite3_sleep() function
|
|
** causes the current thread to suspend execution
|
|
** for at least a number of milliseconds specified in its parameter.
|
|
**
|
|
** {F10532} If the operating system does not support sleep requests with
|
|
** millisecond time resolution, then the time will be rounded up to
|
|
** the nearest second. {F10533} The number of milliseconds of sleep actually
|
|
** requested from the operating system is returned.
|
|
**
|
|
** {F10534} SQLite implements this interface by calling the xSleep()
|
|
** method of the default [sqlite3_vfs] object. {END}
|
|
*/
|
|
SQLITE_API int sqlite3_sleep(int);
|
|
|
|
/*
|
|
** CAPI3REF: Name Of The Folder Holding Temporary Files {F10310}
|
|
**
|
|
** If this global variable is made to point to a string which is
|
|
** the name of a folder (a.ka. directory), then all temporary files
|
|
** created by SQLite will be placed in that directory. If this variable
|
|
** is NULL pointer, then SQLite does a search for an appropriate temporary
|
|
** file directory.
|
|
**
|
|
** It is not safe to modify this variable once a database connection
|
|
** has been opened. It is intended that this variable be set once
|
|
** as part of process initialization and before any SQLite interface
|
|
** routines have been call and remain unchanged thereafter.
|
|
*/
|
|
SQLITE_EXTERN char *sqlite3_temp_directory;
|
|
|
|
/*
|
|
** CAPI3REF: Test To See If The Database Is In Auto-Commit Mode {F12930}
|
|
**
|
|
** The sqlite3_get_autocommit() interfaces returns non-zero or
|
|
** zero if the given database connection is or is not in autocommit mode,
|
|
** respectively. Autocommit mode is on
|
|
** by default. Autocommit mode is disabled by a [BEGIN] statement.
|
|
** Autocommit mode is reenabled by a [COMMIT] or [ROLLBACK].
|
|
**
|
|
** If certain kinds of errors occur on a statement within a multi-statement
|
|
** transactions (errors including [SQLITE_FULL], [SQLITE_IOERR],
|
|
** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
|
|
** transaction might be rolled back automatically. The only way to
|
|
** find out if SQLite automatically rolled back the transaction after
|
|
** an error is to use this function.
|
|
**
|
|
** INVARIANTS:
|
|
**
|
|
** {F12931} The [sqlite3_get_autocommit()] interface returns non-zero or
|
|
** zero if the given database connection is or is not in autocommit
|
|
** mode, respectively.
|
|
**
|
|
** {F12932} Autocommit mode is on by default.
|
|
**
|
|
** {F12933} Autocommit mode is disabled by a successful [BEGIN] statement.
|
|
**
|
|
** {F12934} Autocommit mode is enabled by a successful [COMMIT] or [ROLLBACK]
|
|
** statement.
|
|
**
|
|
**
|
|
** LIMITATIONS:
|
|
***
|
|
** {U12936} If another thread changes the autocommit status of the database
|
|
** connection while this routine is running, then the return value
|
|
** is undefined.
|
|
*/
|
|
SQLITE_API int sqlite3_get_autocommit(sqlite3*);
|
|
|
|
/*
|
|
** CAPI3REF: Find The Database Handle Of A Prepared Statement {F13120}
|
|
**
|
|
** {F13121} The sqlite3_db_handle interface
|
|
** returns the [sqlite3*] database handle to which a
|
|
** [prepared statement] belongs.
|
|
** {F13122} the database handle returned by sqlite3_db_handle
|
|
** is the same database handle that was
|
|
** the first argument to the [sqlite3_prepare_v2()] or its variants
|
|
** that was used to create the statement in the first place.
|
|
*/
|
|
SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*);
|
|
|
|
|
|
/*
|
|
** CAPI3REF: Commit And Rollback Notification Callbacks {F12950}
|
|
**
|
|
** {F12951} The sqlite3_commit_hook() interface registers a callback
|
|
** function to be invoked whenever a transaction is committed.
|
|
** {F12952} Any callback set by a previous call to sqlite3_commit_hook()
|
|
** for the same database connection is overridden.
|
|
** {F12953} The sqlite3_rollback_hook() interface registers a callback
|
|
** function to be invoked whenever a transaction is committed.
|
|
** {F12954} Any callback set by a previous call to sqlite3_commit_hook()
|
|
** for the same database connection is overridden.
|
|
** {F12956} The pArg argument is passed through
|
|
** to the callback. {F12957} If the callback on a commit hook function
|
|
** returns non-zero, then the commit is converted into a rollback.
|
|
**
|
|
** {F12958} If another function was previously registered, its
|
|
** pArg value is returned. Otherwise NULL is returned.
|
|
**
|
|
** {F12959} Registering a NULL function disables the callback.
|
|
**
|
|
** {F12961} For the purposes of this API, a transaction is said to have been
|
|
** rolled back if an explicit "ROLLBACK" statement is executed, or
|
|
** an error or constraint causes an implicit rollback to occur.
|
|
** {F12962} The rollback callback is not invoked if a transaction is
|
|
** automatically rolled back because the database connection is closed.
|
|
** {F12964} The rollback callback is not invoked if a transaction is
|
|
** rolled back because a commit callback returned non-zero.
|
|
** <todo> Check on this </todo> {END}
|
|
**
|
|
** These are experimental interfaces and are subject to change.
|
|
*/
|
|
SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
|
|
SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
|
|
|
|
/*
|
|
** CAPI3REF: Data Change Notification Callbacks {F12970}
|
|
**
|
|
** {F12971} The sqlite3_update_hook() interface
|
|
** registers a callback function with the database connection identified by the
|
|
** first argument to be invoked whenever a row is updated, inserted or deleted.
|
|
** {F12972} Any callback set by a previous call to this function for the same
|
|
** database connection is overridden.
|
|
**
|
|
** {F12974} The second argument is a pointer to the function to invoke when a
|
|
** row is updated, inserted or deleted.
|
|
** {F12976} The first argument to the callback is
|
|
** a copy of the third argument to sqlite3_update_hook().
|
|
** {F12977} The second callback
|
|
** argument is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE],
|
|
** depending on the operation that caused the callback to be invoked.
|
|
** {F12978} The third and
|
|
** fourth arguments to the callback contain pointers to the database and
|
|
** table name containing the affected row.
|
|
** {F12979} The final callback parameter is
|
|
** the rowid of the row.
|
|
** {F12981} In the case of an update, this is the rowid after
|
|
** the update takes place.
|
|
**
|
|
** {F12983} The update hook is not invoked when internal system tables are
|
|
** modified (i.e. sqlite_master and sqlite_sequence).
|
|
**
|
|
** {F12984} If another function was previously registered, its pArg value
|
|
** is returned. {F12985} Otherwise NULL is returned.
|
|
*/
|
|
SQLITE_API void *sqlite3_update_hook(
|
|
sqlite3*,
|
|
void(*)(void *,int ,char const *,char const *,sqlite3_int64),
|
|
void*
|
|
);
|
|
|
|
/*
|
|
** CAPI3REF: Enable Or Disable Shared Pager Cache {F10330}
|
|
**
|
|
** {F10331}
|
|
** This routine enables or disables the sharing of the database cache
|
|
** and schema data structures between connections to the same database.
|
|
** {F10332}
|
|
** Sharing is enabled if the argument is true and disabled if the argument
|
|
** is false.
|
|
**
|
|
** {F10333} Cache sharing is enabled and disabled
|
|
** for an entire process. {END} This is a change as of SQLite version 3.5.0.
|
|
** In prior versions of SQLite, sharing was
|
|
** enabled or disabled for each thread separately.
|
|
**
|
|
** {F10334}
|
|
** The cache sharing mode set by this interface effects all subsequent
|
|
** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
|
|
** {F10335} Existing database connections continue use the sharing mode
|
|
** that was in effect at the time they were opened. {END}
|
|
**
|
|
** Virtual tables cannot be used with a shared cache. {F10336} When shared
|
|
** cache is enabled, the [sqlite3_create_module()] API used to register
|
|
** virtual tables will always return an error. {END}
|
|
**
|
|
** {F10337} This routine returns [SQLITE_OK] if shared cache was
|
|
** enabled or disabled successfully. {F10338} An [error code]
|
|
** is returned otherwise. {END}
|
|
**
|
|
** {F10339} Shared cache is disabled by default. {END} But this might change in
|
|
** future releases of SQLite. Applications that care about shared
|
|
** cache setting should set it explicitly.
|
|
*/
|
|
SQLITE_API int sqlite3_enable_shared_cache(int);
|
|
|
|
/*
|
|
** CAPI3REF: Attempt To Free Heap Memory {F17340}
|
|
**
|
|
** {F17341} The sqlite3_release_memory() interface attempts to
|
|
** free N bytes of heap memory by deallocating non-essential memory
|
|
** allocations held by the database labrary. {END} Memory used
|
|
** to cache database pages to improve performance is an example of
|
|
** non-essential memory. {F16342} sqlite3_release_memory() returns
|
|
** the number of bytes actually freed, which might be more or less
|
|
** than the amount requested.
|
|
*/
|
|
SQLITE_API int sqlite3_release_memory(int);
|
|
|
|
/*
|
|
** CAPI3REF: Impose A Limit On Heap Size {F17350}
|
|
**
|
|
** {F16351} The sqlite3_soft_heap_limit() interface
|
|
** places a "soft" limit on the amount of heap memory that may be allocated
|
|
** by SQLite. {F16352} If an internal allocation is requested
|
|
** that would exceed the soft heap limit, [sqlite3_release_memory()] is
|
|
** invoked one or more times to free up some space before the allocation
|
|
** is made. {END}
|
|
**
|
|
** {F16353} The limit is called "soft", because if
|
|
** [sqlite3_release_memory()] cannot
|
|
** free sufficient memory to prevent the limit from being exceeded,
|
|
** the memory is allocated anyway and the current operation proceeds.
|
|
**
|
|
** {F16354}
|
|
** A negative or zero value for N means that there is no soft heap limit and
|
|
** [sqlite3_release_memory()] will only be called when memory is exhausted.
|
|
** {F16355} The default value for the soft heap limit is zero.
|
|
**
|
|
** SQLite makes a best effort to honor the soft heap limit.
|
|
** {F16356} But if the soft heap limit cannot honored, execution will
|
|
** continue without error or notification. {END} This is why the limit is
|
|
** called a "soft" limit. It is advisory only.
|
|
**
|
|
** Prior to SQLite version 3.5.0, this routine only constrained the memory
|
|
** allocated by a single thread - the same thread in which this routine
|
|
** runs. Beginning with SQLite version 3.5.0, the soft heap limit is
|
|
** applied to all threads. {F16357} The value specified for the soft heap limit
|
|
** is an upper bound on the total memory allocation for all threads. {END} In
|
|
** version 3.5.0 there is no mechanism for limiting the heap usage for
|
|
** individual threads.
|
|
*/
|
|
SQLITE_API void sqlite3_soft_heap_limit(int);
|
|
|
|
/*
|
|
** CAPI3REF: Extract Metadata About A Column Of A Table {F12850}
|
|
**
|
|
** This routine
|
|
** returns meta-data about a specific column of a specific database
|
|
** table accessible using the connection handle passed as the first function
|
|
** argument.
|
|
**
|
|
** The column is identified by the second, third and fourth parameters to
|
|
** this function. The second parameter is either the name of the database
|
|
** (i.e. "main", "temp" or an attached database) containing the specified
|
|
** table or NULL. If it is NULL, then all attached databases are searched
|
|
** for the table using the same algorithm as the database engine uses to
|
|
** resolve unqualified table references.
|
|
**
|
|
** The third and fourth parameters to this function are the table and column
|
|
** name of the desired column, respectively. Neither of these parameters
|
|
** may be NULL.
|
|
**
|
|
** Meta information is returned by writing to the memory locations passed as
|
|
** the 5th and subsequent parameters to this function. Any of these
|
|
** arguments may be NULL, in which case the corresponding element of meta
|
|
** information is ommitted.
|
|
**
|
|
** <pre>
|
|
** Parameter Output Type Description
|
|
** -----------------------------------
|
|
**
|
|
** 5th const char* Data type
|
|
** 6th const char* Name of the default collation sequence
|
|
** 7th int True if the column has a NOT NULL constraint
|
|
** 8th int True if the column is part of the PRIMARY KEY
|
|
** 9th int True if the column is AUTOINCREMENT
|
|
** </pre>
|
|
**
|
|
**
|
|
** The memory pointed to by the character pointers returned for the
|
|
** declaration type and collation sequence is valid only until the next
|
|
** call to any sqlite API function.
|
|
**
|
|
** If the specified table is actually a view, then an error is returned.
|
|
**
|
|
** If the specified column is "rowid", "oid" or "_rowid_" and an
|
|
** INTEGER PRIMARY KEY column has been explicitly declared, then the output
|
|
** parameters are set for the explicitly declared column. If there is no
|
|
** explicitly declared IPK column, then the output parameters are set as
|
|
** follows:
|
|
**
|
|
** <pre>
|
|
** data type: "INTEGER"
|
|
** collation sequence: "BINARY"
|
|
** not null: 0
|
|
** primary key: 1
|
|
** auto increment: 0
|
|
** </pre>
|
|
**
|
|
** This function may load one or more schemas from database files. If an
|
|
** error occurs during this process, or if the requested table or column
|
|
** cannot be found, an SQLITE error code is returned and an error message
|
|
** left in the database handle (to be retrieved using sqlite3_errmsg()).
|
|
**
|
|
** This API is only available if the library was compiled with the
|
|
** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
|
|
*/
|
|
SQLITE_API int sqlite3_table_column_metadata(
|
|
sqlite3 *db, /* Connection handle */
|
|
const char *zDbName, /* Database name or NULL */
|
|
const char *zTableName, /* Table name */
|
|
const char *zColumnName, /* Column name */
|
|
char const **pzDataType, /* OUTPUT: Declared data type */
|
|
char const **pzCollSeq, /* OUTPUT: Collation sequence name */
|
|
int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
|
|
int *pPrimaryKey, /* OUTPUT: True if column part of PK */
|
|
int *pAutoinc /* OUTPUT: True if column is auto-increment */
|
|
);
|
|
|
|
/*
|
|
** CAPI3REF: Load An Extension {F12600}
|
|
**
|
|
** {F12601} The sqlite3_load_extension() interface
|
|
** attempts to load an SQLite extension library contained in the file
|
|
** zFile. {F12602} The entry point is zProc. {F12603} zProc may be 0
|
|
** in which case the name of the entry point defaults
|
|
** to "sqlite3_extension_init".
|
|
**
|
|
** {F12604} The sqlite3_load_extension() interface shall
|
|
** return [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
|
|
**
|
|
** {F12605}
|
|
** If an error occurs and pzErrMsg is not 0, then the
|
|
** sqlite3_load_extension() interface shall attempt to fill *pzErrMsg with
|
|
** error message text stored in memory obtained from [sqlite3_malloc()].
|
|
** {END} The calling function should free this memory
|
|
** by calling [sqlite3_free()].
|
|
**
|
|
** {F12606}
|
|
** Extension loading must be enabled using [sqlite3_enable_load_extension()]
|
|
** prior to calling this API or an error will be returned.
|
|
*/
|
|
SQLITE_API int sqlite3_load_extension(
|
|
sqlite3 *db, /* Load the extension into this database connection */
|
|
const char *zFile, /* Name of the shared library containing extension */
|
|
const char *zProc, /* Entry point. Derived from zFile if 0 */
|
|
char **pzErrMsg /* Put error message here if not 0 */
|
|
);
|
|
|
|
/*
|
|
** CAPI3REF: Enable Or Disable Extension Loading {F12620}
|
|
**
|
|
** So as not to open security holes in older applications that are
|
|
** unprepared to deal with extension loading, and as a means of disabling
|
|
** extension loading while evaluating user-entered SQL, the following
|
|
** API is provided to turn the [sqlite3_load_extension()] mechanism on and
|
|
** off. {F12622} It is off by default. {END} See ticket #1863.
|
|
**
|
|
** {F12621} Call the sqlite3_enable_load_extension() routine
|
|
** with onoff==1 to turn extension loading on
|
|
** and call it with onoff==0 to turn it back off again. {END}
|
|
*/
|
|
SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
|
|
|
|
/*
|
|
** CAPI3REF: Make Arrangements To Automatically Load An Extension {F12640}
|
|
**
|
|
** {F12641} This function
|
|
** registers an extension entry point that is automatically invoked
|
|
** whenever a new database connection is opened using
|
|
** [sqlite3_open()], [sqlite3_open16()], or [sqlite3_open_v2()]. {END}
|
|
**
|
|
** This API can be invoked at program startup in order to register
|
|
** one or more statically linked extensions that will be available
|
|
** to all new database connections.
|
|
**
|
|
** {F12642} Duplicate extensions are detected so calling this routine multiple
|
|
** times with the same extension is harmless.
|
|
**
|
|
** {F12643} This routine stores a pointer to the extension in an array
|
|
** that is obtained from sqlite_malloc(). {END} If you run a memory leak
|
|
** checker on your program and it reports a leak because of this
|
|
** array, then invoke [sqlite3_reset_auto_extension()] prior
|
|
** to shutdown to free the memory.
|
|
**
|
|
** {F12644} Automatic extensions apply across all threads. {END}
|
|
**
|
|
** This interface is experimental and is subject to change or
|
|
** removal in future releases of SQLite.
|
|
*/
|
|
SQLITE_API int sqlite3_auto_extension(void *xEntryPoint);
|
|
|
|
|
|
/*
|
|
** CAPI3REF: Reset Automatic Extension Loading {F12660}
|
|
**
|
|
** {F12661} This function disables all previously registered
|
|
** automatic extensions. {END} This
|
|
** routine undoes the effect of all prior [sqlite3_auto_extension()]
|
|
** calls.
|
|
**
|
|
** {F12662} This call disabled automatic extensions in all threads. {END}
|
|
**
|
|
** This interface is experimental and is subject to change or
|
|
** removal in future releases of SQLite.
|
|
*/
|
|
SQLITE_API void sqlite3_reset_auto_extension(void);
|
|
|
|
|
|
/*
|
|
****** EXPERIMENTAL - subject to change without notice **************
|
|
**
|
|
** The interface to the virtual-table mechanism is currently considered
|
|
** to be experimental. The interface might change in incompatible ways.
|
|
** If this is a problem for you, do not use the interface at this time.
|
|
**
|
|
** When the virtual-table mechanism stablizes, we will declare the
|
|
** interface fixed, support it indefinitely, and remove this comment.
|
|
*/
|
|
|
|
/*
|
|
** Structures used by the virtual table interface
|
|
*/
|
|
typedef struct sqlite3_vtab sqlite3_vtab;
|
|
typedef struct sqlite3_index_info sqlite3_index_info;
|
|
typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
|
|
typedef struct sqlite3_module sqlite3_module;
|
|
|
|
/*
|
|
** A module is a class of virtual tables. Each module is defined
|
|
** by an instance of the following structure. This structure consists
|
|
** mostly of methods for the module.
|
|
*/
|
|
struct sqlite3_module {
|
|
int iVersion;
|
|
int (*xCreate)(sqlite3*, void *pAux,
|
|
int argc, const char *const*argv,
|
|
sqlite3_vtab **ppVTab, char**);
|
|
int (*xConnect)(sqlite3*, void *pAux,
|
|
int argc, const char *const*argv,
|
|
sqlite3_vtab **ppVTab, char**);
|
|
int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*);
|
|
int (*xDisconnect)(sqlite3_vtab *pVTab);
|
|
int (*xDestroy)(sqlite3_vtab *pVTab);
|
|
int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor);
|
|
int (*xClose)(sqlite3_vtab_cursor*);
|
|
int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr,
|
|
int argc, sqlite3_value **argv);
|
|
int (*xNext)(sqlite3_vtab_cursor*);
|
|
int (*xEof)(sqlite3_vtab_cursor*);
|
|
int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int);
|
|
int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid);
|
|
int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *);
|
|
int (*xBegin)(sqlite3_vtab *pVTab);
|
|
int (*xSync)(sqlite3_vtab *pVTab);
|
|
int (*xCommit)(sqlite3_vtab *pVTab);
|
|
int (*xRollback)(sqlite3_vtab *pVTab);
|
|
int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
|
|
void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
|
|
void **ppArg);
|
|
|
|
int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
|
|
};
|
|
|
|
/*
|
|
** The sqlite3_index_info structure and its substructures is used to
|
|
** pass information into and receive the reply from the xBestIndex
|
|
** method of an sqlite3_module. The fields under **Inputs** are the
|
|
** inputs to xBestIndex and are read-only. xBestIndex inserts its
|
|
** results into the **Outputs** fields.
|
|
**
|
|
** The aConstraint[] array records WHERE clause constraints of the
|
|
** form:
|
|
**
|
|
** column OP expr
|
|
**
|
|
** Where OP is =, <, <=, >, or >=.
|
|
** The particular operator is stored
|
|
** in aConstraint[].op. The index of the column is stored in
|
|
** aConstraint[].iColumn. aConstraint[].usable is TRUE if the
|
|
** expr on the right-hand side can be evaluated (and thus the constraint
|
|
** is usable) and false if it cannot.
|
|
**
|
|
** The optimizer automatically inverts terms of the form "expr OP column"
|
|
** and makes other simplifications to the WHERE clause in an attempt to
|
|
** get as many WHERE clause terms into the form shown above as possible.
|
|
** The aConstraint[] array only reports WHERE clause terms in the correct
|
|
** form that refer to the particular virtual table being queried.
|
|
**
|
|
** Information about the ORDER BY clause is stored in aOrderBy[].
|
|
** Each term of aOrderBy records a column of the ORDER BY clause.
|
|
**
|
|
** The xBestIndex method must fill aConstraintUsage[] with information
|
|
** about what parameters to pass to xFilter. If argvIndex>0 then
|
|
** the right-hand side of the corresponding aConstraint[] is evaluated
|
|
** and becomes the argvIndex-th entry in argv. If aConstraintUsage[].omit
|
|
** is true, then the constraint is assumed to be fully handled by the
|
|
** virtual table and is not checked again by SQLite.
|
|
**
|
|
** The idxNum and idxPtr values are recorded and passed into xFilter.
|
|
** sqlite3_free() is used to free idxPtr if needToFreeIdxPtr is true.
|
|
**
|
|
** The orderByConsumed means that output from xFilter will occur in
|
|
** the correct order to satisfy the ORDER BY clause so that no separate
|
|
** sorting step is required.
|
|
**
|
|
** The estimatedCost value is an estimate of the cost of doing the
|
|
** particular lookup. A full scan of a table with N entries should have
|
|
** a cost of N. A binary search of a table of N entries should have a
|
|
** cost of approximately log(N).
|
|
*/
|
|
struct sqlite3_index_info {
|
|
/* Inputs */
|
|
int nConstraint; /* Number of entries in aConstraint */
|
|
struct sqlite3_index_constraint {
|
|
int iColumn; /* Column on left-hand side of constraint */
|
|
unsigned char op; /* Constraint operator */
|
|
unsigned char usable; /* True if this constraint is usable */
|
|
int iTermOffset; /* Used internally - xBestIndex should ignore */
|
|
} *aConstraint; /* Table of WHERE clause constraints */
|
|
int nOrderBy; /* Number of terms in the ORDER BY clause */
|
|
struct sqlite3_index_orderby {
|
|
int iColumn; /* Column number */
|
|
unsigned char desc; /* True for DESC. False for ASC. */
|
|
} *aOrderBy; /* The ORDER BY clause */
|
|
|
|
/* Outputs */
|
|
struct sqlite3_index_constraint_usage {
|
|
int argvIndex; /* if >0, constraint is part of argv to xFilter */
|
|
unsigned char omit; /* Do not code a test for this constraint */
|
|
} *aConstraintUsage;
|
|
int idxNum; /* Number used to identify the index */
|
|
char *idxStr; /* String, possibly obtained from sqlite3_malloc */
|
|
int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */
|
|
int orderByConsumed; /* True if output is already ordered */
|
|
double estimatedCost; /* Estimated cost of using this index */
|
|
};
|
|
#define SQLITE_INDEX_CONSTRAINT_EQ 2
|
|
#define SQLITE_INDEX_CONSTRAINT_GT 4
|
|
#define SQLITE_INDEX_CONSTRAINT_LE 8
|
|
#define SQLITE_INDEX_CONSTRAINT_LT 16
|
|
#define SQLITE_INDEX_CONSTRAINT_GE 32
|
|
#define SQLITE_INDEX_CONSTRAINT_MATCH 64
|
|
|
|
/*
|
|
** This routine is used to register a new module name with an SQLite
|
|
** connection. Module names must be registered before creating new
|
|
** virtual tables on the module, or before using preexisting virtual
|
|
** tables of the module.
|
|
*/
|
|
SQLITE_API int sqlite3_create_module(
|
|
sqlite3 *db, /* SQLite connection to register module with */
|
|
const char *zName, /* Name of the module */
|
|
const sqlite3_module *, /* Methods for the module */
|
|
void * /* Client data for xCreate/xConnect */
|
|
);
|
|
|
|
/*
|
|
** This routine is identical to the sqlite3_create_module() method above,
|
|
** except that it allows a destructor function to be specified. It is
|
|
** even more experimental than the rest of the virtual tables API.
|
|
*/
|
|
SQLITE_API int sqlite3_create_module_v2(
|
|
sqlite3 *db, /* SQLite connection to register module with */
|
|
const char *zName, /* Name of the module */
|
|
const sqlite3_module *, /* Methods for the module */
|
|
void *, /* Client data for xCreate/xConnect */
|
|
void(*xDestroy)(void*) /* Module destructor function */
|
|
);
|
|
|
|
/*
|
|
** Every module implementation uses a subclass of the following structure
|
|
** to describe a particular instance of the module. Each subclass will
|
|
** be tailored to the specific needs of the module implementation. The
|
|
** purpose of this superclass is to define certain fields that are common
|
|
** to all module implementations.
|
|
**
|
|
** Virtual tables methods can set an error message by assigning a
|
|
** string obtained from sqlite3_mprintf() to zErrMsg. The method should
|
|
** take care that any prior string is freed by a call to sqlite3_free()
|
|
** prior to assigning a new string to zErrMsg. After the error message
|
|
** is delivered up to the client application, the string will be automatically
|
|
** freed by sqlite3_free() and the zErrMsg field will be zeroed. Note
|
|
** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field
|
|
** since virtual tables are commonly implemented in loadable extensions which
|
|
** do not have access to sqlite3MPrintf() or sqlite3Free().
|
|
*/
|
|
struct sqlite3_vtab {
|
|
const sqlite3_module *pModule; /* The module for this virtual table */
|
|
int nRef; /* Used internally */
|
|
char *zErrMsg; /* Error message from sqlite3_mprintf() */
|
|
/* Virtual table implementations will typically add additional fields */
|
|
};
|
|
|
|
/* Every module implementation uses a subclass of the following structure
|
|
** to describe cursors that point into the virtual table and are used
|
|
** to loop through the virtual table. Cursors are created using the
|
|
** xOpen method of the module. Each module implementation will define
|
|
** the content of a cursor structure to suit its own needs.
|
|
**
|
|
** This superclass exists in order to define fields of the cursor that
|
|
** are common to all implementations.
|
|
*/
|
|
struct sqlite3_vtab_cursor {
|
|
sqlite3_vtab *pVtab; /* Virtual table of this cursor */
|
|
/* Virtual table implementations will typically add additional fields */
|
|
};
|
|
|
|
/*
|
|
** The xCreate and xConnect methods of a module use the following API
|
|
** to declare the format (the names and datatypes of the columns) of
|
|
** the virtual tables they implement.
|
|
*/
|
|
SQLITE_API int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable);
|
|
|
|
/*
|
|
** Virtual tables can provide alternative implementations of functions
|
|
** using the xFindFunction method. But global versions of those functions
|
|
** must exist in order to be overloaded.
|
|
**
|
|
** This API makes sure a global version of a function with a particular
|
|
** name and number of parameters exists. If no such function exists
|
|
** before this API is called, a new function is created. The implementation
|
|
** of the new function always causes an exception to be thrown. So
|
|
** the new function is not good for anything by itself. Its only
|
|
** purpose is to be a place-holder function that can be overloaded
|
|
** by virtual tables.
|
|
**
|
|
** This API should be considered part of the virtual table interface,
|
|
** which is experimental and subject to change.
|
|
*/
|
|
SQLITE_API int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
|
|
|
|
/*
|
|
** The interface to the virtual-table mechanism defined above (back up
|
|
** to a comment remarkably similar to this one) is currently considered
|
|
** to be experimental. The interface might change in incompatible ways.
|
|
** If this is a problem for you, do not use the interface at this time.
|
|
**
|
|
** When the virtual-table mechanism stabilizes, we will declare the
|
|
** interface fixed, support it indefinitely, and remove this comment.
|
|
**
|
|
****** EXPERIMENTAL - subject to change without notice **************
|
|
*/
|
|
|
|
/*
|
|
** CAPI3REF: A Handle To An Open BLOB {F17800}
|
|
**
|
|
** An instance of the following opaque structure is used to
|
|
** represent an blob-handle. A blob-handle is created by
|
|
** [sqlite3_blob_open()] and destroyed by [sqlite3_blob_close()].
|
|
** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
|
|
** can be used to read or write small subsections of the blob.
|
|
** The [sqlite3_blob_bytes()] interface returns the size of the
|
|
** blob in bytes.
|
|
*/
|
|
typedef struct sqlite3_blob sqlite3_blob;
|
|
|
|
/*
|
|
** CAPI3REF: Open A BLOB For Incremental I/O {F17810}
|
|
**
|
|
** {F17811} This interfaces opens a handle to the blob located
|
|
** in row iRow,, column zColumn, table zTable in database zDb;
|
|
** in other words, the same blob that would be selected by:
|
|
**
|
|
** <pre>
|
|
** SELECT zColumn FROM zDb.zTable WHERE rowid = iRow;
|
|
** </pre> {END}
|
|
**
|
|
** {F17812} If the flags parameter is non-zero, the blob is opened for
|
|
** read and write access. If it is zero, the blob is opened for read
|
|
** access. {END}
|
|
**
|
|
** {F17813} On success, [SQLITE_OK] is returned and the new
|
|
** [sqlite3_blob | blob handle] is written to *ppBlob.
|
|
** {F17814} Otherwise an error code is returned and
|
|
** any value written to *ppBlob should not be used by the caller.
|
|
** {F17815} This function sets the database-handle error code and message
|
|
** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()].
|
|
** <todo>We should go through and mark all interfaces that behave this
|
|
** way with a similar statement</todo>
|
|
*/
|
|
SQLITE_API int sqlite3_blob_open(
|
|
sqlite3*,
|
|
const char *zDb,
|
|
const char *zTable,
|
|
const char *zColumn,
|
|
sqlite3_int64 iRow,
|
|
int flags,
|
|
sqlite3_blob **ppBlob
|
|
);
|
|
|
|
/*
|
|
** CAPI3REF: Close A BLOB Handle {F17830}
|
|
**
|
|
** Close an open [sqlite3_blob | blob handle].
|
|
**
|
|
** {F17831} Closing a BLOB shall cause the current transaction to commit
|
|
** if there are no other BLOBs, no pending prepared statements, and the
|
|
** database connection is in autocommit mode.
|
|
** {F17832} If any writes were made to the BLOB, they might be held in cache
|
|
** until the close operation if they will fit. {END}
|
|
** Closing the BLOB often forces the changes
|
|
** out to disk and so if any I/O errors occur, they will likely occur
|
|
** at the time when the BLOB is closed. {F17833} Any errors that occur during
|
|
** closing are reported as a non-zero return value.
|
|
**
|
|
** {F17839} The BLOB is closed unconditionally. Even if this routine returns
|
|
** an error code, the BLOB is still closed.
|
|
*/
|
|
SQLITE_API int sqlite3_blob_close(sqlite3_blob *);
|
|
|
|
/*
|
|
** CAPI3REF: Return The Size Of An Open BLOB {F17805}
|
|
**
|
|
** {F16806} Return the size in bytes of the blob accessible via the open
|
|
** [sqlite3_blob | blob-handle] passed as an argument.
|
|
*/
|
|
SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *);
|
|
|
|
/*
|
|
** CAPI3REF: Read Data From A BLOB Incrementally {F17850}
|
|
**
|
|
** This function is used to read data from an open
|
|
** [sqlite3_blob | blob-handle] into a caller supplied buffer.
|
|
** {F17851} n bytes of data are copied into buffer
|
|
** z from the open blob, starting at offset iOffset.
|
|
**
|
|
** {F17852} If offset iOffset is less than n bytes from the end of the blob,
|
|
** [SQLITE_ERROR] is returned and no data is read. {F17853} If n is
|
|
** less than zero [SQLITE_ERROR] is returned and no data is read.
|
|
**
|
|
** {F17854} On success, SQLITE_OK is returned. Otherwise, an
|
|
** [error code] or an [extended error code] is returned.
|
|
*/
|
|
SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *z, int n, int iOffset);
|
|
|
|
/*
|
|
** CAPI3REF: Write Data Into A BLOB Incrementally {F17870}
|
|
**
|
|
** This function is used to write data into an open
|
|
** [sqlite3_blob | blob-handle] from a user supplied buffer.
|
|
** {F17871} n bytes of data are copied from the buffer
|
|
** pointed to by z into the open blob, starting at offset iOffset.
|
|
**
|
|
** {F17872} If the [sqlite3_blob | blob-handle] passed as the first argument
|
|
** was not opened for writing (the flags parameter to [sqlite3_blob_open()]
|
|
*** was zero), this function returns [SQLITE_READONLY].
|
|
**
|
|
** {F17873} This function may only modify the contents of the blob; it is
|
|
** not possible to increase the size of a blob using this API.
|
|
** {F17874} If offset iOffset is less than n bytes from the end of the blob,
|
|
** [SQLITE_ERROR] is returned and no data is written. {F17875} If n is
|
|
** less than zero [SQLITE_ERROR] is returned and no data is written.
|
|
**
|
|
** {F17876} On success, SQLITE_OK is returned. Otherwise, an
|
|
** [error code] or an [extended error code] is returned.
|
|
*/
|
|
SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);
|
|
|
|
/*
|
|
** CAPI3REF: Virtual File System Objects {F11200}
|
|
**
|
|
** A virtual filesystem (VFS) is an [sqlite3_vfs] object
|
|
** that SQLite uses to interact
|
|
** with the underlying operating system. Most builds come with a
|
|
** single default VFS that is appropriate for the host computer.
|
|
** New VFSes can be registered and existing VFSes can be unregistered.
|
|
** The following interfaces are provided.
|
|
**
|
|
** {F11201} The sqlite3_vfs_find() interface returns a pointer to
|
|
** a VFS given its name. {F11202} Names are case sensitive.
|
|
** {F11203} Names are zero-terminated UTF-8 strings.
|
|
** {F11204} If there is no match, a NULL
|
|
** pointer is returned. {F11205} If zVfsName is NULL then the default
|
|
** VFS is returned. {END}
|
|
**
|
|
** {F11210} New VFSes are registered with sqlite3_vfs_register().
|
|
** {F11211} Each new VFS becomes the default VFS if the makeDflt flag is set.
|
|
** {F11212} The same VFS can be registered multiple times without injury.
|
|
** {F11213} To make an existing VFS into the default VFS, register it again
|
|
** with the makeDflt flag set. {U11214} If two different VFSes with the
|
|
** same name are registered, the behavior is undefined. {U11215} If a
|
|
** VFS is registered with a name that is NULL or an empty string,
|
|
** then the behavior is undefined.
|
|
**
|
|
** {F11220} Unregister a VFS with the sqlite3_vfs_unregister() interface.
|
|
** {F11221} If the default VFS is unregistered, another VFS is chosen as
|
|
** the default. The choice for the new VFS is arbitrary.
|
|
*/
|
|
SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName);
|
|
SQLITE_API int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
|
|
SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*);
|
|
|
|
/*
|
|
** CAPI3REF: Mutexes {F17000}
|
|
**
|
|
** The SQLite core uses these routines for thread
|
|
** synchronization. Though they are intended for internal
|
|
** use by SQLite, code that links against SQLite is
|
|
** permitted to use any of these routines.
|
|
**
|
|
** The SQLite source code contains multiple implementations
|
|
** of these mutex routines. An appropriate implementation
|
|
** is selected automatically at compile-time. The following
|
|
** implementations are available in the SQLite core:
|
|
**
|
|
** <ul>
|
|
** <li> SQLITE_MUTEX_OS2
|
|
** <li> SQLITE_MUTEX_PTHREAD
|
|
** <li> SQLITE_MUTEX_W32
|
|
** <li> SQLITE_MUTEX_NOOP
|
|
** </ul>
|
|
**
|
|
** The SQLITE_MUTEX_NOOP implementation is a set of routines
|
|
** that does no real locking and is appropriate for use in
|
|
** a single-threaded application. The SQLITE_MUTEX_OS2,
|
|
** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations
|
|
** are appropriate for use on os/2, unix, and windows.
|
|
**
|
|
** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
|
|
** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
|
|
** implementation is included with the library. The
|
|
** mutex interface routines defined here become external
|
|
** references in the SQLite library for which implementations
|
|
** must be provided by the application. This facility allows an
|
|
** application that links against SQLite to provide its own mutex
|
|
** implementation without having to modify the SQLite core.
|
|
**
|
|
** {F17011} The sqlite3_mutex_alloc() routine allocates a new
|
|
** mutex and returns a pointer to it. {F17012} If it returns NULL
|
|
** that means that a mutex could not be allocated. {F17013} SQLite
|
|
** will unwind its stack and return an error. {F17014} The argument
|
|
** to sqlite3_mutex_alloc() is one of these integer constants:
|
|
**
|
|
** <ul>
|
|
** <li> SQLITE_MUTEX_FAST
|
|
** <li> SQLITE_MUTEX_RECURSIVE
|
|
** <li> SQLITE_MUTEX_STATIC_MASTER
|
|
** <li> SQLITE_MUTEX_STATIC_MEM
|
|
** <li> SQLITE_MUTEX_STATIC_MEM2
|
|
** <li> SQLITE_MUTEX_STATIC_PRNG
|
|
** <li> SQLITE_MUTEX_STATIC_LRU
|
|
** </ul> {END}
|
|
**
|
|
** {F17015} The first two constants cause sqlite3_mutex_alloc() to create
|
|
** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
|
|
** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END}
|
|
** The mutex implementation does not need to make a distinction
|
|
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
|
|
** not want to. {F17016} But SQLite will only request a recursive mutex in
|
|
** cases where it really needs one. {END} If a faster non-recursive mutex
|
|
** implementation is available on the host platform, the mutex subsystem
|
|
** might return such a mutex in response to SQLITE_MUTEX_FAST.
|
|
**
|
|
** {F17017} The other allowed parameters to sqlite3_mutex_alloc() each return
|
|
** a pointer to a static preexisting mutex. {END} Four static mutexes are
|
|
** used by the current version of SQLite. Future versions of SQLite
|
|
** may add additional static mutexes. Static mutexes are for internal
|
|
** use by SQLite only. Applications that use SQLite mutexes should
|
|
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
|
|
** SQLITE_MUTEX_RECURSIVE.
|
|
**
|
|
** {F17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
|
|
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
|
|
** returns a different mutex on every call. {F17034} But for the static
|
|
** mutex types, the same mutex is returned on every call that has
|
|
** the same type number. {END}
|
|
**
|
|
** {F17019} The sqlite3_mutex_free() routine deallocates a previously
|
|
** allocated dynamic mutex. {F17020} SQLite is careful to deallocate every
|
|
** dynamic mutex that it allocates. {U17021} The dynamic mutexes must not be in
|
|
** use when they are deallocated. {U17022} Attempting to deallocate a static
|
|
** mutex results in undefined behavior. {F17023} SQLite never deallocates
|
|
** a static mutex. {END}
|
|
**
|
|
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
|
|
** to enter a mutex. {F17024} If another thread is already within the mutex,
|
|
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
|
|
** SQLITE_BUSY. {F17025} The sqlite3_mutex_try() interface returns SQLITE_OK
|
|
** upon successful entry. {F17026} Mutexes created using
|
|
** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
|
|
** {F17027} In such cases the,
|
|
** mutex must be exited an equal number of times before another thread
|
|
** can enter. {U17028} If the same thread tries to enter any other
|
|
** kind of mutex more than once, the behavior is undefined.
|
|
** {F17029} SQLite will never exhibit
|
|
** such behavior in its own use of mutexes. {END}
|
|
**
|
|
** Some systems (ex: windows95) do not the operation implemented by
|
|
** sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() will
|
|
** always return SQLITE_BUSY. {F17030} The SQLite core only ever uses
|
|
** sqlite3_mutex_try() as an optimization so this is acceptable behavior. {END}
|
|
**
|
|
** {F17031} The sqlite3_mutex_leave() routine exits a mutex that was
|
|
** previously entered by the same thread. {U17032} The behavior
|
|
** is undefined if the mutex is not currently entered by the
|
|
** calling thread or is not currently allocated. {F17033} SQLite will
|
|
** never do either. {END}
|
|
**
|
|
** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
|
|
*/
|
|
SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int);
|
|
SQLITE_API void sqlite3_mutex_free(sqlite3_mutex*);
|
|
SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex*);
|
|
SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*);
|
|
SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*);
|
|
|
|
/*
|
|
** CAPI3REF: Mutex Verifcation Routines {F17080}
|
|
**
|
|
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
|
|
** are intended for use inside assert() statements. {F17081} The SQLite core
|
|
** never uses these routines except inside an assert() and applications
|
|
** are advised to follow the lead of the core. {F17082} The core only
|
|
** provides implementations for these routines when it is compiled
|
|
** with the SQLITE_DEBUG flag. {U17087} External mutex implementations
|
|
** are only required to provide these routines if SQLITE_DEBUG is
|
|
** defined and if NDEBUG is not defined.
|
|
**
|
|
** {F17083} These routines should return true if the mutex in their argument
|
|
** is held or not held, respectively, by the calling thread. {END}
|
|
**
|
|
** {X17084} The implementation is not required to provided versions of these
|
|
** routines that actually work.
|
|
** If the implementation does not provide working
|
|
** versions of these routines, it should at least provide stubs
|
|
** that always return true so that one does not get spurious
|
|
** assertion failures. {END}
|
|
**
|
|
** {F17085} If the argument to sqlite3_mutex_held() is a NULL pointer then
|
|
** the routine should return 1. {END} This seems counter-intuitive since
|
|
** clearly the mutex cannot be held if it does not exist. But the
|
|
** the reason the mutex does not exist is because the build is not
|
|
** using mutexes. And we do not want the assert() containing the
|
|
** call to sqlite3_mutex_held() to fail, so a non-zero return is
|
|
** the appropriate thing to do. {F17086} The sqlite3_mutex_notheld()
|
|
** interface should also return 1 when given a NULL pointer.
|
|
*/
|
|
SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*);
|
|
SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*);
|
|
|
|
/*
|
|
** CAPI3REF: Mutex Types {F17001}
|
|
**
|
|
** {F17002} The [sqlite3_mutex_alloc()] interface takes a single argument
|
|
** which is one of these integer constants. {END}
|
|
*/
|
|
#define SQLITE_MUTEX_FAST 0
|
|
#define SQLITE_MUTEX_RECURSIVE 1
|
|
#define SQLITE_MUTEX_STATIC_MASTER 2
|
|
#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */
|
|
#define SQLITE_MUTEX_STATIC_MEM2 4 /* sqlite3_release_memory() */
|
|
#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */
|
|
#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */
|
|
|
|
/*
|
|
** CAPI3REF: Low-Level Control Of Database Files {F11300}
|
|
**
|
|
** {F11301} The [sqlite3_file_control()] interface makes a direct call to the
|
|
** xFileControl method for the [sqlite3_io_methods] object associated
|
|
** with a particular database identified by the second argument. {F11302} The
|
|
** name of the database is the name assigned to the database by the
|
|
** <a href="lang_attach.html">ATTACH</a> SQL command that opened the
|
|
** database. {F11303} To control the main database file, use the name "main"
|
|
** or a NULL pointer. {F11304} The third and fourth parameters to this routine
|
|
** are passed directly through to the second and third parameters of
|
|
** the xFileControl method. {F11305} The return value of the xFileControl
|
|
** method becomes the return value of this routine.
|
|
**
|
|
** {F11306} If the second parameter (zDbName) does not match the name of any
|
|
** open database file, then SQLITE_ERROR is returned. {F11307} This error
|
|
** code is not remembered and will not be recalled by [sqlite3_errcode()]
|
|
** or [sqlite3_errmsg()]. {U11308} The underlying xFileControl method might
|
|
** also return SQLITE_ERROR. {U11309} There is no way to distinguish between
|
|
** an incorrect zDbName and an SQLITE_ERROR return from the underlying
|
|
** xFileControl method. {END}
|
|
**
|
|
** See also: [SQLITE_FCNTL_LOCKSTATE]
|
|
*/
|
|
SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);
|
|
|
|
/*
|
|
** CAPI3REF: Testing Interface {F11400}
|
|
**
|
|
** The sqlite3_test_control() interface is used to read out internal
|
|
** state of SQLite and to inject faults into SQLite for testing
|
|
** purposes. The first parameter a operation code that determines
|
|
** the number, meaning, and operation of all subsequent parameters.
|
|
**
|
|
** This interface is not for use by applications. It exists solely
|
|
** for verifying the correct operation of the SQLite library. Depending
|
|
** on how the SQLite library is compiled, this interface might not exist.
|
|
**
|
|
** The details of the operation codes, their meanings, the parameters
|
|
** they take, and what they do are all subject to change without notice.
|
|
** Unlike most of the SQLite API, this function is not guaranteed to
|
|
** operate consistently from one release to the next.
|
|
*/
|
|
SQLITE_API int sqlite3_test_control(int op, ...);
|
|
|
|
/*
|
|
** CAPI3REF: Testing Interface Operation Codes {F11410}
|
|
**
|
|
** These constants are the valid operation code parameters used
|
|
** as the first argument to [sqlite3_test_control()].
|
|
**
|
|
** These parameters and their meansing are subject to change
|
|
** without notice. These values are for testing purposes only.
|
|
** Applications should not use any of these parameters or the
|
|
** [sqlite3_test_control()] interface.
|
|
*/
|
|
#define SQLITE_TESTCTRL_FAULT_CONFIG 1
|
|
#define SQLITE_TESTCTRL_FAULT_FAILURES 2
|
|
#define SQLITE_TESTCTRL_FAULT_BENIGN_FAILURES 3
|
|
#define SQLITE_TESTCTRL_FAULT_PENDING 4
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
** Undo the hack that converts floating point types to integer for
|
|
** builds on processors without floating point support.
|
|
*/
|
|
#ifdef SQLITE_OMIT_FLOATING_POINT
|
|
# undef double
|
|
#endif
|
|
|
|
#if 0
|
|
} /* End of the 'extern "C"' block */
|
|
#endif
|
|
#endif
|
|
|
|
/************** End of sqlite3.h *********************************************/
|
|
/************** Continuing where we left off in sqliteInt.h ******************/
|
|
/************** Include hash.h in the middle of sqliteInt.h ******************/
|
|
/************** Begin file hash.h ********************************************/
|
|
/*
|
|
** 2001 September 22
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This is the header file for the generic hash-table implemenation
|
|
** used in SQLite.
|
|
**
|
|
** $Id: hash.h,v 1.11 2007/09/04 14:31:47 danielk1977 Exp $
|
|
*/
|
|
#ifndef _SQLITE_HASH_H_
|
|
#define _SQLITE_HASH_H_
|
|
|
|
/* Forward declarations of structures. */
|
|
typedef struct Hash Hash;
|
|
typedef struct HashElem HashElem;
|
|
|
|
/* A complete hash table is an instance of the following structure.
|
|
** The internals of this structure are intended to be opaque -- client
|
|
** code should not attempt to access or modify the fields of this structure
|
|
** directly. Change this structure only by using the routines below.
|
|
** However, many of the "procedures" and "functions" for modifying and
|
|
** accessing this structure are really macros, so we can't really make
|
|
** this structure opaque.
|
|
*/
|
|
struct Hash {
|
|
char keyClass; /* SQLITE_HASH_INT, _POINTER, _STRING, _BINARY */
|
|
char copyKey; /* True if copy of key made on insert */
|
|
int count; /* Number of entries in this table */
|
|
int htsize; /* Number of buckets in the hash table */
|
|
HashElem *first; /* The first element of the array */
|
|
struct _ht { /* the hash table */
|
|
int count; /* Number of entries with this hash */
|
|
HashElem *chain; /* Pointer to first entry with this hash */
|
|
} *ht;
|
|
};
|
|
|
|
/* Each element in the hash table is an instance of the following
|
|
** structure. All elements are stored on a single doubly-linked list.
|
|
**
|
|
** Again, this structure is intended to be opaque, but it can't really
|
|
** be opaque because it is used by macros.
|
|
*/
|
|
struct HashElem {
|
|
HashElem *next, *prev; /* Next and previous elements in the table */
|
|
void *data; /* Data associated with this element */
|
|
void *pKey; int nKey; /* Key associated with this element */
|
|
};
|
|
|
|
/*
|
|
** There are 4 different modes of operation for a hash table:
|
|
**
|
|
** SQLITE_HASH_INT nKey is used as the key and pKey is ignored.
|
|
**
|
|
** SQLITE_HASH_POINTER pKey is used as the key and nKey is ignored.
|
|
**
|
|
** SQLITE_HASH_STRING pKey points to a string that is nKey bytes long
|
|
** (including the null-terminator, if any). Case
|
|
** is ignored in comparisons.
|
|
**
|
|
** SQLITE_HASH_BINARY pKey points to binary data nKey bytes long.
|
|
** memcmp() is used to compare keys.
|
|
**
|
|
** A copy of the key is made for SQLITE_HASH_STRING and SQLITE_HASH_BINARY
|
|
** if the copyKey parameter to HashInit is 1.
|
|
*/
|
|
/* #define SQLITE_HASH_INT 1 // NOT USED */
|
|
/* #define SQLITE_HASH_POINTER 2 // NOT USED */
|
|
#define SQLITE_HASH_STRING 3
|
|
#define SQLITE_HASH_BINARY 4
|
|
|
|
/*
|
|
** Access routines. To delete, insert a NULL pointer.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3HashInit(Hash*, int keytype, int copyKey);
|
|
SQLITE_PRIVATE void *sqlite3HashInsert(Hash*, const void *pKey, int nKey, void *pData);
|
|
SQLITE_PRIVATE void *sqlite3HashFind(const Hash*, const void *pKey, int nKey);
|
|
SQLITE_PRIVATE HashElem *sqlite3HashFindElem(const Hash*, const void *pKey, int nKey);
|
|
SQLITE_PRIVATE void sqlite3HashClear(Hash*);
|
|
|
|
/*
|
|
** Macros for looping over all elements of a hash table. The idiom is
|
|
** like this:
|
|
**
|
|
** Hash h;
|
|
** HashElem *p;
|
|
** ...
|
|
** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){
|
|
** SomeStructure *pData = sqliteHashData(p);
|
|
** // do something with pData
|
|
** }
|
|
*/
|
|
#define sqliteHashFirst(H) ((H)->first)
|
|
#define sqliteHashNext(E) ((E)->next)
|
|
#define sqliteHashData(E) ((E)->data)
|
|
#define sqliteHashKey(E) ((E)->pKey)
|
|
#define sqliteHashKeysize(E) ((E)->nKey)
|
|
|
|
/*
|
|
** Number of entries in a hash table
|
|
*/
|
|
#define sqliteHashCount(H) ((H)->count)
|
|
|
|
#endif /* _SQLITE_HASH_H_ */
|
|
|
|
/************** End of hash.h ************************************************/
|
|
/************** Continuing where we left off in sqliteInt.h ******************/
|
|
/************** Include parse.h in the middle of sqliteInt.h *****************/
|
|
/************** Begin file parse.h *******************************************/
|
|
#define TK_SEMI 1
|
|
#define TK_EXPLAIN 2
|
|
#define TK_QUERY 3
|
|
#define TK_PLAN 4
|
|
#define TK_BEGIN 5
|
|
#define TK_TRANSACTION 6
|
|
#define TK_DEFERRED 7
|
|
#define TK_IMMEDIATE 8
|
|
#define TK_EXCLUSIVE 9
|
|
#define TK_COMMIT 10
|
|
#define TK_END 11
|
|
#define TK_ROLLBACK 12
|
|
#define TK_CREATE 13
|
|
#define TK_TABLE 14
|
|
#define TK_IF 15
|
|
#define TK_NOT 16
|
|
#define TK_EXISTS 17
|
|
#define TK_TEMP 18
|
|
#define TK_LP 19
|
|
#define TK_RP 20
|
|
#define TK_AS 21
|
|
#define TK_COMMA 22
|
|
#define TK_ID 23
|
|
#define TK_ABORT 24
|
|
#define TK_AFTER 25
|
|
#define TK_ANALYZE 26
|
|
#define TK_ASC 27
|
|
#define TK_ATTACH 28
|
|
#define TK_BEFORE 29
|
|
#define TK_CASCADE 30
|
|
#define TK_CAST 31
|
|
#define TK_CONFLICT 32
|
|
#define TK_DATABASE 33
|
|
#define TK_DESC 34
|
|
#define TK_DETACH 35
|
|
#define TK_EACH 36
|
|
#define TK_FAIL 37
|
|
#define TK_FOR 38
|
|
#define TK_IGNORE 39
|
|
#define TK_INITIALLY 40
|
|
#define TK_INSTEAD 41
|
|
#define TK_LIKE_KW 42
|
|
#define TK_MATCH 43
|
|
#define TK_KEY 44
|
|
#define TK_OF 45
|
|
#define TK_OFFSET 46
|
|
#define TK_PRAGMA 47
|
|
#define TK_RAISE 48
|
|
#define TK_REPLACE 49
|
|
#define TK_RESTRICT 50
|
|
#define TK_ROW 51
|
|
#define TK_TRIGGER 52
|
|
#define TK_VACUUM 53
|
|
#define TK_VIEW 54
|
|
#define TK_VIRTUAL 55
|
|
#define TK_REINDEX 56
|
|
#define TK_RENAME 57
|
|
#define TK_CTIME_KW 58
|
|
#define TK_ANY 59
|
|
#define TK_OR 60
|
|
#define TK_AND 61
|
|
#define TK_IS 62
|
|
#define TK_BETWEEN 63
|
|
#define TK_IN 64
|
|
#define TK_ISNULL 65
|
|
#define TK_NOTNULL 66
|
|
#define TK_NE 67
|
|
#define TK_EQ 68
|
|
#define TK_GT 69
|
|
#define TK_LE 70
|
|
#define TK_LT 71
|
|
#define TK_GE 72
|
|
#define TK_ESCAPE 73
|
|
#define TK_BITAND 74
|
|
#define TK_BITOR 75
|
|
#define TK_LSHIFT 76
|
|
#define TK_RSHIFT 77
|
|
#define TK_PLUS 78
|
|
#define TK_MINUS 79
|
|
#define TK_STAR 80
|
|
#define TK_SLASH 81
|
|
#define TK_REM 82
|
|
#define TK_CONCAT 83
|
|
#define TK_COLLATE 84
|
|
#define TK_UMINUS 85
|
|
#define TK_UPLUS 86
|
|
#define TK_BITNOT 87
|
|
#define TK_STRING 88
|
|
#define TK_JOIN_KW 89
|
|
#define TK_CONSTRAINT 90
|
|
#define TK_DEFAULT 91
|
|
#define TK_NULL 92
|
|
#define TK_PRIMARY 93
|
|
#define TK_UNIQUE 94
|
|
#define TK_CHECK 95
|
|
#define TK_REFERENCES 96
|
|
#define TK_AUTOINCR 97
|
|
#define TK_ON 98
|
|
#define TK_DELETE 99
|
|
#define TK_UPDATE 100
|
|
#define TK_INSERT 101
|
|
#define TK_SET 102
|
|
#define TK_DEFERRABLE 103
|
|
#define TK_FOREIGN 104
|
|
#define TK_DROP 105
|
|
#define TK_UNION 106
|
|
#define TK_ALL 107
|
|
#define TK_EXCEPT 108
|
|
#define TK_INTERSECT 109
|
|
#define TK_SELECT 110
|
|
#define TK_DISTINCT 111
|
|
#define TK_DOT 112
|
|
#define TK_FROM 113
|
|
#define TK_JOIN 114
|
|
#define TK_USING 115
|
|
#define TK_ORDER 116
|
|
#define TK_BY 117
|
|
#define TK_GROUP 118
|
|
#define TK_HAVING 119
|
|
#define TK_LIMIT 120
|
|
#define TK_WHERE 121
|
|
#define TK_INTO 122
|
|
#define TK_VALUES 123
|
|
#define TK_INTEGER 124
|
|
#define TK_FLOAT 125
|
|
#define TK_BLOB 126
|
|
#define TK_REGISTER 127
|
|
#define TK_VARIABLE 128
|
|
#define TK_CASE 129
|
|
#define TK_WHEN 130
|
|
#define TK_THEN 131
|
|
#define TK_ELSE 132
|
|
#define TK_INDEX 133
|
|
#define TK_ALTER 134
|
|
#define TK_TO 135
|
|
#define TK_ADD 136
|
|
#define TK_COLUMNKW 137
|
|
#define TK_TO_TEXT 138
|
|
#define TK_TO_BLOB 139
|
|
#define TK_TO_NUMERIC 140
|
|
#define TK_TO_INT 141
|
|
#define TK_TO_REAL 142
|
|
#define TK_END_OF_FILE 143
|
|
#define TK_ILLEGAL 144
|
|
#define TK_SPACE 145
|
|
#define TK_UNCLOSED_STRING 146
|
|
#define TK_COMMENT 147
|
|
#define TK_FUNCTION 148
|
|
#define TK_COLUMN 149
|
|
#define TK_AGG_FUNCTION 150
|
|
#define TK_AGG_COLUMN 151
|
|
#define TK_CONST_FUNC 152
|
|
|
|
/************** End of parse.h ***********************************************/
|
|
/************** Continuing where we left off in sqliteInt.h ******************/
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <stddef.h>
|
|
|
|
#define sqlite3_isnan(X) ((X)!=(X))
|
|
|
|
/*
|
|
** If compiling for a processor that lacks floating point support,
|
|
** substitute integer for floating-point
|
|
*/
|
|
#ifdef SQLITE_OMIT_FLOATING_POINT
|
|
# define double sqlite_int64
|
|
# define LONGDOUBLE_TYPE sqlite_int64
|
|
# ifndef SQLITE_BIG_DBL
|
|
# define SQLITE_BIG_DBL (0x7fffffffffffffff)
|
|
# endif
|
|
# define SQLITE_OMIT_DATETIME_FUNCS 1
|
|
# define SQLITE_OMIT_TRACE 1
|
|
# undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
|
|
#endif
|
|
#ifndef SQLITE_BIG_DBL
|
|
# define SQLITE_BIG_DBL (1e99)
|
|
#endif
|
|
|
|
/*
|
|
** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
|
|
** afterward. Having this macro allows us to cause the C compiler
|
|
** to omit code used by TEMP tables without messy #ifndef statements.
|
|
*/
|
|
#ifdef SQLITE_OMIT_TEMPDB
|
|
#define OMIT_TEMPDB 1
|
|
#else
|
|
#define OMIT_TEMPDB 0
|
|
#endif
|
|
|
|
/*
|
|
** If the following macro is set to 1, then NULL values are considered
|
|
** distinct when determining whether or not two entries are the same
|
|
** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL,
|
|
** OCELOT, and Firebird all work. The SQL92 spec explicitly says this
|
|
** is the way things are suppose to work.
|
|
**
|
|
** If the following macro is set to 0, the NULLs are indistinct for
|
|
** a UNIQUE index. In this mode, you can only have a single NULL entry
|
|
** for a column declared UNIQUE. This is the way Informix and SQL Server
|
|
** work.
|
|
*/
|
|
#define NULL_DISTINCT_FOR_UNIQUE 1
|
|
|
|
/*
|
|
** The "file format" number is an integer that is incremented whenever
|
|
** the VDBE-level file format changes. The following macros define the
|
|
** the default file format for new databases and the maximum file format
|
|
** that the library can read.
|
|
*/
|
|
#define SQLITE_MAX_FILE_FORMAT 4
|
|
#ifndef SQLITE_DEFAULT_FILE_FORMAT
|
|
# define SQLITE_DEFAULT_FILE_FORMAT 1
|
|
#endif
|
|
|
|
/*
|
|
** Provide a default value for TEMP_STORE in case it is not specified
|
|
** on the command-line
|
|
*/
|
|
#ifndef TEMP_STORE
|
|
# define TEMP_STORE 1
|
|
#endif
|
|
|
|
/*
|
|
** GCC does not define the offsetof() macro so we'll have to do it
|
|
** ourselves.
|
|
*/
|
|
#ifndef offsetof
|
|
#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
|
|
#endif
|
|
|
|
/*
|
|
** Check to see if this machine uses EBCDIC. (Yes, believe it or
|
|
** not, there are still machines out there that use EBCDIC.)
|
|
*/
|
|
#if 'A' == '\301'
|
|
# define SQLITE_EBCDIC 1
|
|
#else
|
|
# define SQLITE_ASCII 1
|
|
#endif
|
|
|
|
/*
|
|
** Integers of known sizes. These typedefs might change for architectures
|
|
** where the sizes very. Preprocessor macros are available so that the
|
|
** types can be conveniently redefined at compile-type. Like this:
|
|
**
|
|
** cc '-DUINTPTR_TYPE=long long int' ...
|
|
*/
|
|
#ifndef UINT32_TYPE
|
|
# define UINT32_TYPE unsigned int
|
|
#endif
|
|
#ifndef UINT16_TYPE
|
|
# define UINT16_TYPE unsigned short int
|
|
#endif
|
|
#ifndef INT16_TYPE
|
|
# define INT16_TYPE short int
|
|
#endif
|
|
#ifndef UINT8_TYPE
|
|
# define UINT8_TYPE unsigned char
|
|
#endif
|
|
#ifndef INT8_TYPE
|
|
# define INT8_TYPE signed char
|
|
#endif
|
|
#ifndef LONGDOUBLE_TYPE
|
|
# define LONGDOUBLE_TYPE long double
|
|
#endif
|
|
typedef sqlite_int64 i64; /* 8-byte signed integer */
|
|
typedef sqlite_uint64 u64; /* 8-byte unsigned integer */
|
|
typedef UINT32_TYPE u32; /* 4-byte unsigned integer */
|
|
typedef UINT16_TYPE u16; /* 2-byte unsigned integer */
|
|
typedef INT16_TYPE i16; /* 2-byte signed integer */
|
|
typedef UINT8_TYPE u8; /* 1-byte unsigned integer */
|
|
typedef UINT8_TYPE i8; /* 1-byte signed integer */
|
|
|
|
/*
|
|
** Macros to determine whether the machine is big or little endian,
|
|
** evaluated at runtime.
|
|
*/
|
|
#ifdef SQLITE_AMALGAMATION
|
|
SQLITE_PRIVATE const int sqlite3One;
|
|
#else
|
|
SQLITE_PRIVATE const int sqlite3one;
|
|
#endif
|
|
#if defined(i386) || defined(__i386__) || defined(_M_IX86)
|
|
# define SQLITE_BIGENDIAN 0
|
|
# define SQLITE_LITTLEENDIAN 1
|
|
# define SQLITE_UTF16NATIVE SQLITE_UTF16LE
|
|
#else
|
|
# define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0)
|
|
# define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
|
|
# define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
|
|
#endif
|
|
|
|
/*
|
|
** An instance of the following structure is used to store the busy-handler
|
|
** callback for a given sqlite handle.
|
|
**
|
|
** The sqlite.busyHandler member of the sqlite struct contains the busy
|
|
** callback for the database handle. Each pager opened via the sqlite
|
|
** handle is passed a pointer to sqlite.busyHandler. The busy-handler
|
|
** callback is currently invoked only from within pager.c.
|
|
*/
|
|
typedef struct BusyHandler BusyHandler;
|
|
struct BusyHandler {
|
|
int (*xFunc)(void *,int); /* The busy callback */
|
|
void *pArg; /* First arg to busy callback */
|
|
int nBusy; /* Incremented with each busy call */
|
|
};
|
|
|
|
/*
|
|
** Name of the master database table. The master database table
|
|
** is a special table that holds the names and attributes of all
|
|
** user tables and indices.
|
|
*/
|
|
#define MASTER_NAME "sqlite_master"
|
|
#define TEMP_MASTER_NAME "sqlite_temp_master"
|
|
|
|
/*
|
|
** The root-page of the master database table.
|
|
*/
|
|
#define MASTER_ROOT 1
|
|
|
|
/*
|
|
** The name of the schema table.
|
|
*/
|
|
#define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
|
|
|
|
/*
|
|
** A convenience macro that returns the number of elements in
|
|
** an array.
|
|
*/
|
|
#define ArraySize(X) (sizeof(X)/sizeof(X[0]))
|
|
|
|
/*
|
|
** Forward references to structures
|
|
*/
|
|
typedef struct AggInfo AggInfo;
|
|
typedef struct AuthContext AuthContext;
|
|
typedef struct CollSeq CollSeq;
|
|
typedef struct Column Column;
|
|
typedef struct Db Db;
|
|
typedef struct Schema Schema;
|
|
typedef struct Expr Expr;
|
|
typedef struct ExprList ExprList;
|
|
typedef struct FKey FKey;
|
|
typedef struct FuncDef FuncDef;
|
|
typedef struct IdList IdList;
|
|
typedef struct Index Index;
|
|
typedef struct KeyClass KeyClass;
|
|
typedef struct KeyInfo KeyInfo;
|
|
typedef struct Module Module;
|
|
typedef struct NameContext NameContext;
|
|
typedef struct Parse Parse;
|
|
typedef struct Select Select;
|
|
typedef struct SrcList SrcList;
|
|
typedef struct StrAccum StrAccum;
|
|
typedef struct Table Table;
|
|
typedef struct TableLock TableLock;
|
|
typedef struct Token Token;
|
|
typedef struct TriggerStack TriggerStack;
|
|
typedef struct TriggerStep TriggerStep;
|
|
typedef struct Trigger Trigger;
|
|
typedef struct WhereInfo WhereInfo;
|
|
typedef struct WhereLevel WhereLevel;
|
|
|
|
/*
|
|
** Defer sourcing vdbe.h and btree.h until after the "u8" and
|
|
** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
|
|
** pointer types (i.e. FuncDef) defined above.
|
|
*/
|
|
/************** Include btree.h in the middle of sqliteInt.h *****************/
|
|
/************** Begin file btree.h *******************************************/
|
|
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This header file defines the interface that the sqlite B-Tree file
|
|
** subsystem. See comments in the source code for a detailed description
|
|
** of what each interface routine does.
|
|
**
|
|
** @(#) $Id: btree.h,v 1.94 2007/12/07 18:55:28 drh Exp $
|
|
*/
|
|
#ifndef _BTREE_H_
|
|
#define _BTREE_H_
|
|
|
|
/* TODO: This definition is just included so other modules compile. It
|
|
** needs to be revisited.
|
|
*/
|
|
#define SQLITE_N_BTREE_META 10
|
|
|
|
/*
|
|
** If defined as non-zero, auto-vacuum is enabled by default. Otherwise
|
|
** it must be turned on for each database using "PRAGMA auto_vacuum = 1".
|
|
*/
|
|
#ifndef SQLITE_DEFAULT_AUTOVACUUM
|
|
#define SQLITE_DEFAULT_AUTOVACUUM 0
|
|
#endif
|
|
|
|
#define BTREE_AUTOVACUUM_NONE 0 /* Do not do auto-vacuum */
|
|
#define BTREE_AUTOVACUUM_FULL 1 /* Do full auto-vacuum */
|
|
#define BTREE_AUTOVACUUM_INCR 2 /* Incremental vacuum */
|
|
|
|
/*
|
|
** Forward declarations of structure
|
|
*/
|
|
typedef struct Btree Btree;
|
|
typedef struct BtCursor BtCursor;
|
|
typedef struct BtShared BtShared;
|
|
typedef struct BtreeMutexArray BtreeMutexArray;
|
|
|
|
/*
|
|
** This structure records all of the Btrees that need to hold
|
|
** a mutex before we enter sqlite3VdbeExec(). The Btrees are
|
|
** are placed in aBtree[] in order of aBtree[]->pBt. That way,
|
|
** we can always lock and unlock them all quickly.
|
|
*/
|
|
struct BtreeMutexArray {
|
|
int nMutex;
|
|
Btree *aBtree[SQLITE_MAX_ATTACHED+1];
|
|
};
|
|
|
|
|
|
SQLITE_PRIVATE int sqlite3BtreeOpen(
|
|
const char *zFilename, /* Name of database file to open */
|
|
sqlite3 *db, /* Associated database connection */
|
|
Btree **, /* Return open Btree* here */
|
|
int flags, /* Flags */
|
|
int vfsFlags /* Flags passed through to VFS open */
|
|
);
|
|
|
|
/* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the
|
|
** following values.
|
|
**
|
|
** NOTE: These values must match the corresponding PAGER_ values in
|
|
** pager.h.
|
|
*/
|
|
#define BTREE_OMIT_JOURNAL 1 /* Do not use journal. No argument */
|
|
#define BTREE_NO_READLOCK 2 /* Omit readlocks on readonly files */
|
|
#define BTREE_MEMORY 4 /* In-memory DB. No argument */
|
|
#define BTREE_READONLY 8 /* Open the database in read-only mode */
|
|
#define BTREE_READWRITE 16 /* Open for both reading and writing */
|
|
#define BTREE_CREATE 32 /* Create the database if it does not exist */
|
|
|
|
/* Additional values for the 4th argument of sqlite3BtreeOpen that
|
|
** are not associated with PAGER_ values.
|
|
*/
|
|
#define BTREE_PRIVATE 64 /* Never share with other connections */
|
|
|
|
SQLITE_PRIVATE int sqlite3BtreeClose(Btree*);
|
|
SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int);
|
|
SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel(Btree*,int,int);
|
|
SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree*);
|
|
SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree*,int,int);
|
|
SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*);
|
|
SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree*,int);
|
|
SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree*);
|
|
SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int);
|
|
SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *);
|
|
SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int);
|
|
SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster);
|
|
SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree*);
|
|
SQLITE_PRIVATE int sqlite3BtreeCommit(Btree*);
|
|
SQLITE_PRIVATE int sqlite3BtreeRollback(Btree*);
|
|
SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree*);
|
|
SQLITE_PRIVATE int sqlite3BtreeCommitStmt(Btree*);
|
|
SQLITE_PRIVATE int sqlite3BtreeRollbackStmt(Btree*);
|
|
SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree*, int*, int flags);
|
|
SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree*);
|
|
SQLITE_PRIVATE int sqlite3BtreeIsInStmt(Btree*);
|
|
SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree*);
|
|
SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *, int, void(*)(void *));
|
|
SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *);
|
|
SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *, int, u8);
|
|
|
|
SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *);
|
|
SQLITE_PRIVATE const char *sqlite3BtreeGetDirname(Btree *);
|
|
SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *);
|
|
SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *, Btree *);
|
|
|
|
SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *);
|
|
|
|
/* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR
|
|
** of the following flags:
|
|
*/
|
|
#define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */
|
|
#define BTREE_ZERODATA 2 /* Table has keys only - no data */
|
|
#define BTREE_LEAFDATA 4 /* Data stored in leaves only. Implies INTKEY */
|
|
|
|
SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree*, int, int*);
|
|
SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree*, int);
|
|
SQLITE_PRIVATE int sqlite3BtreeGetMeta(Btree*, int idx, u32 *pValue);
|
|
SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value);
|
|
SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree*, int);
|
|
|
|
SQLITE_PRIVATE int sqlite3BtreeCursor(
|
|
Btree*, /* BTree containing table to open */
|
|
int iTable, /* Index of root page */
|
|
int wrFlag, /* 1 for writing. 0 for read-only */
|
|
int(*)(void*,int,const void*,int,const void*), /* Key comparison function */
|
|
void*, /* First argument to compare function */
|
|
BtCursor **ppCursor /* Returned cursor */
|
|
);
|
|
|
|
SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor*);
|
|
SQLITE_PRIVATE int sqlite3BtreeMoveto(BtCursor*,const void *pKey,i64 nKey,int bias,int *pRes);
|
|
SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*);
|
|
SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey,
|
|
const void *pData, int nData,
|
|
int nZero, int bias);
|
|
SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes);
|
|
SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes);
|
|
SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int *pRes);
|
|
SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*);
|
|
SQLITE_PRIVATE int sqlite3BtreeFlags(BtCursor*);
|
|
SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int *pRes);
|
|
SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor*, i64 *pSize);
|
|
SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*);
|
|
SQLITE_PRIVATE sqlite3 *sqlite3BtreeCursorDb(const BtCursor*);
|
|
SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt);
|
|
SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt);
|
|
SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor*, u32 *pSize);
|
|
SQLITE_PRIVATE int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*);
|
|
|
|
SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*);
|
|
SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*);
|
|
|
|
SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
|
|
SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *);
|
|
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor*, int*, int);
|
|
SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*);
|
|
SQLITE_PRIVATE int sqlite3BtreePageDump(Btree*, int, int recursive);
|
|
#endif
|
|
|
|
/*
|
|
** If we are not using shared cache, then there is no need to
|
|
** use mutexes to access the BtShared structures. So make the
|
|
** Enter and Leave procedures no-ops.
|
|
*/
|
|
#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE
|
|
SQLITE_PRIVATE void sqlite3BtreeEnter(Btree*);
|
|
SQLITE_PRIVATE void sqlite3BtreeLeave(Btree*);
|
|
SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree*);
|
|
SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor*);
|
|
SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor*);
|
|
SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3*);
|
|
SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3*);
|
|
SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3*);
|
|
SQLITE_PRIVATE void sqlite3BtreeMutexArrayEnter(BtreeMutexArray*);
|
|
SQLITE_PRIVATE void sqlite3BtreeMutexArrayLeave(BtreeMutexArray*);
|
|
SQLITE_PRIVATE void sqlite3BtreeMutexArrayInsert(BtreeMutexArray*, Btree*);
|
|
#else
|
|
# define sqlite3BtreeEnter(X)
|
|
# define sqlite3BtreeLeave(X)
|
|
# define sqlite3BtreeHoldsMutex(X) 1
|
|
# define sqlite3BtreeEnterCursor(X)
|
|
# define sqlite3BtreeLeaveCursor(X)
|
|
# define sqlite3BtreeEnterAll(X)
|
|
# define sqlite3BtreeLeaveAll(X)
|
|
# define sqlite3BtreeHoldsAllMutexes(X) 1
|
|
# define sqlite3BtreeMutexArrayEnter(X)
|
|
# define sqlite3BtreeMutexArrayLeave(X)
|
|
# define sqlite3BtreeMutexArrayInsert(X,Y)
|
|
#endif
|
|
|
|
|
|
#endif /* _BTREE_H_ */
|
|
|
|
/************** End of btree.h ***********************************************/
|
|
/************** Continuing where we left off in sqliteInt.h ******************/
|
|
/************** Include vdbe.h in the middle of sqliteInt.h ******************/
|
|
/************** Begin file vdbe.h ********************************************/
|
|
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** Header file for the Virtual DataBase Engine (VDBE)
|
|
**
|
|
** This header defines the interface to the virtual database engine
|
|
** or VDBE. The VDBE implements an abstract machine that runs a
|
|
** simple program to access and modify the underlying database.
|
|
**
|
|
** $Id: vdbe.h,v 1.125 2008/01/17 17:27:31 drh Exp $
|
|
*/
|
|
#ifndef _SQLITE_VDBE_H_
|
|
#define _SQLITE_VDBE_H_
|
|
|
|
/*
|
|
** A single VDBE is an opaque structure named "Vdbe". Only routines
|
|
** in the source file sqliteVdbe.c are allowed to see the insides
|
|
** of this structure.
|
|
*/
|
|
typedef struct Vdbe Vdbe;
|
|
|
|
/*
|
|
** The names of the following types declared in vdbeInt.h are required
|
|
** for the VdbeOp definition.
|
|
*/
|
|
typedef struct VdbeFunc VdbeFunc;
|
|
typedef struct Mem Mem;
|
|
|
|
/*
|
|
** A single instruction of the virtual machine has an opcode
|
|
** and as many as three operands. The instruction is recorded
|
|
** as an instance of the following structure:
|
|
*/
|
|
struct VdbeOp {
|
|
u8 opcode; /* What operation to perform */
|
|
signed char p4type; /* One of the P4_xxx constants for p4 */
|
|
u8 flags; /* Flags for internal use */
|
|
u8 p5; /* Fifth parameter is an unsigned character */
|
|
int p1; /* First operand */
|
|
int p2; /* Second parameter (often the jump destination) */
|
|
int p3; /* The third parameter */
|
|
union { /* forth parameter */
|
|
int i; /* Integer value if p4type==P4_INT32 */
|
|
void *p; /* Generic pointer */
|
|
char *z; /* Pointer to data for string (char array) types */
|
|
i64 *pI64; /* Used when p4type is P4_INT64 */
|
|
double *pReal; /* Used when p4type is P4_REAL */
|
|
FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */
|
|
VdbeFunc *pVdbeFunc; /* Used when p4type is P4_VDBEFUNC */
|
|
CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */
|
|
Mem *pMem; /* Used when p4type is P4_MEM */
|
|
sqlite3_vtab *pVtab; /* Used when p4type is P4_VTAB */
|
|
KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */
|
|
} p4;
|
|
#ifdef SQLITE_DEBUG
|
|
char *zComment; /* Comment to improve readability */
|
|
#endif
|
|
#ifdef VDBE_PROFILE
|
|
int cnt; /* Number of times this instruction was executed */
|
|
long long cycles; /* Total time spend executing this instruction */
|
|
#endif
|
|
};
|
|
typedef struct VdbeOp VdbeOp;
|
|
|
|
/*
|
|
** A smaller version of VdbeOp used for the VdbeAddOpList() function because
|
|
** it takes up less space.
|
|
*/
|
|
struct VdbeOpList {
|
|
u8 opcode; /* What operation to perform */
|
|
signed char p1; /* First operand */
|
|
signed char p2; /* Second parameter (often the jump destination) */
|
|
signed char p3; /* Third parameter */
|
|
};
|
|
typedef struct VdbeOpList VdbeOpList;
|
|
|
|
/*
|
|
** Allowed values of VdbeOp.p3type
|
|
*/
|
|
#define P4_NOTUSED 0 /* The P4 parameter is not used */
|
|
#define P4_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */
|
|
#define P4_STATIC (-2) /* Pointer to a static string */
|
|
#define P4_COLLSEQ (-4) /* P4 is a pointer to a CollSeq structure */
|
|
#define P4_FUNCDEF (-5) /* P4 is a pointer to a FuncDef structure */
|
|
#define P4_KEYINFO (-6) /* P4 is a pointer to a KeyInfo structure */
|
|
#define P4_VDBEFUNC (-7) /* P4 is a pointer to a VdbeFunc structure */
|
|
#define P4_MEM (-8) /* P4 is a pointer to a Mem* structure */
|
|
#define P4_TRANSIENT (-9) /* P4 is a pointer to a transient string */
|
|
#define P4_VTAB (-10) /* P4 is a pointer to an sqlite3_vtab structure */
|
|
#define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */
|
|
#define P4_REAL (-12) /* P4 is a 64-bit floating point value */
|
|
#define P4_INT64 (-13) /* P4 is a 64-bit signed integer */
|
|
#define P4_INT32 (-14) /* P4 is a 32-bit signed integer */
|
|
|
|
/* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure
|
|
** is made. That copy is freed when the Vdbe is finalized. But if the
|
|
** argument is P4_KEYINFO_HANDOFF, the passed in pointer is used. It still
|
|
** gets freed when the Vdbe is finalized so it still should be obtained
|
|
** from a single sqliteMalloc(). But no copy is made and the calling
|
|
** function should *not* try to free the KeyInfo.
|
|
*/
|
|
#define P4_KEYINFO_HANDOFF (-9)
|
|
|
|
/*
|
|
** The Vdbe.aColName array contains 5n Mem structures, where n is the
|
|
** number of columns of data returned by the statement.
|
|
*/
|
|
#define COLNAME_NAME 0
|
|
#define COLNAME_DECLTYPE 1
|
|
#define COLNAME_DATABASE 2
|
|
#define COLNAME_TABLE 3
|
|
#define COLNAME_COLUMN 4
|
|
#define COLNAME_N 5 /* Number of COLNAME_xxx symbols */
|
|
|
|
/*
|
|
** The following macro converts a relative address in the p2 field
|
|
** of a VdbeOp structure into a negative number so that
|
|
** sqlite3VdbeAddOpList() knows that the address is relative. Calling
|
|
** the macro again restores the address.
|
|
*/
|
|
#define ADDR(X) (-1-(X))
|
|
|
|
/*
|
|
** The makefile scans the vdbe.c source file and creates the "opcodes.h"
|
|
** header file that defines a number for each opcode used by the VDBE.
|
|
*/
|
|
/************** Include opcodes.h in the middle of vdbe.h ********************/
|
|
/************** Begin file opcodes.h *****************************************/
|
|
/* Automatically generated. Do not edit */
|
|
/* See the mkopcodeh.awk script for details */
|
|
#define OP_VNext 1
|
|
#define OP_Column 2
|
|
#define OP_SetCookie 3
|
|
#define OP_Real 125 /* same as TK_FLOAT */
|
|
#define OP_Sequence 4
|
|
#define OP_MoveGt 5
|
|
#define OP_Ge 72 /* same as TK_GE */
|
|
#define OP_RowKey 6
|
|
#define OP_SCopy 7
|
|
#define OP_Eq 68 /* same as TK_EQ */
|
|
#define OP_OpenWrite 8
|
|
#define OP_NotNull 66 /* same as TK_NOTNULL */
|
|
#define OP_If 9
|
|
#define OP_ToInt 141 /* same as TK_TO_INT */
|
|
#define OP_String8 88 /* same as TK_STRING */
|
|
#define OP_VRowid 10
|
|
#define OP_CollSeq 11
|
|
#define OP_OpenRead 12
|
|
#define OP_Expire 13
|
|
#define OP_AutoCommit 14
|
|
#define OP_Gt 69 /* same as TK_GT */
|
|
#define OP_IntegrityCk 15
|
|
#define OP_Sort 17
|
|
#define OP_Copy 18
|
|
#define OP_Trace 19
|
|
#define OP_Function 20
|
|
#define OP_IfNeg 21
|
|
#define OP_And 61 /* same as TK_AND */
|
|
#define OP_Subtract 79 /* same as TK_MINUS */
|
|
#define OP_Noop 22
|
|
#define OP_Return 23
|
|
#define OP_Remainder 82 /* same as TK_REM */
|
|
#define OP_NewRowid 24
|
|
#define OP_Multiply 80 /* same as TK_STAR */
|
|
#define OP_Variable 25
|
|
#define OP_String 26
|
|
#define OP_RealAffinity 27
|
|
#define OP_VRename 28
|
|
#define OP_ParseSchema 29
|
|
#define OP_VOpen 30
|
|
#define OP_Close 31
|
|
#define OP_CreateIndex 32
|
|
#define OP_IsUnique 33
|
|
#define OP_NotFound 34
|
|
#define OP_Int64 35
|
|
#define OP_MustBeInt 36
|
|
#define OP_Halt 37
|
|
#define OP_Rowid 38
|
|
#define OP_IdxLT 39
|
|
#define OP_AddImm 40
|
|
#define OP_Statement 41
|
|
#define OP_RowData 42
|
|
#define OP_MemMax 43
|
|
#define OP_Or 60 /* same as TK_OR */
|
|
#define OP_NotExists 44
|
|
#define OP_Gosub 45
|
|
#define OP_Divide 81 /* same as TK_SLASH */
|
|
#define OP_Integer 46
|
|
#define OP_ToNumeric 140 /* same as TK_TO_NUMERIC*/
|
|
#define OP_Prev 47
|
|
#define OP_Concat 83 /* same as TK_CONCAT */
|
|
#define OP_BitAnd 74 /* same as TK_BITAND */
|
|
#define OP_VColumn 48
|
|
#define OP_CreateTable 49
|
|
#define OP_Last 50
|
|
#define OP_IsNull 65 /* same as TK_ISNULL */
|
|
#define OP_IncrVacuum 51
|
|
#define OP_IdxRowid 52
|
|
#define OP_ShiftRight 77 /* same as TK_RSHIFT */
|
|
#define OP_ResetCount 53
|
|
#define OP_FifoWrite 54
|
|
#define OP_ContextPush 55
|
|
#define OP_DropTrigger 56
|
|
#define OP_DropIndex 57
|
|
#define OP_IdxGE 58
|
|
#define OP_IdxDelete 59
|
|
#define OP_Vacuum 62
|
|
#define OP_MoveLe 63
|
|
#define OP_IfNot 64
|
|
#define OP_DropTable 73
|
|
#define OP_MakeRecord 84
|
|
#define OP_ToBlob 139 /* same as TK_TO_BLOB */
|
|
#define OP_ResultRow 85
|
|
#define OP_Delete 86
|
|
#define OP_AggFinal 89
|
|
#define OP_ShiftLeft 76 /* same as TK_LSHIFT */
|
|
#define OP_Goto 90
|
|
#define OP_TableLock 91
|
|
#define OP_FifoRead 92
|
|
#define OP_Clear 93
|
|
#define OP_MoveLt 94
|
|
#define OP_Le 70 /* same as TK_LE */
|
|
#define OP_VerifyCookie 95
|
|
#define OP_AggStep 96
|
|
#define OP_ToText 138 /* same as TK_TO_TEXT */
|
|
#define OP_Not 16 /* same as TK_NOT */
|
|
#define OP_ToReal 142 /* same as TK_TO_REAL */
|
|
#define OP_SetNumColumns 97
|
|
#define OP_Transaction 98
|
|
#define OP_VFilter 99
|
|
#define OP_Ne 67 /* same as TK_NE */
|
|
#define OP_VDestroy 100
|
|
#define OP_ContextPop 101
|
|
#define OP_BitOr 75 /* same as TK_BITOR */
|
|
#define OP_Next 102
|
|
#define OP_IdxInsert 103
|
|
#define OP_Lt 71 /* same as TK_LT */
|
|
#define OP_Insert 104
|
|
#define OP_Destroy 105
|
|
#define OP_ReadCookie 106
|
|
#define OP_ForceInt 107
|
|
#define OP_LoadAnalysis 108
|
|
#define OP_Explain 109
|
|
#define OP_OpenPseudo 110
|
|
#define OP_OpenEphemeral 111
|
|
#define OP_Null 112
|
|
#define OP_Move 113
|
|
#define OP_Blob 114
|
|
#define OP_Add 78 /* same as TK_PLUS */
|
|
#define OP_Rewind 115
|
|
#define OP_MoveGe 116
|
|
#define OP_VBegin 117
|
|
#define OP_VUpdate 118
|
|
#define OP_IfZero 119
|
|
#define OP_BitNot 87 /* same as TK_BITNOT */
|
|
#define OP_VCreate 120
|
|
#define OP_Found 121
|
|
#define OP_IfPos 122
|
|
#define OP_NullRow 123
|
|
|
|
/* The following opcode values are never used */
|
|
#define OP_NotUsed_124 124
|
|
#define OP_NotUsed_126 126
|
|
#define OP_NotUsed_127 127
|
|
#define OP_NotUsed_128 128
|
|
#define OP_NotUsed_129 129
|
|
#define OP_NotUsed_130 130
|
|
#define OP_NotUsed_131 131
|
|
#define OP_NotUsed_132 132
|
|
#define OP_NotUsed_133 133
|
|
#define OP_NotUsed_134 134
|
|
#define OP_NotUsed_135 135
|
|
#define OP_NotUsed_136 136
|
|
#define OP_NotUsed_137 137
|
|
|
|
|
|
/* Properties such as "out2" or "jump" that are specified in
|
|
** comments following the "case" for each opcode in the vdbe.c
|
|
** are encoded into bitvectors as follows:
|
|
*/
|
|
#define OPFLG_JUMP 0x0001 /* jump: P2 holds jmp target */
|
|
#define OPFLG_OUT2_PRERELEASE 0x0002 /* out2-prerelease: */
|
|
#define OPFLG_IN1 0x0004 /* in1: P1 is an input */
|
|
#define OPFLG_IN2 0x0008 /* in2: P2 is an input */
|
|
#define OPFLG_IN3 0x0010 /* in3: P3 is an input */
|
|
#define OPFLG_OUT3 0x0020 /* out3: P3 is an output */
|
|
#define OPFLG_INITIALIZER {\
|
|
/* 0 */ 0x00, 0x01, 0x00, 0x10, 0x02, 0x11, 0x02, 0x00,\
|
|
/* 8 */ 0x00, 0x05, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,\
|
|
/* 16 */ 0x04, 0x01, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00,\
|
|
/* 24 */ 0x02, 0x02, 0x02, 0x04, 0x00, 0x00, 0x00, 0x00,\
|
|
/* 32 */ 0x02, 0x11, 0x11, 0x02, 0x05, 0x00, 0x02, 0x11,\
|
|
/* 40 */ 0x04, 0x00, 0x02, 0x0c, 0x11, 0x01, 0x02, 0x01,\
|
|
/* 48 */ 0x00, 0x02, 0x01, 0x01, 0x02, 0x00, 0x04, 0x00,\
|
|
/* 56 */ 0x00, 0x00, 0x11, 0x08, 0x2c, 0x2c, 0x00, 0x11,\
|
|
/* 64 */ 0x05, 0x05, 0x05, 0x15, 0x15, 0x15, 0x15, 0x15,\
|
|
/* 72 */ 0x15, 0x00, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c,\
|
|
/* 80 */ 0x2c, 0x2c, 0x2c, 0x2c, 0x00, 0x00, 0x00, 0x04,\
|
|
/* 88 */ 0x02, 0x00, 0x01, 0x00, 0x01, 0x00, 0x11, 0x00,\
|
|
/* 96 */ 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x01, 0x08,\
|
|
/* 104 */ 0x00, 0x02, 0x02, 0x05, 0x00, 0x00, 0x00, 0x00,\
|
|
/* 112 */ 0x02, 0x00, 0x02, 0x01, 0x11, 0x00, 0x00, 0x05,\
|
|
/* 120 */ 0x00, 0x11, 0x05, 0x00, 0x00, 0x02, 0x00, 0x00,\
|
|
/* 128 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
|
|
/* 136 */ 0x00, 0x00, 0x04, 0x04, 0x04, 0x04, 0x04,}
|
|
|
|
/************** End of opcodes.h *********************************************/
|
|
/************** Continuing where we left off in vdbe.h ***********************/
|
|
|
|
/*
|
|
** Prototypes for the VDBE interface. See comments on the implementation
|
|
** for a description of what each of these routines does.
|
|
*/
|
|
SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(sqlite3*);
|
|
SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe*,int);
|
|
SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe*,int,int);
|
|
SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe*,int,int,int);
|
|
SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int);
|
|
SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int);
|
|
SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
|
|
SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
|
|
SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
|
|
SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, int addr, int P3);
|
|
SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u8 P5);
|
|
SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr);
|
|
SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
|
|
SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
|
|
SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int);
|
|
SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
|
|
SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe*);
|
|
SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*);
|
|
SQLITE_PRIVATE void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int);
|
|
SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe*);
|
|
SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe*, int);
|
|
SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe*);
|
|
#ifdef SQLITE_DEBUG
|
|
SQLITE_PRIVATE void sqlite3VdbeTrace(Vdbe*,FILE*);
|
|
#endif
|
|
SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe*);
|
|
SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe*);
|
|
SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int);
|
|
SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, int);
|
|
SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*);
|
|
SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe*);
|
|
SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n);
|
|
SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*);
|
|
|
|
#ifndef NDEBUG
|
|
SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe*, const char*, ...);
|
|
# define VdbeComment(X) sqlite3VdbeComment X
|
|
#else
|
|
# define VdbeComment(X)
|
|
#endif
|
|
|
|
#endif
|
|
|
|
/************** End of vdbe.h ************************************************/
|
|
/************** Continuing where we left off in sqliteInt.h ******************/
|
|
/************** Include pager.h in the middle of sqliteInt.h *****************/
|
|
/************** Begin file pager.h *******************************************/
|
|
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This header file defines the interface that the sqlite page cache
|
|
** subsystem. The page cache subsystem reads and writes a file a page
|
|
** at a time and provides a journal for rollback.
|
|
**
|
|
** @(#) $Id: pager.h,v 1.68 2007/11/28 16:19:56 drh Exp $
|
|
*/
|
|
|
|
#ifndef _PAGER_H_
|
|
#define _PAGER_H_
|
|
|
|
/*
|
|
** The type used to represent a page number. The first page in a file
|
|
** is called page 1. 0 is used to represent "not a page".
|
|
*/
|
|
typedef unsigned int Pgno;
|
|
|
|
/*
|
|
** Each open file is managed by a separate instance of the "Pager" structure.
|
|
*/
|
|
typedef struct Pager Pager;
|
|
|
|
/*
|
|
** Handle type for pages.
|
|
*/
|
|
typedef struct PgHdr DbPage;
|
|
|
|
/*
|
|
** Allowed values for the flags parameter to sqlite3PagerOpen().
|
|
**
|
|
** NOTE: This values must match the corresponding BTREE_ values in btree.h.
|
|
*/
|
|
#define PAGER_OMIT_JOURNAL 0x0001 /* Do not use a rollback journal */
|
|
#define PAGER_NO_READLOCK 0x0002 /* Omit readlocks on readonly files */
|
|
|
|
/*
|
|
** Valid values for the second argument to sqlite3PagerLockingMode().
|
|
*/
|
|
#define PAGER_LOCKINGMODE_QUERY -1
|
|
#define PAGER_LOCKINGMODE_NORMAL 0
|
|
#define PAGER_LOCKINGMODE_EXCLUSIVE 1
|
|
|
|
/*
|
|
** See source code comments for a detailed description of the following
|
|
** routines:
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerOpen(sqlite3_vfs *, Pager **ppPager, const char*, int,int,int);
|
|
SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager*, BusyHandler *pBusyHandler);
|
|
SQLITE_PRIVATE void sqlite3PagerSetDestructor(Pager*, void(*)(DbPage*,int));
|
|
SQLITE_PRIVATE void sqlite3PagerSetReiniter(Pager*, void(*)(DbPage*,int));
|
|
SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u16*);
|
|
SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager*, int);
|
|
SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager*, int, unsigned char*);
|
|
SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager*, int);
|
|
SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager);
|
|
SQLITE_PRIVATE int sqlite3PagerAcquire(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag);
|
|
#define sqlite3PagerGet(A,B,C) sqlite3PagerAcquire(A,B,C,0)
|
|
SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno);
|
|
SQLITE_PRIVATE int sqlite3PagerRef(DbPage*);
|
|
SQLITE_PRIVATE int sqlite3PagerUnref(DbPage*);
|
|
SQLITE_PRIVATE int sqlite3PagerWrite(DbPage*);
|
|
SQLITE_PRIVATE int sqlite3PagerOverwrite(Pager *pPager, Pgno pgno, void*);
|
|
SQLITE_PRIVATE int sqlite3PagerPagecount(Pager*);
|
|
SQLITE_PRIVATE int sqlite3PagerTruncate(Pager*,Pgno);
|
|
SQLITE_PRIVATE int sqlite3PagerBegin(DbPage*, int exFlag);
|
|
SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(Pager*,const char *zMaster, Pgno);
|
|
SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager*);
|
|
SQLITE_PRIVATE int sqlite3PagerRollback(Pager*);
|
|
SQLITE_PRIVATE int sqlite3PagerIsreadonly(Pager*);
|
|
SQLITE_PRIVATE int sqlite3PagerStmtBegin(Pager*);
|
|
SQLITE_PRIVATE int sqlite3PagerStmtCommit(Pager*);
|
|
SQLITE_PRIVATE int sqlite3PagerStmtRollback(Pager*);
|
|
SQLITE_PRIVATE void sqlite3PagerDontRollback(DbPage*);
|
|
SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage*);
|
|
SQLITE_PRIVATE int sqlite3PagerRefcount(Pager*);
|
|
SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel(Pager*,int,int);
|
|
SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager*);
|
|
SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager*);
|
|
SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager*);
|
|
SQLITE_PRIVATE const char *sqlite3PagerDirname(Pager*);
|
|
SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*);
|
|
SQLITE_PRIVATE int sqlite3PagerNosync(Pager*);
|
|
SQLITE_PRIVATE int sqlite3PagerMovepage(Pager*,DbPage*,Pgno);
|
|
SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *);
|
|
SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *);
|
|
SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *, int);
|
|
SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager*);
|
|
|
|
#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) && !defined(SQLITE_OMIT_DISKIO)
|
|
SQLITE_PRIVATE int sqlite3PagerReleaseMemory(int);
|
|
#endif
|
|
|
|
#ifdef SQLITE_HAS_CODEC
|
|
SQLITE_PRIVATE void sqlite3PagerSetCodec(Pager*,void*(*)(void*,void*,Pgno,int),void*);
|
|
#endif
|
|
|
|
#if !defined(NDEBUG) || defined(SQLITE_TEST)
|
|
SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage*);
|
|
SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage*);
|
|
#endif
|
|
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_PRIVATE int *sqlite3PagerStats(Pager*);
|
|
SQLITE_PRIVATE void sqlite3PagerRefdump(Pager*);
|
|
int pager3_refinfo_enable;
|
|
#endif
|
|
|
|
#ifdef SQLITE_TEST
|
|
void disable_simulated_io_errors(void);
|
|
void enable_simulated_io_errors(void);
|
|
#else
|
|
# define disable_simulated_io_errors()
|
|
# define enable_simulated_io_errors()
|
|
#endif
|
|
|
|
#endif /* _PAGER_H_ */
|
|
|
|
/************** End of pager.h ***********************************************/
|
|
/************** Continuing where we left off in sqliteInt.h ******************/
|
|
|
|
/************** Include os.h in the middle of sqliteInt.h ********************/
|
|
/************** Begin file os.h **********************************************/
|
|
/*
|
|
** 2001 September 16
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
******************************************************************************
|
|
**
|
|
** This header file (together with is companion C source-code file
|
|
** "os.c") attempt to abstract the underlying operating system so that
|
|
** the SQLite library will work on both POSIX and windows systems.
|
|
**
|
|
** This header file is #include-ed by sqliteInt.h and thus ends up
|
|
** being included by every source file.
|
|
*/
|
|
#ifndef _SQLITE_OS_H_
|
|
#define _SQLITE_OS_H_
|
|
|
|
/*
|
|
** Figure out if we are dealing with Unix, Windows, or some other
|
|
** operating system. After the following block of preprocess macros,
|
|
** all of OS_UNIX, OS_WIN, OS_OS2, and OS_OTHER will defined to either
|
|
** 1 or 0. One of the four will be 1. The other three will be 0.
|
|
*/
|
|
#if defined(OS_OTHER)
|
|
# if OS_OTHER==1
|
|
# undef OS_UNIX
|
|
# define OS_UNIX 0
|
|
# undef OS_WIN
|
|
# define OS_WIN 0
|
|
# undef OS_OS2
|
|
# define OS_OS2 0
|
|
# else
|
|
# undef OS_OTHER
|
|
# endif
|
|
#endif
|
|
#if !defined(OS_UNIX) && !defined(OS_OTHER)
|
|
# define OS_OTHER 0
|
|
# ifndef OS_WIN
|
|
# if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
|
|
# define OS_WIN 1
|
|
# define OS_UNIX 0
|
|
# define OS_OS2 0
|
|
# elif defined(__EMX__) || defined(_OS2) || defined(OS2) || defined(_OS2_) || defined(__OS2__)
|
|
# define OS_WIN 0
|
|
# define OS_UNIX 0
|
|
# define OS_OS2 1
|
|
# else
|
|
# define OS_WIN 0
|
|
# define OS_UNIX 1
|
|
# define OS_OS2 0
|
|
# endif
|
|
# else
|
|
# define OS_UNIX 0
|
|
# define OS_OS2 0
|
|
# endif
|
|
#else
|
|
# ifndef OS_WIN
|
|
# define OS_WIN 0
|
|
# endif
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
** Define the maximum size of a temporary filename
|
|
*/
|
|
#if OS_WIN
|
|
# include <windows.h>
|
|
# define SQLITE_TEMPNAME_SIZE (MAX_PATH+50)
|
|
#elif OS_OS2
|
|
# if (__GNUC__ > 3 || __GNUC__ == 3 && __GNUC_MINOR__ >= 3) && defined(OS2_HIGH_MEMORY)
|
|
# include <os2safe.h> /* has to be included before os2.h for linking to work */
|
|
# endif
|
|
# define INCL_DOSDATETIME
|
|
# define INCL_DOSFILEMGR
|
|
# define INCL_DOSERRORS
|
|
# define INCL_DOSMISC
|
|
# define INCL_DOSPROCESS
|
|
# define INCL_DOSMODULEMGR
|
|
# define INCL_DOSSEMAPHORES
|
|
# include <os2.h>
|
|
# define SQLITE_TEMPNAME_SIZE (CCHMAXPATHCOMP)
|
|
#else
|
|
# define SQLITE_TEMPNAME_SIZE 200
|
|
#endif
|
|
|
|
/* If the SET_FULLSYNC macro is not defined above, then make it
|
|
** a no-op
|
|
*/
|
|
#ifndef SET_FULLSYNC
|
|
# define SET_FULLSYNC(x,y)
|
|
#endif
|
|
|
|
/*
|
|
** The default size of a disk sector
|
|
*/
|
|
#ifndef SQLITE_DEFAULT_SECTOR_SIZE
|
|
# define SQLITE_DEFAULT_SECTOR_SIZE 512
|
|
#endif
|
|
|
|
/*
|
|
** Temporary files are named starting with this prefix followed by 16 random
|
|
** alphanumeric characters, and no file extension. They are stored in the
|
|
** OS's standard temporary file directory, and are deleted prior to exit.
|
|
** If sqlite is being embedded in another program, you may wish to change the
|
|
** prefix to reflect your program's name, so that if your program exits
|
|
** prematurely, old temporary files can be easily identified. This can be done
|
|
** using -DSQLITE_TEMP_FILE_PREFIX=myprefix_ on the compiler command line.
|
|
**
|
|
** 2006-10-31: The default prefix used to be "sqlite_". But then
|
|
** Mcafee started using SQLite in their anti-virus product and it
|
|
** started putting files with the "sqlite" name in the c:/temp folder.
|
|
** This annoyed many windows users. Those users would then do a
|
|
** Google search for "sqlite", find the telephone numbers of the
|
|
** developers and call to wake them up at night and complain.
|
|
** For this reason, the default name prefix is changed to be "sqlite"
|
|
** spelled backwards. So the temp files are still identified, but
|
|
** anybody smart enough to figure out the code is also likely smart
|
|
** enough to know that calling the developer will not help get rid
|
|
** of the file.
|
|
*/
|
|
#ifndef SQLITE_TEMP_FILE_PREFIX
|
|
# define SQLITE_TEMP_FILE_PREFIX "etilqs_"
|
|
#endif
|
|
|
|
/*
|
|
** The following values may be passed as the second argument to
|
|
** sqlite3OsLock(). The various locks exhibit the following semantics:
|
|
**
|
|
** SHARED: Any number of processes may hold a SHARED lock simultaneously.
|
|
** RESERVED: A single process may hold a RESERVED lock on a file at
|
|
** any time. Other processes may hold and obtain new SHARED locks.
|
|
** PENDING: A single process may hold a PENDING lock on a file at
|
|
** any one time. Existing SHARED locks may persist, but no new
|
|
** SHARED locks may be obtained by other processes.
|
|
** EXCLUSIVE: An EXCLUSIVE lock precludes all other locks.
|
|
**
|
|
** PENDING_LOCK may not be passed directly to sqlite3OsLock(). Instead, a
|
|
** process that requests an EXCLUSIVE lock may actually obtain a PENDING
|
|
** lock. This can be upgraded to an EXCLUSIVE lock by a subsequent call to
|
|
** sqlite3OsLock().
|
|
*/
|
|
#define NO_LOCK 0
|
|
#define SHARED_LOCK 1
|
|
#define RESERVED_LOCK 2
|
|
#define PENDING_LOCK 3
|
|
#define EXCLUSIVE_LOCK 4
|
|
|
|
/*
|
|
** File Locking Notes: (Mostly about windows but also some info for Unix)
|
|
**
|
|
** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because
|
|
** those functions are not available. So we use only LockFile() and
|
|
** UnlockFile().
|
|
**
|
|
** LockFile() prevents not just writing but also reading by other processes.
|
|
** A SHARED_LOCK is obtained by locking a single randomly-chosen
|
|
** byte out of a specific range of bytes. The lock byte is obtained at
|
|
** random so two separate readers can probably access the file at the
|
|
** same time, unless they are unlucky and choose the same lock byte.
|
|
** An EXCLUSIVE_LOCK is obtained by locking all bytes in the range.
|
|
** There can only be one writer. A RESERVED_LOCK is obtained by locking
|
|
** a single byte of the file that is designated as the reserved lock byte.
|
|
** A PENDING_LOCK is obtained by locking a designated byte different from
|
|
** the RESERVED_LOCK byte.
|
|
**
|
|
** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available,
|
|
** which means we can use reader/writer locks. When reader/writer locks
|
|
** are used, the lock is placed on the same range of bytes that is used
|
|
** for probabilistic locking in Win95/98/ME. Hence, the locking scheme
|
|
** will support two or more Win95 readers or two or more WinNT readers.
|
|
** But a single Win95 reader will lock out all WinNT readers and a single
|
|
** WinNT reader will lock out all other Win95 readers.
|
|
**
|
|
** The following #defines specify the range of bytes used for locking.
|
|
** SHARED_SIZE is the number of bytes available in the pool from which
|
|
** a random byte is selected for a shared lock. The pool of bytes for
|
|
** shared locks begins at SHARED_FIRST.
|
|
**
|
|
** These #defines are available in sqlite_aux.h so that adaptors for
|
|
** connecting SQLite to other operating systems can use the same byte
|
|
** ranges for locking. In particular, the same locking strategy and
|
|
** byte ranges are used for Unix. This leaves open the possiblity of having
|
|
** clients on win95, winNT, and unix all talking to the same shared file
|
|
** and all locking correctly. To do so would require that samba (or whatever
|
|
** tool is being used for file sharing) implements locks correctly between
|
|
** windows and unix. I'm guessing that isn't likely to happen, but by
|
|
** using the same locking range we are at least open to the possibility.
|
|
**
|
|
** Locking in windows is manditory. For this reason, we cannot store
|
|
** actual data in the bytes used for locking. The pager never allocates
|
|
** the pages involved in locking therefore. SHARED_SIZE is selected so
|
|
** that all locks will fit on a single page even at the minimum page size.
|
|
** PENDING_BYTE defines the beginning of the locks. By default PENDING_BYTE
|
|
** is set high so that we don't have to allocate an unused page except
|
|
** for very large databases. But one should test the page skipping logic
|
|
** by setting PENDING_BYTE low and running the entire regression suite.
|
|
**
|
|
** Changing the value of PENDING_BYTE results in a subtly incompatible
|
|
** file format. Depending on how it is changed, you might not notice
|
|
** the incompatibility right away, even running a full regression test.
|
|
** The default location of PENDING_BYTE is the first byte past the
|
|
** 1GB boundary.
|
|
**
|
|
*/
|
|
#ifndef SQLITE_TEST
|
|
#define PENDING_BYTE 0x40000000 /* First byte past the 1GB boundary */
|
|
#else
|
|
SQLITE_API extern unsigned int sqlite3_pending_byte;
|
|
#define PENDING_BYTE sqlite3_pending_byte
|
|
#endif
|
|
|
|
#define RESERVED_BYTE (PENDING_BYTE+1)
|
|
#define SHARED_FIRST (PENDING_BYTE+2)
|
|
#define SHARED_SIZE 510
|
|
|
|
/*
|
|
** Functions for accessing sqlite3_file methods
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file*);
|
|
SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file*, void*, int amt, i64 offset);
|
|
SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file*, const void*, int amt, i64 offset);
|
|
SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file*, i64 size);
|
|
SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file*, int);
|
|
SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file*, i64 *pSize);
|
|
SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file*, int);
|
|
SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file*, int);
|
|
SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id);
|
|
SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file*,int,void*);
|
|
SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id);
|
|
SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id);
|
|
|
|
/*
|
|
** Functions for accessing sqlite3_vfs methods
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3OsOpen(sqlite3_vfs *, const char *, sqlite3_file*, int, int *);
|
|
SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *, const char *, int);
|
|
SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *, const char *, int);
|
|
SQLITE_PRIVATE int sqlite3OsGetTempname(sqlite3_vfs *, int, char *);
|
|
SQLITE_PRIVATE int sqlite3OsFullPathname(sqlite3_vfs *, const char *, int, char *);
|
|
SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *, const char *);
|
|
SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *, int, char *);
|
|
SQLITE_PRIVATE void *sqlite3OsDlSym(sqlite3_vfs *, void *, const char *);
|
|
SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *, void *);
|
|
SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *, int, char *);
|
|
SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *, int);
|
|
SQLITE_PRIVATE int sqlite3OsCurrentTime(sqlite3_vfs *, double*);
|
|
|
|
/*
|
|
** Convenience functions for opening and closing files using
|
|
** sqlite3_malloc() to obtain space for the file-handle structure.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3OsOpenMalloc(sqlite3_vfs *, const char *, sqlite3_file **, int,int*);
|
|
SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *);
|
|
|
|
/*
|
|
** Each OS-specific backend defines an instance of the following
|
|
** structure for returning a pointer to its sqlite3_vfs. If OS_OTHER
|
|
** is defined (meaning that the application-defined OS interface layer
|
|
** is used) then there is no default VFS. The application must
|
|
** register one or more VFS structures using sqlite3_vfs_register()
|
|
** before attempting to use SQLite.
|
|
*/
|
|
#if OS_UNIX || OS_WIN || OS_OS2
|
|
SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void);
|
|
#else
|
|
# define sqlite3OsDefaultVfs(X) 0
|
|
#endif
|
|
|
|
#endif /* _SQLITE_OS_H_ */
|
|
|
|
/************** End of os.h **************************************************/
|
|
/************** Continuing where we left off in sqliteInt.h ******************/
|
|
/************** Include mutex.h in the middle of sqliteInt.h *****************/
|
|
/************** Begin file mutex.h *******************************************/
|
|
/*
|
|
** 2007 August 28
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
**
|
|
** This file contains the common header for all mutex implementations.
|
|
** The sqliteInt.h header #includes this file so that it is available
|
|
** to all source files. We break it out in an effort to keep the code
|
|
** better organized.
|
|
**
|
|
** NOTE: source files should *not* #include this header file directly.
|
|
** Source files should #include the sqliteInt.h file and let that file
|
|
** include this one indirectly.
|
|
**
|
|
** $Id: mutex.h,v 1.2 2007/08/30 14:10:30 drh Exp $
|
|
*/
|
|
|
|
|
|
#ifdef SQLITE_MUTEX_APPDEF
|
|
/*
|
|
** If SQLITE_MUTEX_APPDEF is defined, then this whole module is
|
|
** omitted and equivalent functionality must be provided by the
|
|
** application that links against the SQLite library.
|
|
*/
|
|
#else
|
|
/*
|
|
** Figure out what version of the code to use. The choices are
|
|
**
|
|
** SQLITE_MUTEX_NOOP For single-threaded applications that
|
|
** do not desire error checking.
|
|
**
|
|
** SQLITE_MUTEX_NOOP_DEBUG For single-threaded applications with
|
|
** error checking to help verify that mutexes
|
|
** are being used correctly even though they
|
|
** are not needed. Used when SQLITE_DEBUG is
|
|
** defined on single-threaded builds.
|
|
**
|
|
** SQLITE_MUTEX_PTHREADS For multi-threaded applications on Unix.
|
|
**
|
|
** SQLITE_MUTEX_W32 For multi-threaded applications on Win32.
|
|
**
|
|
** SQLITE_MUTEX_OS2 For multi-threaded applications on OS/2.
|
|
*/
|
|
#define SQLITE_MUTEX_NOOP 1 /* The default */
|
|
#if defined(SQLITE_DEBUG) && !SQLITE_THREADSAFE
|
|
# undef SQLITE_MUTEX_NOOP
|
|
# define SQLITE_MUTEX_NOOP_DEBUG
|
|
#endif
|
|
#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_UNIX
|
|
# undef SQLITE_MUTEX_NOOP
|
|
# define SQLITE_MUTEX_PTHREADS
|
|
#endif
|
|
#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_WIN
|
|
# undef SQLITE_MUTEX_NOOP
|
|
# define SQLITE_MUTEX_W32
|
|
#endif
|
|
#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_OS2
|
|
# undef SQLITE_MUTEX_NOOP
|
|
# define SQLITE_MUTEX_OS2
|
|
#endif
|
|
|
|
#ifdef SQLITE_MUTEX_NOOP
|
|
/*
|
|
** If this is a no-op implementation, implement everything as macros.
|
|
*/
|
|
#define sqlite3_mutex_alloc(X) ((sqlite3_mutex*)8)
|
|
#define sqlite3_mutex_free(X)
|
|
#define sqlite3_mutex_enter(X)
|
|
#define sqlite3_mutex_try(X) SQLITE_OK
|
|
#define sqlite3_mutex_leave(X)
|
|
#define sqlite3_mutex_held(X) 1
|
|
#define sqlite3_mutex_notheld(X) 1
|
|
#endif
|
|
|
|
#endif /* SQLITE_MUTEX_APPDEF */
|
|
|
|
/************** End of mutex.h ***********************************************/
|
|
/************** Continuing where we left off in sqliteInt.h ******************/
|
|
|
|
/*
|
|
** Each database file to be accessed by the system is an instance
|
|
** of the following structure. There are normally two of these structures
|
|
** in the sqlite.aDb[] array. aDb[0] is the main database file and
|
|
** aDb[1] is the database file used to hold temporary tables. Additional
|
|
** databases may be attached.
|
|
*/
|
|
struct Db {
|
|
char *zName; /* Name of this database */
|
|
Btree *pBt; /* The B*Tree structure for this database file */
|
|
u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */
|
|
u8 safety_level; /* How aggressive at synching data to disk */
|
|
void *pAux; /* Auxiliary data. Usually NULL */
|
|
void (*xFreeAux)(void*); /* Routine to free pAux */
|
|
Schema *pSchema; /* Pointer to database schema (possibly shared) */
|
|
};
|
|
|
|
/*
|
|
** An instance of the following structure stores a database schema.
|
|
**
|
|
** If there are no virtual tables configured in this schema, the
|
|
** Schema.db variable is set to NULL. After the first virtual table
|
|
** has been added, it is set to point to the database connection
|
|
** used to create the connection. Once a virtual table has been
|
|
** added to the Schema structure and the Schema.db variable populated,
|
|
** only that database connection may use the Schema to prepare
|
|
** statements.
|
|
*/
|
|
struct Schema {
|
|
int schema_cookie; /* Database schema version number for this file */
|
|
Hash tblHash; /* All tables indexed by name */
|
|
Hash idxHash; /* All (named) indices indexed by name */
|
|
Hash trigHash; /* All triggers indexed by name */
|
|
Hash aFKey; /* Foreign keys indexed by to-table */
|
|
Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */
|
|
u8 file_format; /* Schema format version for this file */
|
|
u8 enc; /* Text encoding used by this database */
|
|
u16 flags; /* Flags associated with this schema */
|
|
int cache_size; /* Number of pages to use in the cache */
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
sqlite3 *db; /* "Owner" connection. See comment above */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
** These macros can be used to test, set, or clear bits in the
|
|
** Db.flags field.
|
|
*/
|
|
#define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P))
|
|
#define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0)
|
|
#define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P)
|
|
#define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P)
|
|
|
|
/*
|
|
** Allowed values for the DB.flags field.
|
|
**
|
|
** The DB_SchemaLoaded flag is set after the database schema has been
|
|
** read into internal hash tables.
|
|
**
|
|
** DB_UnresetViews means that one or more views have column names that
|
|
** have been filled out. If the schema changes, these column names might
|
|
** changes and so the view will need to be reset.
|
|
*/
|
|
#define DB_SchemaLoaded 0x0001 /* The schema has been loaded */
|
|
#define DB_UnresetViews 0x0002 /* Some views have defined column names */
|
|
#define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */
|
|
|
|
|
|
/*
|
|
** Each database is an instance of the following structure.
|
|
**
|
|
** The sqlite.lastRowid records the last insert rowid generated by an
|
|
** insert statement. Inserts on views do not affect its value. Each
|
|
** trigger has its own context, so that lastRowid can be updated inside
|
|
** triggers as usual. The previous value will be restored once the trigger
|
|
** exits. Upon entering a before or instead of trigger, lastRowid is no
|
|
** longer (since after version 2.8.12) reset to -1.
|
|
**
|
|
** The sqlite.nChange does not count changes within triggers and keeps no
|
|
** context. It is reset at start of sqlite3_exec.
|
|
** The sqlite.lsChange represents the number of changes made by the last
|
|
** insert, update, or delete statement. It remains constant throughout the
|
|
** length of a statement and is then updated by OP_SetCounts. It keeps a
|
|
** context stack just like lastRowid so that the count of changes
|
|
** within a trigger is not seen outside the trigger. Changes to views do not
|
|
** affect the value of lsChange.
|
|
** The sqlite.csChange keeps track of the number of current changes (since
|
|
** the last statement) and is used to update sqlite_lsChange.
|
|
**
|
|
** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16
|
|
** store the most recent error code and, if applicable, string. The
|
|
** internal function sqlite3Error() is used to set these variables
|
|
** consistently.
|
|
*/
|
|
struct sqlite3 {
|
|
sqlite3_vfs *pVfs; /* OS Interface */
|
|
int nDb; /* Number of backends currently in use */
|
|
Db *aDb; /* All backends */
|
|
int flags; /* Miscellanous flags. See below */
|
|
int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */
|
|
int errCode; /* Most recent error code (SQLITE_*) */
|
|
int errMask; /* & result codes with this before returning */
|
|
u8 autoCommit; /* The auto-commit flag. */
|
|
u8 temp_store; /* 1: file 2: memory 0: default */
|
|
u8 mallocFailed; /* True if we have seen a malloc failure */
|
|
signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */
|
|
int nTable; /* Number of tables in the database */
|
|
CollSeq *pDfltColl; /* The default collating sequence (BINARY) */
|
|
i64 lastRowid; /* ROWID of most recent insert (see above) */
|
|
i64 priorNewRowid; /* Last randomly generated ROWID */
|
|
int magic; /* Magic number for detect library misuse */
|
|
int nChange; /* Value returned by sqlite3_changes() */
|
|
int nTotalChange; /* Value returned by sqlite3_total_changes() */
|
|
sqlite3_mutex *mutex; /* Connection mutex */
|
|
struct sqlite3InitInfo { /* Information used during initialization */
|
|
int iDb; /* When back is being initialized */
|
|
int newTnum; /* Rootpage of table being initialized */
|
|
u8 busy; /* TRUE if currently initializing */
|
|
} init;
|
|
int nExtension; /* Number of loaded extensions */
|
|
void **aExtension; /* Array of shared libraray handles */
|
|
struct Vdbe *pVdbe; /* List of active virtual machines */
|
|
int activeVdbeCnt; /* Number of vdbes currently executing */
|
|
void (*xTrace)(void*,const char*); /* Trace function */
|
|
void *pTraceArg; /* Argument to the trace function */
|
|
void (*xProfile)(void*,const char*,u64); /* Profiling function */
|
|
void *pProfileArg; /* Argument to profile function */
|
|
void *pCommitArg; /* Argument to xCommitCallback() */
|
|
int (*xCommitCallback)(void*); /* Invoked at every commit. */
|
|
void *pRollbackArg; /* Argument to xRollbackCallback() */
|
|
void (*xRollbackCallback)(void*); /* Invoked at every commit. */
|
|
void *pUpdateArg;
|
|
void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
|
|
void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
|
|
void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
|
|
void *pCollNeededArg;
|
|
sqlite3_value *pErr; /* Most recent error message */
|
|
char *zErrMsg; /* Most recent error message (UTF-8 encoded) */
|
|
char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */
|
|
union {
|
|
int isInterrupted; /* True if sqlite3_interrupt has been called */
|
|
double notUsed1; /* Spacer */
|
|
} u1;
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
|
|
/* Access authorization function */
|
|
void *pAuthArg; /* 1st argument to the access auth function */
|
|
#endif
|
|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
int (*xProgress)(void *); /* The progress callback */
|
|
void *pProgressArg; /* Argument to the progress callback */
|
|
int nProgressOps; /* Number of opcodes for progress callback */
|
|
#endif
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
Hash aModule; /* populated by sqlite3_create_module() */
|
|
Table *pVTab; /* vtab with active Connect/Create method */
|
|
sqlite3_vtab **aVTrans; /* Virtual tables with open transactions */
|
|
int nVTrans; /* Allocated size of aVTrans */
|
|
#endif
|
|
Hash aFunc; /* All functions that can be in SQL exprs */
|
|
Hash aCollSeq; /* All collating sequences */
|
|
BusyHandler busyHandler; /* Busy callback */
|
|
int busyTimeout; /* Busy handler timeout, in msec */
|
|
Db aDbStatic[2]; /* Static space for the 2 default backends */
|
|
#ifdef SQLITE_SSE
|
|
sqlite3_stmt *pFetch; /* Used by SSE to fetch stored statements */
|
|
#endif
|
|
u8 dfltLockMode; /* Default locking-mode for attached dbs */
|
|
};
|
|
|
|
/*
|
|
** A macro to discover the encoding of a database.
|
|
*/
|
|
#define ENC(db) ((db)->aDb[0].pSchema->enc)
|
|
|
|
/*
|
|
** Possible values for the sqlite.flags and or Db.flags fields.
|
|
**
|
|
** On sqlite.flags, the SQLITE_InTrans value means that we have
|
|
** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement
|
|
** transaction is active on that particular database file.
|
|
*/
|
|
#define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */
|
|
#define SQLITE_InTrans 0x00000008 /* True if in a transaction */
|
|
#define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */
|
|
#define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */
|
|
#define SQLITE_ShortColNames 0x00000040 /* Show short columns names */
|
|
#define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */
|
|
/* DELETE, or UPDATE and return */
|
|
/* the count using a callback. */
|
|
#define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */
|
|
/* result set is empty */
|
|
#define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */
|
|
#define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */
|
|
#define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */
|
|
#define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when
|
|
** accessing read-only databases */
|
|
#define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */
|
|
#define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */
|
|
#define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */
|
|
#define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */
|
|
#define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */
|
|
|
|
#define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */
|
|
#define SQLITE_SharedCache 0x00080000 /* Cache sharing is enabled */
|
|
#define SQLITE_Vtab 0x00100000 /* There exists a virtual table */
|
|
|
|
/*
|
|
** Possible values for the sqlite.magic field.
|
|
** The numbers are obtained at random and have no special meaning, other
|
|
** than being distinct from one another.
|
|
*/
|
|
#define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */
|
|
#define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */
|
|
#define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */
|
|
#define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */
|
|
#define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */
|
|
|
|
/*
|
|
** Each SQL function is defined by an instance of the following
|
|
** structure. A pointer to this structure is stored in the sqlite.aFunc
|
|
** hash table. When multiple functions have the same name, the hash table
|
|
** points to a linked list of these structures.
|
|
*/
|
|
struct FuncDef {
|
|
i16 nArg; /* Number of arguments. -1 means unlimited */
|
|
u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */
|
|
u8 needCollSeq; /* True if sqlite3GetFuncCollSeq() might be called */
|
|
u8 flags; /* Some combination of SQLITE_FUNC_* */
|
|
void *pUserData; /* User data parameter */
|
|
FuncDef *pNext; /* Next function with same name */
|
|
void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
|
|
void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
|
|
void (*xFinalize)(sqlite3_context*); /* Aggregate finializer */
|
|
char zName[1]; /* SQL name of the function. MUST BE LAST */
|
|
};
|
|
|
|
/*
|
|
** Each SQLite module (virtual table definition) is defined by an
|
|
** instance of the following structure, stored in the sqlite3.aModule
|
|
** hash table.
|
|
*/
|
|
struct Module {
|
|
const sqlite3_module *pModule; /* Callback pointers */
|
|
const char *zName; /* Name passed to create_module() */
|
|
void *pAux; /* pAux passed to create_module() */
|
|
void (*xDestroy)(void *); /* Module destructor function */
|
|
};
|
|
|
|
/*
|
|
** Possible values for FuncDef.flags
|
|
*/
|
|
#define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */
|
|
#define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */
|
|
#define SQLITE_FUNC_EPHEM 0x04 /* Ephermeral. Delete with VDBE */
|
|
|
|
/*
|
|
** information about each column of an SQL table is held in an instance
|
|
** of this structure.
|
|
*/
|
|
struct Column {
|
|
char *zName; /* Name of this column */
|
|
Expr *pDflt; /* Default value of this column */
|
|
char *zType; /* Data type for this column */
|
|
char *zColl; /* Collating sequence. If NULL, use the default */
|
|
u8 notNull; /* True if there is a NOT NULL constraint */
|
|
u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */
|
|
char affinity; /* One of the SQLITE_AFF_... values */
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
u8 isHidden; /* True if this column is 'hidden' */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
** A "Collating Sequence" is defined by an instance of the following
|
|
** structure. Conceptually, a collating sequence consists of a name and
|
|
** a comparison routine that defines the order of that sequence.
|
|
**
|
|
** There may two seperate implementations of the collation function, one
|
|
** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that
|
|
** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine
|
|
** native byte order. When a collation sequence is invoked, SQLite selects
|
|
** the version that will require the least expensive encoding
|
|
** translations, if any.
|
|
**
|
|
** The CollSeq.pUser member variable is an extra parameter that passed in
|
|
** as the first argument to the UTF-8 comparison function, xCmp.
|
|
** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function,
|
|
** xCmp16.
|
|
**
|
|
** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the
|
|
** collating sequence is undefined. Indices built on an undefined
|
|
** collating sequence may not be read or written.
|
|
*/
|
|
struct CollSeq {
|
|
char *zName; /* Name of the collating sequence, UTF-8 encoded */
|
|
u8 enc; /* Text encoding handled by xCmp() */
|
|
u8 type; /* One of the SQLITE_COLL_... values below */
|
|
void *pUser; /* First argument to xCmp() */
|
|
int (*xCmp)(void*,int, const void*, int, const void*);
|
|
void (*xDel)(void*); /* Destructor for pUser */
|
|
};
|
|
|
|
/*
|
|
** Allowed values of CollSeq flags:
|
|
*/
|
|
#define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */
|
|
#define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */
|
|
#define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */
|
|
#define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */
|
|
|
|
/*
|
|
** A sort order can be either ASC or DESC.
|
|
*/
|
|
#define SQLITE_SO_ASC 0 /* Sort in ascending order */
|
|
#define SQLITE_SO_DESC 1 /* Sort in ascending order */
|
|
|
|
/*
|
|
** Column affinity types.
|
|
**
|
|
** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
|
|
** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve
|
|
** the speed a little by number the values consecutively.
|
|
**
|
|
** But rather than start with 0 or 1, we begin with 'a'. That way,
|
|
** when multiple affinity types are concatenated into a string and
|
|
** used as the P4 operand, they will be more readable.
|
|
**
|
|
** Note also that the numeric types are grouped together so that testing
|
|
** for a numeric type is a single comparison.
|
|
*/
|
|
#define SQLITE_AFF_TEXT 'a'
|
|
#define SQLITE_AFF_NONE 'b'
|
|
#define SQLITE_AFF_NUMERIC 'c'
|
|
#define SQLITE_AFF_INTEGER 'd'
|
|
#define SQLITE_AFF_REAL 'e'
|
|
|
|
#define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC)
|
|
|
|
/*
|
|
** The SQLITE_AFF_MASK values masks off the significant bits of an
|
|
** affinity value.
|
|
*/
|
|
#define SQLITE_AFF_MASK 0x67
|
|
|
|
/*
|
|
** Additional bit values that can be ORed with an affinity without
|
|
** changing the affinity.
|
|
*/
|
|
#define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */
|
|
#define SQLITE_NULLEQUAL 0x10 /* compare NULLs equal */
|
|
#define SQLITE_STOREP2 0x80 /* Store result in reg[P2] rather than jump */
|
|
|
|
/*
|
|
** Each SQL table is represented in memory by an instance of the
|
|
** following structure.
|
|
**
|
|
** Table.zName is the name of the table. The case of the original
|
|
** CREATE TABLE statement is stored, but case is not significant for
|
|
** comparisons.
|
|
**
|
|
** Table.nCol is the number of columns in this table. Table.aCol is a
|
|
** pointer to an array of Column structures, one for each column.
|
|
**
|
|
** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
|
|
** the column that is that key. Otherwise Table.iPKey is negative. Note
|
|
** that the datatype of the PRIMARY KEY must be INTEGER for this field to
|
|
** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of
|
|
** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid
|
|
** is generated for each row of the table. Table.hasPrimKey is true if
|
|
** the table has any PRIMARY KEY, INTEGER or otherwise.
|
|
**
|
|
** Table.tnum is the page number for the root BTree page of the table in the
|
|
** database file. If Table.iDb is the index of the database table backend
|
|
** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that
|
|
** holds temporary tables and indices. If Table.isEphem
|
|
** is true, then the table is stored in a file that is automatically deleted
|
|
** when the VDBE cursor to the table is closed. In this case Table.tnum
|
|
** refers VDBE cursor number that holds the table open, not to the root
|
|
** page number. Transient tables are used to hold the results of a
|
|
** sub-query that appears instead of a real table name in the FROM clause
|
|
** of a SELECT statement.
|
|
*/
|
|
struct Table {
|
|
char *zName; /* Name of the table */
|
|
int nCol; /* Number of columns in this table */
|
|
Column *aCol; /* Information about each column */
|
|
int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */
|
|
Index *pIndex; /* List of SQL indexes on this table. */
|
|
int tnum; /* Root BTree node for this table (see note above) */
|
|
Select *pSelect; /* NULL for tables. Points to definition if a view. */
|
|
int nRef; /* Number of pointers to this Table */
|
|
Trigger *pTrigger; /* List of SQL triggers on this table */
|
|
FKey *pFKey; /* Linked list of all foreign keys in this table */
|
|
char *zColAff; /* String defining the affinity of each column */
|
|
#ifndef SQLITE_OMIT_CHECK
|
|
Expr *pCheck; /* The AND of all CHECK constraints */
|
|
#endif
|
|
#ifndef SQLITE_OMIT_ALTERTABLE
|
|
int addColOffset; /* Offset in CREATE TABLE statement to add a new column */
|
|
#endif
|
|
u8 readOnly; /* True if this table should not be written by the user */
|
|
u8 isEphem; /* True if created using OP_OpenEphermeral */
|
|
u8 hasPrimKey; /* True if there exists a primary key */
|
|
u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */
|
|
u8 autoInc; /* True if the integer primary key is autoincrement */
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
u8 isVirtual; /* True if this is a virtual table */
|
|
u8 isCommit; /* True once the CREATE TABLE has been committed */
|
|
Module *pMod; /* Pointer to the implementation of the module */
|
|
sqlite3_vtab *pVtab; /* Pointer to the module instance */
|
|
int nModuleArg; /* Number of arguments to the module */
|
|
char **azModuleArg; /* Text of all module args. [0] is module name */
|
|
#endif
|
|
Schema *pSchema; /* Schema that contains this table */
|
|
};
|
|
|
|
/*
|
|
** Test to see whether or not a table is a virtual table. This is
|
|
** done as a macro so that it will be optimized out when virtual
|
|
** table support is omitted from the build.
|
|
*/
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
# define IsVirtual(X) ((X)->isVirtual)
|
|
# define IsHiddenColumn(X) ((X)->isHidden)
|
|
#else
|
|
# define IsVirtual(X) 0
|
|
# define IsHiddenColumn(X) 0
|
|
#endif
|
|
|
|
/*
|
|
** Each foreign key constraint is an instance of the following structure.
|
|
**
|
|
** A foreign key is associated with two tables. The "from" table is
|
|
** the table that contains the REFERENCES clause that creates the foreign
|
|
** key. The "to" table is the table that is named in the REFERENCES clause.
|
|
** Consider this example:
|
|
**
|
|
** CREATE TABLE ex1(
|
|
** a INTEGER PRIMARY KEY,
|
|
** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
|
|
** );
|
|
**
|
|
** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
|
|
**
|
|
** Each REFERENCES clause generates an instance of the following structure
|
|
** which is attached to the from-table. The to-table need not exist when
|
|
** the from-table is created. The existance of the to-table is not checked
|
|
** until an attempt is made to insert data into the from-table.
|
|
**
|
|
** The sqlite.aFKey hash table stores pointers to this structure
|
|
** given the name of a to-table. For each to-table, all foreign keys
|
|
** associated with that table are on a linked list using the FKey.pNextTo
|
|
** field.
|
|
*/
|
|
struct FKey {
|
|
Table *pFrom; /* The table that constains the REFERENCES clause */
|
|
FKey *pNextFrom; /* Next foreign key in pFrom */
|
|
char *zTo; /* Name of table that the key points to */
|
|
FKey *pNextTo; /* Next foreign key that points to zTo */
|
|
int nCol; /* Number of columns in this key */
|
|
struct sColMap { /* Mapping of columns in pFrom to columns in zTo */
|
|
int iFrom; /* Index of column in pFrom */
|
|
char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */
|
|
} *aCol; /* One entry for each of nCol column s */
|
|
u8 isDeferred; /* True if constraint checking is deferred till COMMIT */
|
|
u8 updateConf; /* How to resolve conflicts that occur on UPDATE */
|
|
u8 deleteConf; /* How to resolve conflicts that occur on DELETE */
|
|
u8 insertConf; /* How to resolve conflicts that occur on INSERT */
|
|
};
|
|
|
|
/*
|
|
** SQLite supports many different ways to resolve a constraint
|
|
** error. ROLLBACK processing means that a constraint violation
|
|
** causes the operation in process to fail and for the current transaction
|
|
** to be rolled back. ABORT processing means the operation in process
|
|
** fails and any prior changes from that one operation are backed out,
|
|
** but the transaction is not rolled back. FAIL processing means that
|
|
** the operation in progress stops and returns an error code. But prior
|
|
** changes due to the same operation are not backed out and no rollback
|
|
** occurs. IGNORE means that the particular row that caused the constraint
|
|
** error is not inserted or updated. Processing continues and no error
|
|
** is returned. REPLACE means that preexisting database rows that caused
|
|
** a UNIQUE constraint violation are removed so that the new insert or
|
|
** update can proceed. Processing continues and no error is reported.
|
|
**
|
|
** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
|
|
** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
|
|
** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign
|
|
** key is set to NULL. CASCADE means that a DELETE or UPDATE of the
|
|
** referenced table row is propagated into the row that holds the
|
|
** foreign key.
|
|
**
|
|
** The following symbolic values are used to record which type
|
|
** of action to take.
|
|
*/
|
|
#define OE_None 0 /* There is no constraint to check */
|
|
#define OE_Rollback 1 /* Fail the operation and rollback the transaction */
|
|
#define OE_Abort 2 /* Back out changes but do no rollback transaction */
|
|
#define OE_Fail 3 /* Stop the operation but leave all prior changes */
|
|
#define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */
|
|
#define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */
|
|
|
|
#define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
|
|
#define OE_SetNull 7 /* Set the foreign key value to NULL */
|
|
#define OE_SetDflt 8 /* Set the foreign key value to its default */
|
|
#define OE_Cascade 9 /* Cascade the changes */
|
|
|
|
#define OE_Default 99 /* Do whatever the default action is */
|
|
|
|
|
|
/*
|
|
** An instance of the following structure is passed as the first
|
|
** argument to sqlite3VdbeKeyCompare and is used to control the
|
|
** comparison of the two index keys.
|
|
**
|
|
** If the KeyInfo.incrKey value is true and the comparison would
|
|
** otherwise be equal, then return a result as if the second key
|
|
** were larger.
|
|
*/
|
|
struct KeyInfo {
|
|
sqlite3 *db; /* The database connection */
|
|
u8 enc; /* Text encoding - one of the TEXT_Utf* values */
|
|
u8 incrKey; /* Increase 2nd key by epsilon before comparison */
|
|
u8 prefixIsEqual; /* Treat a prefix as equal */
|
|
int nField; /* Number of entries in aColl[] */
|
|
u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */
|
|
CollSeq *aColl[1]; /* Collating sequence for each term of the key */
|
|
};
|
|
|
|
/*
|
|
** Each SQL index is represented in memory by an
|
|
** instance of the following structure.
|
|
**
|
|
** The columns of the table that are to be indexed are described
|
|
** by the aiColumn[] field of this structure. For example, suppose
|
|
** we have the following table and index:
|
|
**
|
|
** CREATE TABLE Ex1(c1 int, c2 int, c3 text);
|
|
** CREATE INDEX Ex2 ON Ex1(c3,c1);
|
|
**
|
|
** In the Table structure describing Ex1, nCol==3 because there are
|
|
** three columns in the table. In the Index structure describing
|
|
** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
|
|
** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the
|
|
** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
|
|
** The second column to be indexed (c1) has an index of 0 in
|
|
** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
|
|
**
|
|
** The Index.onError field determines whether or not the indexed columns
|
|
** must be unique and what to do if they are not. When Index.onError=OE_None,
|
|
** it means this is not a unique index. Otherwise it is a unique index
|
|
** and the value of Index.onError indicate the which conflict resolution
|
|
** algorithm to employ whenever an attempt is made to insert a non-unique
|
|
** element.
|
|
*/
|
|
struct Index {
|
|
char *zName; /* Name of this index */
|
|
int nColumn; /* Number of columns in the table used by this index */
|
|
int *aiColumn; /* Which columns are used by this index. 1st is 0 */
|
|
unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
|
|
Table *pTable; /* The SQL table being indexed */
|
|
int tnum; /* Page containing root of this index in database file */
|
|
u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
|
|
u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */
|
|
char *zColAff; /* String defining the affinity of each column */
|
|
Index *pNext; /* The next index associated with the same table */
|
|
Schema *pSchema; /* Schema containing this index */
|
|
u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */
|
|
char **azColl; /* Array of collation sequence names for index */
|
|
};
|
|
|
|
/*
|
|
** Each token coming out of the lexer is an instance of
|
|
** this structure. Tokens are also used as part of an expression.
|
|
**
|
|
** Note if Token.z==0 then Token.dyn and Token.n are undefined and
|
|
** may contain random values. Do not make any assuptions about Token.dyn
|
|
** and Token.n when Token.z==0.
|
|
*/
|
|
struct Token {
|
|
const unsigned char *z; /* Text of the token. Not NULL-terminated! */
|
|
unsigned dyn : 1; /* True for malloced memory, false for static */
|
|
unsigned n : 31; /* Number of characters in this token */
|
|
};
|
|
|
|
/*
|
|
** An instance of this structure contains information needed to generate
|
|
** code for a SELECT that contains aggregate functions.
|
|
**
|
|
** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
|
|
** pointer to this structure. The Expr.iColumn field is the index in
|
|
** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
|
|
** code for that node.
|
|
**
|
|
** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
|
|
** original Select structure that describes the SELECT statement. These
|
|
** fields do not need to be freed when deallocating the AggInfo structure.
|
|
*/
|
|
struct AggInfo {
|
|
u8 directMode; /* Direct rendering mode means take data directly
|
|
** from source tables rather than from accumulators */
|
|
u8 useSortingIdx; /* In direct mode, reference the sorting index rather
|
|
** than the source table */
|
|
int sortingIdx; /* Cursor number of the sorting index */
|
|
ExprList *pGroupBy; /* The group by clause */
|
|
int nSortingColumn; /* Number of columns in the sorting index */
|
|
struct AggInfo_col { /* For each column used in source tables */
|
|
Table *pTab; /* Source table */
|
|
int iTable; /* Cursor number of the source table */
|
|
int iColumn; /* Column number within the source table */
|
|
int iSorterColumn; /* Column number in the sorting index */
|
|
int iMem; /* Memory location that acts as accumulator */
|
|
Expr *pExpr; /* The original expression */
|
|
} *aCol;
|
|
int nColumn; /* Number of used entries in aCol[] */
|
|
int nColumnAlloc; /* Number of slots allocated for aCol[] */
|
|
int nAccumulator; /* Number of columns that show through to the output.
|
|
** Additional columns are used only as parameters to
|
|
** aggregate functions */
|
|
struct AggInfo_func { /* For each aggregate function */
|
|
Expr *pExpr; /* Expression encoding the function */
|
|
FuncDef *pFunc; /* The aggregate function implementation */
|
|
int iMem; /* Memory location that acts as accumulator */
|
|
int iDistinct; /* Ephermeral table used to enforce DISTINCT */
|
|
} *aFunc;
|
|
int nFunc; /* Number of entries in aFunc[] */
|
|
int nFuncAlloc; /* Number of slots allocated for aFunc[] */
|
|
};
|
|
|
|
/*
|
|
** Each node of an expression in the parse tree is an instance
|
|
** of this structure.
|
|
**
|
|
** Expr.op is the opcode. The integer parser token codes are reused
|
|
** as opcodes here. For example, the parser defines TK_GE to be an integer
|
|
** code representing the ">=" operator. This same integer code is reused
|
|
** to represent the greater-than-or-equal-to operator in the expression
|
|
** tree.
|
|
**
|
|
** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list
|
|
** of argument if the expression is a function.
|
|
**
|
|
** Expr.token is the operator token for this node. For some expressions
|
|
** that have subexpressions, Expr.token can be the complete text that gave
|
|
** rise to the Expr. In the latter case, the token is marked as being
|
|
** a compound token.
|
|
**
|
|
** An expression of the form ID or ID.ID refers to a column in a table.
|
|
** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
|
|
** the integer cursor number of a VDBE cursor pointing to that table and
|
|
** Expr.iColumn is the column number for the specific column. If the
|
|
** expression is used as a result in an aggregate SELECT, then the
|
|
** value is also stored in the Expr.iAgg column in the aggregate so that
|
|
** it can be accessed after all aggregates are computed.
|
|
**
|
|
** If the expression is a function, the Expr.iTable is an integer code
|
|
** representing which function. If the expression is an unbound variable
|
|
** marker (a question mark character '?' in the original SQL) then the
|
|
** Expr.iTable holds the index number for that variable.
|
|
**
|
|
** If the expression is a subquery then Expr.iColumn holds an integer
|
|
** register number containing the result of the subquery. If the
|
|
** subquery gives a constant result, then iTable is -1. If the subquery
|
|
** gives a different answer at different times during statement processing
|
|
** then iTable is the address of a subroutine that computes the subquery.
|
|
**
|
|
** The Expr.pSelect field points to a SELECT statement. The SELECT might
|
|
** be the right operand of an IN operator. Or, if a scalar SELECT appears
|
|
** in an expression the opcode is TK_SELECT and Expr.pSelect is the only
|
|
** operand.
|
|
**
|
|
** If the Expr is of type OP_Column, and the table it is selecting from
|
|
** is a disk table or the "old.*" pseudo-table, then pTab points to the
|
|
** corresponding table definition.
|
|
*/
|
|
struct Expr {
|
|
u8 op; /* Operation performed by this node */
|
|
char affinity; /* The affinity of the column or 0 if not a column */
|
|
u16 flags; /* Various flags. See below */
|
|
CollSeq *pColl; /* The collation type of the column or 0 */
|
|
Expr *pLeft, *pRight; /* Left and right subnodes */
|
|
ExprList *pList; /* A list of expressions used as function arguments
|
|
** or in "<expr> IN (<expr-list)" */
|
|
Token token; /* An operand token */
|
|
Token span; /* Complete text of the expression */
|
|
int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the
|
|
** iColumn-th field of the iTable-th table. */
|
|
AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
|
|
int iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
|
|
int iRightJoinTable; /* If EP_FromJoin, the right table of the join */
|
|
Select *pSelect; /* When the expression is a sub-select. Also the
|
|
** right side of "<expr> IN (<select>)" */
|
|
Table *pTab; /* Table for OP_Column expressions. */
|
|
/* Schema *pSchema; */
|
|
#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
|
|
int nHeight; /* Height of the tree headed by this node */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
** The following are the meanings of bits in the Expr.flags field.
|
|
*/
|
|
#define EP_FromJoin 0x01 /* Originated in ON or USING clause of a join */
|
|
#define EP_Agg 0x02 /* Contains one or more aggregate functions */
|
|
#define EP_Resolved 0x04 /* IDs have been resolved to COLUMNs */
|
|
#define EP_Error 0x08 /* Expression contains one or more errors */
|
|
#define EP_Distinct 0x10 /* Aggregate function with DISTINCT keyword */
|
|
#define EP_VarSelect 0x20 /* pSelect is correlated, not constant */
|
|
#define EP_Dequoted 0x40 /* True if the string has been dequoted */
|
|
#define EP_InfixFunc 0x80 /* True for an infix function: LIKE, GLOB, etc */
|
|
#define EP_ExpCollate 0x100 /* Collating sequence specified explicitly */
|
|
|
|
/*
|
|
** These macros can be used to test, set, or clear bits in the
|
|
** Expr.flags field.
|
|
*/
|
|
#define ExprHasProperty(E,P) (((E)->flags&(P))==(P))
|
|
#define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0)
|
|
#define ExprSetProperty(E,P) (E)->flags|=(P)
|
|
#define ExprClearProperty(E,P) (E)->flags&=~(P)
|
|
|
|
/*
|
|
** A list of expressions. Each expression may optionally have a
|
|
** name. An expr/name combination can be used in several ways, such
|
|
** as the list of "expr AS ID" fields following a "SELECT" or in the
|
|
** list of "ID = expr" items in an UPDATE. A list of expressions can
|
|
** also be used as the argument to a function, in which case the a.zName
|
|
** field is not used.
|
|
*/
|
|
struct ExprList {
|
|
int nExpr; /* Number of expressions on the list */
|
|
int nAlloc; /* Number of entries allocated below */
|
|
int iECursor; /* VDBE Cursor associated with this ExprList */
|
|
struct ExprList_item {
|
|
Expr *pExpr; /* The list of expressions */
|
|
char *zName; /* Token associated with this expression */
|
|
u8 sortOrder; /* 1 for DESC or 0 for ASC */
|
|
u8 isAgg; /* True if this is an aggregate like count(*) */
|
|
u8 done; /* A flag to indicate when processing is finished */
|
|
} *a; /* One entry for each expression */
|
|
};
|
|
|
|
/*
|
|
** An instance of this structure can hold a simple list of identifiers,
|
|
** such as the list "a,b,c" in the following statements:
|
|
**
|
|
** INSERT INTO t(a,b,c) VALUES ...;
|
|
** CREATE INDEX idx ON t(a,b,c);
|
|
** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
|
|
**
|
|
** The IdList.a.idx field is used when the IdList represents the list of
|
|
** column names after a table name in an INSERT statement. In the statement
|
|
**
|
|
** INSERT INTO t(a,b,c) ...
|
|
**
|
|
** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
|
|
*/
|
|
struct IdList {
|
|
struct IdList_item {
|
|
char *zName; /* Name of the identifier */
|
|
int idx; /* Index in some Table.aCol[] of a column named zName */
|
|
} *a;
|
|
int nId; /* Number of identifiers on the list */
|
|
int nAlloc; /* Number of entries allocated for a[] below */
|
|
};
|
|
|
|
/*
|
|
** The bitmask datatype defined below is used for various optimizations.
|
|
**
|
|
** Changing this from a 64-bit to a 32-bit type limits the number of
|
|
** tables in a join to 32 instead of 64. But it also reduces the size
|
|
** of the library by 738 bytes on ix86.
|
|
*/
|
|
typedef u64 Bitmask;
|
|
|
|
/*
|
|
** The following structure describes the FROM clause of a SELECT statement.
|
|
** Each table or subquery in the FROM clause is a separate element of
|
|
** the SrcList.a[] array.
|
|
**
|
|
** With the addition of multiple database support, the following structure
|
|
** can also be used to describe a particular table such as the table that
|
|
** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL,
|
|
** such a table must be a simple name: ID. But in SQLite, the table can
|
|
** now be identified by a database name, a dot, then the table name: ID.ID.
|
|
**
|
|
** The jointype starts out showing the join type between the current table
|
|
** and the next table on the list. The parser builds the list this way.
|
|
** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
|
|
** jointype expresses the join between the table and the previous table.
|
|
*/
|
|
struct SrcList {
|
|
i16 nSrc; /* Number of tables or subqueries in the FROM clause */
|
|
i16 nAlloc; /* Number of entries allocated in a[] below */
|
|
struct SrcList_item {
|
|
char *zDatabase; /* Name of database holding this table */
|
|
char *zName; /* Name of the table */
|
|
char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */
|
|
Table *pTab; /* An SQL table corresponding to zName */
|
|
Select *pSelect; /* A SELECT statement used in place of a table name */
|
|
u8 isPopulated; /* Temporary table associated with SELECT is populated */
|
|
u8 jointype; /* Type of join between this able and the previous */
|
|
int iCursor; /* The VDBE cursor number used to access this table */
|
|
Expr *pOn; /* The ON clause of a join */
|
|
IdList *pUsing; /* The USING clause of a join */
|
|
Bitmask colUsed; /* Bit N (1<<N) set if column N or pTab is used */
|
|
} a[1]; /* One entry for each identifier on the list */
|
|
};
|
|
|
|
/*
|
|
** Permitted values of the SrcList.a.jointype field
|
|
*/
|
|
#define JT_INNER 0x0001 /* Any kind of inner or cross join */
|
|
#define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */
|
|
#define JT_NATURAL 0x0004 /* True for a "natural" join */
|
|
#define JT_LEFT 0x0008 /* Left outer join */
|
|
#define JT_RIGHT 0x0010 /* Right outer join */
|
|
#define JT_OUTER 0x0020 /* The "OUTER" keyword is present */
|
|
#define JT_ERROR 0x0040 /* unknown or unsupported join type */
|
|
|
|
/*
|
|
** For each nested loop in a WHERE clause implementation, the WhereInfo
|
|
** structure contains a single instance of this structure. This structure
|
|
** is intended to be private the the where.c module and should not be
|
|
** access or modified by other modules.
|
|
**
|
|
** The pIdxInfo and pBestIdx fields are used to help pick the best
|
|
** index on a virtual table. The pIdxInfo pointer contains indexing
|
|
** information for the i-th table in the FROM clause before reordering.
|
|
** All the pIdxInfo pointers are freed by whereInfoFree() in where.c.
|
|
** The pBestIdx pointer is a copy of pIdxInfo for the i-th table after
|
|
** FROM clause ordering. This is a little confusing so I will repeat
|
|
** it in different words. WhereInfo.a[i].pIdxInfo is index information
|
|
** for WhereInfo.pTabList.a[i]. WhereInfo.a[i].pBestInfo is the
|
|
** index information for the i-th loop of the join. pBestInfo is always
|
|
** either NULL or a copy of some pIdxInfo. So for cleanup it is
|
|
** sufficient to free all of the pIdxInfo pointers.
|
|
**
|
|
*/
|
|
struct WhereLevel {
|
|
int iFrom; /* Which entry in the FROM clause */
|
|
int flags; /* Flags associated with this level */
|
|
int iMem; /* First memory cell used by this level */
|
|
int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */
|
|
Index *pIdx; /* Index used. NULL if no index */
|
|
int iTabCur; /* The VDBE cursor used to access the table */
|
|
int iIdxCur; /* The VDBE cursor used to acesss pIdx */
|
|
int brk; /* Jump here to break out of the loop */
|
|
int nxt; /* Jump here to start the next IN combination */
|
|
int cont; /* Jump here to continue with the next loop cycle */
|
|
int top; /* First instruction of interior of the loop */
|
|
int op, p1, p2; /* Opcode used to terminate the loop */
|
|
int nEq; /* Number of == or IN constraints on this loop */
|
|
int nIn; /* Number of IN operators constraining this loop */
|
|
struct InLoop {
|
|
int iCur; /* The VDBE cursor used by this IN operator */
|
|
int topAddr; /* Top of the IN loop */
|
|
} *aInLoop; /* Information about each nested IN operator */
|
|
sqlite3_index_info *pBestIdx; /* Index information for this level */
|
|
|
|
/* The following field is really not part of the current level. But
|
|
** we need a place to cache index information for each table in the
|
|
** FROM clause and the WhereLevel structure is a convenient place.
|
|
*/
|
|
sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */
|
|
};
|
|
|
|
#define ORDERBY_NORMAL 0
|
|
#define ORDERBY_MIN 1
|
|
#define ORDERBY_MAX 2
|
|
|
|
/*
|
|
** The WHERE clause processing routine has two halves. The
|
|
** first part does the start of the WHERE loop and the second
|
|
** half does the tail of the WHERE loop. An instance of
|
|
** this structure is returned by the first half and passed
|
|
** into the second half to give some continuity.
|
|
*/
|
|
struct WhereInfo {
|
|
Parse *pParse;
|
|
SrcList *pTabList; /* List of tables in the join */
|
|
int iTop; /* The very beginning of the WHERE loop */
|
|
int iContinue; /* Jump here to continue with next record */
|
|
int iBreak; /* Jump here to break out of the loop */
|
|
int nLevel; /* Number of nested loop */
|
|
sqlite3_index_info **apInfo; /* Array of pointers to index info structures */
|
|
WhereLevel a[1]; /* Information about each nest loop in the WHERE */
|
|
};
|
|
|
|
/*
|
|
** A NameContext defines a context in which to resolve table and column
|
|
** names. The context consists of a list of tables (the pSrcList) field and
|
|
** a list of named expression (pEList). The named expression list may
|
|
** be NULL. The pSrc corresponds to the FROM clause of a SELECT or
|
|
** to the table being operated on by INSERT, UPDATE, or DELETE. The
|
|
** pEList corresponds to the result set of a SELECT and is NULL for
|
|
** other statements.
|
|
**
|
|
** NameContexts can be nested. When resolving names, the inner-most
|
|
** context is searched first. If no match is found, the next outer
|
|
** context is checked. If there is still no match, the next context
|
|
** is checked. This process continues until either a match is found
|
|
** or all contexts are check. When a match is found, the nRef member of
|
|
** the context containing the match is incremented.
|
|
**
|
|
** Each subquery gets a new NameContext. The pNext field points to the
|
|
** NameContext in the parent query. Thus the process of scanning the
|
|
** NameContext list corresponds to searching through successively outer
|
|
** subqueries looking for a match.
|
|
*/
|
|
struct NameContext {
|
|
Parse *pParse; /* The parser */
|
|
SrcList *pSrcList; /* One or more tables used to resolve names */
|
|
ExprList *pEList; /* Optional list of named expressions */
|
|
int nRef; /* Number of names resolved by this context */
|
|
int nErr; /* Number of errors encountered while resolving names */
|
|
u8 allowAgg; /* Aggregate functions allowed here */
|
|
u8 hasAgg; /* True if aggregates are seen */
|
|
u8 isCheck; /* True if resolving names in a CHECK constraint */
|
|
int nDepth; /* Depth of subquery recursion. 1 for no recursion */
|
|
AggInfo *pAggInfo; /* Information about aggregates at this level */
|
|
NameContext *pNext; /* Next outer name context. NULL for outermost */
|
|
};
|
|
|
|
/*
|
|
** An instance of the following structure contains all information
|
|
** needed to generate code for a single SELECT statement.
|
|
**
|
|
** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0.
|
|
** If there is a LIMIT clause, the parser sets nLimit to the value of the
|
|
** limit and nOffset to the value of the offset (or 0 if there is not
|
|
** offset). But later on, nLimit and nOffset become the memory locations
|
|
** in the VDBE that record the limit and offset counters.
|
|
**
|
|
** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
|
|
** These addresses must be stored so that we can go back and fill in
|
|
** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor
|
|
** the number of columns in P2 can be computed at the same time
|
|
** as the OP_OpenEphm instruction is coded because not
|
|
** enough information about the compound query is known at that point.
|
|
** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
|
|
** for the result set. The KeyInfo for addrOpenTran[2] contains collating
|
|
** sequences for the ORDER BY clause.
|
|
*/
|
|
struct Select {
|
|
ExprList *pEList; /* The fields of the result */
|
|
u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
|
|
u8 isDistinct; /* True if the DISTINCT keyword is present */
|
|
u8 isResolved; /* True once sqlite3SelectResolve() has run. */
|
|
u8 isAgg; /* True if this is an aggregate query */
|
|
u8 usesEphm; /* True if uses an OpenEphemeral opcode */
|
|
u8 disallowOrderBy; /* Do not allow an ORDER BY to be attached if TRUE */
|
|
char affinity; /* MakeRecord with this affinity for SRT_Set */
|
|
SrcList *pSrc; /* The FROM clause */
|
|
Expr *pWhere; /* The WHERE clause */
|
|
ExprList *pGroupBy; /* The GROUP BY clause */
|
|
Expr *pHaving; /* The HAVING clause */
|
|
ExprList *pOrderBy; /* The ORDER BY clause */
|
|
Select *pPrior; /* Prior select in a compound select statement */
|
|
Select *pNext; /* Next select to the left in a compound */
|
|
Select *pRightmost; /* Right-most select in a compound select statement */
|
|
Expr *pLimit; /* LIMIT expression. NULL means not used. */
|
|
Expr *pOffset; /* OFFSET expression. NULL means not used. */
|
|
int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */
|
|
int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */
|
|
};
|
|
|
|
/*
|
|
** The results of a select can be distributed in several ways.
|
|
*/
|
|
#define SRT_Union 1 /* Store result as keys in an index */
|
|
#define SRT_Except 2 /* Remove result from a UNION index */
|
|
#define SRT_Exists 3 /* Store 1 if the result is not empty */
|
|
#define SRT_Discard 4 /* Do not save the results anywhere */
|
|
|
|
/* The ORDER BY clause is ignored for all of the above */
|
|
#define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)
|
|
|
|
#define SRT_Callback 5 /* Invoke a callback with each row of result */
|
|
#define SRT_Mem 6 /* Store result in a memory cell */
|
|
#define SRT_Set 7 /* Store non-null results as keys in an index */
|
|
#define SRT_Table 8 /* Store result as data with an automatic rowid */
|
|
#define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */
|
|
#define SRT_Subroutine 10 /* Call a subroutine to handle results */
|
|
|
|
/*
|
|
** A structure used to customize the behaviour of sqlite3Select(). See
|
|
** comments above sqlite3Select() for details.
|
|
*/
|
|
typedef struct SelectDest SelectDest;
|
|
struct SelectDest {
|
|
u8 eDest; /* How to dispose of the results */
|
|
u8 affinity; /* Affinity used when eDest==SRT_Set */
|
|
int iParm; /* A parameter used by the eDest disposal method */
|
|
int iMem; /* Base register where results are written */
|
|
};
|
|
|
|
/*
|
|
** An SQL parser context. A copy of this structure is passed through
|
|
** the parser and down into all the parser action routine in order to
|
|
** carry around information that is global to the entire parse.
|
|
**
|
|
** The structure is divided into two parts. When the parser and code
|
|
** generate call themselves recursively, the first part of the structure
|
|
** is constant but the second part is reset at the beginning and end of
|
|
** each recursion.
|
|
**
|
|
** The nTableLock and aTableLock variables are only used if the shared-cache
|
|
** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
|
|
** used to store the set of table-locks required by the statement being
|
|
** compiled. Function sqlite3TableLock() is used to add entries to the
|
|
** list.
|
|
*/
|
|
struct Parse {
|
|
sqlite3 *db; /* The main database structure */
|
|
int rc; /* Return code from execution */
|
|
char *zErrMsg; /* An error message */
|
|
Vdbe *pVdbe; /* An engine for executing database bytecode */
|
|
u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */
|
|
u8 nameClash; /* A permanent table name clashes with temp table name */
|
|
u8 checkSchema; /* Causes schema cookie check after an error */
|
|
u8 nested; /* Number of nested calls to the parser/code generator */
|
|
u8 parseError; /* True after a parsing error. Ticket #1794 */
|
|
u8 nTempReg; /* Number of temporary registers in aTempReg[] */
|
|
u8 nTempInUse; /* Number of aTempReg[] currently checked out */
|
|
int aTempReg[8]; /* Holding area for temporary registers */
|
|
int nRangeReg; /* Size of the temporary register block */
|
|
int iRangeReg; /* First register in temporary register block */
|
|
int nErr; /* Number of errors seen */
|
|
int nTab; /* Number of previously allocated VDBE cursors */
|
|
int nMem; /* Number of memory cells used so far */
|
|
int nSet; /* Number of sets used so far */
|
|
int ckBase; /* Base register of data during check constraints */
|
|
u32 writeMask; /* Start a write transaction on these databases */
|
|
u32 cookieMask; /* Bitmask of schema verified databases */
|
|
int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */
|
|
int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
int nTableLock; /* Number of locks in aTableLock */
|
|
TableLock *aTableLock; /* Required table locks for shared-cache mode */
|
|
#endif
|
|
|
|
/* Above is constant between recursions. Below is reset before and after
|
|
** each recursion */
|
|
|
|
int regRowid; /* Register holding rowid of CREATE TABLE entry */
|
|
int regRoot; /* Register holding root page number for new objects */
|
|
int nVar; /* Number of '?' variables seen in the SQL so far */
|
|
int nVarExpr; /* Number of used slots in apVarExpr[] */
|
|
int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */
|
|
Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */
|
|
u8 explain; /* True if the EXPLAIN flag is found on the query */
|
|
Token sErrToken; /* The token at which the error occurred */
|
|
Token sNameToken; /* Token with unqualified schema object name */
|
|
Token sLastToken; /* The last token parsed */
|
|
const char *zSql; /* All SQL text */
|
|
const char *zTail; /* All SQL text past the last semicolon parsed */
|
|
Table *pNewTable; /* A table being constructed by CREATE TABLE */
|
|
Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */
|
|
TriggerStack *trigStack; /* Trigger actions being coded */
|
|
const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
Token sArg; /* Complete text of a module argument */
|
|
u8 declareVtab; /* True if inside sqlite3_declare_vtab() */
|
|
Table *pVirtualLock; /* Require virtual table lock on this table */
|
|
#endif
|
|
#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
|
|
int nHeight; /* Expression tree height of current sub-select */
|
|
#endif
|
|
};
|
|
|
|
#ifdef SQLITE_OMIT_VIRTUALTABLE
|
|
#define IN_DECLARE_VTAB 0
|
|
#else
|
|
#define IN_DECLARE_VTAB (pParse->declareVtab)
|
|
#endif
|
|
|
|
/*
|
|
** An instance of the following structure can be declared on a stack and used
|
|
** to save the Parse.zAuthContext value so that it can be restored later.
|
|
*/
|
|
struct AuthContext {
|
|
const char *zAuthContext; /* Put saved Parse.zAuthContext here */
|
|
Parse *pParse; /* The Parse structure */
|
|
};
|
|
|
|
/*
|
|
** Bitfield flags for P2 value in OP_Insert and OP_Delete
|
|
*/
|
|
#define OPFLAG_NCHANGE 1 /* Set to update db->nChange */
|
|
#define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */
|
|
#define OPFLAG_ISUPDATE 4 /* This OP_Insert is an sql UPDATE */
|
|
#define OPFLAG_APPEND 8 /* This is likely to be an append */
|
|
|
|
/*
|
|
* Each trigger present in the database schema is stored as an instance of
|
|
* struct Trigger.
|
|
*
|
|
* Pointers to instances of struct Trigger are stored in two ways.
|
|
* 1. In the "trigHash" hash table (part of the sqlite3* that represents the
|
|
* database). This allows Trigger structures to be retrieved by name.
|
|
* 2. All triggers associated with a single table form a linked list, using the
|
|
* pNext member of struct Trigger. A pointer to the first element of the
|
|
* linked list is stored as the "pTrigger" member of the associated
|
|
* struct Table.
|
|
*
|
|
* The "step_list" member points to the first element of a linked list
|
|
* containing the SQL statements specified as the trigger program.
|
|
*/
|
|
struct Trigger {
|
|
char *name; /* The name of the trigger */
|
|
char *table; /* The table or view to which the trigger applies */
|
|
u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */
|
|
u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
|
|
Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */
|
|
IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger,
|
|
the <column-list> is stored here */
|
|
Token nameToken; /* Token containing zName. Use during parsing only */
|
|
Schema *pSchema; /* Schema containing the trigger */
|
|
Schema *pTabSchema; /* Schema containing the table */
|
|
TriggerStep *step_list; /* Link list of trigger program steps */
|
|
Trigger *pNext; /* Next trigger associated with the table */
|
|
};
|
|
|
|
/*
|
|
** A trigger is either a BEFORE or an AFTER trigger. The following constants
|
|
** determine which.
|
|
**
|
|
** If there are multiple triggers, you might of some BEFORE and some AFTER.
|
|
** In that cases, the constants below can be ORed together.
|
|
*/
|
|
#define TRIGGER_BEFORE 1
|
|
#define TRIGGER_AFTER 2
|
|
|
|
/*
|
|
* An instance of struct TriggerStep is used to store a single SQL statement
|
|
* that is a part of a trigger-program.
|
|
*
|
|
* Instances of struct TriggerStep are stored in a singly linked list (linked
|
|
* using the "pNext" member) referenced by the "step_list" member of the
|
|
* associated struct Trigger instance. The first element of the linked list is
|
|
* the first step of the trigger-program.
|
|
*
|
|
* The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
|
|
* "SELECT" statement. The meanings of the other members is determined by the
|
|
* value of "op" as follows:
|
|
*
|
|
* (op == TK_INSERT)
|
|
* orconf -> stores the ON CONFLICT algorithm
|
|
* pSelect -> If this is an INSERT INTO ... SELECT ... statement, then
|
|
* this stores a pointer to the SELECT statement. Otherwise NULL.
|
|
* target -> A token holding the name of the table to insert into.
|
|
* pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
|
|
* this stores values to be inserted. Otherwise NULL.
|
|
* pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ...
|
|
* statement, then this stores the column-names to be
|
|
* inserted into.
|
|
*
|
|
* (op == TK_DELETE)
|
|
* target -> A token holding the name of the table to delete from.
|
|
* pWhere -> The WHERE clause of the DELETE statement if one is specified.
|
|
* Otherwise NULL.
|
|
*
|
|
* (op == TK_UPDATE)
|
|
* target -> A token holding the name of the table to update rows of.
|
|
* pWhere -> The WHERE clause of the UPDATE statement if one is specified.
|
|
* Otherwise NULL.
|
|
* pExprList -> A list of the columns to update and the expressions to update
|
|
* them to. See sqlite3Update() documentation of "pChanges"
|
|
* argument.
|
|
*
|
|
*/
|
|
struct TriggerStep {
|
|
int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
|
|
int orconf; /* OE_Rollback etc. */
|
|
Trigger *pTrig; /* The trigger that this step is a part of */
|
|
|
|
Select *pSelect; /* Valid for SELECT and sometimes
|
|
INSERT steps (when pExprList == 0) */
|
|
Token target; /* Valid for DELETE, UPDATE, INSERT steps */
|
|
Expr *pWhere; /* Valid for DELETE, UPDATE steps */
|
|
ExprList *pExprList; /* Valid for UPDATE statements and sometimes
|
|
INSERT steps (when pSelect == 0) */
|
|
IdList *pIdList; /* Valid for INSERT statements only */
|
|
TriggerStep *pNext; /* Next in the link-list */
|
|
TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */
|
|
};
|
|
|
|
/*
|
|
* An instance of struct TriggerStack stores information required during code
|
|
* generation of a single trigger program. While the trigger program is being
|
|
* coded, its associated TriggerStack instance is pointed to by the
|
|
* "pTriggerStack" member of the Parse structure.
|
|
*
|
|
* The pTab member points to the table that triggers are being coded on. The
|
|
* newIdx member contains the index of the vdbe cursor that points at the temp
|
|
* table that stores the new.* references. If new.* references are not valid
|
|
* for the trigger being coded (for example an ON DELETE trigger), then newIdx
|
|
* is set to -1. The oldIdx member is analogous to newIdx, for old.* references.
|
|
*
|
|
* The ON CONFLICT policy to be used for the trigger program steps is stored
|
|
* as the orconf member. If this is OE_Default, then the ON CONFLICT clause
|
|
* specified for individual triggers steps is used.
|
|
*
|
|
* struct TriggerStack has a "pNext" member, to allow linked lists to be
|
|
* constructed. When coding nested triggers (triggers fired by other triggers)
|
|
* each nested trigger stores its parent trigger's TriggerStack as the "pNext"
|
|
* pointer. Once the nested trigger has been coded, the pNext value is restored
|
|
* to the pTriggerStack member of the Parse stucture and coding of the parent
|
|
* trigger continues.
|
|
*
|
|
* Before a nested trigger is coded, the linked list pointed to by the
|
|
* pTriggerStack is scanned to ensure that the trigger is not about to be coded
|
|
* recursively. If this condition is detected, the nested trigger is not coded.
|
|
*/
|
|
struct TriggerStack {
|
|
Table *pTab; /* Table that triggers are currently being coded on */
|
|
int newIdx; /* Index of vdbe cursor to "new" temp table */
|
|
int oldIdx; /* Index of vdbe cursor to "old" temp table */
|
|
u32 newColMask;
|
|
u32 oldColMask;
|
|
int orconf; /* Current orconf policy */
|
|
int ignoreJump; /* where to jump to for a RAISE(IGNORE) */
|
|
Trigger *pTrigger; /* The trigger currently being coded */
|
|
TriggerStack *pNext; /* Next trigger down on the trigger stack */
|
|
};
|
|
|
|
/*
|
|
** The following structure contains information used by the sqliteFix...
|
|
** routines as they walk the parse tree to make database references
|
|
** explicit.
|
|
*/
|
|
typedef struct DbFixer DbFixer;
|
|
struct DbFixer {
|
|
Parse *pParse; /* The parsing context. Error messages written here */
|
|
const char *zDb; /* Make sure all objects are contained in this database */
|
|
const char *zType; /* Type of the container - used for error messages */
|
|
const Token *pName; /* Name of the container - used for error messages */
|
|
};
|
|
|
|
/*
|
|
** An objected used to accumulate the text of a string where we
|
|
** do not necessarily know how big the string will be in the end.
|
|
*/
|
|
struct StrAccum {
|
|
char *zBase; /* A base allocation. Not from malloc. */
|
|
char *zText; /* The string collected so far */
|
|
int nChar; /* Length of the string so far */
|
|
int nAlloc; /* Amount of space allocated in zText */
|
|
u8 mallocFailed; /* Becomes true if any memory allocation fails */
|
|
u8 useMalloc; /* True if zText is enlargable using realloc */
|
|
u8 tooBig; /* Becomes true if string size exceeds limits */
|
|
};
|
|
|
|
/*
|
|
** A pointer to this structure is used to communicate information
|
|
** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
|
|
*/
|
|
typedef struct {
|
|
sqlite3 *db; /* The database being initialized */
|
|
int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */
|
|
char **pzErrMsg; /* Error message stored here */
|
|
int rc; /* Result code stored here */
|
|
} InitData;
|
|
|
|
/*
|
|
** Assuming zIn points to the first byte of a UTF-8 character,
|
|
** advance zIn to point to the first byte of the next UTF-8 character.
|
|
*/
|
|
#define SQLITE_SKIP_UTF8(zIn) { \
|
|
if( (*(zIn++))>=0xc0 ){ \
|
|
while( (*zIn & 0xc0)==0x80 ){ zIn++; } \
|
|
} \
|
|
}
|
|
|
|
/*
|
|
** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production
|
|
** builds) or a function call (for debugging). If it is a function call,
|
|
** it allows the operator to set a breakpoint at the spot where database
|
|
** corruption is first detected.
|
|
*/
|
|
#ifdef SQLITE_DEBUG
|
|
SQLITE_PRIVATE int sqlite3Corrupt(void);
|
|
# define SQLITE_CORRUPT_BKPT sqlite3Corrupt()
|
|
# define DEBUGONLY(X) X
|
|
#else
|
|
# define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT
|
|
# define DEBUGONLY(X)
|
|
#endif
|
|
|
|
/*
|
|
** Internal function prototypes
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3StrICmp(const char *, const char *);
|
|
SQLITE_PRIVATE int sqlite3StrNICmp(const char *, const char *, int);
|
|
SQLITE_PRIVATE int sqlite3IsNumber(const char*, int*, u8);
|
|
|
|
SQLITE_PRIVATE void *sqlite3MallocZero(unsigned);
|
|
SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3*, unsigned);
|
|
SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3*, unsigned);
|
|
SQLITE_PRIVATE char *sqlite3StrDup(const char*);
|
|
SQLITE_PRIVATE char *sqlite3StrNDup(const char*, int);
|
|
SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3*,const char*);
|
|
SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3*,const char*, int);
|
|
SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *, void *, int);
|
|
SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *, void *, int);
|
|
|
|
SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3*,const char*, ...);
|
|
SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
|
|
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
|
|
SQLITE_PRIVATE void sqlite3DebugPrintf(const char*, ...);
|
|
#endif
|
|
#if defined(SQLITE_TEST)
|
|
SQLITE_PRIVATE void *sqlite3TextToPtr(const char*);
|
|
#endif
|
|
SQLITE_PRIVATE void sqlite3SetString(char **, ...);
|
|
SQLITE_PRIVATE void sqlite3ErrorMsg(Parse*, const char*, ...);
|
|
SQLITE_PRIVATE void sqlite3ErrorClear(Parse*);
|
|
SQLITE_PRIVATE void sqlite3Dequote(char*);
|
|
SQLITE_PRIVATE void sqlite3DequoteExpr(sqlite3*, Expr*);
|
|
SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char*, int);
|
|
SQLITE_PRIVATE int sqlite3RunParser(Parse*, const char*, char **);
|
|
SQLITE_PRIVATE void sqlite3FinishCoding(Parse*);
|
|
SQLITE_PRIVATE int sqlite3GetTempReg(Parse*);
|
|
SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse*,int);
|
|
SQLITE_PRIVATE int sqlite3GetTempRange(Parse*,int);
|
|
SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse*,int,int);
|
|
SQLITE_PRIVATE Expr *sqlite3Expr(sqlite3*, int, Expr*, Expr*, const Token*);
|
|
SQLITE_PRIVATE Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
|
|
SQLITE_PRIVATE Expr *sqlite3RegisterExpr(Parse*,Token*);
|
|
SQLITE_PRIVATE Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
|
|
SQLITE_PRIVATE void sqlite3ExprSpan(Expr*,Token*,Token*);
|
|
SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
|
|
SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse*, Expr*);
|
|
SQLITE_PRIVATE void sqlite3ExprDelete(Expr*);
|
|
SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*,Token*);
|
|
SQLITE_PRIVATE void sqlite3ExprListDelete(ExprList*);
|
|
SQLITE_PRIVATE int sqlite3Init(sqlite3*, char**);
|
|
SQLITE_PRIVATE int sqlite3InitCallback(void*, int, char**, char**);
|
|
SQLITE_PRIVATE void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
|
|
SQLITE_PRIVATE void sqlite3ResetInternalSchema(sqlite3*, int);
|
|
SQLITE_PRIVATE void sqlite3BeginParse(Parse*,int);
|
|
SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3*);
|
|
SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*);
|
|
SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *, int);
|
|
SQLITE_PRIVATE void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
|
|
SQLITE_PRIVATE void sqlite3AddColumn(Parse*,Token*);
|
|
SQLITE_PRIVATE void sqlite3AddNotNull(Parse*, int);
|
|
SQLITE_PRIVATE void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
|
|
SQLITE_PRIVATE void sqlite3AddCheckConstraint(Parse*, Expr*);
|
|
SQLITE_PRIVATE void sqlite3AddColumnType(Parse*,Token*);
|
|
SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse*,Expr*);
|
|
SQLITE_PRIVATE void sqlite3AddCollateType(Parse*, Token*);
|
|
SQLITE_PRIVATE void sqlite3EndTable(Parse*,Token*,Token*,Select*);
|
|
|
|
SQLITE_PRIVATE void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
|
|
|
|
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
|
|
SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse*,Table*);
|
|
#else
|
|
# define sqlite3ViewGetColumnNames(A,B) 0
|
|
#endif
|
|
|
|
SQLITE_PRIVATE void sqlite3DropTable(Parse*, SrcList*, int, int);
|
|
SQLITE_PRIVATE void sqlite3DeleteTable(Table*);
|
|
SQLITE_PRIVATE void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
|
|
SQLITE_PRIVATE void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*);
|
|
SQLITE_PRIVATE IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
|
|
SQLITE_PRIVATE int sqlite3IdListIndex(IdList*,const char*);
|
|
SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
|
|
SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, Token*,
|
|
Select*, Expr*, IdList*);
|
|
SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(SrcList*);
|
|
SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse*, SrcList*);
|
|
SQLITE_PRIVATE void sqlite3IdListDelete(IdList*);
|
|
SQLITE_PRIVATE void sqlite3SrcListDelete(SrcList*);
|
|
SQLITE_PRIVATE void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
|
|
Token*, int, int);
|
|
SQLITE_PRIVATE void sqlite3DropIndex(Parse*, SrcList*, int);
|
|
SQLITE_PRIVATE int sqlite3Select(Parse*, Select*, SelectDest*, Select*, int, int*, char *aff);
|
|
SQLITE_PRIVATE Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
|
|
Expr*,ExprList*,int,Expr*,Expr*);
|
|
SQLITE_PRIVATE void sqlite3SelectDelete(Select*);
|
|
SQLITE_PRIVATE void sqlite3SelectMask(Parse *, Select *, u32);
|
|
SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse*, SrcList*);
|
|
SQLITE_PRIVATE int sqlite3IsReadOnly(Parse*, Table*, int);
|
|
SQLITE_PRIVATE void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
|
|
SQLITE_PRIVATE void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
|
|
SQLITE_PRIVATE void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
|
|
SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u8);
|
|
SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo*);
|
|
SQLITE_PRIVATE void sqlite3ExprCodeGetColumn(Vdbe*, Table*, int, int, int);
|
|
SQLITE_PRIVATE int sqlite3ExprCode(Parse*, Expr*, int);
|
|
SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
|
|
SQLITE_PRIVATE int sqlite3ExprCodeAndCache(Parse*, Expr*, int);
|
|
SQLITE_PRIVATE int sqlite3ExprCodeExprList(Parse*, ExprList*, int);
|
|
SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
|
|
SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
|
|
SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3*,const char*, const char*);
|
|
SQLITE_PRIVATE Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
|
|
SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
|
|
SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
|
|
SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
|
|
SQLITE_PRIVATE void sqlite3Vacuum(Parse*);
|
|
SQLITE_PRIVATE int sqlite3RunVacuum(char**, sqlite3*);
|
|
SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3*, Token*);
|
|
SQLITE_PRIVATE int sqlite3ExprCompare(Expr*, Expr*);
|
|
SQLITE_PRIVATE int sqlite3ExprResolveNames(NameContext *, Expr *);
|
|
SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
|
|
SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
|
|
SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*);
|
|
SQLITE_PRIVATE Expr *sqlite3CreateIdExpr(Parse *, const char*);
|
|
SQLITE_PRIVATE void sqlite3Randomness(int, void*);
|
|
SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3*);
|
|
SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse*, int);
|
|
SQLITE_PRIVATE void sqlite3BeginTransaction(Parse*, int);
|
|
SQLITE_PRIVATE void sqlite3CommitTransaction(Parse*);
|
|
SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse*);
|
|
SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*);
|
|
SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*);
|
|
SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*);
|
|
SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*);
|
|
SQLITE_PRIVATE int sqlite3IsRowid(const char*);
|
|
SQLITE_PRIVATE void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int);
|
|
SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*);
|
|
SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int);
|
|
SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
|
|
int*,int,int,int,int);
|
|
SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*,int,int,int,int);
|
|
SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
|
|
SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int);
|
|
SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,Expr*);
|
|
SQLITE_PRIVATE void sqlite3TokenCopy(sqlite3*,Token*, Token*);
|
|
SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,ExprList*);
|
|
SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,SrcList*);
|
|
SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,IdList*);
|
|
SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,Select*);
|
|
SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int);
|
|
SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3*);
|
|
SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(sqlite3*);
|
|
#ifdef SQLITE_DEBUG
|
|
SQLITE_PRIVATE int sqlite3SafetyOn(sqlite3*);
|
|
SQLITE_PRIVATE int sqlite3SafetyOff(sqlite3*);
|
|
#else
|
|
# define sqlite3SafetyOn(A) 0
|
|
# define sqlite3SafetyOff(A) 0
|
|
#endif
|
|
SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3*);
|
|
SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3*);
|
|
SQLITE_PRIVATE void sqlite3ChangeCookie(Parse*, int);
|
|
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
SQLITE_PRIVATE void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
|
|
Expr*,int, int);
|
|
SQLITE_PRIVATE void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
|
|
SQLITE_PRIVATE void sqlite3DropTrigger(Parse*, SrcList*, int);
|
|
SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse*, Trigger*);
|
|
SQLITE_PRIVATE int sqlite3TriggersExist(Parse*, Table*, int, ExprList*);
|
|
SQLITE_PRIVATE int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int,
|
|
int, int, u32*, u32*);
|
|
void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
|
|
SQLITE_PRIVATE void sqlite3DeleteTriggerStep(TriggerStep*);
|
|
SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
|
|
SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
|
|
ExprList*,Select*,int);
|
|
SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, int);
|
|
SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
|
|
SQLITE_PRIVATE void sqlite3DeleteTrigger(Trigger*);
|
|
SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
|
|
#else
|
|
# define sqlite3TriggersExist(A,B,C,D,E,F) 0
|
|
# define sqlite3DeleteTrigger(A)
|
|
# define sqlite3DropTriggerPtr(A,B)
|
|
# define sqlite3UnlinkAndDeleteTrigger(A,B,C)
|
|
# define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I,J,K) 0
|
|
#endif
|
|
|
|
SQLITE_PRIVATE int sqlite3JoinType(Parse*, Token*, Token*, Token*);
|
|
SQLITE_PRIVATE void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
|
|
SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse*, int);
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
SQLITE_PRIVATE void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
|
|
SQLITE_PRIVATE int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
|
|
SQLITE_PRIVATE void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
|
|
SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext*);
|
|
#else
|
|
# define sqlite3AuthRead(a,b,c,d)
|
|
# define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK
|
|
# define sqlite3AuthContextPush(a,b,c)
|
|
# define sqlite3AuthContextPop(a) ((void)(a))
|
|
#endif
|
|
SQLITE_PRIVATE void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
|
|
SQLITE_PRIVATE void sqlite3Detach(Parse*, Expr*);
|
|
SQLITE_PRIVATE int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename,
|
|
int omitJournal, int nCache, int flags, Btree **ppBtree);
|
|
SQLITE_PRIVATE int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
|
|
SQLITE_PRIVATE int sqlite3FixSrcList(DbFixer*, SrcList*);
|
|
SQLITE_PRIVATE int sqlite3FixSelect(DbFixer*, Select*);
|
|
SQLITE_PRIVATE int sqlite3FixExpr(DbFixer*, Expr*);
|
|
SQLITE_PRIVATE int sqlite3FixExprList(DbFixer*, ExprList*);
|
|
SQLITE_PRIVATE int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
|
|
SQLITE_PRIVATE int sqlite3AtoF(const char *z, double*);
|
|
SQLITE_API char *sqlite3_snprintf(int,char*,const char*,...);
|
|
SQLITE_PRIVATE int sqlite3GetInt32(const char *, int*);
|
|
SQLITE_PRIVATE int sqlite3FitsIn64Bits(const char *, int);
|
|
SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *pData, int nChar);
|
|
SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *pData, int nByte);
|
|
SQLITE_PRIVATE int sqlite3Utf8Read(const u8*, const u8*, const u8**);
|
|
SQLITE_PRIVATE int sqlite3PutVarint(unsigned char *, u64);
|
|
SQLITE_PRIVATE int sqlite3GetVarint(const unsigned char *, u64 *);
|
|
SQLITE_PRIVATE int sqlite3GetVarint32(const unsigned char *, u32 *);
|
|
SQLITE_PRIVATE int sqlite3VarintLen(u64 v);
|
|
SQLITE_PRIVATE void sqlite3IndexAffinityStr(Vdbe *, Index *);
|
|
SQLITE_PRIVATE void sqlite3TableAffinityStr(Vdbe *, Table *);
|
|
SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2);
|
|
SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
|
|
SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr);
|
|
SQLITE_PRIVATE int sqlite3Atoi64(const char*, i64*);
|
|
SQLITE_PRIVATE void sqlite3Error(sqlite3*, int, const char*,...);
|
|
SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
|
|
SQLITE_PRIVATE int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
|
|
SQLITE_PRIVATE const char *sqlite3ErrStr(int);
|
|
SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse);
|
|
SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int);
|
|
SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName);
|
|
SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
|
|
SQLITE_PRIVATE Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *);
|
|
SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *);
|
|
SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *, const char *);
|
|
SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, int);
|
|
|
|
SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value*, u8);
|
|
SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value*, u8);
|
|
SQLITE_PRIVATE void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
|
|
void(*)(void*));
|
|
SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*);
|
|
SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *);
|
|
SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *, const void*, int);
|
|
SQLITE_PRIVATE int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
|
|
SQLITE_PRIVATE void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
|
|
#ifndef SQLITE_AMALGAMATION
|
|
SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[];
|
|
#endif
|
|
SQLITE_PRIVATE void sqlite3RootPageMoved(Db*, int, int);
|
|
SQLITE_PRIVATE void sqlite3Reindex(Parse*, Token*, Token*);
|
|
SQLITE_PRIVATE void sqlite3AlterFunctions(sqlite3*);
|
|
SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
|
|
SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *);
|
|
SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...);
|
|
SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*);
|
|
SQLITE_PRIVATE void sqlite3CodeSubselect(Parse *, Expr *);
|
|
SQLITE_PRIVATE int sqlite3SelectResolve(Parse *, Select *, NameContext *);
|
|
SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int);
|
|
SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *);
|
|
SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
|
|
SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int);
|
|
SQLITE_PRIVATE char sqlite3AffinityType(const Token*);
|
|
SQLITE_PRIVATE void sqlite3Analyze(Parse*, Token*, Token*);
|
|
SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler*);
|
|
SQLITE_PRIVATE int sqlite3FindDb(sqlite3*, Token*);
|
|
SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3*,int iDB);
|
|
SQLITE_PRIVATE void sqlite3DefaultRowEst(Index*);
|
|
SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3*, int);
|
|
SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
|
|
SQLITE_PRIVATE void sqlite3AttachFunctions(sqlite3 *);
|
|
SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse*, int, int);
|
|
SQLITE_PRIVATE void sqlite3SchemaFree(void *);
|
|
SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
|
|
SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
|
|
SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
|
|
SQLITE_PRIVATE int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
|
|
void (*)(sqlite3_context*,int,sqlite3_value **),
|
|
void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*));
|
|
SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 *db, int);
|
|
SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *);
|
|
|
|
SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum*,const char*,int);
|
|
SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum*);
|
|
SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum*);
|
|
SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest*,int,int);
|
|
|
|
/*
|
|
** The interface to the LEMON-generated parser
|
|
*/
|
|
SQLITE_PRIVATE void *sqlite3ParserAlloc(void*(*)(size_t));
|
|
SQLITE_PRIVATE void sqlite3ParserFree(void*, void(*)(void*));
|
|
SQLITE_PRIVATE void sqlite3Parser(void*, int, Token, Parse*);
|
|
|
|
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
|
SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3*);
|
|
SQLITE_PRIVATE int sqlite3AutoLoadExtensions(sqlite3*);
|
|
#else
|
|
# define sqlite3CloseExtensions(X)
|
|
# define sqlite3AutoLoadExtensions(X) SQLITE_OK
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
SQLITE_PRIVATE void sqlite3TableLock(Parse *, int, int, u8, const char *);
|
|
#else
|
|
#define sqlite3TableLock(v,w,x,y,z)
|
|
#endif
|
|
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char*);
|
|
#endif
|
|
|
|
#ifdef SQLITE_OMIT_VIRTUALTABLE
|
|
# define sqlite3VtabClear(X)
|
|
# define sqlite3VtabSync(X,Y) (Y)
|
|
# define sqlite3VtabRollback(X)
|
|
# define sqlite3VtabCommit(X)
|
|
#else
|
|
SQLITE_PRIVATE void sqlite3VtabClear(Table*);
|
|
SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, int rc);
|
|
SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db);
|
|
SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db);
|
|
#endif
|
|
SQLITE_PRIVATE void sqlite3VtabLock(sqlite3_vtab*);
|
|
SQLITE_PRIVATE void sqlite3VtabUnlock(sqlite3*, sqlite3_vtab*);
|
|
SQLITE_PRIVATE void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*);
|
|
SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse*, Token*);
|
|
SQLITE_PRIVATE void sqlite3VtabArgInit(Parse*);
|
|
SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse*, Token*);
|
|
SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
|
|
SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse*, Table*);
|
|
SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
|
|
SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *, sqlite3_vtab *);
|
|
SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
|
|
SQLITE_PRIVATE void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
|
|
SQLITE_PRIVATE int sqlite3Reprepare(Vdbe*);
|
|
SQLITE_PRIVATE void sqlite3ExprListCheckLength(Parse*, ExprList*, int, const char*);
|
|
SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
|
|
|
|
|
|
/*
|
|
** Available fault injectors. Should be numbered beginning with 0.
|
|
*/
|
|
#define SQLITE_FAULTINJECTOR_MALLOC 0
|
|
#define SQLITE_FAULTINJECTOR_COUNT 1
|
|
|
|
/*
|
|
** The interface to the fault injector subsystem. If the fault injector
|
|
** mechanism is disabled at compile-time then set up macros so that no
|
|
** unnecessary code is generated.
|
|
*/
|
|
#ifndef SQLITE_OMIT_FAULTINJECTOR
|
|
SQLITE_PRIVATE void sqlite3FaultConfig(int,int,int);
|
|
SQLITE_PRIVATE int sqlite3FaultFailures(int);
|
|
SQLITE_PRIVATE int sqlite3FaultBenignFailures(int);
|
|
SQLITE_PRIVATE int sqlite3FaultPending(int);
|
|
SQLITE_PRIVATE void sqlite3FaultBenign(int,int);
|
|
SQLITE_PRIVATE int sqlite3FaultStep(int);
|
|
#else
|
|
# define sqlite3FaultConfig(A,B,C)
|
|
# define sqlite3FaultFailures(A) 0
|
|
# define sqlite3FaultBenignFailures(A) 0
|
|
# define sqlite3FaultPending(A) (-1)
|
|
# define sqlite3FaultBenign(A,B)
|
|
# define sqlite3FaultStep(A) 0
|
|
#endif
|
|
|
|
|
|
|
|
#define IN_INDEX_ROWID 1
|
|
#define IN_INDEX_EPH 2
|
|
#define IN_INDEX_INDEX 3
|
|
SQLITE_PRIVATE int sqlite3FindInIndex(Parse *, Expr *, int);
|
|
|
|
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
|
|
SQLITE_PRIVATE int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
|
|
SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *);
|
|
SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *);
|
|
#else
|
|
#define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
|
|
#endif
|
|
|
|
#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
|
|
SQLITE_PRIVATE void sqlite3ExprSetHeight(Expr *);
|
|
SQLITE_PRIVATE int sqlite3SelectExprHeight(Select *);
|
|
#else
|
|
#define sqlite3ExprSetHeight(x)
|
|
#endif
|
|
|
|
SQLITE_PRIVATE u32 sqlite3Get4byte(const u8*);
|
|
SQLITE_PRIVATE void sqlite3Put4byte(u8*, u32);
|
|
|
|
#ifdef SQLITE_SSE
|
|
#include "sseInt.h"
|
|
#endif
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
SQLITE_PRIVATE void sqlite3ParserTrace(FILE*, char *);
|
|
#endif
|
|
|
|
/*
|
|
** If the SQLITE_ENABLE IOTRACE exists then the global variable
|
|
** sqlite3_io_trace is a pointer to a printf-like routine used to
|
|
** print I/O tracing messages.
|
|
*/
|
|
#ifdef SQLITE_ENABLE_IOTRACE
|
|
# define IOTRACE(A) if( sqlite3_io_trace ){ sqlite3_io_trace A; }
|
|
SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe*);
|
|
#else
|
|
# define IOTRACE(A)
|
|
# define sqlite3VdbeIOTraceSql(X)
|
|
#endif
|
|
SQLITE_EXTERN void (*sqlite3_io_trace)(const char*,...);
|
|
|
|
#endif
|
|
|
|
/************** End of sqliteInt.h *******************************************/
|
|
/************** Begin file date.c ********************************************/
|
|
/*
|
|
** 2003 October 31
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains the C functions that implement date and time
|
|
** functions for SQLite.
|
|
**
|
|
** There is only one exported symbol in this file - the function
|
|
** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
|
|
** All other code has file scope.
|
|
**
|
|
** $Id: date.c,v 1.75 2008/01/17 22:27:54 drh Exp $
|
|
**
|
|
** SQLite processes all times and dates as Julian Day numbers. The
|
|
** dates and times are stored as the number of days since noon
|
|
** in Greenwich on November 24, 4714 B.C. according to the Gregorian
|
|
** calendar system.
|
|
**
|
|
** 1970-01-01 00:00:00 is JD 2440587.5
|
|
** 2000-01-01 00:00:00 is JD 2451544.5
|
|
**
|
|
** This implemention requires years to be expressed as a 4-digit number
|
|
** which means that only dates between 0000-01-01 and 9999-12-31 can
|
|
** be represented, even though julian day numbers allow a much wider
|
|
** range of dates.
|
|
**
|
|
** The Gregorian calendar system is used for all dates and times,
|
|
** even those that predate the Gregorian calendar. Historians usually
|
|
** use the Julian calendar for dates prior to 1582-10-15 and for some
|
|
** dates afterwards, depending on locale. Beware of this difference.
|
|
**
|
|
** The conversion algorithms are implemented based on descriptions
|
|
** in the following text:
|
|
**
|
|
** Jean Meeus
|
|
** Astronomical Algorithms, 2nd Edition, 1998
|
|
** ISBM 0-943396-61-1
|
|
** Willmann-Bell, Inc
|
|
** Richmond, Virginia (USA)
|
|
*/
|
|
#include <ctype.h>
|
|
#include <time.h>
|
|
|
|
#ifndef SQLITE_OMIT_DATETIME_FUNCS
|
|
|
|
/*
|
|
** A structure for holding a single date and time.
|
|
*/
|
|
typedef struct DateTime DateTime;
|
|
struct DateTime {
|
|
double rJD; /* The julian day number */
|
|
int Y, M, D; /* Year, month, and day */
|
|
int h, m; /* Hour and minutes */
|
|
int tz; /* Timezone offset in minutes */
|
|
double s; /* Seconds */
|
|
char validYMD; /* True if Y,M,D are valid */
|
|
char validHMS; /* True if h,m,s are valid */
|
|
char validJD; /* True if rJD is valid */
|
|
char validTZ; /* True if tz is valid */
|
|
};
|
|
|
|
|
|
/*
|
|
** Convert zDate into one or more integers. Additional arguments
|
|
** come in groups of 5 as follows:
|
|
**
|
|
** N number of digits in the integer
|
|
** min minimum allowed value of the integer
|
|
** max maximum allowed value of the integer
|
|
** nextC first character after the integer
|
|
** pVal where to write the integers value.
|
|
**
|
|
** Conversions continue until one with nextC==0 is encountered.
|
|
** The function returns the number of successful conversions.
|
|
*/
|
|
static int getDigits(const char *zDate, ...){
|
|
va_list ap;
|
|
int val;
|
|
int N;
|
|
int min;
|
|
int max;
|
|
int nextC;
|
|
int *pVal;
|
|
int cnt = 0;
|
|
va_start(ap, zDate);
|
|
do{
|
|
N = va_arg(ap, int);
|
|
min = va_arg(ap, int);
|
|
max = va_arg(ap, int);
|
|
nextC = va_arg(ap, int);
|
|
pVal = va_arg(ap, int*);
|
|
val = 0;
|
|
while( N-- ){
|
|
if( !isdigit(*(u8*)zDate) ){
|
|
goto end_getDigits;
|
|
}
|
|
val = val*10 + *zDate - '0';
|
|
zDate++;
|
|
}
|
|
if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
|
|
goto end_getDigits;
|
|
}
|
|
*pVal = val;
|
|
zDate++;
|
|
cnt++;
|
|
}while( nextC );
|
|
end_getDigits:
|
|
va_end(ap);
|
|
return cnt;
|
|
}
|
|
|
|
/*
|
|
** Read text from z[] and convert into a floating point number. Return
|
|
** the number of digits converted.
|
|
*/
|
|
#define getValue sqlite3AtoF
|
|
|
|
/*
|
|
** Parse a timezone extension on the end of a date-time.
|
|
** The extension is of the form:
|
|
**
|
|
** (+/-)HH:MM
|
|
**
|
|
** If the parse is successful, write the number of minutes
|
|
** of change in *pnMin and return 0. If a parser error occurs,
|
|
** return 0.
|
|
**
|
|
** A missing specifier is not considered an error.
|
|
*/
|
|
static int parseTimezone(const char *zDate, DateTime *p){
|
|
int sgn = 0;
|
|
int nHr, nMn;
|
|
while( isspace(*(u8*)zDate) ){ zDate++; }
|
|
p->tz = 0;
|
|
if( *zDate=='-' ){
|
|
sgn = -1;
|
|
}else if( *zDate=='+' ){
|
|
sgn = +1;
|
|
}else{
|
|
return *zDate!=0;
|
|
}
|
|
zDate++;
|
|
if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
|
|
return 1;
|
|
}
|
|
zDate += 5;
|
|
p->tz = sgn*(nMn + nHr*60);
|
|
while( isspace(*(u8*)zDate) ){ zDate++; }
|
|
return *zDate!=0;
|
|
}
|
|
|
|
/*
|
|
** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
|
|
** The HH, MM, and SS must each be exactly 2 digits. The
|
|
** fractional seconds FFFF can be one or more digits.
|
|
**
|
|
** Return 1 if there is a parsing error and 0 on success.
|
|
*/
|
|
static int parseHhMmSs(const char *zDate, DateTime *p){
|
|
int h, m, s;
|
|
double ms = 0.0;
|
|
if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
|
|
return 1;
|
|
}
|
|
zDate += 5;
|
|
if( *zDate==':' ){
|
|
zDate++;
|
|
if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
|
|
return 1;
|
|
}
|
|
zDate += 2;
|
|
if( *zDate=='.' && isdigit((u8)zDate[1]) ){
|
|
double rScale = 1.0;
|
|
zDate++;
|
|
while( isdigit(*(u8*)zDate) ){
|
|
ms = ms*10.0 + *zDate - '0';
|
|
rScale *= 10.0;
|
|
zDate++;
|
|
}
|
|
ms /= rScale;
|
|
}
|
|
}else{
|
|
s = 0;
|
|
}
|
|
p->validJD = 0;
|
|
p->validHMS = 1;
|
|
p->h = h;
|
|
p->m = m;
|
|
p->s = s + ms;
|
|
if( parseTimezone(zDate, p) ) return 1;
|
|
p->validTZ = p->tz!=0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
|
|
** that the YYYY-MM-DD is according to the Gregorian calendar.
|
|
**
|
|
** Reference: Meeus page 61
|
|
*/
|
|
static void computeJD(DateTime *p){
|
|
int Y, M, D, A, B, X1, X2;
|
|
|
|
if( p->validJD ) return;
|
|
if( p->validYMD ){
|
|
Y = p->Y;
|
|
M = p->M;
|
|
D = p->D;
|
|
}else{
|
|
Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
|
|
M = 1;
|
|
D = 1;
|
|
}
|
|
if( M<=2 ){
|
|
Y--;
|
|
M += 12;
|
|
}
|
|
A = Y/100;
|
|
B = 2 - A + (A/4);
|
|
X1 = 365.25*(Y+4716);
|
|
X2 = 30.6001*(M+1);
|
|
p->rJD = X1 + X2 + D + B - 1524.5;
|
|
p->validJD = 1;
|
|
if( p->validHMS ){
|
|
p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0;
|
|
if( p->validTZ ){
|
|
p->rJD -= p->tz*60/86400.0;
|
|
p->validYMD = 0;
|
|
p->validHMS = 0;
|
|
p->validTZ = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Parse dates of the form
|
|
**
|
|
** YYYY-MM-DD HH:MM:SS.FFF
|
|
** YYYY-MM-DD HH:MM:SS
|
|
** YYYY-MM-DD HH:MM
|
|
** YYYY-MM-DD
|
|
**
|
|
** Write the result into the DateTime structure and return 0
|
|
** on success and 1 if the input string is not a well-formed
|
|
** date.
|
|
*/
|
|
static int parseYyyyMmDd(const char *zDate, DateTime *p){
|
|
int Y, M, D, neg;
|
|
|
|
if( zDate[0]=='-' ){
|
|
zDate++;
|
|
neg = 1;
|
|
}else{
|
|
neg = 0;
|
|
}
|
|
if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
|
|
return 1;
|
|
}
|
|
zDate += 10;
|
|
while( isspace(*(u8*)zDate) || 'T'==*(u8*)zDate ){ zDate++; }
|
|
if( parseHhMmSs(zDate, p)==0 ){
|
|
/* We got the time */
|
|
}else if( *zDate==0 ){
|
|
p->validHMS = 0;
|
|
}else{
|
|
return 1;
|
|
}
|
|
p->validJD = 0;
|
|
p->validYMD = 1;
|
|
p->Y = neg ? -Y : Y;
|
|
p->M = M;
|
|
p->D = D;
|
|
if( p->validTZ ){
|
|
computeJD(p);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Attempt to parse the given string into a Julian Day Number. Return
|
|
** the number of errors.
|
|
**
|
|
** The following are acceptable forms for the input string:
|
|
**
|
|
** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
|
|
** DDDD.DD
|
|
** now
|
|
**
|
|
** In the first form, the +/-HH:MM is always optional. The fractional
|
|
** seconds extension (the ".FFF") is optional. The seconds portion
|
|
** (":SS.FFF") is option. The year and date can be omitted as long
|
|
** as there is a time string. The time string can be omitted as long
|
|
** as there is a year and date.
|
|
*/
|
|
static int parseDateOrTime(
|
|
sqlite3_context *context,
|
|
const char *zDate,
|
|
DateTime *p
|
|
){
|
|
memset(p, 0, sizeof(*p));
|
|
if( parseYyyyMmDd(zDate,p)==0 ){
|
|
return 0;
|
|
}else if( parseHhMmSs(zDate, p)==0 ){
|
|
return 0;
|
|
}else if( sqlite3StrICmp(zDate,"now")==0){
|
|
double r;
|
|
sqlite3OsCurrentTime((sqlite3_vfs *)sqlite3_user_data(context), &r);
|
|
p->rJD = r;
|
|
p->validJD = 1;
|
|
return 0;
|
|
}else if( sqlite3IsNumber(zDate, 0, SQLITE_UTF8) ){
|
|
getValue(zDate, &p->rJD);
|
|
p->validJD = 1;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Compute the Year, Month, and Day from the julian day number.
|
|
*/
|
|
static void computeYMD(DateTime *p){
|
|
int Z, A, B, C, D, E, X1;
|
|
if( p->validYMD ) return;
|
|
if( !p->validJD ){
|
|
p->Y = 2000;
|
|
p->M = 1;
|
|
p->D = 1;
|
|
}else{
|
|
Z = p->rJD + 0.5;
|
|
A = (Z - 1867216.25)/36524.25;
|
|
A = Z + 1 + A - (A/4);
|
|
B = A + 1524;
|
|
C = (B - 122.1)/365.25;
|
|
D = 365.25*C;
|
|
E = (B-D)/30.6001;
|
|
X1 = 30.6001*E;
|
|
p->D = B - D - X1;
|
|
p->M = E<14 ? E-1 : E-13;
|
|
p->Y = p->M>2 ? C - 4716 : C - 4715;
|
|
}
|
|
p->validYMD = 1;
|
|
}
|
|
|
|
/*
|
|
** Compute the Hour, Minute, and Seconds from the julian day number.
|
|
*/
|
|
static void computeHMS(DateTime *p){
|
|
int Z, s;
|
|
if( p->validHMS ) return;
|
|
computeJD(p);
|
|
Z = p->rJD + 0.5;
|
|
s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5;
|
|
p->s = 0.001*s;
|
|
s = p->s;
|
|
p->s -= s;
|
|
p->h = s/3600;
|
|
s -= p->h*3600;
|
|
p->m = s/60;
|
|
p->s += s - p->m*60;
|
|
p->validHMS = 1;
|
|
}
|
|
|
|
/*
|
|
** Compute both YMD and HMS
|
|
*/
|
|
static void computeYMD_HMS(DateTime *p){
|
|
computeYMD(p);
|
|
computeHMS(p);
|
|
}
|
|
|
|
/*
|
|
** Clear the YMD and HMS and the TZ
|
|
*/
|
|
static void clearYMD_HMS_TZ(DateTime *p){
|
|
p->validYMD = 0;
|
|
p->validHMS = 0;
|
|
p->validTZ = 0;
|
|
}
|
|
|
|
/*
|
|
** Compute the difference (in days) between localtime and UTC (a.k.a. GMT)
|
|
** for the time value p where p is in UTC.
|
|
*/
|
|
static double localtimeOffset(DateTime *p){
|
|
DateTime x, y;
|
|
time_t t;
|
|
x = *p;
|
|
computeYMD_HMS(&x);
|
|
if( x.Y<1971 || x.Y>=2038 ){
|
|
x.Y = 2000;
|
|
x.M = 1;
|
|
x.D = 1;
|
|
x.h = 0;
|
|
x.m = 0;
|
|
x.s = 0.0;
|
|
} else {
|
|
int s = x.s + 0.5;
|
|
x.s = s;
|
|
}
|
|
x.tz = 0;
|
|
x.validJD = 0;
|
|
computeJD(&x);
|
|
t = (x.rJD-2440587.5)*86400.0 + 0.5;
|
|
#ifdef HAVE_LOCALTIME_R
|
|
{
|
|
struct tm sLocal;
|
|
localtime_r(&t, &sLocal);
|
|
y.Y = sLocal.tm_year + 1900;
|
|
y.M = sLocal.tm_mon + 1;
|
|
y.D = sLocal.tm_mday;
|
|
y.h = sLocal.tm_hour;
|
|
y.m = sLocal.tm_min;
|
|
y.s = sLocal.tm_sec;
|
|
}
|
|
#else
|
|
{
|
|
struct tm *pTm;
|
|
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
|
|
pTm = localtime(&t);
|
|
y.Y = pTm->tm_year + 1900;
|
|
y.M = pTm->tm_mon + 1;
|
|
y.D = pTm->tm_mday;
|
|
y.h = pTm->tm_hour;
|
|
y.m = pTm->tm_min;
|
|
y.s = pTm->tm_sec;
|
|
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
|
|
}
|
|
#endif
|
|
y.validYMD = 1;
|
|
y.validHMS = 1;
|
|
y.validJD = 0;
|
|
y.validTZ = 0;
|
|
computeJD(&y);
|
|
return y.rJD - x.rJD;
|
|
}
|
|
|
|
/*
|
|
** Process a modifier to a date-time stamp. The modifiers are
|
|
** as follows:
|
|
**
|
|
** NNN days
|
|
** NNN hours
|
|
** NNN minutes
|
|
** NNN.NNNN seconds
|
|
** NNN months
|
|
** NNN years
|
|
** start of month
|
|
** start of year
|
|
** start of week
|
|
** start of day
|
|
** weekday N
|
|
** unixepoch
|
|
** localtime
|
|
** utc
|
|
**
|
|
** Return 0 on success and 1 if there is any kind of error.
|
|
*/
|
|
static int parseModifier(const char *zMod, DateTime *p){
|
|
int rc = 1;
|
|
int n;
|
|
double r;
|
|
char *z, zBuf[30];
|
|
z = zBuf;
|
|
for(n=0; n<sizeof(zBuf)-1 && zMod[n]; n++){
|
|
z[n] = tolower(zMod[n]);
|
|
}
|
|
z[n] = 0;
|
|
switch( z[0] ){
|
|
case 'l': {
|
|
/* localtime
|
|
**
|
|
** Assuming the current time value is UTC (a.k.a. GMT), shift it to
|
|
** show local time.
|
|
*/
|
|
if( strcmp(z, "localtime")==0 ){
|
|
computeJD(p);
|
|
p->rJD += localtimeOffset(p);
|
|
clearYMD_HMS_TZ(p);
|
|
rc = 0;
|
|
}
|
|
break;
|
|
}
|
|
case 'u': {
|
|
/*
|
|
** unixepoch
|
|
**
|
|
** Treat the current value of p->rJD as the number of
|
|
** seconds since 1970. Convert to a real julian day number.
|
|
*/
|
|
if( strcmp(z, "unixepoch")==0 && p->validJD ){
|
|
p->rJD = p->rJD/86400.0 + 2440587.5;
|
|
clearYMD_HMS_TZ(p);
|
|
rc = 0;
|
|
}else if( strcmp(z, "utc")==0 ){
|
|
double c1;
|
|
computeJD(p);
|
|
c1 = localtimeOffset(p);
|
|
p->rJD -= c1;
|
|
clearYMD_HMS_TZ(p);
|
|
p->rJD += c1 - localtimeOffset(p);
|
|
rc = 0;
|
|
}
|
|
break;
|
|
}
|
|
case 'w': {
|
|
/*
|
|
** weekday N
|
|
**
|
|
** Move the date to the same time on the next occurrence of
|
|
** weekday N where 0==Sunday, 1==Monday, and so forth. If the
|
|
** date is already on the appropriate weekday, this is a no-op.
|
|
*/
|
|
if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
|
|
&& (n=r)==r && n>=0 && r<7 ){
|
|
int Z;
|
|
computeYMD_HMS(p);
|
|
p->validTZ = 0;
|
|
p->validJD = 0;
|
|
computeJD(p);
|
|
Z = p->rJD + 1.5;
|
|
Z %= 7;
|
|
if( Z>n ) Z -= 7;
|
|
p->rJD += n - Z;
|
|
clearYMD_HMS_TZ(p);
|
|
rc = 0;
|
|
}
|
|
break;
|
|
}
|
|
case 's': {
|
|
/*
|
|
** start of TTTTT
|
|
**
|
|
** Move the date backwards to the beginning of the current day,
|
|
** or month or year.
|
|
*/
|
|
if( strncmp(z, "start of ", 9)!=0 ) break;
|
|
z += 9;
|
|
computeYMD(p);
|
|
p->validHMS = 1;
|
|
p->h = p->m = 0;
|
|
p->s = 0.0;
|
|
p->validTZ = 0;
|
|
p->validJD = 0;
|
|
if( strcmp(z,"month")==0 ){
|
|
p->D = 1;
|
|
rc = 0;
|
|
}else if( strcmp(z,"year")==0 ){
|
|
computeYMD(p);
|
|
p->M = 1;
|
|
p->D = 1;
|
|
rc = 0;
|
|
}else if( strcmp(z,"day")==0 ){
|
|
rc = 0;
|
|
}
|
|
break;
|
|
}
|
|
case '+':
|
|
case '-':
|
|
case '0':
|
|
case '1':
|
|
case '2':
|
|
case '3':
|
|
case '4':
|
|
case '5':
|
|
case '6':
|
|
case '7':
|
|
case '8':
|
|
case '9': {
|
|
n = getValue(z, &r);
|
|
assert( n>=1 );
|
|
if( z[n]==':' ){
|
|
/* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
|
|
** specified number of hours, minutes, seconds, and fractional seconds
|
|
** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
|
|
** omitted.
|
|
*/
|
|
const char *z2 = z;
|
|
DateTime tx;
|
|
int day;
|
|
if( !isdigit(*(u8*)z2) ) z2++;
|
|
memset(&tx, 0, sizeof(tx));
|
|
if( parseHhMmSs(z2, &tx) ) break;
|
|
computeJD(&tx);
|
|
tx.rJD -= 0.5;
|
|
day = (int)tx.rJD;
|
|
tx.rJD -= day;
|
|
if( z[0]=='-' ) tx.rJD = -tx.rJD;
|
|
computeJD(p);
|
|
clearYMD_HMS_TZ(p);
|
|
p->rJD += tx.rJD;
|
|
rc = 0;
|
|
break;
|
|
}
|
|
z += n;
|
|
while( isspace(*(u8*)z) ) z++;
|
|
n = strlen(z);
|
|
if( n>10 || n<3 ) break;
|
|
if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
|
|
computeJD(p);
|
|
rc = 0;
|
|
if( n==3 && strcmp(z,"day")==0 ){
|
|
p->rJD += r;
|
|
}else if( n==4 && strcmp(z,"hour")==0 ){
|
|
p->rJD += r/24.0;
|
|
}else if( n==6 && strcmp(z,"minute")==0 ){
|
|
p->rJD += r/(24.0*60.0);
|
|
}else if( n==6 && strcmp(z,"second")==0 ){
|
|
p->rJD += r/(24.0*60.0*60.0);
|
|
}else if( n==5 && strcmp(z,"month")==0 ){
|
|
int x, y;
|
|
computeYMD_HMS(p);
|
|
p->M += r;
|
|
x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
|
|
p->Y += x;
|
|
p->M -= x*12;
|
|
p->validJD = 0;
|
|
computeJD(p);
|
|
y = r;
|
|
if( y!=r ){
|
|
p->rJD += (r - y)*30.0;
|
|
}
|
|
}else if( n==4 && strcmp(z,"year")==0 ){
|
|
computeYMD_HMS(p);
|
|
p->Y += r;
|
|
p->validJD = 0;
|
|
computeJD(p);
|
|
}else{
|
|
rc = 1;
|
|
}
|
|
clearYMD_HMS_TZ(p);
|
|
break;
|
|
}
|
|
default: {
|
|
break;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Process time function arguments. argv[0] is a date-time stamp.
|
|
** argv[1] and following are modifiers. Parse them all and write
|
|
** the resulting time into the DateTime structure p. Return 0
|
|
** on success and 1 if there are any errors.
|
|
**
|
|
** If there are zero parameters (if even argv[0] is undefined)
|
|
** then assume a default value of "now" for argv[0].
|
|
*/
|
|
static int isDate(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv,
|
|
DateTime *p
|
|
){
|
|
int i;
|
|
const unsigned char *z;
|
|
static const unsigned char zDflt[] = "now";
|
|
if( argc==0 ){
|
|
z = zDflt;
|
|
}else{
|
|
z = sqlite3_value_text(argv[0]);
|
|
}
|
|
if( !z || parseDateOrTime(context, (char*)z, p) ){
|
|
return 1;
|
|
}
|
|
for(i=1; i<argc; i++){
|
|
if( (z = sqlite3_value_text(argv[i]))==0 || parseModifier((char*)z, p) ){
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
** The following routines implement the various date and time functions
|
|
** of SQLite.
|
|
*/
|
|
|
|
/*
|
|
** julianday( TIMESTRING, MOD, MOD, ...)
|
|
**
|
|
** Return the julian day number of the date specified in the arguments
|
|
*/
|
|
static void juliandayFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
DateTime x;
|
|
if( isDate(context, argc, argv, &x)==0 ){
|
|
computeJD(&x);
|
|
sqlite3_result_double(context, x.rJD);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** datetime( TIMESTRING, MOD, MOD, ...)
|
|
**
|
|
** Return YYYY-MM-DD HH:MM:SS
|
|
*/
|
|
static void datetimeFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
DateTime x;
|
|
if( isDate(context, argc, argv, &x)==0 ){
|
|
char zBuf[100];
|
|
computeYMD_HMS(&x);
|
|
sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d",
|
|
x.Y, x.M, x.D, x.h, x.m, (int)(x.s));
|
|
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** time( TIMESTRING, MOD, MOD, ...)
|
|
**
|
|
** Return HH:MM:SS
|
|
*/
|
|
static void timeFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
DateTime x;
|
|
if( isDate(context, argc, argv, &x)==0 ){
|
|
char zBuf[100];
|
|
computeHMS(&x);
|
|
sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
|
|
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** date( TIMESTRING, MOD, MOD, ...)
|
|
**
|
|
** Return YYYY-MM-DD
|
|
*/
|
|
static void dateFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
DateTime x;
|
|
if( isDate(context, argc, argv, &x)==0 ){
|
|
char zBuf[100];
|
|
computeYMD(&x);
|
|
sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
|
|
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
|
|
**
|
|
** Return a string described by FORMAT. Conversions as follows:
|
|
**
|
|
** %d day of month
|
|
** %f ** fractional seconds SS.SSS
|
|
** %H hour 00-24
|
|
** %j day of year 000-366
|
|
** %J ** Julian day number
|
|
** %m month 01-12
|
|
** %M minute 00-59
|
|
** %s seconds since 1970-01-01
|
|
** %S seconds 00-59
|
|
** %w day of week 0-6 sunday==0
|
|
** %W week of year 00-53
|
|
** %Y year 0000-9999
|
|
** %% %
|
|
*/
|
|
static void strftimeFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
DateTime x;
|
|
u64 n;
|
|
int i, j;
|
|
char *z;
|
|
const char *zFmt = (const char*)sqlite3_value_text(argv[0]);
|
|
char zBuf[100];
|
|
if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
|
|
for(i=0, n=1; zFmt[i]; i++, n++){
|
|
if( zFmt[i]=='%' ){
|
|
switch( zFmt[i+1] ){
|
|
case 'd':
|
|
case 'H':
|
|
case 'm':
|
|
case 'M':
|
|
case 'S':
|
|
case 'W':
|
|
n++;
|
|
/* fall thru */
|
|
case 'w':
|
|
case '%':
|
|
break;
|
|
case 'f':
|
|
n += 8;
|
|
break;
|
|
case 'j':
|
|
n += 3;
|
|
break;
|
|
case 'Y':
|
|
n += 8;
|
|
break;
|
|
case 's':
|
|
case 'J':
|
|
n += 50;
|
|
break;
|
|
default:
|
|
return; /* ERROR. return a NULL */
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
if( n<sizeof(zBuf) ){
|
|
z = zBuf;
|
|
}else if( n>SQLITE_MAX_LENGTH ){
|
|
sqlite3_result_error_toobig(context);
|
|
return;
|
|
}else{
|
|
z = sqlite3_malloc( n );
|
|
if( z==0 ){
|
|
sqlite3_result_error_nomem(context);
|
|
return;
|
|
}
|
|
}
|
|
computeJD(&x);
|
|
computeYMD_HMS(&x);
|
|
for(i=j=0; zFmt[i]; i++){
|
|
if( zFmt[i]!='%' ){
|
|
z[j++] = zFmt[i];
|
|
}else{
|
|
i++;
|
|
switch( zFmt[i] ){
|
|
case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break;
|
|
case 'f': {
|
|
double s = x.s;
|
|
if( s>59.999 ) s = 59.999;
|
|
sqlite3_snprintf(7, &z[j],"%06.3f", s);
|
|
j += strlen(&z[j]);
|
|
break;
|
|
}
|
|
case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break;
|
|
case 'W': /* Fall thru */
|
|
case 'j': {
|
|
int nDay; /* Number of days since 1st day of year */
|
|
DateTime y = x;
|
|
y.validJD = 0;
|
|
y.M = 1;
|
|
y.D = 1;
|
|
computeJD(&y);
|
|
nDay = x.rJD - y.rJD + 0.5;
|
|
if( zFmt[i]=='W' ){
|
|
int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
|
|
wd = ((int)(x.rJD+0.5)) % 7;
|
|
sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
|
|
j += 2;
|
|
}else{
|
|
sqlite3_snprintf(4, &z[j],"%03d",nDay+1);
|
|
j += 3;
|
|
}
|
|
break;
|
|
}
|
|
case 'J': {
|
|
sqlite3_snprintf(20, &z[j],"%.16g",x.rJD);
|
|
j+=strlen(&z[j]);
|
|
break;
|
|
}
|
|
case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break;
|
|
case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
|
|
case 's': {
|
|
sqlite3_snprintf(30,&z[j],"%d",
|
|
(int)((x.rJD-2440587.5)*86400.0 + 0.5));
|
|
j += strlen(&z[j]);
|
|
break;
|
|
}
|
|
case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
|
|
case 'w': z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break;
|
|
case 'Y': sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=strlen(&z[j]);break;
|
|
default: z[j++] = '%'; break;
|
|
}
|
|
}
|
|
}
|
|
z[j] = 0;
|
|
sqlite3_result_text(context, z, -1,
|
|
z==zBuf ? SQLITE_TRANSIENT : sqlite3_free);
|
|
}
|
|
|
|
/*
|
|
** current_time()
|
|
**
|
|
** This function returns the same value as time('now').
|
|
*/
|
|
static void ctimeFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
timeFunc(context, 0, 0);
|
|
}
|
|
|
|
/*
|
|
** current_date()
|
|
**
|
|
** This function returns the same value as date('now').
|
|
*/
|
|
static void cdateFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
dateFunc(context, 0, 0);
|
|
}
|
|
|
|
/*
|
|
** current_timestamp()
|
|
**
|
|
** This function returns the same value as datetime('now').
|
|
*/
|
|
static void ctimestampFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
datetimeFunc(context, 0, 0);
|
|
}
|
|
#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
|
|
|
|
#ifdef SQLITE_OMIT_DATETIME_FUNCS
|
|
/*
|
|
** If the library is compiled to omit the full-scale date and time
|
|
** handling (to get a smaller binary), the following minimal version
|
|
** of the functions current_time(), current_date() and current_timestamp()
|
|
** are included instead. This is to support column declarations that
|
|
** include "DEFAULT CURRENT_TIME" etc.
|
|
**
|
|
** This function uses the C-library functions time(), gmtime()
|
|
** and strftime(). The format string to pass to strftime() is supplied
|
|
** as the user-data for the function.
|
|
*/
|
|
static void currentTimeFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
time_t t;
|
|
char *zFormat = (char *)sqlite3_user_data(context);
|
|
char zBuf[20];
|
|
|
|
time(&t);
|
|
#ifdef SQLITE_TEST
|
|
{
|
|
extern int sqlite3_current_time; /* See os_XXX.c */
|
|
if( sqlite3_current_time ){
|
|
t = sqlite3_current_time;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_GMTIME_R
|
|
{
|
|
struct tm sNow;
|
|
gmtime_r(&t, &sNow);
|
|
strftime(zBuf, 20, zFormat, &sNow);
|
|
}
|
|
#else
|
|
{
|
|
struct tm *pTm;
|
|
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
|
|
pTm = gmtime(&t);
|
|
strftime(zBuf, 20, zFormat, pTm);
|
|
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
|
|
}
|
|
#endif
|
|
|
|
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** This function registered all of the above C functions as SQL
|
|
** functions. This should be the only routine in this file with
|
|
** external linkage.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(sqlite3 *db){
|
|
#ifndef SQLITE_OMIT_DATETIME_FUNCS
|
|
static const struct {
|
|
char *zName;
|
|
int nArg;
|
|
void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
|
|
} aFuncs[] = {
|
|
{ "julianday", -1, juliandayFunc },
|
|
{ "date", -1, dateFunc },
|
|
{ "time", -1, timeFunc },
|
|
{ "datetime", -1, datetimeFunc },
|
|
{ "strftime", -1, strftimeFunc },
|
|
{ "current_time", 0, ctimeFunc },
|
|
{ "current_timestamp", 0, ctimestampFunc },
|
|
{ "current_date", 0, cdateFunc },
|
|
};
|
|
int i;
|
|
|
|
for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
|
|
sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
|
|
SQLITE_UTF8, (void *)(db->pVfs), aFuncs[i].xFunc, 0, 0);
|
|
}
|
|
#else
|
|
static const struct {
|
|
char *zName;
|
|
char *zFormat;
|
|
} aFuncs[] = {
|
|
{ "current_time", "%H:%M:%S" },
|
|
{ "current_date", "%Y-%m-%d" },
|
|
{ "current_timestamp", "%Y-%m-%d %H:%M:%S" }
|
|
};
|
|
int i;
|
|
|
|
for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
|
|
sqlite3CreateFunc(db, aFuncs[i].zName, 0, SQLITE_UTF8,
|
|
aFuncs[i].zFormat, currentTimeFunc, 0, 0);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/************** End of date.c ************************************************/
|
|
/************** Begin file os.c **********************************************/
|
|
/*
|
|
** 2005 November 29
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
******************************************************************************
|
|
**
|
|
** This file contains OS interface code that is common to all
|
|
** architectures.
|
|
*/
|
|
#define _SQLITE_OS_C_ 1
|
|
#undef _SQLITE_OS_C_
|
|
|
|
/*
|
|
** The default SQLite sqlite3_vfs implementations do not allocate
|
|
** memory (actually, os_unix.c allocates a small amount of memory
|
|
** from within OsOpen()), but some third-party implementations may.
|
|
** So we test the effects of a malloc() failing and the sqlite3OsXXX()
|
|
** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro.
|
|
**
|
|
** The following functions are instrumented for malloc() failure
|
|
** testing:
|
|
**
|
|
** sqlite3OsOpen()
|
|
** sqlite3OsRead()
|
|
** sqlite3OsWrite()
|
|
** sqlite3OsSync()
|
|
** sqlite3OsLock()
|
|
**
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
#define DO_OS_MALLOC_TEST if (1) { \
|
|
void *pTstAlloc = sqlite3_malloc(10); \
|
|
if (!pTstAlloc) return SQLITE_IOERR_NOMEM; \
|
|
sqlite3_free(pTstAlloc); \
|
|
}
|
|
#else
|
|
#define DO_OS_MALLOC_TEST
|
|
#endif
|
|
|
|
/*
|
|
** The following routines are convenience wrappers around methods
|
|
** of the sqlite3_file object. This is mostly just syntactic sugar. All
|
|
** of this would be completely automatic if SQLite were coded using
|
|
** C++ instead of plain old C.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file *pId){
|
|
int rc = SQLITE_OK;
|
|
if( pId->pMethods ){
|
|
rc = pId->pMethods->xClose(pId);
|
|
pId->pMethods = 0;
|
|
}
|
|
return rc;
|
|
}
|
|
SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file *id, void *pBuf, int amt, i64 offset){
|
|
DO_OS_MALLOC_TEST;
|
|
return id->pMethods->xRead(id, pBuf, amt, offset);
|
|
}
|
|
SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file *id, const void *pBuf, int amt, i64 offset){
|
|
DO_OS_MALLOC_TEST;
|
|
return id->pMethods->xWrite(id, pBuf, amt, offset);
|
|
}
|
|
SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file *id, i64 size){
|
|
return id->pMethods->xTruncate(id, size);
|
|
}
|
|
SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file *id, int flags){
|
|
DO_OS_MALLOC_TEST;
|
|
return id->pMethods->xSync(id, flags);
|
|
}
|
|
SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file *id, i64 *pSize){
|
|
return id->pMethods->xFileSize(id, pSize);
|
|
}
|
|
SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file *id, int lockType){
|
|
DO_OS_MALLOC_TEST;
|
|
return id->pMethods->xLock(id, lockType);
|
|
}
|
|
SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file *id, int lockType){
|
|
return id->pMethods->xUnlock(id, lockType);
|
|
}
|
|
SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id){
|
|
return id->pMethods->xCheckReservedLock(id);
|
|
}
|
|
SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){
|
|
return id->pMethods->xFileControl(id,op,pArg);
|
|
}
|
|
SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id){
|
|
int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize;
|
|
return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE);
|
|
}
|
|
SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id){
|
|
return id->pMethods->xDeviceCharacteristics(id);
|
|
}
|
|
|
|
/*
|
|
** The next group of routines are convenience wrappers around the
|
|
** VFS methods.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3OsOpen(
|
|
sqlite3_vfs *pVfs,
|
|
const char *zPath,
|
|
sqlite3_file *pFile,
|
|
int flags,
|
|
int *pFlagsOut
|
|
){
|
|
DO_OS_MALLOC_TEST;
|
|
return pVfs->xOpen(pVfs, zPath, pFile, flags, pFlagsOut);
|
|
}
|
|
SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
|
|
return pVfs->xDelete(pVfs, zPath, dirSync);
|
|
}
|
|
SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *pVfs, const char *zPath, int flags){
|
|
return pVfs->xAccess(pVfs, zPath, flags);
|
|
}
|
|
SQLITE_PRIVATE int sqlite3OsGetTempname(sqlite3_vfs *pVfs, int nBufOut, char *zBufOut){
|
|
return pVfs->xGetTempname(pVfs, nBufOut, zBufOut);
|
|
}
|
|
SQLITE_PRIVATE int sqlite3OsFullPathname(
|
|
sqlite3_vfs *pVfs,
|
|
const char *zPath,
|
|
int nPathOut,
|
|
char *zPathOut
|
|
){
|
|
return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
|
|
}
|
|
SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *pVfs, const char *zPath){
|
|
return pVfs->xDlOpen(pVfs, zPath);
|
|
}
|
|
SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
|
|
pVfs->xDlError(pVfs, nByte, zBufOut);
|
|
}
|
|
SQLITE_PRIVATE void *sqlite3OsDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
|
|
return pVfs->xDlSym(pVfs, pHandle, zSymbol);
|
|
}
|
|
SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *pVfs, void *pHandle){
|
|
pVfs->xDlClose(pVfs, pHandle);
|
|
}
|
|
SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
|
|
return pVfs->xRandomness(pVfs, nByte, zBufOut);
|
|
}
|
|
SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *pVfs, int nMicro){
|
|
return pVfs->xSleep(pVfs, nMicro);
|
|
}
|
|
SQLITE_PRIVATE int sqlite3OsCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){
|
|
return pVfs->xCurrentTime(pVfs, pTimeOut);
|
|
}
|
|
|
|
SQLITE_PRIVATE int sqlite3OsOpenMalloc(
|
|
sqlite3_vfs *pVfs,
|
|
const char *zFile,
|
|
sqlite3_file **ppFile,
|
|
int flags,
|
|
int *pOutFlags
|
|
){
|
|
int rc = SQLITE_NOMEM;
|
|
sqlite3_file *pFile;
|
|
pFile = (sqlite3_file *)sqlite3_malloc(pVfs->szOsFile);
|
|
if( pFile ){
|
|
rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3_free(pFile);
|
|
}else{
|
|
*ppFile = pFile;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *pFile){
|
|
int rc = SQLITE_OK;
|
|
if( pFile ){
|
|
rc = sqlite3OsClose(pFile);
|
|
sqlite3_free(pFile);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** The list of all registered VFS implementations. This list is
|
|
** initialized to the single VFS returned by sqlite3OsDefaultVfs()
|
|
** upon the first call to sqlite3_vfs_find().
|
|
*/
|
|
static sqlite3_vfs *vfsList = 0;
|
|
|
|
/*
|
|
** Locate a VFS by name. If no name is given, simply return the
|
|
** first VFS on the list.
|
|
*/
|
|
SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){
|
|
#ifndef SQLITE_MUTEX_NOOP
|
|
sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
|
|
#endif
|
|
sqlite3_vfs *pVfs = 0;
|
|
static int isInit = 0;
|
|
sqlite3_mutex_enter(mutex);
|
|
if( !isInit ){
|
|
vfsList = sqlite3OsDefaultVfs();
|
|
isInit = 1;
|
|
}
|
|
for(pVfs = vfsList; pVfs; pVfs=pVfs->pNext){
|
|
if( zVfs==0 ) break;
|
|
if( strcmp(zVfs, pVfs->zName)==0 ) break;
|
|
}
|
|
sqlite3_mutex_leave(mutex);
|
|
return pVfs;
|
|
}
|
|
|
|
/*
|
|
** Unlink a VFS from the linked list
|
|
*/
|
|
static void vfsUnlink(sqlite3_vfs *pVfs){
|
|
assert( sqlite3_mutex_held(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER)) );
|
|
if( pVfs==0 ){
|
|
/* No-op */
|
|
}else if( vfsList==pVfs ){
|
|
vfsList = pVfs->pNext;
|
|
}else if( vfsList ){
|
|
sqlite3_vfs *p = vfsList;
|
|
while( p->pNext && p->pNext!=pVfs ){
|
|
p = p->pNext;
|
|
}
|
|
if( p->pNext==pVfs ){
|
|
p->pNext = pVfs->pNext;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Register a VFS with the system. It is harmless to register the same
|
|
** VFS multiple times. The new VFS becomes the default if makeDflt is
|
|
** true.
|
|
*/
|
|
SQLITE_API int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){
|
|
#ifndef SQLITE_MUTEX_NOOP
|
|
sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
|
|
#endif
|
|
sqlite3_vfs_find(0); /* Make sure we are initialized */
|
|
sqlite3_mutex_enter(mutex);
|
|
vfsUnlink(pVfs);
|
|
if( makeDflt || vfsList==0 ){
|
|
pVfs->pNext = vfsList;
|
|
vfsList = pVfs;
|
|
}else{
|
|
pVfs->pNext = vfsList->pNext;
|
|
vfsList->pNext = pVfs;
|
|
}
|
|
assert(vfsList);
|
|
sqlite3_mutex_leave(mutex);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Unregister a VFS so that it is no longer accessible.
|
|
*/
|
|
SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){
|
|
#ifndef SQLITE_MUTEX_NOOP
|
|
sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
|
|
#endif
|
|
sqlite3_mutex_enter(mutex);
|
|
vfsUnlink(pVfs);
|
|
sqlite3_mutex_leave(mutex);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/************** End of os.c **************************************************/
|
|
/************** Begin file fault.c *******************************************/
|
|
/*
|
|
** 2008 Jan 22
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains code to implement a fault-injector used for
|
|
** testing and verification of SQLite.
|
|
**
|
|
** Subsystems within SQLite can call sqlite3FaultStep() to see if
|
|
** they should simulate a fault. sqlite3FaultStep() normally returns
|
|
** zero but will return non-zero if a fault should be simulated.
|
|
** Fault injectors can be used, for example, to simulate memory
|
|
** allocation failures or I/O errors.
|
|
**
|
|
** The fault injector is omitted from the code if SQLite is
|
|
** compiled with -DSQLITE_OMIT_FAULTINJECTOR=1. There is a very
|
|
** small performance hit for leaving the fault injector in the code.
|
|
** Commerical products will probably want to omit the fault injector
|
|
** from production builds. But safety-critical systems who work
|
|
** under the motto "fly what you test and test what you fly" may
|
|
** choose to leave the fault injector enabled even in production.
|
|
*/
|
|
|
|
#ifndef SQLITE_OMIT_FAULTINJECTOR
|
|
|
|
/*
|
|
** There can be various kinds of faults. For example, there can be
|
|
** a memory allocation failure. Or an I/O failure. For each different
|
|
** fault type, there is a separate FaultInjector structure to keep track
|
|
** of the status of that fault.
|
|
*/
|
|
static struct FaultInjector {
|
|
int iCountdown; /* Number of pending successes before we hit a failure */
|
|
int nRepeat; /* Number of times to repeat the failure */
|
|
int nBenign; /* Number of benign failures seen since last config */
|
|
int nFail; /* Number of failures seen since last config */
|
|
u8 enable; /* True if enabled */
|
|
u8 benign; /* Ture if next failure will be benign */
|
|
} aFault[SQLITE_FAULTINJECTOR_COUNT];
|
|
|
|
/*
|
|
** This routine configures and enables a fault injector. After
|
|
** calling this routine, aFaultStep() will return false (zero)
|
|
** nDelay times, then it will return true nRepeat times,
|
|
** then it will again begin returning false.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3FaultConfig(int id, int nDelay, int nRepeat){
|
|
assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
|
|
aFault[id].iCountdown = nDelay;
|
|
aFault[id].nRepeat = nRepeat;
|
|
aFault[id].nBenign = 0;
|
|
aFault[id].nFail = 0;
|
|
aFault[id].enable = nDelay>=0;
|
|
aFault[id].benign = 0;
|
|
}
|
|
|
|
/*
|
|
** Return the number of faults (both hard and benign faults) that have
|
|
** occurred since the injector was last configured.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3FaultFailures(int id){
|
|
assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
|
|
return aFault[id].nFail;
|
|
}
|
|
|
|
/*
|
|
** Return the number of benign faults that have occurred since the
|
|
** injector was last configured.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3FaultBenignFailures(int id){
|
|
assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
|
|
return aFault[id].nBenign;
|
|
}
|
|
|
|
/*
|
|
** Return the number of successes that will occur before the next failure.
|
|
** If no failures are scheduled, return -1.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3FaultPending(int id){
|
|
assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
|
|
if( aFault[id].enable ){
|
|
return aFault[id].iCountdown;
|
|
}else{
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** After this routine causes subsequent faults to be either benign
|
|
** or hard (not benign), according to the "enable" parameter.
|
|
**
|
|
** Most faults are hard. In other words, most faults cause
|
|
** an error to be propagated back up to the application interface.
|
|
** However, sometimes a fault is easily recoverable. For example,
|
|
** if a malloc fails while resizing a hash table, this is completely
|
|
** recoverable simply by not carrying out the resize. The hash table
|
|
** will continue to function normally. So a malloc failure during
|
|
** a hash table resize is a benign fault.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3FaultBenign(int id, int enable){
|
|
assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
|
|
aFault[id].benign = enable;
|
|
}
|
|
|
|
/*
|
|
** This routine exists as a place to set a breakpoint that will
|
|
** fire on any simulated fault.
|
|
*/
|
|
static void sqlite3Fault(void){
|
|
static int cnt = 0;
|
|
cnt++;
|
|
}
|
|
|
|
|
|
/*
|
|
** Check to see if a fault should be simulated. Return true to simulate
|
|
** the fault. Return false if the fault should not be simulated.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3FaultStep(int id){
|
|
assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
|
|
if( likely(!aFault[id].enable) ){
|
|
return 0;
|
|
}
|
|
if( aFault[id].iCountdown>0 ){
|
|
aFault[id].iCountdown--;
|
|
return 0;
|
|
}
|
|
sqlite3Fault();
|
|
aFault[id].nFail++;
|
|
if( aFault[id].benign ){
|
|
aFault[id].nBenign++;
|
|
}
|
|
aFault[id].nRepeat--;
|
|
if( aFault[id].nRepeat<=0 ){
|
|
aFault[id].enable = 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_FAULTINJECTOR */
|
|
|
|
/************** End of fault.c ***********************************************/
|
|
/************** Begin file mem1.c ********************************************/
|
|
/*
|
|
** 2007 August 14
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains the C functions that implement a memory
|
|
** allocation subsystem for use by SQLite.
|
|
**
|
|
** $Id: mem1.c,v 1.14 2007/11/29 18:36:49 drh Exp $
|
|
*/
|
|
|
|
/*
|
|
** This version of the memory allocator is the default. It is
|
|
** used when no other memory allocator is specified using compile-time
|
|
** macros.
|
|
*/
|
|
#if !defined(SQLITE_MEMDEBUG) && !defined(SQLITE_MEMORY_SIZE) \
|
|
&& !defined(SQLITE_MMAP_HEAP_SIZE)
|
|
|
|
/*
|
|
** We will eventually construct multiple memory allocation subsystems
|
|
** suitable for use in various contexts:
|
|
**
|
|
** * Normal multi-threaded builds
|
|
** * Normal single-threaded builds
|
|
** * Debugging builds
|
|
**
|
|
** This initial version is suitable for use in normal multi-threaded
|
|
** builds. We envision that alternative versions will be stored in
|
|
** separate source files. #ifdefs will be used to select the code from
|
|
** one of the various memN.c source files for use in any given build.
|
|
*/
|
|
|
|
/*
|
|
** All of the static variables used by this module are collected
|
|
** into a single structure named "mem". This is to keep the
|
|
** static variables organized and to reduce namespace pollution
|
|
** when this module is combined with other in the amalgamation.
|
|
*/
|
|
static struct {
|
|
/*
|
|
** The alarm callback and its arguments. The mem.mutex lock will
|
|
** be held while the callback is running. Recursive calls into
|
|
** the memory subsystem are allowed, but no new callbacks will be
|
|
** issued. The alarmBusy variable is set to prevent recursive
|
|
** callbacks.
|
|
*/
|
|
sqlite3_int64 alarmThreshold;
|
|
void (*alarmCallback)(void*, sqlite3_int64,int);
|
|
void *alarmArg;
|
|
int alarmBusy;
|
|
|
|
/*
|
|
** Mutex to control access to the memory allocation subsystem.
|
|
*/
|
|
sqlite3_mutex *mutex;
|
|
|
|
/*
|
|
** Current allocation and high-water mark.
|
|
*/
|
|
sqlite3_int64 nowUsed;
|
|
sqlite3_int64 mxUsed;
|
|
|
|
|
|
} mem;
|
|
|
|
/*
|
|
** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
|
|
*/
|
|
static void enterMem(void){
|
|
if( mem.mutex==0 ){
|
|
mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
|
|
}
|
|
sqlite3_mutex_enter(mem.mutex);
|
|
}
|
|
|
|
/*
|
|
** Return the amount of memory currently checked out.
|
|
*/
|
|
SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
|
|
sqlite3_int64 n;
|
|
enterMem();
|
|
n = mem.nowUsed;
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Return the maximum amount of memory that has ever been
|
|
** checked out since either the beginning of this process
|
|
** or since the most recent reset.
|
|
*/
|
|
SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
|
|
sqlite3_int64 n;
|
|
enterMem();
|
|
n = mem.mxUsed;
|
|
if( resetFlag ){
|
|
mem.mxUsed = mem.nowUsed;
|
|
}
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Change the alarm callback
|
|
*/
|
|
SQLITE_API int sqlite3_memory_alarm(
|
|
void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
|
|
void *pArg,
|
|
sqlite3_int64 iThreshold
|
|
){
|
|
enterMem();
|
|
mem.alarmCallback = xCallback;
|
|
mem.alarmArg = pArg;
|
|
mem.alarmThreshold = iThreshold;
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Trigger the alarm
|
|
*/
|
|
static void sqlite3MemsysAlarm(int nByte){
|
|
void (*xCallback)(void*,sqlite3_int64,int);
|
|
sqlite3_int64 nowUsed;
|
|
void *pArg;
|
|
if( mem.alarmCallback==0 || mem.alarmBusy ) return;
|
|
mem.alarmBusy = 1;
|
|
xCallback = mem.alarmCallback;
|
|
nowUsed = mem.nowUsed;
|
|
pArg = mem.alarmArg;
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
xCallback(pArg, nowUsed, nByte);
|
|
sqlite3_mutex_enter(mem.mutex);
|
|
mem.alarmBusy = 0;
|
|
}
|
|
|
|
/*
|
|
** Allocate nBytes of memory
|
|
*/
|
|
SQLITE_API void *sqlite3_malloc(int nBytes){
|
|
sqlite3_int64 *p = 0;
|
|
if( nBytes>0 ){
|
|
enterMem();
|
|
if( mem.alarmCallback!=0 && mem.nowUsed+nBytes>=mem.alarmThreshold ){
|
|
sqlite3MemsysAlarm(nBytes);
|
|
}
|
|
p = malloc(nBytes+8);
|
|
if( p==0 ){
|
|
sqlite3MemsysAlarm(nBytes);
|
|
p = malloc(nBytes+8);
|
|
}
|
|
if( p ){
|
|
p[0] = nBytes;
|
|
p++;
|
|
mem.nowUsed += nBytes;
|
|
if( mem.nowUsed>mem.mxUsed ){
|
|
mem.mxUsed = mem.nowUsed;
|
|
}
|
|
}
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
}
|
|
return (void*)p;
|
|
}
|
|
|
|
/*
|
|
** Free memory.
|
|
*/
|
|
SQLITE_API void sqlite3_free(void *pPrior){
|
|
sqlite3_int64 *p;
|
|
int nByte;
|
|
if( pPrior==0 ){
|
|
return;
|
|
}
|
|
assert( mem.mutex!=0 );
|
|
p = pPrior;
|
|
p--;
|
|
nByte = (int)*p;
|
|
sqlite3_mutex_enter(mem.mutex);
|
|
mem.nowUsed -= nByte;
|
|
free(p);
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
}
|
|
|
|
/*
|
|
** Change the size of an existing memory allocation
|
|
*/
|
|
SQLITE_API void *sqlite3_realloc(void *pPrior, int nBytes){
|
|
int nOld;
|
|
sqlite3_int64 *p;
|
|
if( pPrior==0 ){
|
|
return sqlite3_malloc(nBytes);
|
|
}
|
|
if( nBytes<=0 ){
|
|
sqlite3_free(pPrior);
|
|
return 0;
|
|
}
|
|
p = pPrior;
|
|
p--;
|
|
nOld = (int)p[0];
|
|
assert( mem.mutex!=0 );
|
|
sqlite3_mutex_enter(mem.mutex);
|
|
if( mem.nowUsed+nBytes-nOld>=mem.alarmThreshold ){
|
|
sqlite3MemsysAlarm(nBytes-nOld);
|
|
}
|
|
p = realloc(p, nBytes+8);
|
|
if( p==0 ){
|
|
sqlite3MemsysAlarm(nBytes);
|
|
p = pPrior;
|
|
p--;
|
|
p = realloc(p, nBytes+8);
|
|
}
|
|
if( p ){
|
|
p[0] = nBytes;
|
|
p++;
|
|
mem.nowUsed += nBytes-nOld;
|
|
if( mem.nowUsed>mem.mxUsed ){
|
|
mem.mxUsed = mem.nowUsed;
|
|
}
|
|
}
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
return (void*)p;
|
|
}
|
|
|
|
#endif /* !SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */
|
|
|
|
/************** End of mem1.c ************************************************/
|
|
/************** Begin file mem2.c ********************************************/
|
|
/*
|
|
** 2007 August 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains the C functions that implement a memory
|
|
** allocation subsystem for use by SQLite.
|
|
**
|
|
** $Id: mem2.c,v 1.19 2008/01/22 21:30:53 drh Exp $
|
|
*/
|
|
|
|
/*
|
|
** This version of the memory allocator is used only if the
|
|
** SQLITE_MEMDEBUG macro is defined and SQLITE_OMIT_MEMORY_ALLOCATION
|
|
** is not defined.
|
|
*/
|
|
#if defined(SQLITE_MEMDEBUG)
|
|
|
|
/*
|
|
** We will eventually construct multiple memory allocation subsystems
|
|
** suitable for use in various contexts:
|
|
**
|
|
** * Normal multi-threaded builds
|
|
** * Normal single-threaded builds
|
|
** * Debugging builds
|
|
**
|
|
** This version is suitable for use in debugging builds.
|
|
**
|
|
** Features:
|
|
**
|
|
** * Every allocate has guards at both ends.
|
|
** * New allocations are initialized with randomness
|
|
** * Allocations are overwritten with randomness when freed
|
|
** * Optional logs of malloc activity generated
|
|
** * Summary of outstanding allocations with backtraces to the
|
|
** point of allocation.
|
|
** * The ability to simulate memory allocation failure
|
|
*/
|
|
|
|
/*
|
|
** The backtrace functionality is only available with GLIBC
|
|
*/
|
|
#ifdef __GLIBC__
|
|
extern int backtrace(void**,int);
|
|
extern void backtrace_symbols_fd(void*const*,int,int);
|
|
#else
|
|
# define backtrace(A,B) 0
|
|
# define backtrace_symbols_fd(A,B,C)
|
|
#endif
|
|
|
|
/*
|
|
** Each memory allocation looks like this:
|
|
**
|
|
** ------------------------------------------------------------------------
|
|
** | Title | backtrace pointers | MemBlockHdr | allocation | EndGuard |
|
|
** ------------------------------------------------------------------------
|
|
**
|
|
** The application code sees only a pointer to the allocation. We have
|
|
** to back up from the allocation pointer to find the MemBlockHdr. The
|
|
** MemBlockHdr tells us the size of the allocation and the number of
|
|
** backtrace pointers. There is also a guard word at the end of the
|
|
** MemBlockHdr.
|
|
*/
|
|
struct MemBlockHdr {
|
|
struct MemBlockHdr *pNext, *pPrev; /* Linked list of all unfreed memory */
|
|
int iSize; /* Size of this allocation */
|
|
char nBacktrace; /* Number of backtraces on this alloc */
|
|
char nBacktraceSlots; /* Available backtrace slots */
|
|
short nTitle; /* Bytes of title; includes '\0' */
|
|
int iForeGuard; /* Guard word for sanity */
|
|
};
|
|
|
|
/*
|
|
** Guard words
|
|
*/
|
|
#define FOREGUARD 0x80F5E153
|
|
#define REARGUARD 0xE4676B53
|
|
|
|
/*
|
|
** Number of malloc size increments to track.
|
|
*/
|
|
#define NCSIZE 1000
|
|
|
|
/*
|
|
** All of the static variables used by this module are collected
|
|
** into a single structure named "mem". This is to keep the
|
|
** static variables organized and to reduce namespace pollution
|
|
** when this module is combined with other in the amalgamation.
|
|
*/
|
|
static struct {
|
|
/*
|
|
** The alarm callback and its arguments. The mem.mutex lock will
|
|
** be held while the callback is running. Recursive calls into
|
|
** the memory subsystem are allowed, but no new callbacks will be
|
|
** issued. The alarmBusy variable is set to prevent recursive
|
|
** callbacks.
|
|
*/
|
|
sqlite3_int64 alarmThreshold;
|
|
void (*alarmCallback)(void*, sqlite3_int64, int);
|
|
void *alarmArg;
|
|
int alarmBusy;
|
|
|
|
/*
|
|
** Mutex to control access to the memory allocation subsystem.
|
|
*/
|
|
sqlite3_mutex *mutex;
|
|
|
|
/*
|
|
** Current allocation and high-water mark.
|
|
*/
|
|
sqlite3_int64 nowUsed;
|
|
sqlite3_int64 mxUsed;
|
|
|
|
/*
|
|
** Head and tail of a linked list of all outstanding allocations
|
|
*/
|
|
struct MemBlockHdr *pFirst;
|
|
struct MemBlockHdr *pLast;
|
|
|
|
/*
|
|
** The number of levels of backtrace to save in new allocations.
|
|
*/
|
|
int nBacktrace;
|
|
|
|
/*
|
|
** Title text to insert in front of each block
|
|
*/
|
|
int nTitle; /* Bytes of zTitle to save. Includes '\0' and padding */
|
|
char zTitle[100]; /* The title text */
|
|
|
|
/*
|
|
** sqlite3MallocDisallow() increments the following counter.
|
|
** sqlite3MallocAllow() decrements it.
|
|
*/
|
|
int disallow; /* Do not allow memory allocation */
|
|
|
|
/*
|
|
** Gather statistics on the sizes of memory allocations.
|
|
** sizeCnt[i] is the number of allocation attempts of i*8
|
|
** bytes. i==NCSIZE is the number of allocation attempts for
|
|
** sizes more than NCSIZE*8 bytes.
|
|
*/
|
|
int sizeCnt[NCSIZE];
|
|
|
|
} mem;
|
|
|
|
|
|
/*
|
|
** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
|
|
*/
|
|
static void enterMem(void){
|
|
if( mem.mutex==0 ){
|
|
mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
|
|
}
|
|
sqlite3_mutex_enter(mem.mutex);
|
|
}
|
|
|
|
/*
|
|
** Return the amount of memory currently checked out.
|
|
*/
|
|
SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
|
|
sqlite3_int64 n;
|
|
enterMem();
|
|
n = mem.nowUsed;
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Return the maximum amount of memory that has ever been
|
|
** checked out since either the beginning of this process
|
|
** or since the most recent reset.
|
|
*/
|
|
SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
|
|
sqlite3_int64 n;
|
|
enterMem();
|
|
n = mem.mxUsed;
|
|
if( resetFlag ){
|
|
mem.mxUsed = mem.nowUsed;
|
|
}
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Change the alarm callback
|
|
*/
|
|
SQLITE_API int sqlite3_memory_alarm(
|
|
void(*xCallback)(void *pArg, sqlite3_int64 used, int N),
|
|
void *pArg,
|
|
sqlite3_int64 iThreshold
|
|
){
|
|
enterMem();
|
|
mem.alarmCallback = xCallback;
|
|
mem.alarmArg = pArg;
|
|
mem.alarmThreshold = iThreshold;
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Trigger the alarm
|
|
*/
|
|
static void sqlite3MemsysAlarm(int nByte){
|
|
void (*xCallback)(void*,sqlite3_int64,int);
|
|
sqlite3_int64 nowUsed;
|
|
void *pArg;
|
|
if( mem.alarmCallback==0 || mem.alarmBusy ) return;
|
|
mem.alarmBusy = 1;
|
|
xCallback = mem.alarmCallback;
|
|
nowUsed = mem.nowUsed;
|
|
pArg = mem.alarmArg;
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
xCallback(pArg, nowUsed, nByte);
|
|
sqlite3_mutex_enter(mem.mutex);
|
|
mem.alarmBusy = 0;
|
|
}
|
|
|
|
/*
|
|
** Given an allocation, find the MemBlockHdr for that allocation.
|
|
**
|
|
** This routine checks the guards at either end of the allocation and
|
|
** if they are incorrect it asserts.
|
|
*/
|
|
static struct MemBlockHdr *sqlite3MemsysGetHeader(void *pAllocation){
|
|
struct MemBlockHdr *p;
|
|
int *pInt;
|
|
|
|
p = (struct MemBlockHdr*)pAllocation;
|
|
p--;
|
|
assert( p->iForeGuard==FOREGUARD );
|
|
assert( (p->iSize & 3)==0 );
|
|
pInt = (int*)pAllocation;
|
|
assert( pInt[p->iSize/sizeof(int)]==REARGUARD );
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Allocate nByte bytes of memory.
|
|
*/
|
|
SQLITE_API void *sqlite3_malloc(int nByte){
|
|
struct MemBlockHdr *pHdr;
|
|
void **pBt;
|
|
char *z;
|
|
int *pInt;
|
|
void *p = 0;
|
|
int totalSize;
|
|
|
|
if( nByte>0 ){
|
|
enterMem();
|
|
assert( mem.disallow==0 );
|
|
if( mem.alarmCallback!=0 && mem.nowUsed+nByte>=mem.alarmThreshold ){
|
|
sqlite3MemsysAlarm(nByte);
|
|
}
|
|
nByte = (nByte+3)&~3;
|
|
if( nByte/8>NCSIZE-1 ){
|
|
mem.sizeCnt[NCSIZE-1]++;
|
|
}else{
|
|
mem.sizeCnt[nByte/8]++;
|
|
}
|
|
totalSize = nByte + sizeof(*pHdr) + sizeof(int) +
|
|
mem.nBacktrace*sizeof(void*) + mem.nTitle;
|
|
if( sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC) ){
|
|
p = 0;
|
|
}else{
|
|
p = malloc(totalSize);
|
|
if( p==0 ){
|
|
sqlite3MemsysAlarm(nByte);
|
|
p = malloc(totalSize);
|
|
}
|
|
}
|
|
if( p ){
|
|
z = p;
|
|
pBt = (void**)&z[mem.nTitle];
|
|
pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace];
|
|
pHdr->pNext = 0;
|
|
pHdr->pPrev = mem.pLast;
|
|
if( mem.pLast ){
|
|
mem.pLast->pNext = pHdr;
|
|
}else{
|
|
mem.pFirst = pHdr;
|
|
}
|
|
mem.pLast = pHdr;
|
|
pHdr->iForeGuard = FOREGUARD;
|
|
pHdr->nBacktraceSlots = mem.nBacktrace;
|
|
pHdr->nTitle = mem.nTitle;
|
|
if( mem.nBacktrace ){
|
|
void *aAddr[40];
|
|
pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1;
|
|
memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*));
|
|
}else{
|
|
pHdr->nBacktrace = 0;
|
|
}
|
|
if( mem.nTitle ){
|
|
memcpy(z, mem.zTitle, mem.nTitle);
|
|
}
|
|
pHdr->iSize = nByte;
|
|
pInt = (int*)&pHdr[1];
|
|
pInt[nByte/sizeof(int)] = REARGUARD;
|
|
memset(pInt, 0x65, nByte);
|
|
mem.nowUsed += nByte;
|
|
if( mem.nowUsed>mem.mxUsed ){
|
|
mem.mxUsed = mem.nowUsed;
|
|
}
|
|
p = (void*)pInt;
|
|
}
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Free memory.
|
|
*/
|
|
SQLITE_API void sqlite3_free(void *pPrior){
|
|
struct MemBlockHdr *pHdr;
|
|
void **pBt;
|
|
char *z;
|
|
if( pPrior==0 ){
|
|
return;
|
|
}
|
|
assert( mem.mutex!=0 );
|
|
pHdr = sqlite3MemsysGetHeader(pPrior);
|
|
pBt = (void**)pHdr;
|
|
pBt -= pHdr->nBacktraceSlots;
|
|
sqlite3_mutex_enter(mem.mutex);
|
|
mem.nowUsed -= pHdr->iSize;
|
|
if( pHdr->pPrev ){
|
|
assert( pHdr->pPrev->pNext==pHdr );
|
|
pHdr->pPrev->pNext = pHdr->pNext;
|
|
}else{
|
|
assert( mem.pFirst==pHdr );
|
|
mem.pFirst = pHdr->pNext;
|
|
}
|
|
if( pHdr->pNext ){
|
|
assert( pHdr->pNext->pPrev==pHdr );
|
|
pHdr->pNext->pPrev = pHdr->pPrev;
|
|
}else{
|
|
assert( mem.pLast==pHdr );
|
|
mem.pLast = pHdr->pPrev;
|
|
}
|
|
z = (char*)pBt;
|
|
z -= pHdr->nTitle;
|
|
memset(z, 0x2b, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) +
|
|
pHdr->iSize + sizeof(int) + pHdr->nTitle);
|
|
free(z);
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
}
|
|
|
|
/*
|
|
** Change the size of an existing memory allocation.
|
|
**
|
|
** For this debugging implementation, we *always* make a copy of the
|
|
** allocation into a new place in memory. In this way, if the
|
|
** higher level code is using pointer to the old allocation, it is
|
|
** much more likely to break and we are much more liking to find
|
|
** the error.
|
|
*/
|
|
SQLITE_API void *sqlite3_realloc(void *pPrior, int nByte){
|
|
struct MemBlockHdr *pOldHdr;
|
|
void *pNew;
|
|
if( pPrior==0 ){
|
|
return sqlite3_malloc(nByte);
|
|
}
|
|
if( nByte<=0 ){
|
|
sqlite3_free(pPrior);
|
|
return 0;
|
|
}
|
|
assert( mem.disallow==0 );
|
|
pOldHdr = sqlite3MemsysGetHeader(pPrior);
|
|
pNew = sqlite3_malloc(nByte);
|
|
if( pNew ){
|
|
memcpy(pNew, pPrior, nByte<pOldHdr->iSize ? nByte : pOldHdr->iSize);
|
|
if( nByte>pOldHdr->iSize ){
|
|
memset(&((char*)pNew)[pOldHdr->iSize], 0x2b, nByte - pOldHdr->iSize);
|
|
}
|
|
sqlite3_free(pPrior);
|
|
}
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** Set the number of backtrace levels kept for each allocation.
|
|
** A value of zero turns of backtracing. The number is always rounded
|
|
** up to a multiple of 2.
|
|
*/
|
|
SQLITE_API void sqlite3_memdebug_backtrace(int depth){
|
|
if( depth<0 ){ depth = 0; }
|
|
if( depth>20 ){ depth = 20; }
|
|
depth = (depth+1)&0xfe;
|
|
mem.nBacktrace = depth;
|
|
}
|
|
|
|
/*
|
|
** Set the title string for subsequent allocations.
|
|
*/
|
|
SQLITE_API void sqlite3_memdebug_settitle(const char *zTitle){
|
|
int n = strlen(zTitle) + 1;
|
|
enterMem();
|
|
if( n>=sizeof(mem.zTitle) ) n = sizeof(mem.zTitle)-1;
|
|
memcpy(mem.zTitle, zTitle, n);
|
|
mem.zTitle[n] = 0;
|
|
mem.nTitle = (n+3)&~3;
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
}
|
|
|
|
/*
|
|
** Open the file indicated and write a log of all unfreed memory
|
|
** allocations into that log.
|
|
*/
|
|
SQLITE_API void sqlite3_memdebug_dump(const char *zFilename){
|
|
FILE *out;
|
|
struct MemBlockHdr *pHdr;
|
|
void **pBt;
|
|
int i;
|
|
out = fopen(zFilename, "w");
|
|
if( out==0 ){
|
|
fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
|
|
zFilename);
|
|
return;
|
|
}
|
|
for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
|
|
char *z = (char*)pHdr;
|
|
z -= pHdr->nBacktraceSlots*sizeof(void*) + pHdr->nTitle;
|
|
fprintf(out, "**** %d bytes at %p from %s ****\n",
|
|
pHdr->iSize, &pHdr[1], pHdr->nTitle ? z : "???");
|
|
if( pHdr->nBacktrace ){
|
|
fflush(out);
|
|
pBt = (void**)pHdr;
|
|
pBt -= pHdr->nBacktraceSlots;
|
|
backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out));
|
|
fprintf(out, "\n");
|
|
}
|
|
}
|
|
fprintf(out, "COUNTS:\n");
|
|
for(i=0; i<NCSIZE-1; i++){
|
|
if( mem.sizeCnt[i] ){
|
|
fprintf(out, " %3d: %d\n", i*8+8, mem.sizeCnt[i]);
|
|
}
|
|
}
|
|
if( mem.sizeCnt[NCSIZE-1] ){
|
|
fprintf(out, " >%3d: %d\n", NCSIZE*8, mem.sizeCnt[NCSIZE-1]);
|
|
}
|
|
fclose(out);
|
|
}
|
|
|
|
|
|
#endif /* SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */
|
|
|
|
/************** End of mem2.c ************************************************/
|
|
/************** Begin file mem3.c ********************************************/
|
|
/*
|
|
** 2007 October 14
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains the C functions that implement a memory
|
|
** allocation subsystem for use by SQLite.
|
|
**
|
|
** This version of the memory allocation subsystem omits all
|
|
** use of malloc(). All dynamically allocatable memory is
|
|
** contained in a static array, mem.aPool[]. The size of this
|
|
** fixed memory pool is SQLITE_MEMORY_SIZE bytes.
|
|
**
|
|
** This version of the memory allocation subsystem is used if
|
|
** and only if SQLITE_MEMORY_SIZE is defined.
|
|
**
|
|
** $Id: mem3.c,v 1.8 2007/12/29 13:18:22 drh Exp $
|
|
*/
|
|
|
|
/*
|
|
** This version of the memory allocator is used only when
|
|
** SQLITE_MEMORY_SIZE is defined.
|
|
*/
|
|
#if defined(SQLITE_MEMORY_SIZE)
|
|
|
|
#ifdef SQLITE_MEMDEBUG
|
|
# error cannot define both SQLITE_MEMDEBUG and SQLITE_MEMORY_SIZE
|
|
#endif
|
|
|
|
/*
|
|
** Maximum size (in Mem3Blocks) of a "small" chunk.
|
|
*/
|
|
#define MX_SMALL 10
|
|
|
|
|
|
/*
|
|
** Number of freelist hash slots
|
|
*/
|
|
#define N_HASH 61
|
|
|
|
/*
|
|
** A memory allocation (also called a "chunk") consists of two or
|
|
** more blocks where each block is 8 bytes. The first 8 bytes are
|
|
** a header that is not returned to the user.
|
|
**
|
|
** A chunk is two or more blocks that is either checked out or
|
|
** free. The first block has format u.hdr. u.hdr.size4x is 4 times the
|
|
** size of the allocation in blocks if the allocation is free.
|
|
** The u.hdr.size4x&1 bit is true if the chunk is checked out and
|
|
** false if the chunk is on the freelist. The u.hdr.size4x&2 bit
|
|
** is true if the previous chunk is checked out and false if the
|
|
** previous chunk is free. The u.hdr.prevSize field is the size of
|
|
** the previous chunk in blocks if the previous chunk is on the
|
|
** freelist. If the previous chunk is checked out, then
|
|
** u.hdr.prevSize can be part of the data for that chunk and should
|
|
** not be read or written.
|
|
**
|
|
** We often identify a chunk by its index in mem.aPool[]. When
|
|
** this is done, the chunk index refers to the second block of
|
|
** the chunk. In this way, the first chunk has an index of 1.
|
|
** A chunk index of 0 means "no such chunk" and is the equivalent
|
|
** of a NULL pointer.
|
|
**
|
|
** The second block of free chunks is of the form u.list. The
|
|
** two fields form a double-linked list of chunks of related sizes.
|
|
** Pointers to the head of the list are stored in mem.aiSmall[]
|
|
** for smaller chunks and mem.aiHash[] for larger chunks.
|
|
**
|
|
** The second block of a chunk is user data if the chunk is checked
|
|
** out. If a chunk is checked out, the user data may extend into
|
|
** the u.hdr.prevSize value of the following chunk.
|
|
*/
|
|
typedef struct Mem3Block Mem3Block;
|
|
struct Mem3Block {
|
|
union {
|
|
struct {
|
|
u32 prevSize; /* Size of previous chunk in Mem3Block elements */
|
|
u32 size4x; /* 4x the size of current chunk in Mem3Block elements */
|
|
} hdr;
|
|
struct {
|
|
u32 next; /* Index in mem.aPool[] of next free chunk */
|
|
u32 prev; /* Index in mem.aPool[] of previous free chunk */
|
|
} list;
|
|
} u;
|
|
};
|
|
|
|
/*
|
|
** All of the static variables used by this module are collected
|
|
** into a single structure named "mem". This is to keep the
|
|
** static variables organized and to reduce namespace pollution
|
|
** when this module is combined with other in the amalgamation.
|
|
*/
|
|
static struct {
|
|
/*
|
|
** True if we are evaluating an out-of-memory callback.
|
|
*/
|
|
int alarmBusy;
|
|
|
|
/*
|
|
** Mutex to control access to the memory allocation subsystem.
|
|
*/
|
|
sqlite3_mutex *mutex;
|
|
|
|
/*
|
|
** The minimum amount of free space that we have seen.
|
|
*/
|
|
u32 mnMaster;
|
|
|
|
/*
|
|
** iMaster is the index of the master chunk. Most new allocations
|
|
** occur off of this chunk. szMaster is the size (in Mem3Blocks)
|
|
** of the current master. iMaster is 0 if there is not master chunk.
|
|
** The master chunk is not in either the aiHash[] or aiSmall[].
|
|
*/
|
|
u32 iMaster;
|
|
u32 szMaster;
|
|
|
|
/*
|
|
** Array of lists of free blocks according to the block size
|
|
** for smaller chunks, or a hash on the block size for larger
|
|
** chunks.
|
|
*/
|
|
u32 aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */
|
|
u32 aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */
|
|
|
|
/*
|
|
** Memory available for allocation
|
|
*/
|
|
Mem3Block aPool[SQLITE_MEMORY_SIZE/sizeof(Mem3Block)+2];
|
|
} mem;
|
|
|
|
/*
|
|
** Unlink the chunk at mem.aPool[i] from list it is currently
|
|
** on. *pRoot is the list that i is a member of.
|
|
*/
|
|
static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
|
|
u32 next = mem.aPool[i].u.list.next;
|
|
u32 prev = mem.aPool[i].u.list.prev;
|
|
assert( sqlite3_mutex_held(mem.mutex) );
|
|
if( prev==0 ){
|
|
*pRoot = next;
|
|
}else{
|
|
mem.aPool[prev].u.list.next = next;
|
|
}
|
|
if( next ){
|
|
mem.aPool[next].u.list.prev = prev;
|
|
}
|
|
mem.aPool[i].u.list.next = 0;
|
|
mem.aPool[i].u.list.prev = 0;
|
|
}
|
|
|
|
/*
|
|
** Unlink the chunk at index i from
|
|
** whatever list is currently a member of.
|
|
*/
|
|
static void memsys3Unlink(u32 i){
|
|
u32 size, hash;
|
|
assert( sqlite3_mutex_held(mem.mutex) );
|
|
assert( (mem.aPool[i-1].u.hdr.size4x & 1)==0 );
|
|
assert( i>=1 );
|
|
size = mem.aPool[i-1].u.hdr.size4x/4;
|
|
assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
|
|
assert( size>=2 );
|
|
if( size <= MX_SMALL ){
|
|
memsys3UnlinkFromList(i, &mem.aiSmall[size-2]);
|
|
}else{
|
|
hash = size % N_HASH;
|
|
memsys3UnlinkFromList(i, &mem.aiHash[hash]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Link the chunk at mem.aPool[i] so that is on the list rooted
|
|
** at *pRoot.
|
|
*/
|
|
static void memsys3LinkIntoList(u32 i, u32 *pRoot){
|
|
assert( sqlite3_mutex_held(mem.mutex) );
|
|
mem.aPool[i].u.list.next = *pRoot;
|
|
mem.aPool[i].u.list.prev = 0;
|
|
if( *pRoot ){
|
|
mem.aPool[*pRoot].u.list.prev = i;
|
|
}
|
|
*pRoot = i;
|
|
}
|
|
|
|
/*
|
|
** Link the chunk at index i into either the appropriate
|
|
** small chunk list, or into the large chunk hash table.
|
|
*/
|
|
static void memsys3Link(u32 i){
|
|
u32 size, hash;
|
|
assert( sqlite3_mutex_held(mem.mutex) );
|
|
assert( i>=1 );
|
|
assert( (mem.aPool[i-1].u.hdr.size4x & 1)==0 );
|
|
size = mem.aPool[i-1].u.hdr.size4x/4;
|
|
assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
|
|
assert( size>=2 );
|
|
if( size <= MX_SMALL ){
|
|
memsys3LinkIntoList(i, &mem.aiSmall[size-2]);
|
|
}else{
|
|
hash = size % N_HASH;
|
|
memsys3LinkIntoList(i, &mem.aiHash[hash]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
|
|
**
|
|
** Also: Initialize the memory allocation subsystem the first time
|
|
** this routine is called.
|
|
*/
|
|
static void memsys3Enter(void){
|
|
if( mem.mutex==0 ){
|
|
mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
|
|
mem.aPool[0].u.hdr.size4x = SQLITE_MEMORY_SIZE/2 + 2;
|
|
mem.aPool[SQLITE_MEMORY_SIZE/8].u.hdr.prevSize = SQLITE_MEMORY_SIZE/8;
|
|
mem.aPool[SQLITE_MEMORY_SIZE/8].u.hdr.size4x = 1;
|
|
mem.iMaster = 1;
|
|
mem.szMaster = SQLITE_MEMORY_SIZE/8;
|
|
mem.mnMaster = mem.szMaster;
|
|
}
|
|
sqlite3_mutex_enter(mem.mutex);
|
|
}
|
|
|
|
/*
|
|
** Return the amount of memory currently checked out.
|
|
*/
|
|
SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
|
|
sqlite3_int64 n;
|
|
memsys3Enter();
|
|
n = SQLITE_MEMORY_SIZE - mem.szMaster*8;
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Return the maximum amount of memory that has ever been
|
|
** checked out since either the beginning of this process
|
|
** or since the most recent reset.
|
|
*/
|
|
SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
|
|
sqlite3_int64 n;
|
|
memsys3Enter();
|
|
n = SQLITE_MEMORY_SIZE - mem.mnMaster*8;
|
|
if( resetFlag ){
|
|
mem.mnMaster = mem.szMaster;
|
|
}
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Change the alarm callback.
|
|
**
|
|
** This is a no-op for the static memory allocator. The purpose
|
|
** of the memory alarm is to support sqlite3_soft_heap_limit().
|
|
** But with this memory allocator, the soft_heap_limit is really
|
|
** a hard limit that is fixed at SQLITE_MEMORY_SIZE.
|
|
*/
|
|
SQLITE_API int sqlite3_memory_alarm(
|
|
void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
|
|
void *pArg,
|
|
sqlite3_int64 iThreshold
|
|
){
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Called when we are unable to satisfy an allocation of nBytes.
|
|
*/
|
|
static void memsys3OutOfMemory(int nByte){
|
|
if( !mem.alarmBusy ){
|
|
mem.alarmBusy = 1;
|
|
assert( sqlite3_mutex_held(mem.mutex) );
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
sqlite3_release_memory(nByte);
|
|
sqlite3_mutex_enter(mem.mutex);
|
|
mem.alarmBusy = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the size of an outstanding allocation, in bytes. The
|
|
** size returned omits the 8-byte header overhead. This only
|
|
** works for chunks that are currently checked out.
|
|
*/
|
|
static int memsys3Size(void *p){
|
|
Mem3Block *pBlock = (Mem3Block*)p;
|
|
assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
|
|
return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
|
|
}
|
|
|
|
/*
|
|
** Chunk i is a free chunk that has been unlinked. Adjust its
|
|
** size parameters for check-out and return a pointer to the
|
|
** user portion of the chunk.
|
|
*/
|
|
static void *memsys3Checkout(u32 i, int nBlock){
|
|
u32 x;
|
|
assert( sqlite3_mutex_held(mem.mutex) );
|
|
assert( i>=1 );
|
|
assert( mem.aPool[i-1].u.hdr.size4x/4==nBlock );
|
|
assert( mem.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
|
|
x = mem.aPool[i-1].u.hdr.size4x;
|
|
mem.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
|
|
mem.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
|
|
mem.aPool[i+nBlock-1].u.hdr.size4x |= 2;
|
|
return &mem.aPool[i];
|
|
}
|
|
|
|
/*
|
|
** Carve a piece off of the end of the mem.iMaster free chunk.
|
|
** Return a pointer to the new allocation. Or, if the master chunk
|
|
** is not large enough, return 0.
|
|
*/
|
|
static void *memsys3FromMaster(int nBlock){
|
|
assert( sqlite3_mutex_held(mem.mutex) );
|
|
assert( mem.szMaster>=nBlock );
|
|
if( nBlock>=mem.szMaster-1 ){
|
|
/* Use the entire master */
|
|
void *p = memsys3Checkout(mem.iMaster, mem.szMaster);
|
|
mem.iMaster = 0;
|
|
mem.szMaster = 0;
|
|
mem.mnMaster = 0;
|
|
return p;
|
|
}else{
|
|
/* Split the master block. Return the tail. */
|
|
u32 newi, x;
|
|
newi = mem.iMaster + mem.szMaster - nBlock;
|
|
assert( newi > mem.iMaster+1 );
|
|
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = nBlock;
|
|
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x |= 2;
|
|
mem.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
|
|
mem.szMaster -= nBlock;
|
|
mem.aPool[newi-1].u.hdr.prevSize = mem.szMaster;
|
|
x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
|
|
mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
|
|
if( mem.szMaster < mem.mnMaster ){
|
|
mem.mnMaster = mem.szMaster;
|
|
}
|
|
return (void*)&mem.aPool[newi];
|
|
}
|
|
}
|
|
|
|
/*
|
|
** *pRoot is the head of a list of free chunks of the same size
|
|
** or same size hash. In other words, *pRoot is an entry in either
|
|
** mem.aiSmall[] or mem.aiHash[].
|
|
**
|
|
** This routine examines all entries on the given list and tries
|
|
** to coalesce each entries with adjacent free chunks.
|
|
**
|
|
** If it sees a chunk that is larger than mem.iMaster, it replaces
|
|
** the current mem.iMaster with the new larger chunk. In order for
|
|
** this mem.iMaster replacement to work, the master chunk must be
|
|
** linked into the hash tables. That is not the normal state of
|
|
** affairs, of course. The calling routine must link the master
|
|
** chunk before invoking this routine, then must unlink the (possibly
|
|
** changed) master chunk once this routine has finished.
|
|
*/
|
|
static void memsys3Merge(u32 *pRoot){
|
|
u32 iNext, prev, size, i, x;
|
|
|
|
assert( sqlite3_mutex_held(mem.mutex) );
|
|
for(i=*pRoot; i>0; i=iNext){
|
|
iNext = mem.aPool[i].u.list.next;
|
|
size = mem.aPool[i-1].u.hdr.size4x;
|
|
assert( (size&1)==0 );
|
|
if( (size&2)==0 ){
|
|
memsys3UnlinkFromList(i, pRoot);
|
|
assert( i > mem.aPool[i-1].u.hdr.prevSize );
|
|
prev = i - mem.aPool[i-1].u.hdr.prevSize;
|
|
if( prev==iNext ){
|
|
iNext = mem.aPool[prev].u.list.next;
|
|
}
|
|
memsys3Unlink(prev);
|
|
size = i + size/4 - prev;
|
|
x = mem.aPool[prev-1].u.hdr.size4x & 2;
|
|
mem.aPool[prev-1].u.hdr.size4x = size*4 | x;
|
|
mem.aPool[prev+size-1].u.hdr.prevSize = size;
|
|
memsys3Link(prev);
|
|
i = prev;
|
|
}else{
|
|
size /= 4;
|
|
}
|
|
if( size>mem.szMaster ){
|
|
mem.iMaster = i;
|
|
mem.szMaster = size;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return a block of memory of at least nBytes in size.
|
|
** Return NULL if unable.
|
|
*/
|
|
static void *memsys3Malloc(int nByte){
|
|
u32 i;
|
|
int nBlock;
|
|
int toFree;
|
|
|
|
assert( sqlite3_mutex_held(mem.mutex) );
|
|
assert( sizeof(Mem3Block)==8 );
|
|
if( nByte<=12 ){
|
|
nBlock = 2;
|
|
}else{
|
|
nBlock = (nByte + 11)/8;
|
|
}
|
|
assert( nBlock >= 2 );
|
|
|
|
/* STEP 1:
|
|
** Look for an entry of the correct size in either the small
|
|
** chunk table or in the large chunk hash table. This is
|
|
** successful most of the time (about 9 times out of 10).
|
|
*/
|
|
if( nBlock <= MX_SMALL ){
|
|
i = mem.aiSmall[nBlock-2];
|
|
if( i>0 ){
|
|
memsys3UnlinkFromList(i, &mem.aiSmall[nBlock-2]);
|
|
return memsys3Checkout(i, nBlock);
|
|
}
|
|
}else{
|
|
int hash = nBlock % N_HASH;
|
|
for(i=mem.aiHash[hash]; i>0; i=mem.aPool[i].u.list.next){
|
|
if( mem.aPool[i-1].u.hdr.size4x/4==nBlock ){
|
|
memsys3UnlinkFromList(i, &mem.aiHash[hash]);
|
|
return memsys3Checkout(i, nBlock);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* STEP 2:
|
|
** Try to satisfy the allocation by carving a piece off of the end
|
|
** of the master chunk. This step usually works if step 1 fails.
|
|
*/
|
|
if( mem.szMaster>=nBlock ){
|
|
return memsys3FromMaster(nBlock);
|
|
}
|
|
|
|
|
|
/* STEP 3:
|
|
** Loop through the entire memory pool. Coalesce adjacent free
|
|
** chunks. Recompute the master chunk as the largest free chunk.
|
|
** Then try again to satisfy the allocation by carving a piece off
|
|
** of the end of the master chunk. This step happens very
|
|
** rarely (we hope!)
|
|
*/
|
|
for(toFree=nBlock*16; toFree<SQLITE_MEMORY_SIZE*2; toFree *= 2){
|
|
memsys3OutOfMemory(toFree);
|
|
if( mem.iMaster ){
|
|
memsys3Link(mem.iMaster);
|
|
mem.iMaster = 0;
|
|
mem.szMaster = 0;
|
|
}
|
|
for(i=0; i<N_HASH; i++){
|
|
memsys3Merge(&mem.aiHash[i]);
|
|
}
|
|
for(i=0; i<MX_SMALL-1; i++){
|
|
memsys3Merge(&mem.aiSmall[i]);
|
|
}
|
|
if( mem.szMaster ){
|
|
memsys3Unlink(mem.iMaster);
|
|
if( mem.szMaster>=nBlock ){
|
|
return memsys3FromMaster(nBlock);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If none of the above worked, then we fail. */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Free an outstanding memory allocation.
|
|
*/
|
|
void memsys3Free(void *pOld){
|
|
Mem3Block *p = (Mem3Block*)pOld;
|
|
int i;
|
|
u32 size, x;
|
|
assert( sqlite3_mutex_held(mem.mutex) );
|
|
assert( p>mem.aPool && p<&mem.aPool[SQLITE_MEMORY_SIZE/8] );
|
|
i = p - mem.aPool;
|
|
assert( (mem.aPool[i-1].u.hdr.size4x&1)==1 );
|
|
size = mem.aPool[i-1].u.hdr.size4x/4;
|
|
assert( i+size<=SQLITE_MEMORY_SIZE/8+1 );
|
|
mem.aPool[i-1].u.hdr.size4x &= ~1;
|
|
mem.aPool[i+size-1].u.hdr.prevSize = size;
|
|
mem.aPool[i+size-1].u.hdr.size4x &= ~2;
|
|
memsys3Link(i);
|
|
|
|
/* Try to expand the master using the newly freed chunk */
|
|
if( mem.iMaster ){
|
|
while( (mem.aPool[mem.iMaster-1].u.hdr.size4x&2)==0 ){
|
|
size = mem.aPool[mem.iMaster-1].u.hdr.prevSize;
|
|
mem.iMaster -= size;
|
|
mem.szMaster += size;
|
|
memsys3Unlink(mem.iMaster);
|
|
x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
|
|
mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
|
|
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
|
|
}
|
|
x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
|
|
while( (mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x&1)==0 ){
|
|
memsys3Unlink(mem.iMaster+mem.szMaster);
|
|
mem.szMaster += mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x/4;
|
|
mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
|
|
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Allocate nBytes of memory
|
|
*/
|
|
SQLITE_API void *sqlite3_malloc(int nBytes){
|
|
sqlite3_int64 *p = 0;
|
|
if( nBytes>0 ){
|
|
memsys3Enter();
|
|
p = memsys3Malloc(nBytes);
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
}
|
|
return (void*)p;
|
|
}
|
|
|
|
/*
|
|
** Free memory.
|
|
*/
|
|
SQLITE_API void sqlite3_free(void *pPrior){
|
|
if( pPrior==0 ){
|
|
return;
|
|
}
|
|
assert( mem.mutex!=0 );
|
|
sqlite3_mutex_enter(mem.mutex);
|
|
memsys3Free(pPrior);
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
}
|
|
|
|
/*
|
|
** Change the size of an existing memory allocation
|
|
*/
|
|
SQLITE_API void *sqlite3_realloc(void *pPrior, int nBytes){
|
|
int nOld;
|
|
void *p;
|
|
if( pPrior==0 ){
|
|
return sqlite3_malloc(nBytes);
|
|
}
|
|
if( nBytes<=0 ){
|
|
sqlite3_free(pPrior);
|
|
return 0;
|
|
}
|
|
assert( mem.mutex!=0 );
|
|
nOld = memsys3Size(pPrior);
|
|
if( nBytes<=nOld && nBytes>=nOld-128 ){
|
|
return pPrior;
|
|
}
|
|
sqlite3_mutex_enter(mem.mutex);
|
|
p = memsys3Malloc(nBytes);
|
|
if( p ){
|
|
if( nOld<nBytes ){
|
|
memcpy(p, pPrior, nOld);
|
|
}else{
|
|
memcpy(p, pPrior, nBytes);
|
|
}
|
|
memsys3Free(pPrior);
|
|
}
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Open the file indicated and write a log of all unfreed memory
|
|
** allocations into that log.
|
|
*/
|
|
SQLITE_API void sqlite3_memdebug_dump(const char *zFilename){
|
|
#ifdef SQLITE_DEBUG
|
|
FILE *out;
|
|
int i, j;
|
|
u32 size;
|
|
if( zFilename==0 || zFilename[0]==0 ){
|
|
out = stdout;
|
|
}else{
|
|
out = fopen(zFilename, "w");
|
|
if( out==0 ){
|
|
fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
|
|
zFilename);
|
|
return;
|
|
}
|
|
}
|
|
memsys3Enter();
|
|
fprintf(out, "CHUNKS:\n");
|
|
for(i=1; i<=SQLITE_MEMORY_SIZE/8; i+=size/4){
|
|
size = mem.aPool[i-1].u.hdr.size4x;
|
|
if( size/4<=1 ){
|
|
fprintf(out, "%p size error\n", &mem.aPool[i]);
|
|
assert( 0 );
|
|
break;
|
|
}
|
|
if( (size&1)==0 && mem.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
|
|
fprintf(out, "%p tail size does not match\n", &mem.aPool[i]);
|
|
assert( 0 );
|
|
break;
|
|
}
|
|
if( ((mem.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
|
|
fprintf(out, "%p tail checkout bit is incorrect\n", &mem.aPool[i]);
|
|
assert( 0 );
|
|
break;
|
|
}
|
|
if( size&1 ){
|
|
fprintf(out, "%p %6d bytes checked out\n", &mem.aPool[i], (size/4)*8-8);
|
|
}else{
|
|
fprintf(out, "%p %6d bytes free%s\n", &mem.aPool[i], (size/4)*8-8,
|
|
i==mem.iMaster ? " **master**" : "");
|
|
}
|
|
}
|
|
for(i=0; i<MX_SMALL-1; i++){
|
|
if( mem.aiSmall[i]==0 ) continue;
|
|
fprintf(out, "small(%2d):", i);
|
|
for(j = mem.aiSmall[i]; j>0; j=mem.aPool[j].u.list.next){
|
|
fprintf(out, " %p(%d)", &mem.aPool[j],
|
|
(mem.aPool[j-1].u.hdr.size4x/4)*8-8);
|
|
}
|
|
fprintf(out, "\n");
|
|
}
|
|
for(i=0; i<N_HASH; i++){
|
|
if( mem.aiHash[i]==0 ) continue;
|
|
fprintf(out, "hash(%2d):", i);
|
|
for(j = mem.aiHash[i]; j>0; j=mem.aPool[j].u.list.next){
|
|
fprintf(out, " %p(%d)", &mem.aPool[j],
|
|
(mem.aPool[j-1].u.hdr.size4x/4)*8-8);
|
|
}
|
|
fprintf(out, "\n");
|
|
}
|
|
fprintf(out, "master=%d\n", mem.iMaster);
|
|
fprintf(out, "nowUsed=%d\n", SQLITE_MEMORY_SIZE - mem.szMaster*8);
|
|
fprintf(out, "mxUsed=%d\n", SQLITE_MEMORY_SIZE - mem.mnMaster*8);
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
if( out==stdout ){
|
|
fflush(stdout);
|
|
}else{
|
|
fclose(out);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
#endif /* !SQLITE_MEMORY_SIZE */
|
|
|
|
/************** End of mem3.c ************************************************/
|
|
/************** Begin file mutex.c *******************************************/
|
|
/*
|
|
** 2007 August 14
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains the C functions that implement mutexes.
|
|
**
|
|
** The implementation in this file does not provide any mutual
|
|
** exclusion and is thus suitable for use only in applications
|
|
** that use SQLite in a single thread. But this implementation
|
|
** does do a lot of error checking on mutexes to make sure they
|
|
** are called correctly and at appropriate times. Hence, this
|
|
** implementation is suitable for testing.
|
|
** debugging purposes
|
|
**
|
|
** $Id: mutex.c,v 1.16 2007/09/10 16:13:00 danielk1977 Exp $
|
|
*/
|
|
|
|
#ifdef SQLITE_MUTEX_NOOP_DEBUG
|
|
/*
|
|
** In this implementation, mutexes do not provide any mutual exclusion.
|
|
** But the error checking is provided. This implementation is useful
|
|
** for test purposes.
|
|
*/
|
|
|
|
/*
|
|
** The mutex object
|
|
*/
|
|
struct sqlite3_mutex {
|
|
int id; /* The mutex type */
|
|
int cnt; /* Number of entries without a matching leave */
|
|
};
|
|
|
|
/*
|
|
** The sqlite3_mutex_alloc() routine allocates a new
|
|
** mutex and returns a pointer to it. If it returns NULL
|
|
** that means that a mutex could not be allocated.
|
|
*/
|
|
SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int id){
|
|
static sqlite3_mutex aStatic[5];
|
|
sqlite3_mutex *pNew = 0;
|
|
switch( id ){
|
|
case SQLITE_MUTEX_FAST:
|
|
case SQLITE_MUTEX_RECURSIVE: {
|
|
pNew = sqlite3_malloc(sizeof(*pNew));
|
|
if( pNew ){
|
|
pNew->id = id;
|
|
pNew->cnt = 0;
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
assert( id-2 >= 0 );
|
|
assert( id-2 < sizeof(aStatic)/sizeof(aStatic[0]) );
|
|
pNew = &aStatic[id-2];
|
|
pNew->id = id;
|
|
break;
|
|
}
|
|
}
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** This routine deallocates a previously allocated mutex.
|
|
*/
|
|
SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
|
|
assert( p );
|
|
assert( p->cnt==0 );
|
|
assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
|
|
sqlite3_free(p);
|
|
}
|
|
|
|
/*
|
|
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
|
|
** to enter a mutex. If another thread is already within the mutex,
|
|
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
|
|
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
|
|
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
|
|
** be entered multiple times by the same thread. In such cases the,
|
|
** mutex must be exited an equal number of times before another thread
|
|
** can enter. If the same thread tries to enter any other kind of mutex
|
|
** more than once, the behavior is undefined.
|
|
*/
|
|
SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
|
|
assert( p );
|
|
assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
|
|
p->cnt++;
|
|
}
|
|
SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
|
|
assert( p );
|
|
assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
|
|
p->cnt++;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** The sqlite3_mutex_leave() routine exits a mutex that was
|
|
** previously entered by the same thread. The behavior
|
|
** is undefined if the mutex is not currently entered or
|
|
** is not currently allocated. SQLite will never do either.
|
|
*/
|
|
SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
|
|
assert( p );
|
|
assert( sqlite3_mutex_held(p) );
|
|
p->cnt--;
|
|
assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
|
|
}
|
|
|
|
/*
|
|
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
|
|
** intended for use inside assert() statements.
|
|
*/
|
|
SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
|
|
return p==0 || p->cnt>0;
|
|
}
|
|
SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
|
|
return p==0 || p->cnt==0;
|
|
}
|
|
#endif /* SQLITE_MUTEX_NOOP_DEBUG */
|
|
|
|
/************** End of mutex.c ***********************************************/
|
|
/************** Begin file mutex_os2.c ***************************************/
|
|
/*
|
|
** 2007 August 28
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains the C functions that implement mutexes for OS/2
|
|
**
|
|
** $Id: mutex_os2.c,v 1.4 2007/12/30 23:29:07 pweilbacher Exp $
|
|
*/
|
|
|
|
/*
|
|
** The code in this file is only used if SQLITE_MUTEX_OS2 is defined.
|
|
** See the mutex.h file for details.
|
|
*/
|
|
#ifdef SQLITE_MUTEX_OS2
|
|
|
|
/********************** OS/2 Mutex Implementation **********************
|
|
**
|
|
** This implementation of mutexes is built using the OS/2 API.
|
|
*/
|
|
|
|
/*
|
|
** The mutex object
|
|
** Each recursive mutex is an instance of the following structure.
|
|
*/
|
|
struct sqlite3_mutex {
|
|
PSZ mutexName; /* Mutex name controlling the lock */
|
|
HMTX mutex; /* Mutex controlling the lock */
|
|
int id; /* Mutex type */
|
|
int nRef; /* Number of references */
|
|
TID owner; /* Thread holding this mutex */
|
|
};
|
|
|
|
/*
|
|
** The sqlite3_mutex_alloc() routine allocates a new
|
|
** mutex and returns a pointer to it. If it returns NULL
|
|
** that means that a mutex could not be allocated.
|
|
** SQLite will unwind its stack and return an error. The argument
|
|
** to sqlite3_mutex_alloc() is one of these integer constants:
|
|
**
|
|
** <ul>
|
|
** <li> SQLITE_MUTEX_FAST 0
|
|
** <li> SQLITE_MUTEX_RECURSIVE 1
|
|
** <li> SQLITE_MUTEX_STATIC_MASTER 2
|
|
** <li> SQLITE_MUTEX_STATIC_MEM 3
|
|
** <li> SQLITE_MUTEX_STATIC_PRNG 4
|
|
** </ul>
|
|
**
|
|
** The first two constants cause sqlite3_mutex_alloc() to create
|
|
** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
|
|
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
|
|
** The mutex implementation does not need to make a distinction
|
|
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
|
|
** not want to. But SQLite will only request a recursive mutex in
|
|
** cases where it really needs one. If a faster non-recursive mutex
|
|
** implementation is available on the host platform, the mutex subsystem
|
|
** might return such a mutex in response to SQLITE_MUTEX_FAST.
|
|
**
|
|
** The other allowed parameters to sqlite3_mutex_alloc() each return
|
|
** a pointer to a static preexisting mutex. Three static mutexes are
|
|
** used by the current version of SQLite. Future versions of SQLite
|
|
** may add additional static mutexes. Static mutexes are for internal
|
|
** use by SQLite only. Applications that use SQLite mutexes should
|
|
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
|
|
** SQLITE_MUTEX_RECURSIVE.
|
|
**
|
|
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
|
|
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
|
|
** returns a different mutex on every call. But for the static
|
|
** mutex types, the same mutex is returned on every call that has
|
|
** the same type number.
|
|
*/
|
|
SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int iType){
|
|
PSZ mutex_name = "\\SEM32\\SQLITE\\MUTEX";
|
|
int mutex_name_len = strlen(mutex_name) + 1; /* name length + null byte */
|
|
sqlite3_mutex *p;
|
|
|
|
switch( iType ){
|
|
case SQLITE_MUTEX_FAST:
|
|
case SQLITE_MUTEX_RECURSIVE: {
|
|
p = sqlite3MallocZero( sizeof(*p) );
|
|
if( p ){
|
|
p->mutexName = (PSZ)malloc(mutex_name_len);
|
|
sqlite3_snprintf(mutex_name_len, p->mutexName, "%s", mutex_name);
|
|
p->id = iType;
|
|
DosCreateMutexSem(p->mutexName, &p->mutex, 0, FALSE);
|
|
DosOpenMutexSem(p->mutexName, &p->mutex);
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
static sqlite3_mutex staticMutexes[5];
|
|
static int isInit = 0;
|
|
while( !isInit ) {
|
|
static long lock = 0;
|
|
DosEnterCritSec();
|
|
lock++;
|
|
if( lock == 1 ) {
|
|
int i;
|
|
DosExitCritSec();
|
|
for(i = 0; i < sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++) {
|
|
staticMutexes[i].mutexName = (PSZ)malloc(mutex_name_len + 1);
|
|
sqlite3_snprintf(mutex_name_len + 1, /* one more for the number */
|
|
staticMutexes[i].mutexName, "%s%1d", mutex_name, i);
|
|
DosCreateMutexSem(staticMutexes[i].mutexName,
|
|
&staticMutexes[i].mutex, 0, FALSE);
|
|
DosOpenMutexSem(staticMutexes[i].mutexName,
|
|
&staticMutexes[i].mutex);
|
|
}
|
|
isInit = 1;
|
|
} else {
|
|
DosExitCritSec();
|
|
DosSleep(1);
|
|
}
|
|
}
|
|
assert( iType-2 >= 0 );
|
|
assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
|
|
p = &staticMutexes[iType-2];
|
|
p->id = iType;
|
|
break;
|
|
}
|
|
}
|
|
return p;
|
|
}
|
|
|
|
|
|
/*
|
|
** This routine deallocates a previously allocated mutex.
|
|
** SQLite is careful to deallocate every mutex that it allocates.
|
|
*/
|
|
SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
|
|
assert( p );
|
|
assert( p->nRef==0 );
|
|
assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
|
|
DosCloseMutexSem(p->mutex);
|
|
free(p->mutexName);
|
|
sqlite3_free(p);
|
|
}
|
|
|
|
/*
|
|
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
|
|
** to enter a mutex. If another thread is already within the mutex,
|
|
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
|
|
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
|
|
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
|
|
** be entered multiple times by the same thread. In such cases the,
|
|
** mutex must be exited an equal number of times before another thread
|
|
** can enter. If the same thread tries to enter any other kind of mutex
|
|
** more than once, the behavior is undefined.
|
|
*/
|
|
SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
|
|
TID tid;
|
|
PID holder1;
|
|
ULONG holder2;
|
|
assert( p );
|
|
assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
|
|
DosRequestMutexSem(p->mutex, SEM_INDEFINITE_WAIT);
|
|
DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
|
|
p->owner = tid;
|
|
p->nRef++;
|
|
}
|
|
SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
|
|
int rc;
|
|
TID tid;
|
|
PID holder1;
|
|
ULONG holder2;
|
|
assert( p );
|
|
assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
|
|
if( DosRequestMutexSem(p->mutex, SEM_IMMEDIATE_RETURN) == NO_ERROR) {
|
|
DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
|
|
p->owner = tid;
|
|
p->nRef++;
|
|
rc = SQLITE_OK;
|
|
} else {
|
|
rc = SQLITE_BUSY;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** The sqlite3_mutex_leave() routine exits a mutex that was
|
|
** previously entered by the same thread. The behavior
|
|
** is undefined if the mutex is not currently entered or
|
|
** is not currently allocated. SQLite will never do either.
|
|
*/
|
|
SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
|
|
TID tid;
|
|
PID holder1;
|
|
ULONG holder2;
|
|
assert( p->nRef>0 );
|
|
DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
|
|
assert( p->owner==tid );
|
|
p->nRef--;
|
|
assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
|
|
DosReleaseMutexSem(p->mutex);
|
|
}
|
|
|
|
/*
|
|
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
|
|
** intended for use inside assert() statements.
|
|
*/
|
|
SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
|
|
TID tid;
|
|
PID pid;
|
|
ULONG ulCount;
|
|
PTIB ptib;
|
|
if( p!=0 ) {
|
|
DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
|
|
} else {
|
|
DosGetInfoBlocks(&ptib, NULL);
|
|
tid = ptib->tib_ptib2->tib2_ultid;
|
|
}
|
|
return p==0 || (p->nRef!=0 && p->owner==tid);
|
|
}
|
|
SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
|
|
TID tid;
|
|
PID pid;
|
|
ULONG ulCount;
|
|
PTIB ptib;
|
|
if( p!= 0 ) {
|
|
DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
|
|
} else {
|
|
DosGetInfoBlocks(&ptib, NULL);
|
|
tid = ptib->tib_ptib2->tib2_ultid;
|
|
}
|
|
return p==0 || p->nRef==0 || p->owner!=tid;
|
|
}
|
|
#endif /* SQLITE_MUTEX_OS2 */
|
|
|
|
/************** End of mutex_os2.c *******************************************/
|
|
/************** Begin file mutex_unix.c **************************************/
|
|
/*
|
|
** 2007 August 28
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains the C functions that implement mutexes for pthreads
|
|
**
|
|
** $Id: mutex_unix.c,v 1.5 2007/11/28 14:04:57 drh Exp $
|
|
*/
|
|
|
|
/*
|
|
** The code in this file is only used if we are compiling threadsafe
|
|
** under unix with pthreads.
|
|
**
|
|
** Note that this implementation requires a version of pthreads that
|
|
** supports recursive mutexes.
|
|
*/
|
|
#ifdef SQLITE_MUTEX_PTHREADS
|
|
|
|
#include <pthread.h>
|
|
|
|
|
|
/*
|
|
** Each recursive mutex is an instance of the following structure.
|
|
*/
|
|
struct sqlite3_mutex {
|
|
pthread_mutex_t mutex; /* Mutex controlling the lock */
|
|
int id; /* Mutex type */
|
|
int nRef; /* Number of entrances */
|
|
pthread_t owner; /* Thread that is within this mutex */
|
|
#ifdef SQLITE_DEBUG
|
|
int trace; /* True to trace changes */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
** The sqlite3_mutex_alloc() routine allocates a new
|
|
** mutex and returns a pointer to it. If it returns NULL
|
|
** that means that a mutex could not be allocated. SQLite
|
|
** will unwind its stack and return an error. The argument
|
|
** to sqlite3_mutex_alloc() is one of these integer constants:
|
|
**
|
|
** <ul>
|
|
** <li> SQLITE_MUTEX_FAST
|
|
** <li> SQLITE_MUTEX_RECURSIVE
|
|
** <li> SQLITE_MUTEX_STATIC_MASTER
|
|
** <li> SQLITE_MUTEX_STATIC_MEM
|
|
** <li> SQLITE_MUTEX_STATIC_MEM2
|
|
** <li> SQLITE_MUTEX_STATIC_PRNG
|
|
** <li> SQLITE_MUTEX_STATIC_LRU
|
|
** </ul>
|
|
**
|
|
** The first two constants cause sqlite3_mutex_alloc() to create
|
|
** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
|
|
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
|
|
** The mutex implementation does not need to make a distinction
|
|
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
|
|
** not want to. But SQLite will only request a recursive mutex in
|
|
** cases where it really needs one. If a faster non-recursive mutex
|
|
** implementation is available on the host platform, the mutex subsystem
|
|
** might return such a mutex in response to SQLITE_MUTEX_FAST.
|
|
**
|
|
** The other allowed parameters to sqlite3_mutex_alloc() each return
|
|
** a pointer to a static preexisting mutex. Three static mutexes are
|
|
** used by the current version of SQLite. Future versions of SQLite
|
|
** may add additional static mutexes. Static mutexes are for internal
|
|
** use by SQLite only. Applications that use SQLite mutexes should
|
|
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
|
|
** SQLITE_MUTEX_RECURSIVE.
|
|
**
|
|
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
|
|
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
|
|
** returns a different mutex on every call. But for the static
|
|
** mutex types, the same mutex is returned on every call that has
|
|
** the same type number.
|
|
*/
|
|
SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int iType){
|
|
static sqlite3_mutex staticMutexes[] = {
|
|
{ PTHREAD_MUTEX_INITIALIZER, },
|
|
{ PTHREAD_MUTEX_INITIALIZER, },
|
|
{ PTHREAD_MUTEX_INITIALIZER, },
|
|
{ PTHREAD_MUTEX_INITIALIZER, },
|
|
{ PTHREAD_MUTEX_INITIALIZER, },
|
|
};
|
|
sqlite3_mutex *p;
|
|
switch( iType ){
|
|
case SQLITE_MUTEX_RECURSIVE: {
|
|
p = sqlite3MallocZero( sizeof(*p) );
|
|
if( p ){
|
|
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
|
|
/* If recursive mutexes are not available, we will have to
|
|
** build our own. See below. */
|
|
pthread_mutex_init(&p->mutex, 0);
|
|
#else
|
|
/* Use a recursive mutex if it is available */
|
|
pthread_mutexattr_t recursiveAttr;
|
|
pthread_mutexattr_init(&recursiveAttr);
|
|
pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
|
|
pthread_mutex_init(&p->mutex, &recursiveAttr);
|
|
pthread_mutexattr_destroy(&recursiveAttr);
|
|
#endif
|
|
p->id = iType;
|
|
}
|
|
break;
|
|
}
|
|
case SQLITE_MUTEX_FAST: {
|
|
p = sqlite3MallocZero( sizeof(*p) );
|
|
if( p ){
|
|
p->id = iType;
|
|
pthread_mutex_init(&p->mutex, 0);
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
assert( iType-2 >= 0 );
|
|
assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
|
|
p = &staticMutexes[iType-2];
|
|
p->id = iType;
|
|
break;
|
|
}
|
|
}
|
|
return p;
|
|
}
|
|
|
|
|
|
/*
|
|
** This routine deallocates a previously
|
|
** allocated mutex. SQLite is careful to deallocate every
|
|
** mutex that it allocates.
|
|
*/
|
|
SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
|
|
assert( p );
|
|
assert( p->nRef==0 );
|
|
assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
|
|
pthread_mutex_destroy(&p->mutex);
|
|
sqlite3_free(p);
|
|
}
|
|
|
|
/*
|
|
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
|
|
** to enter a mutex. If another thread is already within the mutex,
|
|
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
|
|
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
|
|
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
|
|
** be entered multiple times by the same thread. In such cases the,
|
|
** mutex must be exited an equal number of times before another thread
|
|
** can enter. If the same thread tries to enter any other kind of mutex
|
|
** more than once, the behavior is undefined.
|
|
*/
|
|
SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
|
|
assert( p );
|
|
assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
|
|
|
|
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
|
|
/* If recursive mutexes are not available, then we have to grow
|
|
** our own. This implementation assumes that pthread_equal()
|
|
** is atomic - that it cannot be deceived into thinking self
|
|
** and p->owner are equal if p->owner changes between two values
|
|
** that are not equal to self while the comparison is taking place.
|
|
** This implementation also assumes a coherent cache - that
|
|
** separate processes cannot read different values from the same
|
|
** address at the same time. If either of these two conditions
|
|
** are not met, then the mutexes will fail and problems will result.
|
|
*/
|
|
{
|
|
pthread_t self = pthread_self();
|
|
if( p->nRef>0 && pthread_equal(p->owner, self) ){
|
|
p->nRef++;
|
|
}else{
|
|
pthread_mutex_lock(&p->mutex);
|
|
assert( p->nRef==0 );
|
|
p->owner = self;
|
|
p->nRef = 1;
|
|
}
|
|
}
|
|
#else
|
|
/* Use the built-in recursive mutexes if they are available.
|
|
*/
|
|
pthread_mutex_lock(&p->mutex);
|
|
p->owner = pthread_self();
|
|
p->nRef++;
|
|
#endif
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
if( p->trace ){
|
|
printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
|
|
}
|
|
#endif
|
|
}
|
|
SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
|
|
int rc;
|
|
assert( p );
|
|
assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
|
|
|
|
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
|
|
/* If recursive mutexes are not available, then we have to grow
|
|
** our own. This implementation assumes that pthread_equal()
|
|
** is atomic - that it cannot be deceived into thinking self
|
|
** and p->owner are equal if p->owner changes between two values
|
|
** that are not equal to self while the comparison is taking place.
|
|
** This implementation also assumes a coherent cache - that
|
|
** separate processes cannot read different values from the same
|
|
** address at the same time. If either of these two conditions
|
|
** are not met, then the mutexes will fail and problems will result.
|
|
*/
|
|
{
|
|
pthread_t self = pthread_self();
|
|
if( p->nRef>0 && pthread_equal(p->owner, self) ){
|
|
p->nRef++;
|
|
rc = SQLITE_OK;
|
|
}else if( pthread_mutex_lock(&p->mutex)==0 ){
|
|
assert( p->nRef==0 );
|
|
p->owner = self;
|
|
p->nRef = 1;
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
rc = SQLITE_BUSY;
|
|
}
|
|
}
|
|
#else
|
|
/* Use the built-in recursive mutexes if they are available.
|
|
*/
|
|
if( pthread_mutex_trylock(&p->mutex)==0 ){
|
|
p->owner = pthread_self();
|
|
p->nRef++;
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
rc = SQLITE_BUSY;
|
|
}
|
|
#endif
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
if( rc==SQLITE_OK && p->trace ){
|
|
printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
|
|
}
|
|
#endif
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** The sqlite3_mutex_leave() routine exits a mutex that was
|
|
** previously entered by the same thread. The behavior
|
|
** is undefined if the mutex is not currently entered or
|
|
** is not currently allocated. SQLite will never do either.
|
|
*/
|
|
SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
|
|
assert( p );
|
|
assert( sqlite3_mutex_held(p) );
|
|
p->nRef--;
|
|
assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
|
|
|
|
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
|
|
if( p->nRef==0 ){
|
|
pthread_mutex_unlock(&p->mutex);
|
|
}
|
|
#else
|
|
pthread_mutex_unlock(&p->mutex);
|
|
#endif
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
if( p->trace ){
|
|
printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
|
|
** intended for use only inside assert() statements. On some platforms,
|
|
** there might be race conditions that can cause these routines to
|
|
** deliver incorrect results. In particular, if pthread_equal() is
|
|
** not an atomic operation, then these routines might delivery
|
|
** incorrect results. On most platforms, pthread_equal() is a
|
|
** comparison of two integers and is therefore atomic. But we are
|
|
** told that HPUX is not such a platform. If so, then these routines
|
|
** will not always work correctly on HPUX.
|
|
**
|
|
** On those platforms where pthread_equal() is not atomic, SQLite
|
|
** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
|
|
** make sure no assert() statements are evaluated and hence these
|
|
** routines are never called.
|
|
*/
|
|
#ifndef NDEBUG
|
|
SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
|
|
return p==0 || (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
|
|
}
|
|
SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
|
|
return p==0 || p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
|
|
}
|
|
#endif
|
|
#endif /* SQLITE_MUTEX_PTHREAD */
|
|
|
|
/************** End of mutex_unix.c ******************************************/
|
|
/************** Begin file mutex_w32.c ***************************************/
|
|
/*
|
|
** 2007 August 14
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains the C functions that implement mutexes for win32
|
|
**
|
|
** $Id: mutex_w32.c,v 1.5 2007/10/05 15:08:01 drh Exp $
|
|
*/
|
|
|
|
/*
|
|
** The code in this file is only used if we are compiling multithreaded
|
|
** on a win32 system.
|
|
*/
|
|
#ifdef SQLITE_MUTEX_W32
|
|
|
|
/*
|
|
** Each recursive mutex is an instance of the following structure.
|
|
*/
|
|
struct sqlite3_mutex {
|
|
CRITICAL_SECTION mutex; /* Mutex controlling the lock */
|
|
int id; /* Mutex type */
|
|
int nRef; /* Number of enterances */
|
|
DWORD owner; /* Thread holding this mutex */
|
|
};
|
|
|
|
/*
|
|
** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
|
|
** or WinCE. Return false (zero) for Win95, Win98, or WinME.
|
|
**
|
|
** Here is an interesting observation: Win95, Win98, and WinME lack
|
|
** the LockFileEx() API. But we can still statically link against that
|
|
** API as long as we don't call it win running Win95/98/ME. A call to
|
|
** this routine is used to determine if the host is Win95/98/ME or
|
|
** WinNT/2K/XP so that we will know whether or not we can safely call
|
|
** the LockFileEx() API.
|
|
*/
|
|
#if OS_WINCE
|
|
# define mutexIsNT() (1)
|
|
#else
|
|
static int mutexIsNT(void){
|
|
static int osType = 0;
|
|
if( osType==0 ){
|
|
OSVERSIONINFO sInfo;
|
|
sInfo.dwOSVersionInfoSize = sizeof(sInfo);
|
|
GetVersionEx(&sInfo);
|
|
osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
|
|
}
|
|
return osType==2;
|
|
}
|
|
#endif /* OS_WINCE */
|
|
|
|
|
|
/*
|
|
** The sqlite3_mutex_alloc() routine allocates a new
|
|
** mutex and returns a pointer to it. If it returns NULL
|
|
** that means that a mutex could not be allocated. SQLite
|
|
** will unwind its stack and return an error. The argument
|
|
** to sqlite3_mutex_alloc() is one of these integer constants:
|
|
**
|
|
** <ul>
|
|
** <li> SQLITE_MUTEX_FAST 0
|
|
** <li> SQLITE_MUTEX_RECURSIVE 1
|
|
** <li> SQLITE_MUTEX_STATIC_MASTER 2
|
|
** <li> SQLITE_MUTEX_STATIC_MEM 3
|
|
** <li> SQLITE_MUTEX_STATIC_PRNG 4
|
|
** </ul>
|
|
**
|
|
** The first two constants cause sqlite3_mutex_alloc() to create
|
|
** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
|
|
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
|
|
** The mutex implementation does not need to make a distinction
|
|
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
|
|
** not want to. But SQLite will only request a recursive mutex in
|
|
** cases where it really needs one. If a faster non-recursive mutex
|
|
** implementation is available on the host platform, the mutex subsystem
|
|
** might return such a mutex in response to SQLITE_MUTEX_FAST.
|
|
**
|
|
** The other allowed parameters to sqlite3_mutex_alloc() each return
|
|
** a pointer to a static preexisting mutex. Three static mutexes are
|
|
** used by the current version of SQLite. Future versions of SQLite
|
|
** may add additional static mutexes. Static mutexes are for internal
|
|
** use by SQLite only. Applications that use SQLite mutexes should
|
|
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
|
|
** SQLITE_MUTEX_RECURSIVE.
|
|
**
|
|
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
|
|
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
|
|
** returns a different mutex on every call. But for the static
|
|
** mutex types, the same mutex is returned on every call that has
|
|
** the same type number.
|
|
*/
|
|
SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int iType){
|
|
sqlite3_mutex *p;
|
|
|
|
switch( iType ){
|
|
case SQLITE_MUTEX_FAST:
|
|
case SQLITE_MUTEX_RECURSIVE: {
|
|
p = sqlite3MallocZero( sizeof(*p) );
|
|
if( p ){
|
|
p->id = iType;
|
|
InitializeCriticalSection(&p->mutex);
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
static sqlite3_mutex staticMutexes[5];
|
|
static int isInit = 0;
|
|
while( !isInit ){
|
|
static long lock = 0;
|
|
if( InterlockedIncrement(&lock)==1 ){
|
|
int i;
|
|
for(i=0; i<sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++){
|
|
InitializeCriticalSection(&staticMutexes[i].mutex);
|
|
}
|
|
isInit = 1;
|
|
}else{
|
|
Sleep(1);
|
|
}
|
|
}
|
|
assert( iType-2 >= 0 );
|
|
assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
|
|
p = &staticMutexes[iType-2];
|
|
p->id = iType;
|
|
break;
|
|
}
|
|
}
|
|
return p;
|
|
}
|
|
|
|
|
|
/*
|
|
** This routine deallocates a previously
|
|
** allocated mutex. SQLite is careful to deallocate every
|
|
** mutex that it allocates.
|
|
*/
|
|
SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
|
|
assert( p );
|
|
assert( p->nRef==0 );
|
|
assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
|
|
DeleteCriticalSection(&p->mutex);
|
|
sqlite3_free(p);
|
|
}
|
|
|
|
/*
|
|
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
|
|
** to enter a mutex. If another thread is already within the mutex,
|
|
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
|
|
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
|
|
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
|
|
** be entered multiple times by the same thread. In such cases the,
|
|
** mutex must be exited an equal number of times before another thread
|
|
** can enter. If the same thread tries to enter any other kind of mutex
|
|
** more than once, the behavior is undefined.
|
|
*/
|
|
SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
|
|
assert( p );
|
|
assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
|
|
EnterCriticalSection(&p->mutex);
|
|
p->owner = GetCurrentThreadId();
|
|
p->nRef++;
|
|
}
|
|
SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
|
|
int rc = SQLITE_BUSY;
|
|
assert( p );
|
|
assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
|
|
/*
|
|
** The sqlite3_mutex_try() routine is very rarely used, and when it
|
|
** is used it is merely an optimization. So it is OK for it to always
|
|
** fail.
|
|
**
|
|
** The TryEnterCriticalSection() interface is only available on WinNT.
|
|
** And some windows compilers complain if you try to use it without
|
|
** first doing some #defines that prevent SQLite from building on Win98.
|
|
** For that reason, we will omit this optimization for now. See
|
|
** ticket #2685.
|
|
*/
|
|
#if 0
|
|
if( mutexIsNT() && TryEnterCriticalSection(&p->mutex) ){
|
|
p->owner = GetCurrentThreadId();
|
|
p->nRef++;
|
|
rc = SQLITE_OK;
|
|
}
|
|
#endif
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** The sqlite3_mutex_leave() routine exits a mutex that was
|
|
** previously entered by the same thread. The behavior
|
|
** is undefined if the mutex is not currently entered or
|
|
** is not currently allocated. SQLite will never do either.
|
|
*/
|
|
SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
|
|
assert( p->nRef>0 );
|
|
assert( p->owner==GetCurrentThreadId() );
|
|
p->nRef--;
|
|
assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
|
|
LeaveCriticalSection(&p->mutex);
|
|
}
|
|
|
|
/*
|
|
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
|
|
** intended for use only inside assert() statements.
|
|
*/
|
|
SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
|
|
return p==0 || (p->nRef!=0 && p->owner==GetCurrentThreadId());
|
|
}
|
|
SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
|
|
return p==0 || p->nRef==0 || p->owner!=GetCurrentThreadId();
|
|
}
|
|
#endif /* SQLITE_MUTEX_W32 */
|
|
|
|
/************** End of mutex_w32.c *******************************************/
|
|
/************** Begin file malloc.c ******************************************/
|
|
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** Memory allocation functions used throughout sqlite.
|
|
**
|
|
**
|
|
** $Id: malloc.c,v 1.14 2007/10/20 16:36:31 drh Exp $
|
|
*/
|
|
|
|
/*
|
|
** This routine runs when the memory allocator sees that the
|
|
** total memory allocation is about to exceed the soft heap
|
|
** limit.
|
|
*/
|
|
static void softHeapLimitEnforcer(
|
|
void *NotUsed,
|
|
sqlite3_int64 inUse,
|
|
int allocSize
|
|
){
|
|
sqlite3_release_memory(allocSize);
|
|
}
|
|
|
|
/*
|
|
** Set the soft heap-size limit for the current thread. Passing a
|
|
** zero or negative value indicates no limit.
|
|
*/
|
|
SQLITE_API void sqlite3_soft_heap_limit(int n){
|
|
sqlite3_uint64 iLimit;
|
|
int overage;
|
|
if( n<0 ){
|
|
iLimit = 0;
|
|
}else{
|
|
iLimit = n;
|
|
}
|
|
if( iLimit>0 ){
|
|
sqlite3_memory_alarm(softHeapLimitEnforcer, 0, iLimit);
|
|
}else{
|
|
sqlite3_memory_alarm(0, 0, 0);
|
|
}
|
|
overage = sqlite3_memory_used() - n;
|
|
if( overage>0 ){
|
|
sqlite3_release_memory(overage);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Release memory held by SQLite instances created by the current thread.
|
|
*/
|
|
SQLITE_API int sqlite3_release_memory(int n){
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
return sqlite3PagerReleaseMemory(n);
|
|
#else
|
|
return SQLITE_OK;
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
** Allocate and zero memory.
|
|
*/
|
|
SQLITE_PRIVATE void *sqlite3MallocZero(unsigned n){
|
|
void *p = sqlite3_malloc(n);
|
|
if( p ){
|
|
memset(p, 0, n);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Allocate and zero memory. If the allocation fails, make
|
|
** the mallocFailed flag in the connection pointer.
|
|
*/
|
|
SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3 *db, unsigned n){
|
|
void *p = sqlite3DbMallocRaw(db, n);
|
|
if( p ){
|
|
memset(p, 0, n);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Allocate and zero memory. If the allocation fails, make
|
|
** the mallocFailed flag in the connection pointer.
|
|
*/
|
|
SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3 *db, unsigned n){
|
|
void *p = 0;
|
|
if( !db || db->mallocFailed==0 ){
|
|
p = sqlite3_malloc(n);
|
|
if( !p && db ){
|
|
db->mallocFailed = 1;
|
|
}
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Resize the block of memory pointed to by p to n bytes. If the
|
|
** resize fails, set the mallocFailed flag inthe connection object.
|
|
*/
|
|
SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
|
|
void *pNew = 0;
|
|
if( db->mallocFailed==0 ){
|
|
pNew = sqlite3_realloc(p, n);
|
|
if( !pNew ){
|
|
db->mallocFailed = 1;
|
|
}
|
|
}
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** Attempt to reallocate p. If the reallocation fails, then free p
|
|
** and set the mallocFailed flag in the database connection.
|
|
*/
|
|
SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
|
|
void *pNew;
|
|
pNew = sqlite3DbRealloc(db, p, n);
|
|
if( !pNew ){
|
|
sqlite3_free(p);
|
|
}
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** Make a copy of a string in memory obtained from sqliteMalloc(). These
|
|
** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
|
|
** is because when memory debugging is turned on, these two functions are
|
|
** called via macros that record the current file and line number in the
|
|
** ThreadData structure.
|
|
*/
|
|
SQLITE_PRIVATE char *sqlite3StrDup(const char *z){
|
|
char *zNew;
|
|
int n;
|
|
if( z==0 ) return 0;
|
|
n = strlen(z)+1;
|
|
zNew = sqlite3_malloc(n);
|
|
if( zNew ) memcpy(zNew, z, n);
|
|
return zNew;
|
|
}
|
|
SQLITE_PRIVATE char *sqlite3StrNDup(const char *z, int n){
|
|
char *zNew;
|
|
if( z==0 ) return 0;
|
|
zNew = sqlite3_malloc(n+1);
|
|
if( zNew ){
|
|
memcpy(zNew, z, n);
|
|
zNew[n] = 0;
|
|
}
|
|
return zNew;
|
|
}
|
|
|
|
SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3 *db, const char *z){
|
|
char *zNew = sqlite3StrDup(z);
|
|
if( z && !zNew ){
|
|
db->mallocFailed = 1;
|
|
}
|
|
return zNew;
|
|
}
|
|
SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
|
|
char *zNew = sqlite3StrNDup(z, n);
|
|
if( z && !zNew ){
|
|
db->mallocFailed = 1;
|
|
}
|
|
return zNew;
|
|
}
|
|
|
|
/*
|
|
** Create a string from the 2nd and subsequent arguments (up to the
|
|
** first NULL argument), store the string in memory obtained from
|
|
** sqliteMalloc() and make the pointer indicated by the 1st argument
|
|
** point to that string. The 1st argument must either be NULL or
|
|
** point to memory obtained from sqliteMalloc().
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3SetString(char **pz, ...){
|
|
va_list ap;
|
|
int nByte;
|
|
const char *z;
|
|
char *zResult;
|
|
|
|
assert( pz!=0 );
|
|
nByte = 1;
|
|
va_start(ap, pz);
|
|
while( (z = va_arg(ap, const char*))!=0 ){
|
|
nByte += strlen(z);
|
|
}
|
|
va_end(ap);
|
|
sqlite3_free(*pz);
|
|
*pz = zResult = sqlite3_malloc(nByte);
|
|
if( zResult==0 ){
|
|
return;
|
|
}
|
|
*zResult = 0;
|
|
va_start(ap, pz);
|
|
while( (z = va_arg(ap, const char*))!=0 ){
|
|
int n = strlen(z);
|
|
memcpy(zResult, z, n);
|
|
zResult += n;
|
|
}
|
|
zResult[0] = 0;
|
|
va_end(ap);
|
|
}
|
|
|
|
|
|
/*
|
|
** This function must be called before exiting any API function (i.e.
|
|
** returning control to the user) that has called sqlite3_malloc or
|
|
** sqlite3_realloc.
|
|
**
|
|
** The returned value is normally a copy of the second argument to this
|
|
** function. However, if a malloc() failure has occured since the previous
|
|
** invocation SQLITE_NOMEM is returned instead.
|
|
**
|
|
** If the first argument, db, is not NULL and a malloc() error has occured,
|
|
** then the connection error-code (the value returned by sqlite3_errcode())
|
|
** is set to SQLITE_NOMEM.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3ApiExit(sqlite3* db, int rc){
|
|
/* If the db handle is not NULL, then we must hold the connection handle
|
|
** mutex here. Otherwise the read (and possible write) of db->mallocFailed
|
|
** is unsafe, as is the call to sqlite3Error().
|
|
*/
|
|
assert( !db || sqlite3_mutex_held(db->mutex) );
|
|
if( db && db->mallocFailed ){
|
|
sqlite3Error(db, SQLITE_NOMEM, 0);
|
|
db->mallocFailed = 0;
|
|
rc = SQLITE_NOMEM;
|
|
}
|
|
return rc & (db ? db->errMask : 0xff);
|
|
}
|
|
|
|
/************** End of malloc.c **********************************************/
|
|
/************** Begin file printf.c ******************************************/
|
|
/*
|
|
** The "printf" code that follows dates from the 1980's. It is in
|
|
** the public domain. The original comments are included here for
|
|
** completeness. They are very out-of-date but might be useful as
|
|
** an historical reference. Most of the "enhancements" have been backed
|
|
** out so that the functionality is now the same as standard printf().
|
|
**
|
|
**************************************************************************
|
|
**
|
|
** The following modules is an enhanced replacement for the "printf" subroutines
|
|
** found in the standard C library. The following enhancements are
|
|
** supported:
|
|
**
|
|
** + Additional functions. The standard set of "printf" functions
|
|
** includes printf, fprintf, sprintf, vprintf, vfprintf, and
|
|
** vsprintf. This module adds the following:
|
|
**
|
|
** * snprintf -- Works like sprintf, but has an extra argument
|
|
** which is the size of the buffer written to.
|
|
**
|
|
** * mprintf -- Similar to sprintf. Writes output to memory
|
|
** obtained from malloc.
|
|
**
|
|
** * xprintf -- Calls a function to dispose of output.
|
|
**
|
|
** * nprintf -- No output, but returns the number of characters
|
|
** that would have been output by printf.
|
|
**
|
|
** * A v- version (ex: vsnprintf) of every function is also
|
|
** supplied.
|
|
**
|
|
** + A few extensions to the formatting notation are supported:
|
|
**
|
|
** * The "=" flag (similar to "-") causes the output to be
|
|
** be centered in the appropriately sized field.
|
|
**
|
|
** * The %b field outputs an integer in binary notation.
|
|
**
|
|
** * The %c field now accepts a precision. The character output
|
|
** is repeated by the number of times the precision specifies.
|
|
**
|
|
** * The %' field works like %c, but takes as its character the
|
|
** next character of the format string, instead of the next
|
|
** argument. For example, printf("%.78'-") prints 78 minus
|
|
** signs, the same as printf("%.78c",'-').
|
|
**
|
|
** + When compiled using GCC on a SPARC, this version of printf is
|
|
** faster than the library printf for SUN OS 4.1.
|
|
**
|
|
** + All functions are fully reentrant.
|
|
**
|
|
*/
|
|
|
|
/*
|
|
** Conversion types fall into various categories as defined by the
|
|
** following enumeration.
|
|
*/
|
|
#define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */
|
|
#define etFLOAT 2 /* Floating point. %f */
|
|
#define etEXP 3 /* Exponentional notation. %e and %E */
|
|
#define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */
|
|
#define etSIZE 5 /* Return number of characters processed so far. %n */
|
|
#define etSTRING 6 /* Strings. %s */
|
|
#define etDYNSTRING 7 /* Dynamically allocated strings. %z */
|
|
#define etPERCENT 8 /* Percent symbol. %% */
|
|
#define etCHARX 9 /* Characters. %c */
|
|
/* The rest are extensions, not normally found in printf() */
|
|
#define etCHARLIT 10 /* Literal characters. %' */
|
|
#define etSQLESCAPE 11 /* Strings with '\'' doubled. %q */
|
|
#define etSQLESCAPE2 12 /* Strings with '\'' doubled and enclosed in '',
|
|
NULL pointers replaced by SQL NULL. %Q */
|
|
#define etTOKEN 13 /* a pointer to a Token structure */
|
|
#define etSRCLIST 14 /* a pointer to a SrcList */
|
|
#define etPOINTER 15 /* The %p conversion */
|
|
#define etSQLESCAPE3 16 /* %w -> Strings with '\"' doubled */
|
|
#define etORDINAL 17 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */
|
|
|
|
|
|
/*
|
|
** An "etByte" is an 8-bit unsigned value.
|
|
*/
|
|
typedef unsigned char etByte;
|
|
|
|
/*
|
|
** Each builtin conversion character (ex: the 'd' in "%d") is described
|
|
** by an instance of the following structure
|
|
*/
|
|
typedef struct et_info { /* Information about each format field */
|
|
char fmttype; /* The format field code letter */
|
|
etByte base; /* The base for radix conversion */
|
|
etByte flags; /* One or more of FLAG_ constants below */
|
|
etByte type; /* Conversion paradigm */
|
|
etByte charset; /* Offset into aDigits[] of the digits string */
|
|
etByte prefix; /* Offset into aPrefix[] of the prefix string */
|
|
} et_info;
|
|
|
|
/*
|
|
** Allowed values for et_info.flags
|
|
*/
|
|
#define FLAG_SIGNED 1 /* True if the value to convert is signed */
|
|
#define FLAG_INTERN 2 /* True if for internal use only */
|
|
#define FLAG_STRING 4 /* Allow infinity precision */
|
|
|
|
|
|
/*
|
|
** The following table is searched linearly, so it is good to put the
|
|
** most frequently used conversion types first.
|
|
*/
|
|
static const char aDigits[] = "0123456789ABCDEF0123456789abcdef";
|
|
static const char aPrefix[] = "-x0\000X0";
|
|
static const et_info fmtinfo[] = {
|
|
{ 'd', 10, 1, etRADIX, 0, 0 },
|
|
{ 's', 0, 4, etSTRING, 0, 0 },
|
|
{ 'g', 0, 1, etGENERIC, 30, 0 },
|
|
{ 'z', 0, 4, etDYNSTRING, 0, 0 },
|
|
{ 'q', 0, 4, etSQLESCAPE, 0, 0 },
|
|
{ 'Q', 0, 4, etSQLESCAPE2, 0, 0 },
|
|
{ 'w', 0, 4, etSQLESCAPE3, 0, 0 },
|
|
{ 'c', 0, 0, etCHARX, 0, 0 },
|
|
{ 'o', 8, 0, etRADIX, 0, 2 },
|
|
{ 'u', 10, 0, etRADIX, 0, 0 },
|
|
{ 'x', 16, 0, etRADIX, 16, 1 },
|
|
{ 'X', 16, 0, etRADIX, 0, 4 },
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
{ 'f', 0, 1, etFLOAT, 0, 0 },
|
|
{ 'e', 0, 1, etEXP, 30, 0 },
|
|
{ 'E', 0, 1, etEXP, 14, 0 },
|
|
{ 'G', 0, 1, etGENERIC, 14, 0 },
|
|
#endif
|
|
{ 'i', 10, 1, etRADIX, 0, 0 },
|
|
{ 'n', 0, 0, etSIZE, 0, 0 },
|
|
{ '%', 0, 0, etPERCENT, 0, 0 },
|
|
{ 'p', 16, 0, etPOINTER, 0, 1 },
|
|
{ 'T', 0, 2, etTOKEN, 0, 0 },
|
|
{ 'S', 0, 2, etSRCLIST, 0, 0 },
|
|
{ 'r', 10, 3, etORDINAL, 0, 0 },
|
|
};
|
|
#define etNINFO (sizeof(fmtinfo)/sizeof(fmtinfo[0]))
|
|
|
|
/*
|
|
** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point
|
|
** conversions will work.
|
|
*/
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
/*
|
|
** "*val" is a double such that 0.1 <= *val < 10.0
|
|
** Return the ascii code for the leading digit of *val, then
|
|
** multiply "*val" by 10.0 to renormalize.
|
|
**
|
|
** Example:
|
|
** input: *val = 3.14159
|
|
** output: *val = 1.4159 function return = '3'
|
|
**
|
|
** The counter *cnt is incremented each time. After counter exceeds
|
|
** 16 (the number of significant digits in a 64-bit float) '0' is
|
|
** always returned.
|
|
*/
|
|
static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
|
|
int digit;
|
|
LONGDOUBLE_TYPE d;
|
|
if( (*cnt)++ >= 16 ) return '0';
|
|
digit = (int)*val;
|
|
d = digit;
|
|
digit += '0';
|
|
*val = (*val - d)*10.0;
|
|
return digit;
|
|
}
|
|
#endif /* SQLITE_OMIT_FLOATING_POINT */
|
|
|
|
/*
|
|
** Append N space characters to the given string buffer.
|
|
*/
|
|
static void appendSpace(StrAccum *pAccum, int N){
|
|
static const char zSpaces[] = " ";
|
|
while( N>=sizeof(zSpaces)-1 ){
|
|
sqlite3StrAccumAppend(pAccum, zSpaces, sizeof(zSpaces)-1);
|
|
N -= sizeof(zSpaces)-1;
|
|
}
|
|
if( N>0 ){
|
|
sqlite3StrAccumAppend(pAccum, zSpaces, N);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** On machines with a small stack size, you can redefine the
|
|
** SQLITE_PRINT_BUF_SIZE to be less than 350. But beware - for
|
|
** smaller values some %f conversions may go into an infinite loop.
|
|
*/
|
|
#ifndef SQLITE_PRINT_BUF_SIZE
|
|
# define SQLITE_PRINT_BUF_SIZE 350
|
|
#endif
|
|
#define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */
|
|
|
|
/*
|
|
** The root program. All variations call this core.
|
|
**
|
|
** INPUTS:
|
|
** func This is a pointer to a function taking three arguments
|
|
** 1. A pointer to anything. Same as the "arg" parameter.
|
|
** 2. A pointer to the list of characters to be output
|
|
** (Note, this list is NOT null terminated.)
|
|
** 3. An integer number of characters to be output.
|
|
** (Note: This number might be zero.)
|
|
**
|
|
** arg This is the pointer to anything which will be passed as the
|
|
** first argument to "func". Use it for whatever you like.
|
|
**
|
|
** fmt This is the format string, as in the usual print.
|
|
**
|
|
** ap This is a pointer to a list of arguments. Same as in
|
|
** vfprint.
|
|
**
|
|
** OUTPUTS:
|
|
** The return value is the total number of characters sent to
|
|
** the function "func". Returns -1 on a error.
|
|
**
|
|
** Note that the order in which automatic variables are declared below
|
|
** seems to make a big difference in determining how fast this beast
|
|
** will run.
|
|
*/
|
|
static void vxprintf(
|
|
StrAccum *pAccum, /* Accumulate results here */
|
|
int useExtended, /* Allow extended %-conversions */
|
|
const char *fmt, /* Format string */
|
|
va_list ap /* arguments */
|
|
){
|
|
int c; /* Next character in the format string */
|
|
char *bufpt; /* Pointer to the conversion buffer */
|
|
int precision; /* Precision of the current field */
|
|
int length; /* Length of the field */
|
|
int idx; /* A general purpose loop counter */
|
|
int width; /* Width of the current field */
|
|
etByte flag_leftjustify; /* True if "-" flag is present */
|
|
etByte flag_plussign; /* True if "+" flag is present */
|
|
etByte flag_blanksign; /* True if " " flag is present */
|
|
etByte flag_alternateform; /* True if "#" flag is present */
|
|
etByte flag_altform2; /* True if "!" flag is present */
|
|
etByte flag_zeropad; /* True if field width constant starts with zero */
|
|
etByte flag_long; /* True if "l" flag is present */
|
|
etByte flag_longlong; /* True if the "ll" flag is present */
|
|
etByte done; /* Loop termination flag */
|
|
sqlite_uint64 longvalue; /* Value for integer types */
|
|
LONGDOUBLE_TYPE realvalue; /* Value for real types */
|
|
const et_info *infop; /* Pointer to the appropriate info structure */
|
|
char buf[etBUFSIZE]; /* Conversion buffer */
|
|
char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */
|
|
etByte errorflag = 0; /* True if an error is encountered */
|
|
etByte xtype; /* Conversion paradigm */
|
|
char *zExtra; /* Extra memory used for etTCLESCAPE conversions */
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
int exp, e2; /* exponent of real numbers */
|
|
double rounder; /* Used for rounding floating point values */
|
|
etByte flag_dp; /* True if decimal point should be shown */
|
|
etByte flag_rtz; /* True if trailing zeros should be removed */
|
|
etByte flag_exp; /* True to force display of the exponent */
|
|
int nsd; /* Number of significant digits returned */
|
|
#endif
|
|
|
|
length = 0;
|
|
bufpt = 0;
|
|
for(; (c=(*fmt))!=0; ++fmt){
|
|
if( c!='%' ){
|
|
int amt;
|
|
bufpt = (char *)fmt;
|
|
amt = 1;
|
|
while( (c=(*++fmt))!='%' && c!=0 ) amt++;
|
|
sqlite3StrAccumAppend(pAccum, bufpt, amt);
|
|
if( c==0 ) break;
|
|
}
|
|
if( (c=(*++fmt))==0 ){
|
|
errorflag = 1;
|
|
sqlite3StrAccumAppend(pAccum, "%", 1);
|
|
break;
|
|
}
|
|
/* Find out what flags are present */
|
|
flag_leftjustify = flag_plussign = flag_blanksign =
|
|
flag_alternateform = flag_altform2 = flag_zeropad = 0;
|
|
done = 0;
|
|
do{
|
|
switch( c ){
|
|
case '-': flag_leftjustify = 1; break;
|
|
case '+': flag_plussign = 1; break;
|
|
case ' ': flag_blanksign = 1; break;
|
|
case '#': flag_alternateform = 1; break;
|
|
case '!': flag_altform2 = 1; break;
|
|
case '0': flag_zeropad = 1; break;
|
|
default: done = 1; break;
|
|
}
|
|
}while( !done && (c=(*++fmt))!=0 );
|
|
/* Get the field width */
|
|
width = 0;
|
|
if( c=='*' ){
|
|
width = va_arg(ap,int);
|
|
if( width<0 ){
|
|
flag_leftjustify = 1;
|
|
width = -width;
|
|
}
|
|
c = *++fmt;
|
|
}else{
|
|
while( c>='0' && c<='9' ){
|
|
width = width*10 + c - '0';
|
|
c = *++fmt;
|
|
}
|
|
}
|
|
if( width > etBUFSIZE-10 ){
|
|
width = etBUFSIZE-10;
|
|
}
|
|
/* Get the precision */
|
|
if( c=='.' ){
|
|
precision = 0;
|
|
c = *++fmt;
|
|
if( c=='*' ){
|
|
precision = va_arg(ap,int);
|
|
if( precision<0 ) precision = -precision;
|
|
c = *++fmt;
|
|
}else{
|
|
while( c>='0' && c<='9' ){
|
|
precision = precision*10 + c - '0';
|
|
c = *++fmt;
|
|
}
|
|
}
|
|
}else{
|
|
precision = -1;
|
|
}
|
|
/* Get the conversion type modifier */
|
|
if( c=='l' ){
|
|
flag_long = 1;
|
|
c = *++fmt;
|
|
if( c=='l' ){
|
|
flag_longlong = 1;
|
|
c = *++fmt;
|
|
}else{
|
|
flag_longlong = 0;
|
|
}
|
|
}else{
|
|
flag_long = flag_longlong = 0;
|
|
}
|
|
/* Fetch the info entry for the field */
|
|
infop = 0;
|
|
for(idx=0; idx<etNINFO; idx++){
|
|
if( c==fmtinfo[idx].fmttype ){
|
|
infop = &fmtinfo[idx];
|
|
if( useExtended || (infop->flags & FLAG_INTERN)==0 ){
|
|
xtype = infop->type;
|
|
}else{
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
zExtra = 0;
|
|
if( infop==0 ){
|
|
return;
|
|
}
|
|
|
|
|
|
/* Limit the precision to prevent overflowing buf[] during conversion */
|
|
if( precision>etBUFSIZE-40 && (infop->flags & FLAG_STRING)==0 ){
|
|
precision = etBUFSIZE-40;
|
|
}
|
|
|
|
/*
|
|
** At this point, variables are initialized as follows:
|
|
**
|
|
** flag_alternateform TRUE if a '#' is present.
|
|
** flag_altform2 TRUE if a '!' is present.
|
|
** flag_plussign TRUE if a '+' is present.
|
|
** flag_leftjustify TRUE if a '-' is present or if the
|
|
** field width was negative.
|
|
** flag_zeropad TRUE if the width began with 0.
|
|
** flag_long TRUE if the letter 'l' (ell) prefixed
|
|
** the conversion character.
|
|
** flag_longlong TRUE if the letter 'll' (ell ell) prefixed
|
|
** the conversion character.
|
|
** flag_blanksign TRUE if a ' ' is present.
|
|
** width The specified field width. This is
|
|
** always non-negative. Zero is the default.
|
|
** precision The specified precision. The default
|
|
** is -1.
|
|
** xtype The class of the conversion.
|
|
** infop Pointer to the appropriate info struct.
|
|
*/
|
|
switch( xtype ){
|
|
case etPOINTER:
|
|
flag_longlong = sizeof(char*)==sizeof(i64);
|
|
flag_long = sizeof(char*)==sizeof(long int);
|
|
/* Fall through into the next case */
|
|
case etORDINAL:
|
|
case etRADIX:
|
|
if( infop->flags & FLAG_SIGNED ){
|
|
i64 v;
|
|
if( flag_longlong ) v = va_arg(ap,i64);
|
|
else if( flag_long ) v = va_arg(ap,long int);
|
|
else v = va_arg(ap,int);
|
|
if( v<0 ){
|
|
longvalue = -v;
|
|
prefix = '-';
|
|
}else{
|
|
longvalue = v;
|
|
if( flag_plussign ) prefix = '+';
|
|
else if( flag_blanksign ) prefix = ' ';
|
|
else prefix = 0;
|
|
}
|
|
}else{
|
|
if( flag_longlong ) longvalue = va_arg(ap,u64);
|
|
else if( flag_long ) longvalue = va_arg(ap,unsigned long int);
|
|
else longvalue = va_arg(ap,unsigned int);
|
|
prefix = 0;
|
|
}
|
|
if( longvalue==0 ) flag_alternateform = 0;
|
|
if( flag_zeropad && precision<width-(prefix!=0) ){
|
|
precision = width-(prefix!=0);
|
|
}
|
|
bufpt = &buf[etBUFSIZE-1];
|
|
if( xtype==etORDINAL ){
|
|
static const char zOrd[] = "thstndrd";
|
|
int x = longvalue % 10;
|
|
if( x>=4 || (longvalue/10)%10==1 ){
|
|
x = 0;
|
|
}
|
|
buf[etBUFSIZE-3] = zOrd[x*2];
|
|
buf[etBUFSIZE-2] = zOrd[x*2+1];
|
|
bufpt -= 2;
|
|
}
|
|
{
|
|
register const char *cset; /* Use registers for speed */
|
|
register int base;
|
|
cset = &aDigits[infop->charset];
|
|
base = infop->base;
|
|
do{ /* Convert to ascii */
|
|
*(--bufpt) = cset[longvalue%base];
|
|
longvalue = longvalue/base;
|
|
}while( longvalue>0 );
|
|
}
|
|
length = &buf[etBUFSIZE-1]-bufpt;
|
|
for(idx=precision-length; idx>0; idx--){
|
|
*(--bufpt) = '0'; /* Zero pad */
|
|
}
|
|
if( prefix ) *(--bufpt) = prefix; /* Add sign */
|
|
if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */
|
|
const char *pre;
|
|
char x;
|
|
pre = &aPrefix[infop->prefix];
|
|
if( *bufpt!=pre[0] ){
|
|
for(; (x=(*pre))!=0; pre++) *(--bufpt) = x;
|
|
}
|
|
}
|
|
length = &buf[etBUFSIZE-1]-bufpt;
|
|
break;
|
|
case etFLOAT:
|
|
case etEXP:
|
|
case etGENERIC:
|
|
realvalue = va_arg(ap,double);
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
if( precision<0 ) precision = 6; /* Set default precision */
|
|
if( precision>etBUFSIZE/2-10 ) precision = etBUFSIZE/2-10;
|
|
if( realvalue<0.0 ){
|
|
realvalue = -realvalue;
|
|
prefix = '-';
|
|
}else{
|
|
if( flag_plussign ) prefix = '+';
|
|
else if( flag_blanksign ) prefix = ' ';
|
|
else prefix = 0;
|
|
}
|
|
if( xtype==etGENERIC && precision>0 ) precision--;
|
|
#if 0
|
|
/* Rounding works like BSD when the constant 0.4999 is used. Wierd! */
|
|
for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1);
|
|
#else
|
|
/* It makes more sense to use 0.5 */
|
|
for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1){}
|
|
#endif
|
|
if( xtype==etFLOAT ) realvalue += rounder;
|
|
/* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
|
|
exp = 0;
|
|
if( sqlite3_isnan(realvalue) ){
|
|
bufpt = "NaN";
|
|
length = 3;
|
|
break;
|
|
}
|
|
if( realvalue>0.0 ){
|
|
while( realvalue>=1e32 && exp<=350 ){ realvalue *= 1e-32; exp+=32; }
|
|
while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; }
|
|
while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; }
|
|
while( realvalue<1e-8 && exp>=-350 ){ realvalue *= 1e8; exp-=8; }
|
|
while( realvalue<1.0 && exp>=-350 ){ realvalue *= 10.0; exp--; }
|
|
if( exp>350 || exp<-350 ){
|
|
if( prefix=='-' ){
|
|
bufpt = "-Inf";
|
|
}else if( prefix=='+' ){
|
|
bufpt = "+Inf";
|
|
}else{
|
|
bufpt = "Inf";
|
|
}
|
|
length = strlen(bufpt);
|
|
break;
|
|
}
|
|
}
|
|
bufpt = buf;
|
|
/*
|
|
** If the field type is etGENERIC, then convert to either etEXP
|
|
** or etFLOAT, as appropriate.
|
|
*/
|
|
flag_exp = xtype==etEXP;
|
|
if( xtype!=etFLOAT ){
|
|
realvalue += rounder;
|
|
if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; }
|
|
}
|
|
if( xtype==etGENERIC ){
|
|
flag_rtz = !flag_alternateform;
|
|
if( exp<-4 || exp>precision ){
|
|
xtype = etEXP;
|
|
}else{
|
|
precision = precision - exp;
|
|
xtype = etFLOAT;
|
|
}
|
|
}else{
|
|
flag_rtz = 0;
|
|
}
|
|
if( xtype==etEXP ){
|
|
e2 = 0;
|
|
}else{
|
|
e2 = exp;
|
|
}
|
|
nsd = 0;
|
|
flag_dp = (precision>0) | flag_alternateform | flag_altform2;
|
|
/* The sign in front of the number */
|
|
if( prefix ){
|
|
*(bufpt++) = prefix;
|
|
}
|
|
/* Digits prior to the decimal point */
|
|
if( e2<0 ){
|
|
*(bufpt++) = '0';
|
|
}else{
|
|
for(; e2>=0; e2--){
|
|
*(bufpt++) = et_getdigit(&realvalue,&nsd);
|
|
}
|
|
}
|
|
/* The decimal point */
|
|
if( flag_dp ){
|
|
*(bufpt++) = '.';
|
|
}
|
|
/* "0" digits after the decimal point but before the first
|
|
** significant digit of the number */
|
|
for(e2++; e2<0 && precision>0; precision--, e2++){
|
|
*(bufpt++) = '0';
|
|
}
|
|
/* Significant digits after the decimal point */
|
|
while( (precision--)>0 ){
|
|
*(bufpt++) = et_getdigit(&realvalue,&nsd);
|
|
}
|
|
/* Remove trailing zeros and the "." if no digits follow the "." */
|
|
if( flag_rtz && flag_dp ){
|
|
while( bufpt[-1]=='0' ) *(--bufpt) = 0;
|
|
assert( bufpt>buf );
|
|
if( bufpt[-1]=='.' ){
|
|
if( flag_altform2 ){
|
|
*(bufpt++) = '0';
|
|
}else{
|
|
*(--bufpt) = 0;
|
|
}
|
|
}
|
|
}
|
|
/* Add the "eNNN" suffix */
|
|
if( flag_exp || (xtype==etEXP && exp) ){
|
|
*(bufpt++) = aDigits[infop->charset];
|
|
if( exp<0 ){
|
|
*(bufpt++) = '-'; exp = -exp;
|
|
}else{
|
|
*(bufpt++) = '+';
|
|
}
|
|
if( exp>=100 ){
|
|
*(bufpt++) = (exp/100)+'0'; /* 100's digit */
|
|
exp %= 100;
|
|
}
|
|
*(bufpt++) = exp/10+'0'; /* 10's digit */
|
|
*(bufpt++) = exp%10+'0'; /* 1's digit */
|
|
}
|
|
*bufpt = 0;
|
|
|
|
/* The converted number is in buf[] and zero terminated. Output it.
|
|
** Note that the number is in the usual order, not reversed as with
|
|
** integer conversions. */
|
|
length = bufpt-buf;
|
|
bufpt = buf;
|
|
|
|
/* Special case: Add leading zeros if the flag_zeropad flag is
|
|
** set and we are not left justified */
|
|
if( flag_zeropad && !flag_leftjustify && length < width){
|
|
int i;
|
|
int nPad = width - length;
|
|
for(i=width; i>=nPad; i--){
|
|
bufpt[i] = bufpt[i-nPad];
|
|
}
|
|
i = prefix!=0;
|
|
while( nPad-- ) bufpt[i++] = '0';
|
|
length = width;
|
|
}
|
|
#endif
|
|
break;
|
|
case etSIZE:
|
|
*(va_arg(ap,int*)) = pAccum->nChar;
|
|
length = width = 0;
|
|
break;
|
|
case etPERCENT:
|
|
buf[0] = '%';
|
|
bufpt = buf;
|
|
length = 1;
|
|
break;
|
|
case etCHARLIT:
|
|
case etCHARX:
|
|
c = buf[0] = (xtype==etCHARX ? va_arg(ap,int) : *++fmt);
|
|
if( precision>=0 ){
|
|
for(idx=1; idx<precision; idx++) buf[idx] = c;
|
|
length = precision;
|
|
}else{
|
|
length =1;
|
|
}
|
|
bufpt = buf;
|
|
break;
|
|
case etSTRING:
|
|
case etDYNSTRING:
|
|
bufpt = va_arg(ap,char*);
|
|
if( bufpt==0 ){
|
|
bufpt = "";
|
|
}else if( xtype==etDYNSTRING ){
|
|
zExtra = bufpt;
|
|
}
|
|
length = strlen(bufpt);
|
|
if( precision>=0 && precision<length ) length = precision;
|
|
break;
|
|
case etSQLESCAPE:
|
|
case etSQLESCAPE2:
|
|
case etSQLESCAPE3: {
|
|
int i, j, n, ch, isnull;
|
|
int needQuote;
|
|
char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */
|
|
char *escarg = va_arg(ap,char*);
|
|
isnull = escarg==0;
|
|
if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)");
|
|
for(i=n=0; (ch=escarg[i])!=0; i++){
|
|
if( ch==q ) n++;
|
|
}
|
|
needQuote = !isnull && xtype==etSQLESCAPE2;
|
|
n += i + 1 + needQuote*2;
|
|
if( n>etBUFSIZE ){
|
|
bufpt = zExtra = sqlite3_malloc( n );
|
|
if( bufpt==0 ) return;
|
|
}else{
|
|
bufpt = buf;
|
|
}
|
|
j = 0;
|
|
if( needQuote ) bufpt[j++] = q;
|
|
for(i=0; (ch=escarg[i])!=0; i++){
|
|
bufpt[j++] = ch;
|
|
if( ch==q ) bufpt[j++] = ch;
|
|
}
|
|
if( needQuote ) bufpt[j++] = q;
|
|
bufpt[j] = 0;
|
|
length = j;
|
|
/* The precision is ignored on %q and %Q */
|
|
/* if( precision>=0 && precision<length ) length = precision; */
|
|
break;
|
|
}
|
|
case etTOKEN: {
|
|
Token *pToken = va_arg(ap, Token*);
|
|
if( pToken && pToken->z ){
|
|
sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n);
|
|
}
|
|
length = width = 0;
|
|
break;
|
|
}
|
|
case etSRCLIST: {
|
|
SrcList *pSrc = va_arg(ap, SrcList*);
|
|
int k = va_arg(ap, int);
|
|
struct SrcList_item *pItem = &pSrc->a[k];
|
|
assert( k>=0 && k<pSrc->nSrc );
|
|
if( pItem->zDatabase && pItem->zDatabase[0] ){
|
|
sqlite3StrAccumAppend(pAccum, pItem->zDatabase, -1);
|
|
sqlite3StrAccumAppend(pAccum, ".", 1);
|
|
}
|
|
sqlite3StrAccumAppend(pAccum, pItem->zName, -1);
|
|
length = width = 0;
|
|
break;
|
|
}
|
|
}/* End switch over the format type */
|
|
/*
|
|
** The text of the conversion is pointed to by "bufpt" and is
|
|
** "length" characters long. The field width is "width". Do
|
|
** the output.
|
|
*/
|
|
if( !flag_leftjustify ){
|
|
register int nspace;
|
|
nspace = width-length;
|
|
if( nspace>0 ){
|
|
appendSpace(pAccum, nspace);
|
|
}
|
|
}
|
|
if( length>0 ){
|
|
sqlite3StrAccumAppend(pAccum, bufpt, length);
|
|
}
|
|
if( flag_leftjustify ){
|
|
register int nspace;
|
|
nspace = width-length;
|
|
if( nspace>0 ){
|
|
appendSpace(pAccum, nspace);
|
|
}
|
|
}
|
|
if( zExtra ){
|
|
sqlite3_free(zExtra);
|
|
}
|
|
}/* End for loop over the format string */
|
|
} /* End of function */
|
|
|
|
/*
|
|
** Append N bytes of text from z to the StrAccum object.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){
|
|
if( p->tooBig | p->mallocFailed ){
|
|
return;
|
|
}
|
|
if( N<0 ){
|
|
N = strlen(z);
|
|
}
|
|
if( N==0 ){
|
|
return;
|
|
}
|
|
if( p->nChar+N >= p->nAlloc ){
|
|
char *zNew;
|
|
if( !p->useMalloc ){
|
|
p->tooBig = 1;
|
|
N = p->nAlloc - p->nChar - 1;
|
|
if( N<=0 ){
|
|
return;
|
|
}
|
|
}else{
|
|
p->nAlloc += p->nAlloc + N + 1;
|
|
if( p->nAlloc > SQLITE_MAX_LENGTH ){
|
|
p->nAlloc = SQLITE_MAX_LENGTH;
|
|
if( p->nChar+N >= p->nAlloc ){
|
|
sqlite3StrAccumReset(p);
|
|
p->tooBig = 1;
|
|
return;
|
|
}
|
|
}
|
|
zNew = sqlite3_malloc( p->nAlloc );
|
|
if( zNew ){
|
|
memcpy(zNew, p->zText, p->nChar);
|
|
sqlite3StrAccumReset(p);
|
|
p->zText = zNew;
|
|
}else{
|
|
p->mallocFailed = 1;
|
|
sqlite3StrAccumReset(p);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
memcpy(&p->zText[p->nChar], z, N);
|
|
p->nChar += N;
|
|
}
|
|
|
|
/*
|
|
** Finish off a string by making sure it is zero-terminated.
|
|
** Return a pointer to the resulting string. Return a NULL
|
|
** pointer if any kind of error was encountered.
|
|
*/
|
|
SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum *p){
|
|
if( p->zText ){
|
|
p->zText[p->nChar] = 0;
|
|
if( p->useMalloc && p->zText==p->zBase ){
|
|
p->zText = sqlite3_malloc( p->nChar+1 );
|
|
if( p->zText ){
|
|
memcpy(p->zText, p->zBase, p->nChar+1);
|
|
}else{
|
|
p->mallocFailed = 1;
|
|
}
|
|
}
|
|
}
|
|
return p->zText;
|
|
}
|
|
|
|
/*
|
|
** Reset an StrAccum string. Reclaim all malloced memory.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum *p){
|
|
if( p->zText!=p->zBase ){
|
|
sqlite3_free(p->zText);
|
|
p->zText = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Initialize a string accumulator
|
|
*/
|
|
static void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n){
|
|
p->zText = p->zBase = zBase;
|
|
p->nChar = 0;
|
|
p->nAlloc = n;
|
|
p->useMalloc = 1;
|
|
p->tooBig = 0;
|
|
p->mallocFailed = 0;
|
|
}
|
|
|
|
/*
|
|
** Print into memory obtained from sqliteMalloc(). Use the internal
|
|
** %-conversion extensions.
|
|
*/
|
|
SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){
|
|
char *z;
|
|
char zBase[SQLITE_PRINT_BUF_SIZE];
|
|
StrAccum acc;
|
|
sqlite3StrAccumInit(&acc, zBase, sizeof(zBase));
|
|
vxprintf(&acc, 1, zFormat, ap);
|
|
z = sqlite3StrAccumFinish(&acc);
|
|
if( acc.mallocFailed && db ){
|
|
db->mallocFailed = 1;
|
|
}
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
** Print into memory obtained from sqliteMalloc(). Use the internal
|
|
** %-conversion extensions.
|
|
*/
|
|
SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){
|
|
va_list ap;
|
|
char *z;
|
|
va_start(ap, zFormat);
|
|
z = sqlite3VMPrintf(db, zFormat, ap);
|
|
va_end(ap);
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
** Print into memory obtained from sqlite3_malloc(). Omit the internal
|
|
** %-conversion extensions.
|
|
*/
|
|
SQLITE_API char *sqlite3_vmprintf(const char *zFormat, va_list ap){
|
|
char *z;
|
|
char zBase[SQLITE_PRINT_BUF_SIZE];
|
|
StrAccum acc;
|
|
sqlite3StrAccumInit(&acc, zBase, sizeof(zBase));
|
|
vxprintf(&acc, 0, zFormat, ap);
|
|
z = sqlite3StrAccumFinish(&acc);
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
** Print into memory obtained from sqlite3_malloc()(). Omit the internal
|
|
** %-conversion extensions.
|
|
*/
|
|
SQLITE_API char *sqlite3_mprintf(const char *zFormat, ...){
|
|
va_list ap;
|
|
char *z;
|
|
va_start(ap, zFormat);
|
|
z = sqlite3_vmprintf(zFormat, ap);
|
|
va_end(ap);
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
** sqlite3_snprintf() works like snprintf() except that it ignores the
|
|
** current locale settings. This is important for SQLite because we
|
|
** are not able to use a "," as the decimal point in place of "." as
|
|
** specified by some locales.
|
|
*/
|
|
SQLITE_API char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
|
|
char *z;
|
|
va_list ap;
|
|
StrAccum acc;
|
|
|
|
if( n<=0 ){
|
|
return zBuf;
|
|
}
|
|
sqlite3StrAccumInit(&acc, zBuf, n);
|
|
acc.useMalloc = 0;
|
|
va_start(ap,zFormat);
|
|
vxprintf(&acc, 0, zFormat, ap);
|
|
va_end(ap);
|
|
z = sqlite3StrAccumFinish(&acc);
|
|
return z;
|
|
}
|
|
|
|
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) || defined(SQLITE_MEMDEBUG)
|
|
/*
|
|
** A version of printf() that understands %lld. Used for debugging.
|
|
** The printf() built into some versions of windows does not understand %lld
|
|
** and segfaults if you give it a long long int.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3DebugPrintf(const char *zFormat, ...){
|
|
va_list ap;
|
|
StrAccum acc;
|
|
char zBuf[500];
|
|
sqlite3StrAccumInit(&acc, zBuf, sizeof(zBuf));
|
|
acc.useMalloc = 0;
|
|
va_start(ap,zFormat);
|
|
vxprintf(&acc, 0, zFormat, ap);
|
|
va_end(ap);
|
|
sqlite3StrAccumFinish(&acc);
|
|
fprintf(stdout,"%s", zBuf);
|
|
fflush(stdout);
|
|
}
|
|
#endif
|
|
|
|
/************** End of printf.c **********************************************/
|
|
/************** Begin file random.c ******************************************/
|
|
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains code to implement a pseudo-random number
|
|
** generator (PRNG) for SQLite.
|
|
**
|
|
** Random numbers are used by some of the database backends in order
|
|
** to generate random integer keys for tables or random filenames.
|
|
**
|
|
** $Id: random.c,v 1.21 2008/01/16 17:46:38 drh Exp $
|
|
*/
|
|
|
|
|
|
/* All threads share a single random number generator.
|
|
** This structure is the current state of the generator.
|
|
*/
|
|
static struct sqlite3PrngType {
|
|
unsigned char isInit; /* True if initialized */
|
|
unsigned char i, j; /* State variables */
|
|
unsigned char s[256]; /* State variables */
|
|
} sqlite3Prng;
|
|
|
|
/*
|
|
** Get a single 8-bit random value from the RC4 PRNG. The Mutex
|
|
** must be held while executing this routine.
|
|
**
|
|
** Why not just use a library random generator like lrand48() for this?
|
|
** Because the OP_NewRowid opcode in the VDBE depends on having a very
|
|
** good source of random numbers. The lrand48() library function may
|
|
** well be good enough. But maybe not. Or maybe lrand48() has some
|
|
** subtle problems on some systems that could cause problems. It is hard
|
|
** to know. To minimize the risk of problems due to bad lrand48()
|
|
** implementations, SQLite uses this random number generator based
|
|
** on RC4, which we know works very well.
|
|
**
|
|
** (Later): Actually, OP_NewRowid does not depend on a good source of
|
|
** randomness any more. But we will leave this code in all the same.
|
|
*/
|
|
static int randomByte(void){
|
|
unsigned char t;
|
|
|
|
|
|
/* Initialize the state of the random number generator once,
|
|
** the first time this routine is called. The seed value does
|
|
** not need to contain a lot of randomness since we are not
|
|
** trying to do secure encryption or anything like that...
|
|
**
|
|
** Nothing in this file or anywhere else in SQLite does any kind of
|
|
** encryption. The RC4 algorithm is being used as a PRNG (pseudo-random
|
|
** number generator) not as an encryption device.
|
|
*/
|
|
if( !sqlite3Prng.isInit ){
|
|
int i;
|
|
char k[256];
|
|
sqlite3Prng.j = 0;
|
|
sqlite3Prng.i = 0;
|
|
sqlite3OsRandomness(sqlite3_vfs_find(0), 256, k);
|
|
for(i=0; i<256; i++){
|
|
sqlite3Prng.s[i] = i;
|
|
}
|
|
for(i=0; i<256; i++){
|
|
sqlite3Prng.j += sqlite3Prng.s[i] + k[i];
|
|
t = sqlite3Prng.s[sqlite3Prng.j];
|
|
sqlite3Prng.s[sqlite3Prng.j] = sqlite3Prng.s[i];
|
|
sqlite3Prng.s[i] = t;
|
|
}
|
|
sqlite3Prng.isInit = 1;
|
|
}
|
|
|
|
/* Generate and return single random byte
|
|
*/
|
|
sqlite3Prng.i++;
|
|
t = sqlite3Prng.s[sqlite3Prng.i];
|
|
sqlite3Prng.j += t;
|
|
sqlite3Prng.s[sqlite3Prng.i] = sqlite3Prng.s[sqlite3Prng.j];
|
|
sqlite3Prng.s[sqlite3Prng.j] = t;
|
|
t += sqlite3Prng.s[sqlite3Prng.i];
|
|
return sqlite3Prng.s[t];
|
|
}
|
|
|
|
/*
|
|
** Return N random bytes.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3Randomness(int N, void *pBuf){
|
|
unsigned char *zBuf = pBuf;
|
|
static sqlite3_mutex *mutex = 0;
|
|
if( mutex==0 ){
|
|
mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PRNG);
|
|
}
|
|
sqlite3_mutex_enter(mutex);
|
|
while( N-- ){
|
|
*(zBuf++) = randomByte();
|
|
}
|
|
sqlite3_mutex_leave(mutex);
|
|
}
|
|
|
|
#ifdef SQLITE_TEST
|
|
/*
|
|
** For testing purposes, we sometimes want to preserve the state of
|
|
** PRNG and restore the PRNG to its saved state at a later time.
|
|
*/
|
|
static struct sqlite3PrngType sqlite3SavedPrng;
|
|
SQLITE_PRIVATE void sqlite3SavePrngState(void){
|
|
memcpy(&sqlite3SavedPrng, &sqlite3Prng, sizeof(sqlite3Prng));
|
|
}
|
|
SQLITE_PRIVATE void sqlite3RestorePrngState(void){
|
|
memcpy(&sqlite3Prng, &sqlite3SavedPrng, sizeof(sqlite3Prng));
|
|
}
|
|
SQLITE_PRIVATE void sqlite3ResetPrngState(void){
|
|
sqlite3Prng.isInit = 0;
|
|
}
|
|
#endif /* SQLITE_TEST */
|
|
|
|
/************** End of random.c **********************************************/
|
|
/************** Begin file utf.c *********************************************/
|
|
/*
|
|
** 2004 April 13
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains routines used to translate between UTF-8,
|
|
** UTF-16, UTF-16BE, and UTF-16LE.
|
|
**
|
|
** $Id: utf.c,v 1.59 2007/10/03 08:46:45 danielk1977 Exp $
|
|
**
|
|
** Notes on UTF-8:
|
|
**
|
|
** Byte-0 Byte-1 Byte-2 Byte-3 Value
|
|
** 0xxxxxxx 00000000 00000000 0xxxxxxx
|
|
** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx
|
|
** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx
|
|
** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx
|
|
**
|
|
**
|
|
** Notes on UTF-16: (with wwww+1==uuuuu)
|
|
**
|
|
** Word-0 Word-1 Value
|
|
** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx
|
|
** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx
|
|
**
|
|
**
|
|
** BOM or Byte Order Mark:
|
|
** 0xff 0xfe little-endian utf-16 follows
|
|
** 0xfe 0xff big-endian utf-16 follows
|
|
**
|
|
*/
|
|
/************** Include vdbeInt.h in the middle of utf.c *********************/
|
|
/************** Begin file vdbeInt.h *****************************************/
|
|
/*
|
|
** 2003 September 6
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This is the header file for information that is private to the
|
|
** VDBE. This information used to all be at the top of the single
|
|
** source code file "vdbe.c". When that file became too big (over
|
|
** 6000 lines long) it was split up into several smaller files and
|
|
** this header information was factored out.
|
|
*/
|
|
#ifndef _VDBEINT_H_
|
|
#define _VDBEINT_H_
|
|
|
|
/*
|
|
** intToKey() and keyToInt() used to transform the rowid. But with
|
|
** the latest versions of the design they are no-ops.
|
|
*/
|
|
#define keyToInt(X) (X)
|
|
#define intToKey(X) (X)
|
|
|
|
|
|
/*
|
|
** SQL is translated into a sequence of instructions to be
|
|
** executed by a virtual machine. Each instruction is an instance
|
|
** of the following structure.
|
|
*/
|
|
typedef struct VdbeOp Op;
|
|
|
|
/*
|
|
** Boolean values
|
|
*/
|
|
typedef unsigned char Bool;
|
|
|
|
/*
|
|
** A cursor is a pointer into a single BTree within a database file.
|
|
** The cursor can seek to a BTree entry with a particular key, or
|
|
** loop over all entries of the Btree. You can also insert new BTree
|
|
** entries or retrieve the key or data from the entry that the cursor
|
|
** is currently pointing to.
|
|
**
|
|
** Every cursor that the virtual machine has open is represented by an
|
|
** instance of the following structure.
|
|
**
|
|
** If the Cursor.isTriggerRow flag is set it means that this cursor is
|
|
** really a single row that represents the NEW or OLD pseudo-table of
|
|
** a row trigger. The data for the row is stored in Cursor.pData and
|
|
** the rowid is in Cursor.iKey.
|
|
*/
|
|
struct Cursor {
|
|
BtCursor *pCursor; /* The cursor structure of the backend */
|
|
int iDb; /* Index of cursor database in db->aDb[] (or -1) */
|
|
i64 lastRowid; /* Last rowid from a Next or NextIdx operation */
|
|
i64 nextRowid; /* Next rowid returned by OP_NewRowid */
|
|
Bool zeroed; /* True if zeroed out and ready for reuse */
|
|
Bool rowidIsValid; /* True if lastRowid is valid */
|
|
Bool atFirst; /* True if pointing to first entry */
|
|
Bool useRandomRowid; /* Generate new record numbers semi-randomly */
|
|
Bool nullRow; /* True if pointing to a row with no data */
|
|
Bool nextRowidValid; /* True if the nextRowid field is valid */
|
|
Bool pseudoTable; /* This is a NEW or OLD pseudo-tables of a trigger */
|
|
Bool deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */
|
|
Bool isTable; /* True if a table requiring integer keys */
|
|
Bool isIndex; /* True if an index containing keys only - no data */
|
|
u8 bogusIncrKey; /* Something for pIncrKey to point to if pKeyInfo==0 */
|
|
i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */
|
|
Btree *pBt; /* Separate file holding temporary table */
|
|
int nData; /* Number of bytes in pData */
|
|
char *pData; /* Data for a NEW or OLD pseudo-table */
|
|
i64 iKey; /* Key for the NEW or OLD pseudo-table row */
|
|
u8 *pIncrKey; /* Pointer to pKeyInfo->incrKey */
|
|
KeyInfo *pKeyInfo; /* Info about index keys needed by index cursors */
|
|
int nField; /* Number of fields in the header */
|
|
i64 seqCount; /* Sequence counter */
|
|
sqlite3_vtab_cursor *pVtabCursor; /* The cursor for a virtual table */
|
|
const sqlite3_module *pModule; /* Module for cursor pVtabCursor */
|
|
|
|
/* Cached information about the header for the data record that the
|
|
** cursor is currently pointing to. Only valid if cacheValid is true.
|
|
** aRow might point to (ephemeral) data for the current row, or it might
|
|
** be NULL.
|
|
*/
|
|
int cacheStatus; /* Cache is valid if this matches Vdbe.cacheCtr */
|
|
int payloadSize; /* Total number of bytes in the record */
|
|
u32 *aType; /* Type values for all entries in the record */
|
|
u32 *aOffset; /* Cached offsets to the start of each columns data */
|
|
u8 *aRow; /* Data for the current row, if all on one page */
|
|
};
|
|
typedef struct Cursor Cursor;
|
|
|
|
/*
|
|
** Number of bytes of string storage space available to each stack
|
|
** layer without having to malloc. NBFS is short for Number of Bytes
|
|
** For Strings.
|
|
*/
|
|
#define NBFS 32
|
|
|
|
/*
|
|
** A value for Cursor.cacheValid that means the cache is always invalid.
|
|
*/
|
|
#define CACHE_STALE 0
|
|
|
|
/*
|
|
** Internally, the vdbe manipulates nearly all SQL values as Mem
|
|
** structures. Each Mem struct may cache multiple representations (string,
|
|
** integer etc.) of the same value. A value (and therefore Mem structure)
|
|
** has the following properties:
|
|
**
|
|
** Each value has a manifest type. The manifest type of the value stored
|
|
** in a Mem struct is returned by the MemType(Mem*) macro. The type is
|
|
** one of SQLITE_NULL, SQLITE_INTEGER, SQLITE_REAL, SQLITE_TEXT or
|
|
** SQLITE_BLOB.
|
|
*/
|
|
struct Mem {
|
|
union {
|
|
i64 i; /* Integer value. Or FuncDef* when flags==MEM_Agg */
|
|
FuncDef *pDef; /* Used only when flags==MEM_Agg */
|
|
} u;
|
|
double r; /* Real value */
|
|
sqlite3 *db; /* The associated database connection */
|
|
char *z; /* String or BLOB value */
|
|
int n; /* Number of characters in string value, excluding '\0' */
|
|
u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
|
|
u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */
|
|
u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
|
|
void (*xDel)(void *); /* If not null, call this function to delete Mem.z */
|
|
char zShort[NBFS]; /* Space for short strings */
|
|
};
|
|
|
|
/* One or more of the following flags are set to indicate the validOK
|
|
** representations of the value stored in the Mem struct.
|
|
**
|
|
** If the MEM_Null flag is set, then the value is an SQL NULL value.
|
|
** No other flags may be set in this case.
|
|
**
|
|
** If the MEM_Str flag is set then Mem.z points at a string representation.
|
|
** Usually this is encoded in the same unicode encoding as the main
|
|
** database (see below for exceptions). If the MEM_Term flag is also
|
|
** set, then the string is nul terminated. The MEM_Int and MEM_Real
|
|
** flags may coexist with the MEM_Str flag.
|
|
**
|
|
** Multiple of these values can appear in Mem.flags. But only one
|
|
** at a time can appear in Mem.type.
|
|
*/
|
|
#define MEM_Null 0x0001 /* Value is NULL */
|
|
#define MEM_Str 0x0002 /* Value is a string */
|
|
#define MEM_Int 0x0004 /* Value is an integer */
|
|
#define MEM_Real 0x0008 /* Value is a real number */
|
|
#define MEM_Blob 0x0010 /* Value is a BLOB */
|
|
|
|
/* Whenever Mem contains a valid string or blob representation, one of
|
|
** the following flags must be set to determine the memory management
|
|
** policy for Mem.z. The MEM_Term flag tells us whether or not the
|
|
** string is \000 or \u0000 terminated
|
|
*/
|
|
#define MEM_Term 0x0020 /* String rep is nul terminated */
|
|
#define MEM_Dyn 0x0040 /* Need to call sqliteFree() on Mem.z */
|
|
#define MEM_Static 0x0080 /* Mem.z points to a static string */
|
|
#define MEM_Ephem 0x0100 /* Mem.z points to an ephemeral string */
|
|
#define MEM_Short 0x0200 /* Mem.z points to Mem.zShort */
|
|
#define MEM_Agg 0x0400 /* Mem.z points to an agg function context */
|
|
#define MEM_Zero 0x0800 /* Mem.i contains count of 0s appended to blob */
|
|
|
|
#ifdef SQLITE_OMIT_INCRBLOB
|
|
#undef MEM_Zero
|
|
#define MEM_Zero 0x0000
|
|
#endif
|
|
|
|
|
|
/* A VdbeFunc is just a FuncDef (defined in sqliteInt.h) that contains
|
|
** additional information about auxiliary information bound to arguments
|
|
** of the function. This is used to implement the sqlite3_get_auxdata()
|
|
** and sqlite3_set_auxdata() APIs. The "auxdata" is some auxiliary data
|
|
** that can be associated with a constant argument to a function. This
|
|
** allows functions such as "regexp" to compile their constant regular
|
|
** expression argument once and reused the compiled code for multiple
|
|
** invocations.
|
|
*/
|
|
struct VdbeFunc {
|
|
FuncDef *pFunc; /* The definition of the function */
|
|
int nAux; /* Number of entries allocated for apAux[] */
|
|
struct AuxData {
|
|
void *pAux; /* Aux data for the i-th argument */
|
|
void (*xDelete)(void *); /* Destructor for the aux data */
|
|
} apAux[1]; /* One slot for each function argument */
|
|
};
|
|
|
|
/*
|
|
** The "context" argument for a installable function. A pointer to an
|
|
** instance of this structure is the first argument to the routines used
|
|
** implement the SQL functions.
|
|
**
|
|
** There is a typedef for this structure in sqlite.h. So all routines,
|
|
** even the public interface to SQLite, can use a pointer to this structure.
|
|
** But this file is the only place where the internal details of this
|
|
** structure are known.
|
|
**
|
|
** This structure is defined inside of vdbeInt.h because it uses substructures
|
|
** (Mem) which are only defined there.
|
|
*/
|
|
struct sqlite3_context {
|
|
FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */
|
|
VdbeFunc *pVdbeFunc; /* Auxilary data, if created. */
|
|
Mem s; /* The return value is stored here */
|
|
Mem *pMem; /* Memory cell used to store aggregate context */
|
|
u8 isError; /* Set to true for an error */
|
|
CollSeq *pColl; /* Collating sequence */
|
|
};
|
|
|
|
/*
|
|
** A Set structure is used for quick testing to see if a value
|
|
** is part of a small set. Sets are used to implement code like
|
|
** this:
|
|
** x.y IN ('hi','hoo','hum')
|
|
*/
|
|
typedef struct Set Set;
|
|
struct Set {
|
|
Hash hash; /* A set is just a hash table */
|
|
HashElem *prev; /* Previously accessed hash elemen */
|
|
};
|
|
|
|
/*
|
|
** A FifoPage structure holds a single page of valves. Pages are arranged
|
|
** in a list.
|
|
*/
|
|
typedef struct FifoPage FifoPage;
|
|
struct FifoPage {
|
|
int nSlot; /* Number of entries aSlot[] */
|
|
int iWrite; /* Push the next value into this entry in aSlot[] */
|
|
int iRead; /* Read the next value from this entry in aSlot[] */
|
|
FifoPage *pNext; /* Next page in the fifo */
|
|
i64 aSlot[1]; /* One or more slots for rowid values */
|
|
};
|
|
|
|
/*
|
|
** The Fifo structure is typedef-ed in vdbeInt.h. But the implementation
|
|
** of that structure is private to this file.
|
|
**
|
|
** The Fifo structure describes the entire fifo.
|
|
*/
|
|
typedef struct Fifo Fifo;
|
|
struct Fifo {
|
|
int nEntry; /* Total number of entries */
|
|
FifoPage *pFirst; /* First page on the list */
|
|
FifoPage *pLast; /* Last page on the list */
|
|
};
|
|
|
|
/*
|
|
** A Context stores the last insert rowid, the last statement change count,
|
|
** and the current statement change count (i.e. changes since last statement).
|
|
** The current keylist is also stored in the context.
|
|
** Elements of Context structure type make up the ContextStack, which is
|
|
** updated by the ContextPush and ContextPop opcodes (used by triggers).
|
|
** The context is pushed before executing a trigger a popped when the
|
|
** trigger finishes.
|
|
*/
|
|
typedef struct Context Context;
|
|
struct Context {
|
|
i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */
|
|
int nChange; /* Statement changes (Vdbe.nChanges) */
|
|
Fifo sFifo; /* Records that will participate in a DELETE or UPDATE */
|
|
};
|
|
|
|
/*
|
|
** An instance of the virtual machine. This structure contains the complete
|
|
** state of the virtual machine.
|
|
**
|
|
** The "sqlite3_stmt" structure pointer that is returned by sqlite3_compile()
|
|
** is really a pointer to an instance of this structure.
|
|
**
|
|
** The Vdbe.inVtabMethod variable is set to non-zero for the duration of
|
|
** any virtual table method invocations made by the vdbe program. It is
|
|
** set to 2 for xDestroy method calls and 1 for all other methods. This
|
|
** variable is used for two purposes: to allow xDestroy methods to execute
|
|
** "DROP TABLE" statements and to prevent some nasty side effects of
|
|
** malloc failure when SQLite is invoked recursively by a virtual table
|
|
** method function.
|
|
*/
|
|
struct Vdbe {
|
|
sqlite3 *db; /* The whole database */
|
|
Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
|
|
int nOp; /* Number of instructions in the program */
|
|
int nOpAlloc; /* Number of slots allocated for aOp[] */
|
|
Op *aOp; /* Space to hold the virtual machine's program */
|
|
int nLabel; /* Number of labels used */
|
|
int nLabelAlloc; /* Number of slots allocated in aLabel[] */
|
|
int *aLabel; /* Space to hold the labels */
|
|
Mem **apArg; /* Arguments to currently executing user function */
|
|
Mem *aColName; /* Column names to return */
|
|
int nCursor; /* Number of slots in apCsr[] */
|
|
Cursor **apCsr; /* One element of this array for each open cursor */
|
|
int nVar; /* Number of entries in aVar[] */
|
|
Mem *aVar; /* Values for the OP_Variable opcode. */
|
|
char **azVar; /* Name of variables */
|
|
int okVar; /* True if azVar[] has been initialized */
|
|
int magic; /* Magic number for sanity checking */
|
|
int nMem; /* Number of memory locations currently allocated */
|
|
Mem *aMem; /* The memory locations */
|
|
int nCallback; /* Number of callbacks invoked so far */
|
|
int cacheCtr; /* Cursor row cache generation counter */
|
|
Fifo sFifo; /* A list of ROWIDs */
|
|
int contextStackTop; /* Index of top element in the context stack */
|
|
int contextStackDepth; /* The size of the "context" stack */
|
|
Context *contextStack; /* Stack used by opcodes ContextPush & ContextPop*/
|
|
int pc; /* The program counter */
|
|
int rc; /* Value to return */
|
|
unsigned uniqueCnt; /* Used by OP_MakeRecord when P2!=0 */
|
|
int errorAction; /* Recovery action to do in case of an error */
|
|
int inTempTrans; /* True if temp database is transactioned */
|
|
int returnStack[25]; /* Return address stack for OP_Gosub & OP_Return */
|
|
int returnDepth; /* Next unused element in returnStack[] */
|
|
int nResColumn; /* Number of columns in one row of the result set */
|
|
char **azResColumn; /* Values for one row of result */
|
|
char *zErrMsg; /* Error message written here */
|
|
Mem *pResultSet; /* Pointer to an array of results */
|
|
u8 explain; /* True if EXPLAIN present on SQL command */
|
|
u8 changeCntOn; /* True to update the change-counter */
|
|
u8 aborted; /* True if ROLLBACK in another VM causes an abort */
|
|
u8 expired; /* True if the VM needs to be recompiled */
|
|
u8 minWriteFileFormat; /* Minimum file format for writable database files */
|
|
u8 inVtabMethod; /* See comments above */
|
|
int nChange; /* Number of db changes made since last reset */
|
|
i64 startTime; /* Time when query started - used for profiling */
|
|
int btreeMask; /* Bitmask of db->aDb[] entries referenced */
|
|
BtreeMutexArray aMutex; /* An array of Btree used here and needing locks */
|
|
int nSql; /* Number of bytes in zSql */
|
|
char *zSql; /* Text of the SQL statement that generated this */
|
|
#ifdef SQLITE_DEBUG
|
|
FILE *trace; /* Write an execution trace here, if not NULL */
|
|
#endif
|
|
int openedStatement; /* True if this VM has opened a statement journal */
|
|
#ifdef SQLITE_SSE
|
|
int fetchId; /* Statement number used by sqlite3_fetch_statement */
|
|
int lru; /* Counter used for LRU cache replacement */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
** The following are allowed values for Vdbe.magic
|
|
*/
|
|
#define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */
|
|
#define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */
|
|
#define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */
|
|
#define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */
|
|
|
|
/*
|
|
** Function prototypes
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *, Cursor*);
|
|
void sqliteVdbePopStack(Vdbe*,int);
|
|
SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(Cursor*);
|
|
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
|
|
SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE*, int, Op*);
|
|
#endif
|
|
SQLITE_PRIVATE int sqlite3VdbeSerialTypeLen(u32);
|
|
SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem*, int);
|
|
SQLITE_PRIVATE int sqlite3VdbeSerialPut(unsigned char*, int, Mem*, int);
|
|
SQLITE_PRIVATE int sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
|
|
SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(VdbeFunc*, int);
|
|
|
|
int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
|
|
SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(Cursor*,int,const unsigned char*,int*);
|
|
SQLITE_PRIVATE int sqlite3VdbeIdxRowid(BtCursor *, i64 *);
|
|
SQLITE_PRIVATE int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
|
|
SQLITE_PRIVATE int sqlite3VdbeRecordCompare(void*,int,const void*,int, const void*);
|
|
SQLITE_PRIVATE int sqlite3VdbeIdxRowidLen(const u8*);
|
|
SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*);
|
|
SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*);
|
|
SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe*);
|
|
SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *, int);
|
|
SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem*);
|
|
SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem*, const Mem*);
|
|
SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
|
|
SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem*, Mem*);
|
|
SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem*);
|
|
SQLITE_PRIVATE int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*));
|
|
SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem*, i64);
|
|
SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem*, double);
|
|
SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem*);
|
|
SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem*,int);
|
|
SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem*);
|
|
SQLITE_PRIVATE int sqlite3VdbeMemDynamicify(Mem*);
|
|
SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem*, int);
|
|
SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem*);
|
|
SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem*);
|
|
SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*);
|
|
SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem*);
|
|
SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem*);
|
|
SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem*);
|
|
SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
|
|
SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p);
|
|
SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
|
|
SQLITE_PRIVATE const char *sqlite3OpcodeName(int);
|
|
SQLITE_PRIVATE int sqlite3VdbeOpcodeHasProperty(int, int);
|
|
|
|
#ifndef NDEBUG
|
|
SQLITE_PRIVATE void sqlite3VdbeMemSanity(Mem*);
|
|
#endif
|
|
SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem*, u8);
|
|
#ifdef SQLITE_DEBUG
|
|
SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe*);
|
|
SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf);
|
|
#endif
|
|
SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem);
|
|
SQLITE_PRIVATE void sqlite3VdbeFifoInit(Fifo*);
|
|
SQLITE_PRIVATE int sqlite3VdbeFifoPush(Fifo*, i64);
|
|
SQLITE_PRIVATE int sqlite3VdbeFifoPop(Fifo*, i64*);
|
|
SQLITE_PRIVATE void sqlite3VdbeFifoClear(Fifo*);
|
|
|
|
#ifndef SQLITE_OMIT_INCRBLOB
|
|
SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *);
|
|
#else
|
|
#define sqlite3VdbeMemExpandBlob(x) SQLITE_OK
|
|
#endif
|
|
|
|
#endif /* !defined(_VDBEINT_H_) */
|
|
|
|
/************** End of vdbeInt.h *********************************************/
|
|
/************** Continuing where we left off in utf.c ************************/
|
|
|
|
/*
|
|
** The following constant value is used by the SQLITE_BIGENDIAN and
|
|
** SQLITE_LITTLEENDIAN macros.
|
|
*/
|
|
SQLITE_PRIVATE const int sqlite3one = 1;
|
|
|
|
/*
|
|
** This lookup table is used to help decode the first byte of
|
|
** a multi-byte UTF8 character.
|
|
*/
|
|
static const unsigned char sqlite3UtfTrans1[] = {
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
|
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
|
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
|
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
|
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
|
0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
|
|
};
|
|
|
|
|
|
#define WRITE_UTF8(zOut, c) { \
|
|
if( c<0x00080 ){ \
|
|
*zOut++ = (c&0xFF); \
|
|
} \
|
|
else if( c<0x00800 ){ \
|
|
*zOut++ = 0xC0 + ((c>>6)&0x1F); \
|
|
*zOut++ = 0x80 + (c & 0x3F); \
|
|
} \
|
|
else if( c<0x10000 ){ \
|
|
*zOut++ = 0xE0 + ((c>>12)&0x0F); \
|
|
*zOut++ = 0x80 + ((c>>6) & 0x3F); \
|
|
*zOut++ = 0x80 + (c & 0x3F); \
|
|
}else{ \
|
|
*zOut++ = 0xF0 + ((c>>18) & 0x07); \
|
|
*zOut++ = 0x80 + ((c>>12) & 0x3F); \
|
|
*zOut++ = 0x80 + ((c>>6) & 0x3F); \
|
|
*zOut++ = 0x80 + (c & 0x3F); \
|
|
} \
|
|
}
|
|
|
|
#define WRITE_UTF16LE(zOut, c) { \
|
|
if( c<=0xFFFF ){ \
|
|
*zOut++ = (c&0x00FF); \
|
|
*zOut++ = ((c>>8)&0x00FF); \
|
|
}else{ \
|
|
*zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
|
|
*zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \
|
|
*zOut++ = (c&0x00FF); \
|
|
*zOut++ = (0x00DC + ((c>>8)&0x03)); \
|
|
} \
|
|
}
|
|
|
|
#define WRITE_UTF16BE(zOut, c) { \
|
|
if( c<=0xFFFF ){ \
|
|
*zOut++ = ((c>>8)&0x00FF); \
|
|
*zOut++ = (c&0x00FF); \
|
|
}else{ \
|
|
*zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \
|
|
*zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
|
|
*zOut++ = (0x00DC + ((c>>8)&0x03)); \
|
|
*zOut++ = (c&0x00FF); \
|
|
} \
|
|
}
|
|
|
|
#define READ_UTF16LE(zIn, c){ \
|
|
c = (*zIn++); \
|
|
c += ((*zIn++)<<8); \
|
|
if( c>=0xD800 && c<0xE000 ){ \
|
|
int c2 = (*zIn++); \
|
|
c2 += ((*zIn++)<<8); \
|
|
c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
|
|
if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \
|
|
} \
|
|
}
|
|
|
|
#define READ_UTF16BE(zIn, c){ \
|
|
c = ((*zIn++)<<8); \
|
|
c += (*zIn++); \
|
|
if( c>=0xD800 && c<0xE000 ){ \
|
|
int c2 = ((*zIn++)<<8); \
|
|
c2 += (*zIn++); \
|
|
c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
|
|
if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \
|
|
} \
|
|
}
|
|
|
|
/*
|
|
** Translate a single UTF-8 character. Return the unicode value.
|
|
**
|
|
** During translation, assume that the byte that zTerm points
|
|
** is a 0x00.
|
|
**
|
|
** Write a pointer to the next unread byte back into *pzNext.
|
|
**
|
|
** Notes On Invalid UTF-8:
|
|
**
|
|
** * This routine never allows a 7-bit character (0x00 through 0x7f) to
|
|
** be encoded as a multi-byte character. Any multi-byte character that
|
|
** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd.
|
|
**
|
|
** * This routine never allows a UTF16 surrogate value to be encoded.
|
|
** If a multi-byte character attempts to encode a value between
|
|
** 0xd800 and 0xe000 then it is rendered as 0xfffd.
|
|
**
|
|
** * Bytes in the range of 0x80 through 0xbf which occur as the first
|
|
** byte of a character are interpreted as single-byte characters
|
|
** and rendered as themselves even though they are technically
|
|
** invalid characters.
|
|
**
|
|
** * This routine accepts an infinite number of different UTF8 encodings
|
|
** for unicode values 0x80 and greater. It do not change over-length
|
|
** encodings to 0xfffd as some systems recommend.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3Utf8Read(
|
|
const unsigned char *z, /* First byte of UTF-8 character */
|
|
const unsigned char *zTerm, /* Pretend this byte is 0x00 */
|
|
const unsigned char **pzNext /* Write first byte past UTF-8 char here */
|
|
){
|
|
int c = *(z++);
|
|
if( c>=0xc0 ){
|
|
c = sqlite3UtfTrans1[c-0xc0];
|
|
while( z!=zTerm && (*z & 0xc0)==0x80 ){
|
|
c = (c<<6) + (0x3f & *(z++));
|
|
}
|
|
if( c<0x80
|
|
|| (c&0xFFFFF800)==0xD800
|
|
|| (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; }
|
|
}
|
|
*pzNext = z;
|
|
return c;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
|
|
** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
|
|
*/
|
|
/* #define TRANSLATE_TRACE 1 */
|
|
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
/*
|
|
** This routine transforms the internal text encoding used by pMem to
|
|
** desiredEnc. It is an error if the string is already of the desired
|
|
** encoding, or if *pMem does not contain a string value.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
|
|
unsigned char zShort[NBFS]; /* Temporary short output buffer */
|
|
int len; /* Maximum length of output string in bytes */
|
|
unsigned char *zOut; /* Output buffer */
|
|
unsigned char *zIn; /* Input iterator */
|
|
unsigned char *zTerm; /* End of input */
|
|
unsigned char *z; /* Output iterator */
|
|
unsigned int c;
|
|
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
assert( pMem->flags&MEM_Str );
|
|
assert( pMem->enc!=desiredEnc );
|
|
assert( pMem->enc!=0 );
|
|
assert( pMem->n>=0 );
|
|
|
|
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
|
|
{
|
|
char zBuf[100];
|
|
sqlite3VdbeMemPrettyPrint(pMem, zBuf);
|
|
fprintf(stderr, "INPUT: %s\n", zBuf);
|
|
}
|
|
#endif
|
|
|
|
/* If the translation is between UTF-16 little and big endian, then
|
|
** all that is required is to swap the byte order. This case is handled
|
|
** differently from the others.
|
|
*/
|
|
if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
|
|
u8 temp;
|
|
int rc;
|
|
rc = sqlite3VdbeMemMakeWriteable(pMem);
|
|
if( rc!=SQLITE_OK ){
|
|
assert( rc==SQLITE_NOMEM );
|
|
return SQLITE_NOMEM;
|
|
}
|
|
zIn = (u8*)pMem->z;
|
|
zTerm = &zIn[pMem->n];
|
|
while( zIn<zTerm ){
|
|
temp = *zIn;
|
|
*zIn = *(zIn+1);
|
|
zIn++;
|
|
*zIn++ = temp;
|
|
}
|
|
pMem->enc = desiredEnc;
|
|
goto translate_out;
|
|
}
|
|
|
|
/* Set len to the maximum number of bytes required in the output buffer. */
|
|
if( desiredEnc==SQLITE_UTF8 ){
|
|
/* When converting from UTF-16, the maximum growth results from
|
|
** translating a 2-byte character to a 4-byte UTF-8 character.
|
|
** A single byte is required for the output string
|
|
** nul-terminator.
|
|
*/
|
|
len = pMem->n * 2 + 1;
|
|
}else{
|
|
/* When converting from UTF-8 to UTF-16 the maximum growth is caused
|
|
** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
|
|
** character. Two bytes are required in the output buffer for the
|
|
** nul-terminator.
|
|
*/
|
|
len = pMem->n * 2 + 2;
|
|
}
|
|
|
|
/* Set zIn to point at the start of the input buffer and zTerm to point 1
|
|
** byte past the end.
|
|
**
|
|
** Variable zOut is set to point at the output buffer. This may be space
|
|
** obtained from sqlite3_malloc(), or Mem.zShort, if it large enough and
|
|
** not in use, or the zShort array on the stack (see above).
|
|
*/
|
|
zIn = (u8*)pMem->z;
|
|
zTerm = &zIn[pMem->n];
|
|
if( len>NBFS ){
|
|
zOut = sqlite3DbMallocRaw(pMem->db, len);
|
|
if( !zOut ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
}else{
|
|
zOut = zShort;
|
|
}
|
|
z = zOut;
|
|
|
|
if( pMem->enc==SQLITE_UTF8 ){
|
|
if( desiredEnc==SQLITE_UTF16LE ){
|
|
/* UTF-8 -> UTF-16 Little-endian */
|
|
while( zIn<zTerm ){
|
|
c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
|
|
WRITE_UTF16LE(z, c);
|
|
}
|
|
}else{
|
|
assert( desiredEnc==SQLITE_UTF16BE );
|
|
/* UTF-8 -> UTF-16 Big-endian */
|
|
while( zIn<zTerm ){
|
|
c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
|
|
WRITE_UTF16BE(z, c);
|
|
}
|
|
}
|
|
pMem->n = z - zOut;
|
|
*z++ = 0;
|
|
}else{
|
|
assert( desiredEnc==SQLITE_UTF8 );
|
|
if( pMem->enc==SQLITE_UTF16LE ){
|
|
/* UTF-16 Little-endian -> UTF-8 */
|
|
while( zIn<zTerm ){
|
|
READ_UTF16LE(zIn, c);
|
|
WRITE_UTF8(z, c);
|
|
}
|
|
}else{
|
|
/* UTF-16 Little-endian -> UTF-8 */
|
|
while( zIn<zTerm ){
|
|
READ_UTF16BE(zIn, c);
|
|
WRITE_UTF8(z, c);
|
|
}
|
|
}
|
|
pMem->n = z - zOut;
|
|
}
|
|
*z = 0;
|
|
assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
|
|
|
|
sqlite3VdbeMemRelease(pMem);
|
|
pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
|
|
pMem->enc = desiredEnc;
|
|
if( zOut==zShort ){
|
|
memcpy(pMem->zShort, zOut, len);
|
|
zOut = (u8*)pMem->zShort;
|
|
pMem->flags |= (MEM_Term|MEM_Short);
|
|
}else{
|
|
pMem->flags |= (MEM_Term|MEM_Dyn);
|
|
}
|
|
pMem->z = (char*)zOut;
|
|
|
|
translate_out:
|
|
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
|
|
{
|
|
char zBuf[100];
|
|
sqlite3VdbeMemPrettyPrint(pMem, zBuf);
|
|
fprintf(stderr, "OUTPUT: %s\n", zBuf);
|
|
}
|
|
#endif
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** This routine checks for a byte-order mark at the beginning of the
|
|
** UTF-16 string stored in *pMem. If one is present, it is removed and
|
|
** the encoding of the Mem adjusted. This routine does not do any
|
|
** byte-swapping, it just sets Mem.enc appropriately.
|
|
**
|
|
** The allocation (static, dynamic etc.) and encoding of the Mem may be
|
|
** changed by this function.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem){
|
|
int rc = SQLITE_OK;
|
|
u8 bom = 0;
|
|
|
|
if( pMem->n<0 || pMem->n>1 ){
|
|
u8 b1 = *(u8 *)pMem->z;
|
|
u8 b2 = *(((u8 *)pMem->z) + 1);
|
|
if( b1==0xFE && b2==0xFF ){
|
|
bom = SQLITE_UTF16BE;
|
|
}
|
|
if( b1==0xFF && b2==0xFE ){
|
|
bom = SQLITE_UTF16LE;
|
|
}
|
|
}
|
|
|
|
if( bom ){
|
|
/* This function is called as soon as a string is stored in a Mem*,
|
|
** from within sqlite3VdbeMemSetStr(). At that point it is not possible
|
|
** for the string to be stored in Mem.zShort, or for it to be stored
|
|
** in dynamic memory with no destructor.
|
|
*/
|
|
assert( !(pMem->flags&MEM_Short) );
|
|
assert( !(pMem->flags&MEM_Dyn) || pMem->xDel );
|
|
if( pMem->flags & MEM_Dyn ){
|
|
void (*xDel)(void*) = pMem->xDel;
|
|
char *z = pMem->z;
|
|
pMem->z = 0;
|
|
pMem->xDel = 0;
|
|
rc = sqlite3VdbeMemSetStr(pMem, &z[2], pMem->n-2, bom,
|
|
SQLITE_TRANSIENT);
|
|
xDel(z);
|
|
}else{
|
|
rc = sqlite3VdbeMemSetStr(pMem, &pMem->z[2], pMem->n-2, bom,
|
|
SQLITE_TRANSIENT);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
|
|
/*
|
|
** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
|
|
** return the number of unicode characters in pZ up to (but not including)
|
|
** the first 0x00 byte. If nByte is not less than zero, return the
|
|
** number of unicode characters in the first nByte of pZ (or up to
|
|
** the first 0x00, whichever comes first).
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *zIn, int nByte){
|
|
int r = 0;
|
|
const u8 *z = (const u8*)zIn;
|
|
const u8 *zTerm;
|
|
if( nByte>=0 ){
|
|
zTerm = &z[nByte];
|
|
}else{
|
|
zTerm = (const u8*)(-1);
|
|
}
|
|
assert( z<=zTerm );
|
|
while( *z!=0 && z<zTerm ){
|
|
SQLITE_SKIP_UTF8(z);
|
|
r++;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/* This test function is not currently used by the automated test-suite.
|
|
** Hence it is only available in debug builds.
|
|
*/
|
|
#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
|
|
/*
|
|
** Translate UTF-8 to UTF-8.
|
|
**
|
|
** This has the effect of making sure that the string is well-formed
|
|
** UTF-8. Miscoded characters are removed.
|
|
**
|
|
** The translation is done in-place (since it is impossible for the
|
|
** correct UTF-8 encoding to be longer than a malformed encoding).
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char *zIn){
|
|
unsigned char *zOut = zIn;
|
|
unsigned char *zStart = zIn;
|
|
unsigned char *zTerm;
|
|
u32 c;
|
|
|
|
while( zIn[0] ){
|
|
c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
|
|
if( c!=0xfffd ){
|
|
WRITE_UTF8(zOut, c);
|
|
}
|
|
}
|
|
*zOut = 0;
|
|
return zOut - zStart;
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
/*
|
|
** Convert a UTF-16 string in the native encoding into a UTF-8 string.
|
|
** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must
|
|
** be freed by the calling function.
|
|
**
|
|
** NULL is returned if there is an allocation error.
|
|
*/
|
|
SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte){
|
|
Mem m;
|
|
memset(&m, 0, sizeof(m));
|
|
m.db = db;
|
|
sqlite3VdbeMemSetStr(&m, z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC);
|
|
sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
|
|
if( db->mallocFailed ){
|
|
sqlite3VdbeMemRelease(&m);
|
|
m.z = 0;
|
|
}
|
|
assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
|
|
assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
|
|
return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z);
|
|
}
|
|
|
|
/*
|
|
** pZ is a UTF-16 encoded unicode string. If nChar is less than zero,
|
|
** return the number of bytes up to (but not including), the first pair
|
|
** of consecutive 0x00 bytes in pZ. If nChar is not less than zero,
|
|
** then return the number of bytes in the first nChar unicode characters
|
|
** in pZ (or up until the first pair of 0x00 bytes, whichever comes first).
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *zIn, int nChar){
|
|
unsigned int c = 1;
|
|
char const *z = zIn;
|
|
int n = 0;
|
|
if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){
|
|
/* Using an "if (SQLITE_UTF16NATIVE==SQLITE_UTF16BE)" construct here
|
|
** and in other parts of this file means that at one branch will
|
|
** not be covered by coverage testing on any single host. But coverage
|
|
** will be complete if the tests are run on both a little-endian and
|
|
** big-endian host. Because both the UTF16NATIVE and SQLITE_UTF16BE
|
|
** macros are constant at compile time the compiler can determine
|
|
** which branch will be followed. It is therefore assumed that no runtime
|
|
** penalty is paid for this "if" statement.
|
|
*/
|
|
while( c && ((nChar<0) || n<nChar) ){
|
|
READ_UTF16BE(z, c);
|
|
n++;
|
|
}
|
|
}else{
|
|
while( c && ((nChar<0) || n<nChar) ){
|
|
READ_UTF16LE(z, c);
|
|
n++;
|
|
}
|
|
}
|
|
return (z-(char const *)zIn)-((c==0)?2:0);
|
|
}
|
|
|
|
#if defined(SQLITE_TEST)
|
|
/*
|
|
** This routine is called from the TCL test function "translate_selftest".
|
|
** It checks that the primitives for serializing and deserializing
|
|
** characters in each encoding are inverses of each other.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3UtfSelfTest(){
|
|
unsigned int i, t;
|
|
unsigned char zBuf[20];
|
|
unsigned char *z;
|
|
unsigned char *zTerm;
|
|
int n;
|
|
unsigned int c;
|
|
|
|
for(i=0; i<0x00110000; i++){
|
|
z = zBuf;
|
|
WRITE_UTF8(z, i);
|
|
n = z-zBuf;
|
|
z[0] = 0;
|
|
zTerm = z;
|
|
z = zBuf;
|
|
c = sqlite3Utf8Read(z, zTerm, (const u8**)&z);
|
|
t = i;
|
|
if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD;
|
|
if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD;
|
|
assert( c==t );
|
|
assert( (z-zBuf)==n );
|
|
}
|
|
for(i=0; i<0x00110000; i++){
|
|
if( i>=0xD800 && i<0xE000 ) continue;
|
|
z = zBuf;
|
|
WRITE_UTF16LE(z, i);
|
|
n = z-zBuf;
|
|
z[0] = 0;
|
|
z = zBuf;
|
|
READ_UTF16LE(z, c);
|
|
assert( c==i );
|
|
assert( (z-zBuf)==n );
|
|
}
|
|
for(i=0; i<0x00110000; i++){
|
|
if( i>=0xD800 && i<0xE000 ) continue;
|
|
z = zBuf;
|
|
WRITE_UTF16BE(z, i);
|
|
n = z-zBuf;
|
|
z[0] = 0;
|
|
z = zBuf;
|
|
READ_UTF16BE(z, c);
|
|
assert( c==i );
|
|
assert( (z-zBuf)==n );
|
|
}
|
|
}
|
|
#endif /* SQLITE_TEST */
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
|
|
/************** End of utf.c *************************************************/
|
|
/************** Begin file util.c ********************************************/
|
|
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** Utility functions used throughout sqlite.
|
|
**
|
|
** This file contains functions for allocating memory, comparing
|
|
** strings, and stuff like that.
|
|
**
|
|
** $Id: util.c,v 1.216 2008/01/23 03:03:05 drh Exp $
|
|
*/
|
|
|
|
|
|
/*
|
|
** Set the most recent error code and error string for the sqlite
|
|
** handle "db". The error code is set to "err_code".
|
|
**
|
|
** If it is not NULL, string zFormat specifies the format of the
|
|
** error string in the style of the printf functions: The following
|
|
** format characters are allowed:
|
|
**
|
|
** %s Insert a string
|
|
** %z A string that should be freed after use
|
|
** %d Insert an integer
|
|
** %T Insert a token
|
|
** %S Insert the first element of a SrcList
|
|
**
|
|
** zFormat and any string tokens that follow it are assumed to be
|
|
** encoded in UTF-8.
|
|
**
|
|
** To clear the most recent error for sqlite handle "db", sqlite3Error
|
|
** should be called with err_code set to SQLITE_OK and zFormat set
|
|
** to NULL.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
|
|
if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
|
|
db->errCode = err_code;
|
|
if( zFormat ){
|
|
char *z;
|
|
va_list ap;
|
|
va_start(ap, zFormat);
|
|
z = sqlite3VMPrintf(db, zFormat, ap);
|
|
va_end(ap);
|
|
sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, sqlite3_free);
|
|
}else{
|
|
sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Add an error message to pParse->zErrMsg and increment pParse->nErr.
|
|
** The following formatting characters are allowed:
|
|
**
|
|
** %s Insert a string
|
|
** %z A string that should be freed after use
|
|
** %d Insert an integer
|
|
** %T Insert a token
|
|
** %S Insert the first element of a SrcList
|
|
**
|
|
** This function should be used to report any error that occurs whilst
|
|
** compiling an SQL statement (i.e. within sqlite3_prepare()). The
|
|
** last thing the sqlite3_prepare() function does is copy the error
|
|
** stored by this function into the database handle using sqlite3Error().
|
|
** Function sqlite3Error() should be used during statement execution
|
|
** (sqlite3_step() etc.).
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
|
|
va_list ap;
|
|
pParse->nErr++;
|
|
sqlite3_free(pParse->zErrMsg);
|
|
va_start(ap, zFormat);
|
|
pParse->zErrMsg = sqlite3VMPrintf(pParse->db, zFormat, ap);
|
|
va_end(ap);
|
|
if( pParse->rc==SQLITE_OK ){
|
|
pParse->rc = SQLITE_ERROR;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Clear the error message in pParse, if any
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3ErrorClear(Parse *pParse){
|
|
sqlite3_free(pParse->zErrMsg);
|
|
pParse->zErrMsg = 0;
|
|
pParse->nErr = 0;
|
|
}
|
|
|
|
/*
|
|
** Convert an SQL-style quoted string into a normal string by removing
|
|
** the quote characters. The conversion is done in-place. If the
|
|
** input does not begin with a quote character, then this routine
|
|
** is a no-op.
|
|
**
|
|
** 2002-Feb-14: This routine is extended to remove MS-Access style
|
|
** brackets from around identifers. For example: "[a-b-c]" becomes
|
|
** "a-b-c".
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3Dequote(char *z){
|
|
int quote;
|
|
int i, j;
|
|
if( z==0 ) return;
|
|
quote = z[0];
|
|
switch( quote ){
|
|
case '\'': break;
|
|
case '"': break;
|
|
case '`': break; /* For MySQL compatibility */
|
|
case '[': quote = ']'; break; /* For MS SqlServer compatibility */
|
|
default: return;
|
|
}
|
|
for(i=1, j=0; z[i]; i++){
|
|
if( z[i]==quote ){
|
|
if( z[i+1]==quote ){
|
|
z[j++] = quote;
|
|
i++;
|
|
}else{
|
|
z[j++] = 0;
|
|
break;
|
|
}
|
|
}else{
|
|
z[j++] = z[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* An array to map all upper-case characters into their corresponding
|
|
** lower-case character.
|
|
*/
|
|
SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[] = {
|
|
#ifdef SQLITE_ASCII
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
|
|
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
|
|
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
|
|
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
|
|
104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
|
|
122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
|
|
108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
|
|
126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
|
|
144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
|
|
162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
|
|
180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
|
|
198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
|
|
216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
|
|
234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
|
|
252,253,254,255
|
|
#endif
|
|
#ifdef SQLITE_EBCDIC
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */
|
|
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */
|
|
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */
|
|
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */
|
|
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */
|
|
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */
|
|
96, 97, 66, 67, 68, 69, 70, 71, 72, 73,106,107,108,109,110,111, /* 6x */
|
|
112, 81, 82, 83, 84, 85, 86, 87, 88, 89,122,123,124,125,126,127, /* 7x */
|
|
128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */
|
|
144,145,146,147,148,149,150,151,152,153,154,155,156,157,156,159, /* 9x */
|
|
160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */
|
|
176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */
|
|
192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */
|
|
208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */
|
|
224,225,162,163,164,165,166,167,168,169,232,203,204,205,206,207, /* Ex */
|
|
239,240,241,242,243,244,245,246,247,248,249,219,220,221,222,255, /* Fx */
|
|
#endif
|
|
};
|
|
#define UpperToLower sqlite3UpperToLower
|
|
|
|
/*
|
|
** Some systems have stricmp(). Others have strcasecmp(). Because
|
|
** there is no consistency, we will define our own.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3StrICmp(const char *zLeft, const char *zRight){
|
|
register unsigned char *a, *b;
|
|
a = (unsigned char *)zLeft;
|
|
b = (unsigned char *)zRight;
|
|
while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
|
|
return UpperToLower[*a] - UpperToLower[*b];
|
|
}
|
|
SQLITE_PRIVATE int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){
|
|
register unsigned char *a, *b;
|
|
a = (unsigned char *)zLeft;
|
|
b = (unsigned char *)zRight;
|
|
while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
|
|
return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if z is a pure numeric string. Return FALSE if the
|
|
** string contains any character which is not part of a number. If
|
|
** the string is numeric and contains the '.' character, set *realnum
|
|
** to TRUE (otherwise FALSE).
|
|
**
|
|
** An empty string is considered non-numeric.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3IsNumber(const char *z, int *realnum, u8 enc){
|
|
int incr = (enc==SQLITE_UTF8?1:2);
|
|
if( enc==SQLITE_UTF16BE ) z++;
|
|
if( *z=='-' || *z=='+' ) z += incr;
|
|
if( !isdigit(*(u8*)z) ){
|
|
return 0;
|
|
}
|
|
z += incr;
|
|
if( realnum ) *realnum = 0;
|
|
while( isdigit(*(u8*)z) ){ z += incr; }
|
|
if( *z=='.' ){
|
|
z += incr;
|
|
if( !isdigit(*(u8*)z) ) return 0;
|
|
while( isdigit(*(u8*)z) ){ z += incr; }
|
|
if( realnum ) *realnum = 1;
|
|
}
|
|
if( *z=='e' || *z=='E' ){
|
|
z += incr;
|
|
if( *z=='+' || *z=='-' ) z += incr;
|
|
if( !isdigit(*(u8*)z) ) return 0;
|
|
while( isdigit(*(u8*)z) ){ z += incr; }
|
|
if( realnum ) *realnum = 1;
|
|
}
|
|
return *z==0;
|
|
}
|
|
|
|
/*
|
|
** The string z[] is an ascii representation of a real number.
|
|
** Convert this string to a double.
|
|
**
|
|
** This routine assumes that z[] really is a valid number. If it
|
|
** is not, the result is undefined.
|
|
**
|
|
** This routine is used instead of the library atof() function because
|
|
** the library atof() might want to use "," as the decimal point instead
|
|
** of "." depending on how locale is set. But that would cause problems
|
|
** for SQL. So this routine always uses "." regardless of locale.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3AtoF(const char *z, double *pResult){
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
int sign = 1;
|
|
const char *zBegin = z;
|
|
LONGDOUBLE_TYPE v1 = 0.0;
|
|
while( isspace(*(u8*)z) ) z++;
|
|
if( *z=='-' ){
|
|
sign = -1;
|
|
z++;
|
|
}else if( *z=='+' ){
|
|
z++;
|
|
}
|
|
while( isdigit(*(u8*)z) ){
|
|
v1 = v1*10.0 + (*z - '0');
|
|
z++;
|
|
}
|
|
if( *z=='.' ){
|
|
LONGDOUBLE_TYPE divisor = 1.0;
|
|
z++;
|
|
while( isdigit(*(u8*)z) ){
|
|
v1 = v1*10.0 + (*z - '0');
|
|
divisor *= 10.0;
|
|
z++;
|
|
}
|
|
v1 /= divisor;
|
|
}
|
|
if( *z=='e' || *z=='E' ){
|
|
int esign = 1;
|
|
int eval = 0;
|
|
LONGDOUBLE_TYPE scale = 1.0;
|
|
z++;
|
|
if( *z=='-' ){
|
|
esign = -1;
|
|
z++;
|
|
}else if( *z=='+' ){
|
|
z++;
|
|
}
|
|
while( isdigit(*(u8*)z) ){
|
|
eval = eval*10 + *z - '0';
|
|
z++;
|
|
}
|
|
while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; }
|
|
while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; }
|
|
while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; }
|
|
while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; }
|
|
if( esign<0 ){
|
|
v1 /= scale;
|
|
}else{
|
|
v1 *= scale;
|
|
}
|
|
}
|
|
*pResult = sign<0 ? -v1 : v1;
|
|
return z - zBegin;
|
|
#else
|
|
return sqlite3Atoi64(z, pResult);
|
|
#endif /* SQLITE_OMIT_FLOATING_POINT */
|
|
}
|
|
|
|
/*
|
|
** Compare the 19-character string zNum against the text representation
|
|
** value 2^63: 9223372036854775808. Return negative, zero, or positive
|
|
** if zNum is less than, equal to, or greater than the string.
|
|
**
|
|
** Unlike memcmp() this routine is guaranteed to return the difference
|
|
** in the values of the last digit if the only difference is in the
|
|
** last digit. So, for example,
|
|
**
|
|
** compare2pow63("9223372036854775800")
|
|
**
|
|
** will return -8.
|
|
*/
|
|
static int compare2pow63(const char *zNum){
|
|
int c;
|
|
c = memcmp(zNum,"922337203685477580",18);
|
|
if( c==0 ){
|
|
c = zNum[18] - '8';
|
|
}
|
|
return c;
|
|
}
|
|
|
|
|
|
/*
|
|
** Return TRUE if zNum is a 64-bit signed integer and write
|
|
** the value of the integer into *pNum. If zNum is not an integer
|
|
** or is an integer that is too large to be expressed with 64 bits,
|
|
** then return false.
|
|
**
|
|
** When this routine was originally written it dealt with only
|
|
** 32-bit numbers. At that time, it was much faster than the
|
|
** atoi() library routine in RedHat 7.2.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3Atoi64(const char *zNum, i64 *pNum){
|
|
i64 v = 0;
|
|
int neg;
|
|
int i, c;
|
|
while( isspace(*(u8*)zNum) ) zNum++;
|
|
if( *zNum=='-' ){
|
|
neg = 1;
|
|
zNum++;
|
|
}else if( *zNum=='+' ){
|
|
neg = 0;
|
|
zNum++;
|
|
}else{
|
|
neg = 0;
|
|
}
|
|
while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */
|
|
for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
|
|
v = v*10 + c - '0';
|
|
}
|
|
*pNum = neg ? -v : v;
|
|
if( c!=0 || i==0 || i>19 ){
|
|
/* zNum is empty or contains non-numeric text or is longer
|
|
** than 19 digits (thus guaranting that it is too large) */
|
|
return 0;
|
|
}else if( i<19 ){
|
|
/* Less than 19 digits, so we know that it fits in 64 bits */
|
|
return 1;
|
|
}else{
|
|
/* 19-digit numbers must be no larger than 9223372036854775807 if positive
|
|
** or 9223372036854775808 if negative. Note that 9223372036854665808
|
|
** is 2^63. */
|
|
return compare2pow63(zNum)<neg;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The string zNum represents an integer. There might be some other
|
|
** information following the integer too, but that part is ignored.
|
|
** If the integer that the prefix of zNum represents will fit in a
|
|
** 64-bit signed integer, return TRUE. Otherwise return FALSE.
|
|
**
|
|
** This routine returns FALSE for the string -9223372036854775808 even that
|
|
** that number will, in theory fit in a 64-bit integer. Positive
|
|
** 9223373036854775808 will not fit in 64 bits. So it seems safer to return
|
|
** false.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3FitsIn64Bits(const char *zNum, int negFlag){
|
|
int i, c;
|
|
int neg = 0;
|
|
if( *zNum=='-' ){
|
|
neg = 1;
|
|
zNum++;
|
|
}else if( *zNum=='+' ){
|
|
zNum++;
|
|
}
|
|
if( negFlag ) neg = 1-neg;
|
|
while( *zNum=='0' ){
|
|
zNum++; /* Skip leading zeros. Ticket #2454 */
|
|
}
|
|
for(i=0; (c=zNum[i])>='0' && c<='9'; i++){}
|
|
if( i<19 ){
|
|
/* Guaranteed to fit if less than 19 digits */
|
|
return 1;
|
|
}else if( i>19 ){
|
|
/* Guaranteed to be too big if greater than 19 digits */
|
|
return 0;
|
|
}else{
|
|
/* Compare against 2^63. */
|
|
return compare2pow63(zNum)<neg;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** If zNum represents an integer that will fit in 32-bits, then set
|
|
** *pValue to that integer and return true. Otherwise return false.
|
|
**
|
|
** Any non-numeric characters that following zNum are ignored.
|
|
** This is different from sqlite3Atoi64() which requires the
|
|
** input number to be zero-terminated.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3GetInt32(const char *zNum, int *pValue){
|
|
sqlite_int64 v = 0;
|
|
int i, c;
|
|
int neg = 0;
|
|
if( zNum[0]=='-' ){
|
|
neg = 1;
|
|
zNum++;
|
|
}else if( zNum[0]=='+' ){
|
|
zNum++;
|
|
}
|
|
while( zNum[0]=='0' ) zNum++;
|
|
for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
|
|
v = v*10 + c;
|
|
}
|
|
|
|
/* The longest decimal representation of a 32 bit integer is 10 digits:
|
|
**
|
|
** 1234567890
|
|
** 2^31 -> 2147483648
|
|
*/
|
|
if( i>10 ){
|
|
return 0;
|
|
}
|
|
if( v-neg>2147483647 ){
|
|
return 0;
|
|
}
|
|
if( neg ){
|
|
v = -v;
|
|
}
|
|
*pValue = (int)v;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** The variable-length integer encoding is as follows:
|
|
**
|
|
** KEY:
|
|
** A = 0xxxxxxx 7 bits of data and one flag bit
|
|
** B = 1xxxxxxx 7 bits of data and one flag bit
|
|
** C = xxxxxxxx 8 bits of data
|
|
**
|
|
** 7 bits - A
|
|
** 14 bits - BA
|
|
** 21 bits - BBA
|
|
** 28 bits - BBBA
|
|
** 35 bits - BBBBA
|
|
** 42 bits - BBBBBA
|
|
** 49 bits - BBBBBBA
|
|
** 56 bits - BBBBBBBA
|
|
** 64 bits - BBBBBBBBC
|
|
*/
|
|
|
|
/*
|
|
** Write a 64-bit variable-length integer to memory starting at p[0].
|
|
** The length of data write will be between 1 and 9 bytes. The number
|
|
** of bytes written is returned.
|
|
**
|
|
** A variable-length integer consists of the lower 7 bits of each byte
|
|
** for all bytes that have the 8th bit set and one byte with the 8th
|
|
** bit clear. Except, if we get to the 9th byte, it stores the full
|
|
** 8 bits and is the last byte.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PutVarint(unsigned char *p, u64 v){
|
|
int i, j, n;
|
|
u8 buf[10];
|
|
if( v & (((u64)0xff000000)<<32) ){
|
|
p[8] = v;
|
|
v >>= 8;
|
|
for(i=7; i>=0; i--){
|
|
p[i] = (v & 0x7f) | 0x80;
|
|
v >>= 7;
|
|
}
|
|
return 9;
|
|
}
|
|
n = 0;
|
|
do{
|
|
buf[n++] = (v & 0x7f) | 0x80;
|
|
v >>= 7;
|
|
}while( v!=0 );
|
|
buf[0] &= 0x7f;
|
|
assert( n<=9 );
|
|
for(i=0, j=n-1; j>=0; j--, i++){
|
|
p[i] = buf[j];
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Read a 64-bit variable-length integer from memory starting at p[0].
|
|
** Return the number of bytes read. The value is stored in *v.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3GetVarint(const unsigned char *p, u64 *v){
|
|
u32 x;
|
|
u64 x64;
|
|
int n;
|
|
unsigned char c;
|
|
if( ((c = p[0]) & 0x80)==0 ){
|
|
*v = c;
|
|
return 1;
|
|
}
|
|
x = c & 0x7f;
|
|
if( ((c = p[1]) & 0x80)==0 ){
|
|
*v = (x<<7) | c;
|
|
return 2;
|
|
}
|
|
x = (x<<7) | (c&0x7f);
|
|
if( ((c = p[2]) & 0x80)==0 ){
|
|
*v = (x<<7) | c;
|
|
return 3;
|
|
}
|
|
x = (x<<7) | (c&0x7f);
|
|
if( ((c = p[3]) & 0x80)==0 ){
|
|
*v = (x<<7) | c;
|
|
return 4;
|
|
}
|
|
x64 = (x<<7) | (c&0x7f);
|
|
n = 4;
|
|
do{
|
|
c = p[n++];
|
|
if( n==9 ){
|
|
x64 = (x64<<8) | c;
|
|
break;
|
|
}
|
|
x64 = (x64<<7) | (c&0x7f);
|
|
}while( (c & 0x80)!=0 );
|
|
*v = x64;
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Read a 32-bit variable-length integer from memory starting at p[0].
|
|
** Return the number of bytes read. The value is stored in *v.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3GetVarint32(const unsigned char *p, u32 *v){
|
|
u32 x;
|
|
int n;
|
|
unsigned char c;
|
|
if( ((signed char*)p)[0]>=0 ){
|
|
*v = p[0];
|
|
return 1;
|
|
}
|
|
x = p[0] & 0x7f;
|
|
if( ((signed char*)p)[1]>=0 ){
|
|
*v = (x<<7) | p[1];
|
|
return 2;
|
|
}
|
|
x = (x<<7) | (p[1] & 0x7f);
|
|
n = 2;
|
|
do{
|
|
x = (x<<7) | ((c = p[n++])&0x7f);
|
|
}while( (c & 0x80)!=0 && n<9 );
|
|
*v = x;
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Return the number of bytes that will be needed to store the given
|
|
** 64-bit integer.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VarintLen(u64 v){
|
|
int i = 0;
|
|
do{
|
|
i++;
|
|
v >>= 7;
|
|
}while( v!=0 && i<9 );
|
|
return i;
|
|
}
|
|
|
|
|
|
/*
|
|
** Read or write a four-byte big-endian integer value.
|
|
*/
|
|
SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){
|
|
return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
|
|
}
|
|
SQLITE_PRIVATE void sqlite3Put4byte(unsigned char *p, u32 v){
|
|
p[0] = v>>24;
|
|
p[1] = v>>16;
|
|
p[2] = v>>8;
|
|
p[3] = v;
|
|
}
|
|
|
|
|
|
|
|
#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) \
|
|
|| defined(SQLITE_TEST)
|
|
/*
|
|
** Translate a single byte of Hex into an integer.
|
|
*/
|
|
static int hexToInt(int h){
|
|
if( h>='0' && h<='9' ){
|
|
return h - '0';
|
|
}else if( h>='a' && h<='f' ){
|
|
return h - 'a' + 10;
|
|
}else{
|
|
assert( h>='A' && h<='F' );
|
|
return h - 'A' + 10;
|
|
}
|
|
}
|
|
#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC || SQLITE_TEST */
|
|
|
|
#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
|
|
/*
|
|
** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
|
|
** value. Return a pointer to its binary value. Space to hold the
|
|
** binary value has been obtained from malloc and must be freed by
|
|
** the calling routine.
|
|
*/
|
|
SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
|
|
char *zBlob;
|
|
int i;
|
|
|
|
zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
|
|
n--;
|
|
if( zBlob ){
|
|
for(i=0; i<n; i+=2){
|
|
zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]);
|
|
}
|
|
zBlob[i/2] = 0;
|
|
}
|
|
return zBlob;
|
|
}
|
|
#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
|
|
|
|
|
|
/*
|
|
** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY.
|
|
** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN
|
|
** when this routine is called.
|
|
**
|
|
** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN
|
|
** value indicates that the database connection passed into the API is
|
|
** open and is not being used by another thread. By changing the value
|
|
** to SQLITE_MAGIC_BUSY we indicate that the connection is in use.
|
|
** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN
|
|
** when the API exits.
|
|
**
|
|
** This routine is a attempt to detect if two threads use the
|
|
** same sqlite* pointer at the same time. There is a race
|
|
** condition so it is possible that the error is not detected.
|
|
** But usually the problem will be seen. The result will be an
|
|
** error which can be used to debug the application that is
|
|
** using SQLite incorrectly.
|
|
**
|
|
** Ticket #202: If db->magic is not a valid open value, take care not
|
|
** to modify the db structure at all. It could be that db is a stale
|
|
** pointer. In other words, it could be that there has been a prior
|
|
** call to sqlite3_close(db) and db has been deallocated. And we do
|
|
** not want to write into deallocated memory.
|
|
*/
|
|
#ifdef SQLITE_DEBUG
|
|
SQLITE_PRIVATE int sqlite3SafetyOn(sqlite3 *db){
|
|
if( db->magic==SQLITE_MAGIC_OPEN ){
|
|
db->magic = SQLITE_MAGIC_BUSY;
|
|
return 0;
|
|
}else if( db->magic==SQLITE_MAGIC_BUSY ){
|
|
db->magic = SQLITE_MAGIC_ERROR;
|
|
db->u1.isInterrupted = 1;
|
|
}
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN.
|
|
** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY
|
|
** when this routine is called.
|
|
*/
|
|
#ifdef SQLITE_DEBUG
|
|
SQLITE_PRIVATE int sqlite3SafetyOff(sqlite3 *db){
|
|
if( db->magic==SQLITE_MAGIC_BUSY ){
|
|
db->magic = SQLITE_MAGIC_OPEN;
|
|
return 0;
|
|
}else{
|
|
db->magic = SQLITE_MAGIC_ERROR;
|
|
db->u1.isInterrupted = 1;
|
|
return 1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Check to make sure we have a valid db pointer. This test is not
|
|
** foolproof but it does provide some measure of protection against
|
|
** misuse of the interface such as passing in db pointers that are
|
|
** NULL or which have been previously closed. If this routine returns
|
|
** 1 it means that the db pointer is valid and 0 if it should not be
|
|
** dereferenced for any reason. The calling function should invoke
|
|
** SQLITE_MISUSE immediately.
|
|
**
|
|
** sqlite3SafetyCheckOk() requires that the db pointer be valid for
|
|
** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
|
|
** open properly and is not fit for general use but which can be
|
|
** used as an argument to sqlite3_errmsg() or sqlite3_close().
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3 *db){
|
|
int magic;
|
|
if( db==0 ) return 0;
|
|
magic = db->magic;
|
|
if( magic!=SQLITE_MAGIC_OPEN &&
|
|
magic!=SQLITE_MAGIC_BUSY ) return 0;
|
|
return 1;
|
|
}
|
|
SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
|
|
int magic;
|
|
if( db==0 ) return 0;
|
|
magic = db->magic;
|
|
if( magic!=SQLITE_MAGIC_SICK &&
|
|
magic!=SQLITE_MAGIC_OPEN &&
|
|
magic!=SQLITE_MAGIC_BUSY ) return 0;
|
|
return 1;
|
|
}
|
|
|
|
/************** End of util.c ************************************************/
|
|
/************** Begin file hash.c ********************************************/
|
|
/*
|
|
** 2001 September 22
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This is the implementation of generic hash-tables
|
|
** used in SQLite.
|
|
**
|
|
** $Id: hash.c,v 1.25 2008/01/22 21:30:53 drh Exp $
|
|
*/
|
|
|
|
/* Turn bulk memory into a hash table object by initializing the
|
|
** fields of the Hash structure.
|
|
**
|
|
** "pNew" is a pointer to the hash table that is to be initialized.
|
|
** keyClass is one of the constants SQLITE_HASH_INT, SQLITE_HASH_POINTER,
|
|
** SQLITE_HASH_BINARY, or SQLITE_HASH_STRING. The value of keyClass
|
|
** determines what kind of key the hash table will use. "copyKey" is
|
|
** true if the hash table should make its own private copy of keys and
|
|
** false if it should just use the supplied pointer. CopyKey only makes
|
|
** sense for SQLITE_HASH_STRING and SQLITE_HASH_BINARY and is ignored
|
|
** for other key classes.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3HashInit(Hash *pNew, int keyClass, int copyKey){
|
|
assert( pNew!=0 );
|
|
assert( keyClass>=SQLITE_HASH_STRING && keyClass<=SQLITE_HASH_BINARY );
|
|
pNew->keyClass = keyClass;
|
|
#if 0
|
|
if( keyClass==SQLITE_HASH_POINTER || keyClass==SQLITE_HASH_INT ) copyKey = 0;
|
|
#endif
|
|
pNew->copyKey = copyKey;
|
|
pNew->first = 0;
|
|
pNew->count = 0;
|
|
pNew->htsize = 0;
|
|
pNew->ht = 0;
|
|
}
|
|
|
|
/* Remove all entries from a hash table. Reclaim all memory.
|
|
** Call this routine to delete a hash table or to reset a hash table
|
|
** to the empty state.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3HashClear(Hash *pH){
|
|
HashElem *elem; /* For looping over all elements of the table */
|
|
|
|
assert( pH!=0 );
|
|
elem = pH->first;
|
|
pH->first = 0;
|
|
if( pH->ht ) sqlite3_free(pH->ht);
|
|
pH->ht = 0;
|
|
pH->htsize = 0;
|
|
while( elem ){
|
|
HashElem *next_elem = elem->next;
|
|
if( pH->copyKey && elem->pKey ){
|
|
sqlite3_free(elem->pKey);
|
|
}
|
|
sqlite3_free(elem);
|
|
elem = next_elem;
|
|
}
|
|
pH->count = 0;
|
|
}
|
|
|
|
#if 0 /* NOT USED */
|
|
/*
|
|
** Hash and comparison functions when the mode is SQLITE_HASH_INT
|
|
*/
|
|
static int intHash(const void *pKey, int nKey){
|
|
return nKey ^ (nKey<<8) ^ (nKey>>8);
|
|
}
|
|
static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
|
return n2 - n1;
|
|
}
|
|
#endif
|
|
|
|
#if 0 /* NOT USED */
|
|
/*
|
|
** Hash and comparison functions when the mode is SQLITE_HASH_POINTER
|
|
*/
|
|
static int ptrHash(const void *pKey, int nKey){
|
|
uptr x = Addr(pKey);
|
|
return x ^ (x<<8) ^ (x>>8);
|
|
}
|
|
static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
|
if( pKey1==pKey2 ) return 0;
|
|
if( pKey1<pKey2 ) return -1;
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Hash and comparison functions when the mode is SQLITE_HASH_STRING
|
|
*/
|
|
static int strHash(const void *pKey, int nKey){
|
|
const char *z = (const char *)pKey;
|
|
int h = 0;
|
|
if( nKey<=0 ) nKey = strlen(z);
|
|
while( nKey > 0 ){
|
|
h = (h<<3) ^ h ^ sqlite3UpperToLower[(unsigned char)*z++];
|
|
nKey--;
|
|
}
|
|
return h & 0x7fffffff;
|
|
}
|
|
static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
|
if( n1!=n2 ) return 1;
|
|
return sqlite3StrNICmp((const char*)pKey1,(const char*)pKey2,n1);
|
|
}
|
|
|
|
/*
|
|
** Hash and comparison functions when the mode is SQLITE_HASH_BINARY
|
|
*/
|
|
static int binHash(const void *pKey, int nKey){
|
|
int h = 0;
|
|
const char *z = (const char *)pKey;
|
|
while( nKey-- > 0 ){
|
|
h = (h<<3) ^ h ^ *(z++);
|
|
}
|
|
return h & 0x7fffffff;
|
|
}
|
|
static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
|
if( n1!=n2 ) return 1;
|
|
return memcmp(pKey1,pKey2,n1);
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to the appropriate hash function given the key class.
|
|
**
|
|
** The C syntax in this function definition may be unfamilar to some
|
|
** programmers, so we provide the following additional explanation:
|
|
**
|
|
** The name of the function is "hashFunction". The function takes a
|
|
** single parameter "keyClass". The return value of hashFunction()
|
|
** is a pointer to another function. Specifically, the return value
|
|
** of hashFunction() is a pointer to a function that takes two parameters
|
|
** with types "const void*" and "int" and returns an "int".
|
|
*/
|
|
static int (*hashFunction(int keyClass))(const void*,int){
|
|
#if 0 /* HASH_INT and HASH_POINTER are never used */
|
|
switch( keyClass ){
|
|
case SQLITE_HASH_INT: return &intHash;
|
|
case SQLITE_HASH_POINTER: return &ptrHash;
|
|
case SQLITE_HASH_STRING: return &strHash;
|
|
case SQLITE_HASH_BINARY: return &binHash;;
|
|
default: break;
|
|
}
|
|
return 0;
|
|
#else
|
|
if( keyClass==SQLITE_HASH_STRING ){
|
|
return &strHash;
|
|
}else{
|
|
assert( keyClass==SQLITE_HASH_BINARY );
|
|
return &binHash;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to the appropriate hash function given the key class.
|
|
**
|
|
** For help in interpreted the obscure C code in the function definition,
|
|
** see the header comment on the previous function.
|
|
*/
|
|
static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
|
|
#if 0 /* HASH_INT and HASH_POINTER are never used */
|
|
switch( keyClass ){
|
|
case SQLITE_HASH_INT: return &intCompare;
|
|
case SQLITE_HASH_POINTER: return &ptrCompare;
|
|
case SQLITE_HASH_STRING: return &strCompare;
|
|
case SQLITE_HASH_BINARY: return &binCompare;
|
|
default: break;
|
|
}
|
|
return 0;
|
|
#else
|
|
if( keyClass==SQLITE_HASH_STRING ){
|
|
return &strCompare;
|
|
}else{
|
|
assert( keyClass==SQLITE_HASH_BINARY );
|
|
return &binCompare;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Link an element into the hash table
|
|
*/
|
|
static void insertElement(
|
|
Hash *pH, /* The complete hash table */
|
|
struct _ht *pEntry, /* The entry into which pNew is inserted */
|
|
HashElem *pNew /* The element to be inserted */
|
|
){
|
|
HashElem *pHead; /* First element already in pEntry */
|
|
pHead = pEntry->chain;
|
|
if( pHead ){
|
|
pNew->next = pHead;
|
|
pNew->prev = pHead->prev;
|
|
if( pHead->prev ){ pHead->prev->next = pNew; }
|
|
else { pH->first = pNew; }
|
|
pHead->prev = pNew;
|
|
}else{
|
|
pNew->next = pH->first;
|
|
if( pH->first ){ pH->first->prev = pNew; }
|
|
pNew->prev = 0;
|
|
pH->first = pNew;
|
|
}
|
|
pEntry->count++;
|
|
pEntry->chain = pNew;
|
|
}
|
|
|
|
|
|
/* Resize the hash table so that it cantains "new_size" buckets.
|
|
** "new_size" must be a power of 2. The hash table might fail
|
|
** to resize if sqlite3_malloc() fails.
|
|
*/
|
|
static void rehash(Hash *pH, int new_size){
|
|
struct _ht *new_ht; /* The new hash table */
|
|
HashElem *elem, *next_elem; /* For looping over existing elements */
|
|
int (*xHash)(const void*,int); /* The hash function */
|
|
|
|
assert( (new_size & (new_size-1))==0 );
|
|
|
|
/* There is a call to sqlite3_malloc() inside rehash(). If there is
|
|
** already an allocation at pH->ht, then if this malloc() fails it
|
|
** is benign (since failing to resize a hash table is a performance
|
|
** hit only, not a fatal error).
|
|
*/
|
|
sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, pH->htsize>0);
|
|
new_ht = (struct _ht *)sqlite3MallocZero( new_size*sizeof(struct _ht) );
|
|
sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 0);
|
|
|
|
if( new_ht==0 ) return;
|
|
if( pH->ht ) sqlite3_free(pH->ht);
|
|
pH->ht = new_ht;
|
|
pH->htsize = new_size;
|
|
xHash = hashFunction(pH->keyClass);
|
|
for(elem=pH->first, pH->first=0; elem; elem = next_elem){
|
|
int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
|
|
next_elem = elem->next;
|
|
insertElement(pH, &new_ht[h], elem);
|
|
}
|
|
}
|
|
|
|
/* This function (for internal use only) locates an element in an
|
|
** hash table that matches the given key. The hash for this key has
|
|
** already been computed and is passed as the 4th parameter.
|
|
*/
|
|
static HashElem *findElementGivenHash(
|
|
const Hash *pH, /* The pH to be searched */
|
|
const void *pKey, /* The key we are searching for */
|
|
int nKey,
|
|
int h /* The hash for this key. */
|
|
){
|
|
HashElem *elem; /* Used to loop thru the element list */
|
|
int count; /* Number of elements left to test */
|
|
int (*xCompare)(const void*,int,const void*,int); /* comparison function */
|
|
|
|
if( pH->ht ){
|
|
struct _ht *pEntry = &pH->ht[h];
|
|
elem = pEntry->chain;
|
|
count = pEntry->count;
|
|
xCompare = compareFunction(pH->keyClass);
|
|
while( count-- && elem ){
|
|
if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
|
|
return elem;
|
|
}
|
|
elem = elem->next;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Remove a single entry from the hash table given a pointer to that
|
|
** element and a hash on the element's key.
|
|
*/
|
|
static void removeElementGivenHash(
|
|
Hash *pH, /* The pH containing "elem" */
|
|
HashElem* elem, /* The element to be removed from the pH */
|
|
int h /* Hash value for the element */
|
|
){
|
|
struct _ht *pEntry;
|
|
if( elem->prev ){
|
|
elem->prev->next = elem->next;
|
|
}else{
|
|
pH->first = elem->next;
|
|
}
|
|
if( elem->next ){
|
|
elem->next->prev = elem->prev;
|
|
}
|
|
pEntry = &pH->ht[h];
|
|
if( pEntry->chain==elem ){
|
|
pEntry->chain = elem->next;
|
|
}
|
|
pEntry->count--;
|
|
if( pEntry->count<=0 ){
|
|
pEntry->chain = 0;
|
|
}
|
|
if( pH->copyKey ){
|
|
sqlite3_free(elem->pKey);
|
|
}
|
|
sqlite3_free( elem );
|
|
pH->count--;
|
|
if( pH->count<=0 ){
|
|
assert( pH->first==0 );
|
|
assert( pH->count==0 );
|
|
sqlite3HashClear(pH);
|
|
}
|
|
}
|
|
|
|
/* Attempt to locate an element of the hash table pH with a key
|
|
** that matches pKey,nKey. Return a pointer to the corresponding
|
|
** HashElem structure for this element if it is found, or NULL
|
|
** otherwise.
|
|
*/
|
|
SQLITE_PRIVATE HashElem *sqlite3HashFindElem(const Hash *pH, const void *pKey, int nKey){
|
|
int h; /* A hash on key */
|
|
HashElem *elem; /* The element that matches key */
|
|
int (*xHash)(const void*,int); /* The hash function */
|
|
|
|
if( pH==0 || pH->ht==0 ) return 0;
|
|
xHash = hashFunction(pH->keyClass);
|
|
assert( xHash!=0 );
|
|
h = (*xHash)(pKey,nKey);
|
|
assert( (pH->htsize & (pH->htsize-1))==0 );
|
|
elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
|
|
return elem;
|
|
}
|
|
|
|
/* Attempt to locate an element of the hash table pH with a key
|
|
** that matches pKey,nKey. Return the data for this element if it is
|
|
** found, or NULL if there is no match.
|
|
*/
|
|
SQLITE_PRIVATE void *sqlite3HashFind(const Hash *pH, const void *pKey, int nKey){
|
|
HashElem *elem; /* The element that matches key */
|
|
elem = sqlite3HashFindElem(pH, pKey, nKey);
|
|
return elem ? elem->data : 0;
|
|
}
|
|
|
|
/* Insert an element into the hash table pH. The key is pKey,nKey
|
|
** and the data is "data".
|
|
**
|
|
** If no element exists with a matching key, then a new
|
|
** element is created. A copy of the key is made if the copyKey
|
|
** flag is set. NULL is returned.
|
|
**
|
|
** If another element already exists with the same key, then the
|
|
** new data replaces the old data and the old data is returned.
|
|
** The key is not copied in this instance. If a malloc fails, then
|
|
** the new data is returned and the hash table is unchanged.
|
|
**
|
|
** If the "data" parameter to this function is NULL, then the
|
|
** element corresponding to "key" is removed from the hash table.
|
|
*/
|
|
SQLITE_PRIVATE void *sqlite3HashInsert(Hash *pH, const void *pKey, int nKey, void *data){
|
|
int hraw; /* Raw hash value of the key */
|
|
int h; /* the hash of the key modulo hash table size */
|
|
HashElem *elem; /* Used to loop thru the element list */
|
|
HashElem *new_elem; /* New element added to the pH */
|
|
int (*xHash)(const void*,int); /* The hash function */
|
|
|
|
assert( pH!=0 );
|
|
xHash = hashFunction(pH->keyClass);
|
|
assert( xHash!=0 );
|
|
hraw = (*xHash)(pKey, nKey);
|
|
assert( (pH->htsize & (pH->htsize-1))==0 );
|
|
h = hraw & (pH->htsize-1);
|
|
elem = findElementGivenHash(pH,pKey,nKey,h);
|
|
if( elem ){
|
|
void *old_data = elem->data;
|
|
if( data==0 ){
|
|
removeElementGivenHash(pH,elem,h);
|
|
}else{
|
|
elem->data = data;
|
|
if( !pH->copyKey ){
|
|
elem->pKey = (void *)pKey;
|
|
}
|
|
assert(nKey==elem->nKey);
|
|
}
|
|
return old_data;
|
|
}
|
|
if( data==0 ) return 0;
|
|
new_elem = (HashElem*)sqlite3_malloc( sizeof(HashElem) );
|
|
if( new_elem==0 ) return data;
|
|
if( pH->copyKey && pKey!=0 ){
|
|
new_elem->pKey = sqlite3_malloc( nKey );
|
|
if( new_elem->pKey==0 ){
|
|
sqlite3_free(new_elem);
|
|
return data;
|
|
}
|
|
memcpy((void*)new_elem->pKey, pKey, nKey);
|
|
}else{
|
|
new_elem->pKey = (void*)pKey;
|
|
}
|
|
new_elem->nKey = nKey;
|
|
pH->count++;
|
|
if( pH->htsize==0 ){
|
|
rehash(pH,8);
|
|
if( pH->htsize==0 ){
|
|
pH->count = 0;
|
|
if( pH->copyKey ){
|
|
sqlite3_free(new_elem->pKey);
|
|
}
|
|
sqlite3_free(new_elem);
|
|
return data;
|
|
}
|
|
}
|
|
if( pH->count > pH->htsize ){
|
|
rehash(pH,pH->htsize*2);
|
|
}
|
|
assert( pH->htsize>0 );
|
|
assert( (pH->htsize & (pH->htsize-1))==0 );
|
|
h = hraw & (pH->htsize-1);
|
|
insertElement(pH, &pH->ht[h], new_elem);
|
|
new_elem->data = data;
|
|
return 0;
|
|
}
|
|
|
|
/************** End of hash.c ************************************************/
|
|
/************** Begin file opcodes.c *****************************************/
|
|
/* Automatically generated. Do not edit */
|
|
/* See the mkopcodec.awk script for details. */
|
|
#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
|
|
SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){
|
|
static const char *const azName[] = { "?",
|
|
/* 1 */ "VNext",
|
|
/* 2 */ "Column",
|
|
/* 3 */ "SetCookie",
|
|
/* 4 */ "Sequence",
|
|
/* 5 */ "MoveGt",
|
|
/* 6 */ "RowKey",
|
|
/* 7 */ "SCopy",
|
|
/* 8 */ "OpenWrite",
|
|
/* 9 */ "If",
|
|
/* 10 */ "VRowid",
|
|
/* 11 */ "CollSeq",
|
|
/* 12 */ "OpenRead",
|
|
/* 13 */ "Expire",
|
|
/* 14 */ "AutoCommit",
|
|
/* 15 */ "IntegrityCk",
|
|
/* 16 */ "Not",
|
|
/* 17 */ "Sort",
|
|
/* 18 */ "Copy",
|
|
/* 19 */ "Trace",
|
|
/* 20 */ "Function",
|
|
/* 21 */ "IfNeg",
|
|
/* 22 */ "Noop",
|
|
/* 23 */ "Return",
|
|
/* 24 */ "NewRowid",
|
|
/* 25 */ "Variable",
|
|
/* 26 */ "String",
|
|
/* 27 */ "RealAffinity",
|
|
/* 28 */ "VRename",
|
|
/* 29 */ "ParseSchema",
|
|
/* 30 */ "VOpen",
|
|
/* 31 */ "Close",
|
|
/* 32 */ "CreateIndex",
|
|
/* 33 */ "IsUnique",
|
|
/* 34 */ "NotFound",
|
|
/* 35 */ "Int64",
|
|
/* 36 */ "MustBeInt",
|
|
/* 37 */ "Halt",
|
|
/* 38 */ "Rowid",
|
|
/* 39 */ "IdxLT",
|
|
/* 40 */ "AddImm",
|
|
/* 41 */ "Statement",
|
|
/* 42 */ "RowData",
|
|
/* 43 */ "MemMax",
|
|
/* 44 */ "NotExists",
|
|
/* 45 */ "Gosub",
|
|
/* 46 */ "Integer",
|
|
/* 47 */ "Prev",
|
|
/* 48 */ "VColumn",
|
|
/* 49 */ "CreateTable",
|
|
/* 50 */ "Last",
|
|
/* 51 */ "IncrVacuum",
|
|
/* 52 */ "IdxRowid",
|
|
/* 53 */ "ResetCount",
|
|
/* 54 */ "FifoWrite",
|
|
/* 55 */ "ContextPush",
|
|
/* 56 */ "DropTrigger",
|
|
/* 57 */ "DropIndex",
|
|
/* 58 */ "IdxGE",
|
|
/* 59 */ "IdxDelete",
|
|
/* 60 */ "Or",
|
|
/* 61 */ "And",
|
|
/* 62 */ "Vacuum",
|
|
/* 63 */ "MoveLe",
|
|
/* 64 */ "IfNot",
|
|
/* 65 */ "IsNull",
|
|
/* 66 */ "NotNull",
|
|
/* 67 */ "Ne",
|
|
/* 68 */ "Eq",
|
|
/* 69 */ "Gt",
|
|
/* 70 */ "Le",
|
|
/* 71 */ "Lt",
|
|
/* 72 */ "Ge",
|
|
/* 73 */ "DropTable",
|
|
/* 74 */ "BitAnd",
|
|
/* 75 */ "BitOr",
|
|
/* 76 */ "ShiftLeft",
|
|
/* 77 */ "ShiftRight",
|
|
/* 78 */ "Add",
|
|
/* 79 */ "Subtract",
|
|
/* 80 */ "Multiply",
|
|
/* 81 */ "Divide",
|
|
/* 82 */ "Remainder",
|
|
/* 83 */ "Concat",
|
|
/* 84 */ "MakeRecord",
|
|
/* 85 */ "ResultRow",
|
|
/* 86 */ "Delete",
|
|
/* 87 */ "BitNot",
|
|
/* 88 */ "String8",
|
|
/* 89 */ "AggFinal",
|
|
/* 90 */ "Goto",
|
|
/* 91 */ "TableLock",
|
|
/* 92 */ "FifoRead",
|
|
/* 93 */ "Clear",
|
|
/* 94 */ "MoveLt",
|
|
/* 95 */ "VerifyCookie",
|
|
/* 96 */ "AggStep",
|
|
/* 97 */ "SetNumColumns",
|
|
/* 98 */ "Transaction",
|
|
/* 99 */ "VFilter",
|
|
/* 100 */ "VDestroy",
|
|
/* 101 */ "ContextPop",
|
|
/* 102 */ "Next",
|
|
/* 103 */ "IdxInsert",
|
|
/* 104 */ "Insert",
|
|
/* 105 */ "Destroy",
|
|
/* 106 */ "ReadCookie",
|
|
/* 107 */ "ForceInt",
|
|
/* 108 */ "LoadAnalysis",
|
|
/* 109 */ "Explain",
|
|
/* 110 */ "OpenPseudo",
|
|
/* 111 */ "OpenEphemeral",
|
|
/* 112 */ "Null",
|
|
/* 113 */ "Move",
|
|
/* 114 */ "Blob",
|
|
/* 115 */ "Rewind",
|
|
/* 116 */ "MoveGe",
|
|
/* 117 */ "VBegin",
|
|
/* 118 */ "VUpdate",
|
|
/* 119 */ "IfZero",
|
|
/* 120 */ "VCreate",
|
|
/* 121 */ "Found",
|
|
/* 122 */ "IfPos",
|
|
/* 123 */ "NullRow",
|
|
/* 124 */ "NotUsed_124",
|
|
/* 125 */ "Real",
|
|
/* 126 */ "NotUsed_126",
|
|
/* 127 */ "NotUsed_127",
|
|
/* 128 */ "NotUsed_128",
|
|
/* 129 */ "NotUsed_129",
|
|
/* 130 */ "NotUsed_130",
|
|
/* 131 */ "NotUsed_131",
|
|
/* 132 */ "NotUsed_132",
|
|
/* 133 */ "NotUsed_133",
|
|
/* 134 */ "NotUsed_134",
|
|
/* 135 */ "NotUsed_135",
|
|
/* 136 */ "NotUsed_136",
|
|
/* 137 */ "NotUsed_137",
|
|
/* 138 */ "ToText",
|
|
/* 139 */ "ToBlob",
|
|
/* 140 */ "ToNumeric",
|
|
/* 141 */ "ToInt",
|
|
/* 142 */ "ToReal",
|
|
};
|
|
return azName[i];
|
|
}
|
|
#endif
|
|
|
|
/************** End of opcodes.c *********************************************/
|
|
/************** Begin file os_os2.c ******************************************/
|
|
/*
|
|
** 2006 Feb 14
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
******************************************************************************
|
|
**
|
|
** This file contains code that is specific to OS/2.
|
|
*/
|
|
|
|
|
|
#if OS_OS2
|
|
|
|
/*
|
|
** A Note About Memory Allocation:
|
|
**
|
|
** This driver uses malloc()/free() directly rather than going through
|
|
** the SQLite-wrappers sqlite3_malloc()/sqlite3_free(). Those wrappers
|
|
** are designed for use on embedded systems where memory is scarce and
|
|
** malloc failures happen frequently. OS/2 does not typically run on
|
|
** embedded systems, and when it does the developers normally have bigger
|
|
** problems to worry about than running out of memory. So there is not
|
|
** a compelling need to use the wrappers.
|
|
**
|
|
** But there is a good reason to not use the wrappers. If we use the
|
|
** wrappers then we will get simulated malloc() failures within this
|
|
** driver. And that causes all kinds of problems for our tests. We
|
|
** could enhance SQLite to deal with simulated malloc failures within
|
|
** the OS driver, but the code to deal with those failure would not
|
|
** be exercised on Linux (which does not need to malloc() in the driver)
|
|
** and so we would have difficulty writing coverage tests for that
|
|
** code. Better to leave the code out, we think.
|
|
**
|
|
** The point of this discussion is as follows: When creating a new
|
|
** OS layer for an embedded system, if you use this file as an example,
|
|
** avoid the use of malloc()/free(). Those routines work ok on OS/2
|
|
** desktops but not so well in embedded systems.
|
|
*/
|
|
|
|
/*
|
|
** Macros used to determine whether or not to use threads.
|
|
*/
|
|
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE
|
|
# define SQLITE_OS2_THREADS 1
|
|
#endif
|
|
|
|
/*
|
|
** Include code that is common to all os_*.c files
|
|
*/
|
|
/************** Include os_common.h in the middle of os_os2.c ****************/
|
|
/************** Begin file os_common.h ***************************************/
|
|
/*
|
|
** 2004 May 22
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
******************************************************************************
|
|
**
|
|
** This file contains macros and a little bit of code that is common to
|
|
** all of the platform-specific files (os_*.c) and is #included into those
|
|
** files.
|
|
**
|
|
** This file should be #included by the os_*.c files only. It is not a
|
|
** general purpose header file.
|
|
*/
|
|
|
|
/*
|
|
** At least two bugs have slipped in because we changed the MEMORY_DEBUG
|
|
** macro to SQLITE_DEBUG and some older makefiles have not yet made the
|
|
** switch. The following code should catch this problem at compile-time.
|
|
*/
|
|
#ifdef MEMORY_DEBUG
|
|
# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead."
|
|
#endif
|
|
|
|
|
|
/*
|
|
* When testing, this global variable stores the location of the
|
|
* pending-byte in the database file.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_API unsigned int sqlite3_pending_byte = 0x40000000;
|
|
#endif
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
SQLITE_API int sqlite3_os_trace = 0;
|
|
#define OSTRACE1(X) if( sqlite3_os_trace ) sqlite3DebugPrintf(X)
|
|
#define OSTRACE2(X,Y) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y)
|
|
#define OSTRACE3(X,Y,Z) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z)
|
|
#define OSTRACE4(X,Y,Z,A) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A)
|
|
#define OSTRACE5(X,Y,Z,A,B) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A,B)
|
|
#define OSTRACE6(X,Y,Z,A,B,C) \
|
|
if(sqlite3_os_trace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
|
|
#define OSTRACE7(X,Y,Z,A,B,C,D) \
|
|
if(sqlite3_os_trace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
|
|
#else
|
|
#define OSTRACE1(X)
|
|
#define OSTRACE2(X,Y)
|
|
#define OSTRACE3(X,Y,Z)
|
|
#define OSTRACE4(X,Y,Z,A)
|
|
#define OSTRACE5(X,Y,Z,A,B)
|
|
#define OSTRACE6(X,Y,Z,A,B,C)
|
|
#define OSTRACE7(X,Y,Z,A,B,C,D)
|
|
#endif
|
|
|
|
/*
|
|
** Macros for performance tracing. Normally turned off. Only works
|
|
** on i486 hardware.
|
|
*/
|
|
#ifdef SQLITE_PERFORMANCE_TRACE
|
|
__inline__ unsigned long long int hwtime(void){
|
|
unsigned long long int x;
|
|
__asm__("rdtsc\n\t"
|
|
"mov %%edx, %%ecx\n\t"
|
|
:"=A" (x));
|
|
return x;
|
|
}
|
|
static unsigned long long int g_start;
|
|
static unsigned int elapse;
|
|
#define TIMER_START g_start=hwtime()
|
|
#define TIMER_END elapse=hwtime()-g_start
|
|
#define TIMER_ELAPSED elapse
|
|
#else
|
|
#define TIMER_START
|
|
#define TIMER_END
|
|
#define TIMER_ELAPSED 0
|
|
#endif
|
|
|
|
/*
|
|
** If we compile with the SQLITE_TEST macro set, then the following block
|
|
** of code will give us the ability to simulate a disk I/O error. This
|
|
** is used for testing the I/O recovery logic.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_API int sqlite3_io_error_hit = 0;
|
|
SQLITE_API int sqlite3_io_error_pending = 0;
|
|
SQLITE_API int sqlite3_io_error_persist = 0;
|
|
SQLITE_API int sqlite3_diskfull_pending = 0;
|
|
SQLITE_API int sqlite3_diskfull = 0;
|
|
#define SimulateIOError(CODE) \
|
|
if( sqlite3_io_error_pending || sqlite3_io_error_hit ) \
|
|
if( sqlite3_io_error_pending-- == 1 \
|
|
|| (sqlite3_io_error_persist && sqlite3_io_error_hit) ) \
|
|
{ local_ioerr(); CODE; }
|
|
static void local_ioerr(){
|
|
IOTRACE(("IOERR\n"));
|
|
sqlite3_io_error_hit = 1;
|
|
}
|
|
#define SimulateDiskfullError(CODE) \
|
|
if( sqlite3_diskfull_pending ){ \
|
|
if( sqlite3_diskfull_pending == 1 ){ \
|
|
local_ioerr(); \
|
|
sqlite3_diskfull = 1; \
|
|
sqlite3_io_error_hit = 1; \
|
|
CODE; \
|
|
}else{ \
|
|
sqlite3_diskfull_pending--; \
|
|
} \
|
|
}
|
|
#else
|
|
#define SimulateIOError(A)
|
|
#define SimulateDiskfullError(A)
|
|
#endif
|
|
|
|
/*
|
|
** When testing, keep a count of the number of open files.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_API int sqlite3_open_file_count = 0;
|
|
#define OpenCounter(X) sqlite3_open_file_count+=(X)
|
|
#else
|
|
#define OpenCounter(X)
|
|
#endif
|
|
|
|
/************** End of os_common.h *******************************************/
|
|
/************** Continuing where we left off in os_os2.c *********************/
|
|
|
|
/*
|
|
** The os2File structure is subclass of sqlite3_file specific for the OS/2
|
|
** protability layer.
|
|
*/
|
|
typedef struct os2File os2File;
|
|
struct os2File {
|
|
const sqlite3_io_methods *pMethod; /* Always the first entry */
|
|
HFILE h; /* Handle for accessing the file */
|
|
int delOnClose; /* True if file is to be deleted on close */
|
|
char* pathToDel; /* Name of file to delete on close */
|
|
unsigned char locktype; /* Type of lock currently held on this file */
|
|
};
|
|
|
|
/*****************************************************************************
|
|
** The next group of routines implement the I/O methods specified
|
|
** by the sqlite3_io_methods object.
|
|
******************************************************************************/
|
|
|
|
/*
|
|
** Close a file.
|
|
*/
|
|
int os2Close( sqlite3_file *id ){
|
|
APIRET rc = NO_ERROR;
|
|
os2File *pFile;
|
|
if( id && (pFile = (os2File*)id) != 0 ){
|
|
OSTRACE2( "CLOSE %d\n", pFile->h );
|
|
rc = DosClose( pFile->h );
|
|
pFile->locktype = NO_LOCK;
|
|
if( pFile->delOnClose != 0 ){
|
|
rc = DosForceDelete( (PSZ)pFile->pathToDel );
|
|
}
|
|
if( pFile->pathToDel ){
|
|
free( pFile->pathToDel );
|
|
}
|
|
id = 0;
|
|
OpenCounter( -1 );
|
|
}
|
|
|
|
return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
|
|
}
|
|
|
|
/*
|
|
** Read data from a file into a buffer. Return SQLITE_OK if all
|
|
** bytes were read successfully and SQLITE_IOERR if anything goes
|
|
** wrong.
|
|
*/
|
|
int os2Read(
|
|
sqlite3_file *id, /* File to read from */
|
|
void *pBuf, /* Write content into this buffer */
|
|
int amt, /* Number of bytes to read */
|
|
sqlite3_int64 offset /* Begin reading at this offset */
|
|
){
|
|
ULONG fileLocation = 0L;
|
|
ULONG got;
|
|
os2File *pFile = (os2File*)id;
|
|
assert( id!=0 );
|
|
SimulateIOError( return SQLITE_IOERR_READ );
|
|
OSTRACE3( "READ %d lock=%d\n", pFile->h, pFile->locktype );
|
|
if( DosSetFilePtr(pFile->h, offset, FILE_BEGIN, &fileLocation) != NO_ERROR ){
|
|
return SQLITE_IOERR;
|
|
}
|
|
if( DosRead( pFile->h, pBuf, amt, &got ) != NO_ERROR ){
|
|
return SQLITE_IOERR_READ;
|
|
}
|
|
if( got == (ULONG)amt )
|
|
return SQLITE_OK;
|
|
else {
|
|
memset(&((char*)pBuf)[got], 0, amt-got);
|
|
return SQLITE_IOERR_SHORT_READ;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Write data from a buffer into a file. Return SQLITE_OK on success
|
|
** or some other error code on failure.
|
|
*/
|
|
int os2Write(
|
|
sqlite3_file *id, /* File to write into */
|
|
const void *pBuf, /* The bytes to be written */
|
|
int amt, /* Number of bytes to write */
|
|
sqlite3_int64 offset /* Offset into the file to begin writing at */
|
|
){
|
|
ULONG fileLocation = 0L;
|
|
APIRET rc = NO_ERROR;
|
|
ULONG wrote;
|
|
os2File *pFile = (os2File*)id;
|
|
assert( id!=0 );
|
|
SimulateIOError( return SQLITE_IOERR_WRITE );
|
|
SimulateDiskfullError( return SQLITE_FULL );
|
|
OSTRACE3( "WRITE %d lock=%d\n", pFile->h, pFile->locktype );
|
|
if( DosSetFilePtr(pFile->h, offset, FILE_BEGIN, &fileLocation) != NO_ERROR ){
|
|
return SQLITE_IOERR;
|
|
}
|
|
assert( amt>0 );
|
|
while( amt > 0 &&
|
|
(rc = DosWrite( pFile->h, (PVOID)pBuf, amt, &wrote )) &&
|
|
wrote > 0
|
|
){
|
|
amt -= wrote;
|
|
pBuf = &((char*)pBuf)[wrote];
|
|
}
|
|
|
|
return ( rc != NO_ERROR || amt > (int)wrote ) ? SQLITE_FULL : SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Truncate an open file to a specified size
|
|
*/
|
|
int os2Truncate( sqlite3_file *id, i64 nByte ){
|
|
APIRET rc = NO_ERROR;
|
|
ULONG filePosition = 0L;
|
|
os2File *pFile = (os2File*)id;
|
|
OSTRACE3( "TRUNCATE %d %lld\n", pFile->h, nByte );
|
|
SimulateIOError( return SQLITE_IOERR_TRUNCATE );
|
|
rc = DosSetFilePtr( pFile->h, nByte, FILE_BEGIN, &filePosition );
|
|
if( rc != NO_ERROR ){
|
|
return SQLITE_IOERR;
|
|
}
|
|
rc = DosSetFilePtr( pFile->h, 0L, FILE_END, &filePosition );
|
|
return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
|
|
}
|
|
|
|
#ifdef SQLITE_TEST
|
|
/*
|
|
** Count the number of fullsyncs and normal syncs. This is used to test
|
|
** that syncs and fullsyncs are occuring at the right times.
|
|
*/
|
|
SQLITE_API int sqlite3_sync_count = 0;
|
|
SQLITE_API int sqlite3_fullsync_count = 0;
|
|
#endif
|
|
|
|
/*
|
|
** Make sure all writes to a particular file are committed to disk.
|
|
*/
|
|
int os2Sync( sqlite3_file *id, int flags ){
|
|
os2File *pFile = (os2File*)id;
|
|
OSTRACE3( "SYNC %d lock=%d\n", pFile->h, pFile->locktype );
|
|
#ifdef SQLITE_TEST
|
|
if( flags & SQLITE_SYNC_FULL){
|
|
sqlite3_fullsync_count++;
|
|
}
|
|
sqlite3_sync_count++;
|
|
#endif
|
|
return DosResetBuffer( pFile->h ) == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
|
|
}
|
|
|
|
/*
|
|
** Determine the current size of a file in bytes
|
|
*/
|
|
int os2FileSize( sqlite3_file *id, sqlite3_int64 *pSize ){
|
|
APIRET rc = NO_ERROR;
|
|
FILESTATUS3 fsts3FileInfo;
|
|
memset(&fsts3FileInfo, 0, sizeof(fsts3FileInfo));
|
|
assert( id!=0 );
|
|
SimulateIOError( return SQLITE_IOERR );
|
|
rc = DosQueryFileInfo( ((os2File*)id)->h, FIL_STANDARD, &fsts3FileInfo, sizeof(FILESTATUS3) );
|
|
if( rc == NO_ERROR ){
|
|
*pSize = fsts3FileInfo.cbFile;
|
|
return SQLITE_OK;
|
|
}else{
|
|
return SQLITE_IOERR;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Acquire a reader lock.
|
|
*/
|
|
static int getReadLock( os2File *pFile ){
|
|
FILELOCK LockArea,
|
|
UnlockArea;
|
|
APIRET res;
|
|
memset(&LockArea, 0, sizeof(LockArea));
|
|
memset(&UnlockArea, 0, sizeof(UnlockArea));
|
|
LockArea.lOffset = SHARED_FIRST;
|
|
LockArea.lRange = SHARED_SIZE;
|
|
UnlockArea.lOffset = 0L;
|
|
UnlockArea.lRange = 0L;
|
|
res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
|
|
OSTRACE3( "GETREADLOCK %d res=%d\n", pFile->h, res );
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
** Undo a readlock
|
|
*/
|
|
static int unlockReadLock( os2File *id ){
|
|
FILELOCK LockArea,
|
|
UnlockArea;
|
|
APIRET res;
|
|
memset(&LockArea, 0, sizeof(LockArea));
|
|
memset(&UnlockArea, 0, sizeof(UnlockArea));
|
|
LockArea.lOffset = 0L;
|
|
LockArea.lRange = 0L;
|
|
UnlockArea.lOffset = SHARED_FIRST;
|
|
UnlockArea.lRange = SHARED_SIZE;
|
|
res = DosSetFileLocks( id->h, &UnlockArea, &LockArea, 2000L, 1L );
|
|
OSTRACE3( "UNLOCK-READLOCK file handle=%d res=%d?\n", id->h, res );
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
** Lock the file with the lock specified by parameter locktype - one
|
|
** of the following:
|
|
**
|
|
** (1) SHARED_LOCK
|
|
** (2) RESERVED_LOCK
|
|
** (3) PENDING_LOCK
|
|
** (4) EXCLUSIVE_LOCK
|
|
**
|
|
** Sometimes when requesting one lock state, additional lock states
|
|
** are inserted in between. The locking might fail on one of the later
|
|
** transitions leaving the lock state different from what it started but
|
|
** still short of its goal. The following chart shows the allowed
|
|
** transitions and the inserted intermediate states:
|
|
**
|
|
** UNLOCKED -> SHARED
|
|
** SHARED -> RESERVED
|
|
** SHARED -> (PENDING) -> EXCLUSIVE
|
|
** RESERVED -> (PENDING) -> EXCLUSIVE
|
|
** PENDING -> EXCLUSIVE
|
|
**
|
|
** This routine will only increase a lock. The os2Unlock() routine
|
|
** erases all locks at once and returns us immediately to locking level 0.
|
|
** It is not possible to lower the locking level one step at a time. You
|
|
** must go straight to locking level 0.
|
|
*/
|
|
int os2Lock( sqlite3_file *id, int locktype ){
|
|
int rc = SQLITE_OK; /* Return code from subroutines */
|
|
APIRET res = NO_ERROR; /* Result of an OS/2 lock call */
|
|
int newLocktype; /* Set pFile->locktype to this value before exiting */
|
|
int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */
|
|
FILELOCK LockArea,
|
|
UnlockArea;
|
|
os2File *pFile = (os2File*)id;
|
|
memset(&LockArea, 0, sizeof(LockArea));
|
|
memset(&UnlockArea, 0, sizeof(UnlockArea));
|
|
assert( pFile!=0 );
|
|
OSTRACE4( "LOCK %d %d was %d\n", pFile->h, locktype, pFile->locktype );
|
|
|
|
/* If there is already a lock of this type or more restrictive on the
|
|
** os2File, do nothing. Don't use the end_lock: exit path, as
|
|
** sqlite3OsEnterMutex() hasn't been called yet.
|
|
*/
|
|
if( pFile->locktype>=locktype ){
|
|
OSTRACE3( "LOCK %d %d ok (already held)\n", pFile->h, locktype );
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Make sure the locking sequence is correct
|
|
*/
|
|
assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
|
|
assert( locktype!=PENDING_LOCK );
|
|
assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
|
|
|
|
/* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or
|
|
** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of
|
|
** the PENDING_LOCK byte is temporary.
|
|
*/
|
|
newLocktype = pFile->locktype;
|
|
if( pFile->locktype==NO_LOCK
|
|
|| (locktype==EXCLUSIVE_LOCK && pFile->locktype==RESERVED_LOCK)
|
|
){
|
|
int cnt = 3;
|
|
|
|
LockArea.lOffset = PENDING_BYTE;
|
|
LockArea.lRange = 1L;
|
|
UnlockArea.lOffset = 0L;
|
|
UnlockArea.lRange = 0L;
|
|
|
|
while( cnt-->0 && ( res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L) )
|
|
!= NO_ERROR
|
|
){
|
|
/* Try 3 times to get the pending lock. The pending lock might be
|
|
** held by another reader process who will release it momentarily.
|
|
*/
|
|
OSTRACE2( "LOCK could not get a PENDING lock. cnt=%d\n", cnt );
|
|
DosSleep(1);
|
|
}
|
|
if( res == NO_ERROR){
|
|
gotPendingLock = 1;
|
|
OSTRACE3( "LOCK %d pending lock boolean set. res=%d\n", pFile->h, res );
|
|
}
|
|
}
|
|
|
|
/* Acquire a shared lock
|
|
*/
|
|
if( locktype==SHARED_LOCK && res == NO_ERROR ){
|
|
assert( pFile->locktype==NO_LOCK );
|
|
res = getReadLock(pFile);
|
|
if( res == NO_ERROR ){
|
|
newLocktype = SHARED_LOCK;
|
|
}
|
|
OSTRACE3( "LOCK %d acquire shared lock. res=%d\n", pFile->h, res );
|
|
}
|
|
|
|
/* Acquire a RESERVED lock
|
|
*/
|
|
if( locktype==RESERVED_LOCK && res == NO_ERROR ){
|
|
assert( pFile->locktype==SHARED_LOCK );
|
|
LockArea.lOffset = RESERVED_BYTE;
|
|
LockArea.lRange = 1L;
|
|
UnlockArea.lOffset = 0L;
|
|
UnlockArea.lRange = 0L;
|
|
res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
|
|
if( res == NO_ERROR ){
|
|
newLocktype = RESERVED_LOCK;
|
|
}
|
|
OSTRACE3( "LOCK %d acquire reserved lock. res=%d\n", pFile->h, res );
|
|
}
|
|
|
|
/* Acquire a PENDING lock
|
|
*/
|
|
if( locktype==EXCLUSIVE_LOCK && res == NO_ERROR ){
|
|
newLocktype = PENDING_LOCK;
|
|
gotPendingLock = 0;
|
|
OSTRACE2( "LOCK %d acquire pending lock. pending lock boolean unset.\n", pFile->h );
|
|
}
|
|
|
|
/* Acquire an EXCLUSIVE lock
|
|
*/
|
|
if( locktype==EXCLUSIVE_LOCK && res == NO_ERROR ){
|
|
assert( pFile->locktype>=SHARED_LOCK );
|
|
res = unlockReadLock(pFile);
|
|
OSTRACE2( "unreadlock = %d\n", res );
|
|
LockArea.lOffset = SHARED_FIRST;
|
|
LockArea.lRange = SHARED_SIZE;
|
|
UnlockArea.lOffset = 0L;
|
|
UnlockArea.lRange = 0L;
|
|
res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
|
|
if( res == NO_ERROR ){
|
|
newLocktype = EXCLUSIVE_LOCK;
|
|
}else{
|
|
OSTRACE2( "OS/2 error-code = %d\n", res );
|
|
getReadLock(pFile);
|
|
}
|
|
OSTRACE3( "LOCK %d acquire exclusive lock. res=%d\n", pFile->h, res );
|
|
}
|
|
|
|
/* If we are holding a PENDING lock that ought to be released, then
|
|
** release it now.
|
|
*/
|
|
if( gotPendingLock && locktype==SHARED_LOCK ){
|
|
int r;
|
|
LockArea.lOffset = 0L;
|
|
LockArea.lRange = 0L;
|
|
UnlockArea.lOffset = PENDING_BYTE;
|
|
UnlockArea.lRange = 1L;
|
|
r = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
|
|
OSTRACE3( "LOCK %d unlocking pending/is shared. r=%d\n", pFile->h, r );
|
|
}
|
|
|
|
/* Update the state of the lock has held in the file descriptor then
|
|
** return the appropriate result code.
|
|
*/
|
|
if( res == NO_ERROR ){
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
OSTRACE4( "LOCK FAILED %d trying for %d but got %d\n", pFile->h,
|
|
locktype, newLocktype );
|
|
rc = SQLITE_BUSY;
|
|
}
|
|
pFile->locktype = newLocktype;
|
|
OSTRACE3( "LOCK %d now %d\n", pFile->h, pFile->locktype );
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This routine checks if there is a RESERVED lock held on the specified
|
|
** file by this or any other process. If such a lock is held, return
|
|
** non-zero, otherwise zero.
|
|
*/
|
|
int os2CheckReservedLock( sqlite3_file *id ){
|
|
APIRET rc = NO_ERROR;
|
|
os2File *pFile = (os2File*)id;
|
|
assert( pFile!=0 );
|
|
if( pFile->locktype>=RESERVED_LOCK ){
|
|
rc = 1;
|
|
OSTRACE3( "TEST WR-LOCK %d %d (local)\n", pFile->h, rc );
|
|
}else{
|
|
FILELOCK LockArea,
|
|
UnlockArea;
|
|
memset(&LockArea, 0, sizeof(LockArea));
|
|
memset(&UnlockArea, 0, sizeof(UnlockArea));
|
|
LockArea.lOffset = RESERVED_BYTE;
|
|
LockArea.lRange = 1L;
|
|
UnlockArea.lOffset = 0L;
|
|
UnlockArea.lRange = 0L;
|
|
rc = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
|
|
OSTRACE3( "TEST WR-LOCK %d lock reserved byte rc=%d\n", pFile->h, rc );
|
|
if( rc == NO_ERROR ){
|
|
int r;
|
|
LockArea.lOffset = 0L;
|
|
LockArea.lRange = 0L;
|
|
UnlockArea.lOffset = RESERVED_BYTE;
|
|
UnlockArea.lRange = 1L;
|
|
r = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
|
|
OSTRACE3( "TEST WR-LOCK %d unlock reserved byte r=%d\n", pFile->h, r );
|
|
}
|
|
OSTRACE3( "TEST WR-LOCK %d %d (remote)\n", pFile->h, rc );
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Lower the locking level on file descriptor id to locktype. locktype
|
|
** must be either NO_LOCK or SHARED_LOCK.
|
|
**
|
|
** If the locking level of the file descriptor is already at or below
|
|
** the requested locking level, this routine is a no-op.
|
|
**
|
|
** It is not possible for this routine to fail if the second argument
|
|
** is NO_LOCK. If the second argument is SHARED_LOCK then this routine
|
|
** might return SQLITE_IOERR;
|
|
*/
|
|
int os2Unlock( sqlite3_file *id, int locktype ){
|
|
int type;
|
|
os2File *pFile = (os2File*)id;
|
|
APIRET rc = SQLITE_OK;
|
|
APIRET res = NO_ERROR;
|
|
FILELOCK LockArea,
|
|
UnlockArea;
|
|
memset(&LockArea, 0, sizeof(LockArea));
|
|
memset(&UnlockArea, 0, sizeof(UnlockArea));
|
|
assert( pFile!=0 );
|
|
assert( locktype<=SHARED_LOCK );
|
|
OSTRACE4( "UNLOCK %d to %d was %d\n", pFile->h, locktype, pFile->locktype );
|
|
type = pFile->locktype;
|
|
if( type>=EXCLUSIVE_LOCK ){
|
|
LockArea.lOffset = 0L;
|
|
LockArea.lRange = 0L;
|
|
UnlockArea.lOffset = SHARED_FIRST;
|
|
UnlockArea.lRange = SHARED_SIZE;
|
|
res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
|
|
OSTRACE3( "UNLOCK %d exclusive lock res=%d\n", pFile->h, res );
|
|
if( locktype==SHARED_LOCK && getReadLock(pFile) != NO_ERROR ){
|
|
/* This should never happen. We should always be able to
|
|
** reacquire the read lock */
|
|
OSTRACE3( "UNLOCK %d to %d getReadLock() failed\n", pFile->h, locktype );
|
|
rc = SQLITE_IOERR_UNLOCK;
|
|
}
|
|
}
|
|
if( type>=RESERVED_LOCK ){
|
|
LockArea.lOffset = 0L;
|
|
LockArea.lRange = 0L;
|
|
UnlockArea.lOffset = RESERVED_BYTE;
|
|
UnlockArea.lRange = 1L;
|
|
res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
|
|
OSTRACE3( "UNLOCK %d reserved res=%d\n", pFile->h, res );
|
|
}
|
|
if( locktype==NO_LOCK && type>=SHARED_LOCK ){
|
|
res = unlockReadLock(pFile);
|
|
OSTRACE5( "UNLOCK %d is %d want %d res=%d\n", pFile->h, type, locktype, res );
|
|
}
|
|
if( type>=PENDING_LOCK ){
|
|
LockArea.lOffset = 0L;
|
|
LockArea.lRange = 0L;
|
|
UnlockArea.lOffset = PENDING_BYTE;
|
|
UnlockArea.lRange = 1L;
|
|
res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
|
|
OSTRACE3( "UNLOCK %d pending res=%d\n", pFile->h, res );
|
|
}
|
|
pFile->locktype = locktype;
|
|
OSTRACE3( "UNLOCK %d now %d\n", pFile->h, pFile->locktype );
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Control and query of the open file handle.
|
|
*/
|
|
static int os2FileControl(sqlite3_file *id, int op, void *pArg){
|
|
switch( op ){
|
|
case SQLITE_FCNTL_LOCKSTATE: {
|
|
*(int*)pArg = ((os2File*)id)->locktype;
|
|
OSTRACE3( "FCNTL_LOCKSTATE %d lock=%d\n", ((os2File*)id)->h, ((os2File*)id)->locktype );
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
/*
|
|
** Return the sector size in bytes of the underlying block device for
|
|
** the specified file. This is almost always 512 bytes, but may be
|
|
** larger for some devices.
|
|
**
|
|
** SQLite code assumes this function cannot fail. It also assumes that
|
|
** if two files are created in the same file-system directory (i.e.
|
|
** a database and its journal file) that the sector size will be the
|
|
** same for both.
|
|
*/
|
|
static int os2SectorSize(sqlite3_file *id){
|
|
return SQLITE_DEFAULT_SECTOR_SIZE;
|
|
}
|
|
|
|
/*
|
|
** Return a vector of device characteristics.
|
|
*/
|
|
static int os2DeviceCharacteristics(sqlite3_file *id){
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** This vector defines all the methods that can operate on an
|
|
** sqlite3_file for os2.
|
|
*/
|
|
static const sqlite3_io_methods os2IoMethod = {
|
|
1, /* iVersion */
|
|
os2Close,
|
|
os2Read,
|
|
os2Write,
|
|
os2Truncate,
|
|
os2Sync,
|
|
os2FileSize,
|
|
os2Lock,
|
|
os2Unlock,
|
|
os2CheckReservedLock,
|
|
os2FileControl,
|
|
os2SectorSize,
|
|
os2DeviceCharacteristics
|
|
};
|
|
|
|
/***************************************************************************
|
|
** Here ends the I/O methods that form the sqlite3_io_methods object.
|
|
**
|
|
** The next block of code implements the VFS methods.
|
|
****************************************************************************/
|
|
|
|
/*
|
|
** Open a file.
|
|
*/
|
|
static int os2Open(
|
|
sqlite3_vfs *pVfs, /* Not used */
|
|
const char *zName, /* Name of the file */
|
|
sqlite3_file *id, /* Write the SQLite file handle here */
|
|
int flags, /* Open mode flags */
|
|
int *pOutFlags /* Status return flags */
|
|
){
|
|
HFILE h;
|
|
ULONG ulFileAttribute = 0;
|
|
ULONG ulOpenFlags = 0;
|
|
ULONG ulOpenMode = 0;
|
|
os2File *pFile = (os2File*)id;
|
|
APIRET rc = NO_ERROR;
|
|
ULONG ulAction;
|
|
|
|
memset(pFile, 0, sizeof(*pFile));
|
|
|
|
OSTRACE2( "OPEN want %d\n", flags );
|
|
|
|
//ulOpenMode = flags & SQLITE_OPEN_READWRITE ? OPEN_ACCESS_READWRITE : OPEN_ACCESS_READONLY;
|
|
if( flags & SQLITE_OPEN_READWRITE ){
|
|
ulOpenMode |= OPEN_ACCESS_READWRITE;
|
|
OSTRACE1( "OPEN read/write\n" );
|
|
}else{
|
|
ulOpenMode |= OPEN_ACCESS_READONLY;
|
|
OSTRACE1( "OPEN read only\n" );
|
|
}
|
|
|
|
//ulOpenFlags = flags & SQLITE_OPEN_CREATE ? OPEN_ACTION_CREATE_IF_NEW : OPEN_ACTION_FAIL_IF_NEW;
|
|
if( flags & SQLITE_OPEN_CREATE ){
|
|
ulOpenFlags |= OPEN_ACTION_OPEN_IF_EXISTS | OPEN_ACTION_CREATE_IF_NEW;
|
|
OSTRACE1( "OPEN open new/create\n" );
|
|
}else{
|
|
ulOpenFlags |= OPEN_ACTION_OPEN_IF_EXISTS | OPEN_ACTION_FAIL_IF_NEW;
|
|
OSTRACE1( "OPEN open existing\n" );
|
|
}
|
|
|
|
//ulOpenMode |= flags & SQLITE_OPEN_MAIN_DB ? OPEN_SHARE_DENYNONE : OPEN_SHARE_DENYWRITE;
|
|
if( flags & SQLITE_OPEN_MAIN_DB ){
|
|
ulOpenMode |= OPEN_SHARE_DENYNONE;
|
|
OSTRACE1( "OPEN share read/write\n" );
|
|
}else{
|
|
ulOpenMode |= OPEN_SHARE_DENYWRITE;
|
|
OSTRACE1( "OPEN share read only\n" );
|
|
}
|
|
|
|
if( flags & (SQLITE_OPEN_TEMP_DB | SQLITE_OPEN_TEMP_JOURNAL
|
|
| SQLITE_OPEN_SUBJOURNAL) ){
|
|
//ulFileAttribute = FILE_HIDDEN; //for debugging, we want to make sure it is deleted
|
|
ulFileAttribute = FILE_NORMAL;
|
|
pFile->delOnClose = 1;
|
|
pFile->pathToDel = (char*)malloc(sizeof(char) * pVfs->mxPathname);
|
|
sqlite3OsFullPathname(pVfs, zName, pVfs->mxPathname, pFile->pathToDel);
|
|
OSTRACE1( "OPEN hidden/delete on close file attributes\n" );
|
|
}else{
|
|
ulFileAttribute = FILE_ARCHIVED | FILE_NORMAL;
|
|
pFile->delOnClose = 0;
|
|
pFile->pathToDel = NULL;
|
|
OSTRACE1( "OPEN normal file attribute\n" );
|
|
}
|
|
|
|
//ulOpenMode |= flags & (SQLITE_OPEN_MAIN_DB | SQLITE_OPEN_TEMP_DB) ?
|
|
// OPEN_FLAGS_RANDOM : OPEN_FLAGS_SEQUENTIAL;
|
|
if( flags & (SQLITE_OPEN_MAIN_DB | SQLITE_OPEN_TEMP_DB) ){
|
|
ulOpenMode |= OPEN_FLAGS_RANDOM;
|
|
OSTRACE1( "OPEN random access\n" );
|
|
}else{
|
|
ulOpenMode |= OPEN_FLAGS_SEQUENTIAL;
|
|
OSTRACE1( "OPEN sequential access\n" );
|
|
}
|
|
ulOpenMode |= OPEN_FLAGS_FAIL_ON_ERROR;
|
|
|
|
rc = DosOpen( (PSZ)zName,
|
|
&h,
|
|
&ulAction,
|
|
0L,
|
|
ulFileAttribute,
|
|
ulOpenFlags,
|
|
ulOpenMode,
|
|
(PEAOP2)NULL );
|
|
if( rc != NO_ERROR ){
|
|
OSTRACE7( "OPEN Invalid handle rc=%d: zName=%s, ulAction=%#lx, ulAttr=%#lx, ulFlags=%#lx, ulMode=%#lx\n",
|
|
rc, zName, ulAction, ulFileAttribute, ulOpenFlags, ulOpenMode );
|
|
if( flags & SQLITE_OPEN_READWRITE ){
|
|
OSTRACE2( "OPEN %d Invalid handle\n", ((flags | SQLITE_OPEN_READONLY) & ~SQLITE_OPEN_READWRITE) );
|
|
return os2Open( 0, zName, id,
|
|
((flags | SQLITE_OPEN_READONLY) & ~SQLITE_OPEN_READWRITE),
|
|
pOutFlags );
|
|
}else{
|
|
return SQLITE_CANTOPEN;
|
|
}
|
|
}
|
|
|
|
if( pOutFlags ){
|
|
*pOutFlags = flags & SQLITE_OPEN_READWRITE ? SQLITE_OPEN_READWRITE : SQLITE_OPEN_READONLY;
|
|
}
|
|
|
|
pFile->pMethod = &os2IoMethod;
|
|
pFile->h = h;
|
|
OpenCounter(+1);
|
|
OSTRACE3( "OPEN %d pOutFlags=%d\n", pFile->h, pOutFlags );
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Delete the named file.
|
|
*/
|
|
int os2Delete(
|
|
sqlite3_vfs *pVfs, /* Not used on os2 */
|
|
const char *zFilename, /* Name of file to delete */
|
|
int syncDir /* Not used on os2 */
|
|
){
|
|
APIRET rc = NO_ERROR;
|
|
SimulateIOError(return SQLITE_IOERR_DELETE);
|
|
rc = DosDelete( (PSZ)zFilename );
|
|
OSTRACE2( "DELETE \"%s\"\n", zFilename );
|
|
return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
|
|
}
|
|
|
|
/*
|
|
** Check the existance and status of a file.
|
|
*/
|
|
static int os2Access(
|
|
sqlite3_vfs *pVfs, /* Not used on os2 */
|
|
const char *zFilename, /* Name of file to check */
|
|
int flags /* Type of test to make on this file */
|
|
){
|
|
FILESTATUS3 fsts3ConfigInfo;
|
|
APIRET rc = NO_ERROR;
|
|
|
|
memset(&fsts3ConfigInfo, 0, sizeof(fsts3ConfigInfo));
|
|
rc = DosQueryPathInfo( (PSZ)zFilename, FIL_STANDARD,
|
|
&fsts3ConfigInfo, sizeof(FILESTATUS3) );
|
|
OSTRACE4( "ACCESS fsts3ConfigInfo.attrFile=%d flags=%d rc=%d\n",
|
|
fsts3ConfigInfo.attrFile, flags, rc );
|
|
switch( flags ){
|
|
case SQLITE_ACCESS_READ:
|
|
case SQLITE_ACCESS_EXISTS:
|
|
rc = (rc == NO_ERROR);
|
|
OSTRACE3( "ACCESS %s access of read and exists rc=%d\n", zFilename, rc );
|
|
break;
|
|
case SQLITE_ACCESS_READWRITE:
|
|
rc = (fsts3ConfigInfo.attrFile & FILE_READONLY) == 0;
|
|
OSTRACE3( "ACCESS %s access of read/write rc=%d\n", zFilename, rc );
|
|
break;
|
|
default:
|
|
assert( !"Invalid flags argument" );
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Create a temporary file name in zBuf. zBuf must be big enough to
|
|
** hold at pVfs->mxPathname characters.
|
|
*/
|
|
static int os2GetTempname( sqlite3_vfs *pVfs, int nBuf, char *zBuf ){
|
|
static const unsigned char zChars[] =
|
|
"abcdefghijklmnopqrstuvwxyz"
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
"0123456789";
|
|
int i, j;
|
|
char zTempPathBuf[3];
|
|
PSZ zTempPath = (PSZ)&zTempPathBuf;
|
|
if( DosScanEnv( (PSZ)"TEMP", &zTempPath ) ){
|
|
if( DosScanEnv( (PSZ)"TMP", &zTempPath ) ){
|
|
if( DosScanEnv( (PSZ)"TMPDIR", &zTempPath ) ){
|
|
ULONG ulDriveNum = 0, ulDriveMap = 0;
|
|
DosQueryCurrentDisk( &ulDriveNum, &ulDriveMap );
|
|
sprintf( (char*)zTempPath, "%c:", (char)( 'A' + ulDriveNum - 1 ) );
|
|
}
|
|
}
|
|
}
|
|
/* strip off a trailing slashes or backslashes, otherwise we would get *
|
|
* multiple (back)slashes which causes DosOpen() to fail */
|
|
j = strlen(zTempPath);
|
|
while( j > 0 && ( zTempPath[j-1] == '\\' || zTempPath[j-1] == '/' ) ){
|
|
j--;
|
|
}
|
|
zTempPath[j] = '\0';
|
|
assert( nBuf>=pVfs->mxPathname );
|
|
sqlite3_snprintf( pVfs->mxPathname-30, zBuf,
|
|
"%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPath );
|
|
j = strlen( zBuf );
|
|
sqlite3Randomness( 20, &zBuf[j] );
|
|
for( i = 0; i < 20; i++, j++ ){
|
|
zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
|
|
}
|
|
zBuf[j] = 0;
|
|
OSTRACE2( "TEMP FILENAME: %s\n", zBuf );
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
|
|
/*
|
|
** Turn a relative pathname into a full pathname. Write the full
|
|
** pathname into zFull[]. zFull[] will be at least pVfs->mxPathname
|
|
** bytes in size.
|
|
*/
|
|
static int os2FullPathname(
|
|
sqlite3_vfs *pVfs, /* Pointer to vfs object */
|
|
const char *zRelative, /* Possibly relative input path */
|
|
int nFull, /* Size of output buffer in bytes */
|
|
char *zFull /* Output buffer */
|
|
){
|
|
if( strchr(zRelative, ':') ){
|
|
sqlite3_snprintf( nFull, zFull, "%s", zRelative );
|
|
}else{
|
|
ULONG ulDriveNum = 0;
|
|
ULONG ulDriveMap = 0;
|
|
ULONG cbzBufLen = SQLITE_TEMPNAME_SIZE;
|
|
char *zBuff = (char*)malloc( cbzBufLen );
|
|
if( zBuff == 0 ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
DosQueryCurrentDisk( &ulDriveNum, &ulDriveMap );
|
|
if( DosQueryCurrentDir( ulDriveNum, (PBYTE)zBuff, &cbzBufLen ) == NO_ERROR ){
|
|
sqlite3_snprintf( nFull, zFull, "%c:\\%s\\%s",
|
|
(char)('A' + ulDriveNum - 1), zBuff, zRelative);
|
|
}
|
|
free( zBuff );
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
|
/*
|
|
** Interfaces for opening a shared library, finding entry points
|
|
** within the shared library, and closing the shared library.
|
|
*/
|
|
/*
|
|
** Interfaces for opening a shared library, finding entry points
|
|
** within the shared library, and closing the shared library.
|
|
*/
|
|
static void *os2DlOpen(sqlite3_vfs *pVfs, const char *zFilename){
|
|
UCHAR loadErr[256];
|
|
HMODULE hmod;
|
|
APIRET rc;
|
|
rc = DosLoadModule((PSZ)loadErr, sizeof(loadErr), zFilename, &hmod);
|
|
return rc != NO_ERROR ? 0 : (void*)hmod;
|
|
}
|
|
/*
|
|
** A no-op since the error code is returned on the DosLoadModule call.
|
|
** os2Dlopen returns zero if DosLoadModule is not successful.
|
|
*/
|
|
static void os2DlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
|
|
/* no-op */
|
|
}
|
|
void *os2DlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
|
|
PFN pfn;
|
|
APIRET rc;
|
|
rc = DosQueryProcAddr((HMODULE)pHandle, 0L, zSymbol, &pfn);
|
|
if( rc != NO_ERROR ){
|
|
/* if the symbol itself was not found, search again for the same
|
|
* symbol with an extra underscore, that might be needed depending
|
|
* on the calling convention */
|
|
char _zSymbol[256] = "_";
|
|
strncat(_zSymbol, zSymbol, 255);
|
|
rc = DosQueryProcAddr((HMODULE)pHandle, 0L, _zSymbol, &pfn);
|
|
}
|
|
return rc != NO_ERROR ? 0 : (void*)pfn;
|
|
}
|
|
void os2DlClose(sqlite3_vfs *pVfs, void *pHandle){
|
|
DosFreeModule((HMODULE)pHandle);
|
|
}
|
|
#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
|
|
#define os2DlOpen 0
|
|
#define os2DlError 0
|
|
#define os2DlSym 0
|
|
#define os2DlClose 0
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Write up to nBuf bytes of randomness into zBuf.
|
|
*/
|
|
static int os2Randomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf ){
|
|
ULONG sizeofULong = sizeof(ULONG);
|
|
int n = 0;
|
|
if( sizeof(DATETIME) <= nBuf - n ){
|
|
DATETIME x;
|
|
DosGetDateTime(&x);
|
|
memcpy(&zBuf[n], &x, sizeof(x));
|
|
n += sizeof(x);
|
|
}
|
|
|
|
if( sizeofULong <= nBuf - n ){
|
|
PPIB ppib;
|
|
DosGetInfoBlocks(NULL, &ppib);
|
|
memcpy(&zBuf[n], &ppib->pib_ulpid, sizeofULong);
|
|
n += sizeofULong;
|
|
}
|
|
|
|
if( sizeofULong <= nBuf - n ){
|
|
PTIB ptib;
|
|
DosGetInfoBlocks(&ptib, NULL);
|
|
memcpy(&zBuf[n], &ptib->tib_ptib2->tib2_ultid, sizeofULong);
|
|
n += sizeofULong;
|
|
}
|
|
|
|
/* if we still haven't filled the buffer yet the following will */
|
|
/* grab everything once instead of making several calls for a single item */
|
|
if( sizeofULong <= nBuf - n ){
|
|
ULONG ulSysInfo[QSV_MAX];
|
|
DosQuerySysInfo(1L, QSV_MAX, ulSysInfo, sizeofULong * QSV_MAX);
|
|
|
|
memcpy(&zBuf[n], &ulSysInfo[QSV_MS_COUNT - 1], sizeofULong);
|
|
n += sizeofULong;
|
|
|
|
if( sizeofULong <= nBuf - n ){
|
|
memcpy(&zBuf[n], &ulSysInfo[QSV_TIMER_INTERVAL - 1], sizeofULong);
|
|
n += sizeofULong;
|
|
}
|
|
if( sizeofULong <= nBuf - n ){
|
|
memcpy(&zBuf[n], &ulSysInfo[QSV_TIME_LOW - 1], sizeofULong);
|
|
n += sizeofULong;
|
|
}
|
|
if( sizeofULong <= nBuf - n ){
|
|
memcpy(&zBuf[n], &ulSysInfo[QSV_TIME_HIGH - 1], sizeofULong);
|
|
n += sizeofULong;
|
|
}
|
|
if( sizeofULong <= nBuf - n ){
|
|
memcpy(&zBuf[n], &ulSysInfo[QSV_TOTAVAILMEM - 1], sizeofULong);
|
|
n += sizeofULong;
|
|
}
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Sleep for a little while. Return the amount of time slept.
|
|
** The argument is the number of microseconds we want to sleep.
|
|
** The return value is the number of microseconds of sleep actually
|
|
** requested from the underlying operating system, a number which
|
|
** might be greater than or equal to the argument, but not less
|
|
** than the argument.
|
|
*/
|
|
static int os2Sleep( sqlite3_vfs *pVfs, int microsec ){
|
|
DosSleep( (microsec/1000) );
|
|
return microsec;
|
|
}
|
|
|
|
/*
|
|
** The following variable, if set to a non-zero value, becomes the result
|
|
** returned from sqlite3OsCurrentTime(). This is used for testing.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_API int sqlite3_current_time = 0;
|
|
#endif
|
|
|
|
/*
|
|
** Find the current time (in Universal Coordinated Time). Write the
|
|
** current time and date as a Julian Day number into *prNow and
|
|
** return 0. Return 1 if the time and date cannot be found.
|
|
*/
|
|
int os2CurrentTime( sqlite3_vfs *pVfs, double *prNow ){
|
|
double now;
|
|
SHORT minute; /* needs to be able to cope with negative timezone offset */
|
|
USHORT second, hour,
|
|
day, month, year;
|
|
DATETIME dt;
|
|
DosGetDateTime( &dt );
|
|
second = (USHORT)dt.seconds;
|
|
minute = (SHORT)dt.minutes + dt.timezone;
|
|
hour = (USHORT)dt.hours;
|
|
day = (USHORT)dt.day;
|
|
month = (USHORT)dt.month;
|
|
year = (USHORT)dt.year;
|
|
|
|
/* Calculations from http://www.astro.keele.ac.uk/~rno/Astronomy/hjd.html
|
|
http://www.astro.keele.ac.uk/~rno/Astronomy/hjd-0.1.c */
|
|
/* Calculate the Julian days */
|
|
now = day - 32076 +
|
|
1461*(year + 4800 + (month - 14)/12)/4 +
|
|
367*(month - 2 - (month - 14)/12*12)/12 -
|
|
3*((year + 4900 + (month - 14)/12)/100)/4;
|
|
|
|
/* Add the fractional hours, mins and seconds */
|
|
now += (hour + 12.0)/24.0;
|
|
now += minute/1440.0;
|
|
now += second/86400.0;
|
|
*prNow = now;
|
|
#ifdef SQLITE_TEST
|
|
if( sqlite3_current_time ){
|
|
*prNow = sqlite3_current_time/86400.0 + 2440587.5;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to the sqlite3DefaultVfs structure. We use
|
|
** a function rather than give the structure global scope because
|
|
** some compilers (MSVC) do not allow forward declarations of
|
|
** initialized structures.
|
|
*/
|
|
SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){
|
|
static sqlite3_vfs os2Vfs = {
|
|
1, /* iVersion */
|
|
sizeof(os2File), /* szOsFile */
|
|
CCHMAXPATH, /* mxPathname */
|
|
0, /* pNext */
|
|
"os2", /* zName */
|
|
0, /* pAppData */
|
|
|
|
os2Open, /* xOpen */
|
|
os2Delete, /* xDelete */
|
|
os2Access, /* xAccess */
|
|
os2GetTempname, /* xGetTempname */
|
|
os2FullPathname, /* xFullPathname */
|
|
os2DlOpen, /* xDlOpen */
|
|
os2DlError, /* xDlError */
|
|
os2DlSym, /* xDlSym */
|
|
os2DlClose, /* xDlClose */
|
|
os2Randomness, /* xRandomness */
|
|
os2Sleep, /* xSleep */
|
|
os2CurrentTime /* xCurrentTime */
|
|
};
|
|
|
|
return &os2Vfs;
|
|
}
|
|
|
|
#endif /* OS_OS2 */
|
|
|
|
/************** End of os_os2.c **********************************************/
|
|
/************** Begin file os_unix.c *****************************************/
|
|
/*
|
|
** 2004 May 22
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
******************************************************************************
|
|
**
|
|
** This file contains code that is specific to Unix systems.
|
|
*/
|
|
#if OS_UNIX /* This file is used on unix only */
|
|
|
|
/* #define SQLITE_ENABLE_LOCKING_STYLE 0 */
|
|
|
|
/*
|
|
** These #defines should enable >2GB file support on Posix if the
|
|
** underlying operating system supports it. If the OS lacks
|
|
** large file support, these should be no-ops.
|
|
**
|
|
** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
|
|
** on the compiler command line. This is necessary if you are compiling
|
|
** on a recent machine (ex: RedHat 7.2) but you want your code to work
|
|
** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
|
|
** without this option, LFS is enable. But LFS does not exist in the kernel
|
|
** in RedHat 6.0, so the code won't work. Hence, for maximum binary
|
|
** portability you should omit LFS.
|
|
*/
|
|
#ifndef SQLITE_DISABLE_LFS
|
|
# define _LARGE_FILE 1
|
|
# ifndef _FILE_OFFSET_BITS
|
|
# define _FILE_OFFSET_BITS 64
|
|
# endif
|
|
# define _LARGEFILE_SOURCE 1
|
|
#endif
|
|
|
|
/*
|
|
** standard include files.
|
|
*/
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <sys/time.h>
|
|
#include <errno.h>
|
|
#ifdef SQLITE_ENABLE_LOCKING_STYLE
|
|
#include <sys/ioctl.h>
|
|
#include <sys/param.h>
|
|
#include <sys/mount.h>
|
|
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
|
|
|
|
/*
|
|
** If we are to be thread-safe, include the pthreads header and define
|
|
** the SQLITE_UNIX_THREADS macro.
|
|
*/
|
|
#if SQLITE_THREADSAFE
|
|
# define SQLITE_UNIX_THREADS 1
|
|
#endif
|
|
|
|
/*
|
|
** Default permissions when creating a new file
|
|
*/
|
|
#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
|
|
# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
|
|
#endif
|
|
|
|
/*
|
|
** Maximum supported path-length.
|
|
*/
|
|
#define MAX_PATHNAME 512
|
|
|
|
|
|
/*
|
|
** The unixFile structure is subclass of sqlite3_file specific for the unix
|
|
** protability layer.
|
|
*/
|
|
typedef struct unixFile unixFile;
|
|
struct unixFile {
|
|
sqlite3_io_methods const *pMethod; /* Always the first entry */
|
|
#ifdef SQLITE_TEST
|
|
/* In test mode, increase the size of this structure a bit so that
|
|
** it is larger than the struct CrashFile defined in test6.c.
|
|
*/
|
|
char aPadding[32];
|
|
#endif
|
|
struct openCnt *pOpen; /* Info about all open fd's on this inode */
|
|
struct lockInfo *pLock; /* Info about locks on this inode */
|
|
#ifdef SQLITE_ENABLE_LOCKING_STYLE
|
|
void *lockingContext; /* Locking style specific state */
|
|
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
|
|
int h; /* The file descriptor */
|
|
unsigned char locktype; /* The type of lock held on this fd */
|
|
int dirfd; /* File descriptor for the directory */
|
|
#if SQLITE_THREADSAFE
|
|
pthread_t tid; /* The thread that "owns" this unixFile */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
** Include code that is common to all os_*.c files
|
|
*/
|
|
/************** Include os_common.h in the middle of os_unix.c ***************/
|
|
/************** Begin file os_common.h ***************************************/
|
|
/*
|
|
** 2004 May 22
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
******************************************************************************
|
|
**
|
|
** This file contains macros and a little bit of code that is common to
|
|
** all of the platform-specific files (os_*.c) and is #included into those
|
|
** files.
|
|
**
|
|
** This file should be #included by the os_*.c files only. It is not a
|
|
** general purpose header file.
|
|
*/
|
|
|
|
/*
|
|
** At least two bugs have slipped in because we changed the MEMORY_DEBUG
|
|
** macro to SQLITE_DEBUG and some older makefiles have not yet made the
|
|
** switch. The following code should catch this problem at compile-time.
|
|
*/
|
|
#ifdef MEMORY_DEBUG
|
|
# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead."
|
|
#endif
|
|
|
|
|
|
/*
|
|
* When testing, this global variable stores the location of the
|
|
* pending-byte in the database file.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_API unsigned int sqlite3_pending_byte = 0x40000000;
|
|
#endif
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
SQLITE_API int sqlite3_os_trace = 0;
|
|
#define OSTRACE1(X) if( sqlite3_os_trace ) sqlite3DebugPrintf(X)
|
|
#define OSTRACE2(X,Y) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y)
|
|
#define OSTRACE3(X,Y,Z) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z)
|
|
#define OSTRACE4(X,Y,Z,A) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A)
|
|
#define OSTRACE5(X,Y,Z,A,B) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A,B)
|
|
#define OSTRACE6(X,Y,Z,A,B,C) \
|
|
if(sqlite3_os_trace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
|
|
#define OSTRACE7(X,Y,Z,A,B,C,D) \
|
|
if(sqlite3_os_trace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
|
|
#else
|
|
#define OSTRACE1(X)
|
|
#define OSTRACE2(X,Y)
|
|
#define OSTRACE3(X,Y,Z)
|
|
#define OSTRACE4(X,Y,Z,A)
|
|
#define OSTRACE5(X,Y,Z,A,B)
|
|
#define OSTRACE6(X,Y,Z,A,B,C)
|
|
#define OSTRACE7(X,Y,Z,A,B,C,D)
|
|
#endif
|
|
|
|
/*
|
|
** Macros for performance tracing. Normally turned off. Only works
|
|
** on i486 hardware.
|
|
*/
|
|
#ifdef SQLITE_PERFORMANCE_TRACE
|
|
__inline__ unsigned long long int hwtime(void){
|
|
unsigned long long int x;
|
|
__asm__("rdtsc\n\t"
|
|
"mov %%edx, %%ecx\n\t"
|
|
:"=A" (x));
|
|
return x;
|
|
}
|
|
static unsigned long long int g_start;
|
|
static unsigned int elapse;
|
|
#define TIMER_START g_start=hwtime()
|
|
#define TIMER_END elapse=hwtime()-g_start
|
|
#define TIMER_ELAPSED elapse
|
|
#else
|
|
#define TIMER_START
|
|
#define TIMER_END
|
|
#define TIMER_ELAPSED 0
|
|
#endif
|
|
|
|
/*
|
|
** If we compile with the SQLITE_TEST macro set, then the following block
|
|
** of code will give us the ability to simulate a disk I/O error. This
|
|
** is used for testing the I/O recovery logic.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_API int sqlite3_io_error_hit = 0;
|
|
SQLITE_API int sqlite3_io_error_pending = 0;
|
|
SQLITE_API int sqlite3_io_error_persist = 0;
|
|
SQLITE_API int sqlite3_diskfull_pending = 0;
|
|
SQLITE_API int sqlite3_diskfull = 0;
|
|
#define SimulateIOError(CODE) \
|
|
if( sqlite3_io_error_pending || sqlite3_io_error_hit ) \
|
|
if( sqlite3_io_error_pending-- == 1 \
|
|
|| (sqlite3_io_error_persist && sqlite3_io_error_hit) ) \
|
|
{ local_ioerr(); CODE; }
|
|
static void local_ioerr(){
|
|
IOTRACE(("IOERR\n"));
|
|
sqlite3_io_error_hit = 1;
|
|
}
|
|
#define SimulateDiskfullError(CODE) \
|
|
if( sqlite3_diskfull_pending ){ \
|
|
if( sqlite3_diskfull_pending == 1 ){ \
|
|
local_ioerr(); \
|
|
sqlite3_diskfull = 1; \
|
|
sqlite3_io_error_hit = 1; \
|
|
CODE; \
|
|
}else{ \
|
|
sqlite3_diskfull_pending--; \
|
|
} \
|
|
}
|
|
#else
|
|
#define SimulateIOError(A)
|
|
#define SimulateDiskfullError(A)
|
|
#endif
|
|
|
|
/*
|
|
** When testing, keep a count of the number of open files.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_API int sqlite3_open_file_count = 0;
|
|
#define OpenCounter(X) sqlite3_open_file_count+=(X)
|
|
#else
|
|
#define OpenCounter(X)
|
|
#endif
|
|
|
|
/************** End of os_common.h *******************************************/
|
|
/************** Continuing where we left off in os_unix.c ********************/
|
|
|
|
/*
|
|
** Define various macros that are missing from some systems.
|
|
*/
|
|
#ifndef O_LARGEFILE
|
|
# define O_LARGEFILE 0
|
|
#endif
|
|
#ifdef SQLITE_DISABLE_LFS
|
|
# undef O_LARGEFILE
|
|
# define O_LARGEFILE 0
|
|
#endif
|
|
#ifndef O_NOFOLLOW
|
|
# define O_NOFOLLOW 0
|
|
#endif
|
|
#ifndef O_BINARY
|
|
# define O_BINARY 0
|
|
#endif
|
|
|
|
/*
|
|
** The DJGPP compiler environment looks mostly like Unix, but it
|
|
** lacks the fcntl() system call. So redefine fcntl() to be something
|
|
** that always succeeds. This means that locking does not occur under
|
|
** DJGPP. But it is DOS - what did you expect?
|
|
*/
|
|
#ifdef __DJGPP__
|
|
# define fcntl(A,B,C) 0
|
|
#endif
|
|
|
|
/*
|
|
** The threadid macro resolves to the thread-id or to 0. Used for
|
|
** testing and debugging only.
|
|
*/
|
|
#if SQLITE_THREADSAFE
|
|
#define threadid pthread_self()
|
|
#else
|
|
#define threadid 0
|
|
#endif
|
|
|
|
/*
|
|
** Set or check the unixFile.tid field. This field is set when an unixFile
|
|
** is first opened. All subsequent uses of the unixFile verify that the
|
|
** same thread is operating on the unixFile. Some operating systems do
|
|
** not allow locks to be overridden by other threads and that restriction
|
|
** means that sqlite3* database handles cannot be moved from one thread
|
|
** to another. This logic makes sure a user does not try to do that
|
|
** by mistake.
|
|
**
|
|
** Version 3.3.1 (2006-01-15): unixFile can be moved from one thread to
|
|
** another as long as we are running on a system that supports threads
|
|
** overriding each others locks (which now the most common behavior)
|
|
** or if no locks are held. But the unixFile.pLock field needs to be
|
|
** recomputed because its key includes the thread-id. See the
|
|
** transferOwnership() function below for additional information
|
|
*/
|
|
#if SQLITE_THREADSAFE
|
|
# define SET_THREADID(X) (X)->tid = pthread_self()
|
|
# define CHECK_THREADID(X) (threadsOverrideEachOthersLocks==0 && \
|
|
!pthread_equal((X)->tid, pthread_self()))
|
|
#else
|
|
# define SET_THREADID(X)
|
|
# define CHECK_THREADID(X) 0
|
|
#endif
|
|
|
|
/*
|
|
** Here is the dirt on POSIX advisory locks: ANSI STD 1003.1 (1996)
|
|
** section 6.5.2.2 lines 483 through 490 specify that when a process
|
|
** sets or clears a lock, that operation overrides any prior locks set
|
|
** by the same process. It does not explicitly say so, but this implies
|
|
** that it overrides locks set by the same process using a different
|
|
** file descriptor. Consider this test case:
|
|
**
|
|
** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
|
|
** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
|
|
**
|
|
** Suppose ./file1 and ./file2 are really the same file (because
|
|
** one is a hard or symbolic link to the other) then if you set
|
|
** an exclusive lock on fd1, then try to get an exclusive lock
|
|
** on fd2, it works. I would have expected the second lock to
|
|
** fail since there was already a lock on the file due to fd1.
|
|
** But not so. Since both locks came from the same process, the
|
|
** second overrides the first, even though they were on different
|
|
** file descriptors opened on different file names.
|
|
**
|
|
** Bummer. If you ask me, this is broken. Badly broken. It means
|
|
** that we cannot use POSIX locks to synchronize file access among
|
|
** competing threads of the same process. POSIX locks will work fine
|
|
** to synchronize access for threads in separate processes, but not
|
|
** threads within the same process.
|
|
**
|
|
** To work around the problem, SQLite has to manage file locks internally
|
|
** on its own. Whenever a new database is opened, we have to find the
|
|
** specific inode of the database file (the inode is determined by the
|
|
** st_dev and st_ino fields of the stat structure that fstat() fills in)
|
|
** and check for locks already existing on that inode. When locks are
|
|
** created or removed, we have to look at our own internal record of the
|
|
** locks to see if another thread has previously set a lock on that same
|
|
** inode.
|
|
**
|
|
** The sqlite3_file structure for POSIX is no longer just an integer file
|
|
** descriptor. It is now a structure that holds the integer file
|
|
** descriptor and a pointer to a structure that describes the internal
|
|
** locks on the corresponding inode. There is one locking structure
|
|
** per inode, so if the same inode is opened twice, both unixFile structures
|
|
** point to the same locking structure. The locking structure keeps
|
|
** a reference count (so we will know when to delete it) and a "cnt"
|
|
** field that tells us its internal lock status. cnt==0 means the
|
|
** file is unlocked. cnt==-1 means the file has an exclusive lock.
|
|
** cnt>0 means there are cnt shared locks on the file.
|
|
**
|
|
** Any attempt to lock or unlock a file first checks the locking
|
|
** structure. The fcntl() system call is only invoked to set a
|
|
** POSIX lock if the internal lock structure transitions between
|
|
** a locked and an unlocked state.
|
|
**
|
|
** 2004-Jan-11:
|
|
** More recent discoveries about POSIX advisory locks. (The more
|
|
** I discover, the more I realize the a POSIX advisory locks are
|
|
** an abomination.)
|
|
**
|
|
** If you close a file descriptor that points to a file that has locks,
|
|
** all locks on that file that are owned by the current process are
|
|
** released. To work around this problem, each unixFile structure contains
|
|
** a pointer to an openCnt structure. There is one openCnt structure
|
|
** per open inode, which means that multiple unixFile can point to a single
|
|
** openCnt. When an attempt is made to close an unixFile, if there are
|
|
** other unixFile open on the same inode that are holding locks, the call
|
|
** to close() the file descriptor is deferred until all of the locks clear.
|
|
** The openCnt structure keeps a list of file descriptors that need to
|
|
** be closed and that list is walked (and cleared) when the last lock
|
|
** clears.
|
|
**
|
|
** First, under Linux threads, because each thread has a separate
|
|
** process ID, lock operations in one thread do not override locks
|
|
** to the same file in other threads. Linux threads behave like
|
|
** separate processes in this respect. But, if you close a file
|
|
** descriptor in linux threads, all locks are cleared, even locks
|
|
** on other threads and even though the other threads have different
|
|
** process IDs. Linux threads is inconsistent in this respect.
|
|
** (I'm beginning to think that linux threads is an abomination too.)
|
|
** The consequence of this all is that the hash table for the lockInfo
|
|
** structure has to include the process id as part of its key because
|
|
** locks in different threads are treated as distinct. But the
|
|
** openCnt structure should not include the process id in its
|
|
** key because close() clears lock on all threads, not just the current
|
|
** thread. Were it not for this goofiness in linux threads, we could
|
|
** combine the lockInfo and openCnt structures into a single structure.
|
|
**
|
|
** 2004-Jun-28:
|
|
** On some versions of linux, threads can override each others locks.
|
|
** On others not. Sometimes you can change the behavior on the same
|
|
** system by setting the LD_ASSUME_KERNEL environment variable. The
|
|
** POSIX standard is silent as to which behavior is correct, as far
|
|
** as I can tell, so other versions of unix might show the same
|
|
** inconsistency. There is no little doubt in my mind that posix
|
|
** advisory locks and linux threads are profoundly broken.
|
|
**
|
|
** To work around the inconsistencies, we have to test at runtime
|
|
** whether or not threads can override each others locks. This test
|
|
** is run once, the first time any lock is attempted. A static
|
|
** variable is set to record the results of this test for future
|
|
** use.
|
|
*/
|
|
|
|
/*
|
|
** An instance of the following structure serves as the key used
|
|
** to locate a particular lockInfo structure given its inode.
|
|
**
|
|
** If threads cannot override each others locks, then we set the
|
|
** lockKey.tid field to the thread ID. If threads can override
|
|
** each others locks then tid is always set to zero. tid is omitted
|
|
** if we compile without threading support.
|
|
*/
|
|
struct lockKey {
|
|
dev_t dev; /* Device number */
|
|
ino_t ino; /* Inode number */
|
|
#if SQLITE_THREADSAFE
|
|
pthread_t tid; /* Thread ID or zero if threads can override each other */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
** An instance of the following structure is allocated for each open
|
|
** inode on each thread with a different process ID. (Threads have
|
|
** different process IDs on linux, but not on most other unixes.)
|
|
**
|
|
** A single inode can have multiple file descriptors, so each unixFile
|
|
** structure contains a pointer to an instance of this object and this
|
|
** object keeps a count of the number of unixFile pointing to it.
|
|
*/
|
|
struct lockInfo {
|
|
struct lockKey key; /* The lookup key */
|
|
int cnt; /* Number of SHARED locks held */
|
|
int locktype; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
|
|
int nRef; /* Number of pointers to this structure */
|
|
};
|
|
|
|
/*
|
|
** An instance of the following structure serves as the key used
|
|
** to locate a particular openCnt structure given its inode. This
|
|
** is the same as the lockKey except that the thread ID is omitted.
|
|
*/
|
|
struct openKey {
|
|
dev_t dev; /* Device number */
|
|
ino_t ino; /* Inode number */
|
|
};
|
|
|
|
/*
|
|
** An instance of the following structure is allocated for each open
|
|
** inode. This structure keeps track of the number of locks on that
|
|
** inode. If a close is attempted against an inode that is holding
|
|
** locks, the close is deferred until all locks clear by adding the
|
|
** file descriptor to be closed to the pending list.
|
|
*/
|
|
struct openCnt {
|
|
struct openKey key; /* The lookup key */
|
|
int nRef; /* Number of pointers to this structure */
|
|
int nLock; /* Number of outstanding locks */
|
|
int nPending; /* Number of pending close() operations */
|
|
int *aPending; /* Malloced space holding fd's awaiting a close() */
|
|
};
|
|
|
|
/*
|
|
** These hash tables map inodes and file descriptors (really, lockKey and
|
|
** openKey structures) into lockInfo and openCnt structures. Access to
|
|
** these hash tables must be protected by a mutex.
|
|
*/
|
|
static Hash lockHash = {SQLITE_HASH_BINARY, 0, 0, 0, 0, 0};
|
|
static Hash openHash = {SQLITE_HASH_BINARY, 0, 0, 0, 0, 0};
|
|
|
|
#ifdef SQLITE_ENABLE_LOCKING_STYLE
|
|
/*
|
|
** The locking styles are associated with the different file locking
|
|
** capabilities supported by different file systems.
|
|
**
|
|
** POSIX locking style fully supports shared and exclusive byte-range locks
|
|
** ADP locking only supports exclusive byte-range locks
|
|
** FLOCK only supports a single file-global exclusive lock
|
|
** DOTLOCK isn't a true locking style, it refers to the use of a special
|
|
** file named the same as the database file with a '.lock' extension, this
|
|
** can be used on file systems that do not offer any reliable file locking
|
|
** NO locking means that no locking will be attempted, this is only used for
|
|
** read-only file systems currently
|
|
** UNSUPPORTED means that no locking will be attempted, this is only used for
|
|
** file systems that are known to be unsupported
|
|
*/
|
|
typedef enum {
|
|
posixLockingStyle = 0, /* standard posix-advisory locks */
|
|
afpLockingStyle, /* use afp locks */
|
|
flockLockingStyle, /* use flock() */
|
|
dotlockLockingStyle, /* use <file>.lock files */
|
|
noLockingStyle, /* useful for read-only file system */
|
|
unsupportedLockingStyle /* indicates unsupported file system */
|
|
} sqlite3LockingStyle;
|
|
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
|
|
|
|
/*
|
|
** Helper functions to obtain and relinquish the global mutex.
|
|
*/
|
|
static void enterMutex(){
|
|
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
|
|
}
|
|
static void leaveMutex(){
|
|
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
|
|
}
|
|
|
|
#if SQLITE_THREADSAFE
|
|
/*
|
|
** This variable records whether or not threads can override each others
|
|
** locks.
|
|
**
|
|
** 0: No. Threads cannot override each others locks.
|
|
** 1: Yes. Threads can override each others locks.
|
|
** -1: We don't know yet.
|
|
**
|
|
** On some systems, we know at compile-time if threads can override each
|
|
** others locks. On those systems, the SQLITE_THREAD_OVERRIDE_LOCK macro
|
|
** will be set appropriately. On other systems, we have to check at
|
|
** runtime. On these latter systems, SQLTIE_THREAD_OVERRIDE_LOCK is
|
|
** undefined.
|
|
**
|
|
** This variable normally has file scope only. But during testing, we make
|
|
** it a global so that the test code can change its value in order to verify
|
|
** that the right stuff happens in either case.
|
|
*/
|
|
#ifndef SQLITE_THREAD_OVERRIDE_LOCK
|
|
# define SQLITE_THREAD_OVERRIDE_LOCK -1
|
|
#endif
|
|
#ifdef SQLITE_TEST
|
|
int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
|
|
#else
|
|
static int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
|
|
#endif
|
|
|
|
/*
|
|
** This structure holds information passed into individual test
|
|
** threads by the testThreadLockingBehavior() routine.
|
|
*/
|
|
struct threadTestData {
|
|
int fd; /* File to be locked */
|
|
struct flock lock; /* The locking operation */
|
|
int result; /* Result of the locking operation */
|
|
};
|
|
|
|
#ifdef SQLITE_LOCK_TRACE
|
|
/*
|
|
** Print out information about all locking operations.
|
|
**
|
|
** This routine is used for troubleshooting locks on multithreaded
|
|
** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE
|
|
** command-line option on the compiler. This code is normally
|
|
** turned off.
|
|
*/
|
|
static int lockTrace(int fd, int op, struct flock *p){
|
|
char *zOpName, *zType;
|
|
int s;
|
|
int savedErrno;
|
|
if( op==F_GETLK ){
|
|
zOpName = "GETLK";
|
|
}else if( op==F_SETLK ){
|
|
zOpName = "SETLK";
|
|
}else{
|
|
s = fcntl(fd, op, p);
|
|
sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
|
|
return s;
|
|
}
|
|
if( p->l_type==F_RDLCK ){
|
|
zType = "RDLCK";
|
|
}else if( p->l_type==F_WRLCK ){
|
|
zType = "WRLCK";
|
|
}else if( p->l_type==F_UNLCK ){
|
|
zType = "UNLCK";
|
|
}else{
|
|
assert( 0 );
|
|
}
|
|
assert( p->l_whence==SEEK_SET );
|
|
s = fcntl(fd, op, p);
|
|
savedErrno = errno;
|
|
sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
|
|
threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
|
|
(int)p->l_pid, s);
|
|
if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
|
|
struct flock l2;
|
|
l2 = *p;
|
|
fcntl(fd, F_GETLK, &l2);
|
|
if( l2.l_type==F_RDLCK ){
|
|
zType = "RDLCK";
|
|
}else if( l2.l_type==F_WRLCK ){
|
|
zType = "WRLCK";
|
|
}else if( l2.l_type==F_UNLCK ){
|
|
zType = "UNLCK";
|
|
}else{
|
|
assert( 0 );
|
|
}
|
|
sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
|
|
zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
|
|
}
|
|
errno = savedErrno;
|
|
return s;
|
|
}
|
|
#define fcntl lockTrace
|
|
#endif /* SQLITE_LOCK_TRACE */
|
|
|
|
/*
|
|
** The testThreadLockingBehavior() routine launches two separate
|
|
** threads on this routine. This routine attempts to lock a file
|
|
** descriptor then returns. The success or failure of that attempt
|
|
** allows the testThreadLockingBehavior() procedure to determine
|
|
** whether or not threads can override each others locks.
|
|
*/
|
|
static void *threadLockingTest(void *pArg){
|
|
struct threadTestData *pData = (struct threadTestData*)pArg;
|
|
pData->result = fcntl(pData->fd, F_SETLK, &pData->lock);
|
|
return pArg;
|
|
}
|
|
|
|
/*
|
|
** This procedure attempts to determine whether or not threads
|
|
** can override each others locks then sets the
|
|
** threadsOverrideEachOthersLocks variable appropriately.
|
|
*/
|
|
static void testThreadLockingBehavior(int fd_orig){
|
|
int fd;
|
|
struct threadTestData d[2];
|
|
pthread_t t[2];
|
|
|
|
fd = dup(fd_orig);
|
|
if( fd<0 ) return;
|
|
memset(d, 0, sizeof(d));
|
|
d[0].fd = fd;
|
|
d[0].lock.l_type = F_RDLCK;
|
|
d[0].lock.l_len = 1;
|
|
d[0].lock.l_start = 0;
|
|
d[0].lock.l_whence = SEEK_SET;
|
|
d[1] = d[0];
|
|
d[1].lock.l_type = F_WRLCK;
|
|
pthread_create(&t[0], 0, threadLockingTest, &d[0]);
|
|
pthread_create(&t[1], 0, threadLockingTest, &d[1]);
|
|
pthread_join(t[0], 0);
|
|
pthread_join(t[1], 0);
|
|
close(fd);
|
|
threadsOverrideEachOthersLocks = d[0].result==0 && d[1].result==0;
|
|
}
|
|
#endif /* SQLITE_THREADSAFE */
|
|
|
|
/*
|
|
** Release a lockInfo structure previously allocated by findLockInfo().
|
|
*/
|
|
static void releaseLockInfo(struct lockInfo *pLock){
|
|
if (pLock == NULL)
|
|
return;
|
|
pLock->nRef--;
|
|
if( pLock->nRef==0 ){
|
|
sqlite3HashInsert(&lockHash, &pLock->key, sizeof(pLock->key), 0);
|
|
sqlite3_free(pLock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Release a openCnt structure previously allocated by findLockInfo().
|
|
*/
|
|
static void releaseOpenCnt(struct openCnt *pOpen){
|
|
if (pOpen == NULL)
|
|
return;
|
|
pOpen->nRef--;
|
|
if( pOpen->nRef==0 ){
|
|
sqlite3HashInsert(&openHash, &pOpen->key, sizeof(pOpen->key), 0);
|
|
free(pOpen->aPending);
|
|
sqlite3_free(pOpen);
|
|
}
|
|
}
|
|
|
|
#ifdef SQLITE_ENABLE_LOCKING_STYLE
|
|
/*
|
|
** Tests a byte-range locking query to see if byte range locks are
|
|
** supported, if not we fall back to dotlockLockingStyle.
|
|
*/
|
|
static sqlite3LockingStyle sqlite3TestLockingStyle(
|
|
const char *filePath,
|
|
int fd
|
|
){
|
|
/* test byte-range lock using fcntl */
|
|
struct flock lockInfo;
|
|
|
|
lockInfo.l_len = 1;
|
|
lockInfo.l_start = 0;
|
|
lockInfo.l_whence = SEEK_SET;
|
|
lockInfo.l_type = F_RDLCK;
|
|
|
|
if( fcntl(fd, F_GETLK, &lockInfo)!=-1 ) {
|
|
return posixLockingStyle;
|
|
}
|
|
|
|
/* testing for flock can give false positives. So if if the above test
|
|
** fails, then we fall back to using dot-lock style locking.
|
|
*/
|
|
return dotlockLockingStyle;
|
|
}
|
|
|
|
/*
|
|
** Examines the f_fstypename entry in the statfs structure as returned by
|
|
** stat() for the file system hosting the database file, assigns the
|
|
** appropriate locking style based on its value. These values and
|
|
** assignments are based on Darwin/OSX behavior and have not been tested on
|
|
** other systems.
|
|
*/
|
|
static sqlite3LockingStyle sqlite3DetectLockingStyle(
|
|
const char *filePath,
|
|
int fd
|
|
){
|
|
|
|
#ifdef SQLITE_FIXED_LOCKING_STYLE
|
|
return (sqlite3LockingStyle)SQLITE_FIXED_LOCKING_STYLE;
|
|
#else
|
|
struct statfs fsInfo;
|
|
|
|
if (statfs(filePath, &fsInfo) == -1)
|
|
return sqlite3TestLockingStyle(filePath, fd);
|
|
|
|
if (fsInfo.f_flags & MNT_RDONLY)
|
|
return noLockingStyle;
|
|
|
|
if( (!strcmp(fsInfo.f_fstypename, "hfs")) ||
|
|
(!strcmp(fsInfo.f_fstypename, "ufs")) )
|
|
return posixLockingStyle;
|
|
|
|
if(!strcmp(fsInfo.f_fstypename, "afpfs"))
|
|
return afpLockingStyle;
|
|
|
|
if(!strcmp(fsInfo.f_fstypename, "nfs"))
|
|
return sqlite3TestLockingStyle(filePath, fd);
|
|
|
|
if(!strcmp(fsInfo.f_fstypename, "smbfs"))
|
|
return flockLockingStyle;
|
|
|
|
if(!strcmp(fsInfo.f_fstypename, "msdos"))
|
|
return dotlockLockingStyle;
|
|
|
|
if(!strcmp(fsInfo.f_fstypename, "webdav"))
|
|
return unsupportedLockingStyle;
|
|
|
|
return sqlite3TestLockingStyle(filePath, fd);
|
|
#endif /* SQLITE_FIXED_LOCKING_STYLE */
|
|
}
|
|
|
|
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
|
|
|
|
/*
|
|
** Given a file descriptor, locate lockInfo and openCnt structures that
|
|
** describes that file descriptor. Create new ones if necessary. The
|
|
** return values might be uninitialized if an error occurs.
|
|
**
|
|
** Return the number of errors.
|
|
*/
|
|
static int findLockInfo(
|
|
int fd, /* The file descriptor used in the key */
|
|
struct lockInfo **ppLock, /* Return the lockInfo structure here */
|
|
struct openCnt **ppOpen /* Return the openCnt structure here */
|
|
){
|
|
int rc;
|
|
struct lockKey key1;
|
|
struct openKey key2;
|
|
struct stat statbuf;
|
|
struct lockInfo *pLock;
|
|
struct openCnt *pOpen;
|
|
rc = fstat(fd, &statbuf);
|
|
if( rc!=0 ) return 1;
|
|
|
|
memset(&key1, 0, sizeof(key1));
|
|
key1.dev = statbuf.st_dev;
|
|
key1.ino = statbuf.st_ino;
|
|
#if SQLITE_THREADSAFE
|
|
if( threadsOverrideEachOthersLocks<0 ){
|
|
testThreadLockingBehavior(fd);
|
|
}
|
|
key1.tid = threadsOverrideEachOthersLocks ? 0 : pthread_self();
|
|
#endif
|
|
memset(&key2, 0, sizeof(key2));
|
|
key2.dev = statbuf.st_dev;
|
|
key2.ino = statbuf.st_ino;
|
|
pLock = (struct lockInfo*)sqlite3HashFind(&lockHash, &key1, sizeof(key1));
|
|
if( pLock==0 ){
|
|
struct lockInfo *pOld;
|
|
pLock = sqlite3_malloc( sizeof(*pLock) );
|
|
if( pLock==0 ){
|
|
rc = 1;
|
|
goto exit_findlockinfo;
|
|
}
|
|
pLock->key = key1;
|
|
pLock->nRef = 1;
|
|
pLock->cnt = 0;
|
|
pLock->locktype = 0;
|
|
pOld = sqlite3HashInsert(&lockHash, &pLock->key, sizeof(key1), pLock);
|
|
if( pOld!=0 ){
|
|
assert( pOld==pLock );
|
|
sqlite3_free(pLock);
|
|
rc = 1;
|
|
goto exit_findlockinfo;
|
|
}
|
|
}else{
|
|
pLock->nRef++;
|
|
}
|
|
*ppLock = pLock;
|
|
if( ppOpen!=0 ){
|
|
pOpen = (struct openCnt*)sqlite3HashFind(&openHash, &key2, sizeof(key2));
|
|
if( pOpen==0 ){
|
|
struct openCnt *pOld;
|
|
pOpen = sqlite3_malloc( sizeof(*pOpen) );
|
|
if( pOpen==0 ){
|
|
releaseLockInfo(pLock);
|
|
rc = 1;
|
|
goto exit_findlockinfo;
|
|
}
|
|
pOpen->key = key2;
|
|
pOpen->nRef = 1;
|
|
pOpen->nLock = 0;
|
|
pOpen->nPending = 0;
|
|
pOpen->aPending = 0;
|
|
pOld = sqlite3HashInsert(&openHash, &pOpen->key, sizeof(key2), pOpen);
|
|
if( pOld!=0 ){
|
|
assert( pOld==pOpen );
|
|
sqlite3_free(pOpen);
|
|
releaseLockInfo(pLock);
|
|
rc = 1;
|
|
goto exit_findlockinfo;
|
|
}
|
|
}else{
|
|
pOpen->nRef++;
|
|
}
|
|
*ppOpen = pOpen;
|
|
}
|
|
|
|
exit_findlockinfo:
|
|
return rc;
|
|
}
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
** Helper function for printing out trace information from debugging
|
|
** binaries. This returns the string represetation of the supplied
|
|
** integer lock-type.
|
|
*/
|
|
static const char *locktypeName(int locktype){
|
|
switch( locktype ){
|
|
case NO_LOCK: return "NONE";
|
|
case SHARED_LOCK: return "SHARED";
|
|
case RESERVED_LOCK: return "RESERVED";
|
|
case PENDING_LOCK: return "PENDING";
|
|
case EXCLUSIVE_LOCK: return "EXCLUSIVE";
|
|
}
|
|
return "ERROR";
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** If we are currently in a different thread than the thread that the
|
|
** unixFile argument belongs to, then transfer ownership of the unixFile
|
|
** over to the current thread.
|
|
**
|
|
** A unixFile is only owned by a thread on systems where one thread is
|
|
** unable to override locks created by a different thread. RedHat9 is
|
|
** an example of such a system.
|
|
**
|
|
** Ownership transfer is only allowed if the unixFile is currently unlocked.
|
|
** If the unixFile is locked and an ownership is wrong, then return
|
|
** SQLITE_MISUSE. SQLITE_OK is returned if everything works.
|
|
*/
|
|
#if SQLITE_THREADSAFE
|
|
static int transferOwnership(unixFile *pFile){
|
|
int rc;
|
|
pthread_t hSelf;
|
|
if( threadsOverrideEachOthersLocks ){
|
|
/* Ownership transfers not needed on this system */
|
|
return SQLITE_OK;
|
|
}
|
|
hSelf = pthread_self();
|
|
if( pthread_equal(pFile->tid, hSelf) ){
|
|
/* We are still in the same thread */
|
|
OSTRACE1("No-transfer, same thread\n");
|
|
return SQLITE_OK;
|
|
}
|
|
if( pFile->locktype!=NO_LOCK ){
|
|
/* We cannot change ownership while we are holding a lock! */
|
|
return SQLITE_MISUSE;
|
|
}
|
|
OSTRACE4("Transfer ownership of %d from %d to %d\n",
|
|
pFile->h, pFile->tid, hSelf);
|
|
pFile->tid = hSelf;
|
|
if (pFile->pLock != NULL) {
|
|
releaseLockInfo(pFile->pLock);
|
|
rc = findLockInfo(pFile->h, &pFile->pLock, 0);
|
|
OSTRACE5("LOCK %d is now %s(%s,%d)\n", pFile->h,
|
|
locktypeName(pFile->locktype),
|
|
locktypeName(pFile->pLock->locktype), pFile->pLock->cnt);
|
|
return rc;
|
|
} else {
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
#else
|
|
/* On single-threaded builds, ownership transfer is a no-op */
|
|
# define transferOwnership(X) SQLITE_OK
|
|
#endif
|
|
|
|
/*
|
|
** Seek to the offset passed as the second argument, then read cnt
|
|
** bytes into pBuf. Return the number of bytes actually read.
|
|
**
|
|
** NB: If you define USE_PREAD or USE_PREAD64, then it might also
|
|
** be necessary to define _XOPEN_SOURCE to be 500. This varies from
|
|
** one system to another. Since SQLite does not define USE_PREAD
|
|
** any any form by default, we will not attempt to define _XOPEN_SOURCE.
|
|
** See tickets #2741 and #2681.
|
|
*/
|
|
static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
|
|
int got;
|
|
i64 newOffset;
|
|
TIMER_START;
|
|
#if defined(USE_PREAD)
|
|
got = pread(id->h, pBuf, cnt, offset);
|
|
SimulateIOError( got = -1 );
|
|
#elif defined(USE_PREAD64)
|
|
got = pread64(id->h, pBuf, cnt, offset);
|
|
SimulateIOError( got = -1 );
|
|
#else
|
|
newOffset = lseek(id->h, offset, SEEK_SET);
|
|
SimulateIOError( newOffset-- );
|
|
if( newOffset!=offset ){
|
|
return -1;
|
|
}
|
|
got = read(id->h, pBuf, cnt);
|
|
#endif
|
|
TIMER_END;
|
|
OSTRACE5("READ %-3d %5d %7lld %d\n", id->h, got, offset, TIMER_ELAPSED);
|
|
return got;
|
|
}
|
|
|
|
/*
|
|
** Read data from a file into a buffer. Return SQLITE_OK if all
|
|
** bytes were read successfully and SQLITE_IOERR if anything goes
|
|
** wrong.
|
|
*/
|
|
static int unixRead(
|
|
sqlite3_file *id,
|
|
void *pBuf,
|
|
int amt,
|
|
sqlite3_int64 offset
|
|
){
|
|
int got;
|
|
assert( id );
|
|
got = seekAndRead((unixFile*)id, offset, pBuf, amt);
|
|
if( got==amt ){
|
|
return SQLITE_OK;
|
|
}else if( got<0 ){
|
|
return SQLITE_IOERR_READ;
|
|
}else{
|
|
memset(&((char*)pBuf)[got], 0, amt-got);
|
|
return SQLITE_IOERR_SHORT_READ;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Seek to the offset in id->offset then read cnt bytes into pBuf.
|
|
** Return the number of bytes actually read. Update the offset.
|
|
*/
|
|
static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
|
|
int got;
|
|
i64 newOffset;
|
|
TIMER_START;
|
|
#if defined(USE_PREAD)
|
|
got = pwrite(id->h, pBuf, cnt, offset);
|
|
#elif defined(USE_PREAD64)
|
|
got = pwrite64(id->h, pBuf, cnt, offset);
|
|
#else
|
|
newOffset = lseek(id->h, offset, SEEK_SET);
|
|
if( newOffset!=offset ){
|
|
return -1;
|
|
}
|
|
got = write(id->h, pBuf, cnt);
|
|
#endif
|
|
TIMER_END;
|
|
OSTRACE5("WRITE %-3d %5d %7lld %d\n", id->h, got, offset, TIMER_ELAPSED);
|
|
return got;
|
|
}
|
|
|
|
|
|
/*
|
|
** Write data from a buffer into a file. Return SQLITE_OK on success
|
|
** or some other error code on failure.
|
|
*/
|
|
static int unixWrite(
|
|
sqlite3_file *id,
|
|
const void *pBuf,
|
|
int amt,
|
|
sqlite3_int64 offset
|
|
){
|
|
int wrote = 0;
|
|
assert( id );
|
|
assert( amt>0 );
|
|
while( amt>0 && (wrote = seekAndWrite((unixFile*)id, offset, pBuf, amt))>0 ){
|
|
amt -= wrote;
|
|
offset += wrote;
|
|
pBuf = &((char*)pBuf)[wrote];
|
|
}
|
|
SimulateIOError(( wrote=(-1), amt=1 ));
|
|
SimulateDiskfullError(( wrote=0, amt=1 ));
|
|
if( amt>0 ){
|
|
if( wrote<0 ){
|
|
return SQLITE_IOERR_WRITE;
|
|
}else{
|
|
return SQLITE_FULL;
|
|
}
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
#ifdef SQLITE_TEST
|
|
/*
|
|
** Count the number of fullsyncs and normal syncs. This is used to test
|
|
** that syncs and fullsyncs are occuring at the right times.
|
|
*/
|
|
SQLITE_API int sqlite3_sync_count = 0;
|
|
SQLITE_API int sqlite3_fullsync_count = 0;
|
|
#endif
|
|
|
|
/*
|
|
** Use the fdatasync() API only if the HAVE_FDATASYNC macro is defined.
|
|
** Otherwise use fsync() in its place.
|
|
*/
|
|
#ifndef HAVE_FDATASYNC
|
|
# define fdatasync fsync
|
|
#endif
|
|
|
|
/*
|
|
** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
|
|
** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently
|
|
** only available on Mac OS X. But that could change.
|
|
*/
|
|
#ifdef F_FULLFSYNC
|
|
# define HAVE_FULLFSYNC 1
|
|
#else
|
|
# define HAVE_FULLFSYNC 0
|
|
#endif
|
|
|
|
|
|
/*
|
|
** The fsync() system call does not work as advertised on many
|
|
** unix systems. The following procedure is an attempt to make
|
|
** it work better.
|
|
**
|
|
** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful
|
|
** for testing when we want to run through the test suite quickly.
|
|
** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
|
|
** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
|
|
** or power failure will likely corrupt the database file.
|
|
*/
|
|
static int full_fsync(int fd, int fullSync, int dataOnly){
|
|
int rc;
|
|
|
|
/* Record the number of times that we do a normal fsync() and
|
|
** FULLSYNC. This is used during testing to verify that this procedure
|
|
** gets called with the correct arguments.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
if( fullSync ) sqlite3_fullsync_count++;
|
|
sqlite3_sync_count++;
|
|
#endif
|
|
|
|
/* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
|
|
** no-op
|
|
*/
|
|
#ifdef SQLITE_NO_SYNC
|
|
rc = SQLITE_OK;
|
|
#else
|
|
|
|
#if HAVE_FULLFSYNC
|
|
if( fullSync ){
|
|
rc = fcntl(fd, F_FULLFSYNC, 0);
|
|
}else{
|
|
rc = 1;
|
|
}
|
|
/* If the FULLFSYNC failed, fall back to attempting an fsync().
|
|
* It shouldn't be possible for fullfsync to fail on the local
|
|
* file system (on OSX), so failure indicates that FULLFSYNC
|
|
* isn't supported for this file system. So, attempt an fsync
|
|
* and (for now) ignore the overhead of a superfluous fcntl call.
|
|
* It'd be better to detect fullfsync support once and avoid
|
|
* the fcntl call every time sync is called.
|
|
*/
|
|
if( rc ) rc = fsync(fd);
|
|
|
|
#else
|
|
if( dataOnly ){
|
|
rc = fdatasync(fd);
|
|
}else{
|
|
rc = fsync(fd);
|
|
}
|
|
#endif /* HAVE_FULLFSYNC */
|
|
#endif /* defined(SQLITE_NO_SYNC) */
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Make sure all writes to a particular file are committed to disk.
|
|
**
|
|
** If dataOnly==0 then both the file itself and its metadata (file
|
|
** size, access time, etc) are synced. If dataOnly!=0 then only the
|
|
** file data is synced.
|
|
**
|
|
** Under Unix, also make sure that the directory entry for the file
|
|
** has been created by fsync-ing the directory that contains the file.
|
|
** If we do not do this and we encounter a power failure, the directory
|
|
** entry for the journal might not exist after we reboot. The next
|
|
** SQLite to access the file will not know that the journal exists (because
|
|
** the directory entry for the journal was never created) and the transaction
|
|
** will not roll back - possibly leading to database corruption.
|
|
*/
|
|
static int unixSync(sqlite3_file *id, int flags){
|
|
int rc;
|
|
unixFile *pFile = (unixFile*)id;
|
|
|
|
int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
|
|
int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
|
|
|
|
/* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
|
|
assert((flags&0x0F)==SQLITE_SYNC_NORMAL
|
|
|| (flags&0x0F)==SQLITE_SYNC_FULL
|
|
);
|
|
|
|
assert( pFile );
|
|
OSTRACE2("SYNC %-3d\n", pFile->h);
|
|
rc = full_fsync(pFile->h, isFullsync, isDataOnly);
|
|
SimulateIOError( rc=1 );
|
|
if( rc ){
|
|
return SQLITE_IOERR_FSYNC;
|
|
}
|
|
if( pFile->dirfd>=0 ){
|
|
OSTRACE4("DIRSYNC %-3d (have_fullfsync=%d fullsync=%d)\n", pFile->dirfd,
|
|
HAVE_FULLFSYNC, isFullsync);
|
|
#ifndef SQLITE_DISABLE_DIRSYNC
|
|
/* The directory sync is only attempted if full_fsync is
|
|
** turned off or unavailable. If a full_fsync occurred above,
|
|
** then the directory sync is superfluous.
|
|
*/
|
|
if( (!HAVE_FULLFSYNC || !isFullsync) && full_fsync(pFile->dirfd,0,0) ){
|
|
/*
|
|
** We have received multiple reports of fsync() returning
|
|
** errors when applied to directories on certain file systems.
|
|
** A failed directory sync is not a big deal. So it seems
|
|
** better to ignore the error. Ticket #1657
|
|
*/
|
|
/* return SQLITE_IOERR; */
|
|
}
|
|
#endif
|
|
close(pFile->dirfd); /* Only need to sync once, so close the directory */
|
|
pFile->dirfd = -1; /* when we are done. */
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Truncate an open file to a specified size
|
|
*/
|
|
static int unixTruncate(sqlite3_file *id, i64 nByte){
|
|
int rc;
|
|
assert( id );
|
|
SimulateIOError( return SQLITE_IOERR_TRUNCATE );
|
|
rc = ftruncate(((unixFile*)id)->h, (off_t)nByte);
|
|
if( rc ){
|
|
return SQLITE_IOERR_TRUNCATE;
|
|
}else{
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Determine the current size of a file in bytes
|
|
*/
|
|
static int unixFileSize(sqlite3_file *id, i64 *pSize){
|
|
int rc;
|
|
struct stat buf;
|
|
assert( id );
|
|
rc = fstat(((unixFile*)id)->h, &buf);
|
|
SimulateIOError( rc=1 );
|
|
if( rc!=0 ){
|
|
return SQLITE_IOERR_FSTAT;
|
|
}
|
|
*pSize = buf.st_size;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** This routine checks if there is a RESERVED lock held on the specified
|
|
** file by this or any other process. If such a lock is held, return
|
|
** non-zero. If the file is unlocked or holds only SHARED locks, then
|
|
** return zero.
|
|
*/
|
|
static int unixCheckReservedLock(sqlite3_file *id){
|
|
int r = 0;
|
|
unixFile *pFile = (unixFile*)id;
|
|
|
|
assert( pFile );
|
|
enterMutex(); /* Because pFile->pLock is shared across threads */
|
|
|
|
/* Check if a thread in this process holds such a lock */
|
|
if( pFile->pLock->locktype>SHARED_LOCK ){
|
|
r = 1;
|
|
}
|
|
|
|
/* Otherwise see if some other process holds it.
|
|
*/
|
|
if( !r ){
|
|
struct flock lock;
|
|
lock.l_whence = SEEK_SET;
|
|
lock.l_start = RESERVED_BYTE;
|
|
lock.l_len = 1;
|
|
lock.l_type = F_WRLCK;
|
|
fcntl(pFile->h, F_GETLK, &lock);
|
|
if( lock.l_type!=F_UNLCK ){
|
|
r = 1;
|
|
}
|
|
}
|
|
|
|
leaveMutex();
|
|
OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
|
|
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
** Lock the file with the lock specified by parameter locktype - one
|
|
** of the following:
|
|
**
|
|
** (1) SHARED_LOCK
|
|
** (2) RESERVED_LOCK
|
|
** (3) PENDING_LOCK
|
|
** (4) EXCLUSIVE_LOCK
|
|
**
|
|
** Sometimes when requesting one lock state, additional lock states
|
|
** are inserted in between. The locking might fail on one of the later
|
|
** transitions leaving the lock state different from what it started but
|
|
** still short of its goal. The following chart shows the allowed
|
|
** transitions and the inserted intermediate states:
|
|
**
|
|
** UNLOCKED -> SHARED
|
|
** SHARED -> RESERVED
|
|
** SHARED -> (PENDING) -> EXCLUSIVE
|
|
** RESERVED -> (PENDING) -> EXCLUSIVE
|
|
** PENDING -> EXCLUSIVE
|
|
**
|
|
** This routine will only increase a lock. Use the sqlite3OsUnlock()
|
|
** routine to lower a locking level.
|
|
*/
|
|
static int unixLock(sqlite3_file *id, int locktype){
|
|
/* The following describes the implementation of the various locks and
|
|
** lock transitions in terms of the POSIX advisory shared and exclusive
|
|
** lock primitives (called read-locks and write-locks below, to avoid
|
|
** confusion with SQLite lock names). The algorithms are complicated
|
|
** slightly in order to be compatible with windows systems simultaneously
|
|
** accessing the same database file, in case that is ever required.
|
|
**
|
|
** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
|
|
** byte', each single bytes at well known offsets, and the 'shared byte
|
|
** range', a range of 510 bytes at a well known offset.
|
|
**
|
|
** To obtain a SHARED lock, a read-lock is obtained on the 'pending
|
|
** byte'. If this is successful, a random byte from the 'shared byte
|
|
** range' is read-locked and the lock on the 'pending byte' released.
|
|
**
|
|
** A process may only obtain a RESERVED lock after it has a SHARED lock.
|
|
** A RESERVED lock is implemented by grabbing a write-lock on the
|
|
** 'reserved byte'.
|
|
**
|
|
** A process may only obtain a PENDING lock after it has obtained a
|
|
** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
|
|
** on the 'pending byte'. This ensures that no new SHARED locks can be
|
|
** obtained, but existing SHARED locks are allowed to persist. A process
|
|
** does not have to obtain a RESERVED lock on the way to a PENDING lock.
|
|
** This property is used by the algorithm for rolling back a journal file
|
|
** after a crash.
|
|
**
|
|
** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
|
|
** implemented by obtaining a write-lock on the entire 'shared byte
|
|
** range'. Since all other locks require a read-lock on one of the bytes
|
|
** within this range, this ensures that no other locks are held on the
|
|
** database.
|
|
**
|
|
** The reason a single byte cannot be used instead of the 'shared byte
|
|
** range' is that some versions of windows do not support read-locks. By
|
|
** locking a random byte from a range, concurrent SHARED locks may exist
|
|
** even if the locking primitive used is always a write-lock.
|
|
*/
|
|
int rc = SQLITE_OK;
|
|
unixFile *pFile = (unixFile*)id;
|
|
struct lockInfo *pLock = pFile->pLock;
|
|
struct flock lock;
|
|
int s;
|
|
|
|
assert( pFile );
|
|
OSTRACE7("LOCK %d %s was %s(%s,%d) pid=%d\n", pFile->h,
|
|
locktypeName(locktype), locktypeName(pFile->locktype),
|
|
locktypeName(pLock->locktype), pLock->cnt , getpid());
|
|
|
|
/* If there is already a lock of this type or more restrictive on the
|
|
** unixFile, do nothing. Don't use the end_lock: exit path, as
|
|
** enterMutex() hasn't been called yet.
|
|
*/
|
|
if( pFile->locktype>=locktype ){
|
|
OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h,
|
|
locktypeName(locktype));
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Make sure the locking sequence is correct
|
|
*/
|
|
assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
|
|
assert( locktype!=PENDING_LOCK );
|
|
assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
|
|
|
|
/* This mutex is needed because pFile->pLock is shared across threads
|
|
*/
|
|
enterMutex();
|
|
|
|
/* Make sure the current thread owns the pFile.
|
|
*/
|
|
rc = transferOwnership(pFile);
|
|
if( rc!=SQLITE_OK ){
|
|
leaveMutex();
|
|
return rc;
|
|
}
|
|
pLock = pFile->pLock;
|
|
|
|
/* If some thread using this PID has a lock via a different unixFile*
|
|
** handle that precludes the requested lock, return BUSY.
|
|
*/
|
|
if( (pFile->locktype!=pLock->locktype &&
|
|
(pLock->locktype>=PENDING_LOCK || locktype>SHARED_LOCK))
|
|
){
|
|
rc = SQLITE_BUSY;
|
|
goto end_lock;
|
|
}
|
|
|
|
/* If a SHARED lock is requested, and some thread using this PID already
|
|
** has a SHARED or RESERVED lock, then increment reference counts and
|
|
** return SQLITE_OK.
|
|
*/
|
|
if( locktype==SHARED_LOCK &&
|
|
(pLock->locktype==SHARED_LOCK || pLock->locktype==RESERVED_LOCK) ){
|
|
assert( locktype==SHARED_LOCK );
|
|
assert( pFile->locktype==0 );
|
|
assert( pLock->cnt>0 );
|
|
pFile->locktype = SHARED_LOCK;
|
|
pLock->cnt++;
|
|
pFile->pOpen->nLock++;
|
|
goto end_lock;
|
|
}
|
|
|
|
lock.l_len = 1L;
|
|
|
|
lock.l_whence = SEEK_SET;
|
|
|
|
/* A PENDING lock is needed before acquiring a SHARED lock and before
|
|
** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
|
|
** be released.
|
|
*/
|
|
if( locktype==SHARED_LOCK
|
|
|| (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
|
|
){
|
|
lock.l_type = (locktype==SHARED_LOCK?F_RDLCK:F_WRLCK);
|
|
lock.l_start = PENDING_BYTE;
|
|
s = fcntl(pFile->h, F_SETLK, &lock);
|
|
if( s==(-1) ){
|
|
rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
|
|
goto end_lock;
|
|
}
|
|
}
|
|
|
|
|
|
/* If control gets to this point, then actually go ahead and make
|
|
** operating system calls for the specified lock.
|
|
*/
|
|
if( locktype==SHARED_LOCK ){
|
|
assert( pLock->cnt==0 );
|
|
assert( pLock->locktype==0 );
|
|
|
|
/* Now get the read-lock */
|
|
lock.l_start = SHARED_FIRST;
|
|
lock.l_len = SHARED_SIZE;
|
|
s = fcntl(pFile->h, F_SETLK, &lock);
|
|
|
|
/* Drop the temporary PENDING lock */
|
|
lock.l_start = PENDING_BYTE;
|
|
lock.l_len = 1L;
|
|
lock.l_type = F_UNLCK;
|
|
if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){
|
|
rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
|
|
goto end_lock;
|
|
}
|
|
if( s==(-1) ){
|
|
rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
|
|
}else{
|
|
pFile->locktype = SHARED_LOCK;
|
|
pFile->pOpen->nLock++;
|
|
pLock->cnt = 1;
|
|
}
|
|
}else if( locktype==EXCLUSIVE_LOCK && pLock->cnt>1 ){
|
|
/* We are trying for an exclusive lock but another thread in this
|
|
** same process is still holding a shared lock. */
|
|
rc = SQLITE_BUSY;
|
|
}else{
|
|
/* The request was for a RESERVED or EXCLUSIVE lock. It is
|
|
** assumed that there is a SHARED or greater lock on the file
|
|
** already.
|
|
*/
|
|
assert( 0!=pFile->locktype );
|
|
lock.l_type = F_WRLCK;
|
|
switch( locktype ){
|
|
case RESERVED_LOCK:
|
|
lock.l_start = RESERVED_BYTE;
|
|
break;
|
|
case EXCLUSIVE_LOCK:
|
|
lock.l_start = SHARED_FIRST;
|
|
lock.l_len = SHARED_SIZE;
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
s = fcntl(pFile->h, F_SETLK, &lock);
|
|
if( s==(-1) ){
|
|
rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
|
|
}
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
pFile->locktype = locktype;
|
|
pLock->locktype = locktype;
|
|
}else if( locktype==EXCLUSIVE_LOCK ){
|
|
pFile->locktype = PENDING_LOCK;
|
|
pLock->locktype = PENDING_LOCK;
|
|
}
|
|
|
|
end_lock:
|
|
leaveMutex();
|
|
OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype),
|
|
rc==SQLITE_OK ? "ok" : "failed");
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Lower the locking level on file descriptor pFile to locktype. locktype
|
|
** must be either NO_LOCK or SHARED_LOCK.
|
|
**
|
|
** If the locking level of the file descriptor is already at or below
|
|
** the requested locking level, this routine is a no-op.
|
|
*/
|
|
static int unixUnlock(sqlite3_file *id, int locktype){
|
|
struct lockInfo *pLock;
|
|
struct flock lock;
|
|
int rc = SQLITE_OK;
|
|
unixFile *pFile = (unixFile*)id;
|
|
|
|
assert( pFile );
|
|
OSTRACE7("UNLOCK %d %d was %d(%d,%d) pid=%d\n", pFile->h, locktype,
|
|
pFile->locktype, pFile->pLock->locktype, pFile->pLock->cnt, getpid());
|
|
|
|
assert( locktype<=SHARED_LOCK );
|
|
if( pFile->locktype<=locktype ){
|
|
return SQLITE_OK;
|
|
}
|
|
if( CHECK_THREADID(pFile) ){
|
|
return SQLITE_MISUSE;
|
|
}
|
|
enterMutex();
|
|
pLock = pFile->pLock;
|
|
assert( pLock->cnt!=0 );
|
|
if( pFile->locktype>SHARED_LOCK ){
|
|
assert( pLock->locktype==pFile->locktype );
|
|
if( locktype==SHARED_LOCK ){
|
|
lock.l_type = F_RDLCK;
|
|
lock.l_whence = SEEK_SET;
|
|
lock.l_start = SHARED_FIRST;
|
|
lock.l_len = SHARED_SIZE;
|
|
if( fcntl(pFile->h, F_SETLK, &lock)==(-1) ){
|
|
/* This should never happen */
|
|
rc = SQLITE_IOERR_RDLOCK;
|
|
}
|
|
}
|
|
lock.l_type = F_UNLCK;
|
|
lock.l_whence = SEEK_SET;
|
|
lock.l_start = PENDING_BYTE;
|
|
lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE );
|
|
if( fcntl(pFile->h, F_SETLK, &lock)!=(-1) ){
|
|
pLock->locktype = SHARED_LOCK;
|
|
}else{
|
|
rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
|
|
}
|
|
}
|
|
if( locktype==NO_LOCK ){
|
|
struct openCnt *pOpen;
|
|
|
|
/* Decrement the shared lock counter. Release the lock using an
|
|
** OS call only when all threads in this same process have released
|
|
** the lock.
|
|
*/
|
|
pLock->cnt--;
|
|
if( pLock->cnt==0 ){
|
|
lock.l_type = F_UNLCK;
|
|
lock.l_whence = SEEK_SET;
|
|
lock.l_start = lock.l_len = 0L;
|
|
if( fcntl(pFile->h, F_SETLK, &lock)!=(-1) ){
|
|
pLock->locktype = NO_LOCK;
|
|
}else{
|
|
rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
|
|
}
|
|
}
|
|
|
|
/* Decrement the count of locks against this same file. When the
|
|
** count reaches zero, close any other file descriptors whose close
|
|
** was deferred because of outstanding locks.
|
|
*/
|
|
pOpen = pFile->pOpen;
|
|
pOpen->nLock--;
|
|
assert( pOpen->nLock>=0 );
|
|
if( pOpen->nLock==0 && pOpen->nPending>0 ){
|
|
int i;
|
|
for(i=0; i<pOpen->nPending; i++){
|
|
close(pOpen->aPending[i]);
|
|
}
|
|
free(pOpen->aPending);
|
|
pOpen->nPending = 0;
|
|
pOpen->aPending = 0;
|
|
}
|
|
}
|
|
leaveMutex();
|
|
pFile->locktype = locktype;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Close a file.
|
|
*/
|
|
static int unixClose(sqlite3_file *id){
|
|
unixFile *pFile = (unixFile *)id;
|
|
if( !pFile ) return SQLITE_OK;
|
|
unixUnlock(id, NO_LOCK);
|
|
if( pFile->dirfd>=0 ) close(pFile->dirfd);
|
|
pFile->dirfd = -1;
|
|
enterMutex();
|
|
|
|
if( pFile->pOpen->nLock ){
|
|
/* If there are outstanding locks, do not actually close the file just
|
|
** yet because that would clear those locks. Instead, add the file
|
|
** descriptor to pOpen->aPending. It will be automatically closed when
|
|
** the last lock is cleared.
|
|
*/
|
|
int *aNew;
|
|
struct openCnt *pOpen = pFile->pOpen;
|
|
aNew = realloc( pOpen->aPending, (pOpen->nPending+1)*sizeof(int) );
|
|
if( aNew==0 ){
|
|
/* If a malloc fails, just leak the file descriptor */
|
|
}else{
|
|
pOpen->aPending = aNew;
|
|
pOpen->aPending[pOpen->nPending] = pFile->h;
|
|
pOpen->nPending++;
|
|
}
|
|
}else{
|
|
/* There are no outstanding locks so we can close the file immediately */
|
|
close(pFile->h);
|
|
}
|
|
releaseLockInfo(pFile->pLock);
|
|
releaseOpenCnt(pFile->pOpen);
|
|
|
|
leaveMutex();
|
|
OSTRACE2("CLOSE %-3d\n", pFile->h);
|
|
OpenCounter(-1);
|
|
memset(pFile, 0, sizeof(unixFile));
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
|
|
#ifdef SQLITE_ENABLE_LOCKING_STYLE
|
|
#pragma mark AFP Support
|
|
|
|
/*
|
|
** The afpLockingContext structure contains all afp lock specific state
|
|
*/
|
|
typedef struct afpLockingContext afpLockingContext;
|
|
struct afpLockingContext {
|
|
unsigned long long sharedLockByte;
|
|
char *filePath;
|
|
};
|
|
|
|
struct ByteRangeLockPB2
|
|
{
|
|
unsigned long long offset; /* offset to first byte to lock */
|
|
unsigned long long length; /* nbr of bytes to lock */
|
|
unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
|
|
unsigned char unLockFlag; /* 1 = unlock, 0 = lock */
|
|
unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */
|
|
int fd; /* file desc to assoc this lock with */
|
|
};
|
|
|
|
#define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2)
|
|
|
|
/*
|
|
** Return 0 on success, 1 on failure. To match the behavior of the
|
|
** normal posix file locking (used in unixLock for example), we should
|
|
** provide 'richer' return codes - specifically to differentiate between
|
|
** 'file busy' and 'file system error' results.
|
|
*/
|
|
static int _AFPFSSetLock(
|
|
const char *path,
|
|
int fd,
|
|
unsigned long long offset,
|
|
unsigned long long length,
|
|
int setLockFlag
|
|
){
|
|
struct ByteRangeLockPB2 pb;
|
|
int err;
|
|
|
|
pb.unLockFlag = setLockFlag ? 0 : 1;
|
|
pb.startEndFlag = 0;
|
|
pb.offset = offset;
|
|
pb.length = length;
|
|
pb.fd = fd;
|
|
OSTRACE5("AFPLOCK setting lock %s for %d in range %llx:%llx\n",
|
|
(setLockFlag?"ON":"OFF"), fd, offset, length);
|
|
err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
|
|
if ( err==-1 ) {
|
|
OSTRACE4("AFPLOCK failed to fsctl() '%s' %d %s\n", path, errno,
|
|
strerror(errno));
|
|
return 1; /* error */
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine checks if there is a RESERVED lock held on the specified
|
|
** file by this or any other process. If such a lock is held, return
|
|
** non-zero. If the file is unlocked or holds only SHARED locks, then
|
|
** return zero.
|
|
*/
|
|
static int afpUnixCheckReservedLock(sqlite3_file *id){
|
|
int r = 0;
|
|
unixFile *pFile = (unixFile*)id;
|
|
|
|
assert( pFile );
|
|
afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
|
|
|
|
/* Check if a thread in this process holds such a lock */
|
|
if( pFile->locktype>SHARED_LOCK ){
|
|
r = 1;
|
|
}
|
|
|
|
/* Otherwise see if some other process holds it.
|
|
*/
|
|
if ( !r ) {
|
|
/* lock the byte */
|
|
int failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1,1);
|
|
if (failed) {
|
|
/* if we failed to get the lock then someone else must have it */
|
|
r = 1;
|
|
} else {
|
|
/* if we succeeded in taking the reserved lock, unlock it to restore
|
|
** the original state */
|
|
_AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0);
|
|
}
|
|
}
|
|
OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
|
|
|
|
return r;
|
|
}
|
|
|
|
/* AFP-style locking following the behavior of unixLock, see the unixLock
|
|
** function comments for details of lock management. */
|
|
static int afpUnixLock(sqlite3_file *id, int locktype)
|
|
{
|
|
int rc = SQLITE_OK;
|
|
unixFile *pFile = (unixFile*)id;
|
|
afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
|
|
int gotPendingLock = 0;
|
|
|
|
assert( pFile );
|
|
OSTRACE5("LOCK %d %s was %s pid=%d\n", pFile->h,
|
|
locktypeName(locktype), locktypeName(pFile->locktype), getpid());
|
|
/* If there is already a lock of this type or more restrictive on the
|
|
** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
|
|
** enterMutex() hasn't been called yet.
|
|
*/
|
|
if( pFile->locktype>=locktype ){
|
|
OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h,
|
|
locktypeName(locktype));
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Make sure the locking sequence is correct
|
|
*/
|
|
assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
|
|
assert( locktype!=PENDING_LOCK );
|
|
assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
|
|
|
|
/* This mutex is needed because pFile->pLock is shared across threads
|
|
*/
|
|
enterMutex();
|
|
|
|
/* Make sure the current thread owns the pFile.
|
|
*/
|
|
rc = transferOwnership(pFile);
|
|
if( rc!=SQLITE_OK ){
|
|
leaveMutex();
|
|
return rc;
|
|
}
|
|
|
|
/* A PENDING lock is needed before acquiring a SHARED lock and before
|
|
** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
|
|
** be released.
|
|
*/
|
|
if( locktype==SHARED_LOCK
|
|
|| (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
|
|
){
|
|
int failed = _AFPFSSetLock(context->filePath, pFile->h,
|
|
PENDING_BYTE, 1, 1);
|
|
if (failed) {
|
|
rc = SQLITE_BUSY;
|
|
goto afp_end_lock;
|
|
}
|
|
}
|
|
|
|
/* If control gets to this point, then actually go ahead and make
|
|
** operating system calls for the specified lock.
|
|
*/
|
|
if( locktype==SHARED_LOCK ){
|
|
int lk, failed;
|
|
int tries = 0;
|
|
|
|
/* Now get the read-lock */
|
|
/* note that the quality of the randomness doesn't matter that much */
|
|
lk = random();
|
|
context->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1);
|
|
failed = _AFPFSSetLock(context->filePath, pFile->h,
|
|
SHARED_FIRST+context->sharedLockByte, 1, 1);
|
|
|
|
/* Drop the temporary PENDING lock */
|
|
if (_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0)) {
|
|
rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
|
|
goto afp_end_lock;
|
|
}
|
|
|
|
if( failed ){
|
|
rc = SQLITE_BUSY;
|
|
} else {
|
|
pFile->locktype = SHARED_LOCK;
|
|
}
|
|
}else{
|
|
/* The request was for a RESERVED or EXCLUSIVE lock. It is
|
|
** assumed that there is a SHARED or greater lock on the file
|
|
** already.
|
|
*/
|
|
int failed = 0;
|
|
assert( 0!=pFile->locktype );
|
|
if (locktype >= RESERVED_LOCK && pFile->locktype < RESERVED_LOCK) {
|
|
/* Acquire a RESERVED lock */
|
|
failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1,1);
|
|
}
|
|
if (!failed && locktype == EXCLUSIVE_LOCK) {
|
|
/* Acquire an EXCLUSIVE lock */
|
|
|
|
/* Remove the shared lock before trying the range. we'll need to
|
|
** reestablish the shared lock if we can't get the afpUnixUnlock
|
|
*/
|
|
if (!_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
|
|
context->sharedLockByte, 1, 0)) {
|
|
/* now attemmpt to get the exclusive lock range */
|
|
failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST,
|
|
SHARED_SIZE, 1);
|
|
if (failed && _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
|
|
context->sharedLockByte, 1, 1)) {
|
|
rc = SQLITE_IOERR_RDLOCK; /* this should never happen */
|
|
}
|
|
} else {
|
|
/* */
|
|
rc = SQLITE_IOERR_UNLOCK; /* this should never happen */
|
|
}
|
|
}
|
|
if( failed && rc == SQLITE_OK){
|
|
rc = SQLITE_BUSY;
|
|
}
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
pFile->locktype = locktype;
|
|
}else if( locktype==EXCLUSIVE_LOCK ){
|
|
pFile->locktype = PENDING_LOCK;
|
|
}
|
|
|
|
afp_end_lock:
|
|
leaveMutex();
|
|
OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype),
|
|
rc==SQLITE_OK ? "ok" : "failed");
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Lower the locking level on file descriptor pFile to locktype. locktype
|
|
** must be either NO_LOCK or SHARED_LOCK.
|
|
**
|
|
** If the locking level of the file descriptor is already at or below
|
|
** the requested locking level, this routine is a no-op.
|
|
*/
|
|
static int afpUnixUnlock(sqlite3_file *id, int locktype) {
|
|
struct flock lock;
|
|
int rc = SQLITE_OK;
|
|
unixFile *pFile = (unixFile*)id;
|
|
afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
|
|
|
|
assert( pFile );
|
|
OSTRACE5("UNLOCK %d %d was %d pid=%d\n", pFile->h, locktype,
|
|
pFile->locktype, getpid());
|
|
|
|
assert( locktype<=SHARED_LOCK );
|
|
if( pFile->locktype<=locktype ){
|
|
return SQLITE_OK;
|
|
}
|
|
if( CHECK_THREADID(pFile) ){
|
|
return SQLITE_MISUSE;
|
|
}
|
|
enterMutex();
|
|
if( pFile->locktype>SHARED_LOCK ){
|
|
if( locktype==SHARED_LOCK ){
|
|
int failed = 0;
|
|
|
|
/* unlock the exclusive range - then re-establish the shared lock */
|
|
if (pFile->locktype==EXCLUSIVE_LOCK) {
|
|
failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST,
|
|
SHARED_SIZE, 0);
|
|
if (!failed) {
|
|
/* successfully removed the exclusive lock */
|
|
if (_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST+
|
|
context->sharedLockByte, 1, 1)) {
|
|
/* failed to re-establish our shared lock */
|
|
rc = SQLITE_IOERR_RDLOCK; /* This should never happen */
|
|
}
|
|
} else {
|
|
/* This should never happen - failed to unlock the exclusive range */
|
|
rc = SQLITE_IOERR_UNLOCK;
|
|
}
|
|
}
|
|
}
|
|
if (rc == SQLITE_OK && pFile->locktype>=PENDING_LOCK) {
|
|
if (_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0)){
|
|
/* failed to release the pending lock */
|
|
rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
|
|
}
|
|
}
|
|
if (rc == SQLITE_OK && pFile->locktype>=RESERVED_LOCK) {
|
|
if (_AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0)) {
|
|
/* failed to release the reserved lock */
|
|
rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
|
|
}
|
|
}
|
|
}
|
|
if( locktype==NO_LOCK ){
|
|
int failed = _AFPFSSetLock(context->filePath, pFile->h,
|
|
SHARED_FIRST + context->sharedLockByte, 1, 0);
|
|
if (failed) {
|
|
rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
|
|
}
|
|
}
|
|
if (rc == SQLITE_OK)
|
|
pFile->locktype = locktype;
|
|
leaveMutex();
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Close a file & cleanup AFP specific locking context
|
|
*/
|
|
static int afpUnixClose(sqlite3_file *id) {
|
|
unixFile *pFile = (unixFile*)pId;
|
|
|
|
if( !pFile ) return SQLITE_OK;
|
|
afpUnixUnlock(*pId, NO_LOCK);
|
|
/* free the AFP locking structure */
|
|
if (pFile->lockingContext != NULL) {
|
|
if (((afpLockingContext *)pFile->lockingContext)->filePath != NULL)
|
|
sqlite3_free(((afpLockingContext*)pFile->lockingContext)->filePath);
|
|
sqlite3_free(pFile->lockingContext);
|
|
}
|
|
|
|
if( pFile->dirfd>=0 ) close(pFile->dirfd);
|
|
pFile->dirfd = -1;
|
|
close(pFile->h);
|
|
OSTRACE2("CLOSE %-3d\n", pFile->h);
|
|
OpenCounter(-1);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
|
|
#pragma mark flock() style locking
|
|
|
|
/*
|
|
** The flockLockingContext is not used
|
|
*/
|
|
typedef void flockLockingContext;
|
|
|
|
static int flockUnixCheckReservedLock(sqlite3_file *id) {
|
|
unixFile *pFile = (unixFile*)id;
|
|
|
|
if (pFile->locktype == RESERVED_LOCK) {
|
|
return 1; /* already have a reserved lock */
|
|
} else {
|
|
/* attempt to get the lock */
|
|
int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
|
|
if (!rc) {
|
|
/* got the lock, unlock it */
|
|
flock(pFile->h, LOCK_UN);
|
|
return 0; /* no one has it reserved */
|
|
}
|
|
return 1; /* someone else might have it reserved */
|
|
}
|
|
}
|
|
|
|
static int flockUnixLock(sqlite3_file *id, int locktype) {
|
|
unixFile *pFile = (unixFile*)id;
|
|
|
|
/* if we already have a lock, it is exclusive.
|
|
** Just adjust level and punt on outta here. */
|
|
if (pFile->locktype > NO_LOCK) {
|
|
pFile->locktype = locktype;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* grab an exclusive lock */
|
|
int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
|
|
if (rc) {
|
|
/* didn't get, must be busy */
|
|
return SQLITE_BUSY;
|
|
} else {
|
|
/* got it, set the type and return ok */
|
|
pFile->locktype = locktype;
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
|
|
static int flockUnixUnlock(sqlite3_file *id, int locktype) {
|
|
unixFile *pFile = (unixFile*)id;
|
|
|
|
assert( locktype<=SHARED_LOCK );
|
|
|
|
/* no-op if possible */
|
|
if( pFile->locktype==locktype ){
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* shared can just be set because we always have an exclusive */
|
|
if (locktype==SHARED_LOCK) {
|
|
pFile->locktype = locktype;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* no, really, unlock. */
|
|
int rc = flock(pFile->h, LOCK_UN);
|
|
if (rc)
|
|
return SQLITE_IOERR_UNLOCK;
|
|
else {
|
|
pFile->locktype = NO_LOCK;
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Close a file.
|
|
*/
|
|
static int flockUnixClose(sqlite3_file *pId) {
|
|
unixFile *pFile = (unixFile*)*pId;
|
|
|
|
if( !pFile ) return SQLITE_OK;
|
|
flockUnixUnlock(*pId, NO_LOCK);
|
|
|
|
if( pFile->dirfd>=0 ) close(pFile->dirfd);
|
|
pFile->dirfd = -1;
|
|
enterMutex();
|
|
|
|
close(pFile->h);
|
|
leaveMutex();
|
|
OSTRACE2("CLOSE %-3d\n", pFile->h);
|
|
OpenCounter(-1);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
#pragma mark Old-School .lock file based locking
|
|
|
|
/*
|
|
** The dotlockLockingContext structure contains all dotlock (.lock) lock
|
|
** specific state
|
|
*/
|
|
typedef struct dotlockLockingContext dotlockLockingContext;
|
|
struct dotlockLockingContext {
|
|
char *lockPath;
|
|
};
|
|
|
|
|
|
static int dotlockUnixCheckReservedLock(sqlite3_file *id) {
|
|
unixFile *pFile = (unixFile*)id;
|
|
dotlockLockingContext *context =
|
|
(dotlockLockingContext *) pFile->lockingContext;
|
|
|
|
if (pFile->locktype == RESERVED_LOCK) {
|
|
return 1; /* already have a reserved lock */
|
|
} else {
|
|
struct stat statBuf;
|
|
if (lstat(context->lockPath,&statBuf) == 0)
|
|
/* file exists, someone else has the lock */
|
|
return 1;
|
|
else
|
|
/* file does not exist, we could have it if we want it */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int dotlockUnixLock(sqlite3_file *id, int locktype) {
|
|
unixFile *pFile = (unixFile*)id;
|
|
dotlockLockingContext *context =
|
|
(dotlockLockingContext *) pFile->lockingContext;
|
|
|
|
/* if we already have a lock, it is exclusive.
|
|
** Just adjust level and punt on outta here. */
|
|
if (pFile->locktype > NO_LOCK) {
|
|
pFile->locktype = locktype;
|
|
|
|
/* Always update the timestamp on the old file */
|
|
utimes(context->lockPath,NULL);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* check to see if lock file already exists */
|
|
struct stat statBuf;
|
|
if (lstat(context->lockPath,&statBuf) == 0){
|
|
return SQLITE_BUSY; /* it does, busy */
|
|
}
|
|
|
|
/* grab an exclusive lock */
|
|
int fd = open(context->lockPath,O_RDONLY|O_CREAT|O_EXCL,0600);
|
|
if (fd < 0) {
|
|
/* failed to open/create the file, someone else may have stolen the lock */
|
|
return SQLITE_BUSY;
|
|
}
|
|
close(fd);
|
|
|
|
/* got it, set the type and return ok */
|
|
pFile->locktype = locktype;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
static int dotlockUnixUnlock(sqlite3_file *id, int locktype) {
|
|
unixFile *pFile = (unixFile*)id;
|
|
dotlockLockingContext *context =
|
|
(dotlockLockingContext *) pFile->lockingContext;
|
|
|
|
assert( locktype<=SHARED_LOCK );
|
|
|
|
/* no-op if possible */
|
|
if( pFile->locktype==locktype ){
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* shared can just be set because we always have an exclusive */
|
|
if (locktype==SHARED_LOCK) {
|
|
pFile->locktype = locktype;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* no, really, unlock. */
|
|
unlink(context->lockPath);
|
|
pFile->locktype = NO_LOCK;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Close a file.
|
|
*/
|
|
static int dotlockUnixClose(sqlite3_file *id) {
|
|
unixFile *pFile = (unixFile*)id;
|
|
|
|
if( !pFile ) return SQLITE_OK;
|
|
dotlockUnixUnlock(*pId, NO_LOCK);
|
|
/* free the dotlock locking structure */
|
|
if (pFile->lockingContext != NULL) {
|
|
if (((dotlockLockingContext *)pFile->lockingContext)->lockPath != NULL)
|
|
sqlite3_free( ( (dotlockLockingContext *)
|
|
pFile->lockingContext)->lockPath);
|
|
sqlite3_free(pFile->lockingContext);
|
|
}
|
|
|
|
if( pFile->dirfd>=0 ) close(pFile->dirfd);
|
|
pFile->dirfd = -1;
|
|
enterMutex();
|
|
|
|
close(pFile->h);
|
|
|
|
leaveMutex();
|
|
OSTRACE2("CLOSE %-3d\n", pFile->h);
|
|
OpenCounter(-1);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
|
|
#pragma mark No locking
|
|
|
|
/*
|
|
** The nolockLockingContext is void
|
|
*/
|
|
typedef void nolockLockingContext;
|
|
|
|
static int nolockUnixCheckReservedLock(sqlite3_file *id) {
|
|
return 0;
|
|
}
|
|
|
|
static int nolockUnixLock(sqlite3_file *id, int locktype) {
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
static int nolockUnixUnlock(sqlite3_file *id, int locktype) {
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Close a file.
|
|
*/
|
|
static int nolockUnixClose(sqlite3_file *id) {
|
|
unixFile *pFile = (unixFile*)id;
|
|
|
|
if( !pFile ) return SQLITE_OK;
|
|
if( pFile->dirfd>=0 ) close(pFile->dirfd);
|
|
pFile->dirfd = -1;
|
|
enterMutex();
|
|
|
|
close(pFile->h);
|
|
|
|
leaveMutex();
|
|
OSTRACE2("CLOSE %-3d\n", pFile->h);
|
|
OpenCounter(-1);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
|
|
|
|
|
|
/*
|
|
** Information and control of an open file handle.
|
|
*/
|
|
static int unixFileControl(sqlite3_file *id, int op, void *pArg){
|
|
switch( op ){
|
|
case SQLITE_FCNTL_LOCKSTATE: {
|
|
*(int*)pArg = ((unixFile*)id)->locktype;
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
/*
|
|
** Return the sector size in bytes of the underlying block device for
|
|
** the specified file. This is almost always 512 bytes, but may be
|
|
** larger for some devices.
|
|
**
|
|
** SQLite code assumes this function cannot fail. It also assumes that
|
|
** if two files are created in the same file-system directory (i.e.
|
|
** a database and its journal file) that the sector size will be the
|
|
** same for both.
|
|
*/
|
|
static int unixSectorSize(sqlite3_file *id){
|
|
return SQLITE_DEFAULT_SECTOR_SIZE;
|
|
}
|
|
|
|
/*
|
|
** Return the device characteristics for the file. This is always 0.
|
|
*/
|
|
static int unixDeviceCharacteristics(sqlite3_file *id){
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** This vector defines all the methods that can operate on an sqlite3_file
|
|
** for unix.
|
|
*/
|
|
static const sqlite3_io_methods sqlite3UnixIoMethod = {
|
|
1, /* iVersion */
|
|
unixClose,
|
|
unixRead,
|
|
unixWrite,
|
|
unixTruncate,
|
|
unixSync,
|
|
unixFileSize,
|
|
unixLock,
|
|
unixUnlock,
|
|
unixCheckReservedLock,
|
|
unixFileControl,
|
|
unixSectorSize,
|
|
unixDeviceCharacteristics
|
|
};
|
|
|
|
#ifdef SQLITE_ENABLE_LOCKING_STYLE
|
|
/*
|
|
** This vector defines all the methods that can operate on an sqlite3_file
|
|
** for unix with AFP style file locking.
|
|
*/
|
|
static const sqlite3_io_methods sqlite3AFPLockingUnixIoMethod = {
|
|
1, /* iVersion */
|
|
unixClose,
|
|
unixRead,
|
|
unixWrite,
|
|
unixTruncate,
|
|
unixSync,
|
|
unixFileSize,
|
|
afpUnixLock,
|
|
afpUnixUnlock,
|
|
afpUnixCheckReservedLock,
|
|
unixFileControl,
|
|
unixSectorSize,
|
|
unixDeviceCharacteristics
|
|
};
|
|
|
|
/*
|
|
** This vector defines all the methods that can operate on an sqlite3_file
|
|
** for unix with flock() style file locking.
|
|
*/
|
|
static const sqlite3_io_methods sqlite3FlockLockingUnixIoMethod = {
|
|
1, /* iVersion */
|
|
flockUnixClose,
|
|
unixRead,
|
|
unixWrite,
|
|
unixTruncate,
|
|
unixSync,
|
|
unixFileSize,
|
|
flockUnixLock,
|
|
flockUnixUnlock,
|
|
flockUnixCheckReservedLock,
|
|
unixFileControl,
|
|
unixSectorSize,
|
|
unixDeviceCharacteristics
|
|
};
|
|
|
|
/*
|
|
** This vector defines all the methods that can operate on an sqlite3_file
|
|
** for unix with dotlock style file locking.
|
|
*/
|
|
static const sqlite3_io_methods sqlite3DotlockLockingUnixIoMethod = {
|
|
1, /* iVersion */
|
|
dotlockUnixClose,
|
|
unixRead,
|
|
unixWrite,
|
|
unixTruncate,
|
|
unixSync,
|
|
unixFileSize,
|
|
dotlockUnixLock,
|
|
dotlockUnixUnlock,
|
|
dotlockUnixCheckReservedLock,
|
|
unixFileControl,
|
|
unixSectorSize,
|
|
unixDeviceCharacteristics
|
|
};
|
|
|
|
/*
|
|
** This vector defines all the methods that can operate on an sqlite3_file
|
|
** for unix with dotlock style file locking.
|
|
*/
|
|
static const sqlite3_io_methods sqlite3NolockLockingUnixIoMethod = {
|
|
1, /* iVersion */
|
|
nolockUnixClose,
|
|
unixRead,
|
|
unixWrite,
|
|
unixTruncate,
|
|
unixSync,
|
|
unixFileSize,
|
|
nolockUnixLock,
|
|
nolockUnixUnlock,
|
|
nolockUnixCheckReservedLock,
|
|
unixFileControl,
|
|
unixSectorSize,
|
|
unixDeviceCharacteristics
|
|
};
|
|
|
|
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
|
|
|
|
/*
|
|
** Allocate memory for a new unixFile and initialize that unixFile.
|
|
** Write a pointer to the new unixFile into *pId.
|
|
** If we run out of memory, close the file and return an error.
|
|
*/
|
|
#ifdef SQLITE_ENABLE_LOCKING_STYLE
|
|
/*
|
|
** When locking extensions are enabled, the filepath and locking style
|
|
** are needed to determine the unixFile pMethod to use for locking operations.
|
|
** The locking-style specific lockingContext data structure is created
|
|
** and assigned here also.
|
|
*/
|
|
static int fillInUnixFile(
|
|
int h, /* Open file descriptor of file being opened */
|
|
int dirfd, /* Directory file descriptor */
|
|
sqlite3_file *pId, /* Write completed initialization here */
|
|
const char *zFilename, /* Name of the file being opened */
|
|
){
|
|
sqlite3LockingStyle lockingStyle;
|
|
unixFile *pNew = (unixFile *)pId;
|
|
int rc;
|
|
|
|
memset(pNew, 0, sizeof(unixFile));
|
|
lockingStyle = sqlite3DetectLockingStyle(zFilename, h);
|
|
if ( lockingStyle == posixLockingStyle ) {
|
|
enterMutex();
|
|
rc = findLockInfo(h, &pNew->pLock, &pNew->pOpen);
|
|
leaveMutex();
|
|
if( rc ){
|
|
close(h);
|
|
unlink(zFilename);
|
|
return SQLITE_NOMEM;
|
|
}
|
|
} else {
|
|
/* pLock and pOpen are only used for posix advisory locking */
|
|
pNew->pLock = NULL;
|
|
pNew->pOpen = NULL;
|
|
}
|
|
pNew->dirfd = -1;
|
|
pNew->h = h;
|
|
SET_THREADID(pNew);
|
|
pNew = sqlite3_malloc( sizeof(unixFile) );
|
|
if( pNew==0 ){
|
|
close(h);
|
|
enterMutex();
|
|
releaseLockInfo(pNew->pLock);
|
|
releaseOpenCnt(pNew->pOpen);
|
|
leaveMutex();
|
|
return SQLITE_NOMEM;
|
|
}else{
|
|
switch(lockingStyle) {
|
|
case afpLockingStyle: {
|
|
/* afp locking uses the file path so it needs to be included in
|
|
** the afpLockingContext */
|
|
int nFilename;
|
|
pNew->pMethod = &sqlite3AFPLockingUnixIoMethod;
|
|
pNew->lockingContext =
|
|
sqlite3_malloc(sizeof(afpLockingContext));
|
|
nFilename = strlen(zFilename)+1;
|
|
((afpLockingContext *)pNew->lockingContext)->filePath =
|
|
sqlite3_malloc(nFilename);
|
|
memcpy(((afpLockingContext *)pNew->lockingContext)->filePath,
|
|
zFilename, nFilename);
|
|
srandomdev();
|
|
break;
|
|
}
|
|
case flockLockingStyle:
|
|
/* flock locking doesn't need additional lockingContext information */
|
|
pNew->pMethod = &sqlite3FlockLockingUnixIoMethod;
|
|
break;
|
|
case dotlockLockingStyle: {
|
|
/* dotlock locking uses the file path so it needs to be included in
|
|
** the dotlockLockingContext */
|
|
int nFilename;
|
|
pNew->pMethod = &sqlite3DotlockLockingUnixIoMethod;
|
|
pNew->lockingContext = sqlite3_malloc(
|
|
sizeof(dotlockLockingContext));
|
|
nFilename = strlen(zFilename) + 6;
|
|
((dotlockLockingContext *)pNew->lockingContext)->lockPath =
|
|
sqlite3_malloc( nFilename );
|
|
sqlite3_snprintf(nFilename,
|
|
((dotlockLockingContext *)pNew->lockingContext)->lockPath,
|
|
"%s.lock", zFilename);
|
|
break;
|
|
}
|
|
case posixLockingStyle:
|
|
/* posix locking doesn't need additional lockingContext information */
|
|
pNew->pMethod = &sqlite3UnixIoMethod;
|
|
break;
|
|
case noLockingStyle:
|
|
case unsupportedLockingStyle:
|
|
default:
|
|
pNew->pMethod = &sqlite3NolockLockingUnixIoMethod;
|
|
}
|
|
OpenCounter(+1);
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
#else /* SQLITE_ENABLE_LOCKING_STYLE */
|
|
static int fillInUnixFile(
|
|
int h, /* Open file descriptor on file being opened */
|
|
int dirfd,
|
|
sqlite3_file *pId, /* Write to the unixFile structure here */
|
|
const char *zFilename /* Name of the file being opened */
|
|
){
|
|
unixFile *pNew = (unixFile *)pId;
|
|
int rc;
|
|
|
|
#ifdef FD_CLOEXEC
|
|
fcntl(h, F_SETFD, fcntl(h, F_GETFD, 0) | FD_CLOEXEC);
|
|
#endif
|
|
|
|
enterMutex();
|
|
rc = findLockInfo(h, &pNew->pLock, &pNew->pOpen);
|
|
leaveMutex();
|
|
if( rc ){
|
|
if( dirfd>=0 ) close(dirfd);
|
|
close(h);
|
|
return SQLITE_NOMEM;
|
|
}
|
|
|
|
OSTRACE3("OPEN %-3d %s\n", h, zFilename);
|
|
pNew->dirfd = -1;
|
|
pNew->h = h;
|
|
pNew->dirfd = dirfd;
|
|
SET_THREADID(pNew);
|
|
|
|
pNew->pMethod = &sqlite3UnixIoMethod;
|
|
OpenCounter(+1);
|
|
return SQLITE_OK;
|
|
}
|
|
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
|
|
|
|
/*
|
|
** Open a file descriptor to the directory containing file zFilename.
|
|
** If successful, *pFd is set to the opened file descriptor and
|
|
** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
|
|
** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
|
|
** value.
|
|
**
|
|
** If SQLITE_OK is returned, the caller is responsible for closing
|
|
** the file descriptor *pFd using close().
|
|
*/
|
|
static int openDirectory(const char *zFilename, int *pFd){
|
|
int ii;
|
|
int fd = -1;
|
|
char zDirname[MAX_PATHNAME+1];
|
|
|
|
sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
|
|
for(ii=strlen(zDirname); ii>=0 && zDirname[ii]!='/'; ii--);
|
|
if( ii>0 ){
|
|
zDirname[ii] = '\0';
|
|
fd = open(zDirname, O_RDONLY|O_BINARY, 0);
|
|
if( fd>=0 ){
|
|
#ifdef FD_CLOEXEC
|
|
fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
|
|
#endif
|
|
OSTRACE3("OPENDIR %-3d %s\n", fd, zDirname);
|
|
}
|
|
}
|
|
*pFd = fd;
|
|
return (fd>=0?SQLITE_OK:SQLITE_CANTOPEN);
|
|
}
|
|
|
|
/*
|
|
** Open the file zPath.
|
|
**
|
|
** Previously, the SQLite OS layer used three functions in place of this
|
|
** one:
|
|
**
|
|
** sqlite3OsOpenReadWrite();
|
|
** sqlite3OsOpenReadOnly();
|
|
** sqlite3OsOpenExclusive();
|
|
**
|
|
** These calls correspond to the following combinations of flags:
|
|
**
|
|
** ReadWrite() -> (READWRITE | CREATE)
|
|
** ReadOnly() -> (READONLY)
|
|
** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
|
|
**
|
|
** The old OpenExclusive() accepted a boolean argument - "delFlag". If
|
|
** true, the file was configured to be automatically deleted when the
|
|
** file handle closed. To achieve the same effect using this new
|
|
** interface, add the DELETEONCLOSE flag to those specified above for
|
|
** OpenExclusive().
|
|
*/
|
|
static int unixOpen(
|
|
sqlite3_vfs *pVfs,
|
|
const char *zPath,
|
|
sqlite3_file *pFile,
|
|
int flags,
|
|
int *pOutFlags
|
|
){
|
|
int fd = 0; /* File descriptor returned by open() */
|
|
int dirfd = -1; /* Directory file descriptor */
|
|
int oflags = 0; /* Flags to pass to open() */
|
|
int eType = flags&0xFFFFFF00; /* Type of file to open */
|
|
|
|
int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
|
|
int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
|
|
int isCreate = (flags & SQLITE_OPEN_CREATE);
|
|
int isReadonly = (flags & SQLITE_OPEN_READONLY);
|
|
int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
|
|
|
|
/* If creating a master or main-file journal, this function will open
|
|
** a file-descriptor on the directory too. The first time unixSync()
|
|
** is called the directory file descriptor will be fsync()ed and close()d.
|
|
*/
|
|
int isOpenDirectory = (isCreate &&
|
|
(eType==SQLITE_OPEN_MASTER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL)
|
|
);
|
|
|
|
/* Check the following statements are true:
|
|
**
|
|
** (a) Exactly one of the READWRITE and READONLY flags must be set, and
|
|
** (b) if CREATE is set, then READWRITE must also be set, and
|
|
** (c) if EXCLUSIVE is set, then CREATE must also be set.
|
|
** (d) if DELETEONCLOSE is set, then CREATE must also be set.
|
|
*/
|
|
assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
|
|
assert(isCreate==0 || isReadWrite);
|
|
assert(isExclusive==0 || isCreate);
|
|
assert(isDelete==0 || isCreate);
|
|
|
|
|
|
/* The main DB, main journal, and master journal are never automatically
|
|
** deleted
|
|
*/
|
|
assert( eType!=SQLITE_OPEN_MAIN_DB || !isDelete );
|
|
assert( eType!=SQLITE_OPEN_MAIN_JOURNAL || !isDelete );
|
|
assert( eType!=SQLITE_OPEN_MASTER_JOURNAL || !isDelete );
|
|
|
|
/* Assert that the upper layer has set one of the "file-type" flags. */
|
|
assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB
|
|
|| eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
|
|
|| eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL
|
|
|| eType==SQLITE_OPEN_TRANSIENT_DB
|
|
);
|
|
|
|
if( isReadonly ) oflags |= O_RDONLY;
|
|
if( isReadWrite ) oflags |= O_RDWR;
|
|
if( isCreate ) oflags |= O_CREAT;
|
|
if( isExclusive ) oflags |= (O_EXCL|O_NOFOLLOW);
|
|
oflags |= (O_LARGEFILE|O_BINARY);
|
|
|
|
memset(pFile, 0, sizeof(unixFile));
|
|
fd = open(zPath, oflags, isDelete?0600:SQLITE_DEFAULT_FILE_PERMISSIONS);
|
|
if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
|
|
/* Failed to open the file for read/write access. Try read-only. */
|
|
flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
|
|
flags |= SQLITE_OPEN_READONLY;
|
|
return unixOpen(pVfs, zPath, pFile, flags, pOutFlags);
|
|
}
|
|
if( fd<0 ){
|
|
return SQLITE_CANTOPEN;
|
|
}
|
|
if( isDelete ){
|
|
unlink(zPath);
|
|
}
|
|
if( pOutFlags ){
|
|
*pOutFlags = flags;
|
|
}
|
|
|
|
assert(fd!=0);
|
|
if( isOpenDirectory ){
|
|
int rc = openDirectory(zPath, &dirfd);
|
|
if( rc!=SQLITE_OK ){
|
|
close(fd);
|
|
return rc;
|
|
}
|
|
}
|
|
return fillInUnixFile(fd, dirfd, pFile, zPath);
|
|
}
|
|
|
|
/*
|
|
** Delete the file at zPath. If the dirSync argument is true, fsync()
|
|
** the directory after deleting the file.
|
|
*/
|
|
static int unixDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
|
|
int rc = SQLITE_OK;
|
|
SimulateIOError(return SQLITE_IOERR_DELETE);
|
|
unlink(zPath);
|
|
if( dirSync ){
|
|
int fd;
|
|
rc = openDirectory(zPath, &fd);
|
|
if( rc==SQLITE_OK ){
|
|
if( fsync(fd) ){
|
|
rc = SQLITE_IOERR_DIR_FSYNC;
|
|
}
|
|
close(fd);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Test the existance of or access permissions of file zPath. The
|
|
** test performed depends on the value of flags:
|
|
**
|
|
** SQLITE_ACCESS_EXISTS: Return 1 if the file exists
|
|
** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
|
|
** SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
|
|
**
|
|
** Otherwise return 0.
|
|
*/
|
|
static int unixAccess(sqlite3_vfs *pVfs, const char *zPath, int flags){
|
|
int amode = 0;
|
|
switch( flags ){
|
|
case SQLITE_ACCESS_EXISTS:
|
|
amode = F_OK;
|
|
break;
|
|
case SQLITE_ACCESS_READWRITE:
|
|
amode = W_OK|R_OK;
|
|
break;
|
|
case SQLITE_ACCESS_READ:
|
|
amode = R_OK;
|
|
break;
|
|
|
|
default:
|
|
assert(!"Invalid flags argument");
|
|
}
|
|
return (access(zPath, amode)==0);
|
|
}
|
|
|
|
/*
|
|
** Create a temporary file name in zBuf. zBuf must be allocated
|
|
** by the calling process and must be big enough to hold at least
|
|
** pVfs->mxPathname bytes.
|
|
*/
|
|
static int unixGetTempname(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
|
|
static const char *azDirs[] = {
|
|
0,
|
|
"/var/tmp",
|
|
"/usr/tmp",
|
|
"/tmp",
|
|
".",
|
|
};
|
|
static const unsigned char zChars[] =
|
|
"abcdefghijklmnopqrstuvwxyz"
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
"0123456789";
|
|
int i, j;
|
|
struct stat buf;
|
|
const char *zDir = ".";
|
|
|
|
/* It's odd to simulate an io-error here, but really this is just
|
|
** using the io-error infrastructure to test that SQLite handles this
|
|
** function failing.
|
|
*/
|
|
SimulateIOError( return SQLITE_ERROR );
|
|
|
|
azDirs[0] = sqlite3_temp_directory;
|
|
for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
|
|
if( azDirs[i]==0 ) continue;
|
|
if( stat(azDirs[i], &buf) ) continue;
|
|
if( !S_ISDIR(buf.st_mode) ) continue;
|
|
if( access(azDirs[i], 07) ) continue;
|
|
zDir = azDirs[i];
|
|
break;
|
|
}
|
|
if( strlen(zDir) - sizeof(SQLITE_TEMP_FILE_PREFIX) - 17 <=0 ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
do{
|
|
assert( pVfs->mxPathname==MAX_PATHNAME );
|
|
sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
|
|
j = strlen(zBuf);
|
|
sqlite3Randomness(15, &zBuf[j]);
|
|
for(i=0; i<15; i++, j++){
|
|
zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
|
|
}
|
|
zBuf[j] = 0;
|
|
}while( access(zBuf,0)==0 );
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
|
|
/*
|
|
** Turn a relative pathname into a full pathname. The relative path
|
|
** is stored as a nul-terminated string in the buffer pointed to by
|
|
** zPath.
|
|
**
|
|
** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
|
|
** (in this case, MAX_PATHNAME bytes). The full-path is written to
|
|
** this buffer before returning.
|
|
*/
|
|
static int unixFullPathname(
|
|
sqlite3_vfs *pVfs, /* Pointer to vfs object */
|
|
const char *zPath, /* Possibly relative input path */
|
|
int nOut, /* Size of output buffer in bytes */
|
|
char *zOut /* Output buffer */
|
|
){
|
|
|
|
/* It's odd to simulate an io-error here, but really this is just
|
|
** using the io-error infrastructure to test that SQLite handles this
|
|
** function failing. This function could fail if, for example, the
|
|
** current working directly has been unlinked.
|
|
*/
|
|
SimulateIOError( return SQLITE_ERROR );
|
|
|
|
assert( pVfs->mxPathname==MAX_PATHNAME );
|
|
zOut[nOut-1] = '\0';
|
|
if( zPath[0]=='/' ){
|
|
sqlite3_snprintf(nOut, zOut, "%s", zPath);
|
|
}else{
|
|
int nCwd;
|
|
if( getcwd(zOut, nOut-1)==0 ){
|
|
return SQLITE_CANTOPEN;
|
|
}
|
|
nCwd = strlen(zOut);
|
|
sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath);
|
|
}
|
|
return SQLITE_OK;
|
|
|
|
#if 0
|
|
/*
|
|
** Remove "/./" path elements and convert "/A/./" path elements
|
|
** to just "/".
|
|
*/
|
|
if( zFull ){
|
|
int i, j;
|
|
for(i=j=0; zFull[i]; i++){
|
|
if( zFull[i]=='/' ){
|
|
if( zFull[i+1]=='/' ) continue;
|
|
if( zFull[i+1]=='.' && zFull[i+2]=='/' ){
|
|
i += 1;
|
|
continue;
|
|
}
|
|
if( zFull[i+1]=='.' && zFull[i+2]=='.' && zFull[i+3]=='/' ){
|
|
while( j>0 && zFull[j-1]!='/' ){ j--; }
|
|
i += 3;
|
|
continue;
|
|
}
|
|
}
|
|
zFull[j++] = zFull[i];
|
|
}
|
|
zFull[j] = 0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
|
/*
|
|
** Interfaces for opening a shared library, finding entry points
|
|
** within the shared library, and closing the shared library.
|
|
*/
|
|
#include <dlfcn.h>
|
|
static void *unixDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
|
|
return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
|
|
}
|
|
|
|
/*
|
|
** SQLite calls this function immediately after a call to unixDlSym() or
|
|
** unixDlOpen() fails (returns a null pointer). If a more detailed error
|
|
** message is available, it is written to zBufOut. If no error message
|
|
** is available, zBufOut is left unmodified and SQLite uses a default
|
|
** error message.
|
|
*/
|
|
static void unixDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
|
|
char *zErr;
|
|
enterMutex();
|
|
zErr = dlerror();
|
|
if( zErr ){
|
|
sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
|
|
}
|
|
leaveMutex();
|
|
}
|
|
static void *unixDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
|
|
return dlsym(pHandle, zSymbol);
|
|
}
|
|
static void unixDlClose(sqlite3_vfs *pVfs, void *pHandle){
|
|
dlclose(pHandle);
|
|
}
|
|
#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
|
|
#define unixDlOpen 0
|
|
#define unixDlError 0
|
|
#define unixDlSym 0
|
|
#define unixDlClose 0
|
|
#endif
|
|
|
|
/*
|
|
** Write nBuf bytes of random data to the supplied buffer zBuf.
|
|
*/
|
|
static int unixRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
|
|
|
|
assert(nBuf>=(sizeof(time_t)+sizeof(int)));
|
|
|
|
/* We have to initialize zBuf to prevent valgrind from reporting
|
|
** errors. The reports issued by valgrind are incorrect - we would
|
|
** prefer that the randomness be increased by making use of the
|
|
** uninitialized space in zBuf - but valgrind errors tend to worry
|
|
** some users. Rather than argue, it seems easier just to initialize
|
|
** the whole array and silence valgrind, even if that means less randomness
|
|
** in the random seed.
|
|
**
|
|
** When testing, initializing zBuf[] to zero is all we do. That means
|
|
** that we always use the same random number sequence. This makes the
|
|
** tests repeatable.
|
|
*/
|
|
memset(zBuf, 0, nBuf);
|
|
#if !defined(SQLITE_TEST)
|
|
{
|
|
int pid, fd;
|
|
fd = open("/dev/urandom", O_RDONLY);
|
|
if( fd<0 ){
|
|
time_t t;
|
|
time(&t);
|
|
memcpy(zBuf, &t, sizeof(t));
|
|
pid = getpid();
|
|
memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid));
|
|
}else{
|
|
read(fd, zBuf, nBuf);
|
|
close(fd);
|
|
}
|
|
}
|
|
#endif
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
|
|
/*
|
|
** Sleep for a little while. Return the amount of time slept.
|
|
** The argument is the number of microseconds we want to sleep.
|
|
** The return value is the number of microseconds of sleep actually
|
|
** requested from the underlying operating system, a number which
|
|
** might be greater than or equal to the argument, but not less
|
|
** than the argument.
|
|
*/
|
|
static int unixSleep(sqlite3_vfs *pVfs, int microseconds){
|
|
#if defined(HAVE_USLEEP) && HAVE_USLEEP
|
|
usleep(microseconds);
|
|
return microseconds;
|
|
#else
|
|
int seconds = (microseconds+999999)/1000000;
|
|
sleep(seconds);
|
|
return seconds*1000000;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** The following variable, if set to a non-zero value, becomes the result
|
|
** returned from sqlite3OsCurrentTime(). This is used for testing.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_API int sqlite3_current_time = 0;
|
|
#endif
|
|
|
|
/*
|
|
** Find the current time (in Universal Coordinated Time). Write the
|
|
** current time and date as a Julian Day number into *prNow and
|
|
** return 0. Return 1 if the time and date cannot be found.
|
|
*/
|
|
static int unixCurrentTime(sqlite3_vfs *pVfs, double *prNow){
|
|
#ifdef NO_GETTOD
|
|
time_t t;
|
|
time(&t);
|
|
*prNow = t/86400.0 + 2440587.5;
|
|
#else
|
|
struct timeval sNow;
|
|
gettimeofday(&sNow, 0);
|
|
*prNow = 2440587.5 + sNow.tv_sec/86400.0 + sNow.tv_usec/86400000000.0;
|
|
#endif
|
|
#ifdef SQLITE_TEST
|
|
if( sqlite3_current_time ){
|
|
*prNow = sqlite3_current_time/86400.0 + 2440587.5;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to the sqlite3DefaultVfs structure. We use
|
|
** a function rather than give the structure global scope because
|
|
** some compilers (MSVC) do not allow forward declarations of
|
|
** initialized structures.
|
|
*/
|
|
SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){
|
|
static sqlite3_vfs unixVfs = {
|
|
1, /* iVersion */
|
|
sizeof(unixFile), /* szOsFile */
|
|
MAX_PATHNAME, /* mxPathname */
|
|
0, /* pNext */
|
|
"unix", /* zName */
|
|
0, /* pAppData */
|
|
|
|
unixOpen, /* xOpen */
|
|
unixDelete, /* xDelete */
|
|
unixAccess, /* xAccess */
|
|
unixGetTempname, /* xGetTempName */
|
|
unixFullPathname, /* xFullPathname */
|
|
unixDlOpen, /* xDlOpen */
|
|
unixDlError, /* xDlError */
|
|
unixDlSym, /* xDlSym */
|
|
unixDlClose, /* xDlClose */
|
|
unixRandomness, /* xRandomness */
|
|
unixSleep, /* xSleep */
|
|
unixCurrentTime /* xCurrentTime */
|
|
};
|
|
|
|
return &unixVfs;
|
|
}
|
|
|
|
#endif /* OS_UNIX */
|
|
|
|
/************** End of os_unix.c *********************************************/
|
|
/************** Begin file os_win.c ******************************************/
|
|
/*
|
|
** 2004 May 22
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
******************************************************************************
|
|
**
|
|
** This file contains code that is specific to windows.
|
|
*/
|
|
#if OS_WIN /* This file is used for windows only */
|
|
|
|
|
|
/*
|
|
** A Note About Memory Allocation:
|
|
**
|
|
** This driver uses malloc()/free() directly rather than going through
|
|
** the SQLite-wrappers sqlite3_malloc()/sqlite3_free(). Those wrappers
|
|
** are designed for use on embedded systems where memory is scarce and
|
|
** malloc failures happen frequently. Win32 does not typically run on
|
|
** embedded systems, and when it does the developers normally have bigger
|
|
** problems to worry about than running out of memory. So there is not
|
|
** a compelling need to use the wrappers.
|
|
**
|
|
** But there is a good reason to not use the wrappers. If we use the
|
|
** wrappers then we will get simulated malloc() failures within this
|
|
** driver. And that causes all kinds of problems for our tests. We
|
|
** could enhance SQLite to deal with simulated malloc failures within
|
|
** the OS driver, but the code to deal with those failure would not
|
|
** be exercised on Linux (which does not need to malloc() in the driver)
|
|
** and so we would have difficulty writing coverage tests for that
|
|
** code. Better to leave the code out, we think.
|
|
**
|
|
** The point of this discussion is as follows: When creating a new
|
|
** OS layer for an embedded system, if you use this file as an example,
|
|
** avoid the use of malloc()/free(). Those routines work ok on windows
|
|
** desktops but not so well in embedded systems.
|
|
*/
|
|
|
|
#include <winbase.h>
|
|
|
|
#ifdef __CYGWIN__
|
|
# include <sys/cygwin.h>
|
|
#endif
|
|
|
|
/*
|
|
** Macros used to determine whether or not to use threads.
|
|
*/
|
|
#if defined(THREADSAFE) && THREADSAFE
|
|
# define SQLITE_W32_THREADS 1
|
|
#endif
|
|
|
|
/*
|
|
** Include code that is common to all os_*.c files
|
|
*/
|
|
/************** Include os_common.h in the middle of os_win.c ****************/
|
|
/************** Begin file os_common.h ***************************************/
|
|
/*
|
|
** 2004 May 22
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
******************************************************************************
|
|
**
|
|
** This file contains macros and a little bit of code that is common to
|
|
** all of the platform-specific files (os_*.c) and is #included into those
|
|
** files.
|
|
**
|
|
** This file should be #included by the os_*.c files only. It is not a
|
|
** general purpose header file.
|
|
*/
|
|
|
|
/*
|
|
** At least two bugs have slipped in because we changed the MEMORY_DEBUG
|
|
** macro to SQLITE_DEBUG and some older makefiles have not yet made the
|
|
** switch. The following code should catch this problem at compile-time.
|
|
*/
|
|
#ifdef MEMORY_DEBUG
|
|
# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead."
|
|
#endif
|
|
|
|
|
|
/*
|
|
* When testing, this global variable stores the location of the
|
|
* pending-byte in the database file.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_API unsigned int sqlite3_pending_byte = 0x40000000;
|
|
#endif
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
SQLITE_API int sqlite3_os_trace = 0;
|
|
#define OSTRACE1(X) if( sqlite3_os_trace ) sqlite3DebugPrintf(X)
|
|
#define OSTRACE2(X,Y) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y)
|
|
#define OSTRACE3(X,Y,Z) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z)
|
|
#define OSTRACE4(X,Y,Z,A) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A)
|
|
#define OSTRACE5(X,Y,Z,A,B) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A,B)
|
|
#define OSTRACE6(X,Y,Z,A,B,C) \
|
|
if(sqlite3_os_trace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
|
|
#define OSTRACE7(X,Y,Z,A,B,C,D) \
|
|
if(sqlite3_os_trace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
|
|
#else
|
|
#define OSTRACE1(X)
|
|
#define OSTRACE2(X,Y)
|
|
#define OSTRACE3(X,Y,Z)
|
|
#define OSTRACE4(X,Y,Z,A)
|
|
#define OSTRACE5(X,Y,Z,A,B)
|
|
#define OSTRACE6(X,Y,Z,A,B,C)
|
|
#define OSTRACE7(X,Y,Z,A,B,C,D)
|
|
#endif
|
|
|
|
/*
|
|
** Macros for performance tracing. Normally turned off. Only works
|
|
** on i486 hardware.
|
|
*/
|
|
#ifdef SQLITE_PERFORMANCE_TRACE
|
|
__inline__ unsigned long long int hwtime(void){
|
|
unsigned long long int x;
|
|
__asm__("rdtsc\n\t"
|
|
"mov %%edx, %%ecx\n\t"
|
|
:"=A" (x));
|
|
return x;
|
|
}
|
|
static unsigned long long int g_start;
|
|
static unsigned int elapse;
|
|
#define TIMER_START g_start=hwtime()
|
|
#define TIMER_END elapse=hwtime()-g_start
|
|
#define TIMER_ELAPSED elapse
|
|
#else
|
|
#define TIMER_START
|
|
#define TIMER_END
|
|
#define TIMER_ELAPSED 0
|
|
#endif
|
|
|
|
/*
|
|
** If we compile with the SQLITE_TEST macro set, then the following block
|
|
** of code will give us the ability to simulate a disk I/O error. This
|
|
** is used for testing the I/O recovery logic.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_API int sqlite3_io_error_hit = 0;
|
|
SQLITE_API int sqlite3_io_error_pending = 0;
|
|
SQLITE_API int sqlite3_io_error_persist = 0;
|
|
SQLITE_API int sqlite3_diskfull_pending = 0;
|
|
SQLITE_API int sqlite3_diskfull = 0;
|
|
#define SimulateIOError(CODE) \
|
|
if( sqlite3_io_error_pending || sqlite3_io_error_hit ) \
|
|
if( sqlite3_io_error_pending-- == 1 \
|
|
|| (sqlite3_io_error_persist && sqlite3_io_error_hit) ) \
|
|
{ local_ioerr(); CODE; }
|
|
static void local_ioerr(){
|
|
IOTRACE(("IOERR\n"));
|
|
sqlite3_io_error_hit = 1;
|
|
}
|
|
#define SimulateDiskfullError(CODE) \
|
|
if( sqlite3_diskfull_pending ){ \
|
|
if( sqlite3_diskfull_pending == 1 ){ \
|
|
local_ioerr(); \
|
|
sqlite3_diskfull = 1; \
|
|
sqlite3_io_error_hit = 1; \
|
|
CODE; \
|
|
}else{ \
|
|
sqlite3_diskfull_pending--; \
|
|
} \
|
|
}
|
|
#else
|
|
#define SimulateIOError(A)
|
|
#define SimulateDiskfullError(A)
|
|
#endif
|
|
|
|
/*
|
|
** When testing, keep a count of the number of open files.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_API int sqlite3_open_file_count = 0;
|
|
#define OpenCounter(X) sqlite3_open_file_count+=(X)
|
|
#else
|
|
#define OpenCounter(X)
|
|
#endif
|
|
|
|
/************** End of os_common.h *******************************************/
|
|
/************** Continuing where we left off in os_win.c *********************/
|
|
|
|
/*
|
|
** Determine if we are dealing with WindowsCE - which has a much
|
|
** reduced API.
|
|
*/
|
|
#if defined(_WIN32_WCE)
|
|
# define OS_WINCE 1
|
|
# define AreFileApisANSI() 1
|
|
#else
|
|
# define OS_WINCE 0
|
|
#endif
|
|
|
|
/*
|
|
** WinCE lacks native support for file locking so we have to fake it
|
|
** with some code of our own.
|
|
*/
|
|
#if OS_WINCE
|
|
typedef struct winceLock {
|
|
int nReaders; /* Number of reader locks obtained */
|
|
BOOL bPending; /* Indicates a pending lock has been obtained */
|
|
BOOL bReserved; /* Indicates a reserved lock has been obtained */
|
|
BOOL bExclusive; /* Indicates an exclusive lock has been obtained */
|
|
} winceLock;
|
|
#endif
|
|
|
|
/*
|
|
** The winFile structure is a subclass of sqlite3_file* specific to the win32
|
|
** portability layer.
|
|
*/
|
|
typedef struct winFile winFile;
|
|
struct winFile {
|
|
const sqlite3_io_methods *pMethod;/* Must be first */
|
|
HANDLE h; /* Handle for accessing the file */
|
|
unsigned char locktype; /* Type of lock currently held on this file */
|
|
short sharedLockByte; /* Randomly chosen byte used as a shared lock */
|
|
#if OS_WINCE
|
|
WCHAR *zDeleteOnClose; /* Name of file to delete when closing */
|
|
HANDLE hMutex; /* Mutex used to control access to shared lock */
|
|
HANDLE hShared; /* Shared memory segment used for locking */
|
|
winceLock local; /* Locks obtained by this instance of winFile */
|
|
winceLock *shared; /* Global shared lock memory for the file */
|
|
#endif
|
|
};
|
|
|
|
|
|
/*
|
|
** The following variable is (normally) set once and never changes
|
|
** thereafter. It records whether the operating system is Win95
|
|
** or WinNT.
|
|
**
|
|
** 0: Operating system unknown.
|
|
** 1: Operating system is Win95.
|
|
** 2: Operating system is WinNT.
|
|
**
|
|
** In order to facilitate testing on a WinNT system, the test fixture
|
|
** can manually set this value to 1 to emulate Win98 behavior.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_API int sqlite3_os_type = 0;
|
|
#else
|
|
static int sqlite3_os_type = 0;
|
|
#endif
|
|
|
|
/*
|
|
** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
|
|
** or WinCE. Return false (zero) for Win95, Win98, or WinME.
|
|
**
|
|
** Here is an interesting observation: Win95, Win98, and WinME lack
|
|
** the LockFileEx() API. But we can still statically link against that
|
|
** API as long as we don't call it win running Win95/98/ME. A call to
|
|
** this routine is used to determine if the host is Win95/98/ME or
|
|
** WinNT/2K/XP so that we will know whether or not we can safely call
|
|
** the LockFileEx() API.
|
|
*/
|
|
#if OS_WINCE
|
|
# define isNT() (1)
|
|
#else
|
|
static int isNT(void){
|
|
if( sqlite3_os_type==0 ){
|
|
OSVERSIONINFO sInfo;
|
|
sInfo.dwOSVersionInfoSize = sizeof(sInfo);
|
|
GetVersionEx(&sInfo);
|
|
sqlite3_os_type = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
|
|
}
|
|
return sqlite3_os_type==2;
|
|
}
|
|
#endif /* OS_WINCE */
|
|
|
|
/*
|
|
** Convert a UTF-8 string to microsoft unicode (UTF-16?).
|
|
**
|
|
** Space to hold the returned string is obtained from malloc.
|
|
*/
|
|
static WCHAR *utf8ToUnicode(const char *zFilename){
|
|
int nChar;
|
|
WCHAR *zWideFilename;
|
|
|
|
nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0);
|
|
zWideFilename = malloc( nChar*sizeof(zWideFilename[0]) );
|
|
if( zWideFilename==0 ){
|
|
return 0;
|
|
}
|
|
nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename, nChar);
|
|
if( nChar==0 ){
|
|
free(zWideFilename);
|
|
zWideFilename = 0;
|
|
}
|
|
return zWideFilename;
|
|
}
|
|
|
|
/*
|
|
** Convert microsoft unicode to UTF-8. Space to hold the returned string is
|
|
** obtained from malloc().
|
|
*/
|
|
static char *unicodeToUtf8(const WCHAR *zWideFilename){
|
|
int nByte;
|
|
char *zFilename;
|
|
|
|
nByte = WideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, 0, 0, 0, 0);
|
|
zFilename = malloc( nByte );
|
|
if( zFilename==0 ){
|
|
return 0;
|
|
}
|
|
nByte = WideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, zFilename, nByte,
|
|
0, 0);
|
|
if( nByte == 0 ){
|
|
free(zFilename);
|
|
zFilename = 0;
|
|
}
|
|
return zFilename;
|
|
}
|
|
|
|
/*
|
|
** Convert an ansi string to microsoft unicode, based on the
|
|
** current codepage settings for file apis.
|
|
**
|
|
** Space to hold the returned string is obtained
|
|
** from malloc.
|
|
*/
|
|
static WCHAR *mbcsToUnicode(const char *zFilename){
|
|
int nByte;
|
|
WCHAR *zMbcsFilename;
|
|
int codepage = AreFileApisANSI() ? CP_ACP : CP_OEMCP;
|
|
|
|
nByte = MultiByteToWideChar(codepage, 0, zFilename, -1, NULL,0)*sizeof(WCHAR);
|
|
zMbcsFilename = malloc( nByte*sizeof(zMbcsFilename[0]) );
|
|
if( zMbcsFilename==0 ){
|
|
return 0;
|
|
}
|
|
nByte = MultiByteToWideChar(codepage, 0, zFilename, -1, zMbcsFilename, nByte);
|
|
if( nByte==0 ){
|
|
free(zMbcsFilename);
|
|
zMbcsFilename = 0;
|
|
}
|
|
return zMbcsFilename;
|
|
}
|
|
|
|
/*
|
|
** Convert microsoft unicode to multibyte character string, based on the
|
|
** user's Ansi codepage.
|
|
**
|
|
** Space to hold the returned string is obtained from
|
|
** malloc().
|
|
*/
|
|
static char *unicodeToMbcs(const WCHAR *zWideFilename){
|
|
int nByte;
|
|
char *zFilename;
|
|
int codepage = AreFileApisANSI() ? CP_ACP : CP_OEMCP;
|
|
|
|
nByte = WideCharToMultiByte(codepage, 0, zWideFilename, -1, 0, 0, 0, 0);
|
|
zFilename = malloc( nByte );
|
|
if( zFilename==0 ){
|
|
return 0;
|
|
}
|
|
nByte = WideCharToMultiByte(codepage, 0, zWideFilename, -1, zFilename, nByte,
|
|
0, 0);
|
|
if( nByte == 0 ){
|
|
free(zFilename);
|
|
zFilename = 0;
|
|
}
|
|
return zFilename;
|
|
}
|
|
|
|
/*
|
|
** Convert multibyte character string to UTF-8. Space to hold the
|
|
** returned string is obtained from malloc().
|
|
*/
|
|
static char *mbcsToUtf8(const char *zFilename){
|
|
char *zFilenameUtf8;
|
|
WCHAR *zTmpWide;
|
|
|
|
zTmpWide = mbcsToUnicode(zFilename);
|
|
if( zTmpWide==0 ){
|
|
return 0;
|
|
}
|
|
zFilenameUtf8 = unicodeToUtf8(zTmpWide);
|
|
free(zTmpWide);
|
|
return zFilenameUtf8;
|
|
}
|
|
|
|
/*
|
|
** Convert UTF-8 to multibyte character string. Space to hold the
|
|
** returned string is obtained from malloc().
|
|
*/
|
|
static char *utf8ToMbcs(const char *zFilename){
|
|
char *zFilenameMbcs;
|
|
WCHAR *zTmpWide;
|
|
|
|
zTmpWide = utf8ToUnicode(zFilename);
|
|
if( zTmpWide==0 ){
|
|
return 0;
|
|
}
|
|
zFilenameMbcs = unicodeToMbcs(zTmpWide);
|
|
free(zTmpWide);
|
|
return zFilenameMbcs;
|
|
}
|
|
|
|
#if OS_WINCE
|
|
/*************************************************************************
|
|
** This section contains code for WinCE only.
|
|
*/
|
|
/*
|
|
** WindowsCE does not have a localtime() function. So create a
|
|
** substitute.
|
|
*/
|
|
struct tm *__cdecl localtime(const time_t *t)
|
|
{
|
|
static struct tm y;
|
|
FILETIME uTm, lTm;
|
|
SYSTEMTIME pTm;
|
|
sqlite3_int64 t64;
|
|
t64 = *t;
|
|
t64 = (t64 + 11644473600)*10000000;
|
|
uTm.dwLowDateTime = t64 & 0xFFFFFFFF;
|
|
uTm.dwHighDateTime= t64 >> 32;
|
|
FileTimeToLocalFileTime(&uTm,&lTm);
|
|
FileTimeToSystemTime(&lTm,&pTm);
|
|
y.tm_year = pTm.wYear - 1900;
|
|
y.tm_mon = pTm.wMonth - 1;
|
|
y.tm_wday = pTm.wDayOfWeek;
|
|
y.tm_mday = pTm.wDay;
|
|
y.tm_hour = pTm.wHour;
|
|
y.tm_min = pTm.wMinute;
|
|
y.tm_sec = pTm.wSecond;
|
|
return &y;
|
|
}
|
|
|
|
/* This will never be called, but defined to make the code compile */
|
|
#define GetTempPathA(a,b)
|
|
|
|
#define LockFile(a,b,c,d,e) winceLockFile(&a, b, c, d, e)
|
|
#define UnlockFile(a,b,c,d,e) winceUnlockFile(&a, b, c, d, e)
|
|
#define LockFileEx(a,b,c,d,e,f) winceLockFileEx(&a, b, c, d, e, f)
|
|
|
|
#define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-offsetof(winFile,h)]
|
|
|
|
/*
|
|
** Acquire a lock on the handle h
|
|
*/
|
|
static void winceMutexAcquire(HANDLE h){
|
|
DWORD dwErr;
|
|
do {
|
|
dwErr = WaitForSingleObject(h, INFINITE);
|
|
} while (dwErr != WAIT_OBJECT_0 && dwErr != WAIT_ABANDONED);
|
|
}
|
|
/*
|
|
** Release a lock acquired by winceMutexAcquire()
|
|
*/
|
|
#define winceMutexRelease(h) ReleaseMutex(h)
|
|
|
|
/*
|
|
** Create the mutex and shared memory used for locking in the file
|
|
** descriptor pFile
|
|
*/
|
|
static BOOL winceCreateLock(const char *zFilename, winFile *pFile){
|
|
WCHAR *zTok;
|
|
WCHAR *zName = utf8ToUnicode(zFilename);
|
|
BOOL bInit = TRUE;
|
|
|
|
/* Initialize the local lockdata */
|
|
ZeroMemory(&pFile->local, sizeof(pFile->local));
|
|
|
|
/* Replace the backslashes from the filename and lowercase it
|
|
** to derive a mutex name. */
|
|
zTok = CharLowerW(zName);
|
|
for (;*zTok;zTok++){
|
|
if (*zTok == '\\') *zTok = '_';
|
|
}
|
|
|
|
/* Create/open the named mutex */
|
|
pFile->hMutex = CreateMutexW(NULL, FALSE, zName);
|
|
if (!pFile->hMutex){
|
|
free(zName);
|
|
return FALSE;
|
|
}
|
|
|
|
/* Acquire the mutex before continuing */
|
|
winceMutexAcquire(pFile->hMutex);
|
|
|
|
/* Since the names of named mutexes, semaphores, file mappings etc are
|
|
** case-sensitive, take advantage of that by uppercasing the mutex name
|
|
** and using that as the shared filemapping name.
|
|
*/
|
|
CharUpperW(zName);
|
|
pFile->hShared = CreateFileMappingW(INVALID_HANDLE_VALUE, NULL,
|
|
PAGE_READWRITE, 0, sizeof(winceLock),
|
|
zName);
|
|
|
|
/* Set a flag that indicates we're the first to create the memory so it
|
|
** must be zero-initialized */
|
|
if (GetLastError() == ERROR_ALREADY_EXISTS){
|
|
bInit = FALSE;
|
|
}
|
|
|
|
free(zName);
|
|
|
|
/* If we succeeded in making the shared memory handle, map it. */
|
|
if (pFile->hShared){
|
|
pFile->shared = (winceLock*)MapViewOfFile(pFile->hShared,
|
|
FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock));
|
|
/* If mapping failed, close the shared memory handle and erase it */
|
|
if (!pFile->shared){
|
|
CloseHandle(pFile->hShared);
|
|
pFile->hShared = NULL;
|
|
}
|
|
}
|
|
|
|
/* If shared memory could not be created, then close the mutex and fail */
|
|
if (pFile->hShared == NULL){
|
|
winceMutexRelease(pFile->hMutex);
|
|
CloseHandle(pFile->hMutex);
|
|
pFile->hMutex = NULL;
|
|
return FALSE;
|
|
}
|
|
|
|
/* Initialize the shared memory if we're supposed to */
|
|
if (bInit) {
|
|
ZeroMemory(pFile->shared, sizeof(winceLock));
|
|
}
|
|
|
|
winceMutexRelease(pFile->hMutex);
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
** Destroy the part of winFile that deals with wince locks
|
|
*/
|
|
static void winceDestroyLock(winFile *pFile){
|
|
if (pFile->hMutex){
|
|
/* Acquire the mutex */
|
|
winceMutexAcquire(pFile->hMutex);
|
|
|
|
/* The following blocks should probably assert in debug mode, but they
|
|
are to cleanup in case any locks remained open */
|
|
if (pFile->local.nReaders){
|
|
pFile->shared->nReaders --;
|
|
}
|
|
if (pFile->local.bReserved){
|
|
pFile->shared->bReserved = FALSE;
|
|
}
|
|
if (pFile->local.bPending){
|
|
pFile->shared->bPending = FALSE;
|
|
}
|
|
if (pFile->local.bExclusive){
|
|
pFile->shared->bExclusive = FALSE;
|
|
}
|
|
|
|
/* De-reference and close our copy of the shared memory handle */
|
|
UnmapViewOfFile(pFile->shared);
|
|
CloseHandle(pFile->hShared);
|
|
|
|
/* Done with the mutex */
|
|
winceMutexRelease(pFile->hMutex);
|
|
CloseHandle(pFile->hMutex);
|
|
pFile->hMutex = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** An implementation of the LockFile() API of windows for wince
|
|
*/
|
|
static BOOL winceLockFile(
|
|
HANDLE *phFile,
|
|
DWORD dwFileOffsetLow,
|
|
DWORD dwFileOffsetHigh,
|
|
DWORD nNumberOfBytesToLockLow,
|
|
DWORD nNumberOfBytesToLockHigh
|
|
){
|
|
winFile *pFile = HANDLE_TO_WINFILE(phFile);
|
|
BOOL bReturn = FALSE;
|
|
|
|
if (!pFile->hMutex) return TRUE;
|
|
winceMutexAcquire(pFile->hMutex);
|
|
|
|
/* Wanting an exclusive lock? */
|
|
if (dwFileOffsetLow == SHARED_FIRST
|
|
&& nNumberOfBytesToLockLow == SHARED_SIZE){
|
|
if (pFile->shared->nReaders == 0 && pFile->shared->bExclusive == 0){
|
|
pFile->shared->bExclusive = TRUE;
|
|
pFile->local.bExclusive = TRUE;
|
|
bReturn = TRUE;
|
|
}
|
|
}
|
|
|
|
/* Want a read-only lock? */
|
|
else if ((dwFileOffsetLow >= SHARED_FIRST &&
|
|
dwFileOffsetLow < SHARED_FIRST + SHARED_SIZE) &&
|
|
nNumberOfBytesToLockLow == 1){
|
|
if (pFile->shared->bExclusive == 0){
|
|
pFile->local.nReaders ++;
|
|
if (pFile->local.nReaders == 1){
|
|
pFile->shared->nReaders ++;
|
|
}
|
|
bReturn = TRUE;
|
|
}
|
|
}
|
|
|
|
/* Want a pending lock? */
|
|
else if (dwFileOffsetLow == PENDING_BYTE && nNumberOfBytesToLockLow == 1){
|
|
/* If no pending lock has been acquired, then acquire it */
|
|
if (pFile->shared->bPending == 0) {
|
|
pFile->shared->bPending = TRUE;
|
|
pFile->local.bPending = TRUE;
|
|
bReturn = TRUE;
|
|
}
|
|
}
|
|
/* Want a reserved lock? */
|
|
else if (dwFileOffsetLow == RESERVED_BYTE && nNumberOfBytesToLockLow == 1){
|
|
if (pFile->shared->bReserved == 0) {
|
|
pFile->shared->bReserved = TRUE;
|
|
pFile->local.bReserved = TRUE;
|
|
bReturn = TRUE;
|
|
}
|
|
}
|
|
|
|
winceMutexRelease(pFile->hMutex);
|
|
return bReturn;
|
|
}
|
|
|
|
/*
|
|
** An implementation of the UnlockFile API of windows for wince
|
|
*/
|
|
static BOOL winceUnlockFile(
|
|
HANDLE *phFile,
|
|
DWORD dwFileOffsetLow,
|
|
DWORD dwFileOffsetHigh,
|
|
DWORD nNumberOfBytesToUnlockLow,
|
|
DWORD nNumberOfBytesToUnlockHigh
|
|
){
|
|
winFile *pFile = HANDLE_TO_WINFILE(phFile);
|
|
BOOL bReturn = FALSE;
|
|
|
|
if (!pFile->hMutex) return TRUE;
|
|
winceMutexAcquire(pFile->hMutex);
|
|
|
|
/* Releasing a reader lock or an exclusive lock */
|
|
if (dwFileOffsetLow >= SHARED_FIRST &&
|
|
dwFileOffsetLow < SHARED_FIRST + SHARED_SIZE){
|
|
/* Did we have an exclusive lock? */
|
|
if (pFile->local.bExclusive){
|
|
pFile->local.bExclusive = FALSE;
|
|
pFile->shared->bExclusive = FALSE;
|
|
bReturn = TRUE;
|
|
}
|
|
|
|
/* Did we just have a reader lock? */
|
|
else if (pFile->local.nReaders){
|
|
pFile->local.nReaders --;
|
|
if (pFile->local.nReaders == 0)
|
|
{
|
|
pFile->shared->nReaders --;
|
|
}
|
|
bReturn = TRUE;
|
|
}
|
|
}
|
|
|
|
/* Releasing a pending lock */
|
|
else if (dwFileOffsetLow == PENDING_BYTE && nNumberOfBytesToUnlockLow == 1){
|
|
if (pFile->local.bPending){
|
|
pFile->local.bPending = FALSE;
|
|
pFile->shared->bPending = FALSE;
|
|
bReturn = TRUE;
|
|
}
|
|
}
|
|
/* Releasing a reserved lock */
|
|
else if (dwFileOffsetLow == RESERVED_BYTE && nNumberOfBytesToUnlockLow == 1){
|
|
if (pFile->local.bReserved) {
|
|
pFile->local.bReserved = FALSE;
|
|
pFile->shared->bReserved = FALSE;
|
|
bReturn = TRUE;
|
|
}
|
|
}
|
|
|
|
winceMutexRelease(pFile->hMutex);
|
|
return bReturn;
|
|
}
|
|
|
|
/*
|
|
** An implementation of the LockFileEx() API of windows for wince
|
|
*/
|
|
static BOOL winceLockFileEx(
|
|
HANDLE *phFile,
|
|
DWORD dwFlags,
|
|
DWORD dwReserved,
|
|
DWORD nNumberOfBytesToLockLow,
|
|
DWORD nNumberOfBytesToLockHigh,
|
|
LPOVERLAPPED lpOverlapped
|
|
){
|
|
/* If the caller wants a shared read lock, forward this call
|
|
** to winceLockFile */
|
|
if (lpOverlapped->Offset == SHARED_FIRST &&
|
|
dwFlags == 1 &&
|
|
nNumberOfBytesToLockLow == SHARED_SIZE){
|
|
return winceLockFile(phFile, SHARED_FIRST, 0, 1, 0);
|
|
}
|
|
return FALSE;
|
|
}
|
|
/*
|
|
** End of the special code for wince
|
|
*****************************************************************************/
|
|
#endif /* OS_WINCE */
|
|
|
|
/*****************************************************************************
|
|
** The next group of routines implement the I/O methods specified
|
|
** by the sqlite3_io_methods object.
|
|
******************************************************************************/
|
|
|
|
/*
|
|
** Close a file.
|
|
**
|
|
** It is reported that an attempt to close a handle might sometimes
|
|
** fail. This is a very unreasonable result, but windows is notorious
|
|
** for being unreasonable so I do not doubt that it might happen. If
|
|
** the close fails, we pause for 100 milliseconds and try again. As
|
|
** many as MX_CLOSE_ATTEMPT attempts to close the handle are made before
|
|
** giving up and returning an error.
|
|
*/
|
|
#define MX_CLOSE_ATTEMPT 3
|
|
static int winClose(sqlite3_file *id){
|
|
int rc, cnt = 0;
|
|
winFile *pFile = (winFile*)id;
|
|
OSTRACE2("CLOSE %d\n", pFile->h);
|
|
do{
|
|
rc = CloseHandle(pFile->h);
|
|
}while( rc==0 && cnt++ < MX_CLOSE_ATTEMPT && (Sleep(100), 1) );
|
|
#if OS_WINCE
|
|
winceDestroyLock(pFile);
|
|
if( pFile->zDeleteOnClose ){
|
|
DeleteFileW(pFile->zDeleteOnClose);
|
|
free(pFile->zDeleteOnClose);
|
|
}
|
|
#endif
|
|
OpenCounter(-1);
|
|
return rc ? SQLITE_OK : SQLITE_IOERR;
|
|
}
|
|
|
|
/*
|
|
** Some microsoft compilers lack this definition.
|
|
*/
|
|
#ifndef INVALID_SET_FILE_POINTER
|
|
# define INVALID_SET_FILE_POINTER ((DWORD)-1)
|
|
#endif
|
|
|
|
/*
|
|
** Read data from a file into a buffer. Return SQLITE_OK if all
|
|
** bytes were read successfully and SQLITE_IOERR if anything goes
|
|
** wrong.
|
|
*/
|
|
static int winRead(
|
|
sqlite3_file *id, /* File to read from */
|
|
void *pBuf, /* Write content into this buffer */
|
|
int amt, /* Number of bytes to read */
|
|
sqlite3_int64 offset /* Begin reading at this offset */
|
|
){
|
|
LONG upperBits = (offset>>32) & 0x7fffffff;
|
|
LONG lowerBits = offset & 0xffffffff;
|
|
DWORD rc;
|
|
DWORD got;
|
|
winFile *pFile = (winFile*)id;
|
|
assert( id!=0 );
|
|
SimulateIOError(return SQLITE_IOERR_READ);
|
|
OSTRACE3("READ %d lock=%d\n", pFile->h, pFile->locktype);
|
|
rc = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
|
|
if( rc==INVALID_SET_FILE_POINTER && GetLastError()!=NO_ERROR ){
|
|
return SQLITE_FULL;
|
|
}
|
|
if( !ReadFile(pFile->h, pBuf, amt, &got, 0) ){
|
|
return SQLITE_IOERR_READ;
|
|
}
|
|
if( got==(DWORD)amt ){
|
|
return SQLITE_OK;
|
|
}else{
|
|
memset(&((char*)pBuf)[got], 0, amt-got);
|
|
return SQLITE_IOERR_SHORT_READ;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Write data from a buffer into a file. Return SQLITE_OK on success
|
|
** or some other error code on failure.
|
|
*/
|
|
static int winWrite(
|
|
sqlite3_file *id, /* File to write into */
|
|
const void *pBuf, /* The bytes to be written */
|
|
int amt, /* Number of bytes to write */
|
|
sqlite3_int64 offset /* Offset into the file to begin writing at */
|
|
){
|
|
LONG upperBits = (offset>>32) & 0x7fffffff;
|
|
LONG lowerBits = offset & 0xffffffff;
|
|
DWORD rc;
|
|
DWORD wrote;
|
|
winFile *pFile = (winFile*)id;
|
|
assert( id!=0 );
|
|
SimulateIOError(return SQLITE_IOERR_WRITE);
|
|
SimulateDiskfullError(return SQLITE_FULL);
|
|
OSTRACE3("WRITE %d lock=%d\n", pFile->h, pFile->locktype);
|
|
rc = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
|
|
if( rc==INVALID_SET_FILE_POINTER && GetLastError()!=NO_ERROR ){
|
|
return SQLITE_FULL;
|
|
}
|
|
assert( amt>0 );
|
|
while(
|
|
amt>0
|
|
&& (rc = WriteFile(pFile->h, pBuf, amt, &wrote, 0))!=0
|
|
&& wrote>0
|
|
){
|
|
amt -= wrote;
|
|
pBuf = &((char*)pBuf)[wrote];
|
|
}
|
|
if( !rc || amt>(int)wrote ){
|
|
return SQLITE_FULL;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Truncate an open file to a specified size
|
|
*/
|
|
static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){
|
|
LONG upperBits = (nByte>>32) & 0x7fffffff;
|
|
LONG lowerBits = nByte & 0xffffffff;
|
|
winFile *pFile = (winFile*)id;
|
|
OSTRACE3("TRUNCATE %d %lld\n", pFile->h, nByte);
|
|
SimulateIOError(return SQLITE_IOERR_TRUNCATE);
|
|
SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
|
|
SetEndOfFile(pFile->h);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
#ifdef SQLITE_TEST
|
|
/*
|
|
** Count the number of fullsyncs and normal syncs. This is used to test
|
|
** that syncs and fullsyncs are occuring at the right times.
|
|
*/
|
|
SQLITE_API int sqlite3_sync_count = 0;
|
|
SQLITE_API int sqlite3_fullsync_count = 0;
|
|
#endif
|
|
|
|
/*
|
|
** Make sure all writes to a particular file are committed to disk.
|
|
*/
|
|
static int winSync(sqlite3_file *id, int flags){
|
|
winFile *pFile = (winFile*)id;
|
|
OSTRACE3("SYNC %d lock=%d\n", pFile->h, pFile->locktype);
|
|
#ifdef SQLITE_TEST
|
|
if( flags & SQLITE_SYNC_FULL ){
|
|
sqlite3_fullsync_count++;
|
|
}
|
|
sqlite3_sync_count++;
|
|
#endif
|
|
if( FlushFileBuffers(pFile->h) ){
|
|
return SQLITE_OK;
|
|
}else{
|
|
return SQLITE_IOERR;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Determine the current size of a file in bytes
|
|
*/
|
|
static int winFileSize(sqlite3_file *id, sqlite3_int64 *pSize){
|
|
winFile *pFile = (winFile*)id;
|
|
DWORD upperBits, lowerBits;
|
|
SimulateIOError(return SQLITE_IOERR_FSTAT);
|
|
lowerBits = GetFileSize(pFile->h, &upperBits);
|
|
*pSize = (((sqlite3_int64)upperBits)<<32) + lowerBits;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** LOCKFILE_FAIL_IMMEDIATELY is undefined on some Windows systems.
|
|
*/
|
|
#ifndef LOCKFILE_FAIL_IMMEDIATELY
|
|
# define LOCKFILE_FAIL_IMMEDIATELY 1
|
|
#endif
|
|
|
|
/*
|
|
** Acquire a reader lock.
|
|
** Different API routines are called depending on whether or not this
|
|
** is Win95 or WinNT.
|
|
*/
|
|
static int getReadLock(winFile *pFile){
|
|
int res;
|
|
if( isNT() ){
|
|
OVERLAPPED ovlp;
|
|
ovlp.Offset = SHARED_FIRST;
|
|
ovlp.OffsetHigh = 0;
|
|
ovlp.hEvent = 0;
|
|
res = LockFileEx(pFile->h, LOCKFILE_FAIL_IMMEDIATELY,
|
|
0, SHARED_SIZE, 0, &ovlp);
|
|
}else{
|
|
int lk;
|
|
sqlite3Randomness(sizeof(lk), &lk);
|
|
pFile->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1);
|
|
res = LockFile(pFile->h, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
** Undo a readlock
|
|
*/
|
|
static int unlockReadLock(winFile *pFile){
|
|
int res;
|
|
if( isNT() ){
|
|
res = UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
|
|
}else{
|
|
res = UnlockFile(pFile->h, SHARED_FIRST + pFile->sharedLockByte, 0, 1, 0);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
** Lock the file with the lock specified by parameter locktype - one
|
|
** of the following:
|
|
**
|
|
** (1) SHARED_LOCK
|
|
** (2) RESERVED_LOCK
|
|
** (3) PENDING_LOCK
|
|
** (4) EXCLUSIVE_LOCK
|
|
**
|
|
** Sometimes when requesting one lock state, additional lock states
|
|
** are inserted in between. The locking might fail on one of the later
|
|
** transitions leaving the lock state different from what it started but
|
|
** still short of its goal. The following chart shows the allowed
|
|
** transitions and the inserted intermediate states:
|
|
**
|
|
** UNLOCKED -> SHARED
|
|
** SHARED -> RESERVED
|
|
** SHARED -> (PENDING) -> EXCLUSIVE
|
|
** RESERVED -> (PENDING) -> EXCLUSIVE
|
|
** PENDING -> EXCLUSIVE
|
|
**
|
|
** This routine will only increase a lock. The winUnlock() routine
|
|
** erases all locks at once and returns us immediately to locking level 0.
|
|
** It is not possible to lower the locking level one step at a time. You
|
|
** must go straight to locking level 0.
|
|
*/
|
|
static int winLock(sqlite3_file *id, int locktype){
|
|
int rc = SQLITE_OK; /* Return code from subroutines */
|
|
int res = 1; /* Result of a windows lock call */
|
|
int newLocktype; /* Set pFile->locktype to this value before exiting */
|
|
int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */
|
|
winFile *pFile = (winFile*)id;
|
|
|
|
assert( pFile!=0 );
|
|
OSTRACE5("LOCK %d %d was %d(%d)\n",
|
|
pFile->h, locktype, pFile->locktype, pFile->sharedLockByte);
|
|
|
|
/* If there is already a lock of this type or more restrictive on the
|
|
** OsFile, do nothing. Don't use the end_lock: exit path, as
|
|
** sqlite3OsEnterMutex() hasn't been called yet.
|
|
*/
|
|
if( pFile->locktype>=locktype ){
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Make sure the locking sequence is correct
|
|
*/
|
|
assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
|
|
assert( locktype!=PENDING_LOCK );
|
|
assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
|
|
|
|
/* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or
|
|
** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of
|
|
** the PENDING_LOCK byte is temporary.
|
|
*/
|
|
newLocktype = pFile->locktype;
|
|
if( pFile->locktype==NO_LOCK
|
|
|| (locktype==EXCLUSIVE_LOCK && pFile->locktype==RESERVED_LOCK)
|
|
){
|
|
int cnt = 3;
|
|
while( cnt-->0 && (res = LockFile(pFile->h, PENDING_BYTE, 0, 1, 0))==0 ){
|
|
/* Try 3 times to get the pending lock. The pending lock might be
|
|
** held by another reader process who will release it momentarily.
|
|
*/
|
|
OSTRACE2("could not get a PENDING lock. cnt=%d\n", cnt);
|
|
Sleep(1);
|
|
}
|
|
gotPendingLock = res;
|
|
}
|
|
|
|
/* Acquire a shared lock
|
|
*/
|
|
if( locktype==SHARED_LOCK && res ){
|
|
assert( pFile->locktype==NO_LOCK );
|
|
res = getReadLock(pFile);
|
|
if( res ){
|
|
newLocktype = SHARED_LOCK;
|
|
}
|
|
}
|
|
|
|
/* Acquire a RESERVED lock
|
|
*/
|
|
if( locktype==RESERVED_LOCK && res ){
|
|
assert( pFile->locktype==SHARED_LOCK );
|
|
res = LockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
|
|
if( res ){
|
|
newLocktype = RESERVED_LOCK;
|
|
}
|
|
}
|
|
|
|
/* Acquire a PENDING lock
|
|
*/
|
|
if( locktype==EXCLUSIVE_LOCK && res ){
|
|
newLocktype = PENDING_LOCK;
|
|
gotPendingLock = 0;
|
|
}
|
|
|
|
/* Acquire an EXCLUSIVE lock
|
|
*/
|
|
if( locktype==EXCLUSIVE_LOCK && res ){
|
|
assert( pFile->locktype>=SHARED_LOCK );
|
|
res = unlockReadLock(pFile);
|
|
OSTRACE2("unreadlock = %d\n", res);
|
|
res = LockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
|
|
if( res ){
|
|
newLocktype = EXCLUSIVE_LOCK;
|
|
}else{
|
|
OSTRACE2("error-code = %d\n", GetLastError());
|
|
getReadLock(pFile);
|
|
}
|
|
}
|
|
|
|
/* If we are holding a PENDING lock that ought to be released, then
|
|
** release it now.
|
|
*/
|
|
if( gotPendingLock && locktype==SHARED_LOCK ){
|
|
UnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0);
|
|
}
|
|
|
|
/* Update the state of the lock has held in the file descriptor then
|
|
** return the appropriate result code.
|
|
*/
|
|
if( res ){
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
OSTRACE4("LOCK FAILED %d trying for %d but got %d\n", pFile->h,
|
|
locktype, newLocktype);
|
|
rc = SQLITE_BUSY;
|
|
}
|
|
pFile->locktype = newLocktype;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This routine checks if there is a RESERVED lock held on the specified
|
|
** file by this or any other process. If such a lock is held, return
|
|
** non-zero, otherwise zero.
|
|
*/
|
|
static int winCheckReservedLock(sqlite3_file *id){
|
|
int rc;
|
|
winFile *pFile = (winFile*)id;
|
|
assert( pFile!=0 );
|
|
if( pFile->locktype>=RESERVED_LOCK ){
|
|
rc = 1;
|
|
OSTRACE3("TEST WR-LOCK %d %d (local)\n", pFile->h, rc);
|
|
}else{
|
|
rc = LockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
|
|
if( rc ){
|
|
UnlockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
|
|
}
|
|
rc = !rc;
|
|
OSTRACE3("TEST WR-LOCK %d %d (remote)\n", pFile->h, rc);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Lower the locking level on file descriptor id to locktype. locktype
|
|
** must be either NO_LOCK or SHARED_LOCK.
|
|
**
|
|
** If the locking level of the file descriptor is already at or below
|
|
** the requested locking level, this routine is a no-op.
|
|
**
|
|
** It is not possible for this routine to fail if the second argument
|
|
** is NO_LOCK. If the second argument is SHARED_LOCK then this routine
|
|
** might return SQLITE_IOERR;
|
|
*/
|
|
static int winUnlock(sqlite3_file *id, int locktype){
|
|
int type;
|
|
winFile *pFile = (winFile*)id;
|
|
int rc = SQLITE_OK;
|
|
assert( pFile!=0 );
|
|
assert( locktype<=SHARED_LOCK );
|
|
OSTRACE5("UNLOCK %d to %d was %d(%d)\n", pFile->h, locktype,
|
|
pFile->locktype, pFile->sharedLockByte);
|
|
type = pFile->locktype;
|
|
if( type>=EXCLUSIVE_LOCK ){
|
|
UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
|
|
if( locktype==SHARED_LOCK && !getReadLock(pFile) ){
|
|
/* This should never happen. We should always be able to
|
|
** reacquire the read lock */
|
|
rc = SQLITE_IOERR_UNLOCK;
|
|
}
|
|
}
|
|
if( type>=RESERVED_LOCK ){
|
|
UnlockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
|
|
}
|
|
if( locktype==NO_LOCK && type>=SHARED_LOCK ){
|
|
unlockReadLock(pFile);
|
|
}
|
|
if( type>=PENDING_LOCK ){
|
|
UnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0);
|
|
}
|
|
pFile->locktype = locktype;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Control and query of the open file handle.
|
|
*/
|
|
static int winFileControl(sqlite3_file *id, int op, void *pArg){
|
|
switch( op ){
|
|
case SQLITE_FCNTL_LOCKSTATE: {
|
|
*(int*)pArg = ((winFile*)id)->locktype;
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
/*
|
|
** Return the sector size in bytes of the underlying block device for
|
|
** the specified file. This is almost always 512 bytes, but may be
|
|
** larger for some devices.
|
|
**
|
|
** SQLite code assumes this function cannot fail. It also assumes that
|
|
** if two files are created in the same file-system directory (i.e.
|
|
** a database and its journal file) that the sector size will be the
|
|
** same for both.
|
|
*/
|
|
static int winSectorSize(sqlite3_file *id){
|
|
return SQLITE_DEFAULT_SECTOR_SIZE;
|
|
}
|
|
|
|
/*
|
|
** Return a vector of device characteristics.
|
|
*/
|
|
static int winDeviceCharacteristics(sqlite3_file *id){
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** This vector defines all the methods that can operate on an
|
|
** sqlite3_file for win32.
|
|
*/
|
|
static const sqlite3_io_methods winIoMethod = {
|
|
1, /* iVersion */
|
|
winClose,
|
|
winRead,
|
|
winWrite,
|
|
winTruncate,
|
|
winSync,
|
|
winFileSize,
|
|
winLock,
|
|
winUnlock,
|
|
winCheckReservedLock,
|
|
winFileControl,
|
|
winSectorSize,
|
|
winDeviceCharacteristics
|
|
};
|
|
|
|
/***************************************************************************
|
|
** Here ends the I/O methods that form the sqlite3_io_methods object.
|
|
**
|
|
** The next block of code implements the VFS methods.
|
|
****************************************************************************/
|
|
|
|
/*
|
|
** Convert a UTF-8 filename into whatever form the underlying
|
|
** operating system wants filenames in. Space to hold the result
|
|
** is obtained from malloc and must be freed by the calling
|
|
** function.
|
|
*/
|
|
static void *convertUtf8Filename(const char *zFilename){
|
|
void *zConverted = 0;
|
|
if( isNT() ){
|
|
zConverted = utf8ToUnicode(zFilename);
|
|
}else{
|
|
zConverted = utf8ToMbcs(zFilename);
|
|
}
|
|
/* caller will handle out of memory */
|
|
return zConverted;
|
|
}
|
|
|
|
/*
|
|
** Open a file.
|
|
*/
|
|
static int winOpen(
|
|
sqlite3_vfs *pVfs, /* Not used */
|
|
const char *zName, /* Name of the file (UTF-8) */
|
|
sqlite3_file *id, /* Write the SQLite file handle here */
|
|
int flags, /* Open mode flags */
|
|
int *pOutFlags /* Status return flags */
|
|
){
|
|
HANDLE h;
|
|
DWORD dwDesiredAccess;
|
|
DWORD dwShareMode;
|
|
DWORD dwCreationDisposition;
|
|
DWORD dwFlagsAndAttributes = 0;
|
|
int isTemp;
|
|
winFile *pFile = (winFile*)id;
|
|
void *zConverted = convertUtf8Filename(zName);
|
|
if( zConverted==0 ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
|
|
if( flags & SQLITE_OPEN_READWRITE ){
|
|
dwDesiredAccess = GENERIC_READ | GENERIC_WRITE;
|
|
}else{
|
|
dwDesiredAccess = GENERIC_READ;
|
|
}
|
|
if( flags & SQLITE_OPEN_CREATE ){
|
|
dwCreationDisposition = OPEN_ALWAYS;
|
|
}else{
|
|
dwCreationDisposition = OPEN_EXISTING;
|
|
}
|
|
if( flags & SQLITE_OPEN_MAIN_DB ){
|
|
dwShareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
|
|
}else{
|
|
dwShareMode = 0;
|
|
}
|
|
if( flags & SQLITE_OPEN_DELETEONCLOSE ){
|
|
#if OS_WINCE
|
|
dwFlagsAndAttributes = FILE_ATTRIBUTE_HIDDEN;
|
|
#else
|
|
dwFlagsAndAttributes = FILE_ATTRIBUTE_TEMPORARY
|
|
| FILE_ATTRIBUTE_HIDDEN
|
|
| FILE_FLAG_DELETE_ON_CLOSE;
|
|
#endif
|
|
isTemp = 1;
|
|
}else{
|
|
dwFlagsAndAttributes = FILE_ATTRIBUTE_NORMAL;
|
|
isTemp = 0;
|
|
}
|
|
/* Reports from the internet are that performance is always
|
|
** better if FILE_FLAG_RANDOM_ACCESS is used. Ticket #2699. */
|
|
dwFlagsAndAttributes |= FILE_FLAG_RANDOM_ACCESS;
|
|
if( isNT() ){
|
|
h = CreateFileW((WCHAR*)zConverted,
|
|
dwDesiredAccess,
|
|
dwShareMode,
|
|
NULL,
|
|
dwCreationDisposition,
|
|
dwFlagsAndAttributes,
|
|
NULL
|
|
);
|
|
}else{
|
|
#if OS_WINCE
|
|
return SQLITE_NOMEM;
|
|
#else
|
|
h = CreateFileA((char*)zConverted,
|
|
dwDesiredAccess,
|
|
dwShareMode,
|
|
NULL,
|
|
dwCreationDisposition,
|
|
dwFlagsAndAttributes,
|
|
NULL
|
|
);
|
|
#endif
|
|
}
|
|
if( h==INVALID_HANDLE_VALUE ){
|
|
free(zConverted);
|
|
if( flags & SQLITE_OPEN_READWRITE ){
|
|
return winOpen(0, zName, id,
|
|
((flags|SQLITE_OPEN_READONLY)&~SQLITE_OPEN_READWRITE), pOutFlags);
|
|
}else{
|
|
return SQLITE_CANTOPEN;
|
|
}
|
|
}
|
|
if( pOutFlags ){
|
|
if( flags & SQLITE_OPEN_READWRITE ){
|
|
*pOutFlags = SQLITE_OPEN_READWRITE;
|
|
}else{
|
|
*pOutFlags = SQLITE_OPEN_READONLY;
|
|
}
|
|
}
|
|
memset(pFile, 0, sizeof(*pFile));
|
|
pFile->pMethod = &winIoMethod;
|
|
pFile->h = h;
|
|
#if OS_WINCE
|
|
if( (flags & (SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_DB)) ==
|
|
(SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_DB)
|
|
&& !winceCreateLock(zName, pFile)
|
|
){
|
|
CloseHandle(h);
|
|
free(zConverted);
|
|
return SQLITE_CANTOPEN;
|
|
}
|
|
if( isTemp ){
|
|
pFile->zDeleteOnClose = zConverted;
|
|
}else
|
|
#endif
|
|
{
|
|
free(zConverted);
|
|
}
|
|
OpenCounter(+1);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Delete the named file.
|
|
**
|
|
** Note that windows does not allow a file to be deleted if some other
|
|
** process has it open. Sometimes a virus scanner or indexing program
|
|
** will open a journal file shortly after it is created in order to do
|
|
** whatever does. While this other process is holding the
|
|
** file open, we will be unable to delete it. To work around this
|
|
** problem, we delay 100 milliseconds and try to delete again. Up
|
|
** to MX_DELETION_ATTEMPTs deletion attempts are run before giving
|
|
** up and returning an error.
|
|
*/
|
|
#define MX_DELETION_ATTEMPTS 5
|
|
static int winDelete(
|
|
sqlite3_vfs *pVfs, /* Not used on win32 */
|
|
const char *zFilename, /* Name of file to delete */
|
|
int syncDir /* Not used on win32 */
|
|
){
|
|
int cnt = 0;
|
|
int rc;
|
|
void *zConverted = convertUtf8Filename(zFilename);
|
|
if( zConverted==0 ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
SimulateIOError(return SQLITE_IOERR_DELETE);
|
|
if( isNT() ){
|
|
do{
|
|
DeleteFileW(zConverted);
|
|
}while( (rc = GetFileAttributesW(zConverted))!=0xffffffff
|
|
&& cnt++ < MX_DELETION_ATTEMPTS && (Sleep(100), 1) );
|
|
}else{
|
|
#if OS_WINCE
|
|
return SQLITE_NOMEM;
|
|
#else
|
|
do{
|
|
DeleteFileA(zConverted);
|
|
}while( (rc = GetFileAttributesA(zConverted))!=0xffffffff
|
|
&& cnt++ < MX_DELETION_ATTEMPTS && (Sleep(100), 1) );
|
|
#endif
|
|
}
|
|
free(zConverted);
|
|
OSTRACE2("DELETE \"%s\"\n", zFilename);
|
|
return rc==0xffffffff ? SQLITE_OK : SQLITE_IOERR_DELETE;
|
|
}
|
|
|
|
/*
|
|
** Check the existance and status of a file.
|
|
*/
|
|
static int winAccess(
|
|
sqlite3_vfs *pVfs, /* Not used on win32 */
|
|
const char *zFilename, /* Name of file to check */
|
|
int flags /* Type of test to make on this file */
|
|
){
|
|
DWORD attr;
|
|
int rc;
|
|
void *zConverted = convertUtf8Filename(zFilename);
|
|
if( zConverted==0 ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
if( isNT() ){
|
|
attr = GetFileAttributesW((WCHAR*)zConverted);
|
|
}else{
|
|
#if OS_WINCE
|
|
return SQLITE_NOMEM;
|
|
#else
|
|
attr = GetFileAttributesA((char*)zConverted);
|
|
#endif
|
|
}
|
|
free(zConverted);
|
|
switch( flags ){
|
|
case SQLITE_ACCESS_READ:
|
|
case SQLITE_ACCESS_EXISTS:
|
|
rc = attr!=0xffffffff;
|
|
break;
|
|
case SQLITE_ACCESS_READWRITE:
|
|
rc = (attr & FILE_ATTRIBUTE_READONLY)==0;
|
|
break;
|
|
default:
|
|
assert(!"Invalid flags argument");
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Create a temporary file name in zBuf. zBuf must be big enough to
|
|
** hold at pVfs->mxPathname characters.
|
|
*/
|
|
static int winGetTempname(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
|
|
static char zChars[] =
|
|
"abcdefghijklmnopqrstuvwxyz"
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
"0123456789";
|
|
int i, j;
|
|
char zTempPath[MAX_PATH+1];
|
|
if( sqlite3_temp_directory ){
|
|
sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", sqlite3_temp_directory);
|
|
}else if( isNT() ){
|
|
char *zMulti;
|
|
WCHAR zWidePath[MAX_PATH];
|
|
GetTempPathW(MAX_PATH-30, zWidePath);
|
|
zMulti = unicodeToUtf8(zWidePath);
|
|
if( zMulti ){
|
|
sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zMulti);
|
|
free(zMulti);
|
|
}else{
|
|
return SQLITE_NOMEM;
|
|
}
|
|
}else{
|
|
char *zUtf8;
|
|
char zMbcsPath[MAX_PATH];
|
|
GetTempPathA(MAX_PATH-30, zMbcsPath);
|
|
zUtf8 = mbcsToUtf8(zMbcsPath);
|
|
if( zUtf8 ){
|
|
sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zUtf8);
|
|
free(zUtf8);
|
|
}else{
|
|
return SQLITE_NOMEM;
|
|
}
|
|
}
|
|
for(i=strlen(zTempPath); i>0 && zTempPath[i-1]=='\\'; i--){}
|
|
zTempPath[i] = 0;
|
|
sqlite3_snprintf(nBuf-30, zBuf,
|
|
"%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPath);
|
|
j = strlen(zBuf);
|
|
sqlite3Randomness(20, &zBuf[j]);
|
|
for(i=0; i<20; i++, j++){
|
|
zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
|
|
}
|
|
zBuf[j] = 0;
|
|
OSTRACE2("TEMP FILENAME: %s\n", zBuf);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Turn a relative pathname into a full pathname. Write the full
|
|
** pathname into zOut[]. zOut[] will be at least pVfs->mxPathname
|
|
** bytes in size.
|
|
*/
|
|
static int winFullPathname(
|
|
sqlite3_vfs *pVfs, /* Pointer to vfs object */
|
|
const char *zRelative, /* Possibly relative input path */
|
|
int nFull, /* Size of output buffer in bytes */
|
|
char *zFull /* Output buffer */
|
|
){
|
|
|
|
#if defined(__CYGWIN__)
|
|
cygwin_conv_to_full_win32_path(zRelative, zFull);
|
|
return SQLITE_OK;
|
|
#endif
|
|
|
|
#if OS_WINCE
|
|
/* WinCE has no concept of a relative pathname, or so I am told. */
|
|
sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zRelative);
|
|
return SQLITE_OK;
|
|
#endif
|
|
|
|
#if !OS_WINCE && !defined(__CYGWIN__)
|
|
int nByte;
|
|
void *zConverted;
|
|
char *zOut;
|
|
zConverted = convertUtf8Filename(zRelative);
|
|
if( isNT() ){
|
|
WCHAR *zTemp;
|
|
nByte = GetFullPathNameW((WCHAR*)zConverted, 0, 0, 0) + 3;
|
|
zTemp = malloc( nByte*sizeof(zTemp[0]) );
|
|
if( zTemp==0 ){
|
|
free(zConverted);
|
|
return SQLITE_NOMEM;
|
|
}
|
|
GetFullPathNameW((WCHAR*)zConverted, nByte, zTemp, 0);
|
|
free(zConverted);
|
|
zOut = unicodeToUtf8(zTemp);
|
|
free(zTemp);
|
|
}else{
|
|
char *zTemp;
|
|
nByte = GetFullPathNameA((char*)zConverted, 0, 0, 0) + 3;
|
|
zTemp = malloc( nByte*sizeof(zTemp[0]) );
|
|
if( zTemp==0 ){
|
|
free(zConverted);
|
|
return SQLITE_NOMEM;
|
|
}
|
|
GetFullPathNameA((char*)zConverted, nByte, zTemp, 0);
|
|
free(zConverted);
|
|
zOut = mbcsToUtf8(zTemp);
|
|
free(zTemp);
|
|
}
|
|
if( zOut ){
|
|
sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zOut);
|
|
free(zOut);
|
|
return SQLITE_OK;
|
|
}else{
|
|
return SQLITE_NOMEM;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
|
/*
|
|
** Interfaces for opening a shared library, finding entry points
|
|
** within the shared library, and closing the shared library.
|
|
*/
|
|
/*
|
|
** Interfaces for opening a shared library, finding entry points
|
|
** within the shared library, and closing the shared library.
|
|
*/
|
|
static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
|
|
HANDLE h;
|
|
void *zConverted = convertUtf8Filename(zFilename);
|
|
if( zConverted==0 ){
|
|
return 0;
|
|
}
|
|
if( isNT() ){
|
|
h = LoadLibraryW((WCHAR*)zConverted);
|
|
}else{
|
|
#if OS_WINCE
|
|
return 0;
|
|
#else
|
|
h = LoadLibraryA((char*)zConverted);
|
|
#endif
|
|
}
|
|
free(zConverted);
|
|
return (void*)h;
|
|
}
|
|
static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
|
|
#if OS_WINCE
|
|
int error = GetLastError();
|
|
if( error>0x7FFFFFF ){
|
|
sqlite3_snprintf(nBuf, zBufOut, "OsError 0x%x", error);
|
|
}else{
|
|
sqlite3_snprintf(nBuf, zBufOut, "OsError %d", error);
|
|
}
|
|
#else
|
|
FormatMessageA(
|
|
FORMAT_MESSAGE_FROM_SYSTEM,
|
|
NULL,
|
|
GetLastError(),
|
|
0,
|
|
zBufOut,
|
|
nBuf-1,
|
|
0
|
|
);
|
|
#endif
|
|
}
|
|
void *winDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
|
|
#if OS_WINCE
|
|
/* The GetProcAddressA() routine is only available on wince. */
|
|
return GetProcAddressA((HANDLE)pHandle, zSymbol);
|
|
#else
|
|
/* All other windows platforms expect GetProcAddress() to take
|
|
** an Ansi string regardless of the _UNICODE setting */
|
|
return GetProcAddress((HANDLE)pHandle, zSymbol);
|
|
#endif
|
|
}
|
|
void winDlClose(sqlite3_vfs *pVfs, void *pHandle){
|
|
FreeLibrary((HANDLE)pHandle);
|
|
}
|
|
#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
|
|
#define winDlOpen 0
|
|
#define winDlError 0
|
|
#define winDlSym 0
|
|
#define winDlClose 0
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Write up to nBuf bytes of randomness into zBuf.
|
|
*/
|
|
static int winRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
|
|
int n = 0;
|
|
if( sizeof(SYSTEMTIME)<=nBuf-n ){
|
|
SYSTEMTIME x;
|
|
GetSystemTime(&x);
|
|
memcpy(&zBuf[n], &x, sizeof(x));
|
|
n += sizeof(x);
|
|
}
|
|
if( sizeof(DWORD)<=nBuf-n ){
|
|
DWORD pid = GetCurrentProcessId();
|
|
memcpy(&zBuf[n], &pid, sizeof(pid));
|
|
n += sizeof(pid);
|
|
}
|
|
if( sizeof(DWORD)<=nBuf-n ){
|
|
DWORD cnt = GetTickCount();
|
|
memcpy(&zBuf[n], &cnt, sizeof(cnt));
|
|
n += sizeof(cnt);
|
|
}
|
|
if( sizeof(LARGE_INTEGER)<=nBuf-n ){
|
|
LARGE_INTEGER i;
|
|
QueryPerformanceCounter(&i);
|
|
memcpy(&zBuf[n], &i, sizeof(i));
|
|
n += sizeof(i);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
|
|
/*
|
|
** Sleep for a little while. Return the amount of time slept.
|
|
*/
|
|
static int winSleep(sqlite3_vfs *pVfs, int microsec){
|
|
Sleep((microsec+999)/1000);
|
|
return ((microsec+999)/1000)*1000;
|
|
}
|
|
|
|
/*
|
|
** The following variable, if set to a non-zero value, becomes the result
|
|
** returned from sqlite3OsCurrentTime(). This is used for testing.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_API int sqlite3_current_time = 0;
|
|
#endif
|
|
|
|
/*
|
|
** Find the current time (in Universal Coordinated Time). Write the
|
|
** current time and date as a Julian Day number into *prNow and
|
|
** return 0. Return 1 if the time and date cannot be found.
|
|
*/
|
|
int winCurrentTime(sqlite3_vfs *pVfs, double *prNow){
|
|
FILETIME ft;
|
|
/* FILETIME structure is a 64-bit value representing the number of
|
|
100-nanosecond intervals since January 1, 1601 (= JD 2305813.5).
|
|
*/
|
|
double now;
|
|
#if OS_WINCE
|
|
SYSTEMTIME time;
|
|
GetSystemTime(&time);
|
|
SystemTimeToFileTime(&time,&ft);
|
|
#else
|
|
GetSystemTimeAsFileTime( &ft );
|
|
#endif
|
|
now = ((double)ft.dwHighDateTime) * 4294967296.0;
|
|
*prNow = (now + ft.dwLowDateTime)/864000000000.0 + 2305813.5;
|
|
#ifdef SQLITE_TEST
|
|
if( sqlite3_current_time ){
|
|
*prNow = sqlite3_current_time/86400.0 + 2440587.5;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
** Return a pointer to the sqlite3DefaultVfs structure. We use
|
|
** a function rather than give the structure global scope because
|
|
** some compilers (MSVC) do not allow forward declarations of
|
|
** initialized structures.
|
|
*/
|
|
SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){
|
|
static sqlite3_vfs winVfs = {
|
|
1, /* iVersion */
|
|
sizeof(winFile), /* szOsFile */
|
|
MAX_PATH, /* mxPathname */
|
|
0, /* pNext */
|
|
"win32", /* zName */
|
|
0, /* pAppData */
|
|
|
|
winOpen, /* xOpen */
|
|
winDelete, /* xDelete */
|
|
winAccess, /* xAccess */
|
|
winGetTempname, /* xGetTempName */
|
|
winFullPathname, /* xFullPathname */
|
|
winDlOpen, /* xDlOpen */
|
|
winDlError, /* xDlError */
|
|
winDlSym, /* xDlSym */
|
|
winDlClose, /* xDlClose */
|
|
winRandomness, /* xRandomness */
|
|
winSleep, /* xSleep */
|
|
winCurrentTime /* xCurrentTime */
|
|
};
|
|
|
|
return &winVfs;
|
|
}
|
|
|
|
#endif /* OS_WIN */
|
|
|
|
/************** End of os_win.c **********************************************/
|
|
/************** Begin file pager.c *******************************************/
|
|
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This is the implementation of the page cache subsystem or "pager".
|
|
**
|
|
** The pager is used to access a database disk file. It implements
|
|
** atomic commit and rollback through the use of a journal file that
|
|
** is separate from the database file. The pager also implements file
|
|
** locking to prevent two processes from writing the same database
|
|
** file simultaneously, or one process from reading the database while
|
|
** another is writing.
|
|
**
|
|
** @(#) $Id: pager.c,v 1.404 2008/01/22 21:30:53 drh Exp $
|
|
*/
|
|
#ifndef SQLITE_OMIT_DISKIO
|
|
|
|
/*
|
|
** Macros for troubleshooting. Normally turned off
|
|
*/
|
|
#if 0
|
|
#define sqlite3DebugPrintf printf
|
|
#define PAGERTRACE1(X) sqlite3DebugPrintf(X)
|
|
#define PAGERTRACE2(X,Y) sqlite3DebugPrintf(X,Y)
|
|
#define PAGERTRACE3(X,Y,Z) sqlite3DebugPrintf(X,Y,Z)
|
|
#define PAGERTRACE4(X,Y,Z,W) sqlite3DebugPrintf(X,Y,Z,W)
|
|
#define PAGERTRACE5(X,Y,Z,W,V) sqlite3DebugPrintf(X,Y,Z,W,V)
|
|
#else
|
|
#define PAGERTRACE1(X)
|
|
#define PAGERTRACE2(X,Y)
|
|
#define PAGERTRACE3(X,Y,Z)
|
|
#define PAGERTRACE4(X,Y,Z,W)
|
|
#define PAGERTRACE5(X,Y,Z,W,V)
|
|
#endif
|
|
|
|
/*
|
|
** The following two macros are used within the PAGERTRACEX() macros above
|
|
** to print out file-descriptors.
|
|
**
|
|
** PAGERID() takes a pointer to a Pager struct as its argument. The
|
|
** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file
|
|
** struct as its argument.
|
|
*/
|
|
#define PAGERID(p) ((int)(p->fd))
|
|
#define FILEHANDLEID(fd) ((int)fd)
|
|
|
|
/*
|
|
** The page cache as a whole is always in one of the following
|
|
** states:
|
|
**
|
|
** PAGER_UNLOCK The page cache is not currently reading or
|
|
** writing the database file. There is no
|
|
** data held in memory. This is the initial
|
|
** state.
|
|
**
|
|
** PAGER_SHARED The page cache is reading the database.
|
|
** Writing is not permitted. There can be
|
|
** multiple readers accessing the same database
|
|
** file at the same time.
|
|
**
|
|
** PAGER_RESERVED This process has reserved the database for writing
|
|
** but has not yet made any changes. Only one process
|
|
** at a time can reserve the database. The original
|
|
** database file has not been modified so other
|
|
** processes may still be reading the on-disk
|
|
** database file.
|
|
**
|
|
** PAGER_EXCLUSIVE The page cache is writing the database.
|
|
** Access is exclusive. No other processes or
|
|
** threads can be reading or writing while one
|
|
** process is writing.
|
|
**
|
|
** PAGER_SYNCED The pager moves to this state from PAGER_EXCLUSIVE
|
|
** after all dirty pages have been written to the
|
|
** database file and the file has been synced to
|
|
** disk. All that remains to do is to remove or
|
|
** truncate the journal file and the transaction
|
|
** will be committed.
|
|
**
|
|
** The page cache comes up in PAGER_UNLOCK. The first time a
|
|
** sqlite3PagerGet() occurs, the state transitions to PAGER_SHARED.
|
|
** After all pages have been released using sqlite_page_unref(),
|
|
** the state transitions back to PAGER_UNLOCK. The first time
|
|
** that sqlite3PagerWrite() is called, the state transitions to
|
|
** PAGER_RESERVED. (Note that sqlite3PagerWrite() can only be
|
|
** called on an outstanding page which means that the pager must
|
|
** be in PAGER_SHARED before it transitions to PAGER_RESERVED.)
|
|
** PAGER_RESERVED means that there is an open rollback journal.
|
|
** The transition to PAGER_EXCLUSIVE occurs before any changes
|
|
** are made to the database file, though writes to the rollback
|
|
** journal occurs with just PAGER_RESERVED. After an sqlite3PagerRollback()
|
|
** or sqlite3PagerCommitPhaseTwo(), the state can go back to PAGER_SHARED,
|
|
** or it can stay at PAGER_EXCLUSIVE if we are in exclusive access mode.
|
|
*/
|
|
#define PAGER_UNLOCK 0
|
|
#define PAGER_SHARED 1 /* same as SHARED_LOCK */
|
|
#define PAGER_RESERVED 2 /* same as RESERVED_LOCK */
|
|
#define PAGER_EXCLUSIVE 4 /* same as EXCLUSIVE_LOCK */
|
|
#define PAGER_SYNCED 5
|
|
|
|
/*
|
|
** If the SQLITE_BUSY_RESERVED_LOCK macro is set to true at compile-time,
|
|
** then failed attempts to get a reserved lock will invoke the busy callback.
|
|
** This is off by default. To see why, consider the following scenario:
|
|
**
|
|
** Suppose thread A already has a shared lock and wants a reserved lock.
|
|
** Thread B already has a reserved lock and wants an exclusive lock. If
|
|
** both threads are using their busy callbacks, it might be a long time
|
|
** be for one of the threads give up and allows the other to proceed.
|
|
** But if the thread trying to get the reserved lock gives up quickly
|
|
** (if it never invokes its busy callback) then the contention will be
|
|
** resolved quickly.
|
|
*/
|
|
#ifndef SQLITE_BUSY_RESERVED_LOCK
|
|
# define SQLITE_BUSY_RESERVED_LOCK 0
|
|
#endif
|
|
|
|
/*
|
|
** This macro rounds values up so that if the value is an address it
|
|
** is guaranteed to be an address that is aligned to an 8-byte boundary.
|
|
*/
|
|
#define FORCE_ALIGNMENT(X) (((X)+7)&~7)
|
|
|
|
typedef struct PgHdr PgHdr;
|
|
|
|
/*
|
|
** Each pager stores all currently unreferenced pages in a list sorted
|
|
** in least-recently-used (LRU) order (i.e. the first item on the list has
|
|
** not been referenced in a long time, the last item has been recently
|
|
** used). An instance of this structure is included as part of each
|
|
** pager structure for this purpose (variable Pager.lru).
|
|
**
|
|
** Additionally, if memory-management is enabled, all unreferenced pages
|
|
** are stored in a global LRU list (global variable sqlite3LruPageList).
|
|
**
|
|
** In both cases, the PagerLruList.pFirstSynced variable points to
|
|
** the first page in the corresponding list that does not require an
|
|
** fsync() operation before its memory can be reclaimed. If no such
|
|
** page exists, PagerLruList.pFirstSynced is set to NULL.
|
|
*/
|
|
typedef struct PagerLruList PagerLruList;
|
|
struct PagerLruList {
|
|
PgHdr *pFirst; /* First page in LRU list */
|
|
PgHdr *pLast; /* Last page in LRU list (the most recently used) */
|
|
PgHdr *pFirstSynced; /* First page in list with PgHdr.needSync==0 */
|
|
};
|
|
|
|
/*
|
|
** The following structure contains the next and previous pointers used
|
|
** to link a PgHdr structure into a PagerLruList linked list.
|
|
*/
|
|
typedef struct PagerLruLink PagerLruLink;
|
|
struct PagerLruLink {
|
|
PgHdr *pNext;
|
|
PgHdr *pPrev;
|
|
};
|
|
|
|
/*
|
|
** Each in-memory image of a page begins with the following header.
|
|
** This header is only visible to this pager module. The client
|
|
** code that calls pager sees only the data that follows the header.
|
|
**
|
|
** Client code should call sqlite3PagerWrite() on a page prior to making
|
|
** any modifications to that page. The first time sqlite3PagerWrite()
|
|
** is called, the original page contents are written into the rollback
|
|
** journal and PgHdr.inJournal and PgHdr.needSync are set. Later, once
|
|
** the journal page has made it onto the disk surface, PgHdr.needSync
|
|
** is cleared. The modified page cannot be written back into the original
|
|
** database file until the journal pages has been synced to disk and the
|
|
** PgHdr.needSync has been cleared.
|
|
**
|
|
** The PgHdr.dirty flag is set when sqlite3PagerWrite() is called and
|
|
** is cleared again when the page content is written back to the original
|
|
** database file.
|
|
**
|
|
** Details of important structure elements:
|
|
**
|
|
** needSync
|
|
**
|
|
** If this is true, this means that it is not safe to write the page
|
|
** content to the database because the original content needed
|
|
** for rollback has not by synced to the main rollback journal.
|
|
** The original content may have been written to the rollback journal
|
|
** but it has not yet been synced. So we cannot write to the database
|
|
** file because power failure might cause the page in the journal file
|
|
** to never reach the disk. It is as if the write to the journal file
|
|
** does not occur until the journal file is synced.
|
|
**
|
|
** This flag is false if the page content exactly matches what
|
|
** currently exists in the database file. The needSync flag is also
|
|
** false if the original content has been written to the main rollback
|
|
** journal and synced. If the page represents a new page that has
|
|
** been added onto the end of the database during the current
|
|
** transaction, the needSync flag is true until the original database
|
|
** size in the journal header has been synced to disk.
|
|
**
|
|
** inJournal
|
|
**
|
|
** This is true if the original page has been written into the main
|
|
** rollback journal. This is always false for new pages added to
|
|
** the end of the database file during the current transaction.
|
|
** And this flag says nothing about whether or not the journal
|
|
** has been synced to disk. For pages that are in the original
|
|
** database file, the following expression should always be true:
|
|
**
|
|
** inJournal = (pPager->aInJournal[(pgno-1)/8] & (1<<((pgno-1)%8))!=0
|
|
**
|
|
** The pPager->aInJournal[] array is only valid for the original
|
|
** pages of the database, not new pages that are added to the end
|
|
** of the database, so obviously the above expression cannot be
|
|
** valid for new pages. For new pages inJournal is always 0.
|
|
**
|
|
** dirty
|
|
**
|
|
** When true, this means that the content of the page has been
|
|
** modified and needs to be written back to the database file.
|
|
** If false, it means that either the content of the page is
|
|
** unchanged or else the content is unimportant and we do not
|
|
** care whether or not it is preserved.
|
|
**
|
|
** alwaysRollback
|
|
**
|
|
** This means that the sqlite3PagerDontRollback() API should be
|
|
** ignored for this page. The DontRollback() API attempts to say
|
|
** that the content of the page on disk is unimportant (it is an
|
|
** unused page on the freelist) so that it is unnecessary to
|
|
** rollback changes to this page because the content of the page
|
|
** can change without changing the meaning of the database. This
|
|
** flag overrides any DontRollback() attempt. This flag is set
|
|
** when a page that originally contained valid data is added to
|
|
** the freelist. Later in the same transaction, this page might
|
|
** be pulled from the freelist and reused for something different
|
|
** and at that point the DontRollback() API will be called because
|
|
** pages taken from the freelist do not need to be protected by
|
|
** the rollback journal. But this flag says that the page was
|
|
** not originally part of the freelist so that it still needs to
|
|
** be rolled back in spite of any subsequent DontRollback() calls.
|
|
**
|
|
** needRead
|
|
**
|
|
** This flag means (when true) that the content of the page has
|
|
** not yet been loaded from disk. The in-memory content is just
|
|
** garbage. (Actually, we zero the content, but you should not
|
|
** make any assumptions about the content nevertheless.) If the
|
|
** content is needed in the future, it should be read from the
|
|
** original database file.
|
|
*/
|
|
struct PgHdr {
|
|
Pager *pPager; /* The pager to which this page belongs */
|
|
Pgno pgno; /* The page number for this page */
|
|
PgHdr *pNextHash, *pPrevHash; /* Hash collision chain for PgHdr.pgno */
|
|
PagerLruLink free; /* Next and previous free pages */
|
|
PgHdr *pNextAll; /* A list of all pages */
|
|
u8 inJournal; /* TRUE if has been written to journal */
|
|
u8 dirty; /* TRUE if we need to write back changes */
|
|
u8 needSync; /* Sync journal before writing this page */
|
|
u8 alwaysRollback; /* Disable DontRollback() for this page */
|
|
u8 needRead; /* Read content if PagerWrite() is called */
|
|
short int nRef; /* Number of users of this page */
|
|
PgHdr *pDirty, *pPrevDirty; /* Dirty pages */
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
PagerLruLink gfree; /* Global list of nRef==0 pages */
|
|
#endif
|
|
#ifdef SQLITE_CHECK_PAGES
|
|
u32 pageHash;
|
|
#endif
|
|
void *pData; /* Page data */
|
|
/* Pager.nExtra bytes of local data appended to this header */
|
|
};
|
|
|
|
/*
|
|
** For an in-memory only database, some extra information is recorded about
|
|
** each page so that changes can be rolled back. (Journal files are not
|
|
** used for in-memory databases.) The following information is added to
|
|
** the end of every EXTRA block for in-memory databases.
|
|
**
|
|
** This information could have been added directly to the PgHdr structure.
|
|
** But then it would take up an extra 8 bytes of storage on every PgHdr
|
|
** even for disk-based databases. Splitting it out saves 8 bytes. This
|
|
** is only a savings of 0.8% but those percentages add up.
|
|
*/
|
|
typedef struct PgHistory PgHistory;
|
|
struct PgHistory {
|
|
u8 *pOrig; /* Original page text. Restore to this on a full rollback */
|
|
u8 *pStmt; /* Text as it was at the beginning of the current statement */
|
|
PgHdr *pNextStmt, *pPrevStmt; /* List of pages in the statement journal */
|
|
u8 inStmt; /* TRUE if in the statement subjournal */
|
|
};
|
|
|
|
/*
|
|
** A macro used for invoking the codec if there is one
|
|
*/
|
|
#ifdef SQLITE_HAS_CODEC
|
|
# define CODEC1(P,D,N,X) if( P->xCodec!=0 ){ P->xCodec(P->pCodecArg,D,N,X); }
|
|
# define CODEC2(P,D,N,X) ((char*)(P->xCodec!=0?P->xCodec(P->pCodecArg,D,N,X):D))
|
|
#else
|
|
# define CODEC1(P,D,N,X) /* NO-OP */
|
|
# define CODEC2(P,D,N,X) ((char*)D)
|
|
#endif
|
|
|
|
/*
|
|
** Convert a pointer to a PgHdr into a pointer to its data
|
|
** and back again.
|
|
*/
|
|
#define PGHDR_TO_DATA(P) ((P)->pData)
|
|
#define PGHDR_TO_EXTRA(G,P) ((void*)&((G)[1]))
|
|
#define PGHDR_TO_HIST(P,PGR) \
|
|
((PgHistory*)&((char*)(&(P)[1]))[(PGR)->nExtra])
|
|
|
|
/*
|
|
** A open page cache is an instance of the following structure.
|
|
**
|
|
** Pager.errCode may be set to SQLITE_IOERR, SQLITE_CORRUPT, or
|
|
** or SQLITE_FULL. Once one of the first three errors occurs, it persists
|
|
** and is returned as the result of every major pager API call. The
|
|
** SQLITE_FULL return code is slightly different. It persists only until the
|
|
** next successful rollback is performed on the pager cache. Also,
|
|
** SQLITE_FULL does not affect the sqlite3PagerGet() and sqlite3PagerLookup()
|
|
** APIs, they may still be used successfully.
|
|
*/
|
|
struct Pager {
|
|
sqlite3_vfs *pVfs; /* OS functions to use for IO */
|
|
u8 journalOpen; /* True if journal file descriptors is valid */
|
|
u8 journalStarted; /* True if header of journal is synced */
|
|
u8 useJournal; /* Use a rollback journal on this file */
|
|
u8 noReadlock; /* Do not bother to obtain readlocks */
|
|
u8 stmtOpen; /* True if the statement subjournal is open */
|
|
u8 stmtInUse; /* True we are in a statement subtransaction */
|
|
u8 stmtAutoopen; /* Open stmt journal when main journal is opened*/
|
|
u8 noSync; /* Do not sync the journal if true */
|
|
u8 fullSync; /* Do extra syncs of the journal for robustness */
|
|
u8 sync_flags; /* One of SYNC_NORMAL or SYNC_FULL */
|
|
u8 state; /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */
|
|
u8 tempFile; /* zFilename is a temporary file */
|
|
u8 readOnly; /* True for a read-only database */
|
|
u8 needSync; /* True if an fsync() is needed on the journal */
|
|
u8 dirtyCache; /* True if cached pages have changed */
|
|
u8 alwaysRollback; /* Disable DontRollback() for all pages */
|
|
u8 memDb; /* True to inhibit all file I/O */
|
|
u8 setMaster; /* True if a m-j name has been written to jrnl */
|
|
u8 doNotSync; /* Boolean. While true, do not spill the cache */
|
|
u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */
|
|
u8 changeCountDone; /* Set after incrementing the change-counter */
|
|
u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */
|
|
int errCode; /* One of several kinds of errors */
|
|
int dbSize; /* Number of pages in the file */
|
|
int origDbSize; /* dbSize before the current change */
|
|
int stmtSize; /* Size of database (in pages) at stmt_begin() */
|
|
int nRec; /* Number of pages written to the journal */
|
|
u32 cksumInit; /* Quasi-random value added to every checksum */
|
|
int stmtNRec; /* Number of records in stmt subjournal */
|
|
int nExtra; /* Add this many bytes to each in-memory page */
|
|
int pageSize; /* Number of bytes in a page */
|
|
int nPage; /* Total number of in-memory pages */
|
|
int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */
|
|
int mxPage; /* Maximum number of pages to hold in cache */
|
|
Pgno mxPgno; /* Maximum allowed size of the database */
|
|
u8 *aInJournal; /* One bit for each page in the database file */
|
|
u8 *aInStmt; /* One bit for each page in the database */
|
|
char *zFilename; /* Name of the database file */
|
|
char *zJournal; /* Name of the journal file */
|
|
char *zDirectory; /* Directory hold database and journal files */
|
|
char *zStmtJrnl; /* Name of the statement journal file */
|
|
sqlite3_file *fd, *jfd; /* File descriptors for database and journal */
|
|
sqlite3_file *stfd; /* File descriptor for the statement subjournal*/
|
|
BusyHandler *pBusyHandler; /* Pointer to sqlite.busyHandler */
|
|
PagerLruList lru; /* LRU list of free pages */
|
|
PgHdr *pAll; /* List of all pages */
|
|
PgHdr *pStmt; /* List of pages in the statement subjournal */
|
|
PgHdr *pDirty; /* List of all dirty pages */
|
|
i64 journalOff; /* Current byte offset in the journal file */
|
|
i64 journalHdr; /* Byte offset to previous journal header */
|
|
i64 stmtHdrOff; /* First journal header written this statement */
|
|
i64 stmtCksum; /* cksumInit when statement was started */
|
|
i64 stmtJSize; /* Size of journal at stmt_begin() */
|
|
int sectorSize; /* Assumed sector size during rollback */
|
|
#ifdef SQLITE_TEST
|
|
int nHit, nMiss; /* Cache hits and missing */
|
|
int nRead, nWrite; /* Database pages read/written */
|
|
#endif
|
|
void (*xDestructor)(DbPage*,int); /* Call this routine when freeing pages */
|
|
void (*xReiniter)(DbPage*,int); /* Call this routine when reloading pages */
|
|
#ifdef SQLITE_HAS_CODEC
|
|
void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
|
|
void *pCodecArg; /* First argument to xCodec() */
|
|
#endif
|
|
int nHash; /* Size of the pager hash table */
|
|
PgHdr **aHash; /* Hash table to map page number to PgHdr */
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
Pager *pNext; /* Doubly linked list of pagers on which */
|
|
Pager *pPrev; /* sqlite3_release_memory() will work */
|
|
int iInUseMM; /* Non-zero if unavailable to MM */
|
|
int iInUseDB; /* Non-zero if in sqlite3_release_memory() */
|
|
#endif
|
|
char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */
|
|
char dbFileVers[16]; /* Changes whenever database file changes */
|
|
};
|
|
|
|
/*
|
|
** The following global variables hold counters used for
|
|
** testing purposes only. These variables do not exist in
|
|
** a non-testing build. These variables are not thread-safe.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_API int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */
|
|
SQLITE_API int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */
|
|
SQLITE_API int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */
|
|
SQLITE_API int sqlite3_pager_pgfree_count = 0; /* Number of cache pages freed */
|
|
# define PAGER_INCR(v) v++
|
|
#else
|
|
# define PAGER_INCR(v)
|
|
#endif
|
|
|
|
/*
|
|
** The following variable points to the head of a double-linked list
|
|
** of all pagers that are eligible for page stealing by the
|
|
** sqlite3_release_memory() interface. Access to this list is
|
|
** protected by the SQLITE_MUTEX_STATIC_MEM2 mutex.
|
|
*/
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
static Pager *sqlite3PagerList = 0;
|
|
static PagerLruList sqlite3LruPageList = {0, 0, 0};
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Journal files begin with the following magic string. The data
|
|
** was obtained from /dev/random. It is used only as a sanity check.
|
|
**
|
|
** Since version 2.8.0, the journal format contains additional sanity
|
|
** checking information. If the power fails while the journal is begin
|
|
** written, semi-random garbage data might appear in the journal
|
|
** file after power is restored. If an attempt is then made
|
|
** to roll the journal back, the database could be corrupted. The additional
|
|
** sanity checking data is an attempt to discover the garbage in the
|
|
** journal and ignore it.
|
|
**
|
|
** The sanity checking information for the new journal format consists
|
|
** of a 32-bit checksum on each page of data. The checksum covers both
|
|
** the page number and the pPager->pageSize bytes of data for the page.
|
|
** This cksum is initialized to a 32-bit random value that appears in the
|
|
** journal file right after the header. The random initializer is important,
|
|
** because garbage data that appears at the end of a journal is likely
|
|
** data that was once in other files that have now been deleted. If the
|
|
** garbage data came from an obsolete journal file, the checksums might
|
|
** be correct. But by initializing the checksum to random value which
|
|
** is different for every journal, we minimize that risk.
|
|
*/
|
|
static const unsigned char aJournalMagic[] = {
|
|
0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7,
|
|
};
|
|
|
|
/*
|
|
** The size of the header and of each page in the journal is determined
|
|
** by the following macros.
|
|
*/
|
|
#define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8)
|
|
|
|
/*
|
|
** The journal header size for this pager. In the future, this could be
|
|
** set to some value read from the disk controller. The important
|
|
** characteristic is that it is the same size as a disk sector.
|
|
*/
|
|
#define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize)
|
|
|
|
/*
|
|
** The macro MEMDB is true if we are dealing with an in-memory database.
|
|
** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set,
|
|
** the value of MEMDB will be a constant and the compiler will optimize
|
|
** out code that would never execute.
|
|
*/
|
|
#ifdef SQLITE_OMIT_MEMORYDB
|
|
# define MEMDB 0
|
|
#else
|
|
# define MEMDB pPager->memDb
|
|
#endif
|
|
|
|
/*
|
|
** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is
|
|
** reserved for working around a windows/posix incompatibility). It is
|
|
** used in the journal to signify that the remainder of the journal file
|
|
** is devoted to storing a master journal name - there are no more pages to
|
|
** roll back. See comments for function writeMasterJournal() for details.
|
|
*/
|
|
/* #define PAGER_MJ_PGNO(x) (PENDING_BYTE/((x)->pageSize)) */
|
|
#define PAGER_MJ_PGNO(x) ((PENDING_BYTE/((x)->pageSize))+1)
|
|
|
|
/*
|
|
** The maximum legal page number is (2^31 - 1).
|
|
*/
|
|
#define PAGER_MAX_PGNO 2147483647
|
|
|
|
/*
|
|
** The pagerEnter() and pagerLeave() routines acquire and release
|
|
** a mutex on each pager. The mutex is recursive.
|
|
**
|
|
** This is a special-purpose mutex. It only provides mutual exclusion
|
|
** between the Btree and the Memory Management sqlite3_release_memory()
|
|
** function. It does not prevent, for example, two Btrees from accessing
|
|
** the same pager at the same time. Other general-purpose mutexes in
|
|
** the btree layer handle that chore.
|
|
*/
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
static void pagerEnter(Pager *p){
|
|
p->iInUseDB++;
|
|
if( p->iInUseMM && p->iInUseDB==1 ){
|
|
sqlite3_mutex *mutex;
|
|
mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
|
|
p->iInUseDB = 0;
|
|
sqlite3_mutex_enter(mutex);
|
|
p->iInUseDB = 1;
|
|
sqlite3_mutex_leave(mutex);
|
|
}
|
|
assert( p->iInUseMM==0 );
|
|
}
|
|
static void pagerLeave(Pager *p){
|
|
p->iInUseDB--;
|
|
assert( p->iInUseDB>=0 );
|
|
}
|
|
#else
|
|
# define pagerEnter(X)
|
|
# define pagerLeave(X)
|
|
#endif
|
|
|
|
/*
|
|
** Enable reference count tracking (for debugging) here:
|
|
*/
|
|
#ifdef SQLITE_DEBUG
|
|
int pager3_refinfo_enable = 0;
|
|
static void pager_refinfo(PgHdr *p){
|
|
static int cnt = 0;
|
|
if( !pager3_refinfo_enable ) return;
|
|
sqlite3DebugPrintf(
|
|
"REFCNT: %4d addr=%p nRef=%-3d total=%d\n",
|
|
p->pgno, PGHDR_TO_DATA(p), p->nRef, p->pPager->nRef
|
|
);
|
|
cnt++; /* Something to set a breakpoint on */
|
|
}
|
|
# define REFINFO(X) pager_refinfo(X)
|
|
#else
|
|
# define REFINFO(X)
|
|
#endif
|
|
|
|
/*
|
|
** Add page pPg to the end of the linked list managed by structure
|
|
** pList (pPg becomes the last entry in the list - the most recently
|
|
** used). Argument pLink should point to either pPg->free or pPg->gfree,
|
|
** depending on whether pPg is being added to the pager-specific or
|
|
** global LRU list.
|
|
*/
|
|
static void listAdd(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){
|
|
pLink->pNext = 0;
|
|
pLink->pPrev = pList->pLast;
|
|
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
assert(pLink==&pPg->free || pLink==&pPg->gfree);
|
|
assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList);
|
|
#endif
|
|
|
|
if( pList->pLast ){
|
|
int iOff = (char *)pLink - (char *)pPg;
|
|
PagerLruLink *pLastLink = (PagerLruLink *)(&((u8 *)pList->pLast)[iOff]);
|
|
pLastLink->pNext = pPg;
|
|
}else{
|
|
assert(!pList->pFirst);
|
|
pList->pFirst = pPg;
|
|
}
|
|
|
|
pList->pLast = pPg;
|
|
if( !pList->pFirstSynced && pPg->needSync==0 ){
|
|
pList->pFirstSynced = pPg;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Remove pPg from the list managed by the structure pointed to by pList.
|
|
**
|
|
** Argument pLink should point to either pPg->free or pPg->gfree, depending
|
|
** on whether pPg is being added to the pager-specific or global LRU list.
|
|
*/
|
|
static void listRemove(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){
|
|
int iOff = (char *)pLink - (char *)pPg;
|
|
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
assert(pLink==&pPg->free || pLink==&pPg->gfree);
|
|
assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList);
|
|
#endif
|
|
|
|
if( pPg==pList->pFirst ){
|
|
pList->pFirst = pLink->pNext;
|
|
}
|
|
if( pPg==pList->pLast ){
|
|
pList->pLast = pLink->pPrev;
|
|
}
|
|
if( pLink->pPrev ){
|
|
PagerLruLink *pPrevLink = (PagerLruLink *)(&((u8 *)pLink->pPrev)[iOff]);
|
|
pPrevLink->pNext = pLink->pNext;
|
|
}
|
|
if( pLink->pNext ){
|
|
PagerLruLink *pNextLink = (PagerLruLink *)(&((u8 *)pLink->pNext)[iOff]);
|
|
pNextLink->pPrev = pLink->pPrev;
|
|
}
|
|
if( pPg==pList->pFirstSynced ){
|
|
PgHdr *p = pLink->pNext;
|
|
while( p && p->needSync ){
|
|
PagerLruLink *pL = (PagerLruLink *)(&((u8 *)p)[iOff]);
|
|
p = pL->pNext;
|
|
}
|
|
pList->pFirstSynced = p;
|
|
}
|
|
|
|
pLink->pNext = pLink->pPrev = 0;
|
|
}
|
|
|
|
/*
|
|
** Add page pPg to the list of free pages for the pager. If
|
|
** memory-management is enabled, also add the page to the global
|
|
** list of free pages.
|
|
*/
|
|
static void lruListAdd(PgHdr *pPg){
|
|
listAdd(&pPg->pPager->lru, &pPg->free, pPg);
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
if( !pPg->pPager->memDb ){
|
|
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
|
|
listAdd(&sqlite3LruPageList, &pPg->gfree, pPg);
|
|
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Remove page pPg from the list of free pages for the associated pager.
|
|
** If memory-management is enabled, also remove pPg from the global list
|
|
** of free pages.
|
|
*/
|
|
static void lruListRemove(PgHdr *pPg){
|
|
listRemove(&pPg->pPager->lru, &pPg->free, pPg);
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
if( !pPg->pPager->memDb ){
|
|
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
|
|
listRemove(&sqlite3LruPageList, &pPg->gfree, pPg);
|
|
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** This function is called just after the needSync flag has been cleared
|
|
** from all pages managed by pPager (usually because the journal file
|
|
** has just been synced). It updates the pPager->lru.pFirstSynced variable
|
|
** and, if memory-management is enabled, the sqlite3LruPageList.pFirstSynced
|
|
** variable also.
|
|
*/
|
|
static void lruListSetFirstSynced(Pager *pPager){
|
|
pPager->lru.pFirstSynced = pPager->lru.pFirst;
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
if( !pPager->memDb ){
|
|
PgHdr *p;
|
|
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
|
|
for(p=sqlite3LruPageList.pFirst; p && p->needSync; p=p->gfree.pNext);
|
|
assert(p==pPager->lru.pFirstSynced || p==sqlite3LruPageList.pFirstSynced);
|
|
sqlite3LruPageList.pFirstSynced = p;
|
|
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Return true if page *pPg has already been written to the statement
|
|
** journal (or statement snapshot has been created, if *pPg is part
|
|
** of an in-memory database).
|
|
*/
|
|
static int pageInStatement(PgHdr *pPg){
|
|
Pager *pPager = pPg->pPager;
|
|
if( MEMDB ){
|
|
return PGHDR_TO_HIST(pPg, pPager)->inStmt;
|
|
}else{
|
|
Pgno pgno = pPg->pgno;
|
|
u8 *a = pPager->aInStmt;
|
|
return (a && (int)pgno<=pPager->stmtSize && (a[pgno/8] & (1<<(pgno&7))));
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Change the size of the pager hash table to N. N must be a power
|
|
** of two.
|
|
*/
|
|
static void pager_resize_hash_table(Pager *pPager, int N){
|
|
PgHdr **aHash, *pPg;
|
|
assert( N>0 && (N&(N-1))==0 );
|
|
pagerLeave(pPager);
|
|
sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, pPager->aHash!=0);
|
|
aHash = sqlite3MallocZero( sizeof(aHash[0])*N );
|
|
sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 0);
|
|
pagerEnter(pPager);
|
|
if( aHash==0 ){
|
|
/* Failure to rehash is not an error. It is only a performance hit. */
|
|
return;
|
|
}
|
|
sqlite3_free(pPager->aHash);
|
|
pPager->nHash = N;
|
|
pPager->aHash = aHash;
|
|
for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
|
|
int h;
|
|
if( pPg->pgno==0 ){
|
|
assert( pPg->pNextHash==0 && pPg->pPrevHash==0 );
|
|
continue;
|
|
}
|
|
h = pPg->pgno & (N-1);
|
|
pPg->pNextHash = aHash[h];
|
|
if( aHash[h] ){
|
|
aHash[h]->pPrevHash = pPg;
|
|
}
|
|
aHash[h] = pPg;
|
|
pPg->pPrevHash = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Read a 32-bit integer from the given file descriptor. Store the integer
|
|
** that is read in *pRes. Return SQLITE_OK if everything worked, or an
|
|
** error code is something goes wrong.
|
|
**
|
|
** All values are stored on disk as big-endian.
|
|
*/
|
|
static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){
|
|
unsigned char ac[4];
|
|
int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset);
|
|
if( rc==SQLITE_OK ){
|
|
*pRes = sqlite3Get4byte(ac);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Write a 32-bit integer into a string buffer in big-endian byte order.
|
|
*/
|
|
#define put32bits(A,B) sqlite3Put4byte((u8*)A,B)
|
|
|
|
/*
|
|
** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK
|
|
** on success or an error code is something goes wrong.
|
|
*/
|
|
static int write32bits(sqlite3_file *fd, i64 offset, u32 val){
|
|
char ac[4];
|
|
put32bits(ac, val);
|
|
return sqlite3OsWrite(fd, ac, 4, offset);
|
|
}
|
|
|
|
/*
|
|
** If file pFd is open, call sqlite3OsUnlock() on it.
|
|
*/
|
|
static int osUnlock(sqlite3_file *pFd, int eLock){
|
|
if( !pFd->pMethods ){
|
|
return SQLITE_OK;
|
|
}
|
|
return sqlite3OsUnlock(pFd, eLock);
|
|
}
|
|
|
|
/*
|
|
** This function determines whether or not the atomic-write optimization
|
|
** can be used with this pager. The optimization can be used if:
|
|
**
|
|
** (a) the value returned by OsDeviceCharacteristics() indicates that
|
|
** a database page may be written atomically, and
|
|
** (b) the value returned by OsSectorSize() is less than or equal
|
|
** to the page size.
|
|
**
|
|
** If the optimization cannot be used, 0 is returned. If it can be used,
|
|
** then the value returned is the size of the journal file when it
|
|
** contains rollback data for exactly one page.
|
|
*/
|
|
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
|
|
static int jrnlBufferSize(Pager *pPager){
|
|
int dc; /* Device characteristics */
|
|
int nSector; /* Sector size */
|
|
int nPage; /* Page size */
|
|
sqlite3_file *fd = pPager->fd;
|
|
|
|
if( fd->pMethods ){
|
|
dc = sqlite3OsDeviceCharacteristics(fd);
|
|
nSector = sqlite3OsSectorSize(fd);
|
|
nPage = pPager->pageSize;
|
|
}
|
|
|
|
assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
|
|
assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
|
|
|
|
if( !fd->pMethods || (dc&(SQLITE_IOCAP_ATOMIC|(nPage>>8))&&nSector<=nPage) ){
|
|
return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager);
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** This function should be called when an error occurs within the pager
|
|
** code. The first argument is a pointer to the pager structure, the
|
|
** second the error-code about to be returned by a pager API function.
|
|
** The value returned is a copy of the second argument to this function.
|
|
**
|
|
** If the second argument is SQLITE_IOERR, SQLITE_CORRUPT, or SQLITE_FULL
|
|
** the error becomes persistent. Until the persisten error is cleared,
|
|
** subsequent API calls on this Pager will immediately return the same
|
|
** error code.
|
|
**
|
|
** A persistent error indicates that the contents of the pager-cache
|
|
** cannot be trusted. This state can be cleared by completely discarding
|
|
** the contents of the pager-cache. If a transaction was active when
|
|
** the persistent error occured, then the rollback journal may need
|
|
** to be replayed.
|
|
*/
|
|
static void pager_unlock(Pager *pPager);
|
|
static int pager_error(Pager *pPager, int rc){
|
|
int rc2 = rc & 0xff;
|
|
assert(
|
|
pPager->errCode==SQLITE_FULL ||
|
|
pPager->errCode==SQLITE_OK ||
|
|
(pPager->errCode & 0xff)==SQLITE_IOERR
|
|
);
|
|
if(
|
|
rc2==SQLITE_FULL ||
|
|
rc2==SQLITE_IOERR ||
|
|
rc2==SQLITE_CORRUPT
|
|
){
|
|
pPager->errCode = rc;
|
|
if( pPager->state==PAGER_UNLOCK && pPager->nRef==0 ){
|
|
/* If the pager is already unlocked, call pager_unlock() now to
|
|
** clear the error state and ensure that the pager-cache is
|
|
** completely empty.
|
|
*/
|
|
pager_unlock(pPager);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** If SQLITE_CHECK_PAGES is defined then we do some sanity checking
|
|
** on the cache using a hash function. This is used for testing
|
|
** and debugging only.
|
|
*/
|
|
#ifdef SQLITE_CHECK_PAGES
|
|
/*
|
|
** Return a 32-bit hash of the page data for pPage.
|
|
*/
|
|
static u32 pager_datahash(int nByte, unsigned char *pData){
|
|
u32 hash = 0;
|
|
int i;
|
|
for(i=0; i<nByte; i++){
|
|
hash = (hash*1039) + pData[i];
|
|
}
|
|
return hash;
|
|
}
|
|
static u32 pager_pagehash(PgHdr *pPage){
|
|
return pager_datahash(pPage->pPager->pageSize,
|
|
(unsigned char *)PGHDR_TO_DATA(pPage));
|
|
}
|
|
|
|
/*
|
|
** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES
|
|
** is defined, and NDEBUG is not defined, an assert() statement checks
|
|
** that the page is either dirty or still matches the calculated page-hash.
|
|
*/
|
|
#define CHECK_PAGE(x) checkPage(x)
|
|
static void checkPage(PgHdr *pPg){
|
|
Pager *pPager = pPg->pPager;
|
|
assert( !pPg->pageHash || pPager->errCode || MEMDB || pPg->dirty ||
|
|
pPg->pageHash==pager_pagehash(pPg) );
|
|
}
|
|
|
|
#else
|
|
#define pager_datahash(X,Y) 0
|
|
#define pager_pagehash(X) 0
|
|
#define CHECK_PAGE(x)
|
|
#endif
|
|
|
|
/*
|
|
** When this is called the journal file for pager pPager must be open.
|
|
** The master journal file name is read from the end of the file and
|
|
** written into memory supplied by the caller.
|
|
**
|
|
** zMaster must point to a buffer of at least nMaster bytes allocated by
|
|
** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is
|
|
** enough space to write the master journal name). If the master journal
|
|
** name in the journal is longer than nMaster bytes (including a
|
|
** nul-terminator), then this is handled as if no master journal name
|
|
** were present in the journal.
|
|
**
|
|
** If no master journal file name is present zMaster[0] is set to 0 and
|
|
** SQLITE_OK returned.
|
|
*/
|
|
static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, int nMaster){
|
|
int rc;
|
|
u32 len;
|
|
i64 szJ;
|
|
u32 cksum;
|
|
int i;
|
|
unsigned char aMagic[8]; /* A buffer to hold the magic header */
|
|
|
|
zMaster[0] = '\0';
|
|
|
|
rc = sqlite3OsFileSize(pJrnl, &szJ);
|
|
if( rc!=SQLITE_OK || szJ<16 ) return rc;
|
|
|
|
rc = read32bits(pJrnl, szJ-16, &len);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
if( len>=nMaster ){
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
rc = read32bits(pJrnl, szJ-12, &cksum);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8);
|
|
if( rc!=SQLITE_OK || memcmp(aMagic, aJournalMagic, 8) ) return rc;
|
|
|
|
rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
zMaster[len] = '\0';
|
|
|
|
/* See if the checksum matches the master journal name */
|
|
for(i=0; i<len; i++){
|
|
cksum -= zMaster[i];
|
|
}
|
|
if( cksum ){
|
|
/* If the checksum doesn't add up, then one or more of the disk sectors
|
|
** containing the master journal filename is corrupted. This means
|
|
** definitely roll back, so just return SQLITE_OK and report a (nul)
|
|
** master-journal filename.
|
|
*/
|
|
zMaster[0] = '\0';
|
|
}
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Seek the journal file descriptor to the next sector boundary where a
|
|
** journal header may be read or written. Pager.journalOff is updated with
|
|
** the new seek offset.
|
|
**
|
|
** i.e for a sector size of 512:
|
|
**
|
|
** Input Offset Output Offset
|
|
** ---------------------------------------
|
|
** 0 0
|
|
** 512 512
|
|
** 100 512
|
|
** 2000 2048
|
|
**
|
|
*/
|
|
static void seekJournalHdr(Pager *pPager){
|
|
i64 offset = 0;
|
|
i64 c = pPager->journalOff;
|
|
if( c ){
|
|
offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager);
|
|
}
|
|
assert( offset%JOURNAL_HDR_SZ(pPager)==0 );
|
|
assert( offset>=c );
|
|
assert( (offset-c)<JOURNAL_HDR_SZ(pPager) );
|
|
pPager->journalOff = offset;
|
|
}
|
|
|
|
/*
|
|
** The journal file must be open when this routine is called. A journal
|
|
** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the
|
|
** current location.
|
|
**
|
|
** The format for the journal header is as follows:
|
|
** - 8 bytes: Magic identifying journal format.
|
|
** - 4 bytes: Number of records in journal, or -1 no-sync mode is on.
|
|
** - 4 bytes: Random number used for page hash.
|
|
** - 4 bytes: Initial database page count.
|
|
** - 4 bytes: Sector size used by the process that wrote this journal.
|
|
**
|
|
** Followed by (JOURNAL_HDR_SZ - 24) bytes of unused space.
|
|
*/
|
|
static int writeJournalHdr(Pager *pPager){
|
|
char zHeader[sizeof(aJournalMagic)+16];
|
|
int rc;
|
|
|
|
if( pPager->stmtHdrOff==0 ){
|
|
pPager->stmtHdrOff = pPager->journalOff;
|
|
}
|
|
|
|
seekJournalHdr(pPager);
|
|
pPager->journalHdr = pPager->journalOff;
|
|
|
|
memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
|
|
|
|
/*
|
|
** Write the nRec Field - the number of page records that follow this
|
|
** journal header. Normally, zero is written to this value at this time.
|
|
** After the records are added to the journal (and the journal synced,
|
|
** if in full-sync mode), the zero is overwritten with the true number
|
|
** of records (see syncJournal()).
|
|
**
|
|
** A faster alternative is to write 0xFFFFFFFF to the nRec field. When
|
|
** reading the journal this value tells SQLite to assume that the
|
|
** rest of the journal file contains valid page records. This assumption
|
|
** is dangerous, as if a failure occured whilst writing to the journal
|
|
** file it may contain some garbage data. There are two scenarios
|
|
** where this risk can be ignored:
|
|
**
|
|
** * When the pager is in no-sync mode. Corruption can follow a
|
|
** power failure in this case anyway.
|
|
**
|
|
** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees
|
|
** that garbage data is never appended to the journal file.
|
|
*/
|
|
assert(pPager->fd->pMethods||pPager->noSync);
|
|
if( (pPager->noSync)
|
|
|| (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND)
|
|
){
|
|
put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff);
|
|
}else{
|
|
put32bits(&zHeader[sizeof(aJournalMagic)], 0);
|
|
}
|
|
|
|
/* The random check-hash initialiser */
|
|
sqlite3Randomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
|
|
put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit);
|
|
/* The initial database size */
|
|
put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbSize);
|
|
/* The assumed sector size for this process */
|
|
put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize);
|
|
IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, sizeof(zHeader)))
|
|
rc = sqlite3OsWrite(pPager->jfd, zHeader, sizeof(zHeader),pPager->journalOff);
|
|
pPager->journalOff += JOURNAL_HDR_SZ(pPager);
|
|
|
|
/* The journal header has been written successfully. Seek the journal
|
|
** file descriptor to the end of the journal header sector.
|
|
*/
|
|
if( rc==SQLITE_OK ){
|
|
IOTRACE(("JTAIL %p %lld\n", pPager, pPager->journalOff-1))
|
|
rc = sqlite3OsWrite(pPager->jfd, "\000", 1, pPager->journalOff-1);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** The journal file must be open when this is called. A journal header file
|
|
** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal
|
|
** file. See comments above function writeJournalHdr() for a description of
|
|
** the journal header format.
|
|
**
|
|
** If the header is read successfully, *nRec is set to the number of
|
|
** page records following this header and *dbSize is set to the size of the
|
|
** database before the transaction began, in pages. Also, pPager->cksumInit
|
|
** is set to the value read from the journal header. SQLITE_OK is returned
|
|
** in this case.
|
|
**
|
|
** If the journal header file appears to be corrupted, SQLITE_DONE is
|
|
** returned and *nRec and *dbSize are not set. If JOURNAL_HDR_SZ bytes
|
|
** cannot be read from the journal file an error code is returned.
|
|
*/
|
|
static int readJournalHdr(
|
|
Pager *pPager,
|
|
i64 journalSize,
|
|
u32 *pNRec,
|
|
u32 *pDbSize
|
|
){
|
|
int rc;
|
|
unsigned char aMagic[8]; /* A buffer to hold the magic header */
|
|
i64 jrnlOff;
|
|
|
|
seekJournalHdr(pPager);
|
|
if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){
|
|
return SQLITE_DONE;
|
|
}
|
|
jrnlOff = pPager->journalOff;
|
|
|
|
rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), jrnlOff);
|
|
if( rc ) return rc;
|
|
jrnlOff += sizeof(aMagic);
|
|
|
|
if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){
|
|
return SQLITE_DONE;
|
|
}
|
|
|
|
rc = read32bits(pPager->jfd, jrnlOff, pNRec);
|
|
if( rc ) return rc;
|
|
|
|
rc = read32bits(pPager->jfd, jrnlOff+4, &pPager->cksumInit);
|
|
if( rc ) return rc;
|
|
|
|
rc = read32bits(pPager->jfd, jrnlOff+8, pDbSize);
|
|
if( rc ) return rc;
|
|
|
|
/* Update the assumed sector-size to match the value used by
|
|
** the process that created this journal. If this journal was
|
|
** created by a process other than this one, then this routine
|
|
** is being called from within pager_playback(). The local value
|
|
** of Pager.sectorSize is restored at the end of that routine.
|
|
*/
|
|
rc = read32bits(pPager->jfd, jrnlOff+12, (u32 *)&pPager->sectorSize);
|
|
if( rc ) return rc;
|
|
|
|
pPager->journalOff += JOURNAL_HDR_SZ(pPager);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
|
|
/*
|
|
** Write the supplied master journal name into the journal file for pager
|
|
** pPager at the current location. The master journal name must be the last
|
|
** thing written to a journal file. If the pager is in full-sync mode, the
|
|
** journal file descriptor is advanced to the next sector boundary before
|
|
** anything is written. The format is:
|
|
**
|
|
** + 4 bytes: PAGER_MJ_PGNO.
|
|
** + N bytes: length of master journal name.
|
|
** + 4 bytes: N
|
|
** + 4 bytes: Master journal name checksum.
|
|
** + 8 bytes: aJournalMagic[].
|
|
**
|
|
** The master journal page checksum is the sum of the bytes in the master
|
|
** journal name.
|
|
**
|
|
** If zMaster is a NULL pointer (occurs for a single database transaction),
|
|
** this call is a no-op.
|
|
*/
|
|
static int writeMasterJournal(Pager *pPager, const char *zMaster){
|
|
int rc;
|
|
int len;
|
|
int i;
|
|
i64 jrnlOff;
|
|
u32 cksum = 0;
|
|
char zBuf[sizeof(aJournalMagic)+2*4];
|
|
|
|
if( !zMaster || pPager->setMaster) return SQLITE_OK;
|
|
pPager->setMaster = 1;
|
|
|
|
len = strlen(zMaster);
|
|
for(i=0; i<len; i++){
|
|
cksum += zMaster[i];
|
|
}
|
|
|
|
/* If in full-sync mode, advance to the next disk sector before writing
|
|
** the master journal name. This is in case the previous page written to
|
|
** the journal has already been synced.
|
|
*/
|
|
if( pPager->fullSync ){
|
|
seekJournalHdr(pPager);
|
|
}
|
|
jrnlOff = pPager->journalOff;
|
|
pPager->journalOff += (len+20);
|
|
|
|
rc = write32bits(pPager->jfd, jrnlOff, PAGER_MJ_PGNO(pPager));
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
jrnlOff += 4;
|
|
|
|
rc = sqlite3OsWrite(pPager->jfd, zMaster, len, jrnlOff);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
jrnlOff += len;
|
|
|
|
put32bits(zBuf, len);
|
|
put32bits(&zBuf[4], cksum);
|
|
memcpy(&zBuf[8], aJournalMagic, sizeof(aJournalMagic));
|
|
rc = sqlite3OsWrite(pPager->jfd, zBuf, 8+sizeof(aJournalMagic), jrnlOff);
|
|
pPager->needSync = !pPager->noSync;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Add or remove a page from the list of all pages that are in the
|
|
** statement journal.
|
|
**
|
|
** The Pager keeps a separate list of pages that are currently in
|
|
** the statement journal. This helps the sqlite3PagerStmtCommit()
|
|
** routine run MUCH faster for the common case where there are many
|
|
** pages in memory but only a few are in the statement journal.
|
|
*/
|
|
static void page_add_to_stmt_list(PgHdr *pPg){
|
|
Pager *pPager = pPg->pPager;
|
|
PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
|
|
assert( MEMDB );
|
|
if( !pHist->inStmt ){
|
|
assert( pHist->pPrevStmt==0 && pHist->pNextStmt==0 );
|
|
if( pPager->pStmt ){
|
|
PGHDR_TO_HIST(pPager->pStmt, pPager)->pPrevStmt = pPg;
|
|
}
|
|
pHist->pNextStmt = pPager->pStmt;
|
|
pPager->pStmt = pPg;
|
|
pHist->inStmt = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Find a page in the hash table given its page number. Return
|
|
** a pointer to the page or NULL if not found.
|
|
*/
|
|
static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){
|
|
PgHdr *p;
|
|
if( pPager->aHash==0 ) return 0;
|
|
p = pPager->aHash[pgno & (pPager->nHash-1)];
|
|
while( p && p->pgno!=pgno ){
|
|
p = p->pNextHash;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Clear the in-memory cache. This routine
|
|
** sets the state of the pager back to what it was when it was first
|
|
** opened. Any outstanding pages are invalidated and subsequent attempts
|
|
** to access those pages will likely result in a coredump.
|
|
*/
|
|
static void pager_reset(Pager *pPager){
|
|
PgHdr *pPg, *pNext;
|
|
if( pPager->errCode ) return;
|
|
for(pPg=pPager->pAll; pPg; pPg=pNext){
|
|
IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
|
|
PAGER_INCR(sqlite3_pager_pgfree_count);
|
|
pNext = pPg->pNextAll;
|
|
lruListRemove(pPg);
|
|
sqlite3_free(pPg);
|
|
}
|
|
assert(pPager->lru.pFirst==0);
|
|
assert(pPager->lru.pFirstSynced==0);
|
|
assert(pPager->lru.pLast==0);
|
|
pPager->pStmt = 0;
|
|
pPager->pAll = 0;
|
|
pPager->pDirty = 0;
|
|
pPager->nHash = 0;
|
|
sqlite3_free(pPager->aHash);
|
|
pPager->nPage = 0;
|
|
pPager->aHash = 0;
|
|
pPager->nRef = 0;
|
|
}
|
|
|
|
/*
|
|
** Unlock the database file.
|
|
**
|
|
** If the pager is currently in error state, discard the contents of
|
|
** the cache and reset the Pager structure internal state. If there is
|
|
** an open journal-file, then the next time a shared-lock is obtained
|
|
** on the pager file (by this or any other process), it will be
|
|
** treated as a hot-journal and rolled back.
|
|
*/
|
|
static void pager_unlock(Pager *pPager){
|
|
if( !pPager->exclusiveMode ){
|
|
if( !MEMDB ){
|
|
if( pPager->fd->pMethods ){
|
|
osUnlock(pPager->fd, NO_LOCK);
|
|
}
|
|
pPager->dbSize = -1;
|
|
IOTRACE(("UNLOCK %p\n", pPager))
|
|
|
|
/* If Pager.errCode is set, the contents of the pager cache cannot be
|
|
** trusted. Now that the pager file is unlocked, the contents of the
|
|
** cache can be discarded and the error code safely cleared.
|
|
*/
|
|
if( pPager->errCode ){
|
|
pPager->errCode = SQLITE_OK;
|
|
pager_reset(pPager);
|
|
if( pPager->stmtOpen ){
|
|
sqlite3OsClose(pPager->stfd);
|
|
sqlite3_free(pPager->aInStmt);
|
|
pPager->aInStmt = 0;
|
|
}
|
|
if( pPager->journalOpen ){
|
|
sqlite3OsClose(pPager->jfd);
|
|
pPager->journalOpen = 0;
|
|
sqlite3_free(pPager->aInJournal);
|
|
pPager->aInJournal = 0;
|
|
}
|
|
pPager->stmtOpen = 0;
|
|
pPager->stmtInUse = 0;
|
|
pPager->journalOff = 0;
|
|
pPager->journalStarted = 0;
|
|
pPager->stmtAutoopen = 0;
|
|
pPager->origDbSize = 0;
|
|
}
|
|
}
|
|
|
|
if( !MEMDB || pPager->errCode==SQLITE_OK ){
|
|
pPager->state = PAGER_UNLOCK;
|
|
pPager->changeCountDone = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Execute a rollback if a transaction is active and unlock the
|
|
** database file. If the pager has already entered the error state,
|
|
** do not attempt the rollback.
|
|
*/
|
|
static void pagerUnlockAndRollback(Pager *p){
|
|
assert( p->state>=PAGER_RESERVED || p->journalOpen==0 );
|
|
if( p->errCode==SQLITE_OK && p->state>=PAGER_RESERVED ){
|
|
sqlite3PagerRollback(p);
|
|
}
|
|
pager_unlock(p);
|
|
assert( p->errCode || !p->journalOpen || (p->exclusiveMode&&!p->journalOff) );
|
|
assert( p->errCode || !p->stmtOpen || p->exclusiveMode );
|
|
}
|
|
|
|
/*
|
|
** This routine ends a transaction. A transaction is ended by either
|
|
** a COMMIT or a ROLLBACK.
|
|
**
|
|
** When this routine is called, the pager has the journal file open and
|
|
** a RESERVED or EXCLUSIVE lock on the database. This routine will release
|
|
** the database lock and acquires a SHARED lock in its place if that is
|
|
** the appropriate thing to do. Release locks usually is appropriate,
|
|
** unless we are in exclusive access mode or unless this is a
|
|
** COMMIT AND BEGIN or ROLLBACK AND BEGIN operation.
|
|
**
|
|
** The journal file is either deleted or truncated.
|
|
**
|
|
** TODO: Consider keeping the journal file open for temporary databases.
|
|
** This might give a performance improvement on windows where opening
|
|
** a file is an expensive operation.
|
|
*/
|
|
static int pager_end_transaction(Pager *pPager){
|
|
PgHdr *pPg;
|
|
int rc = SQLITE_OK;
|
|
int rc2 = SQLITE_OK;
|
|
assert( !MEMDB );
|
|
if( pPager->state<PAGER_RESERVED ){
|
|
return SQLITE_OK;
|
|
}
|
|
sqlite3PagerStmtCommit(pPager);
|
|
if( pPager->stmtOpen && !pPager->exclusiveMode ){
|
|
sqlite3OsClose(pPager->stfd);
|
|
pPager->stmtOpen = 0;
|
|
}
|
|
if( pPager->journalOpen ){
|
|
if( pPager->exclusiveMode
|
|
&& (rc = sqlite3OsTruncate(pPager->jfd, 0))==SQLITE_OK ){;
|
|
pPager->journalOff = 0;
|
|
pPager->journalStarted = 0;
|
|
}else{
|
|
sqlite3OsClose(pPager->jfd);
|
|
pPager->journalOpen = 0;
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
|
|
}
|
|
}
|
|
sqlite3_free( pPager->aInJournal );
|
|
pPager->aInJournal = 0;
|
|
for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
|
|
pPg->inJournal = 0;
|
|
pPg->dirty = 0;
|
|
pPg->needSync = 0;
|
|
pPg->alwaysRollback = 0;
|
|
#ifdef SQLITE_CHECK_PAGES
|
|
pPg->pageHash = pager_pagehash(pPg);
|
|
#endif
|
|
}
|
|
pPager->pDirty = 0;
|
|
pPager->dirtyCache = 0;
|
|
pPager->nRec = 0;
|
|
}else{
|
|
assert( pPager->aInJournal==0 );
|
|
assert( pPager->dirtyCache==0 || pPager->useJournal==0 );
|
|
}
|
|
|
|
if( !pPager->exclusiveMode ){
|
|
rc2 = osUnlock(pPager->fd, SHARED_LOCK);
|
|
pPager->state = PAGER_SHARED;
|
|
}else if( pPager->state==PAGER_SYNCED ){
|
|
pPager->state = PAGER_EXCLUSIVE;
|
|
}
|
|
pPager->origDbSize = 0;
|
|
pPager->setMaster = 0;
|
|
pPager->needSync = 0;
|
|
lruListSetFirstSynced(pPager);
|
|
pPager->dbSize = -1;
|
|
|
|
return (rc==SQLITE_OK?rc2:rc);
|
|
}
|
|
|
|
/*
|
|
** Compute and return a checksum for the page of data.
|
|
**
|
|
** This is not a real checksum. It is really just the sum of the
|
|
** random initial value and the page number. We experimented with
|
|
** a checksum of the entire data, but that was found to be too slow.
|
|
**
|
|
** Note that the page number is stored at the beginning of data and
|
|
** the checksum is stored at the end. This is important. If journal
|
|
** corruption occurs due to a power failure, the most likely scenario
|
|
** is that one end or the other of the record will be changed. It is
|
|
** much less likely that the two ends of the journal record will be
|
|
** correct and the middle be corrupt. Thus, this "checksum" scheme,
|
|
** though fast and simple, catches the mostly likely kind of corruption.
|
|
**
|
|
** FIX ME: Consider adding every 200th (or so) byte of the data to the
|
|
** checksum. That way if a single page spans 3 or more disk sectors and
|
|
** only the middle sector is corrupt, we will still have a reasonable
|
|
** chance of failing the checksum and thus detecting the problem.
|
|
*/
|
|
static u32 pager_cksum(Pager *pPager, const u8 *aData){
|
|
u32 cksum = pPager->cksumInit;
|
|
int i = pPager->pageSize-200;
|
|
while( i>0 ){
|
|
cksum += aData[i];
|
|
i -= 200;
|
|
}
|
|
return cksum;
|
|
}
|
|
|
|
/* Forward declaration */
|
|
static void makeClean(PgHdr*);
|
|
|
|
/*
|
|
** Read a single page from the journal file opened on file descriptor
|
|
** jfd. Playback this one page.
|
|
**
|
|
** If useCksum==0 it means this journal does not use checksums. Checksums
|
|
** are not used in statement journals because statement journals do not
|
|
** need to survive power failures.
|
|
*/
|
|
static int pager_playback_one_page(
|
|
Pager *pPager,
|
|
sqlite3_file *jfd,
|
|
i64 offset,
|
|
int useCksum
|
|
){
|
|
int rc;
|
|
PgHdr *pPg; /* An existing page in the cache */
|
|
Pgno pgno; /* The page number of a page in journal */
|
|
u32 cksum; /* Checksum used for sanity checking */
|
|
u8 *aData = (u8 *)pPager->pTmpSpace; /* Temp storage for a page */
|
|
|
|
/* useCksum should be true for the main journal and false for
|
|
** statement journals. Verify that this is always the case
|
|
*/
|
|
assert( jfd == (useCksum ? pPager->jfd : pPager->stfd) );
|
|
assert( aData );
|
|
|
|
rc = read32bits(jfd, offset, &pgno);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
rc = sqlite3OsRead(jfd, aData, pPager->pageSize, offset+4);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
pPager->journalOff += pPager->pageSize + 4;
|
|
|
|
/* Sanity checking on the page. This is more important that I originally
|
|
** thought. If a power failure occurs while the journal is being written,
|
|
** it could cause invalid data to be written into the journal. We need to
|
|
** detect this invalid data (with high probability) and ignore it.
|
|
*/
|
|
if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
|
|
return SQLITE_DONE;
|
|
}
|
|
if( pgno>(unsigned)pPager->dbSize ){
|
|
return SQLITE_OK;
|
|
}
|
|
if( useCksum ){
|
|
rc = read32bits(jfd, offset+pPager->pageSize+4, &cksum);
|
|
if( rc ) return rc;
|
|
pPager->journalOff += 4;
|
|
if( pager_cksum(pPager, aData)!=cksum ){
|
|
return SQLITE_DONE;
|
|
}
|
|
}
|
|
|
|
assert( pPager->state==PAGER_RESERVED || pPager->state>=PAGER_EXCLUSIVE );
|
|
|
|
/* If the pager is in RESERVED state, then there must be a copy of this
|
|
** page in the pager cache. In this case just update the pager cache,
|
|
** not the database file. The page is left marked dirty in this case.
|
|
**
|
|
** An exception to the above rule: If the database is in no-sync mode
|
|
** and a page is moved during an incremental vacuum then the page may
|
|
** not be in the pager cache. Later: if a malloc() or IO error occurs
|
|
** during a Movepage() call, then the page may not be in the cache
|
|
** either. So the condition described in the above paragraph is not
|
|
** assert()able.
|
|
**
|
|
** If in EXCLUSIVE state, then we update the pager cache if it exists
|
|
** and the main file. The page is then marked not dirty.
|
|
**
|
|
** Ticket #1171: The statement journal might contain page content that is
|
|
** different from the page content at the start of the transaction.
|
|
** This occurs when a page is changed prior to the start of a statement
|
|
** then changed again within the statement. When rolling back such a
|
|
** statement we must not write to the original database unless we know
|
|
** for certain that original page contents are synced into the main rollback
|
|
** journal. Otherwise, a power loss might leave modified data in the
|
|
** database file without an entry in the rollback journal that can
|
|
** restore the database to its original form. Two conditions must be
|
|
** met before writing to the database files. (1) the database must be
|
|
** locked. (2) we know that the original page content is fully synced
|
|
** in the main journal either because the page is not in cache or else
|
|
** the page is marked as needSync==0.
|
|
*/
|
|
pPg = pager_lookup(pPager, pgno);
|
|
PAGERTRACE4("PLAYBACK %d page %d hash(%08x)\n",
|
|
PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, aData));
|
|
if( pPager->state>=PAGER_EXCLUSIVE && (pPg==0 || pPg->needSync==0) ){
|
|
i64 offset = (pgno-1)*(i64)pPager->pageSize;
|
|
rc = sqlite3OsWrite(pPager->fd, aData, pPager->pageSize, offset);
|
|
if( pPg ){
|
|
makeClean(pPg);
|
|
}
|
|
}
|
|
if( pPg ){
|
|
/* No page should ever be explicitly rolled back that is in use, except
|
|
** for page 1 which is held in use in order to keep the lock on the
|
|
** database active. However such a page may be rolled back as a result
|
|
** of an internal error resulting in an automatic call to
|
|
** sqlite3PagerRollback().
|
|
*/
|
|
void *pData;
|
|
/* assert( pPg->nRef==0 || pPg->pgno==1 ); */
|
|
pData = PGHDR_TO_DATA(pPg);
|
|
memcpy(pData, aData, pPager->pageSize);
|
|
if( pPager->xReiniter ){
|
|
pPager->xReiniter(pPg, pPager->pageSize);
|
|
}
|
|
#ifdef SQLITE_CHECK_PAGES
|
|
pPg->pageHash = pager_pagehash(pPg);
|
|
#endif
|
|
/* If this was page 1, then restore the value of Pager.dbFileVers.
|
|
** Do this before any decoding. */
|
|
if( pgno==1 ){
|
|
memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers));
|
|
}
|
|
|
|
/* Decode the page just read from disk */
|
|
CODEC1(pPager, pData, pPg->pgno, 3);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Parameter zMaster is the name of a master journal file. A single journal
|
|
** file that referred to the master journal file has just been rolled back.
|
|
** This routine checks if it is possible to delete the master journal file,
|
|
** and does so if it is.
|
|
**
|
|
** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not
|
|
** available for use within this function.
|
|
**
|
|
**
|
|
** The master journal file contains the names of all child journals.
|
|
** To tell if a master journal can be deleted, check to each of the
|
|
** children. If all children are either missing or do not refer to
|
|
** a different master journal, then this master journal can be deleted.
|
|
*/
|
|
static int pager_delmaster(Pager *pPager, const char *zMaster){
|
|
sqlite3_vfs *pVfs = pPager->pVfs;
|
|
int rc;
|
|
int master_open = 0;
|
|
sqlite3_file *pMaster;
|
|
sqlite3_file *pJournal;
|
|
char *zMasterJournal = 0; /* Contents of master journal file */
|
|
i64 nMasterJournal; /* Size of master journal file */
|
|
|
|
/* Open the master journal file exclusively in case some other process
|
|
** is running this routine also. Not that it makes too much difference.
|
|
*/
|
|
pMaster = (sqlite3_file *)sqlite3_malloc(pVfs->szOsFile * 2);
|
|
pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile);
|
|
if( !pMaster ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL);
|
|
rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0);
|
|
}
|
|
if( rc!=SQLITE_OK ) goto delmaster_out;
|
|
master_open = 1;
|
|
|
|
rc = sqlite3OsFileSize(pMaster, &nMasterJournal);
|
|
if( rc!=SQLITE_OK ) goto delmaster_out;
|
|
|
|
if( nMasterJournal>0 ){
|
|
char *zJournal;
|
|
char *zMasterPtr = 0;
|
|
int nMasterPtr = pPager->pVfs->mxPathname+1;
|
|
|
|
/* Load the entire master journal file into space obtained from
|
|
** sqlite3_malloc() and pointed to by zMasterJournal.
|
|
*/
|
|
zMasterJournal = (char *)sqlite3_malloc(nMasterJournal + nMasterPtr);
|
|
if( !zMasterJournal ){
|
|
rc = SQLITE_NOMEM;
|
|
goto delmaster_out;
|
|
}
|
|
zMasterPtr = &zMasterJournal[nMasterJournal];
|
|
rc = sqlite3OsRead(pMaster, zMasterJournal, nMasterJournal, 0);
|
|
if( rc!=SQLITE_OK ) goto delmaster_out;
|
|
|
|
zJournal = zMasterJournal;
|
|
while( (zJournal-zMasterJournal)<nMasterJournal ){
|
|
if( sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS) ){
|
|
/* One of the journals pointed to by the master journal exists.
|
|
** Open it and check if it points at the master journal. If
|
|
** so, return without deleting the master journal file.
|
|
*/
|
|
int c;
|
|
int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL);
|
|
rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
goto delmaster_out;
|
|
}
|
|
|
|
rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr);
|
|
sqlite3OsClose(pJournal);
|
|
if( rc!=SQLITE_OK ){
|
|
goto delmaster_out;
|
|
}
|
|
|
|
c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0;
|
|
if( c ){
|
|
/* We have a match. Do not delete the master journal file. */
|
|
goto delmaster_out;
|
|
}
|
|
}
|
|
zJournal += (strlen(zJournal)+1);
|
|
}
|
|
}
|
|
|
|
rc = sqlite3OsDelete(pVfs, zMaster, 0);
|
|
|
|
delmaster_out:
|
|
if( zMasterJournal ){
|
|
sqlite3_free(zMasterJournal);
|
|
}
|
|
if( master_open ){
|
|
sqlite3OsClose(pMaster);
|
|
}
|
|
sqlite3_free(pMaster);
|
|
return rc;
|
|
}
|
|
|
|
|
|
static void pager_truncate_cache(Pager *pPager);
|
|
|
|
/*
|
|
** Truncate the main file of the given pager to the number of pages
|
|
** indicated. Also truncate the cached representation of the file.
|
|
**
|
|
** Might might be the case that the file on disk is smaller than nPage.
|
|
** This can happen, for example, if we are in the middle of a transaction
|
|
** which has extended the file size and the new pages are still all held
|
|
** in cache, then an INSERT or UPDATE does a statement rollback. Some
|
|
** operating system implementations can get confused if you try to
|
|
** truncate a file to some size that is larger than it currently is,
|
|
** so detect this case and do not do the truncation.
|
|
*/
|
|
static int pager_truncate(Pager *pPager, int nPage){
|
|
int rc = SQLITE_OK;
|
|
if( pPager->state>=PAGER_EXCLUSIVE && pPager->fd->pMethods ){
|
|
i64 currentSize, newSize;
|
|
rc = sqlite3OsFileSize(pPager->fd, ¤tSize);
|
|
newSize = pPager->pageSize*(i64)nPage;
|
|
if( rc==SQLITE_OK && currentSize>newSize ){
|
|
rc = sqlite3OsTruncate(pPager->fd, newSize);
|
|
}
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
pPager->dbSize = nPage;
|
|
pager_truncate_cache(pPager);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Set the sectorSize for the given pager.
|
|
**
|
|
** The sector size is the larger of the sector size reported
|
|
** by sqlite3OsSectorSize() and the pageSize.
|
|
*/
|
|
static void setSectorSize(Pager *pPager){
|
|
assert(pPager->fd->pMethods||pPager->tempFile);
|
|
if( !pPager->tempFile ){
|
|
/* Sector size doesn't matter for temporary files. Also, the file
|
|
** may not have been opened yet, in whcih case the OsSectorSize()
|
|
** call will segfault.
|
|
*/
|
|
pPager->sectorSize = sqlite3OsSectorSize(pPager->fd);
|
|
}
|
|
if( pPager->sectorSize<pPager->pageSize ){
|
|
pPager->sectorSize = pPager->pageSize;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Playback the journal and thus restore the database file to
|
|
** the state it was in before we started making changes.
|
|
**
|
|
** The journal file format is as follows:
|
|
**
|
|
** (1) 8 byte prefix. A copy of aJournalMagic[].
|
|
** (2) 4 byte big-endian integer which is the number of valid page records
|
|
** in the journal. If this value is 0xffffffff, then compute the
|
|
** number of page records from the journal size.
|
|
** (3) 4 byte big-endian integer which is the initial value for the
|
|
** sanity checksum.
|
|
** (4) 4 byte integer which is the number of pages to truncate the
|
|
** database to during a rollback.
|
|
** (5) 4 byte integer which is the number of bytes in the master journal
|
|
** name. The value may be zero (indicate that there is no master
|
|
** journal.)
|
|
** (6) N bytes of the master journal name. The name will be nul-terminated
|
|
** and might be shorter than the value read from (5). If the first byte
|
|
** of the name is \000 then there is no master journal. The master
|
|
** journal name is stored in UTF-8.
|
|
** (7) Zero or more pages instances, each as follows:
|
|
** + 4 byte page number.
|
|
** + pPager->pageSize bytes of data.
|
|
** + 4 byte checksum
|
|
**
|
|
** When we speak of the journal header, we mean the first 6 items above.
|
|
** Each entry in the journal is an instance of the 7th item.
|
|
**
|
|
** Call the value from the second bullet "nRec". nRec is the number of
|
|
** valid page entries in the journal. In most cases, you can compute the
|
|
** value of nRec from the size of the journal file. But if a power
|
|
** failure occurred while the journal was being written, it could be the
|
|
** case that the size of the journal file had already been increased but
|
|
** the extra entries had not yet made it safely to disk. In such a case,
|
|
** the value of nRec computed from the file size would be too large. For
|
|
** that reason, we always use the nRec value in the header.
|
|
**
|
|
** If the nRec value is 0xffffffff it means that nRec should be computed
|
|
** from the file size. This value is used when the user selects the
|
|
** no-sync option for the journal. A power failure could lead to corruption
|
|
** in this case. But for things like temporary table (which will be
|
|
** deleted when the power is restored) we don't care.
|
|
**
|
|
** If the file opened as the journal file is not a well-formed
|
|
** journal file then all pages up to the first corrupted page are rolled
|
|
** back (or no pages if the journal header is corrupted). The journal file
|
|
** is then deleted and SQLITE_OK returned, just as if no corruption had
|
|
** been encountered.
|
|
**
|
|
** If an I/O or malloc() error occurs, the journal-file is not deleted
|
|
** and an error code is returned.
|
|
*/
|
|
static int pager_playback(Pager *pPager, int isHot){
|
|
sqlite3_vfs *pVfs = pPager->pVfs;
|
|
i64 szJ; /* Size of the journal file in bytes */
|
|
u32 nRec; /* Number of Records in the journal */
|
|
int i; /* Loop counter */
|
|
Pgno mxPg = 0; /* Size of the original file in pages */
|
|
int rc; /* Result code of a subroutine */
|
|
char *zMaster = 0; /* Name of master journal file if any */
|
|
|
|
/* Figure out how many records are in the journal. Abort early if
|
|
** the journal is empty.
|
|
*/
|
|
assert( pPager->journalOpen );
|
|
rc = sqlite3OsFileSize(pPager->jfd, &szJ);
|
|
if( rc!=SQLITE_OK || szJ==0 ){
|
|
goto end_playback;
|
|
}
|
|
|
|
/* Read the master journal name from the journal, if it is present.
|
|
** If a master journal file name is specified, but the file is not
|
|
** present on disk, then the journal is not hot and does not need to be
|
|
** played back.
|
|
*/
|
|
zMaster = pPager->pTmpSpace;
|
|
rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
|
|
assert( rc!=SQLITE_DONE );
|
|
if( rc!=SQLITE_OK
|
|
|| (zMaster[0] && !sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS))
|
|
){
|
|
zMaster = 0;
|
|
if( rc==SQLITE_DONE ) rc = SQLITE_OK;
|
|
goto end_playback;
|
|
}
|
|
pPager->journalOff = 0;
|
|
zMaster = 0;
|
|
|
|
/* This loop terminates either when the readJournalHdr() call returns
|
|
** SQLITE_DONE or an IO error occurs. */
|
|
while( 1 ){
|
|
|
|
/* Read the next journal header from the journal file. If there are
|
|
** not enough bytes left in the journal file for a complete header, or
|
|
** it is corrupted, then a process must of failed while writing it.
|
|
** This indicates nothing more needs to be rolled back.
|
|
*/
|
|
rc = readJournalHdr(pPager, szJ, &nRec, &mxPg);
|
|
if( rc!=SQLITE_OK ){
|
|
if( rc==SQLITE_DONE ){
|
|
rc = SQLITE_OK;
|
|
}
|
|
goto end_playback;
|
|
}
|
|
|
|
/* If nRec is 0xffffffff, then this journal was created by a process
|
|
** working in no-sync mode. This means that the rest of the journal
|
|
** file consists of pages, there are no more journal headers. Compute
|
|
** the value of nRec based on this assumption.
|
|
*/
|
|
if( nRec==0xffffffff ){
|
|
assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) );
|
|
nRec = (szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager);
|
|
}
|
|
|
|
/* If nRec is 0 and this rollback is of a transaction created by this
|
|
** process and if this is the final header in the journal, then it means
|
|
** that this part of the journal was being filled but has not yet been
|
|
** synced to disk. Compute the number of pages based on the remaining
|
|
** size of the file.
|
|
**
|
|
** The third term of the test was added to fix ticket #2565.
|
|
*/
|
|
if( nRec==0 && !isHot &&
|
|
pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){
|
|
nRec = (szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager);
|
|
}
|
|
|
|
/* If this is the first header read from the journal, truncate the
|
|
** database file back to its original size.
|
|
*/
|
|
if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){
|
|
rc = pager_truncate(pPager, mxPg);
|
|
if( rc!=SQLITE_OK ){
|
|
goto end_playback;
|
|
}
|
|
}
|
|
|
|
/* Copy original pages out of the journal and back into the database file.
|
|
*/
|
|
for(i=0; i<nRec; i++){
|
|
rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
|
|
if( rc!=SQLITE_OK ){
|
|
if( rc==SQLITE_DONE ){
|
|
rc = SQLITE_OK;
|
|
pPager->journalOff = szJ;
|
|
break;
|
|
}else{
|
|
goto end_playback;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*NOTREACHED*/
|
|
assert( 0 );
|
|
|
|
end_playback:
|
|
if( rc==SQLITE_OK ){
|
|
zMaster = pPager->pTmpSpace;
|
|
rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
rc = pager_end_transaction(pPager);
|
|
}
|
|
if( rc==SQLITE_OK && zMaster[0] ){
|
|
/* If there was a master journal and this routine will return success,
|
|
** see if it is possible to delete the master journal.
|
|
*/
|
|
rc = pager_delmaster(pPager, zMaster);
|
|
}
|
|
|
|
/* The Pager.sectorSize variable may have been updated while rolling
|
|
** back a journal created by a process with a different sector size
|
|
** value. Reset it to the correct value for this process.
|
|
*/
|
|
setSectorSize(pPager);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Playback the statement journal.
|
|
**
|
|
** This is similar to playing back the transaction journal but with
|
|
** a few extra twists.
|
|
**
|
|
** (1) The number of pages in the database file at the start of
|
|
** the statement is stored in pPager->stmtSize, not in the
|
|
** journal file itself.
|
|
**
|
|
** (2) In addition to playing back the statement journal, also
|
|
** playback all pages of the transaction journal beginning
|
|
** at offset pPager->stmtJSize.
|
|
*/
|
|
static int pager_stmt_playback(Pager *pPager){
|
|
i64 szJ; /* Size of the full journal */
|
|
i64 hdrOff;
|
|
int nRec; /* Number of Records */
|
|
int i; /* Loop counter */
|
|
int rc;
|
|
|
|
szJ = pPager->journalOff;
|
|
#ifndef NDEBUG
|
|
{
|
|
i64 os_szJ;
|
|
rc = sqlite3OsFileSize(pPager->jfd, &os_szJ);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
assert( szJ==os_szJ );
|
|
}
|
|
#endif
|
|
|
|
/* Set hdrOff to be the offset just after the end of the last journal
|
|
** page written before the first journal-header for this statement
|
|
** transaction was written, or the end of the file if no journal
|
|
** header was written.
|
|
*/
|
|
hdrOff = pPager->stmtHdrOff;
|
|
assert( pPager->fullSync || !hdrOff );
|
|
if( !hdrOff ){
|
|
hdrOff = szJ;
|
|
}
|
|
|
|
/* Truncate the database back to its original size.
|
|
*/
|
|
rc = pager_truncate(pPager, pPager->stmtSize);
|
|
assert( pPager->state>=PAGER_SHARED );
|
|
|
|
/* Figure out how many records are in the statement journal.
|
|
*/
|
|
assert( pPager->stmtInUse && pPager->journalOpen );
|
|
nRec = pPager->stmtNRec;
|
|
|
|
/* Copy original pages out of the statement journal and back into the
|
|
** database file. Note that the statement journal omits checksums from
|
|
** each record since power-failure recovery is not important to statement
|
|
** journals.
|
|
*/
|
|
for(i=0; i<nRec; i++){
|
|
i64 offset = i*(4+pPager->pageSize);
|
|
rc = pager_playback_one_page(pPager, pPager->stfd, offset, 0);
|
|
assert( rc!=SQLITE_DONE );
|
|
if( rc!=SQLITE_OK ) goto end_stmt_playback;
|
|
}
|
|
|
|
/* Now roll some pages back from the transaction journal. Pager.stmtJSize
|
|
** was the size of the journal file when this statement was started, so
|
|
** everything after that needs to be rolled back, either into the
|
|
** database, the memory cache, or both.
|
|
**
|
|
** If it is not zero, then Pager.stmtHdrOff is the offset to the start
|
|
** of the first journal header written during this statement transaction.
|
|
*/
|
|
pPager->journalOff = pPager->stmtJSize;
|
|
pPager->cksumInit = pPager->stmtCksum;
|
|
while( pPager->journalOff < hdrOff ){
|
|
rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
|
|
assert( rc!=SQLITE_DONE );
|
|
if( rc!=SQLITE_OK ) goto end_stmt_playback;
|
|
}
|
|
|
|
while( pPager->journalOff < szJ ){
|
|
u32 nJRec; /* Number of Journal Records */
|
|
u32 dummy;
|
|
rc = readJournalHdr(pPager, szJ, &nJRec, &dummy);
|
|
if( rc!=SQLITE_OK ){
|
|
assert( rc!=SQLITE_DONE );
|
|
goto end_stmt_playback;
|
|
}
|
|
if( nJRec==0 ){
|
|
nJRec = (szJ - pPager->journalOff) / (pPager->pageSize+8);
|
|
}
|
|
for(i=nJRec-1; i>=0 && pPager->journalOff < szJ; i--){
|
|
rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
|
|
assert( rc!=SQLITE_DONE );
|
|
if( rc!=SQLITE_OK ) goto end_stmt_playback;
|
|
}
|
|
}
|
|
|
|
pPager->journalOff = szJ;
|
|
|
|
end_stmt_playback:
|
|
if( rc==SQLITE_OK) {
|
|
pPager->journalOff = szJ;
|
|
/* pager_reload_cache(pPager); */
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Change the maximum number of in-memory pages that are allowed.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){
|
|
if( mxPage>10 ){
|
|
pPager->mxPage = mxPage;
|
|
}else{
|
|
pPager->mxPage = 10;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Adjust the robustness of the database to damage due to OS crashes
|
|
** or power failures by changing the number of syncs()s when writing
|
|
** the rollback journal. There are three levels:
|
|
**
|
|
** OFF sqlite3OsSync() is never called. This is the default
|
|
** for temporary and transient files.
|
|
**
|
|
** NORMAL The journal is synced once before writes begin on the
|
|
** database. This is normally adequate protection, but
|
|
** it is theoretically possible, though very unlikely,
|
|
** that an inopertune power failure could leave the journal
|
|
** in a state which would cause damage to the database
|
|
** when it is rolled back.
|
|
**
|
|
** FULL The journal is synced twice before writes begin on the
|
|
** database (with some additional information - the nRec field
|
|
** of the journal header - being written in between the two
|
|
** syncs). If we assume that writing a
|
|
** single disk sector is atomic, then this mode provides
|
|
** assurance that the journal will not be corrupted to the
|
|
** point of causing damage to the database during rollback.
|
|
**
|
|
** Numeric values associated with these states are OFF==1, NORMAL=2,
|
|
** and FULL=3.
|
|
*/
|
|
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
|
SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel(Pager *pPager, int level, int full_fsync){
|
|
pPager->noSync = level==1 || pPager->tempFile;
|
|
pPager->fullSync = level==3 && !pPager->tempFile;
|
|
pPager->sync_flags = (full_fsync?SQLITE_SYNC_FULL:SQLITE_SYNC_NORMAL);
|
|
if( pPager->noSync ) pPager->needSync = 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** The following global variable is incremented whenever the library
|
|
** attempts to open a temporary file. This information is used for
|
|
** testing and analysis only.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_API int sqlite3_opentemp_count = 0;
|
|
#endif
|
|
|
|
/*
|
|
** Open a temporary file.
|
|
**
|
|
** Write the file descriptor into *fd. Return SQLITE_OK on success or some
|
|
** other error code if we fail. The OS will automatically delete the temporary
|
|
** file when it is closed.
|
|
*/
|
|
static int sqlite3PagerOpentemp(
|
|
sqlite3_vfs *pVfs, /* The virtual file system layer */
|
|
sqlite3_file *pFile, /* Write the file descriptor here */
|
|
char *zFilename, /* Name of the file. Might be NULL */
|
|
int vfsFlags /* Flags passed through to the VFS */
|
|
){
|
|
int rc;
|
|
assert( zFilename!=0 );
|
|
|
|
#ifdef SQLITE_TEST
|
|
sqlite3_opentemp_count++; /* Used for testing and analysis only */
|
|
#endif
|
|
|
|
vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
|
|
SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
|
|
rc = sqlite3OsOpen(pVfs, zFilename, pFile, vfsFlags, 0);
|
|
assert( rc!=SQLITE_OK || pFile->pMethods );
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Create a new page cache and put a pointer to the page cache in *ppPager.
|
|
** The file to be cached need not exist. The file is not locked until
|
|
** the first call to sqlite3PagerGet() and is only held open until the
|
|
** last page is released using sqlite3PagerUnref().
|
|
**
|
|
** If zFilename is NULL then a randomly-named temporary file is created
|
|
** and used as the file to be cached. The file will be deleted
|
|
** automatically when it is closed.
|
|
**
|
|
** If zFilename is ":memory:" then all information is held in cache.
|
|
** It is never written to disk. This can be used to implement an
|
|
** in-memory database.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerOpen(
|
|
sqlite3_vfs *pVfs, /* The virtual file system to use */
|
|
Pager **ppPager, /* Return the Pager structure here */
|
|
const char *zFilename, /* Name of the database file to open */
|
|
int nExtra, /* Extra bytes append to each in-memory page */
|
|
int flags, /* flags controlling this file */
|
|
int vfsFlags /* flags passed through to sqlite3_vfs.xOpen() */
|
|
){
|
|
u8 *pPtr;
|
|
Pager *pPager = 0;
|
|
int rc = SQLITE_OK;
|
|
int i;
|
|
int tempFile = 0;
|
|
int memDb = 0;
|
|
int readOnly = 0;
|
|
int useJournal = (flags & PAGER_OMIT_JOURNAL)==0;
|
|
int noReadlock = (flags & PAGER_NO_READLOCK)!=0;
|
|
int journalFileSize = sqlite3JournalSize(pVfs);
|
|
int nDefaultPage = SQLITE_DEFAULT_PAGE_SIZE;
|
|
char *zPathname;
|
|
int nPathname;
|
|
|
|
/* The default return is a NULL pointer */
|
|
*ppPager = 0;
|
|
|
|
/* Compute the full pathname */
|
|
nPathname = pVfs->mxPathname+1;
|
|
zPathname = sqlite3_malloc(nPathname);
|
|
if( zPathname==0 ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
if( zFilename && zFilename[0] ){
|
|
#ifndef SQLITE_OMIT_MEMORYDB
|
|
if( strcmp(zFilename,":memory:")==0 ){
|
|
memDb = 1;
|
|
zPathname[0] = 0;
|
|
}else
|
|
#endif
|
|
{
|
|
rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname);
|
|
}
|
|
}else{
|
|
rc = sqlite3OsGetTempname(pVfs, nPathname, zPathname);
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3_free(zPathname);
|
|
return rc;
|
|
}
|
|
nPathname = strlen(zPathname);
|
|
|
|
/* Allocate memory for the pager structure */
|
|
pPager = sqlite3MallocZero(
|
|
sizeof(*pPager) + /* Pager structure */
|
|
journalFileSize + /* The journal file structure */
|
|
pVfs->szOsFile * 2 + /* The db and stmt journal files */
|
|
4*nPathname + 40 /* zFilename, zDirectory, zJournal, zStmtJrnl */
|
|
);
|
|
if( !pPager ){
|
|
sqlite3_free(zPathname);
|
|
return SQLITE_NOMEM;
|
|
}
|
|
pPtr = (u8 *)&pPager[1];
|
|
pPager->vfsFlags = vfsFlags;
|
|
pPager->fd = (sqlite3_file*)&pPtr[pVfs->szOsFile*0];
|
|
pPager->stfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*1];
|
|
pPager->jfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*2];
|
|
pPager->zFilename = (char*)&pPtr[pVfs->szOsFile*2+journalFileSize];
|
|
pPager->zDirectory = &pPager->zFilename[nPathname+1];
|
|
pPager->zJournal = &pPager->zDirectory[nPathname+1];
|
|
pPager->zStmtJrnl = &pPager->zJournal[nPathname+10];
|
|
pPager->pVfs = pVfs;
|
|
memcpy(pPager->zFilename, zPathname, nPathname+1);
|
|
sqlite3_free(zPathname);
|
|
|
|
/* Open the pager file.
|
|
*/
|
|
if( zFilename && zFilename[0] && !memDb ){
|
|
if( nPathname>(pVfs->mxPathname - sizeof("-journal")) ){
|
|
rc = SQLITE_CANTOPEN;
|
|
}else{
|
|
int fout = 0;
|
|
rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd,
|
|
pPager->vfsFlags, &fout);
|
|
readOnly = (fout&SQLITE_OPEN_READONLY);
|
|
|
|
/* If the file was successfully opened for read/write access,
|
|
** choose a default page size in case we have to create the
|
|
** database file. The default page size is the maximum of:
|
|
**
|
|
** + SQLITE_DEFAULT_PAGE_SIZE,
|
|
** + The value returned by sqlite3OsSectorSize()
|
|
** + The largest page size that can be written atomically.
|
|
*/
|
|
if( rc==SQLITE_OK && !readOnly ){
|
|
int iSectorSize = sqlite3OsSectorSize(pPager->fd);
|
|
if( nDefaultPage<iSectorSize ){
|
|
nDefaultPage = iSectorSize;
|
|
}
|
|
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
|
|
{
|
|
int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
|
|
int ii;
|
|
assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
|
|
assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
|
|
assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536);
|
|
for(ii=nDefaultPage; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){
|
|
if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ) nDefaultPage = ii;
|
|
}
|
|
}
|
|
#endif
|
|
if( nDefaultPage>SQLITE_MAX_DEFAULT_PAGE_SIZE ){
|
|
nDefaultPage = SQLITE_MAX_DEFAULT_PAGE_SIZE;
|
|
}
|
|
}
|
|
}
|
|
}else if( !memDb ){
|
|
/* If a temporary file is requested, it is not opened immediately.
|
|
** In this case we accept the default page size and delay actually
|
|
** opening the file until the first call to OsWrite().
|
|
*/
|
|
tempFile = 1;
|
|
pPager->state = PAGER_EXCLUSIVE;
|
|
}
|
|
|
|
if( pPager && rc==SQLITE_OK ){
|
|
pPager->pTmpSpace = (char *)sqlite3_malloc(nDefaultPage);
|
|
}
|
|
|
|
/* If an error occured in either of the blocks above.
|
|
** Free the Pager structure and close the file.
|
|
** Since the pager is not allocated there is no need to set
|
|
** any Pager.errMask variables.
|
|
*/
|
|
if( !pPager || !pPager->pTmpSpace ){
|
|
sqlite3OsClose(pPager->fd);
|
|
sqlite3_free(pPager);
|
|
return ((rc==SQLITE_OK)?SQLITE_NOMEM:rc);
|
|
}
|
|
|
|
PAGERTRACE3("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename);
|
|
IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename))
|
|
|
|
/* Fill in Pager.zDirectory[] */
|
|
memcpy(pPager->zDirectory, pPager->zFilename, nPathname+1);
|
|
for(i=strlen(pPager->zDirectory); i>0 && pPager->zDirectory[i-1]!='/'; i--){}
|
|
if( i>0 ) pPager->zDirectory[i-1] = 0;
|
|
|
|
/* Fill in Pager.zJournal[] and Pager.zStmtJrnl[] */
|
|
memcpy(pPager->zJournal, pPager->zFilename, nPathname);
|
|
memcpy(&pPager->zJournal[nPathname], "-journal", 9);
|
|
memcpy(pPager->zStmtJrnl, pPager->zFilename, nPathname);
|
|
memcpy(&pPager->zStmtJrnl[nPathname], "-stmtjrnl", 10);
|
|
|
|
/* pPager->journalOpen = 0; */
|
|
pPager->useJournal = useJournal && !memDb;
|
|
pPager->noReadlock = noReadlock && readOnly;
|
|
/* pPager->stmtOpen = 0; */
|
|
/* pPager->stmtInUse = 0; */
|
|
/* pPager->nRef = 0; */
|
|
pPager->dbSize = memDb-1;
|
|
pPager->pageSize = nDefaultPage;
|
|
/* pPager->stmtSize = 0; */
|
|
/* pPager->stmtJSize = 0; */
|
|
/* pPager->nPage = 0; */
|
|
pPager->mxPage = 100;
|
|
pPager->mxPgno = SQLITE_MAX_PAGE_COUNT;
|
|
/* pPager->state = PAGER_UNLOCK; */
|
|
assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) );
|
|
/* pPager->errMask = 0; */
|
|
pPager->tempFile = tempFile;
|
|
assert( tempFile==PAGER_LOCKINGMODE_NORMAL
|
|
|| tempFile==PAGER_LOCKINGMODE_EXCLUSIVE );
|
|
assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 );
|
|
pPager->exclusiveMode = tempFile;
|
|
pPager->memDb = memDb;
|
|
pPager->readOnly = readOnly;
|
|
/* pPager->needSync = 0; */
|
|
pPager->noSync = pPager->tempFile || !useJournal;
|
|
pPager->fullSync = (pPager->noSync?0:1);
|
|
pPager->sync_flags = SQLITE_SYNC_NORMAL;
|
|
/* pPager->pFirst = 0; */
|
|
/* pPager->pFirstSynced = 0; */
|
|
/* pPager->pLast = 0; */
|
|
pPager->nExtra = FORCE_ALIGNMENT(nExtra);
|
|
assert(pPager->fd->pMethods||memDb||tempFile);
|
|
if( !memDb ){
|
|
setSectorSize(pPager);
|
|
}
|
|
/* pPager->pBusyHandler = 0; */
|
|
/* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */
|
|
*ppPager = pPager;
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
pPager->iInUseMM = 0;
|
|
pPager->iInUseDB = 0;
|
|
if( !memDb ){
|
|
sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
|
|
sqlite3_mutex_enter(mutex);
|
|
pPager->pNext = sqlite3PagerList;
|
|
if( sqlite3PagerList ){
|
|
assert( sqlite3PagerList->pPrev==0 );
|
|
sqlite3PagerList->pPrev = pPager;
|
|
}
|
|
pPager->pPrev = 0;
|
|
sqlite3PagerList = pPager;
|
|
sqlite3_mutex_leave(mutex);
|
|
}
|
|
#endif
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Set the busy handler function.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager *pPager, BusyHandler *pBusyHandler){
|
|
pPager->pBusyHandler = pBusyHandler;
|
|
}
|
|
|
|
/*
|
|
** Set the destructor for this pager. If not NULL, the destructor is called
|
|
** when the reference count on each page reaches zero. The destructor can
|
|
** be used to clean up information in the extra segment appended to each page.
|
|
**
|
|
** The destructor is not called as a result sqlite3PagerClose().
|
|
** Destructors are only called by sqlite3PagerUnref().
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3PagerSetDestructor(Pager *pPager, void (*xDesc)(DbPage*,int)){
|
|
pPager->xDestructor = xDesc;
|
|
}
|
|
|
|
/*
|
|
** Set the reinitializer for this pager. If not NULL, the reinitializer
|
|
** is called when the content of a page in cache is restored to its original
|
|
** value as a result of a rollback. The callback gives higher-level code
|
|
** an opportunity to restore the EXTRA section to agree with the restored
|
|
** page data.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3PagerSetReiniter(Pager *pPager, void (*xReinit)(DbPage*,int)){
|
|
pPager->xReiniter = xReinit;
|
|
}
|
|
|
|
/*
|
|
** Set the page size to *pPageSize. If the suggest new page size is
|
|
** inappropriate, then an alternative page size is set to that
|
|
** value before returning.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager *pPager, u16 *pPageSize){
|
|
int rc = SQLITE_OK;
|
|
u16 pageSize = *pPageSize;
|
|
assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) );
|
|
if( pageSize && pageSize!=pPager->pageSize
|
|
&& !pPager->memDb && pPager->nRef==0
|
|
){
|
|
char *pNew = (char *)sqlite3_malloc(pageSize);
|
|
if( !pNew ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
pagerEnter(pPager);
|
|
pager_reset(pPager);
|
|
pPager->pageSize = pageSize;
|
|
setSectorSize(pPager);
|
|
sqlite3_free(pPager->pTmpSpace);
|
|
pPager->pTmpSpace = pNew;
|
|
pagerLeave(pPager);
|
|
}
|
|
}
|
|
*pPageSize = pPager->pageSize;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to the "temporary page" buffer held internally
|
|
** by the pager. This is a buffer that is big enough to hold the
|
|
** entire content of a database page. This buffer is used internally
|
|
** during rollback and will be overwritten whenever a rollback
|
|
** occurs. But other modules are free to use it too, as long as
|
|
** no rollbacks are happening.
|
|
*/
|
|
SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager *pPager){
|
|
return pPager->pTmpSpace;
|
|
}
|
|
|
|
/*
|
|
** Attempt to set the maximum database page count if mxPage is positive.
|
|
** Make no changes if mxPage is zero or negative. And never reduce the
|
|
** maximum page count below the current size of the database.
|
|
**
|
|
** Regardless of mxPage, return the current maximum page count.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){
|
|
if( mxPage>0 ){
|
|
pPager->mxPgno = mxPage;
|
|
}
|
|
sqlite3PagerPagecount(pPager);
|
|
return pPager->mxPgno;
|
|
}
|
|
|
|
/*
|
|
** The following set of routines are used to disable the simulated
|
|
** I/O error mechanism. These routines are used to avoid simulated
|
|
** errors in places where we do not care about errors.
|
|
**
|
|
** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops
|
|
** and generate no code.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_API extern int sqlite3_io_error_pending;
|
|
SQLITE_API extern int sqlite3_io_error_hit;
|
|
static int saved_cnt;
|
|
void disable_simulated_io_errors(void){
|
|
saved_cnt = sqlite3_io_error_pending;
|
|
sqlite3_io_error_pending = -1;
|
|
}
|
|
void enable_simulated_io_errors(void){
|
|
sqlite3_io_error_pending = saved_cnt;
|
|
}
|
|
#else
|
|
# define disable_simulated_io_errors()
|
|
# define enable_simulated_io_errors()
|
|
#endif
|
|
|
|
/*
|
|
** Read the first N bytes from the beginning of the file into memory
|
|
** that pDest points to.
|
|
**
|
|
** No error checking is done. The rational for this is that this function
|
|
** may be called even if the file does not exist or contain a header. In
|
|
** these cases sqlite3OsRead() will return an error, to which the correct
|
|
** response is to zero the memory at pDest and continue. A real IO error
|
|
** will presumably recur and be picked up later (Todo: Think about this).
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){
|
|
int rc = SQLITE_OK;
|
|
memset(pDest, 0, N);
|
|
assert(MEMDB||pPager->fd->pMethods||pPager->tempFile);
|
|
if( pPager->fd->pMethods ){
|
|
IOTRACE(("DBHDR %p 0 %d\n", pPager, N))
|
|
rc = sqlite3OsRead(pPager->fd, pDest, N, 0);
|
|
if( rc==SQLITE_IOERR_SHORT_READ ){
|
|
rc = SQLITE_OK;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return the total number of pages in the disk file associated with
|
|
** pPager.
|
|
**
|
|
** If the PENDING_BYTE lies on the page directly after the end of the
|
|
** file, then consider this page part of the file too. For example, if
|
|
** PENDING_BYTE is byte 4096 (the first byte of page 5) and the size of the
|
|
** file is 4096 bytes, 5 is returned instead of 4.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerPagecount(Pager *pPager){
|
|
i64 n = 0;
|
|
int rc;
|
|
assert( pPager!=0 );
|
|
if( pPager->errCode ){
|
|
return 0;
|
|
}
|
|
if( pPager->dbSize>=0 ){
|
|
n = pPager->dbSize;
|
|
} else {
|
|
assert(pPager->fd->pMethods||pPager->tempFile);
|
|
if( (pPager->fd->pMethods)
|
|
&& (rc = sqlite3OsFileSize(pPager->fd, &n))!=SQLITE_OK ){
|
|
pPager->nRef++;
|
|
pager_error(pPager, rc);
|
|
pPager->nRef--;
|
|
return 0;
|
|
}
|
|
if( n>0 && n<pPager->pageSize ){
|
|
n = 1;
|
|
}else{
|
|
n /= pPager->pageSize;
|
|
}
|
|
if( pPager->state!=PAGER_UNLOCK ){
|
|
pPager->dbSize = n;
|
|
}
|
|
}
|
|
if( n==(PENDING_BYTE/pPager->pageSize) ){
|
|
n++;
|
|
}
|
|
if( n>pPager->mxPgno ){
|
|
pPager->mxPgno = n;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
|
|
#ifndef SQLITE_OMIT_MEMORYDB
|
|
/*
|
|
** Clear a PgHistory block
|
|
*/
|
|
static void clearHistory(PgHistory *pHist){
|
|
sqlite3_free(pHist->pOrig);
|
|
sqlite3_free(pHist->pStmt);
|
|
pHist->pOrig = 0;
|
|
pHist->pStmt = 0;
|
|
}
|
|
#else
|
|
#define clearHistory(x)
|
|
#endif
|
|
|
|
/*
|
|
** Forward declaration
|
|
*/
|
|
static int syncJournal(Pager*);
|
|
|
|
/*
|
|
** Unlink pPg from its hash chain. Also set the page number to 0 to indicate
|
|
** that the page is not part of any hash chain. This is required because the
|
|
** sqlite3PagerMovepage() routine can leave a page in the
|
|
** pNextFree/pPrevFree list that is not a part of any hash-chain.
|
|
*/
|
|
static void unlinkHashChain(Pager *pPager, PgHdr *pPg){
|
|
if( pPg->pgno==0 ){
|
|
assert( pPg->pNextHash==0 && pPg->pPrevHash==0 );
|
|
return;
|
|
}
|
|
if( pPg->pNextHash ){
|
|
pPg->pNextHash->pPrevHash = pPg->pPrevHash;
|
|
}
|
|
if( pPg->pPrevHash ){
|
|
assert( pPager->aHash[pPg->pgno & (pPager->nHash-1)]!=pPg );
|
|
pPg->pPrevHash->pNextHash = pPg->pNextHash;
|
|
}else{
|
|
int h = pPg->pgno & (pPager->nHash-1);
|
|
pPager->aHash[h] = pPg->pNextHash;
|
|
}
|
|
if( MEMDB ){
|
|
clearHistory(PGHDR_TO_HIST(pPg, pPager));
|
|
}
|
|
pPg->pgno = 0;
|
|
pPg->pNextHash = pPg->pPrevHash = 0;
|
|
}
|
|
|
|
/*
|
|
** Unlink a page from the free list (the list of all pages where nRef==0)
|
|
** and from its hash collision chain.
|
|
*/
|
|
static void unlinkPage(PgHdr *pPg){
|
|
Pager *pPager = pPg->pPager;
|
|
|
|
/* Unlink from free page list */
|
|
lruListRemove(pPg);
|
|
|
|
/* Unlink from the pgno hash table */
|
|
unlinkHashChain(pPager, pPg);
|
|
}
|
|
|
|
/*
|
|
** This routine is used to truncate the cache when a database
|
|
** is truncated. Drop from the cache all pages whose pgno is
|
|
** larger than pPager->dbSize and is unreferenced.
|
|
**
|
|
** Referenced pages larger than pPager->dbSize are zeroed.
|
|
**
|
|
** Actually, at the point this routine is called, it would be
|
|
** an error to have a referenced page. But rather than delete
|
|
** that page and guarantee a subsequent segfault, it seems better
|
|
** to zero it and hope that we error out sanely.
|
|
*/
|
|
static void pager_truncate_cache(Pager *pPager){
|
|
PgHdr *pPg;
|
|
PgHdr **ppPg;
|
|
int dbSize = pPager->dbSize;
|
|
|
|
ppPg = &pPager->pAll;
|
|
while( (pPg = *ppPg)!=0 ){
|
|
if( pPg->pgno<=dbSize ){
|
|
ppPg = &pPg->pNextAll;
|
|
}else if( pPg->nRef>0 ){
|
|
memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
|
|
ppPg = &pPg->pNextAll;
|
|
}else{
|
|
*ppPg = pPg->pNextAll;
|
|
IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
|
|
PAGER_INCR(sqlite3_pager_pgfree_count);
|
|
unlinkPage(pPg);
|
|
makeClean(pPg);
|
|
sqlite3_free(pPg);
|
|
pPager->nPage--;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Try to obtain a lock on a file. Invoke the busy callback if the lock
|
|
** is currently not available. Repeat until the busy callback returns
|
|
** false or until the lock succeeds.
|
|
**
|
|
** Return SQLITE_OK on success and an error code if we cannot obtain
|
|
** the lock.
|
|
*/
|
|
static int pager_wait_on_lock(Pager *pPager, int locktype){
|
|
int rc;
|
|
|
|
/* The OS lock values must be the same as the Pager lock values */
|
|
assert( PAGER_SHARED==SHARED_LOCK );
|
|
assert( PAGER_RESERVED==RESERVED_LOCK );
|
|
assert( PAGER_EXCLUSIVE==EXCLUSIVE_LOCK );
|
|
|
|
/* If the file is currently unlocked then the size must be unknown */
|
|
assert( pPager->state>=PAGER_SHARED || pPager->dbSize<0 || MEMDB );
|
|
|
|
if( pPager->state>=locktype ){
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
do {
|
|
rc = sqlite3OsLock(pPager->fd, locktype);
|
|
}while( rc==SQLITE_BUSY && sqlite3InvokeBusyHandler(pPager->pBusyHandler) );
|
|
if( rc==SQLITE_OK ){
|
|
pPager->state = locktype;
|
|
IOTRACE(("LOCK %p %d\n", pPager, locktype))
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Truncate the file to the number of pages specified.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerTruncate(Pager *pPager, Pgno nPage){
|
|
int rc;
|
|
assert( pPager->state>=PAGER_SHARED || MEMDB );
|
|
sqlite3PagerPagecount(pPager);
|
|
if( pPager->errCode ){
|
|
rc = pPager->errCode;
|
|
return rc;
|
|
}
|
|
if( nPage>=(unsigned)pPager->dbSize ){
|
|
return SQLITE_OK;
|
|
}
|
|
if( MEMDB ){
|
|
pPager->dbSize = nPage;
|
|
pager_truncate_cache(pPager);
|
|
return SQLITE_OK;
|
|
}
|
|
pagerEnter(pPager);
|
|
rc = syncJournal(pPager);
|
|
pagerLeave(pPager);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
/* Get an exclusive lock on the database before truncating. */
|
|
pagerEnter(pPager);
|
|
rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
|
|
pagerLeave(pPager);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
rc = pager_truncate(pPager, nPage);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Shutdown the page cache. Free all memory and close all files.
|
|
**
|
|
** If a transaction was in progress when this routine is called, that
|
|
** transaction is rolled back. All outstanding pages are invalidated
|
|
** and their memory is freed. Any attempt to use a page associated
|
|
** with this page cache after this function returns will likely
|
|
** result in a coredump.
|
|
**
|
|
** This function always succeeds. If a transaction is active an attempt
|
|
** is made to roll it back. If an error occurs during the rollback
|
|
** a hot journal may be left in the filesystem but no error is returned
|
|
** to the caller.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager){
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
if( !MEMDB ){
|
|
sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
|
|
sqlite3_mutex_enter(mutex);
|
|
if( pPager->pPrev ){
|
|
pPager->pPrev->pNext = pPager->pNext;
|
|
}else{
|
|
sqlite3PagerList = pPager->pNext;
|
|
}
|
|
if( pPager->pNext ){
|
|
pPager->pNext->pPrev = pPager->pPrev;
|
|
}
|
|
sqlite3_mutex_leave(mutex);
|
|
}
|
|
#endif
|
|
|
|
disable_simulated_io_errors();
|
|
pPager->errCode = 0;
|
|
pPager->exclusiveMode = 0;
|
|
pager_reset(pPager);
|
|
pagerUnlockAndRollback(pPager);
|
|
enable_simulated_io_errors();
|
|
PAGERTRACE2("CLOSE %d\n", PAGERID(pPager));
|
|
IOTRACE(("CLOSE %p\n", pPager))
|
|
assert( pPager->errCode || (pPager->journalOpen==0 && pPager->stmtOpen==0) );
|
|
if( pPager->journalOpen ){
|
|
sqlite3OsClose(pPager->jfd);
|
|
}
|
|
sqlite3_free(pPager->aInJournal);
|
|
if( pPager->stmtOpen ){
|
|
sqlite3OsClose(pPager->stfd);
|
|
}
|
|
sqlite3OsClose(pPager->fd);
|
|
/* Temp files are automatically deleted by the OS
|
|
** if( pPager->tempFile ){
|
|
** sqlite3OsDelete(pPager->zFilename);
|
|
** }
|
|
*/
|
|
|
|
sqlite3_free(pPager->aHash);
|
|
sqlite3_free(pPager->pTmpSpace);
|
|
sqlite3_free(pPager);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(SQLITE_TEST)
|
|
/*
|
|
** Return the page number for the given page data.
|
|
*/
|
|
SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage *p){
|
|
return p->pgno;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** The page_ref() function increments the reference count for a page.
|
|
** If the page is currently on the freelist (the reference count is zero) then
|
|
** remove it from the freelist.
|
|
**
|
|
** For non-test systems, page_ref() is a macro that calls _page_ref()
|
|
** online of the reference count is zero. For test systems, page_ref()
|
|
** is a real function so that we can set breakpoints and trace it.
|
|
*/
|
|
static void _page_ref(PgHdr *pPg){
|
|
if( pPg->nRef==0 ){
|
|
/* The page is currently on the freelist. Remove it. */
|
|
lruListRemove(pPg);
|
|
pPg->pPager->nRef++;
|
|
}
|
|
pPg->nRef++;
|
|
REFINFO(pPg);
|
|
}
|
|
#ifdef SQLITE_DEBUG
|
|
static void page_ref(PgHdr *pPg){
|
|
if( pPg->nRef==0 ){
|
|
_page_ref(pPg);
|
|
}else{
|
|
pPg->nRef++;
|
|
REFINFO(pPg);
|
|
}
|
|
}
|
|
#else
|
|
# define page_ref(P) ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++)
|
|
#endif
|
|
|
|
/*
|
|
** Increment the reference count for a page. The input pointer is
|
|
** a reference to the page data.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerRef(DbPage *pPg){
|
|
pagerEnter(pPg->pPager);
|
|
page_ref(pPg);
|
|
pagerLeave(pPg->pPager);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Sync the journal. In other words, make sure all the pages that have
|
|
** been written to the journal have actually reached the surface of the
|
|
** disk. It is not safe to modify the original database file until after
|
|
** the journal has been synced. If the original database is modified before
|
|
** the journal is synced and a power failure occurs, the unsynced journal
|
|
** data would be lost and we would be unable to completely rollback the
|
|
** database changes. Database corruption would occur.
|
|
**
|
|
** This routine also updates the nRec field in the header of the journal.
|
|
** (See comments on the pager_playback() routine for additional information.)
|
|
** If the sync mode is FULL, two syncs will occur. First the whole journal
|
|
** is synced, then the nRec field is updated, then a second sync occurs.
|
|
**
|
|
** For temporary databases, we do not care if we are able to rollback
|
|
** after a power failure, so no sync occurs.
|
|
**
|
|
** If the IOCAP_SEQUENTIAL flag is set for the persistent media on which
|
|
** the database is stored, then OsSync() is never called on the journal
|
|
** file. In this case all that is required is to update the nRec field in
|
|
** the journal header.
|
|
**
|
|
** This routine clears the needSync field of every page current held in
|
|
** memory.
|
|
*/
|
|
static int syncJournal(Pager *pPager){
|
|
PgHdr *pPg;
|
|
int rc = SQLITE_OK;
|
|
|
|
|
|
/* Sync the journal before modifying the main database
|
|
** (assuming there is a journal and it needs to be synced.)
|
|
*/
|
|
if( pPager->needSync ){
|
|
if( !pPager->tempFile ){
|
|
int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
|
|
assert( pPager->journalOpen );
|
|
|
|
/* assert( !pPager->noSync ); // noSync might be set if synchronous
|
|
** was turned off after the transaction was started. Ticket #615 */
|
|
#ifndef NDEBUG
|
|
{
|
|
/* Make sure the pPager->nRec counter we are keeping agrees
|
|
** with the nRec computed from the size of the journal file.
|
|
*/
|
|
i64 jSz;
|
|
rc = sqlite3OsFileSize(pPager->jfd, &jSz);
|
|
if( rc!=0 ) return rc;
|
|
assert( pPager->journalOff==jSz );
|
|
}
|
|
#endif
|
|
if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
|
|
/* Write the nRec value into the journal file header. If in
|
|
** full-synchronous mode, sync the journal first. This ensures that
|
|
** all data has really hit the disk before nRec is updated to mark
|
|
** it as a candidate for rollback.
|
|
**
|
|
** This is not required if the persistent media supports the
|
|
** SAFE_APPEND property. Because in this case it is not possible
|
|
** for garbage data to be appended to the file, the nRec field
|
|
** is populated with 0xFFFFFFFF when the journal header is written
|
|
** and never needs to be updated.
|
|
*/
|
|
i64 jrnlOff;
|
|
if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
|
|
PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
|
|
IOTRACE(("JSYNC %p\n", pPager))
|
|
rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags);
|
|
if( rc!=0 ) return rc;
|
|
}
|
|
|
|
jrnlOff = pPager->journalHdr + sizeof(aJournalMagic);
|
|
IOTRACE(("JHDR %p %lld %d\n", pPager, jrnlOff, 4));
|
|
rc = write32bits(pPager->jfd, jrnlOff, pPager->nRec);
|
|
if( rc ) return rc;
|
|
}
|
|
if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
|
|
PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
|
|
IOTRACE(("JSYNC %p\n", pPager))
|
|
rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags|
|
|
(pPager->sync_flags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0)
|
|
);
|
|
if( rc!=0 ) return rc;
|
|
}
|
|
pPager->journalStarted = 1;
|
|
}
|
|
pPager->needSync = 0;
|
|
|
|
/* Erase the needSync flag from every page.
|
|
*/
|
|
for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
|
|
pPg->needSync = 0;
|
|
}
|
|
lruListSetFirstSynced(pPager);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/* If the Pager.needSync flag is clear then the PgHdr.needSync
|
|
** flag must also be clear for all pages. Verify that this
|
|
** invariant is true.
|
|
*/
|
|
else{
|
|
for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
|
|
assert( pPg->needSync==0 );
|
|
}
|
|
assert( pPager->lru.pFirstSynced==pPager->lru.pFirst );
|
|
}
|
|
#endif
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Merge two lists of pages connected by pDirty and in pgno order.
|
|
** Do not both fixing the pPrevDirty pointers.
|
|
*/
|
|
static PgHdr *merge_pagelist(PgHdr *pA, PgHdr *pB){
|
|
PgHdr result, *pTail;
|
|
pTail = &result;
|
|
while( pA && pB ){
|
|
if( pA->pgno<pB->pgno ){
|
|
pTail->pDirty = pA;
|
|
pTail = pA;
|
|
pA = pA->pDirty;
|
|
}else{
|
|
pTail->pDirty = pB;
|
|
pTail = pB;
|
|
pB = pB->pDirty;
|
|
}
|
|
}
|
|
if( pA ){
|
|
pTail->pDirty = pA;
|
|
}else if( pB ){
|
|
pTail->pDirty = pB;
|
|
}else{
|
|
pTail->pDirty = 0;
|
|
}
|
|
return result.pDirty;
|
|
}
|
|
|
|
/*
|
|
** Sort the list of pages in accending order by pgno. Pages are
|
|
** connected by pDirty pointers. The pPrevDirty pointers are
|
|
** corrupted by this sort.
|
|
*/
|
|
#define N_SORT_BUCKET_ALLOC 25
|
|
#define N_SORT_BUCKET 25
|
|
#ifdef SQLITE_TEST
|
|
int sqlite3_pager_n_sort_bucket = 0;
|
|
#undef N_SORT_BUCKET
|
|
#define N_SORT_BUCKET \
|
|
(sqlite3_pager_n_sort_bucket?sqlite3_pager_n_sort_bucket:N_SORT_BUCKET_ALLOC)
|
|
#endif
|
|
static PgHdr *sort_pagelist(PgHdr *pIn){
|
|
PgHdr *a[N_SORT_BUCKET_ALLOC], *p;
|
|
int i;
|
|
memset(a, 0, sizeof(a));
|
|
while( pIn ){
|
|
p = pIn;
|
|
pIn = p->pDirty;
|
|
p->pDirty = 0;
|
|
for(i=0; i<N_SORT_BUCKET-1; i++){
|
|
if( a[i]==0 ){
|
|
a[i] = p;
|
|
break;
|
|
}else{
|
|
p = merge_pagelist(a[i], p);
|
|
a[i] = 0;
|
|
}
|
|
}
|
|
if( i==N_SORT_BUCKET-1 ){
|
|
/* Coverage: To get here, there need to be 2^(N_SORT_BUCKET)
|
|
** elements in the input list. This is possible, but impractical.
|
|
** Testing this line is the point of global variable
|
|
** sqlite3_pager_n_sort_bucket.
|
|
*/
|
|
a[i] = merge_pagelist(a[i], p);
|
|
}
|
|
}
|
|
p = a[0];
|
|
for(i=1; i<N_SORT_BUCKET; i++){
|
|
p = merge_pagelist(p, a[i]);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Given a list of pages (connected by the PgHdr.pDirty pointer) write
|
|
** every one of those pages out to the database file and mark them all
|
|
** as clean.
|
|
*/
|
|
static int pager_write_pagelist(PgHdr *pList){
|
|
Pager *pPager;
|
|
PgHdr *p;
|
|
int rc;
|
|
|
|
if( pList==0 ) return SQLITE_OK;
|
|
pPager = pList->pPager;
|
|
|
|
/* At this point there may be either a RESERVED or EXCLUSIVE lock on the
|
|
** database file. If there is already an EXCLUSIVE lock, the following
|
|
** calls to sqlite3OsLock() are no-ops.
|
|
**
|
|
** Moving the lock from RESERVED to EXCLUSIVE actually involves going
|
|
** through an intermediate state PENDING. A PENDING lock prevents new
|
|
** readers from attaching to the database but is unsufficient for us to
|
|
** write. The idea of a PENDING lock is to prevent new readers from
|
|
** coming in while we wait for existing readers to clear.
|
|
**
|
|
** While the pager is in the RESERVED state, the original database file
|
|
** is unchanged and we can rollback without having to playback the
|
|
** journal into the original database file. Once we transition to
|
|
** EXCLUSIVE, it means the database file has been changed and any rollback
|
|
** will require a journal playback.
|
|
*/
|
|
rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
pList = sort_pagelist(pList);
|
|
for(p=pList; p; p=p->pDirty){
|
|
assert( p->dirty );
|
|
p->dirty = 0;
|
|
}
|
|
while( pList ){
|
|
|
|
/* If the file has not yet been opened, open it now. */
|
|
if( !pPager->fd->pMethods ){
|
|
assert(pPager->tempFile);
|
|
rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->fd, pPager->zFilename,
|
|
pPager->vfsFlags);
|
|
if( rc ) return rc;
|
|
}
|
|
|
|
/* If there are dirty pages in the page cache with page numbers greater
|
|
** than Pager.dbSize, this means sqlite3PagerTruncate() was called to
|
|
** make the file smaller (presumably by auto-vacuum code). Do not write
|
|
** any such pages to the file.
|
|
*/
|
|
if( pList->pgno<=pPager->dbSize ){
|
|
i64 offset = (pList->pgno-1)*(i64)pPager->pageSize;
|
|
char *pData = CODEC2(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6);
|
|
PAGERTRACE4("STORE %d page %d hash(%08x)\n",
|
|
PAGERID(pPager), pList->pgno, pager_pagehash(pList));
|
|
IOTRACE(("PGOUT %p %d\n", pPager, pList->pgno));
|
|
rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset);
|
|
PAGER_INCR(sqlite3_pager_writedb_count);
|
|
PAGER_INCR(pPager->nWrite);
|
|
if( pList->pgno==1 ){
|
|
memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers));
|
|
}
|
|
}
|
|
#ifndef NDEBUG
|
|
else{
|
|
PAGERTRACE3("NOSTORE %d page %d\n", PAGERID(pPager), pList->pgno);
|
|
}
|
|
#endif
|
|
if( rc ) return rc;
|
|
#ifdef SQLITE_CHECK_PAGES
|
|
pList->pageHash = pager_pagehash(pList);
|
|
#endif
|
|
pList = pList->pDirty;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Collect every dirty page into a dirty list and
|
|
** return a pointer to the head of that list. All pages are
|
|
** collected even if they are still in use.
|
|
*/
|
|
static PgHdr *pager_get_all_dirty_pages(Pager *pPager){
|
|
return pPager->pDirty;
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if there is a hot journal on the given pager.
|
|
** A hot journal is one that needs to be played back.
|
|
**
|
|
** If the current size of the database file is 0 but a journal file
|
|
** exists, that is probably an old journal left over from a prior
|
|
** database with the same name. Just delete the journal.
|
|
*/
|
|
static int hasHotJournal(Pager *pPager){
|
|
sqlite3_vfs *pVfs = pPager->pVfs;
|
|
if( !pPager->useJournal ) return 0;
|
|
if( !pPager->fd->pMethods ) return 0;
|
|
if( !sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS) ){
|
|
return 0;
|
|
}
|
|
if( sqlite3OsCheckReservedLock(pPager->fd) ){
|
|
return 0;
|
|
}
|
|
if( sqlite3PagerPagecount(pPager)==0 ){
|
|
sqlite3OsDelete(pVfs, pPager->zJournal, 0);
|
|
return 0;
|
|
}else{
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Try to find a page in the cache that can be recycled.
|
|
**
|
|
** This routine may return SQLITE_IOERR, SQLITE_FULL or SQLITE_OK. It
|
|
** does not set the pPager->errCode variable.
|
|
*/
|
|
static int pager_recycle(Pager *pPager, PgHdr **ppPg){
|
|
PgHdr *pPg;
|
|
*ppPg = 0;
|
|
|
|
/* It is illegal to call this function unless the pager object
|
|
** pointed to by pPager has at least one free page (page with nRef==0).
|
|
*/
|
|
assert(!MEMDB);
|
|
assert(pPager->lru.pFirst);
|
|
|
|
/* Find a page to recycle. Try to locate a page that does not
|
|
** require us to do an fsync() on the journal.
|
|
*/
|
|
pPg = pPager->lru.pFirstSynced;
|
|
|
|
/* If we could not find a page that does not require an fsync()
|
|
** on the journal file then fsync the journal file. This is a
|
|
** very slow operation, so we work hard to avoid it. But sometimes
|
|
** it can't be helped.
|
|
*/
|
|
if( pPg==0 && pPager->lru.pFirst){
|
|
int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
|
|
int rc = syncJournal(pPager);
|
|
if( rc!=0 ){
|
|
return rc;
|
|
}
|
|
if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
|
|
/* If in full-sync mode, write a new journal header into the
|
|
** journal file. This is done to avoid ever modifying a journal
|
|
** header that is involved in the rollback of pages that have
|
|
** already been written to the database (in case the header is
|
|
** trashed when the nRec field is updated).
|
|
*/
|
|
pPager->nRec = 0;
|
|
assert( pPager->journalOff > 0 );
|
|
assert( pPager->doNotSync==0 );
|
|
rc = writeJournalHdr(pPager);
|
|
if( rc!=0 ){
|
|
return rc;
|
|
}
|
|
}
|
|
pPg = pPager->lru.pFirst;
|
|
}
|
|
|
|
assert( pPg->nRef==0 );
|
|
|
|
/* Write the page to the database file if it is dirty.
|
|
*/
|
|
if( pPg->dirty ){
|
|
int rc;
|
|
assert( pPg->needSync==0 );
|
|
makeClean(pPg);
|
|
pPg->dirty = 1;
|
|
pPg->pDirty = 0;
|
|
rc = pager_write_pagelist( pPg );
|
|
pPg->dirty = 0;
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
}
|
|
assert( pPg->dirty==0 );
|
|
|
|
/* If the page we are recycling is marked as alwaysRollback, then
|
|
** set the global alwaysRollback flag, thus disabling the
|
|
** sqlite3PagerDontRollback() optimization for the rest of this transaction.
|
|
** It is necessary to do this because the page marked alwaysRollback
|
|
** might be reloaded at a later time but at that point we won't remember
|
|
** that is was marked alwaysRollback. This means that all pages must
|
|
** be marked as alwaysRollback from here on out.
|
|
*/
|
|
if( pPg->alwaysRollback ){
|
|
IOTRACE(("ALWAYS_ROLLBACK %p\n", pPager))
|
|
pPager->alwaysRollback = 1;
|
|
}
|
|
|
|
/* Unlink the old page from the free list and the hash table
|
|
*/
|
|
unlinkPage(pPg);
|
|
assert( pPg->pgno==0 );
|
|
|
|
*ppPg = pPg;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
/*
|
|
** This function is called to free superfluous dynamically allocated memory
|
|
** held by the pager system. Memory in use by any SQLite pager allocated
|
|
** by the current thread may be sqlite3_free()ed.
|
|
**
|
|
** nReq is the number of bytes of memory required. Once this much has
|
|
** been released, the function returns. The return value is the total number
|
|
** of bytes of memory released.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerReleaseMemory(int nReq){
|
|
int nReleased = 0; /* Bytes of memory released so far */
|
|
sqlite3_mutex *mutex; /* The MEM2 mutex */
|
|
Pager *pPager; /* For looping over pagers */
|
|
BusyHandler *savedBusy; /* Saved copy of the busy handler */
|
|
int rc = SQLITE_OK;
|
|
|
|
/* Acquire the memory-management mutex
|
|
*/
|
|
mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
|
|
sqlite3_mutex_enter(mutex);
|
|
|
|
/* Signal all database connections that memory management wants
|
|
** to have access to the pagers.
|
|
*/
|
|
for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){
|
|
pPager->iInUseMM = 1;
|
|
}
|
|
|
|
while( rc==SQLITE_OK && (nReq<0 || nReleased<nReq) ){
|
|
PgHdr *pPg;
|
|
PgHdr *pRecycled;
|
|
|
|
/* Try to find a page to recycle that does not require a sync(). If
|
|
** this is not possible, find one that does require a sync().
|
|
*/
|
|
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
|
|
pPg = sqlite3LruPageList.pFirstSynced;
|
|
while( pPg && (pPg->needSync || pPg->pPager->iInUseDB) ){
|
|
pPg = pPg->gfree.pNext;
|
|
}
|
|
if( !pPg ){
|
|
pPg = sqlite3LruPageList.pFirst;
|
|
while( pPg && pPg->pPager->iInUseDB ){
|
|
pPg = pPg->gfree.pNext;
|
|
}
|
|
}
|
|
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
|
|
|
|
/* If pPg==0, then the block above has failed to find a page to
|
|
** recycle. In this case return early - no further memory will
|
|
** be released.
|
|
*/
|
|
if( !pPg ) break;
|
|
|
|
pPager = pPg->pPager;
|
|
assert(!pPg->needSync || pPg==pPager->lru.pFirst);
|
|
assert(pPg->needSync || pPg==pPager->lru.pFirstSynced);
|
|
|
|
savedBusy = pPager->pBusyHandler;
|
|
pPager->pBusyHandler = 0;
|
|
rc = pager_recycle(pPager, &pRecycled);
|
|
pPager->pBusyHandler = savedBusy;
|
|
assert(pRecycled==pPg || rc!=SQLITE_OK);
|
|
if( rc==SQLITE_OK ){
|
|
/* We've found a page to free. At this point the page has been
|
|
** removed from the page hash-table, free-list and synced-list
|
|
** (pFirstSynced). It is still in the all pages (pAll) list.
|
|
** Remove it from this list before freeing.
|
|
**
|
|
** Todo: Check the Pager.pStmt list to make sure this is Ok. It
|
|
** probably is though.
|
|
*/
|
|
PgHdr *pTmp;
|
|
assert( pPg );
|
|
if( pPg==pPager->pAll ){
|
|
pPager->pAll = pPg->pNextAll;
|
|
}else{
|
|
for( pTmp=pPager->pAll; pTmp->pNextAll!=pPg; pTmp=pTmp->pNextAll ){}
|
|
pTmp->pNextAll = pPg->pNextAll;
|
|
}
|
|
nReleased += (
|
|
sizeof(*pPg) + pPager->pageSize
|
|
+ sizeof(u32) + pPager->nExtra
|
|
+ MEMDB*sizeof(PgHistory)
|
|
);
|
|
IOTRACE(("PGFREE %p %d *\n", pPager, pPg->pgno));
|
|
PAGER_INCR(sqlite3_pager_pgfree_count);
|
|
sqlite3_free(pPg);
|
|
pPager->nPage--;
|
|
}else{
|
|
/* An error occured whilst writing to the database file or
|
|
** journal in pager_recycle(). The error is not returned to the
|
|
** caller of this function. Instead, set the Pager.errCode variable.
|
|
** The error will be returned to the user (or users, in the case
|
|
** of a shared pager cache) of the pager for which the error occured.
|
|
*/
|
|
assert(
|
|
(rc&0xff)==SQLITE_IOERR ||
|
|
rc==SQLITE_FULL ||
|
|
rc==SQLITE_BUSY
|
|
);
|
|
assert( pPager->state>=PAGER_RESERVED );
|
|
pager_error(pPager, rc);
|
|
}
|
|
}
|
|
|
|
/* Clear the memory management flags and release the mutex
|
|
*/
|
|
for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){
|
|
pPager->iInUseMM = 0;
|
|
}
|
|
sqlite3_mutex_leave(mutex);
|
|
|
|
/* Return the number of bytes released
|
|
*/
|
|
return nReleased;
|
|
}
|
|
#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
|
|
|
|
/*
|
|
** Read the content of page pPg out of the database file.
|
|
*/
|
|
static int readDbPage(Pager *pPager, PgHdr *pPg, Pgno pgno){
|
|
int rc;
|
|
i64 offset;
|
|
assert( MEMDB==0 );
|
|
assert(pPager->fd->pMethods||pPager->tempFile);
|
|
if( !pPager->fd->pMethods ){
|
|
return SQLITE_IOERR_SHORT_READ;
|
|
}
|
|
offset = (pgno-1)*(i64)pPager->pageSize;
|
|
rc = sqlite3OsRead(pPager->fd, PGHDR_TO_DATA(pPg), pPager->pageSize, offset);
|
|
PAGER_INCR(sqlite3_pager_readdb_count);
|
|
PAGER_INCR(pPager->nRead);
|
|
IOTRACE(("PGIN %p %d\n", pPager, pgno));
|
|
if( pgno==1 ){
|
|
memcpy(&pPager->dbFileVers, &((u8*)PGHDR_TO_DATA(pPg))[24],
|
|
sizeof(pPager->dbFileVers));
|
|
}
|
|
CODEC1(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
|
|
PAGERTRACE4("FETCH %d page %d hash(%08x)\n",
|
|
PAGERID(pPager), pPg->pgno, pager_pagehash(pPg));
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** This function is called to obtain the shared lock required before
|
|
** data may be read from the pager cache. If the shared lock has already
|
|
** been obtained, this function is a no-op.
|
|
**
|
|
** Immediately after obtaining the shared lock (if required), this function
|
|
** checks for a hot-journal file. If one is found, an emergency rollback
|
|
** is performed immediately.
|
|
*/
|
|
static int pagerSharedLock(Pager *pPager){
|
|
int rc = SQLITE_OK;
|
|
int isHot = 0;
|
|
|
|
/* If this database is opened for exclusive access, has no outstanding
|
|
** page references and is in an error-state, now is the chance to clear
|
|
** the error. Discard the contents of the pager-cache and treat any
|
|
** open journal file as a hot-journal.
|
|
*/
|
|
if( !MEMDB && pPager->exclusiveMode && pPager->nRef==0 && pPager->errCode ){
|
|
if( pPager->journalOpen ){
|
|
isHot = 1;
|
|
}
|
|
pager_reset(pPager);
|
|
pPager->errCode = SQLITE_OK;
|
|
}
|
|
|
|
/* If the pager is still in an error state, do not proceed. The error
|
|
** state will be cleared at some point in the future when all page
|
|
** references are dropped and the cache can be discarded.
|
|
*/
|
|
if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
|
|
return pPager->errCode;
|
|
}
|
|
|
|
if( pPager->state==PAGER_UNLOCK || isHot ){
|
|
sqlite3_vfs *pVfs = pPager->pVfs;
|
|
if( !MEMDB ){
|
|
assert( pPager->nRef==0 );
|
|
if( !pPager->noReadlock ){
|
|
rc = pager_wait_on_lock(pPager, SHARED_LOCK);
|
|
if( rc!=SQLITE_OK ){
|
|
return pager_error(pPager, rc);
|
|
}
|
|
assert( pPager->state>=SHARED_LOCK );
|
|
}
|
|
|
|
/* If a journal file exists, and there is no RESERVED lock on the
|
|
** database file, then it either needs to be played back or deleted.
|
|
*/
|
|
if( hasHotJournal(pPager) || isHot ){
|
|
/* Get an EXCLUSIVE lock on the database file. At this point it is
|
|
** important that a RESERVED lock is not obtained on the way to the
|
|
** EXCLUSIVE lock. If it were, another process might open the
|
|
** database file, detect the RESERVED lock, and conclude that the
|
|
** database is safe to read while this process is still rolling it
|
|
** back.
|
|
**
|
|
** Because the intermediate RESERVED lock is not requested, the
|
|
** second process will get to this point in the code and fail to
|
|
** obtain its own EXCLUSIVE lock on the database file.
|
|
*/
|
|
if( pPager->state<EXCLUSIVE_LOCK ){
|
|
rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK);
|
|
if( rc!=SQLITE_OK ){
|
|
pager_unlock(pPager);
|
|
return pager_error(pPager, rc);
|
|
}
|
|
pPager->state = PAGER_EXCLUSIVE;
|
|
}
|
|
|
|
/* Open the journal for reading only. Return SQLITE_BUSY if
|
|
** we are unable to open the journal file.
|
|
**
|
|
** The journal file does not need to be locked itself. The
|
|
** journal file is never open unless the main database file holds
|
|
** a write lock, so there is never any chance of two or more
|
|
** processes opening the journal at the same time.
|
|
**
|
|
** Open the journal for read/write access. This is because in
|
|
** exclusive-access mode the file descriptor will be kept open and
|
|
** possibly used for a transaction later on. On some systems, the
|
|
** OsTruncate() call used in exclusive-access mode also requires
|
|
** a read/write file handle.
|
|
*/
|
|
if( !isHot ){
|
|
rc = SQLITE_BUSY;
|
|
if( sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS) ){
|
|
int fout = 0;
|
|
int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL;
|
|
assert( !pPager->tempFile );
|
|
rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout);
|
|
assert( rc!=SQLITE_OK || pPager->jfd->pMethods );
|
|
if( fout&SQLITE_OPEN_READONLY ){
|
|
rc = SQLITE_BUSY;
|
|
sqlite3OsClose(pPager->jfd);
|
|
}
|
|
}
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
pager_unlock(pPager);
|
|
return ((rc==SQLITE_NOMEM||rc==SQLITE_IOERR_NOMEM)?rc:SQLITE_BUSY);
|
|
}
|
|
pPager->journalOpen = 1;
|
|
pPager->journalStarted = 0;
|
|
pPager->journalOff = 0;
|
|
pPager->setMaster = 0;
|
|
pPager->journalHdr = 0;
|
|
|
|
/* Playback and delete the journal. Drop the database write
|
|
** lock and reacquire the read lock.
|
|
*/
|
|
rc = pager_playback(pPager, 1);
|
|
if( rc!=SQLITE_OK ){
|
|
return pager_error(pPager, rc);
|
|
}
|
|
assert(pPager->state==PAGER_SHARED ||
|
|
(pPager->exclusiveMode && pPager->state>PAGER_SHARED)
|
|
);
|
|
}
|
|
|
|
if( pPager->pAll ){
|
|
/* The shared-lock has just been acquired on the database file
|
|
** and there are already pages in the cache (from a previous
|
|
** read or write transaction). Check to see if the database
|
|
** has been modified. If the database has changed, flush the
|
|
** cache.
|
|
**
|
|
** Database changes is detected by looking at 15 bytes beginning
|
|
** at offset 24 into the file. The first 4 of these 16 bytes are
|
|
** a 32-bit counter that is incremented with each change. The
|
|
** other bytes change randomly with each file change when
|
|
** a codec is in use.
|
|
**
|
|
** There is a vanishingly small chance that a change will not be
|
|
** detected. The chance of an undetected change is so small that
|
|
** it can be neglected.
|
|
*/
|
|
char dbFileVers[sizeof(pPager->dbFileVers)];
|
|
sqlite3PagerPagecount(pPager);
|
|
|
|
if( pPager->errCode ){
|
|
return pPager->errCode;
|
|
}
|
|
|
|
if( pPager->dbSize>0 ){
|
|
IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers)));
|
|
rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
}else{
|
|
memset(dbFileVers, 0, sizeof(dbFileVers));
|
|
}
|
|
|
|
if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){
|
|
pager_reset(pPager);
|
|
}
|
|
}
|
|
}
|
|
assert( pPager->exclusiveMode || pPager->state<=PAGER_SHARED );
|
|
if( pPager->state==PAGER_UNLOCK ){
|
|
pPager->state = PAGER_SHARED;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Allocate a PgHdr object. Either create a new one or reuse
|
|
** an existing one that is not otherwise in use.
|
|
**
|
|
** A new PgHdr structure is created if any of the following are
|
|
** true:
|
|
**
|
|
** (1) We have not exceeded our maximum allocated cache size
|
|
** as set by the "PRAGMA cache_size" command.
|
|
**
|
|
** (2) There are no unused PgHdr objects available at this time.
|
|
**
|
|
** (3) This is an in-memory database.
|
|
**
|
|
** (4) There are no PgHdr objects that do not require a journal
|
|
** file sync and a sync of the journal file is currently
|
|
** prohibited.
|
|
**
|
|
** Otherwise, reuse an existing PgHdr. In other words, reuse an
|
|
** existing PgHdr if all of the following are true:
|
|
**
|
|
** (1) We have reached or exceeded the maximum cache size
|
|
** allowed by "PRAGMA cache_size".
|
|
**
|
|
** (2) There is a PgHdr available with PgHdr->nRef==0
|
|
**
|
|
** (3) We are not in an in-memory database
|
|
**
|
|
** (4) Either there is an available PgHdr that does not need
|
|
** to be synced to disk or else disk syncing is currently
|
|
** allowed.
|
|
*/
|
|
static int pagerAllocatePage(Pager *pPager, PgHdr **ppPg){
|
|
int rc = SQLITE_OK;
|
|
PgHdr *pPg;
|
|
int nByteHdr;
|
|
|
|
/* Create a new PgHdr if any of the four conditions defined
|
|
** above are met: */
|
|
if( pPager->nPage<pPager->mxPage
|
|
|| pPager->lru.pFirst==0
|
|
|| MEMDB
|
|
|| (pPager->lru.pFirstSynced==0 && pPager->doNotSync)
|
|
){
|
|
if( pPager->nPage>=pPager->nHash ){
|
|
pager_resize_hash_table(pPager,
|
|
pPager->nHash<256 ? 256 : pPager->nHash*2);
|
|
if( pPager->nHash==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
goto pager_allocate_out;
|
|
}
|
|
}
|
|
pagerLeave(pPager);
|
|
nByteHdr = sizeof(*pPg) + sizeof(u32) + pPager->nExtra
|
|
+ MEMDB*sizeof(PgHistory);
|
|
pPg = sqlite3_malloc( nByteHdr + pPager->pageSize );
|
|
pagerEnter(pPager);
|
|
if( pPg==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
goto pager_allocate_out;
|
|
}
|
|
memset(pPg, 0, nByteHdr);
|
|
pPg->pData = (void*)(nByteHdr + (char*)pPg);
|
|
pPg->pPager = pPager;
|
|
pPg->pNextAll = pPager->pAll;
|
|
pPager->pAll = pPg;
|
|
pPager->nPage++;
|
|
}else{
|
|
/* Recycle an existing page with a zero ref-count. */
|
|
rc = pager_recycle(pPager, &pPg);
|
|
if( rc==SQLITE_BUSY ){
|
|
rc = SQLITE_IOERR_BLOCKED;
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
goto pager_allocate_out;
|
|
}
|
|
assert( pPager->state>=SHARED_LOCK );
|
|
assert(pPg);
|
|
}
|
|
*ppPg = pPg;
|
|
|
|
pager_allocate_out:
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Make sure we have the content for a page. If the page was
|
|
** previously acquired with noContent==1, then the content was
|
|
** just initialized to zeros instead of being read from disk.
|
|
** But now we need the real data off of disk. So make sure we
|
|
** have it. Read it in if we do not have it already.
|
|
*/
|
|
static int pager_get_content(PgHdr *pPg){
|
|
if( pPg->needRead ){
|
|
int rc = readDbPage(pPg->pPager, pPg, pPg->pgno);
|
|
if( rc==SQLITE_OK ){
|
|
pPg->needRead = 0;
|
|
}else{
|
|
return rc;
|
|
}
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Acquire a page.
|
|
**
|
|
** A read lock on the disk file is obtained when the first page is acquired.
|
|
** This read lock is dropped when the last page is released.
|
|
**
|
|
** This routine works for any page number greater than 0. If the database
|
|
** file is smaller than the requested page, then no actual disk
|
|
** read occurs and the memory image of the page is initialized to
|
|
** all zeros. The extra data appended to a page is always initialized
|
|
** to zeros the first time a page is loaded into memory.
|
|
**
|
|
** The acquisition might fail for several reasons. In all cases,
|
|
** an appropriate error code is returned and *ppPage is set to NULL.
|
|
**
|
|
** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt
|
|
** to find a page in the in-memory cache first. If the page is not already
|
|
** in memory, this routine goes to disk to read it in whereas Lookup()
|
|
** just returns 0. This routine acquires a read-lock the first time it
|
|
** has to go to disk, and could also playback an old journal if necessary.
|
|
** Since Lookup() never goes to disk, it never has to deal with locks
|
|
** or journal files.
|
|
**
|
|
** If noContent is false, the page contents are actually read from disk.
|
|
** If noContent is true, it means that we do not care about the contents
|
|
** of the page at this time, so do not do a disk read. Just fill in the
|
|
** page content with zeros. But mark the fact that we have not read the
|
|
** content by setting the PgHdr.needRead flag. Later on, if
|
|
** sqlite3PagerWrite() is called on this page or if this routine is
|
|
** called again with noContent==0, that means that the content is needed
|
|
** and the disk read should occur at that point.
|
|
*/
|
|
static int pagerAcquire(
|
|
Pager *pPager, /* The pager open on the database file */
|
|
Pgno pgno, /* Page number to fetch */
|
|
DbPage **ppPage, /* Write a pointer to the page here */
|
|
int noContent /* Do not bother reading content from disk if true */
|
|
){
|
|
PgHdr *pPg;
|
|
int rc;
|
|
|
|
assert( pPager->state==PAGER_UNLOCK || pPager->nRef>0 || pgno==1 );
|
|
|
|
/* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page
|
|
** number greater than this, or zero, is requested.
|
|
*/
|
|
if( pgno>PAGER_MAX_PGNO || pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
|
|
/* Make sure we have not hit any critical errors.
|
|
*/
|
|
assert( pPager!=0 );
|
|
*ppPage = 0;
|
|
|
|
/* If this is the first page accessed, then get a SHARED lock
|
|
** on the database file. pagerSharedLock() is a no-op if
|
|
** a database lock is already held.
|
|
*/
|
|
rc = pagerSharedLock(pPager);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
assert( pPager->state!=PAGER_UNLOCK );
|
|
|
|
pPg = pager_lookup(pPager, pgno);
|
|
if( pPg==0 ){
|
|
/* The requested page is not in the page cache. */
|
|
int nMax;
|
|
int h;
|
|
PAGER_INCR(pPager->nMiss);
|
|
rc = pagerAllocatePage(pPager, &pPg);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
pPg->pgno = pgno;
|
|
assert( !MEMDB || pgno>pPager->stmtSize );
|
|
if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){
|
|
#if 0
|
|
sqlite3CheckMemory(pPager->aInJournal, pgno/8);
|
|
#endif
|
|
assert( pPager->journalOpen );
|
|
pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0;
|
|
pPg->needSync = 0;
|
|
}else{
|
|
pPg->inJournal = 0;
|
|
pPg->needSync = 0;
|
|
}
|
|
|
|
makeClean(pPg);
|
|
pPg->nRef = 1;
|
|
REFINFO(pPg);
|
|
|
|
pPager->nRef++;
|
|
if( pPager->nExtra>0 ){
|
|
memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra);
|
|
}
|
|
nMax = sqlite3PagerPagecount(pPager);
|
|
if( pPager->errCode ){
|
|
rc = pPager->errCode;
|
|
sqlite3PagerUnref(pPg);
|
|
return rc;
|
|
}
|
|
|
|
/* Populate the page with data, either by reading from the database
|
|
** file, or by setting the entire page to zero.
|
|
*/
|
|
if( nMax<(int)pgno || MEMDB || (noContent && !pPager->alwaysRollback) ){
|
|
if( pgno>pPager->mxPgno ){
|
|
sqlite3PagerUnref(pPg);
|
|
return SQLITE_FULL;
|
|
}
|
|
memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
|
|
pPg->needRead = noContent && !pPager->alwaysRollback;
|
|
IOTRACE(("ZERO %p %d\n", pPager, pgno));
|
|
}else{
|
|
rc = readDbPage(pPager, pPg, pgno);
|
|
if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
|
|
pPg->pgno = 0;
|
|
sqlite3PagerUnref(pPg);
|
|
return rc;
|
|
}
|
|
pPg->needRead = 0;
|
|
}
|
|
|
|
/* Link the page into the page hash table */
|
|
h = pgno & (pPager->nHash-1);
|
|
assert( pgno!=0 );
|
|
pPg->pNextHash = pPager->aHash[h];
|
|
pPager->aHash[h] = pPg;
|
|
if( pPg->pNextHash ){
|
|
assert( pPg->pNextHash->pPrevHash==0 );
|
|
pPg->pNextHash->pPrevHash = pPg;
|
|
}
|
|
|
|
#ifdef SQLITE_CHECK_PAGES
|
|
pPg->pageHash = pager_pagehash(pPg);
|
|
#endif
|
|
}else{
|
|
/* The requested page is in the page cache. */
|
|
assert(pPager->nRef>0 || pgno==1);
|
|
PAGER_INCR(pPager->nHit);
|
|
if( !noContent ){
|
|
rc = pager_get_content(pPg);
|
|
if( rc ){
|
|
return rc;
|
|
}
|
|
}
|
|
page_ref(pPg);
|
|
}
|
|
*ppPage = pPg;
|
|
return SQLITE_OK;
|
|
}
|
|
SQLITE_PRIVATE int sqlite3PagerAcquire(
|
|
Pager *pPager, /* The pager open on the database file */
|
|
Pgno pgno, /* Page number to fetch */
|
|
DbPage **ppPage, /* Write a pointer to the page here */
|
|
int noContent /* Do not bother reading content from disk if true */
|
|
){
|
|
int rc;
|
|
pagerEnter(pPager);
|
|
rc = pagerAcquire(pPager, pgno, ppPage, noContent);
|
|
pagerLeave(pPager);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Acquire a page if it is already in the in-memory cache. Do
|
|
** not read the page from disk. Return a pointer to the page,
|
|
** or 0 if the page is not in cache.
|
|
**
|
|
** See also sqlite3PagerGet(). The difference between this routine
|
|
** and sqlite3PagerGet() is that _get() will go to the disk and read
|
|
** in the page if the page is not already in cache. This routine
|
|
** returns NULL if the page is not in cache or if a disk I/O error
|
|
** has ever happened.
|
|
*/
|
|
SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){
|
|
PgHdr *pPg = 0;
|
|
|
|
assert( pPager!=0 );
|
|
assert( pgno!=0 );
|
|
|
|
pagerEnter(pPager);
|
|
if( pPager->state==PAGER_UNLOCK ){
|
|
assert( !pPager->pAll || pPager->exclusiveMode );
|
|
}else if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
|
|
/* Do nothing */
|
|
}else if( (pPg = pager_lookup(pPager, pgno))!=0 ){
|
|
page_ref(pPg);
|
|
}
|
|
pagerLeave(pPager);
|
|
return pPg;
|
|
}
|
|
|
|
/*
|
|
** Release a page.
|
|
**
|
|
** If the number of references to the page drop to zero, then the
|
|
** page is added to the LRU list. When all references to all pages
|
|
** are released, a rollback occurs and the lock on the database is
|
|
** removed.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerUnref(DbPage *pPg){
|
|
Pager *pPager = pPg->pPager;
|
|
|
|
/* Decrement the reference count for this page
|
|
*/
|
|
assert( pPg->nRef>0 );
|
|
pagerEnter(pPg->pPager);
|
|
pPg->nRef--;
|
|
REFINFO(pPg);
|
|
|
|
CHECK_PAGE(pPg);
|
|
|
|
/* When the number of references to a page reach 0, call the
|
|
** destructor and add the page to the freelist.
|
|
*/
|
|
if( pPg->nRef==0 ){
|
|
|
|
lruListAdd(pPg);
|
|
if( pPager->xDestructor ){
|
|
pPager->xDestructor(pPg, pPager->pageSize);
|
|
}
|
|
|
|
/* When all pages reach the freelist, drop the read lock from
|
|
** the database file.
|
|
*/
|
|
pPager->nRef--;
|
|
assert( pPager->nRef>=0 );
|
|
if( pPager->nRef==0 && (!pPager->exclusiveMode || pPager->journalOff>0) ){
|
|
pagerUnlockAndRollback(pPager);
|
|
}
|
|
}
|
|
pagerLeave(pPager);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Create a journal file for pPager. There should already be a RESERVED
|
|
** or EXCLUSIVE lock on the database file when this routine is called.
|
|
**
|
|
** Return SQLITE_OK if everything. Return an error code and release the
|
|
** write lock if anything goes wrong.
|
|
*/
|
|
static int pager_open_journal(Pager *pPager){
|
|
sqlite3_vfs *pVfs = pPager->pVfs;
|
|
int flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_CREATE);
|
|
|
|
int rc;
|
|
assert( !MEMDB );
|
|
assert( pPager->state>=PAGER_RESERVED );
|
|
assert( pPager->journalOpen==0 );
|
|
assert( pPager->useJournal );
|
|
assert( pPager->aInJournal==0 );
|
|
sqlite3PagerPagecount(pPager);
|
|
pagerLeave(pPager);
|
|
pPager->aInJournal = sqlite3MallocZero( pPager->dbSize/8 + 1 );
|
|
pagerEnter(pPager);
|
|
if( pPager->aInJournal==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
goto failed_to_open_journal;
|
|
}
|
|
|
|
if( pPager->tempFile ){
|
|
flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL);
|
|
}else{
|
|
flags |= (SQLITE_OPEN_MAIN_JOURNAL);
|
|
}
|
|
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
|
|
rc = sqlite3JournalOpen(
|
|
pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager)
|
|
);
|
|
#else
|
|
rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0);
|
|
#endif
|
|
assert( rc!=SQLITE_OK || pPager->jfd->pMethods );
|
|
pPager->journalOff = 0;
|
|
pPager->setMaster = 0;
|
|
pPager->journalHdr = 0;
|
|
if( rc!=SQLITE_OK ){
|
|
if( rc==SQLITE_NOMEM ){
|
|
sqlite3OsDelete(pVfs, pPager->zJournal, 0);
|
|
}
|
|
goto failed_to_open_journal;
|
|
}
|
|
pPager->journalOpen = 1;
|
|
pPager->journalStarted = 0;
|
|
pPager->needSync = 0;
|
|
pPager->alwaysRollback = 0;
|
|
pPager->nRec = 0;
|
|
if( pPager->errCode ){
|
|
rc = pPager->errCode;
|
|
goto failed_to_open_journal;
|
|
}
|
|
pPager->origDbSize = pPager->dbSize;
|
|
|
|
rc = writeJournalHdr(pPager);
|
|
|
|
if( pPager->stmtAutoopen && rc==SQLITE_OK ){
|
|
rc = sqlite3PagerStmtBegin(pPager);
|
|
}
|
|
if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_NOMEM ){
|
|
rc = pager_end_transaction(pPager);
|
|
if( rc==SQLITE_OK ){
|
|
rc = SQLITE_FULL;
|
|
}
|
|
}
|
|
return rc;
|
|
|
|
failed_to_open_journal:
|
|
sqlite3_free(pPager->aInJournal);
|
|
pPager->aInJournal = 0;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Acquire a write-lock on the database. The lock is removed when
|
|
** the any of the following happen:
|
|
**
|
|
** * sqlite3PagerCommitPhaseTwo() is called.
|
|
** * sqlite3PagerRollback() is called.
|
|
** * sqlite3PagerClose() is called.
|
|
** * sqlite3PagerUnref() is called to on every outstanding page.
|
|
**
|
|
** The first parameter to this routine is a pointer to any open page of the
|
|
** database file. Nothing changes about the page - it is used merely to
|
|
** acquire a pointer to the Pager structure and as proof that there is
|
|
** already a read-lock on the database.
|
|
**
|
|
** The second parameter indicates how much space in bytes to reserve for a
|
|
** master journal file-name at the start of the journal when it is created.
|
|
**
|
|
** A journal file is opened if this is not a temporary file. For temporary
|
|
** files, the opening of the journal file is deferred until there is an
|
|
** actual need to write to the journal.
|
|
**
|
|
** If the database is already reserved for writing, this routine is a no-op.
|
|
**
|
|
** If exFlag is true, go ahead and get an EXCLUSIVE lock on the file
|
|
** immediately instead of waiting until we try to flush the cache. The
|
|
** exFlag is ignored if a transaction is already active.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerBegin(DbPage *pPg, int exFlag){
|
|
Pager *pPager = pPg->pPager;
|
|
int rc = SQLITE_OK;
|
|
pagerEnter(pPager);
|
|
assert( pPg->nRef>0 );
|
|
assert( pPager->state!=PAGER_UNLOCK );
|
|
if( pPager->state==PAGER_SHARED ){
|
|
assert( pPager->aInJournal==0 );
|
|
if( MEMDB ){
|
|
pPager->state = PAGER_EXCLUSIVE;
|
|
pPager->origDbSize = pPager->dbSize;
|
|
}else{
|
|
rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK);
|
|
if( rc==SQLITE_OK ){
|
|
pPager->state = PAGER_RESERVED;
|
|
if( exFlag ){
|
|
rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
|
|
}
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
pagerLeave(pPager);
|
|
return rc;
|
|
}
|
|
pPager->dirtyCache = 0;
|
|
PAGERTRACE2("TRANSACTION %d\n", PAGERID(pPager));
|
|
if( pPager->useJournal && !pPager->tempFile ){
|
|
rc = pager_open_journal(pPager);
|
|
}
|
|
}
|
|
}else if( pPager->journalOpen && pPager->journalOff==0 ){
|
|
/* This happens when the pager was in exclusive-access mode last
|
|
** time a (read or write) transaction was successfully concluded
|
|
** by this connection. Instead of deleting the journal file it was
|
|
** kept open and truncated to 0 bytes.
|
|
*/
|
|
assert( pPager->nRec==0 );
|
|
assert( pPager->origDbSize==0 );
|
|
assert( pPager->aInJournal==0 );
|
|
sqlite3PagerPagecount(pPager);
|
|
pagerLeave(pPager);
|
|
pPager->aInJournal = sqlite3MallocZero( pPager->dbSize/8 + 1 );
|
|
pagerEnter(pPager);
|
|
if( !pPager->aInJournal ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
pPager->origDbSize = pPager->dbSize;
|
|
rc = writeJournalHdr(pPager);
|
|
}
|
|
}
|
|
assert( !pPager->journalOpen || pPager->journalOff>0 || rc!=SQLITE_OK );
|
|
pagerLeave(pPager);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Make a page dirty. Set its dirty flag and add it to the dirty
|
|
** page list.
|
|
*/
|
|
static void makeDirty(PgHdr *pPg){
|
|
if( pPg->dirty==0 ){
|
|
Pager *pPager = pPg->pPager;
|
|
pPg->dirty = 1;
|
|
pPg->pDirty = pPager->pDirty;
|
|
if( pPager->pDirty ){
|
|
pPager->pDirty->pPrevDirty = pPg;
|
|
}
|
|
pPg->pPrevDirty = 0;
|
|
pPager->pDirty = pPg;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Make a page clean. Clear its dirty bit and remove it from the
|
|
** dirty page list.
|
|
*/
|
|
static void makeClean(PgHdr *pPg){
|
|
if( pPg->dirty ){
|
|
pPg->dirty = 0;
|
|
if( pPg->pDirty ){
|
|
assert( pPg->pDirty->pPrevDirty==pPg );
|
|
pPg->pDirty->pPrevDirty = pPg->pPrevDirty;
|
|
}
|
|
if( pPg->pPrevDirty ){
|
|
assert( pPg->pPrevDirty->pDirty==pPg );
|
|
pPg->pPrevDirty->pDirty = pPg->pDirty;
|
|
}else{
|
|
assert( pPg->pPager->pDirty==pPg );
|
|
pPg->pPager->pDirty = pPg->pDirty;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Mark a data page as writeable. The page is written into the journal
|
|
** if it is not there already. This routine must be called before making
|
|
** changes to a page.
|
|
**
|
|
** The first time this routine is called, the pager creates a new
|
|
** journal and acquires a RESERVED lock on the database. If the RESERVED
|
|
** lock could not be acquired, this routine returns SQLITE_BUSY. The
|
|
** calling routine must check for that return value and be careful not to
|
|
** change any page data until this routine returns SQLITE_OK.
|
|
**
|
|
** If the journal file could not be written because the disk is full,
|
|
** then this routine returns SQLITE_FULL and does an immediate rollback.
|
|
** All subsequent write attempts also return SQLITE_FULL until there
|
|
** is a call to sqlite3PagerCommit() or sqlite3PagerRollback() to
|
|
** reset.
|
|
*/
|
|
static int pager_write(PgHdr *pPg){
|
|
void *pData = PGHDR_TO_DATA(pPg);
|
|
Pager *pPager = pPg->pPager;
|
|
int rc = SQLITE_OK;
|
|
|
|
/* Check for errors
|
|
*/
|
|
if( pPager->errCode ){
|
|
return pPager->errCode;
|
|
}
|
|
if( pPager->readOnly ){
|
|
return SQLITE_PERM;
|
|
}
|
|
|
|
assert( !pPager->setMaster );
|
|
|
|
CHECK_PAGE(pPg);
|
|
|
|
/* If this page was previously acquired with noContent==1, that means
|
|
** we didn't really read in the content of the page. This can happen
|
|
** (for example) when the page is being moved to the freelist. But
|
|
** now we are (perhaps) moving the page off of the freelist for
|
|
** reuse and we need to know its original content so that content
|
|
** can be stored in the rollback journal. So do the read at this
|
|
** time.
|
|
*/
|
|
rc = pager_get_content(pPg);
|
|
if( rc ){
|
|
return rc;
|
|
}
|
|
|
|
/* Mark the page as dirty. If the page has already been written
|
|
** to the journal then we can return right away.
|
|
*/
|
|
makeDirty(pPg);
|
|
if( pPg->inJournal && (pageInStatement(pPg) || pPager->stmtInUse==0) ){
|
|
pPager->dirtyCache = 1;
|
|
}else{
|
|
|
|
/* If we get this far, it means that the page needs to be
|
|
** written to the transaction journal or the ckeckpoint journal
|
|
** or both.
|
|
**
|
|
** First check to see that the transaction journal exists and
|
|
** create it if it does not.
|
|
*/
|
|
assert( pPager->state!=PAGER_UNLOCK );
|
|
rc = sqlite3PagerBegin(pPg, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
assert( pPager->state>=PAGER_RESERVED );
|
|
if( !pPager->journalOpen && pPager->useJournal ){
|
|
rc = pager_open_journal(pPager);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}
|
|
assert( pPager->journalOpen || !pPager->useJournal );
|
|
pPager->dirtyCache = 1;
|
|
|
|
/* The transaction journal now exists and we have a RESERVED or an
|
|
** EXCLUSIVE lock on the main database file. Write the current page to
|
|
** the transaction journal if it is not there already.
|
|
*/
|
|
if( !pPg->inJournal && (pPager->useJournal || MEMDB) ){
|
|
if( (int)pPg->pgno <= pPager->origDbSize ){
|
|
if( MEMDB ){
|
|
PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
|
|
PAGERTRACE3("JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
|
|
assert( pHist->pOrig==0 );
|
|
pHist->pOrig = sqlite3_malloc( pPager->pageSize );
|
|
if( !pHist->pOrig ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
memcpy(pHist->pOrig, PGHDR_TO_DATA(pPg), pPager->pageSize);
|
|
}else{
|
|
u32 cksum;
|
|
char *pData2;
|
|
|
|
/* We should never write to the journal file the page that
|
|
** contains the database locks. The following assert verifies
|
|
** that we do not. */
|
|
assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) );
|
|
pData2 = CODEC2(pPager, pData, pPg->pgno, 7);
|
|
cksum = pager_cksum(pPager, (u8*)pData2);
|
|
rc = write32bits(pPager->jfd, pPager->journalOff, pPg->pgno);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize,
|
|
pPager->journalOff + 4);
|
|
pPager->journalOff += pPager->pageSize+4;
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
rc = write32bits(pPager->jfd, pPager->journalOff, cksum);
|
|
pPager->journalOff += 4;
|
|
}
|
|
IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno,
|
|
pPager->journalOff, pPager->pageSize));
|
|
PAGER_INCR(sqlite3_pager_writej_count);
|
|
PAGERTRACE5("JOURNAL %d page %d needSync=%d hash(%08x)\n",
|
|
PAGERID(pPager), pPg->pgno, pPg->needSync, pager_pagehash(pPg));
|
|
|
|
/* An error has occured writing to the journal file. The
|
|
** transaction will be rolled back by the layer above.
|
|
*/
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
pPager->nRec++;
|
|
assert( pPager->aInJournal!=0 );
|
|
pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
|
|
pPg->needSync = !pPager->noSync;
|
|
if( pPager->stmtInUse ){
|
|
pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
|
|
}
|
|
}
|
|
}else{
|
|
pPg->needSync = !pPager->journalStarted && !pPager->noSync;
|
|
PAGERTRACE4("APPEND %d page %d needSync=%d\n",
|
|
PAGERID(pPager), pPg->pgno, pPg->needSync);
|
|
}
|
|
if( pPg->needSync ){
|
|
pPager->needSync = 1;
|
|
}
|
|
pPg->inJournal = 1;
|
|
}
|
|
|
|
/* If the statement journal is open and the page is not in it,
|
|
** then write the current page to the statement journal. Note that
|
|
** the statement journal format differs from the standard journal format
|
|
** in that it omits the checksums and the header.
|
|
*/
|
|
if( pPager->stmtInUse
|
|
&& !pageInStatement(pPg)
|
|
&& (int)pPg->pgno<=pPager->stmtSize
|
|
){
|
|
assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
|
|
if( MEMDB ){
|
|
PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
|
|
assert( pHist->pStmt==0 );
|
|
pHist->pStmt = sqlite3_malloc( pPager->pageSize );
|
|
if( pHist->pStmt ){
|
|
memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize);
|
|
}
|
|
PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
|
|
page_add_to_stmt_list(pPg);
|
|
}else{
|
|
i64 offset = pPager->stmtNRec*(4+pPager->pageSize);
|
|
char *pData2 = CODEC2(pPager, pData, pPg->pgno, 7);
|
|
rc = write32bits(pPager->stfd, offset, pPg->pgno);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3OsWrite(pPager->stfd, pData2, pPager->pageSize, offset+4);
|
|
}
|
|
PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
pPager->stmtNRec++;
|
|
assert( pPager->aInStmt!=0 );
|
|
pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Update the database size and return.
|
|
*/
|
|
assert( pPager->state>=PAGER_SHARED );
|
|
if( pPager->dbSize<(int)pPg->pgno ){
|
|
pPager->dbSize = pPg->pgno;
|
|
if( !MEMDB && pPager->dbSize==PENDING_BYTE/pPager->pageSize ){
|
|
pPager->dbSize++;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This function is used to mark a data-page as writable. It uses
|
|
** pager_write() to open a journal file (if it is not already open)
|
|
** and write the page *pData to the journal.
|
|
**
|
|
** The difference between this function and pager_write() is that this
|
|
** function also deals with the special case where 2 or more pages
|
|
** fit on a single disk sector. In this case all co-resident pages
|
|
** must have been written to the journal file before returning.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerWrite(DbPage *pDbPage){
|
|
int rc = SQLITE_OK;
|
|
|
|
PgHdr *pPg = pDbPage;
|
|
Pager *pPager = pPg->pPager;
|
|
Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize);
|
|
|
|
pagerEnter(pPager);
|
|
if( !MEMDB && nPagePerSector>1 ){
|
|
Pgno nPageCount; /* Total number of pages in database file */
|
|
Pgno pg1; /* First page of the sector pPg is located on. */
|
|
int nPage; /* Number of pages starting at pg1 to journal */
|
|
int ii;
|
|
int needSync = 0;
|
|
|
|
/* Set the doNotSync flag to 1. This is because we cannot allow a journal
|
|
** header to be written between the pages journaled by this function.
|
|
*/
|
|
assert( pPager->doNotSync==0 );
|
|
pPager->doNotSync = 1;
|
|
|
|
/* This trick assumes that both the page-size and sector-size are
|
|
** an integer power of 2. It sets variable pg1 to the identifier
|
|
** of the first page of the sector pPg is located on.
|
|
*/
|
|
pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1;
|
|
|
|
nPageCount = sqlite3PagerPagecount(pPager);
|
|
if( pPg->pgno>nPageCount ){
|
|
nPage = (pPg->pgno - pg1)+1;
|
|
}else if( (pg1+nPagePerSector-1)>nPageCount ){
|
|
nPage = nPageCount+1-pg1;
|
|
}else{
|
|
nPage = nPagePerSector;
|
|
}
|
|
assert(nPage>0);
|
|
assert(pg1<=pPg->pgno);
|
|
assert((pg1+nPage)>pPg->pgno);
|
|
|
|
for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){
|
|
Pgno pg = pg1+ii;
|
|
PgHdr *pPage;
|
|
if( !pPager->aInJournal || pg==pPg->pgno ||
|
|
pg>pPager->origDbSize || !(pPager->aInJournal[pg/8]&(1<<(pg&7)))
|
|
) {
|
|
if( pg!=PAGER_MJ_PGNO(pPager) ){
|
|
rc = sqlite3PagerGet(pPager, pg, &pPage);
|
|
if( rc==SQLITE_OK ){
|
|
rc = pager_write(pPage);
|
|
if( pPage->needSync ){
|
|
needSync = 1;
|
|
}
|
|
sqlite3PagerUnref(pPage);
|
|
}
|
|
}
|
|
}else if( (pPage = pager_lookup(pPager, pg)) ){
|
|
if( pPage->needSync ){
|
|
needSync = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If the PgHdr.needSync flag is set for any of the nPage pages
|
|
** starting at pg1, then it needs to be set for all of them. Because
|
|
** writing to any of these nPage pages may damage the others, the
|
|
** journal file must contain sync()ed copies of all of them
|
|
** before any of them can be written out to the database file.
|
|
*/
|
|
if( needSync ){
|
|
for(ii=0; ii<nPage && needSync; ii++){
|
|
PgHdr *pPage = pager_lookup(pPager, pg1+ii);
|
|
if( pPage ) pPage->needSync = 1;
|
|
}
|
|
assert(pPager->needSync);
|
|
}
|
|
|
|
assert( pPager->doNotSync==1 );
|
|
pPager->doNotSync = 0;
|
|
}else{
|
|
rc = pager_write(pDbPage);
|
|
}
|
|
pagerLeave(pPager);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if the page given in the argument was previously passed
|
|
** to sqlite3PagerWrite(). In other words, return TRUE if it is ok
|
|
** to change the content of the page.
|
|
*/
|
|
#ifndef NDEBUG
|
|
SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage *pPg){
|
|
return pPg->dirty;
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_VACUUM
|
|
/*
|
|
** Replace the content of a single page with the information in the third
|
|
** argument.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerOverwrite(Pager *pPager, Pgno pgno, void *pData){
|
|
PgHdr *pPg;
|
|
int rc;
|
|
|
|
pagerEnter(pPager);
|
|
rc = sqlite3PagerGet(pPager, pgno, &pPg);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3PagerWrite(pPg);
|
|
if( rc==SQLITE_OK ){
|
|
memcpy(sqlite3PagerGetData(pPg), pData, pPager->pageSize);
|
|
}
|
|
sqlite3PagerUnref(pPg);
|
|
}
|
|
pagerLeave(pPager);
|
|
return rc;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** A call to this routine tells the pager that it is not necessary to
|
|
** write the information on page pPg back to the disk, even though
|
|
** that page might be marked as dirty.
|
|
**
|
|
** The overlying software layer calls this routine when all of the data
|
|
** on the given page is unused. The pager marks the page as clean so
|
|
** that it does not get written to disk.
|
|
**
|
|
** Tests show that this optimization, together with the
|
|
** sqlite3PagerDontRollback() below, more than double the speed
|
|
** of large INSERT operations and quadruple the speed of large DELETEs.
|
|
**
|
|
** When this routine is called, set the alwaysRollback flag to true.
|
|
** Subsequent calls to sqlite3PagerDontRollback() for the same page
|
|
** will thereafter be ignored. This is necessary to avoid a problem
|
|
** where a page with data is added to the freelist during one part of
|
|
** a transaction then removed from the freelist during a later part
|
|
** of the same transaction and reused for some other purpose. When it
|
|
** is first added to the freelist, this routine is called. When reused,
|
|
** the sqlite3PagerDontRollback() routine is called. But because the
|
|
** page contains critical data, we still need to be sure it gets
|
|
** rolled back in spite of the sqlite3PagerDontRollback() call.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage *pDbPage){
|
|
PgHdr *pPg = pDbPage;
|
|
Pager *pPager = pPg->pPager;
|
|
|
|
if( MEMDB ) return;
|
|
pagerEnter(pPager);
|
|
pPg->alwaysRollback = 1;
|
|
if( pPg->dirty && !pPager->stmtInUse ){
|
|
assert( pPager->state>=PAGER_SHARED );
|
|
if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){
|
|
/* If this pages is the last page in the file and the file has grown
|
|
** during the current transaction, then do NOT mark the page as clean.
|
|
** When the database file grows, we must make sure that the last page
|
|
** gets written at least once so that the disk file will be the correct
|
|
** size. If you do not write this page and the size of the file
|
|
** on the disk ends up being too small, that can lead to database
|
|
** corruption during the next transaction.
|
|
*/
|
|
}else{
|
|
PAGERTRACE3("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager));
|
|
IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno))
|
|
makeClean(pPg);
|
|
#ifdef SQLITE_CHECK_PAGES
|
|
pPg->pageHash = pager_pagehash(pPg);
|
|
#endif
|
|
}
|
|
}
|
|
pagerLeave(pPager);
|
|
}
|
|
|
|
/*
|
|
** A call to this routine tells the pager that if a rollback occurs,
|
|
** it is not necessary to restore the data on the given page. This
|
|
** means that the pager does not have to record the given page in the
|
|
** rollback journal.
|
|
**
|
|
** If we have not yet actually read the content of this page (if
|
|
** the PgHdr.needRead flag is set) then this routine acts as a promise
|
|
** that we will never need to read the page content in the future.
|
|
** so the needRead flag can be cleared at this point.
|
|
**
|
|
** This routine is only called from a single place in the sqlite btree
|
|
** code (when a leaf is removed from the free-list). This allows the
|
|
** following assumptions to be made about pPg:
|
|
**
|
|
** 1. PagerDontWrite() has been called on the page, OR
|
|
** PagerWrite() has not yet been called on the page.
|
|
**
|
|
** 2. The page existed when the transaction was started.
|
|
**
|
|
** Details: DontRollback() (this routine) is only called when a leaf is
|
|
** removed from the free list. DontWrite() is called whenever a page
|
|
** becomes a free-list leaf.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3PagerDontRollback(DbPage *pPg){
|
|
Pager *pPager = pPg->pPager;
|
|
|
|
pagerEnter(pPager);
|
|
assert( pPager->state>=PAGER_RESERVED );
|
|
|
|
/* If the journal file is not open, or DontWrite() has been called on
|
|
** this page (DontWrite() sets the alwaysRollback flag), then this
|
|
** function is a no-op.
|
|
*/
|
|
if( pPager->journalOpen==0 || pPg->alwaysRollback || pPager->alwaysRollback ){
|
|
pagerLeave(pPager);
|
|
return;
|
|
}
|
|
assert( !MEMDB ); /* For a memdb, pPager->journalOpen is always 0 */
|
|
|
|
/* Check that PagerWrite() has not yet been called on this page, and
|
|
** that the page existed when the transaction started.
|
|
*/
|
|
assert( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize );
|
|
|
|
assert( pPager->aInJournal!=0 );
|
|
pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
|
|
pPg->inJournal = 1;
|
|
pPg->needRead = 0;
|
|
if( pPager->stmtInUse ){
|
|
assert( pPager->stmtSize <= pPager->origDbSize );
|
|
pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
|
|
}
|
|
PAGERTRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, PAGERID(pPager));
|
|
IOTRACE(("GARBAGE %p %d\n", pPager, pPg->pgno))
|
|
pagerLeave(pPager);
|
|
}
|
|
|
|
|
|
/*
|
|
** This routine is called to increment the database file change-counter,
|
|
** stored at byte 24 of the pager file.
|
|
*/
|
|
static int pager_incr_changecounter(Pager *pPager, int isDirect){
|
|
PgHdr *pPgHdr;
|
|
u32 change_counter;
|
|
int rc = SQLITE_OK;
|
|
|
|
if( !pPager->changeCountDone ){
|
|
/* Open page 1 of the file for writing. */
|
|
rc = sqlite3PagerGet(pPager, 1, &pPgHdr);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
if( !isDirect ){
|
|
rc = sqlite3PagerWrite(pPgHdr);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3PagerUnref(pPgHdr);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
/* Increment the value just read and write it back to byte 24. */
|
|
change_counter = sqlite3Get4byte((u8*)pPager->dbFileVers);
|
|
change_counter++;
|
|
put32bits(((char*)PGHDR_TO_DATA(pPgHdr))+24, change_counter);
|
|
|
|
if( isDirect && pPager->fd->pMethods ){
|
|
const void *zBuf = PGHDR_TO_DATA(pPgHdr);
|
|
rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0);
|
|
}
|
|
|
|
/* Release the page reference. */
|
|
sqlite3PagerUnref(pPgHdr);
|
|
pPager->changeCountDone = 1;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Sync the database file for the pager pPager. zMaster points to the name
|
|
** of a master journal file that should be written into the individual
|
|
** journal file. zMaster may be NULL, which is interpreted as no master
|
|
** journal (a single database transaction).
|
|
**
|
|
** This routine ensures that the journal is synced, all dirty pages written
|
|
** to the database file and the database file synced. The only thing that
|
|
** remains to commit the transaction is to delete the journal file (or
|
|
** master journal file if specified).
|
|
**
|
|
** Note that if zMaster==NULL, this does not overwrite a previous value
|
|
** passed to an sqlite3PagerCommitPhaseOne() call.
|
|
**
|
|
** If parameter nTrunc is non-zero, then the pager file is truncated to
|
|
** nTrunc pages (this is used by auto-vacuum databases).
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(Pager *pPager, const char *zMaster, Pgno nTrunc){
|
|
int rc = SQLITE_OK;
|
|
|
|
PAGERTRACE4("DATABASE SYNC: File=%s zMaster=%s nTrunc=%d\n",
|
|
pPager->zFilename, zMaster, nTrunc);
|
|
pagerEnter(pPager);
|
|
|
|
/* If this is an in-memory db, or no pages have been written to, or this
|
|
** function has already been called, it is a no-op.
|
|
*/
|
|
if( pPager->state!=PAGER_SYNCED && !MEMDB && pPager->dirtyCache ){
|
|
PgHdr *pPg;
|
|
|
|
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
|
|
/* The atomic-write optimization can be used if all of the
|
|
** following are true:
|
|
**
|
|
** + The file-system supports the atomic-write property for
|
|
** blocks of size page-size, and
|
|
** + This commit is not part of a multi-file transaction, and
|
|
** + Exactly one page has been modified and store in the journal file.
|
|
**
|
|
** If the optimization can be used, then the journal file will never
|
|
** be created for this transaction.
|
|
*/
|
|
int useAtomicWrite = (
|
|
!zMaster &&
|
|
pPager->journalOff==jrnlBufferSize(pPager) &&
|
|
nTrunc==0 &&
|
|
(0==pPager->pDirty || 0==pPager->pDirty->pDirty)
|
|
);
|
|
if( useAtomicWrite ){
|
|
/* Update the nRec field in the journal file. */
|
|
int offset = pPager->journalHdr + sizeof(aJournalMagic);
|
|
assert(pPager->nRec==1);
|
|
rc = write32bits(pPager->jfd, offset, pPager->nRec);
|
|
|
|
/* Update the db file change counter. The following call will modify
|
|
** the in-memory representation of page 1 to include the updated
|
|
** change counter and then write page 1 directly to the database
|
|
** file. Because of the atomic-write property of the host file-system,
|
|
** this is safe.
|
|
*/
|
|
if( rc==SQLITE_OK ){
|
|
rc = pager_incr_changecounter(pPager, 1);
|
|
}
|
|
}else{
|
|
rc = sqlite3JournalCreate(pPager->jfd);
|
|
}
|
|
|
|
if( !useAtomicWrite && rc==SQLITE_OK )
|
|
#endif
|
|
|
|
/* If a master journal file name has already been written to the
|
|
** journal file, then no sync is required. This happens when it is
|
|
** written, then the process fails to upgrade from a RESERVED to an
|
|
** EXCLUSIVE lock. The next time the process tries to commit the
|
|
** transaction the m-j name will have already been written.
|
|
*/
|
|
if( !pPager->setMaster ){
|
|
assert( pPager->journalOpen );
|
|
rc = pager_incr_changecounter(pPager, 0);
|
|
if( rc!=SQLITE_OK ) goto sync_exit;
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( nTrunc!=0 ){
|
|
/* If this transaction has made the database smaller, then all pages
|
|
** being discarded by the truncation must be written to the journal
|
|
** file.
|
|
*/
|
|
Pgno i;
|
|
int iSkip = PAGER_MJ_PGNO(pPager);
|
|
for( i=nTrunc+1; i<=pPager->origDbSize; i++ ){
|
|
if( !(pPager->aInJournal[i/8] & (1<<(i&7))) && i!=iSkip ){
|
|
rc = sqlite3PagerGet(pPager, i, &pPg);
|
|
if( rc!=SQLITE_OK ) goto sync_exit;
|
|
rc = sqlite3PagerWrite(pPg);
|
|
sqlite3PagerUnref(pPg);
|
|
if( rc!=SQLITE_OK ) goto sync_exit;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
rc = writeMasterJournal(pPager, zMaster);
|
|
if( rc!=SQLITE_OK ) goto sync_exit;
|
|
rc = syncJournal(pPager);
|
|
}
|
|
if( rc!=SQLITE_OK ) goto sync_exit;
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( nTrunc!=0 ){
|
|
rc = sqlite3PagerTruncate(pPager, nTrunc);
|
|
if( rc!=SQLITE_OK ) goto sync_exit;
|
|
}
|
|
#endif
|
|
|
|
/* Write all dirty pages to the database file */
|
|
pPg = pager_get_all_dirty_pages(pPager);
|
|
rc = pager_write_pagelist(pPg);
|
|
if( rc!=SQLITE_OK ){
|
|
while( pPg && !pPg->dirty ){ pPg = pPg->pDirty; }
|
|
pPager->pDirty = pPg;
|
|
goto sync_exit;
|
|
}
|
|
pPager->pDirty = 0;
|
|
|
|
/* Sync the database file. */
|
|
if( !pPager->noSync ){
|
|
rc = sqlite3OsSync(pPager->fd, pPager->sync_flags);
|
|
}
|
|
IOTRACE(("DBSYNC %p\n", pPager))
|
|
|
|
pPager->state = PAGER_SYNCED;
|
|
}else if( MEMDB && nTrunc!=0 ){
|
|
rc = sqlite3PagerTruncate(pPager, nTrunc);
|
|
}
|
|
|
|
sync_exit:
|
|
if( rc==SQLITE_IOERR_BLOCKED ){
|
|
/* pager_incr_changecounter() may attempt to obtain an exclusive
|
|
* lock to spill the cache and return IOERR_BLOCKED. But since
|
|
* there is no chance the cache is inconsistent, it is
|
|
* better to return SQLITE_BUSY.
|
|
*/
|
|
rc = SQLITE_BUSY;
|
|
}
|
|
pagerLeave(pPager);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Commit all changes to the database and release the write lock.
|
|
**
|
|
** If the commit fails for any reason, a rollback attempt is made
|
|
** and an error code is returned. If the commit worked, SQLITE_OK
|
|
** is returned.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager *pPager){
|
|
int rc;
|
|
PgHdr *pPg;
|
|
|
|
if( pPager->errCode ){
|
|
return pPager->errCode;
|
|
}
|
|
if( pPager->state<PAGER_RESERVED ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
pagerEnter(pPager);
|
|
PAGERTRACE2("COMMIT %d\n", PAGERID(pPager));
|
|
if( MEMDB ){
|
|
pPg = pager_get_all_dirty_pages(pPager);
|
|
while( pPg ){
|
|
PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
|
|
clearHistory(pHist);
|
|
pPg->dirty = 0;
|
|
pPg->inJournal = 0;
|
|
pHist->inStmt = 0;
|
|
pPg->needSync = 0;
|
|
pHist->pPrevStmt = pHist->pNextStmt = 0;
|
|
pPg = pPg->pDirty;
|
|
}
|
|
pPager->pDirty = 0;
|
|
#ifndef NDEBUG
|
|
for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
|
|
PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
|
|
assert( !pPg->alwaysRollback );
|
|
assert( !pHist->pOrig );
|
|
assert( !pHist->pStmt );
|
|
}
|
|
#endif
|
|
pPager->pStmt = 0;
|
|
pPager->state = PAGER_SHARED;
|
|
pagerLeave(pPager);
|
|
return SQLITE_OK;
|
|
}
|
|
assert( pPager->journalOpen || !pPager->dirtyCache );
|
|
assert( pPager->state==PAGER_SYNCED || !pPager->dirtyCache );
|
|
rc = pager_end_transaction(pPager);
|
|
rc = pager_error(pPager, rc);
|
|
pagerLeave(pPager);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Rollback all changes. The database falls back to PAGER_SHARED mode.
|
|
** All in-memory cache pages revert to their original data contents.
|
|
** The journal is deleted.
|
|
**
|
|
** This routine cannot fail unless some other process is not following
|
|
** the correct locking protocol or unless some other
|
|
** process is writing trash into the journal file (SQLITE_CORRUPT) or
|
|
** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error
|
|
** codes are returned for all these occasions. Otherwise,
|
|
** SQLITE_OK is returned.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerRollback(Pager *pPager){
|
|
int rc;
|
|
PAGERTRACE2("ROLLBACK %d\n", PAGERID(pPager));
|
|
if( MEMDB ){
|
|
PgHdr *p;
|
|
for(p=pPager->pAll; p; p=p->pNextAll){
|
|
PgHistory *pHist;
|
|
assert( !p->alwaysRollback );
|
|
if( !p->dirty ){
|
|
assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pOrig );
|
|
assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pStmt );
|
|
continue;
|
|
}
|
|
|
|
pHist = PGHDR_TO_HIST(p, pPager);
|
|
if( pHist->pOrig ){
|
|
memcpy(PGHDR_TO_DATA(p), pHist->pOrig, pPager->pageSize);
|
|
PAGERTRACE3("ROLLBACK-PAGE %d of %d\n", p->pgno, PAGERID(pPager));
|
|
}else{
|
|
PAGERTRACE3("PAGE %d is clean on %d\n", p->pgno, PAGERID(pPager));
|
|
}
|
|
clearHistory(pHist);
|
|
p->dirty = 0;
|
|
p->inJournal = 0;
|
|
pHist->inStmt = 0;
|
|
pHist->pPrevStmt = pHist->pNextStmt = 0;
|
|
if( pPager->xReiniter ){
|
|
pPager->xReiniter(p, pPager->pageSize);
|
|
}
|
|
}
|
|
pPager->pDirty = 0;
|
|
pPager->pStmt = 0;
|
|
pPager->dbSize = pPager->origDbSize;
|
|
pager_truncate_cache(pPager);
|
|
pPager->stmtInUse = 0;
|
|
pPager->state = PAGER_SHARED;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
pagerEnter(pPager);
|
|
if( !pPager->dirtyCache || !pPager->journalOpen ){
|
|
rc = pager_end_transaction(pPager);
|
|
pagerLeave(pPager);
|
|
return rc;
|
|
}
|
|
|
|
if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
|
|
if( pPager->state>=PAGER_EXCLUSIVE ){
|
|
pager_playback(pPager, 0);
|
|
}
|
|
pagerLeave(pPager);
|
|
return pPager->errCode;
|
|
}
|
|
if( pPager->state==PAGER_RESERVED ){
|
|
int rc2;
|
|
rc = pager_playback(pPager, 0);
|
|
rc2 = pager_end_transaction(pPager);
|
|
if( rc==SQLITE_OK ){
|
|
rc = rc2;
|
|
}
|
|
}else{
|
|
rc = pager_playback(pPager, 0);
|
|
}
|
|
/* pager_reset(pPager); */
|
|
pPager->dbSize = -1;
|
|
|
|
/* If an error occurs during a ROLLBACK, we can no longer trust the pager
|
|
** cache. So call pager_error() on the way out to make any error
|
|
** persistent.
|
|
*/
|
|
rc = pager_error(pPager, rc);
|
|
pagerLeave(pPager);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if the database file is opened read-only. Return FALSE
|
|
** if the database is (in theory) writable.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerIsreadonly(Pager *pPager){
|
|
return pPager->readOnly;
|
|
}
|
|
|
|
/*
|
|
** Return the number of references to the pager.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerRefcount(Pager *pPager){
|
|
return pPager->nRef;
|
|
}
|
|
|
|
#ifdef SQLITE_TEST
|
|
/*
|
|
** This routine is used for testing and analysis only.
|
|
*/
|
|
SQLITE_PRIVATE int *sqlite3PagerStats(Pager *pPager){
|
|
static int a[11];
|
|
a[0] = pPager->nRef;
|
|
a[1] = pPager->nPage;
|
|
a[2] = pPager->mxPage;
|
|
a[3] = pPager->dbSize;
|
|
a[4] = pPager->state;
|
|
a[5] = pPager->errCode;
|
|
a[6] = pPager->nHit;
|
|
a[7] = pPager->nMiss;
|
|
a[8] = 0; /* Used to be pPager->nOvfl */
|
|
a[9] = pPager->nRead;
|
|
a[10] = pPager->nWrite;
|
|
return a;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Set the statement rollback point.
|
|
**
|
|
** This routine should be called with the transaction journal already
|
|
** open. A new statement journal is created that can be used to rollback
|
|
** changes of a single SQL command within a larger transaction.
|
|
*/
|
|
static int pagerStmtBegin(Pager *pPager){
|
|
int rc;
|
|
assert( !pPager->stmtInUse );
|
|
assert( pPager->state>=PAGER_SHARED );
|
|
assert( pPager->dbSize>=0 );
|
|
PAGERTRACE2("STMT-BEGIN %d\n", PAGERID(pPager));
|
|
if( MEMDB ){
|
|
pPager->stmtInUse = 1;
|
|
pPager->stmtSize = pPager->dbSize;
|
|
return SQLITE_OK;
|
|
}
|
|
if( !pPager->journalOpen ){
|
|
pPager->stmtAutoopen = 1;
|
|
return SQLITE_OK;
|
|
}
|
|
assert( pPager->journalOpen );
|
|
pagerLeave(pPager);
|
|
assert( pPager->aInStmt==0 );
|
|
pPager->aInStmt = sqlite3MallocZero( pPager->dbSize/8 + 1 );
|
|
pagerEnter(pPager);
|
|
if( pPager->aInStmt==0 ){
|
|
/* sqlite3OsLock(pPager->fd, SHARED_LOCK); */
|
|
return SQLITE_NOMEM;
|
|
}
|
|
#ifndef NDEBUG
|
|
rc = sqlite3OsFileSize(pPager->jfd, &pPager->stmtJSize);
|
|
if( rc ) goto stmt_begin_failed;
|
|
assert( pPager->stmtJSize == pPager->journalOff );
|
|
#endif
|
|
pPager->stmtJSize = pPager->journalOff;
|
|
pPager->stmtSize = pPager->dbSize;
|
|
pPager->stmtHdrOff = 0;
|
|
pPager->stmtCksum = pPager->cksumInit;
|
|
if( !pPager->stmtOpen ){
|
|
rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->stfd, pPager->zStmtJrnl,
|
|
SQLITE_OPEN_SUBJOURNAL);
|
|
if( rc ){
|
|
goto stmt_begin_failed;
|
|
}
|
|
pPager->stmtOpen = 1;
|
|
pPager->stmtNRec = 0;
|
|
}
|
|
pPager->stmtInUse = 1;
|
|
return SQLITE_OK;
|
|
|
|
stmt_begin_failed:
|
|
if( pPager->aInStmt ){
|
|
sqlite3_free(pPager->aInStmt);
|
|
pPager->aInStmt = 0;
|
|
}
|
|
return rc;
|
|
}
|
|
SQLITE_PRIVATE int sqlite3PagerStmtBegin(Pager *pPager){
|
|
int rc;
|
|
pagerEnter(pPager);
|
|
rc = pagerStmtBegin(pPager);
|
|
pagerLeave(pPager);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Commit a statement.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerStmtCommit(Pager *pPager){
|
|
pagerEnter(pPager);
|
|
if( pPager->stmtInUse ){
|
|
PgHdr *pPg, *pNext;
|
|
PAGERTRACE2("STMT-COMMIT %d\n", PAGERID(pPager));
|
|
if( !MEMDB ){
|
|
/* sqlite3OsTruncate(pPager->stfd, 0); */
|
|
sqlite3_free( pPager->aInStmt );
|
|
pPager->aInStmt = 0;
|
|
}else{
|
|
for(pPg=pPager->pStmt; pPg; pPg=pNext){
|
|
PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
|
|
pNext = pHist->pNextStmt;
|
|
assert( pHist->inStmt );
|
|
pHist->inStmt = 0;
|
|
pHist->pPrevStmt = pHist->pNextStmt = 0;
|
|
sqlite3_free(pHist->pStmt);
|
|
pHist->pStmt = 0;
|
|
}
|
|
}
|
|
pPager->stmtNRec = 0;
|
|
pPager->stmtInUse = 0;
|
|
pPager->pStmt = 0;
|
|
}
|
|
pPager->stmtAutoopen = 0;
|
|
pagerLeave(pPager);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Rollback a statement.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerStmtRollback(Pager *pPager){
|
|
int rc;
|
|
pagerEnter(pPager);
|
|
if( pPager->stmtInUse ){
|
|
PAGERTRACE2("STMT-ROLLBACK %d\n", PAGERID(pPager));
|
|
if( MEMDB ){
|
|
PgHdr *pPg;
|
|
PgHistory *pHist;
|
|
for(pPg=pPager->pStmt; pPg; pPg=pHist->pNextStmt){
|
|
pHist = PGHDR_TO_HIST(pPg, pPager);
|
|
if( pHist->pStmt ){
|
|
memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize);
|
|
sqlite3_free(pHist->pStmt);
|
|
pHist->pStmt = 0;
|
|
}
|
|
}
|
|
pPager->dbSize = pPager->stmtSize;
|
|
pager_truncate_cache(pPager);
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
rc = pager_stmt_playback(pPager);
|
|
}
|
|
sqlite3PagerStmtCommit(pPager);
|
|
}else{
|
|
rc = SQLITE_OK;
|
|
}
|
|
pPager->stmtAutoopen = 0;
|
|
pagerLeave(pPager);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return the full pathname of the database file.
|
|
*/
|
|
SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager *pPager){
|
|
return pPager->zFilename;
|
|
}
|
|
|
|
/*
|
|
** Return the VFS structure for the pager.
|
|
*/
|
|
SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){
|
|
return pPager->pVfs;
|
|
}
|
|
|
|
/*
|
|
** Return the file handle for the database file associated
|
|
** with the pager. This might return NULL if the file has
|
|
** not yet been opened.
|
|
*/
|
|
SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager *pPager){
|
|
return pPager->fd;
|
|
}
|
|
|
|
/*
|
|
** Return the directory of the database file.
|
|
*/
|
|
SQLITE_PRIVATE const char *sqlite3PagerDirname(Pager *pPager){
|
|
return pPager->zDirectory;
|
|
}
|
|
|
|
/*
|
|
** Return the full pathname of the journal file.
|
|
*/
|
|
SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager *pPager){
|
|
return pPager->zJournal;
|
|
}
|
|
|
|
/*
|
|
** Return true if fsync() calls are disabled for this pager. Return FALSE
|
|
** if fsync()s are executed normally.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerNosync(Pager *pPager){
|
|
return pPager->noSync;
|
|
}
|
|
|
|
#ifdef SQLITE_HAS_CODEC
|
|
/*
|
|
** Set the codec for this pager
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3PagerSetCodec(
|
|
Pager *pPager,
|
|
void *(*xCodec)(void*,void*,Pgno,int),
|
|
void *pCodecArg
|
|
){
|
|
pPager->xCodec = xCodec;
|
|
pPager->pCodecArg = pCodecArg;
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
/*
|
|
** Move the page pPg to location pgno in the file.
|
|
**
|
|
** There must be no references to the page previously located at
|
|
** pgno (which we call pPgOld) though that page is allowed to be
|
|
** in cache. If the page previous located at pgno is not already
|
|
** in the rollback journal, it is not put there by by this routine.
|
|
**
|
|
** References to the page pPg remain valid. Updating any
|
|
** meta-data associated with pPg (i.e. data stored in the nExtra bytes
|
|
** allocated along with the page) is the responsibility of the caller.
|
|
**
|
|
** A transaction must be active when this routine is called. It used to be
|
|
** required that a statement transaction was not active, but this restriction
|
|
** has been removed (CREATE INDEX needs to move a page when a statement
|
|
** transaction is active).
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno){
|
|
PgHdr *pPgOld; /* The page being overwritten. */
|
|
int h;
|
|
Pgno needSyncPgno = 0;
|
|
|
|
pagerEnter(pPager);
|
|
assert( pPg->nRef>0 );
|
|
|
|
PAGERTRACE5("MOVE %d page %d (needSync=%d) moves to %d\n",
|
|
PAGERID(pPager), pPg->pgno, pPg->needSync, pgno);
|
|
IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno))
|
|
|
|
pager_get_content(pPg);
|
|
if( pPg->needSync ){
|
|
needSyncPgno = pPg->pgno;
|
|
assert( pPg->inJournal || (int)pgno>pPager->origDbSize );
|
|
assert( pPg->dirty );
|
|
assert( pPager->needSync );
|
|
}
|
|
|
|
/* Unlink pPg from its hash-chain */
|
|
unlinkHashChain(pPager, pPg);
|
|
|
|
/* If the cache contains a page with page-number pgno, remove it
|
|
** from its hash chain. Also, if the PgHdr.needSync was set for
|
|
** page pgno before the 'move' operation, it needs to be retained
|
|
** for the page moved there.
|
|
*/
|
|
pPg->needSync = 0;
|
|
pPgOld = pager_lookup(pPager, pgno);
|
|
if( pPgOld ){
|
|
assert( pPgOld->nRef==0 );
|
|
unlinkHashChain(pPager, pPgOld);
|
|
makeClean(pPgOld);
|
|
pPg->needSync = pPgOld->needSync;
|
|
}else{
|
|
pPg->needSync = 0;
|
|
}
|
|
if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){
|
|
pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0;
|
|
}else{
|
|
pPg->inJournal = 0;
|
|
assert( pPg->needSync==0 || (int)pgno>pPager->origDbSize );
|
|
}
|
|
|
|
/* Change the page number for pPg and insert it into the new hash-chain. */
|
|
assert( pgno!=0 );
|
|
pPg->pgno = pgno;
|
|
h = pgno & (pPager->nHash-1);
|
|
if( pPager->aHash[h] ){
|
|
assert( pPager->aHash[h]->pPrevHash==0 );
|
|
pPager->aHash[h]->pPrevHash = pPg;
|
|
}
|
|
pPg->pNextHash = pPager->aHash[h];
|
|
pPager->aHash[h] = pPg;
|
|
pPg->pPrevHash = 0;
|
|
|
|
makeDirty(pPg);
|
|
pPager->dirtyCache = 1;
|
|
|
|
if( needSyncPgno ){
|
|
/* If needSyncPgno is non-zero, then the journal file needs to be
|
|
** sync()ed before any data is written to database file page needSyncPgno.
|
|
** Currently, no such page exists in the page-cache and the
|
|
** Pager.aInJournal bit has been set. This needs to be remedied by loading
|
|
** the page into the pager-cache and setting the PgHdr.needSync flag.
|
|
**
|
|
** If the attempt to load the page into the page-cache fails, (due
|
|
** to a malloc() or IO failure), clear the bit in the aInJournal[]
|
|
** array. Otherwise, if the page is loaded and written again in
|
|
** this transaction, it may be written to the database file before
|
|
** it is synced into the journal file. This way, it may end up in
|
|
** the journal file twice, but that is not a problem.
|
|
**
|
|
** The sqlite3PagerGet() call may cause the journal to sync. So make
|
|
** sure the Pager.needSync flag is set too.
|
|
*/
|
|
int rc;
|
|
PgHdr *pPgHdr;
|
|
assert( pPager->needSync );
|
|
rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr);
|
|
if( rc!=SQLITE_OK ){
|
|
if( pPager->aInJournal && (int)needSyncPgno<=pPager->origDbSize ){
|
|
pPager->aInJournal[needSyncPgno/8] &= ~(1<<(needSyncPgno&7));
|
|
}
|
|
pagerLeave(pPager);
|
|
return rc;
|
|
}
|
|
pPager->needSync = 1;
|
|
pPgHdr->needSync = 1;
|
|
pPgHdr->inJournal = 1;
|
|
makeDirty(pPgHdr);
|
|
sqlite3PagerUnref(pPgHdr);
|
|
}
|
|
|
|
pagerLeave(pPager);
|
|
return SQLITE_OK;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Return a pointer to the data for the specified page.
|
|
*/
|
|
SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *pPg){
|
|
return PGHDR_TO_DATA(pPg);
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to the Pager.nExtra bytes of "extra" space
|
|
** allocated along with the specified page.
|
|
*/
|
|
SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *pPg){
|
|
Pager *pPager = pPg->pPager;
|
|
return (pPager?PGHDR_TO_EXTRA(pPg, pPager):0);
|
|
}
|
|
|
|
/*
|
|
** Get/set the locking-mode for this pager. Parameter eMode must be one
|
|
** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or
|
|
** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then
|
|
** the locking-mode is set to the value specified.
|
|
**
|
|
** The returned value is either PAGER_LOCKINGMODE_NORMAL or
|
|
** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated)
|
|
** locking-mode.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *pPager, int eMode){
|
|
assert( eMode==PAGER_LOCKINGMODE_QUERY
|
|
|| eMode==PAGER_LOCKINGMODE_NORMAL
|
|
|| eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
|
|
assert( PAGER_LOCKINGMODE_QUERY<0 );
|
|
assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 );
|
|
if( eMode>=0 && !pPager->tempFile ){
|
|
pPager->exclusiveMode = eMode;
|
|
}
|
|
return (int)pPager->exclusiveMode;
|
|
}
|
|
|
|
#ifdef SQLITE_TEST
|
|
/*
|
|
** Print a listing of all referenced pages and their ref count.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3PagerRefdump(Pager *pPager){
|
|
PgHdr *pPg;
|
|
for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
|
|
if( pPg->nRef<=0 ) continue;
|
|
sqlite3DebugPrintf("PAGE %3d addr=%p nRef=%d\n",
|
|
pPg->pgno, PGHDR_TO_DATA(pPg), pPg->nRef);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#endif /* SQLITE_OMIT_DISKIO */
|
|
|
|
/************** End of pager.c ***********************************************/
|
|
/************** Begin file btmutex.c *****************************************/
|
|
/*
|
|
** 2007 August 27
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
**
|
|
** $Id: btmutex.c,v 1.9 2008/01/23 12:52:41 drh Exp $
|
|
**
|
|
** This file contains code used to implement mutexes on Btree objects.
|
|
** This code really belongs in btree.c. But btree.c is getting too
|
|
** big and we want to break it down some. This packaged seemed like
|
|
** a good breakout.
|
|
*/
|
|
/************** Include btreeInt.h in the middle of btmutex.c ****************/
|
|
/************** Begin file btreeInt.h ****************************************/
|
|
/*
|
|
** 2004 April 6
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** $Id: btreeInt.h,v 1.15 2007/12/21 04:47:26 danielk1977 Exp $
|
|
**
|
|
** This file implements a external (disk-based) database using BTrees.
|
|
** For a detailed discussion of BTrees, refer to
|
|
**
|
|
** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
|
|
** "Sorting And Searching", pages 473-480. Addison-Wesley
|
|
** Publishing Company, Reading, Massachusetts.
|
|
**
|
|
** The basic idea is that each page of the file contains N database
|
|
** entries and N+1 pointers to subpages.
|
|
**
|
|
** ----------------------------------------------------------------
|
|
** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |
|
|
** ----------------------------------------------------------------
|
|
**
|
|
** All of the keys on the page that Ptr(0) points to have values less
|
|
** than Key(0). All of the keys on page Ptr(1) and its subpages have
|
|
** values greater than Key(0) and less than Key(1). All of the keys
|
|
** on Ptr(N) and its subpages have values greater than Key(N-1). And
|
|
** so forth.
|
|
**
|
|
** Finding a particular key requires reading O(log(M)) pages from the
|
|
** disk where M is the number of entries in the tree.
|
|
**
|
|
** In this implementation, a single file can hold one or more separate
|
|
** BTrees. Each BTree is identified by the index of its root page. The
|
|
** key and data for any entry are combined to form the "payload". A
|
|
** fixed amount of payload can be carried directly on the database
|
|
** page. If the payload is larger than the preset amount then surplus
|
|
** bytes are stored on overflow pages. The payload for an entry
|
|
** and the preceding pointer are combined to form a "Cell". Each
|
|
** page has a small header which contains the Ptr(N) pointer and other
|
|
** information such as the size of key and data.
|
|
**
|
|
** FORMAT DETAILS
|
|
**
|
|
** The file is divided into pages. The first page is called page 1,
|
|
** the second is page 2, and so forth. A page number of zero indicates
|
|
** "no such page". The page size can be anything between 512 and 65536.
|
|
** Each page can be either a btree page, a freelist page or an overflow
|
|
** page.
|
|
**
|
|
** The first page is always a btree page. The first 100 bytes of the first
|
|
** page contain a special header (the "file header") that describes the file.
|
|
** The format of the file header is as follows:
|
|
**
|
|
** OFFSET SIZE DESCRIPTION
|
|
** 0 16 Header string: "SQLite format 3\000"
|
|
** 16 2 Page size in bytes.
|
|
** 18 1 File format write version
|
|
** 19 1 File format read version
|
|
** 20 1 Bytes of unused space at the end of each page
|
|
** 21 1 Max embedded payload fraction
|
|
** 22 1 Min embedded payload fraction
|
|
** 23 1 Min leaf payload fraction
|
|
** 24 4 File change counter
|
|
** 28 4 Reserved for future use
|
|
** 32 4 First freelist page
|
|
** 36 4 Number of freelist pages in the file
|
|
** 40 60 15 4-byte meta values passed to higher layers
|
|
**
|
|
** All of the integer values are big-endian (most significant byte first).
|
|
**
|
|
** The file change counter is incremented when the database is changed
|
|
** This counter allows other processes to know when the file has changed
|
|
** and thus when they need to flush their cache.
|
|
**
|
|
** The max embedded payload fraction is the amount of the total usable
|
|
** space in a page that can be consumed by a single cell for standard
|
|
** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default
|
|
** is to limit the maximum cell size so that at least 4 cells will fit
|
|
** on one page. Thus the default max embedded payload fraction is 64.
|
|
**
|
|
** If the payload for a cell is larger than the max payload, then extra
|
|
** payload is spilled to overflow pages. Once an overflow page is allocated,
|
|
** as many bytes as possible are moved into the overflow pages without letting
|
|
** the cell size drop below the min embedded payload fraction.
|
|
**
|
|
** The min leaf payload fraction is like the min embedded payload fraction
|
|
** except that it applies to leaf nodes in a LEAFDATA tree. The maximum
|
|
** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
|
|
** not specified in the header.
|
|
**
|
|
** Each btree pages is divided into three sections: The header, the
|
|
** cell pointer array, and the cell content area. Page 1 also has a 100-byte
|
|
** file header that occurs before the page header.
|
|
**
|
|
** |----------------|
|
|
** | file header | 100 bytes. Page 1 only.
|
|
** |----------------|
|
|
** | page header | 8 bytes for leaves. 12 bytes for interior nodes
|
|
** |----------------|
|
|
** | cell pointer | | 2 bytes per cell. Sorted order.
|
|
** | array | | Grows downward
|
|
** | | v
|
|
** |----------------|
|
|
** | unallocated |
|
|
** | space |
|
|
** |----------------| ^ Grows upwards
|
|
** | cell content | | Arbitrary order interspersed with freeblocks.
|
|
** | area | | and free space fragments.
|
|
** |----------------|
|
|
**
|
|
** The page headers looks like this:
|
|
**
|
|
** OFFSET SIZE DESCRIPTION
|
|
** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
|
|
** 1 2 byte offset to the first freeblock
|
|
** 3 2 number of cells on this page
|
|
** 5 2 first byte of the cell content area
|
|
** 7 1 number of fragmented free bytes
|
|
** 8 4 Right child (the Ptr(N) value). Omitted on leaves.
|
|
**
|
|
** The flags define the format of this btree page. The leaf flag means that
|
|
** this page has no children. The zerodata flag means that this page carries
|
|
** only keys and no data. The intkey flag means that the key is a integer
|
|
** which is stored in the key size entry of the cell header rather than in
|
|
** the payload area.
|
|
**
|
|
** The cell pointer array begins on the first byte after the page header.
|
|
** The cell pointer array contains zero or more 2-byte numbers which are
|
|
** offsets from the beginning of the page to the cell content in the cell
|
|
** content area. The cell pointers occur in sorted order. The system strives
|
|
** to keep free space after the last cell pointer so that new cells can
|
|
** be easily added without having to defragment the page.
|
|
**
|
|
** Cell content is stored at the very end of the page and grows toward the
|
|
** beginning of the page.
|
|
**
|
|
** Unused space within the cell content area is collected into a linked list of
|
|
** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset
|
|
** to the first freeblock is given in the header. Freeblocks occur in
|
|
** increasing order. Because a freeblock must be at least 4 bytes in size,
|
|
** any group of 3 or fewer unused bytes in the cell content area cannot
|
|
** exist on the freeblock chain. A group of 3 or fewer free bytes is called
|
|
** a fragment. The total number of bytes in all fragments is recorded.
|
|
** in the page header at offset 7.
|
|
**
|
|
** SIZE DESCRIPTION
|
|
** 2 Byte offset of the next freeblock
|
|
** 2 Bytes in this freeblock
|
|
**
|
|
** Cells are of variable length. Cells are stored in the cell content area at
|
|
** the end of the page. Pointers to the cells are in the cell pointer array
|
|
** that immediately follows the page header. Cells is not necessarily
|
|
** contiguous or in order, but cell pointers are contiguous and in order.
|
|
**
|
|
** Cell content makes use of variable length integers. A variable
|
|
** length integer is 1 to 9 bytes where the lower 7 bits of each
|
|
** byte are used. The integer consists of all bytes that have bit 8 set and
|
|
** the first byte with bit 8 clear. The most significant byte of the integer
|
|
** appears first. A variable-length integer may not be more than 9 bytes long.
|
|
** As a special case, all 8 bytes of the 9th byte are used as data. This
|
|
** allows a 64-bit integer to be encoded in 9 bytes.
|
|
**
|
|
** 0x00 becomes 0x00000000
|
|
** 0x7f becomes 0x0000007f
|
|
** 0x81 0x00 becomes 0x00000080
|
|
** 0x82 0x00 becomes 0x00000100
|
|
** 0x80 0x7f becomes 0x0000007f
|
|
** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678
|
|
** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081
|
|
**
|
|
** Variable length integers are used for rowids and to hold the number of
|
|
** bytes of key and data in a btree cell.
|
|
**
|
|
** The content of a cell looks like this:
|
|
**
|
|
** SIZE DESCRIPTION
|
|
** 4 Page number of the left child. Omitted if leaf flag is set.
|
|
** var Number of bytes of data. Omitted if the zerodata flag is set.
|
|
** var Number of bytes of key. Or the key itself if intkey flag is set.
|
|
** * Payload
|
|
** 4 First page of the overflow chain. Omitted if no overflow
|
|
**
|
|
** Overflow pages form a linked list. Each page except the last is completely
|
|
** filled with data (pagesize - 4 bytes). The last page can have as little
|
|
** as 1 byte of data.
|
|
**
|
|
** SIZE DESCRIPTION
|
|
** 4 Page number of next overflow page
|
|
** * Data
|
|
**
|
|
** Freelist pages come in two subtypes: trunk pages and leaf pages. The
|
|
** file header points to the first in a linked list of trunk page. Each trunk
|
|
** page points to multiple leaf pages. The content of a leaf page is
|
|
** unspecified. A trunk page looks like this:
|
|
**
|
|
** SIZE DESCRIPTION
|
|
** 4 Page number of next trunk page
|
|
** 4 Number of leaf pointers on this page
|
|
** * zero or more pages numbers of leaves
|
|
*/
|
|
|
|
/* Round up a number to the next larger multiple of 8. This is used
|
|
** to force 8-byte alignment on 64-bit architectures.
|
|
*/
|
|
#define ROUND8(x) ((x+7)&~7)
|
|
|
|
|
|
/* The following value is the maximum cell size assuming a maximum page
|
|
** size give above.
|
|
*/
|
|
#define MX_CELL_SIZE(pBt) (pBt->pageSize-8)
|
|
|
|
/* The maximum number of cells on a single page of the database. This
|
|
** assumes a minimum cell size of 3 bytes. Such small cells will be
|
|
** exceedingly rare, but they are possible.
|
|
*/
|
|
#define MX_CELL(pBt) ((pBt->pageSize-8)/3)
|
|
|
|
/* Forward declarations */
|
|
typedef struct MemPage MemPage;
|
|
typedef struct BtLock BtLock;
|
|
|
|
/*
|
|
** This is a magic string that appears at the beginning of every
|
|
** SQLite database in order to identify the file as a real database.
|
|
**
|
|
** You can change this value at compile-time by specifying a
|
|
** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The
|
|
** header must be exactly 16 bytes including the zero-terminator so
|
|
** the string itself should be 15 characters long. If you change
|
|
** the header, then your custom library will not be able to read
|
|
** databases generated by the standard tools and the standard tools
|
|
** will not be able to read databases created by your custom library.
|
|
*/
|
|
#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
|
|
# define SQLITE_FILE_HEADER "SQLite format 3"
|
|
#endif
|
|
|
|
/*
|
|
** Page type flags. An ORed combination of these flags appear as the
|
|
** first byte of on-disk image of every BTree page.
|
|
*/
|
|
#define PTF_INTKEY 0x01
|
|
#define PTF_ZERODATA 0x02
|
|
#define PTF_LEAFDATA 0x04
|
|
#define PTF_LEAF 0x08
|
|
|
|
/*
|
|
** As each page of the file is loaded into memory, an instance of the following
|
|
** structure is appended and initialized to zero. This structure stores
|
|
** information about the page that is decoded from the raw file page.
|
|
**
|
|
** The pParent field points back to the parent page. This allows us to
|
|
** walk up the BTree from any leaf to the root. Care must be taken to
|
|
** unref() the parent page pointer when this page is no longer referenced.
|
|
** The pageDestructor() routine handles that chore.
|
|
**
|
|
** Access to all fields of this structure is controlled by the mutex
|
|
** stored in MemPage.pBt->mutex.
|
|
*/
|
|
struct MemPage {
|
|
u8 isInit; /* True if previously initialized. MUST BE FIRST! */
|
|
u8 idxShift; /* True if Cell indices have changed */
|
|
u8 nOverflow; /* Number of overflow cell bodies in aCell[] */
|
|
u8 intKey; /* True if intkey flag is set */
|
|
u8 leaf; /* True if leaf flag is set */
|
|
u8 zeroData; /* True if table stores keys only */
|
|
u8 leafData; /* True if tables stores data on leaves only */
|
|
u8 hasData; /* True if this page stores data */
|
|
u8 hdrOffset; /* 100 for page 1. 0 otherwise */
|
|
u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */
|
|
u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
|
|
u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */
|
|
u16 cellOffset; /* Index in aData of first cell pointer */
|
|
u16 idxParent; /* Index in parent of this node */
|
|
u16 nFree; /* Number of free bytes on the page */
|
|
u16 nCell; /* Number of cells on this page, local and ovfl */
|
|
struct _OvflCell { /* Cells that will not fit on aData[] */
|
|
u8 *pCell; /* Pointers to the body of the overflow cell */
|
|
u16 idx; /* Insert this cell before idx-th non-overflow cell */
|
|
} aOvfl[5];
|
|
BtShared *pBt; /* Pointer to BtShared that this page is part of */
|
|
u8 *aData; /* Pointer to disk image of the page data */
|
|
DbPage *pDbPage; /* Pager page handle */
|
|
Pgno pgno; /* Page number for this page */
|
|
MemPage *pParent; /* The parent of this page. NULL for root */
|
|
};
|
|
|
|
/*
|
|
** The in-memory image of a disk page has the auxiliary information appended
|
|
** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
|
|
** that extra information.
|
|
*/
|
|
#define EXTRA_SIZE sizeof(MemPage)
|
|
|
|
/* A Btree handle
|
|
**
|
|
** A database connection contains a pointer to an instance of
|
|
** this object for every database file that it has open. This structure
|
|
** is opaque to the database connection. The database connection cannot
|
|
** see the internals of this structure and only deals with pointers to
|
|
** this structure.
|
|
**
|
|
** For some database files, the same underlying database cache might be
|
|
** shared between multiple connections. In that case, each contection
|
|
** has it own pointer to this object. But each instance of this object
|
|
** points to the same BtShared object. The database cache and the
|
|
** schema associated with the database file are all contained within
|
|
** the BtShared object.
|
|
**
|
|
** All fields in this structure are accessed under sqlite3.mutex.
|
|
** The pBt pointer itself may not be changed while there exists cursors
|
|
** in the referenced BtShared that point back to this Btree since those
|
|
** cursors have to do go through this Btree to find their BtShared and
|
|
** they often do so without holding sqlite3.mutex.
|
|
*/
|
|
struct Btree {
|
|
sqlite3 *db; /* The database connection holding this btree */
|
|
BtShared *pBt; /* Sharable content of this btree */
|
|
u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
|
|
u8 sharable; /* True if we can share pBt with another db */
|
|
u8 locked; /* True if db currently has pBt locked */
|
|
int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */
|
|
Btree *pNext; /* List of other sharable Btrees from the same db */
|
|
Btree *pPrev; /* Back pointer of the same list */
|
|
};
|
|
|
|
/*
|
|
** Btree.inTrans may take one of the following values.
|
|
**
|
|
** If the shared-data extension is enabled, there may be multiple users
|
|
** of the Btree structure. At most one of these may open a write transaction,
|
|
** but any number may have active read transactions.
|
|
*/
|
|
#define TRANS_NONE 0
|
|
#define TRANS_READ 1
|
|
#define TRANS_WRITE 2
|
|
|
|
/*
|
|
** An instance of this object represents a single database file.
|
|
**
|
|
** A single database file can be in use as the same time by two
|
|
** or more database connections. When two or more connections are
|
|
** sharing the same database file, each connection has it own
|
|
** private Btree object for the file and each of those Btrees points
|
|
** to this one BtShared object. BtShared.nRef is the number of
|
|
** connections currently sharing this database file.
|
|
**
|
|
** Fields in this structure are accessed under the BtShared.mutex
|
|
** mutex, except for nRef and pNext which are accessed under the
|
|
** global SQLITE_MUTEX_STATIC_MASTER mutex. The pPager field
|
|
** may not be modified once it is initially set as long as nRef>0.
|
|
** The pSchema field may be set once under BtShared.mutex and
|
|
** thereafter is unchanged as long as nRef>0.
|
|
*/
|
|
struct BtShared {
|
|
Pager *pPager; /* The page cache */
|
|
sqlite3 *db; /* Database connection currently using this Btree */
|
|
BtCursor *pCursor; /* A list of all open cursors */
|
|
MemPage *pPage1; /* First page of the database */
|
|
u8 inStmt; /* True if we are in a statement subtransaction */
|
|
u8 readOnly; /* True if the underlying file is readonly */
|
|
u8 maxEmbedFrac; /* Maximum payload as % of total page size */
|
|
u8 minEmbedFrac; /* Minimum payload as % of total page size */
|
|
u8 minLeafFrac; /* Minimum leaf payload as % of total page size */
|
|
u8 pageSizeFixed; /* True if the page size can no longer be changed */
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
u8 autoVacuum; /* True if auto-vacuum is enabled */
|
|
u8 incrVacuum; /* True if incr-vacuum is enabled */
|
|
Pgno nTrunc; /* Non-zero if the db will be truncated (incr vacuum) */
|
|
#endif
|
|
u16 pageSize; /* Total number of bytes on a page */
|
|
u16 usableSize; /* Number of usable bytes on each page */
|
|
int maxLocal; /* Maximum local payload in non-LEAFDATA tables */
|
|
int minLocal; /* Minimum local payload in non-LEAFDATA tables */
|
|
int maxLeaf; /* Maximum local payload in a LEAFDATA table */
|
|
int minLeaf; /* Minimum local payload in a LEAFDATA table */
|
|
u8 inTransaction; /* Transaction state */
|
|
int nTransaction; /* Number of open transactions (read + write) */
|
|
void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */
|
|
void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */
|
|
sqlite3_mutex *mutex; /* Non-recursive mutex required to access this struct */
|
|
BusyHandler busyHdr; /* The busy handler for this btree */
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
int nRef; /* Number of references to this structure */
|
|
BtShared *pNext; /* Next on a list of sharable BtShared structs */
|
|
BtLock *pLock; /* List of locks held on this shared-btree struct */
|
|
Btree *pExclusive; /* Btree with an EXCLUSIVE lock on the whole db */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
** An instance of the following structure is used to hold information
|
|
** about a cell. The parseCellPtr() function fills in this structure
|
|
** based on information extract from the raw disk page.
|
|
*/
|
|
typedef struct CellInfo CellInfo;
|
|
struct CellInfo {
|
|
u8 *pCell; /* Pointer to the start of cell content */
|
|
i64 nKey; /* The key for INTKEY tables, or number of bytes in key */
|
|
u32 nData; /* Number of bytes of data */
|
|
u32 nPayload; /* Total amount of payload */
|
|
u16 nHeader; /* Size of the cell content header in bytes */
|
|
u16 nLocal; /* Amount of payload held locally */
|
|
u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */
|
|
u16 nSize; /* Size of the cell content on the main b-tree page */
|
|
};
|
|
|
|
/*
|
|
** A cursor is a pointer to a particular entry within a particular
|
|
** b-tree within a database file.
|
|
**
|
|
** The entry is identified by its MemPage and the index in
|
|
** MemPage.aCell[] of the entry.
|
|
**
|
|
** When a single database file can shared by two more database connections,
|
|
** but cursors cannot be shared. Each cursor is associated with a
|
|
** particular database connection identified BtCursor.pBtree.db.
|
|
**
|
|
** Fields in this structure are accessed under the BtShared.mutex
|
|
** found at self->pBt->mutex.
|
|
*/
|
|
struct BtCursor {
|
|
Btree *pBtree; /* The Btree to which this cursor belongs */
|
|
BtShared *pBt; /* The BtShared this cursor points to */
|
|
BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
|
|
int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */
|
|
void *pArg; /* First arg to xCompare() */
|
|
Pgno pgnoRoot; /* The root page of this tree */
|
|
MemPage *pPage; /* Page that contains the entry */
|
|
int idx; /* Index of the entry in pPage->aCell[] */
|
|
CellInfo info; /* A parse of the cell we are pointing at */
|
|
u8 wrFlag; /* True if writable */
|
|
u8 eState; /* One of the CURSOR_XXX constants (see below) */
|
|
void *pKey; /* Saved key that was cursor's last known position */
|
|
i64 nKey; /* Size of pKey, or last integer key */
|
|
int skip; /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */
|
|
#ifndef SQLITE_OMIT_INCRBLOB
|
|
u8 isIncrblobHandle; /* True if this cursor is an incr. io handle */
|
|
Pgno *aOverflow; /* Cache of overflow page locations */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
** Potential values for BtCursor.eState.
|
|
**
|
|
** CURSOR_VALID:
|
|
** Cursor points to a valid entry. getPayload() etc. may be called.
|
|
**
|
|
** CURSOR_INVALID:
|
|
** Cursor does not point to a valid entry. This can happen (for example)
|
|
** because the table is empty or because BtreeCursorFirst() has not been
|
|
** called.
|
|
**
|
|
** CURSOR_REQUIRESEEK:
|
|
** The table that this cursor was opened on still exists, but has been
|
|
** modified since the cursor was last used. The cursor position is saved
|
|
** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in
|
|
** this state, restoreOrClearCursorPosition() can be called to attempt to
|
|
** seek the cursor to the saved position.
|
|
**
|
|
** CURSOR_FAULT:
|
|
** A unrecoverable error (an I/O error or a malloc failure) has occurred
|
|
** on a different connection that shares the BtShared cache with this
|
|
** cursor. The error has left the cache in an inconsistent state.
|
|
** Do nothing else with this cursor. Any attempt to use the cursor
|
|
** should return the error code stored in BtCursor.skip
|
|
*/
|
|
#define CURSOR_INVALID 0
|
|
#define CURSOR_VALID 1
|
|
#define CURSOR_REQUIRESEEK 2
|
|
#define CURSOR_FAULT 3
|
|
|
|
/*
|
|
** The TRACE macro will print high-level status information about the
|
|
** btree operation when the global variable sqlite3_btree_trace is
|
|
** enabled.
|
|
*/
|
|
#if SQLITE_TEST
|
|
# define TRACE(X) if( sqlite3_btree_trace ){ printf X; fflush(stdout); }
|
|
#else
|
|
# define TRACE(X)
|
|
#endif
|
|
|
|
/*
|
|
** Routines to read and write variable-length integers. These used to
|
|
** be defined locally, but now we use the varint routines in the util.c
|
|
** file.
|
|
*/
|
|
#define getVarint sqlite3GetVarint
|
|
#define getVarint32(A,B) ((*B=*(A))<=0x7f?1:sqlite3GetVarint32(A,B))
|
|
#define putVarint sqlite3PutVarint
|
|
|
|
/* The database page the PENDING_BYTE occupies. This page is never used.
|
|
** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They
|
|
** should possibly be consolidated (presumably in pager.h).
|
|
**
|
|
** If disk I/O is omitted (meaning that the database is stored purely
|
|
** in memory) then there is no pending byte.
|
|
*/
|
|
#ifdef SQLITE_OMIT_DISKIO
|
|
# define PENDING_BYTE_PAGE(pBt) 0x7fffffff
|
|
#else
|
|
# define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1)
|
|
#endif
|
|
|
|
/*
|
|
** A linked list of the following structures is stored at BtShared.pLock.
|
|
** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor
|
|
** is opened on the table with root page BtShared.iTable. Locks are removed
|
|
** from this list when a transaction is committed or rolled back, or when
|
|
** a btree handle is closed.
|
|
*/
|
|
struct BtLock {
|
|
Btree *pBtree; /* Btree handle holding this lock */
|
|
Pgno iTable; /* Root page of table */
|
|
u8 eLock; /* READ_LOCK or WRITE_LOCK */
|
|
BtLock *pNext; /* Next in BtShared.pLock list */
|
|
};
|
|
|
|
/* Candidate values for BtLock.eLock */
|
|
#define READ_LOCK 1
|
|
#define WRITE_LOCK 2
|
|
|
|
/*
|
|
** These macros define the location of the pointer-map entry for a
|
|
** database page. The first argument to each is the number of usable
|
|
** bytes on each page of the database (often 1024). The second is the
|
|
** page number to look up in the pointer map.
|
|
**
|
|
** PTRMAP_PAGENO returns the database page number of the pointer-map
|
|
** page that stores the required pointer. PTRMAP_PTROFFSET returns
|
|
** the offset of the requested map entry.
|
|
**
|
|
** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
|
|
** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
|
|
** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
|
|
** this test.
|
|
*/
|
|
#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
|
|
#define PTRMAP_PTROFFSET(pBt, pgno) (5*(pgno-ptrmapPageno(pBt, pgno)-1))
|
|
#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
|
|
|
|
/*
|
|
** The pointer map is a lookup table that identifies the parent page for
|
|
** each child page in the database file. The parent page is the page that
|
|
** contains a pointer to the child. Every page in the database contains
|
|
** 0 or 1 parent pages. (In this context 'database page' refers
|
|
** to any page that is not part of the pointer map itself.) Each pointer map
|
|
** entry consists of a single byte 'type' and a 4 byte parent page number.
|
|
** The PTRMAP_XXX identifiers below are the valid types.
|
|
**
|
|
** The purpose of the pointer map is to facility moving pages from one
|
|
** position in the file to another as part of autovacuum. When a page
|
|
** is moved, the pointer in its parent must be updated to point to the
|
|
** new location. The pointer map is used to locate the parent page quickly.
|
|
**
|
|
** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
|
|
** used in this case.
|
|
**
|
|
** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number
|
|
** is not used in this case.
|
|
**
|
|
** PTRMAP_OVERFLOW1: The database page is the first page in a list of
|
|
** overflow pages. The page number identifies the page that
|
|
** contains the cell with a pointer to this overflow page.
|
|
**
|
|
** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
|
|
** overflow pages. The page-number identifies the previous
|
|
** page in the overflow page list.
|
|
**
|
|
** PTRMAP_BTREE: The database page is a non-root btree page. The page number
|
|
** identifies the parent page in the btree.
|
|
*/
|
|
#define PTRMAP_ROOTPAGE 1
|
|
#define PTRMAP_FREEPAGE 2
|
|
#define PTRMAP_OVERFLOW1 3
|
|
#define PTRMAP_OVERFLOW2 4
|
|
#define PTRMAP_BTREE 5
|
|
|
|
/* A bunch of assert() statements to check the transaction state variables
|
|
** of handle p (type Btree*) are internally consistent.
|
|
*/
|
|
#define btreeIntegrity(p) \
|
|
assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
|
|
assert( p->pBt->inTransaction>=p->inTrans );
|
|
|
|
|
|
/*
|
|
** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
|
|
** if the database supports auto-vacuum or not. Because it is used
|
|
** within an expression that is an argument to another macro
|
|
** (sqliteMallocRaw), it is not possible to use conditional compilation.
|
|
** So, this macro is defined instead.
|
|
*/
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
#define ISAUTOVACUUM (pBt->autoVacuum)
|
|
#else
|
|
#define ISAUTOVACUUM 0
|
|
#endif
|
|
|
|
|
|
/*
|
|
** This structure is passed around through all the sanity checking routines
|
|
** in order to keep track of some global state information.
|
|
*/
|
|
typedef struct IntegrityCk IntegrityCk;
|
|
struct IntegrityCk {
|
|
BtShared *pBt; /* The tree being checked out */
|
|
Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
|
|
int nPage; /* Number of pages in the database */
|
|
int *anRef; /* Number of times each page is referenced */
|
|
int mxErr; /* Stop accumulating errors when this reaches zero */
|
|
char *zErrMsg; /* An error message. NULL if no errors seen. */
|
|
int nErr; /* Number of messages written to zErrMsg so far */
|
|
};
|
|
|
|
/*
|
|
** Read or write a two- and four-byte big-endian integer values.
|
|
*/
|
|
#define get2byte(x) ((x)[0]<<8 | (x)[1])
|
|
#define put2byte(p,v) ((p)[0] = (v)>>8, (p)[1] = (v))
|
|
#define get4byte sqlite3Get4byte
|
|
#define put4byte sqlite3Put4byte
|
|
|
|
/*
|
|
** Internal routines that should be accessed by the btree layer only.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeGetPage(BtShared*, Pgno, MemPage**, int);
|
|
SQLITE_PRIVATE int sqlite3BtreeInitPage(MemPage *pPage, MemPage *pParent);
|
|
SQLITE_PRIVATE void sqlite3BtreeParseCellPtr(MemPage*, u8*, CellInfo*);
|
|
SQLITE_PRIVATE void sqlite3BtreeParseCell(MemPage*, int, CellInfo*);
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_PRIVATE u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell);
|
|
#endif
|
|
SQLITE_PRIVATE int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur);
|
|
SQLITE_PRIVATE void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur);
|
|
SQLITE_PRIVATE void sqlite3BtreeReleaseTempCursor(BtCursor *pCur);
|
|
SQLITE_PRIVATE int sqlite3BtreeIsRootPage(MemPage *pPage);
|
|
SQLITE_PRIVATE void sqlite3BtreeMoveToParent(BtCursor *pCur);
|
|
|
|
/************** End of btreeInt.h ********************************************/
|
|
/************** Continuing where we left off in btmutex.c ********************/
|
|
#if SQLITE_THREADSAFE && !defined(SQLITE_OMIT_SHARED_CACHE)
|
|
|
|
|
|
/*
|
|
** Enter a mutex on the given BTree object.
|
|
**
|
|
** If the object is not sharable, then no mutex is ever required
|
|
** and this routine is a no-op. The underlying mutex is non-recursive.
|
|
** But we keep a reference count in Btree.wantToLock so the behavior
|
|
** of this interface is recursive.
|
|
**
|
|
** To avoid deadlocks, multiple Btrees are locked in the same order
|
|
** by all database connections. The p->pNext is a list of other
|
|
** Btrees belonging to the same database connection as the p Btree
|
|
** which need to be locked after p. If we cannot get a lock on
|
|
** p, then first unlock all of the others on p->pNext, then wait
|
|
** for the lock to become available on p, then relock all of the
|
|
** subsequent Btrees that desire a lock.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){
|
|
Btree *pLater;
|
|
|
|
/* Some basic sanity checking on the Btree. The list of Btrees
|
|
** connected by pNext and pPrev should be in sorted order by
|
|
** Btree.pBt value. All elements of the list should belong to
|
|
** the same connection. Only shared Btrees are on the list. */
|
|
assert( p->pNext==0 || p->pNext->pBt>p->pBt );
|
|
assert( p->pPrev==0 || p->pPrev->pBt<p->pBt );
|
|
assert( p->pNext==0 || p->pNext->db==p->db );
|
|
assert( p->pPrev==0 || p->pPrev->db==p->db );
|
|
assert( p->sharable || (p->pNext==0 && p->pPrev==0) );
|
|
|
|
/* Check for locking consistency */
|
|
assert( !p->locked || p->wantToLock>0 );
|
|
assert( p->sharable || p->wantToLock==0 );
|
|
|
|
/* We should already hold a lock on the database connection */
|
|
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
|
|
if( !p->sharable ) return;
|
|
p->wantToLock++;
|
|
if( p->locked ) return;
|
|
|
|
#ifndef SQLITE_MUTEX_NOOP
|
|
/* In most cases, we should be able to acquire the lock we
|
|
** want without having to go throught the ascending lock
|
|
** procedure that follows. Just be sure not to block.
|
|
*/
|
|
if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
|
|
p->locked = 1;
|
|
return;
|
|
}
|
|
|
|
/* To avoid deadlock, first release all locks with a larger
|
|
** BtShared address. Then acquire our lock. Then reacquire
|
|
** the other BtShared locks that we used to hold in ascending
|
|
** order.
|
|
*/
|
|
for(pLater=p->pNext; pLater; pLater=pLater->pNext){
|
|
assert( pLater->sharable );
|
|
assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
|
|
assert( !pLater->locked || pLater->wantToLock>0 );
|
|
if( pLater->locked ){
|
|
sqlite3_mutex_leave(pLater->pBt->mutex);
|
|
pLater->locked = 0;
|
|
}
|
|
}
|
|
sqlite3_mutex_enter(p->pBt->mutex);
|
|
p->locked = 1;
|
|
for(pLater=p->pNext; pLater; pLater=pLater->pNext){
|
|
if( pLater->wantToLock ){
|
|
sqlite3_mutex_enter(pLater->pBt->mutex);
|
|
pLater->locked = 1;
|
|
}
|
|
}
|
|
#endif /* SQLITE_MUTEX_NOOP */
|
|
}
|
|
|
|
/*
|
|
** Exit the recursive mutex on a Btree.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3BtreeLeave(Btree *p){
|
|
if( p->sharable ){
|
|
assert( p->wantToLock>0 );
|
|
p->wantToLock--;
|
|
if( p->wantToLock==0 ){
|
|
assert( p->locked );
|
|
sqlite3_mutex_leave(p->pBt->mutex);
|
|
p->locked = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/*
|
|
** Return true if the BtShared mutex is held on the btree.
|
|
**
|
|
** This routine makes no determination one why or another if the
|
|
** database connection mutex is held.
|
|
**
|
|
** This routine is used only from within assert() statements.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree *p){
|
|
return (p->sharable==0 ||
|
|
(p->locked && p->wantToLock && sqlite3_mutex_held(p->pBt->mutex)));
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifndef SQLITE_OMIT_INCRBLOB
|
|
/*
|
|
** Enter and leave a mutex on a Btree given a cursor owned by that
|
|
** Btree. These entry points are used by incremental I/O and can be
|
|
** omitted if that module is not used.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor *pCur){
|
|
sqlite3BtreeEnter(pCur->pBtree);
|
|
}
|
|
SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor *pCur){
|
|
sqlite3BtreeLeave(pCur->pBtree);
|
|
}
|
|
#endif /* SQLITE_OMIT_INCRBLOB */
|
|
|
|
|
|
/*
|
|
** Enter the mutex on every Btree associated with a database
|
|
** connection. This is needed (for example) prior to parsing
|
|
** a statement since we will be comparing table and column names
|
|
** against all schemas and we do not want those schemas being
|
|
** reset out from under us.
|
|
**
|
|
** There is a corresponding leave-all procedures.
|
|
**
|
|
** Enter the mutexes in accending order by BtShared pointer address
|
|
** to avoid the possibility of deadlock when two threads with
|
|
** two or more btrees in common both try to lock all their btrees
|
|
** at the same instant.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){
|
|
int i;
|
|
Btree *p, *pLater;
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
for(i=0; i<db->nDb; i++){
|
|
p = db->aDb[i].pBt;
|
|
if( p && p->sharable ){
|
|
p->wantToLock++;
|
|
if( !p->locked ){
|
|
assert( p->wantToLock==1 );
|
|
while( p->pPrev ) p = p->pPrev;
|
|
while( p->locked && p->pNext ) p = p->pNext;
|
|
for(pLater = p->pNext; pLater; pLater=pLater->pNext){
|
|
if( pLater->locked ){
|
|
sqlite3_mutex_leave(pLater->pBt->mutex);
|
|
pLater->locked = 0;
|
|
}
|
|
}
|
|
while( p ){
|
|
sqlite3_mutex_enter(p->pBt->mutex);
|
|
p->locked++;
|
|
p = p->pNext;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3 *db){
|
|
int i;
|
|
Btree *p;
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
for(i=0; i<db->nDb; i++){
|
|
p = db->aDb[i].pBt;
|
|
if( p && p->sharable ){
|
|
assert( p->wantToLock>0 );
|
|
p->wantToLock--;
|
|
if( p->wantToLock==0 ){
|
|
assert( p->locked );
|
|
sqlite3_mutex_leave(p->pBt->mutex);
|
|
p->locked = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/*
|
|
** Return true if the current thread holds the database connection
|
|
** mutex and all required BtShared mutexes.
|
|
**
|
|
** This routine is used inside assert() statements only.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
|
|
int i;
|
|
if( !sqlite3_mutex_held(db->mutex) ){
|
|
return 0;
|
|
}
|
|
for(i=0; i<db->nDb; i++){
|
|
Btree *p;
|
|
p = db->aDb[i].pBt;
|
|
if( p && p->sharable &&
|
|
(p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
#endif /* NDEBUG */
|
|
|
|
/*
|
|
** Potentially dd a new Btree pointer to a BtreeMutexArray.
|
|
** Really only add the Btree if it can possibly be shared with
|
|
** another database connection.
|
|
**
|
|
** The Btrees are kept in sorted order by pBtree->pBt. That
|
|
** way when we go to enter all the mutexes, we can enter them
|
|
** in order without every having to backup and retry and without
|
|
** worrying about deadlock.
|
|
**
|
|
** The number of shared btrees will always be small (usually 0 or 1)
|
|
** so an insertion sort is an adequate algorithm here.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3BtreeMutexArrayInsert(BtreeMutexArray *pArray, Btree *pBtree){
|
|
int i, j;
|
|
BtShared *pBt;
|
|
if( pBtree==0 || pBtree->sharable==0 ) return;
|
|
#ifndef NDEBUG
|
|
{
|
|
for(i=0; i<pArray->nMutex; i++){
|
|
assert( pArray->aBtree[i]!=pBtree );
|
|
}
|
|
}
|
|
#endif
|
|
assert( pArray->nMutex>=0 );
|
|
assert( pArray->nMutex<sizeof(pArray->aBtree)/sizeof(pArray->aBtree[0])-1 );
|
|
pBt = pBtree->pBt;
|
|
for(i=0; i<pArray->nMutex; i++){
|
|
assert( pArray->aBtree[i]!=pBtree );
|
|
if( pArray->aBtree[i]->pBt>pBt ){
|
|
for(j=pArray->nMutex; j>i; j--){
|
|
pArray->aBtree[j] = pArray->aBtree[j-1];
|
|
}
|
|
pArray->aBtree[i] = pBtree;
|
|
pArray->nMutex++;
|
|
return;
|
|
}
|
|
}
|
|
pArray->aBtree[pArray->nMutex++] = pBtree;
|
|
}
|
|
|
|
/*
|
|
** Enter the mutex of every btree in the array. This routine is
|
|
** called at the beginning of sqlite3VdbeExec(). The mutexes are
|
|
** exited at the end of the same function.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3BtreeMutexArrayEnter(BtreeMutexArray *pArray){
|
|
int i;
|
|
for(i=0; i<pArray->nMutex; i++){
|
|
Btree *p = pArray->aBtree[i];
|
|
/* Some basic sanity checking */
|
|
assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
|
|
assert( !p->locked || p->wantToLock>0 );
|
|
|
|
/* We should already hold a lock on the database connection */
|
|
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
|
|
p->wantToLock++;
|
|
if( !p->locked && p->sharable ){
|
|
sqlite3_mutex_enter(p->pBt->mutex);
|
|
p->locked = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Leave the mutex of every btree in the group.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3BtreeMutexArrayLeave(BtreeMutexArray *pArray){
|
|
int i;
|
|
for(i=0; i<pArray->nMutex; i++){
|
|
Btree *p = pArray->aBtree[i];
|
|
/* Some basic sanity checking */
|
|
assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
|
|
assert( p->locked || !p->sharable );
|
|
assert( p->wantToLock>0 );
|
|
|
|
/* We should already hold a lock on the database connection */
|
|
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
|
|
p->wantToLock--;
|
|
if( p->wantToLock==0 && p->locked ){
|
|
sqlite3_mutex_leave(p->pBt->mutex);
|
|
p->locked = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#endif /* SQLITE_THREADSAFE && !SQLITE_OMIT_SHARED_CACHE */
|
|
|
|
/************** End of btmutex.c *********************************************/
|
|
/************** Begin file btree.c *******************************************/
|
|
/*
|
|
** 2004 April 6
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** $Id: btree.c,v 1.438 2008/01/31 14:54:44 drh Exp $
|
|
**
|
|
** This file implements a external (disk-based) database using BTrees.
|
|
** See the header comment on "btreeInt.h" for additional information.
|
|
** Including a description of file format and an overview of operation.
|
|
*/
|
|
|
|
/*
|
|
** The header string that appears at the beginning of every
|
|
** SQLite database.
|
|
*/
|
|
static const char zMagicHeader[] = SQLITE_FILE_HEADER;
|
|
|
|
/*
|
|
** Set this global variable to 1 to enable tracing using the TRACE
|
|
** macro.
|
|
*/
|
|
#if SQLITE_TEST
|
|
int sqlite3_btree_trace=0; /* True to enable tracing */
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
/*
|
|
** A flag to indicate whether or not shared cache is enabled. Also,
|
|
** a list of BtShared objects that are eligible for participation
|
|
** in shared cache. The variables have file scope during normal builds,
|
|
** but the test harness needs to access these variables so we make them
|
|
** global for test builds.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_PRIVATE BtShared *sqlite3SharedCacheList = 0;
|
|
SQLITE_PRIVATE int sqlite3SharedCacheEnabled = 0;
|
|
#else
|
|
static BtShared *sqlite3SharedCacheList = 0;
|
|
static int sqlite3SharedCacheEnabled = 0;
|
|
#endif
|
|
#endif /* SQLITE_OMIT_SHARED_CACHE */
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
/*
|
|
** Enable or disable the shared pager and schema features.
|
|
**
|
|
** This routine has no effect on existing database connections.
|
|
** The shared cache setting effects only future calls to
|
|
** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
|
|
*/
|
|
SQLITE_API int sqlite3_enable_shared_cache(int enable){
|
|
sqlite3SharedCacheEnabled = enable;
|
|
return SQLITE_OK;
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Forward declaration
|
|
*/
|
|
static int checkReadLocks(Btree*,Pgno,BtCursor*);
|
|
|
|
|
|
#ifdef SQLITE_OMIT_SHARED_CACHE
|
|
/*
|
|
** The functions queryTableLock(), lockTable() and unlockAllTables()
|
|
** manipulate entries in the BtShared.pLock linked list used to store
|
|
** shared-cache table level locks. If the library is compiled with the
|
|
** shared-cache feature disabled, then there is only ever one user
|
|
** of each BtShared structure and so this locking is not necessary.
|
|
** So define the lock related functions as no-ops.
|
|
*/
|
|
#define queryTableLock(a,b,c) SQLITE_OK
|
|
#define lockTable(a,b,c) SQLITE_OK
|
|
#define unlockAllTables(a)
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
/*
|
|
** Query to see if btree handle p may obtain a lock of type eLock
|
|
** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
|
|
** SQLITE_OK if the lock may be obtained (by calling lockTable()), or
|
|
** SQLITE_LOCKED if not.
|
|
*/
|
|
static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){
|
|
BtShared *pBt = p->pBt;
|
|
BtLock *pIter;
|
|
|
|
assert( sqlite3BtreeHoldsMutex(p) );
|
|
|
|
/* This is a no-op if the shared-cache is not enabled */
|
|
if( !p->sharable ){
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* If some other connection is holding an exclusive lock, the
|
|
** requested lock may not be obtained.
|
|
*/
|
|
if( pBt->pExclusive && pBt->pExclusive!=p ){
|
|
return SQLITE_LOCKED;
|
|
}
|
|
|
|
/* This (along with lockTable()) is where the ReadUncommitted flag is
|
|
** dealt with. If the caller is querying for a read-lock and the flag is
|
|
** set, it is unconditionally granted - even if there are write-locks
|
|
** on the table. If a write-lock is requested, the ReadUncommitted flag
|
|
** is not considered.
|
|
**
|
|
** In function lockTable(), if a read-lock is demanded and the
|
|
** ReadUncommitted flag is set, no entry is added to the locks list
|
|
** (BtShared.pLock).
|
|
**
|
|
** To summarize: If the ReadUncommitted flag is set, then read cursors do
|
|
** not create or respect table locks. The locking procedure for a
|
|
** write-cursor does not change.
|
|
*/
|
|
if(
|
|
!p->db ||
|
|
0==(p->db->flags&SQLITE_ReadUncommitted) ||
|
|
eLock==WRITE_LOCK ||
|
|
iTab==MASTER_ROOT
|
|
){
|
|
for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
|
|
if( pIter->pBtree!=p && pIter->iTable==iTab &&
|
|
(pIter->eLock!=eLock || eLock!=READ_LOCK) ){
|
|
return SQLITE_LOCKED;
|
|
}
|
|
}
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
#endif /* !SQLITE_OMIT_SHARED_CACHE */
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
/*
|
|
** Add a lock on the table with root-page iTable to the shared-btree used
|
|
** by Btree handle p. Parameter eLock must be either READ_LOCK or
|
|
** WRITE_LOCK.
|
|
**
|
|
** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
|
|
** SQLITE_NOMEM may also be returned.
|
|
*/
|
|
static int lockTable(Btree *p, Pgno iTable, u8 eLock){
|
|
BtShared *pBt = p->pBt;
|
|
BtLock *pLock = 0;
|
|
BtLock *pIter;
|
|
|
|
assert( sqlite3BtreeHoldsMutex(p) );
|
|
|
|
/* This is a no-op if the shared-cache is not enabled */
|
|
if( !p->sharable ){
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
assert( SQLITE_OK==queryTableLock(p, iTable, eLock) );
|
|
|
|
/* If the read-uncommitted flag is set and a read-lock is requested,
|
|
** return early without adding an entry to the BtShared.pLock list. See
|
|
** comment in function queryTableLock() for more info on handling
|
|
** the ReadUncommitted flag.
|
|
*/
|
|
if(
|
|
(p->db) &&
|
|
(p->db->flags&SQLITE_ReadUncommitted) &&
|
|
(eLock==READ_LOCK) &&
|
|
iTable!=MASTER_ROOT
|
|
){
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* First search the list for an existing lock on this table. */
|
|
for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
|
|
if( pIter->iTable==iTable && pIter->pBtree==p ){
|
|
pLock = pIter;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If the above search did not find a BtLock struct associating Btree p
|
|
** with table iTable, allocate one and link it into the list.
|
|
*/
|
|
if( !pLock ){
|
|
pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
|
|
if( !pLock ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
pLock->iTable = iTable;
|
|
pLock->pBtree = p;
|
|
pLock->pNext = pBt->pLock;
|
|
pBt->pLock = pLock;
|
|
}
|
|
|
|
/* Set the BtLock.eLock variable to the maximum of the current lock
|
|
** and the requested lock. This means if a write-lock was already held
|
|
** and a read-lock requested, we don't incorrectly downgrade the lock.
|
|
*/
|
|
assert( WRITE_LOCK>READ_LOCK );
|
|
if( eLock>pLock->eLock ){
|
|
pLock->eLock = eLock;
|
|
}
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
#endif /* !SQLITE_OMIT_SHARED_CACHE */
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
/*
|
|
** Release all the table locks (locks obtained via calls to the lockTable()
|
|
** procedure) held by Btree handle p.
|
|
*/
|
|
static void unlockAllTables(Btree *p){
|
|
BtShared *pBt = p->pBt;
|
|
BtLock **ppIter = &pBt->pLock;
|
|
|
|
assert( sqlite3BtreeHoldsMutex(p) );
|
|
assert( p->sharable || 0==*ppIter );
|
|
|
|
while( *ppIter ){
|
|
BtLock *pLock = *ppIter;
|
|
assert( pBt->pExclusive==0 || pBt->pExclusive==pLock->pBtree );
|
|
if( pLock->pBtree==p ){
|
|
*ppIter = pLock->pNext;
|
|
sqlite3_free(pLock);
|
|
}else{
|
|
ppIter = &pLock->pNext;
|
|
}
|
|
}
|
|
|
|
if( pBt->pExclusive==p ){
|
|
pBt->pExclusive = 0;
|
|
}
|
|
}
|
|
#endif /* SQLITE_OMIT_SHARED_CACHE */
|
|
|
|
static void releasePage(MemPage *pPage); /* Forward reference */
|
|
|
|
/*
|
|
** Verify that the cursor holds a mutex on the BtShared
|
|
*/
|
|
#ifndef NDEBUG
|
|
static int cursorHoldsMutex(BtCursor *p){
|
|
return sqlite3_mutex_held(p->pBt->mutex);
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifndef SQLITE_OMIT_INCRBLOB
|
|
/*
|
|
** Invalidate the overflow page-list cache for cursor pCur, if any.
|
|
*/
|
|
static void invalidateOverflowCache(BtCursor *pCur){
|
|
assert( cursorHoldsMutex(pCur) );
|
|
sqlite3_free(pCur->aOverflow);
|
|
pCur->aOverflow = 0;
|
|
}
|
|
|
|
/*
|
|
** Invalidate the overflow page-list cache for all cursors opened
|
|
** on the shared btree structure pBt.
|
|
*/
|
|
static void invalidateAllOverflowCache(BtShared *pBt){
|
|
BtCursor *p;
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
for(p=pBt->pCursor; p; p=p->pNext){
|
|
invalidateOverflowCache(p);
|
|
}
|
|
}
|
|
#else
|
|
#define invalidateOverflowCache(x)
|
|
#define invalidateAllOverflowCache(x)
|
|
#endif
|
|
|
|
/*
|
|
** Save the current cursor position in the variables BtCursor.nKey
|
|
** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
|
|
*/
|
|
static int saveCursorPosition(BtCursor *pCur){
|
|
int rc;
|
|
|
|
assert( CURSOR_VALID==pCur->eState );
|
|
assert( 0==pCur->pKey );
|
|
assert( cursorHoldsMutex(pCur) );
|
|
|
|
rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
|
|
|
|
/* If this is an intKey table, then the above call to BtreeKeySize()
|
|
** stores the integer key in pCur->nKey. In this case this value is
|
|
** all that is required. Otherwise, if pCur is not open on an intKey
|
|
** table, then malloc space for and store the pCur->nKey bytes of key
|
|
** data.
|
|
*/
|
|
if( rc==SQLITE_OK && 0==pCur->pPage->intKey){
|
|
void *pKey = sqlite3_malloc(pCur->nKey);
|
|
if( pKey ){
|
|
rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey);
|
|
if( rc==SQLITE_OK ){
|
|
pCur->pKey = pKey;
|
|
}else{
|
|
sqlite3_free(pKey);
|
|
}
|
|
}else{
|
|
rc = SQLITE_NOMEM;
|
|
}
|
|
}
|
|
assert( !pCur->pPage->intKey || !pCur->pKey );
|
|
|
|
if( rc==SQLITE_OK ){
|
|
releasePage(pCur->pPage);
|
|
pCur->pPage = 0;
|
|
pCur->eState = CURSOR_REQUIRESEEK;
|
|
}
|
|
|
|
invalidateOverflowCache(pCur);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Save the positions of all cursors except pExcept open on the table
|
|
** with root-page iRoot. Usually, this is called just before cursor
|
|
** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
|
|
*/
|
|
static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
|
|
BtCursor *p;
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
assert( pExcept==0 || pExcept->pBt==pBt );
|
|
for(p=pBt->pCursor; p; p=p->pNext){
|
|
if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
|
|
p->eState==CURSOR_VALID ){
|
|
int rc = saveCursorPosition(p);
|
|
if( SQLITE_OK!=rc ){
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Clear the current cursor position.
|
|
*/
|
|
static void clearCursorPosition(BtCursor *pCur){
|
|
assert( cursorHoldsMutex(pCur) );
|
|
sqlite3_free(pCur->pKey);
|
|
pCur->pKey = 0;
|
|
pCur->eState = CURSOR_INVALID;
|
|
}
|
|
|
|
/*
|
|
** Restore the cursor to the position it was in (or as close to as possible)
|
|
** when saveCursorPosition() was called. Note that this call deletes the
|
|
** saved position info stored by saveCursorPosition(), so there can be
|
|
** at most one effective restoreOrClearCursorPosition() call after each
|
|
** saveCursorPosition().
|
|
**
|
|
** If the second argument argument - doSeek - is false, then instead of
|
|
** returning the cursor to its saved position, any saved position is deleted
|
|
** and the cursor state set to CURSOR_INVALID.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur){
|
|
int rc;
|
|
assert( cursorHoldsMutex(pCur) );
|
|
assert( pCur->eState>=CURSOR_REQUIRESEEK );
|
|
if( pCur->eState==CURSOR_FAULT ){
|
|
return pCur->skip;
|
|
}
|
|
#ifndef SQLITE_OMIT_INCRBLOB
|
|
if( pCur->isIncrblobHandle ){
|
|
return SQLITE_ABORT;
|
|
}
|
|
#endif
|
|
pCur->eState = CURSOR_INVALID;
|
|
rc = sqlite3BtreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skip);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_free(pCur->pKey);
|
|
pCur->pKey = 0;
|
|
assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
#define restoreOrClearCursorPosition(p) \
|
|
(p->eState>=CURSOR_REQUIRESEEK ? \
|
|
sqlite3BtreeRestoreOrClearCursorPosition(p) : \
|
|
SQLITE_OK)
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
/*
|
|
** Given a page number of a regular database page, return the page
|
|
** number for the pointer-map page that contains the entry for the
|
|
** input page number.
|
|
*/
|
|
static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
|
|
int nPagesPerMapPage, iPtrMap, ret;
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
nPagesPerMapPage = (pBt->usableSize/5)+1;
|
|
iPtrMap = (pgno-2)/nPagesPerMapPage;
|
|
ret = (iPtrMap*nPagesPerMapPage) + 2;
|
|
if( ret==PENDING_BYTE_PAGE(pBt) ){
|
|
ret++;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
** Write an entry into the pointer map.
|
|
**
|
|
** This routine updates the pointer map entry for page number 'key'
|
|
** so that it maps to type 'eType' and parent page number 'pgno'.
|
|
** An error code is returned if something goes wrong, otherwise SQLITE_OK.
|
|
*/
|
|
static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
|
|
DbPage *pDbPage; /* The pointer map page */
|
|
u8 *pPtrmap; /* The pointer map data */
|
|
Pgno iPtrmap; /* The pointer map page number */
|
|
int offset; /* Offset in pointer map page */
|
|
int rc;
|
|
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
/* The master-journal page number must never be used as a pointer map page */
|
|
assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
|
|
|
|
assert( pBt->autoVacuum );
|
|
if( key==0 ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
iPtrmap = PTRMAP_PAGENO(pBt, key);
|
|
rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
offset = PTRMAP_PTROFFSET(pBt, key);
|
|
pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
|
|
|
|
if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
|
|
TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
|
|
rc = sqlite3PagerWrite(pDbPage);
|
|
if( rc==SQLITE_OK ){
|
|
pPtrmap[offset] = eType;
|
|
put4byte(&pPtrmap[offset+1], parent);
|
|
}
|
|
}
|
|
|
|
sqlite3PagerUnref(pDbPage);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Read an entry from the pointer map.
|
|
**
|
|
** This routine retrieves the pointer map entry for page 'key', writing
|
|
** the type and parent page number to *pEType and *pPgno respectively.
|
|
** An error code is returned if something goes wrong, otherwise SQLITE_OK.
|
|
*/
|
|
static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
|
|
DbPage *pDbPage; /* The pointer map page */
|
|
int iPtrmap; /* Pointer map page index */
|
|
u8 *pPtrmap; /* Pointer map page data */
|
|
int offset; /* Offset of entry in pointer map */
|
|
int rc;
|
|
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
|
|
iPtrmap = PTRMAP_PAGENO(pBt, key);
|
|
rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
|
|
if( rc!=0 ){
|
|
return rc;
|
|
}
|
|
pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
|
|
|
|
offset = PTRMAP_PTROFFSET(pBt, key);
|
|
assert( pEType!=0 );
|
|
*pEType = pPtrmap[offset];
|
|
if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
|
|
|
|
sqlite3PagerUnref(pDbPage);
|
|
if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_AUTOVACUUM */
|
|
|
|
/*
|
|
** Given a btree page and a cell index (0 means the first cell on
|
|
** the page, 1 means the second cell, and so forth) return a pointer
|
|
** to the cell content.
|
|
**
|
|
** This routine works only for pages that do not contain overflow cells.
|
|
*/
|
|
#define findCell(pPage, iCell) \
|
|
((pPage)->aData + get2byte(&(pPage)->aData[(pPage)->cellOffset+2*(iCell)]))
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_PRIVATE u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell){
|
|
assert( iCell>=0 );
|
|
assert( iCell<get2byte(&pPage->aData[pPage->hdrOffset+3]) );
|
|
return findCell(pPage, iCell);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** This a more complex version of sqlite3BtreeFindCell() that works for
|
|
** pages that do contain overflow cells. See insert
|
|
*/
|
|
static u8 *findOverflowCell(MemPage *pPage, int iCell){
|
|
int i;
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
for(i=pPage->nOverflow-1; i>=0; i--){
|
|
int k;
|
|
struct _OvflCell *pOvfl;
|
|
pOvfl = &pPage->aOvfl[i];
|
|
k = pOvfl->idx;
|
|
if( k<=iCell ){
|
|
if( k==iCell ){
|
|
return pOvfl->pCell;
|
|
}
|
|
iCell--;
|
|
}
|
|
}
|
|
return findCell(pPage, iCell);
|
|
}
|
|
|
|
/*
|
|
** Parse a cell content block and fill in the CellInfo structure. There
|
|
** are two versions of this function. sqlite3BtreeParseCell() takes a
|
|
** cell index as the second argument and sqlite3BtreeParseCellPtr()
|
|
** takes a pointer to the body of the cell as its second argument.
|
|
**
|
|
** Within this file, the parseCell() macro can be called instead of
|
|
** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3BtreeParseCellPtr(
|
|
MemPage *pPage, /* Page containing the cell */
|
|
u8 *pCell, /* Pointer to the cell text. */
|
|
CellInfo *pInfo /* Fill in this structure */
|
|
){
|
|
int n; /* Number bytes in cell content header */
|
|
u32 nPayload; /* Number of bytes of cell payload */
|
|
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
|
|
pInfo->pCell = pCell;
|
|
assert( pPage->leaf==0 || pPage->leaf==1 );
|
|
n = pPage->childPtrSize;
|
|
assert( n==4-4*pPage->leaf );
|
|
if( pPage->hasData ){
|
|
n += getVarint32(&pCell[n], &nPayload);
|
|
}else{
|
|
nPayload = 0;
|
|
}
|
|
pInfo->nData = nPayload;
|
|
if( pPage->intKey ){
|
|
n += getVarint(&pCell[n], (u64 *)&pInfo->nKey);
|
|
}else{
|
|
u32 x;
|
|
n += getVarint32(&pCell[n], &x);
|
|
pInfo->nKey = x;
|
|
nPayload += x;
|
|
}
|
|
pInfo->nPayload = nPayload;
|
|
pInfo->nHeader = n;
|
|
if( nPayload<=pPage->maxLocal ){
|
|
/* This is the (easy) common case where the entire payload fits
|
|
** on the local page. No overflow is required.
|
|
*/
|
|
int nSize; /* Total size of cell content in bytes */
|
|
pInfo->nLocal = nPayload;
|
|
pInfo->iOverflow = 0;
|
|
nSize = nPayload + n;
|
|
if( nSize<4 ){
|
|
nSize = 4; /* Minimum cell size is 4 */
|
|
}
|
|
pInfo->nSize = nSize;
|
|
}else{
|
|
/* If the payload will not fit completely on the local page, we have
|
|
** to decide how much to store locally and how much to spill onto
|
|
** overflow pages. The strategy is to minimize the amount of unused
|
|
** space on overflow pages while keeping the amount of local storage
|
|
** in between minLocal and maxLocal.
|
|
**
|
|
** Warning: changing the way overflow payload is distributed in any
|
|
** way will result in an incompatible file format.
|
|
*/
|
|
int minLocal; /* Minimum amount of payload held locally */
|
|
int maxLocal; /* Maximum amount of payload held locally */
|
|
int surplus; /* Overflow payload available for local storage */
|
|
|
|
minLocal = pPage->minLocal;
|
|
maxLocal = pPage->maxLocal;
|
|
surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
|
|
if( surplus <= maxLocal ){
|
|
pInfo->nLocal = surplus;
|
|
}else{
|
|
pInfo->nLocal = minLocal;
|
|
}
|
|
pInfo->iOverflow = pInfo->nLocal + n;
|
|
pInfo->nSize = pInfo->iOverflow + 4;
|
|
}
|
|
}
|
|
#define parseCell(pPage, iCell, pInfo) \
|
|
sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
|
|
SQLITE_PRIVATE void sqlite3BtreeParseCell(
|
|
MemPage *pPage, /* Page containing the cell */
|
|
int iCell, /* The cell index. First cell is 0 */
|
|
CellInfo *pInfo /* Fill in this structure */
|
|
){
|
|
parseCell(pPage, iCell, pInfo);
|
|
}
|
|
|
|
/*
|
|
** Compute the total number of bytes that a Cell needs in the cell
|
|
** data area of the btree-page. The return number includes the cell
|
|
** data header and the local payload, but not any overflow page or
|
|
** the space used by the cell pointer.
|
|
*/
|
|
#ifndef NDEBUG
|
|
static int cellSize(MemPage *pPage, int iCell){
|
|
CellInfo info;
|
|
sqlite3BtreeParseCell(pPage, iCell, &info);
|
|
return info.nSize;
|
|
}
|
|
#endif
|
|
static int cellSizePtr(MemPage *pPage, u8 *pCell){
|
|
CellInfo info;
|
|
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
|
|
return info.nSize;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
/*
|
|
** If the cell pCell, part of page pPage contains a pointer
|
|
** to an overflow page, insert an entry into the pointer-map
|
|
** for the overflow page.
|
|
*/
|
|
static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
|
|
if( pCell ){
|
|
CellInfo info;
|
|
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
|
|
assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
|
|
if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
|
|
Pgno ovfl = get4byte(&pCell[info.iOverflow]);
|
|
return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
|
|
}
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
/*
|
|
** If the cell with index iCell on page pPage contains a pointer
|
|
** to an overflow page, insert an entry into the pointer-map
|
|
** for the overflow page.
|
|
*/
|
|
static int ptrmapPutOvfl(MemPage *pPage, int iCell){
|
|
u8 *pCell;
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
pCell = findOverflowCell(pPage, iCell);
|
|
return ptrmapPutOvflPtr(pPage, pCell);
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Defragment the page given. All Cells are moved to the
|
|
** end of the page and all free space is collected into one
|
|
** big FreeBlk that occurs in between the header and cell
|
|
** pointer array and the cell content area.
|
|
*/
|
|
static int defragmentPage(MemPage *pPage){
|
|
int i; /* Loop counter */
|
|
int pc; /* Address of a i-th cell */
|
|
int addr; /* Offset of first byte after cell pointer array */
|
|
int hdr; /* Offset to the page header */
|
|
int size; /* Size of a cell */
|
|
int usableSize; /* Number of usable bytes on a page */
|
|
int cellOffset; /* Offset to the cell pointer array */
|
|
int brk; /* Offset to the cell content area */
|
|
int nCell; /* Number of cells on the page */
|
|
unsigned char *data; /* The page data */
|
|
unsigned char *temp; /* Temp area for cell content */
|
|
|
|
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
assert( pPage->pBt!=0 );
|
|
assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
|
|
assert( pPage->nOverflow==0 );
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
|
|
data = pPage->aData;
|
|
hdr = pPage->hdrOffset;
|
|
cellOffset = pPage->cellOffset;
|
|
nCell = pPage->nCell;
|
|
assert( nCell==get2byte(&data[hdr+3]) );
|
|
usableSize = pPage->pBt->usableSize;
|
|
brk = get2byte(&data[hdr+5]);
|
|
memcpy(&temp[brk], &data[brk], usableSize - brk);
|
|
brk = usableSize;
|
|
for(i=0; i<nCell; i++){
|
|
u8 *pAddr; /* The i-th cell pointer */
|
|
pAddr = &data[cellOffset + i*2];
|
|
pc = get2byte(pAddr);
|
|
assert( pc<pPage->pBt->usableSize );
|
|
size = cellSizePtr(pPage, &temp[pc]);
|
|
brk -= size;
|
|
memcpy(&data[brk], &temp[pc], size);
|
|
put2byte(pAddr, brk);
|
|
}
|
|
assert( brk>=cellOffset+2*nCell );
|
|
put2byte(&data[hdr+5], brk);
|
|
data[hdr+1] = 0;
|
|
data[hdr+2] = 0;
|
|
data[hdr+7] = 0;
|
|
addr = cellOffset+2*nCell;
|
|
memset(&data[addr], 0, brk-addr);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Allocate nByte bytes of space on a page.
|
|
**
|
|
** Return the index into pPage->aData[] of the first byte of
|
|
** the new allocation. Or return 0 if there is not enough free
|
|
** space on the page to satisfy the allocation request.
|
|
**
|
|
** If the page contains nBytes of free space but does not contain
|
|
** nBytes of contiguous free space, then this routine automatically
|
|
** calls defragementPage() to consolidate all free space before
|
|
** allocating the new chunk.
|
|
*/
|
|
static int allocateSpace(MemPage *pPage, int nByte){
|
|
int addr, pc, hdr;
|
|
int size;
|
|
int nFrag;
|
|
int top;
|
|
int nCell;
|
|
int cellOffset;
|
|
unsigned char *data;
|
|
|
|
data = pPage->aData;
|
|
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
assert( pPage->pBt );
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
if( nByte<4 ) nByte = 4;
|
|
if( pPage->nFree<nByte || pPage->nOverflow>0 ) return 0;
|
|
pPage->nFree -= nByte;
|
|
hdr = pPage->hdrOffset;
|
|
|
|
nFrag = data[hdr+7];
|
|
if( nFrag<60 ){
|
|
/* Search the freelist looking for a slot big enough to satisfy the
|
|
** space request. */
|
|
addr = hdr+1;
|
|
while( (pc = get2byte(&data[addr]))>0 ){
|
|
size = get2byte(&data[pc+2]);
|
|
if( size>=nByte ){
|
|
if( size<nByte+4 ){
|
|
memcpy(&data[addr], &data[pc], 2);
|
|
data[hdr+7] = nFrag + size - nByte;
|
|
return pc;
|
|
}else{
|
|
put2byte(&data[pc+2], size-nByte);
|
|
return pc + size - nByte;
|
|
}
|
|
}
|
|
addr = pc;
|
|
}
|
|
}
|
|
|
|
/* Allocate memory from the gap in between the cell pointer array
|
|
** and the cell content area.
|
|
*/
|
|
top = get2byte(&data[hdr+5]);
|
|
nCell = get2byte(&data[hdr+3]);
|
|
cellOffset = pPage->cellOffset;
|
|
if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){
|
|
if( defragmentPage(pPage) ) return 0;
|
|
top = get2byte(&data[hdr+5]);
|
|
}
|
|
top -= nByte;
|
|
assert( cellOffset + 2*nCell <= top );
|
|
put2byte(&data[hdr+5], top);
|
|
return top;
|
|
}
|
|
|
|
/*
|
|
** Return a section of the pPage->aData to the freelist.
|
|
** The first byte of the new free block is pPage->aDisk[start]
|
|
** and the size of the block is "size" bytes.
|
|
**
|
|
** Most of the effort here is involved in coalesing adjacent
|
|
** free blocks into a single big free block.
|
|
*/
|
|
static void freeSpace(MemPage *pPage, int start, int size){
|
|
int addr, pbegin, hdr;
|
|
unsigned char *data = pPage->aData;
|
|
|
|
assert( pPage->pBt!=0 );
|
|
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
|
|
assert( (start + size)<=pPage->pBt->usableSize );
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
if( size<4 ) size = 4;
|
|
|
|
#ifdef SQLITE_SECURE_DELETE
|
|
/* Overwrite deleted information with zeros when the SECURE_DELETE
|
|
** option is enabled at compile-time */
|
|
memset(&data[start], 0, size);
|
|
#endif
|
|
|
|
/* Add the space back into the linked list of freeblocks */
|
|
hdr = pPage->hdrOffset;
|
|
addr = hdr + 1;
|
|
while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
|
|
assert( pbegin<=pPage->pBt->usableSize-4 );
|
|
assert( pbegin>addr );
|
|
addr = pbegin;
|
|
}
|
|
assert( pbegin<=pPage->pBt->usableSize-4 );
|
|
assert( pbegin>addr || pbegin==0 );
|
|
put2byte(&data[addr], start);
|
|
put2byte(&data[start], pbegin);
|
|
put2byte(&data[start+2], size);
|
|
pPage->nFree += size;
|
|
|
|
/* Coalesce adjacent free blocks */
|
|
addr = pPage->hdrOffset + 1;
|
|
while( (pbegin = get2byte(&data[addr]))>0 ){
|
|
int pnext, psize;
|
|
assert( pbegin>addr );
|
|
assert( pbegin<=pPage->pBt->usableSize-4 );
|
|
pnext = get2byte(&data[pbegin]);
|
|
psize = get2byte(&data[pbegin+2]);
|
|
if( pbegin + psize + 3 >= pnext && pnext>0 ){
|
|
int frag = pnext - (pbegin+psize);
|
|
assert( frag<=data[pPage->hdrOffset+7] );
|
|
data[pPage->hdrOffset+7] -= frag;
|
|
put2byte(&data[pbegin], get2byte(&data[pnext]));
|
|
put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin);
|
|
}else{
|
|
addr = pbegin;
|
|
}
|
|
}
|
|
|
|
/* If the cell content area begins with a freeblock, remove it. */
|
|
if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
|
|
int top;
|
|
pbegin = get2byte(&data[hdr+1]);
|
|
memcpy(&data[hdr+1], &data[pbegin], 2);
|
|
top = get2byte(&data[hdr+5]);
|
|
put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2]));
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Decode the flags byte (the first byte of the header) for a page
|
|
** and initialize fields of the MemPage structure accordingly.
|
|
*/
|
|
static void decodeFlags(MemPage *pPage, int flagByte){
|
|
BtShared *pBt; /* A copy of pPage->pBt */
|
|
|
|
assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0;
|
|
pPage->zeroData = (flagByte & PTF_ZERODATA)!=0;
|
|
pPage->leaf = (flagByte & PTF_LEAF)!=0;
|
|
pPage->childPtrSize = 4*(pPage->leaf==0);
|
|
pBt = pPage->pBt;
|
|
if( flagByte & PTF_LEAFDATA ){
|
|
pPage->leafData = 1;
|
|
pPage->maxLocal = pBt->maxLeaf;
|
|
pPage->minLocal = pBt->minLeaf;
|
|
}else{
|
|
pPage->leafData = 0;
|
|
pPage->maxLocal = pBt->maxLocal;
|
|
pPage->minLocal = pBt->minLocal;
|
|
}
|
|
pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
|
|
}
|
|
|
|
/*
|
|
** Initialize the auxiliary information for a disk block.
|
|
**
|
|
** The pParent parameter must be a pointer to the MemPage which
|
|
** is the parent of the page being initialized. The root of a
|
|
** BTree has no parent and so for that page, pParent==NULL.
|
|
**
|
|
** Return SQLITE_OK on success. If we see that the page does
|
|
** not contain a well-formed database page, then return
|
|
** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
|
|
** guarantee that the page is well-formed. It only shows that
|
|
** we failed to detect any corruption.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeInitPage(
|
|
MemPage *pPage, /* The page to be initialized */
|
|
MemPage *pParent /* The parent. Might be NULL */
|
|
){
|
|
int pc; /* Address of a freeblock within pPage->aData[] */
|
|
int hdr; /* Offset to beginning of page header */
|
|
u8 *data; /* Equal to pPage->aData */
|
|
BtShared *pBt; /* The main btree structure */
|
|
int usableSize; /* Amount of usable space on each page */
|
|
int cellOffset; /* Offset from start of page to first cell pointer */
|
|
int nFree; /* Number of unused bytes on the page */
|
|
int top; /* First byte of the cell content area */
|
|
|
|
pBt = pPage->pBt;
|
|
assert( pBt!=0 );
|
|
assert( pParent==0 || pParent->pBt==pBt );
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
|
|
assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
|
|
assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
|
|
if( pPage->pParent!=pParent && (pPage->pParent!=0 || pPage->isInit) ){
|
|
/* The parent page should never change unless the file is corrupt */
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
if( pPage->isInit ) return SQLITE_OK;
|
|
if( pPage->pParent==0 && pParent!=0 ){
|
|
pPage->pParent = pParent;
|
|
sqlite3PagerRef(pParent->pDbPage);
|
|
}
|
|
hdr = pPage->hdrOffset;
|
|
data = pPage->aData;
|
|
decodeFlags(pPage, data[hdr]);
|
|
pPage->nOverflow = 0;
|
|
pPage->idxShift = 0;
|
|
usableSize = pBt->usableSize;
|
|
pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
|
|
top = get2byte(&data[hdr+5]);
|
|
pPage->nCell = get2byte(&data[hdr+3]);
|
|
if( pPage->nCell>MX_CELL(pBt) ){
|
|
/* To many cells for a single page. The page must be corrupt */
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
if( pPage->nCell==0 && pParent!=0 && pParent->pgno!=1 ){
|
|
/* All pages must have at least one cell, except for root pages */
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
|
|
/* Compute the total free space on the page */
|
|
pc = get2byte(&data[hdr+1]);
|
|
nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell);
|
|
while( pc>0 ){
|
|
int next, size;
|
|
if( pc>usableSize-4 ){
|
|
/* Free block is off the page */
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
next = get2byte(&data[pc]);
|
|
size = get2byte(&data[pc+2]);
|
|
if( next>0 && next<=pc+size+3 ){
|
|
/* Free blocks must be in accending order */
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
nFree += size;
|
|
pc = next;
|
|
}
|
|
pPage->nFree = nFree;
|
|
if( nFree>=usableSize ){
|
|
/* Free space cannot exceed total page size */
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
|
|
pPage->isInit = 1;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Set up a raw page so that it looks like a database page holding
|
|
** no entries.
|
|
*/
|
|
static void zeroPage(MemPage *pPage, int flags){
|
|
unsigned char *data = pPage->aData;
|
|
BtShared *pBt = pPage->pBt;
|
|
int hdr = pPage->hdrOffset;
|
|
int first;
|
|
|
|
assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
|
|
assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
|
|
assert( sqlite3PagerGetData(pPage->pDbPage) == data );
|
|
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
memset(&data[hdr], 0, pBt->usableSize - hdr);
|
|
data[hdr] = flags;
|
|
first = hdr + 8 + 4*((flags&PTF_LEAF)==0);
|
|
memset(&data[hdr+1], 0, 4);
|
|
data[hdr+7] = 0;
|
|
put2byte(&data[hdr+5], pBt->usableSize);
|
|
pPage->nFree = pBt->usableSize - first;
|
|
decodeFlags(pPage, flags);
|
|
pPage->hdrOffset = hdr;
|
|
pPage->cellOffset = first;
|
|
pPage->nOverflow = 0;
|
|
pPage->idxShift = 0;
|
|
pPage->nCell = 0;
|
|
pPage->isInit = 1;
|
|
}
|
|
|
|
/*
|
|
** Get a page from the pager. Initialize the MemPage.pBt and
|
|
** MemPage.aData elements if needed.
|
|
**
|
|
** If the noContent flag is set, it means that we do not care about
|
|
** the content of the page at this time. So do not go to the disk
|
|
** to fetch the content. Just fill in the content with zeros for now.
|
|
** If in the future we call sqlite3PagerWrite() on this page, that
|
|
** means we have started to be concerned about content and the disk
|
|
** read should occur at that point.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeGetPage(
|
|
BtShared *pBt, /* The btree */
|
|
Pgno pgno, /* Number of the page to fetch */
|
|
MemPage **ppPage, /* Return the page in this parameter */
|
|
int noContent /* Do not load page content if true */
|
|
){
|
|
int rc;
|
|
MemPage *pPage;
|
|
DbPage *pDbPage;
|
|
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
|
|
if( rc ) return rc;
|
|
pPage = (MemPage *)sqlite3PagerGetExtra(pDbPage);
|
|
pPage->aData = sqlite3PagerGetData(pDbPage);
|
|
pPage->pDbPage = pDbPage;
|
|
pPage->pBt = pBt;
|
|
pPage->pgno = pgno;
|
|
pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
|
|
*ppPage = pPage;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Get a page from the pager and initialize it. This routine
|
|
** is just a convenience wrapper around separate calls to
|
|
** sqlite3BtreeGetPage() and sqlite3BtreeInitPage().
|
|
*/
|
|
static int getAndInitPage(
|
|
BtShared *pBt, /* The database file */
|
|
Pgno pgno, /* Number of the page to get */
|
|
MemPage **ppPage, /* Write the page pointer here */
|
|
MemPage *pParent /* Parent of the page */
|
|
){
|
|
int rc;
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
if( pgno==0 ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0);
|
|
if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
|
|
rc = sqlite3BtreeInitPage(*ppPage, pParent);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Release a MemPage. This should be called once for each prior
|
|
** call to sqlite3BtreeGetPage.
|
|
*/
|
|
static void releasePage(MemPage *pPage){
|
|
if( pPage ){
|
|
assert( pPage->aData );
|
|
assert( pPage->pBt );
|
|
assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
|
|
assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
sqlite3PagerUnref(pPage->pDbPage);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine is called when the reference count for a page
|
|
** reaches zero. We need to unref the pParent pointer when that
|
|
** happens.
|
|
*/
|
|
static void pageDestructor(DbPage *pData, int pageSize){
|
|
MemPage *pPage;
|
|
assert( (pageSize & 7)==0 );
|
|
pPage = (MemPage *)sqlite3PagerGetExtra(pData);
|
|
assert( pPage->isInit==0 || sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
if( pPage->pParent ){
|
|
MemPage *pParent = pPage->pParent;
|
|
assert( pParent->pBt==pPage->pBt );
|
|
pPage->pParent = 0;
|
|
releasePage(pParent);
|
|
}
|
|
pPage->isInit = 0;
|
|
}
|
|
|
|
/*
|
|
** During a rollback, when the pager reloads information into the cache
|
|
** so that the cache is restored to its original state at the start of
|
|
** the transaction, for each page restored this routine is called.
|
|
**
|
|
** This routine needs to reset the extra data section at the end of the
|
|
** page to agree with the restored data.
|
|
*/
|
|
static void pageReinit(DbPage *pData, int pageSize){
|
|
MemPage *pPage;
|
|
assert( (pageSize & 7)==0 );
|
|
pPage = (MemPage *)sqlite3PagerGetExtra(pData);
|
|
if( pPage->isInit ){
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
pPage->isInit = 0;
|
|
sqlite3BtreeInitPage(pPage, pPage->pParent);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Invoke the busy handler for a btree.
|
|
*/
|
|
static int sqlite3BtreeInvokeBusyHandler(void *pArg, int n){
|
|
BtShared *pBt = (BtShared*)pArg;
|
|
assert( pBt->db );
|
|
assert( sqlite3_mutex_held(pBt->db->mutex) );
|
|
return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
|
|
}
|
|
|
|
/*
|
|
** Open a database file.
|
|
**
|
|
** zFilename is the name of the database file. If zFilename is NULL
|
|
** a new database with a random name is created. This randomly named
|
|
** database file will be deleted when sqlite3BtreeClose() is called.
|
|
** If zFilename is ":memory:" then an in-memory database is created
|
|
** that is automatically destroyed when it is closed.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeOpen(
|
|
const char *zFilename, /* Name of the file containing the BTree database */
|
|
sqlite3 *db, /* Associated database handle */
|
|
Btree **ppBtree, /* Pointer to new Btree object written here */
|
|
int flags, /* Options */
|
|
int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
|
|
){
|
|
sqlite3_vfs *pVfs; /* The VFS to use for this btree */
|
|
BtShared *pBt = 0; /* Shared part of btree structure */
|
|
Btree *p; /* Handle to return */
|
|
int rc = SQLITE_OK;
|
|
int nReserve;
|
|
unsigned char zDbHeader[100];
|
|
|
|
/* Set the variable isMemdb to true for an in-memory database, or
|
|
** false for a file-based database. This symbol is only required if
|
|
** either of the shared-data or autovacuum features are compiled
|
|
** into the library.
|
|
*/
|
|
#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
|
|
#ifdef SQLITE_OMIT_MEMORYDB
|
|
const int isMemdb = 0;
|
|
#else
|
|
const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
|
|
#endif
|
|
#endif
|
|
|
|
assert( db!=0 );
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
|
|
pVfs = db->pVfs;
|
|
p = sqlite3MallocZero(sizeof(Btree));
|
|
if( !p ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
p->inTrans = TRANS_NONE;
|
|
p->db = db;
|
|
|
|
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
|
|
/*
|
|
** If this Btree is a candidate for shared cache, try to find an
|
|
** existing BtShared object that we can share with
|
|
*/
|
|
if( (flags & BTREE_PRIVATE)==0
|
|
&& isMemdb==0
|
|
&& (db->flags & SQLITE_Vtab)==0
|
|
&& zFilename && zFilename[0]
|
|
){
|
|
if( sqlite3SharedCacheEnabled ){
|
|
int nFullPathname = pVfs->mxPathname+1;
|
|
char *zFullPathname = (char *)sqlite3_malloc(nFullPathname);
|
|
sqlite3_mutex *mutexShared;
|
|
p->sharable = 1;
|
|
if( db ){
|
|
db->flags |= SQLITE_SharedCache;
|
|
}
|
|
if( !zFullPathname ){
|
|
sqlite3_free(p);
|
|
return SQLITE_NOMEM;
|
|
}
|
|
sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
|
|
mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
|
|
sqlite3_mutex_enter(mutexShared);
|
|
for(pBt=sqlite3SharedCacheList; pBt; pBt=pBt->pNext){
|
|
assert( pBt->nRef>0 );
|
|
if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
|
|
&& sqlite3PagerVfs(pBt->pPager)==pVfs ){
|
|
p->pBt = pBt;
|
|
pBt->nRef++;
|
|
break;
|
|
}
|
|
}
|
|
sqlite3_mutex_leave(mutexShared);
|
|
sqlite3_free(zFullPathname);
|
|
}
|
|
#ifdef SQLITE_DEBUG
|
|
else{
|
|
/* In debug mode, we mark all persistent databases as sharable
|
|
** even when they are not. This exercises the locking code and
|
|
** gives more opportunity for asserts(sqlite3_mutex_held())
|
|
** statements to find locking problems.
|
|
*/
|
|
p->sharable = 1;
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
if( pBt==0 ){
|
|
/*
|
|
** The following asserts make sure that structures used by the btree are
|
|
** the right size. This is to guard against size changes that result
|
|
** when compiling on a different architecture.
|
|
*/
|
|
assert( sizeof(i64)==8 || sizeof(i64)==4 );
|
|
assert( sizeof(u64)==8 || sizeof(u64)==4 );
|
|
assert( sizeof(u32)==4 );
|
|
assert( sizeof(u16)==2 );
|
|
assert( sizeof(Pgno)==4 );
|
|
|
|
pBt = sqlite3MallocZero( sizeof(*pBt) );
|
|
if( pBt==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
goto btree_open_out;
|
|
}
|
|
pBt->busyHdr.xFunc = sqlite3BtreeInvokeBusyHandler;
|
|
pBt->busyHdr.pArg = pBt;
|
|
rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
|
|
EXTRA_SIZE, flags, vfsFlags);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
goto btree_open_out;
|
|
}
|
|
sqlite3PagerSetBusyhandler(pBt->pPager, &pBt->busyHdr);
|
|
p->pBt = pBt;
|
|
|
|
sqlite3PagerSetDestructor(pBt->pPager, pageDestructor);
|
|
sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
|
|
pBt->pCursor = 0;
|
|
pBt->pPage1 = 0;
|
|
pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
|
|
pBt->pageSize = get2byte(&zDbHeader[16]);
|
|
if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
|
|
|| ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
|
|
pBt->pageSize = 0;
|
|
sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
|
|
pBt->maxEmbedFrac = 64; /* 25% */
|
|
pBt->minEmbedFrac = 32; /* 12.5% */
|
|
pBt->minLeafFrac = 32; /* 12.5% */
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
/* If the magic name ":memory:" will create an in-memory database, then
|
|
** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
|
|
** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
|
|
** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
|
|
** regular file-name. In this case the auto-vacuum applies as per normal.
|
|
*/
|
|
if( zFilename && !isMemdb ){
|
|
pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
|
|
pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
|
|
}
|
|
#endif
|
|
nReserve = 0;
|
|
}else{
|
|
nReserve = zDbHeader[20];
|
|
pBt->maxEmbedFrac = zDbHeader[21];
|
|
pBt->minEmbedFrac = zDbHeader[22];
|
|
pBt->minLeafFrac = zDbHeader[23];
|
|
pBt->pageSizeFixed = 1;
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
|
|
pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
|
|
#endif
|
|
}
|
|
pBt->usableSize = pBt->pageSize - nReserve;
|
|
assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
|
|
sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
|
|
|
|
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
|
|
/* Add the new BtShared object to the linked list sharable BtShareds.
|
|
*/
|
|
if( p->sharable ){
|
|
sqlite3_mutex *mutexShared;
|
|
pBt->nRef = 1;
|
|
mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
|
|
if( SQLITE_THREADSAFE ){
|
|
pBt->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
|
|
if( pBt->mutex==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
db->mallocFailed = 0;
|
|
goto btree_open_out;
|
|
}
|
|
}
|
|
sqlite3_mutex_enter(mutexShared);
|
|
pBt->pNext = sqlite3SharedCacheList;
|
|
sqlite3SharedCacheList = pBt;
|
|
sqlite3_mutex_leave(mutexShared);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
|
|
/* If the new Btree uses a sharable pBtShared, then link the new
|
|
** Btree into the list of all sharable Btrees for the same connection.
|
|
** The list is kept in ascending order by pBt address.
|
|
*/
|
|
if( p->sharable ){
|
|
int i;
|
|
Btree *pSib;
|
|
for(i=0; i<db->nDb; i++){
|
|
if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
|
|
while( pSib->pPrev ){ pSib = pSib->pPrev; }
|
|
if( p->pBt<pSib->pBt ){
|
|
p->pNext = pSib;
|
|
p->pPrev = 0;
|
|
pSib->pPrev = p;
|
|
}else{
|
|
while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
|
|
pSib = pSib->pNext;
|
|
}
|
|
p->pNext = pSib->pNext;
|
|
p->pPrev = pSib;
|
|
if( p->pNext ){
|
|
p->pNext->pPrev = p;
|
|
}
|
|
pSib->pNext = p;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
*ppBtree = p;
|
|
|
|
btree_open_out:
|
|
if( rc!=SQLITE_OK ){
|
|
if( pBt && pBt->pPager ){
|
|
sqlite3PagerClose(pBt->pPager);
|
|
}
|
|
sqlite3_free(pBt);
|
|
sqlite3_free(p);
|
|
*ppBtree = 0;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Decrement the BtShared.nRef counter. When it reaches zero,
|
|
** remove the BtShared structure from the sharing list. Return
|
|
** true if the BtShared.nRef counter reaches zero and return
|
|
** false if it is still positive.
|
|
*/
|
|
static int removeFromSharingList(BtShared *pBt){
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
sqlite3_mutex *pMaster;
|
|
BtShared *pList;
|
|
int removed = 0;
|
|
|
|
assert( sqlite3_mutex_notheld(pBt->mutex) );
|
|
pMaster = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
|
|
sqlite3_mutex_enter(pMaster);
|
|
pBt->nRef--;
|
|
if( pBt->nRef<=0 ){
|
|
if( sqlite3SharedCacheList==pBt ){
|
|
sqlite3SharedCacheList = pBt->pNext;
|
|
}else{
|
|
pList = sqlite3SharedCacheList;
|
|
while( pList && pList->pNext!=pBt ){
|
|
pList=pList->pNext;
|
|
}
|
|
if( pList ){
|
|
pList->pNext = pBt->pNext;
|
|
}
|
|
}
|
|
if( SQLITE_THREADSAFE ){
|
|
sqlite3_mutex_free(pBt->mutex);
|
|
}
|
|
removed = 1;
|
|
}
|
|
sqlite3_mutex_leave(pMaster);
|
|
return removed;
|
|
#else
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Close an open database and invalidate all cursors.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeClose(Btree *p){
|
|
BtShared *pBt = p->pBt;
|
|
BtCursor *pCur;
|
|
|
|
/* Close all cursors opened via this handle. */
|
|
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
sqlite3BtreeEnter(p);
|
|
pBt->db = p->db;
|
|
pCur = pBt->pCursor;
|
|
while( pCur ){
|
|
BtCursor *pTmp = pCur;
|
|
pCur = pCur->pNext;
|
|
if( pTmp->pBtree==p ){
|
|
sqlite3BtreeCloseCursor(pTmp);
|
|
}
|
|
}
|
|
|
|
/* Rollback any active transaction and free the handle structure.
|
|
** The call to sqlite3BtreeRollback() drops any table-locks held by
|
|
** this handle.
|
|
*/
|
|
sqlite3BtreeRollback(p);
|
|
sqlite3BtreeLeave(p);
|
|
|
|
/* If there are still other outstanding references to the shared-btree
|
|
** structure, return now. The remainder of this procedure cleans
|
|
** up the shared-btree.
|
|
*/
|
|
assert( p->wantToLock==0 && p->locked==0 );
|
|
if( !p->sharable || removeFromSharingList(pBt) ){
|
|
/* The pBt is no longer on the sharing list, so we can access
|
|
** it without having to hold the mutex.
|
|
**
|
|
** Clean out and delete the BtShared object.
|
|
*/
|
|
assert( !pBt->pCursor );
|
|
sqlite3PagerClose(pBt->pPager);
|
|
if( pBt->xFreeSchema && pBt->pSchema ){
|
|
pBt->xFreeSchema(pBt->pSchema);
|
|
}
|
|
sqlite3_free(pBt->pSchema);
|
|
sqlite3_free(pBt);
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
assert( p->wantToLock==0 );
|
|
assert( p->locked==0 );
|
|
if( p->pPrev ) p->pPrev->pNext = p->pNext;
|
|
if( p->pNext ) p->pNext->pPrev = p->pPrev;
|
|
#endif
|
|
|
|
sqlite3_free(p);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Change the limit on the number of pages allowed in the cache.
|
|
**
|
|
** The maximum number of cache pages is set to the absolute
|
|
** value of mxPage. If mxPage is negative, the pager will
|
|
** operate asynchronously - it will not stop to do fsync()s
|
|
** to insure data is written to the disk surface before
|
|
** continuing. Transactions still work if synchronous is off,
|
|
** and the database cannot be corrupted if this program
|
|
** crashes. But if the operating system crashes or there is
|
|
** an abrupt power failure when synchronous is off, the database
|
|
** could be left in an inconsistent and unrecoverable state.
|
|
** Synchronous is on by default so database corruption is not
|
|
** normally a worry.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
|
|
BtShared *pBt = p->pBt;
|
|
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
sqlite3BtreeEnter(p);
|
|
sqlite3PagerSetCachesize(pBt->pPager, mxPage);
|
|
sqlite3BtreeLeave(p);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Change the way data is synced to disk in order to increase or decrease
|
|
** how well the database resists damage due to OS crashes and power
|
|
** failures. Level 1 is the same as asynchronous (no syncs() occur and
|
|
** there is a high probability of damage) Level 2 is the default. There
|
|
** is a very low but non-zero probability of damage. Level 3 reduces the
|
|
** probability of damage to near zero but with a write performance reduction.
|
|
*/
|
|
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
|
SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
|
|
BtShared *pBt = p->pBt;
|
|
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
sqlite3BtreeEnter(p);
|
|
sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
|
|
sqlite3BtreeLeave(p);
|
|
return SQLITE_OK;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Return TRUE if the given btree is set to safety level 1. In other
|
|
** words, return TRUE if no sync() occurs on the disk files.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree *p){
|
|
BtShared *pBt = p->pBt;
|
|
int rc;
|
|
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
sqlite3BtreeEnter(p);
|
|
assert( pBt && pBt->pPager );
|
|
rc = sqlite3PagerNosync(pBt->pPager);
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
|
|
/*
|
|
** Change the default pages size and the number of reserved bytes per page.
|
|
**
|
|
** The page size must be a power of 2 between 512 and 65536. If the page
|
|
** size supplied does not meet this constraint then the page size is not
|
|
** changed.
|
|
**
|
|
** Page sizes are constrained to be a power of two so that the region
|
|
** of the database file used for locking (beginning at PENDING_BYTE,
|
|
** the first byte past the 1GB boundary, 0x40000000) needs to occur
|
|
** at the beginning of a page.
|
|
**
|
|
** If parameter nReserve is less than zero, then the number of reserved
|
|
** bytes per page is left unchanged.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve){
|
|
int rc = SQLITE_OK;
|
|
BtShared *pBt = p->pBt;
|
|
sqlite3BtreeEnter(p);
|
|
if( pBt->pageSizeFixed ){
|
|
sqlite3BtreeLeave(p);
|
|
return SQLITE_READONLY;
|
|
}
|
|
if( nReserve<0 ){
|
|
nReserve = pBt->pageSize - pBt->usableSize;
|
|
}
|
|
if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
|
|
((pageSize-1)&pageSize)==0 ){
|
|
assert( (pageSize & 7)==0 );
|
|
assert( !pBt->pPage1 && !pBt->pCursor );
|
|
pBt->pageSize = pageSize;
|
|
rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
|
|
}
|
|
pBt->usableSize = pBt->pageSize - nReserve;
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return the currently defined page size
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree *p){
|
|
return p->pBt->pageSize;
|
|
}
|
|
SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree *p){
|
|
int n;
|
|
sqlite3BtreeEnter(p);
|
|
n = p->pBt->pageSize - p->pBt->usableSize;
|
|
sqlite3BtreeLeave(p);
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Set the maximum page count for a database if mxPage is positive.
|
|
** No changes are made if mxPage is 0 or negative.
|
|
** Regardless of the value of mxPage, return the maximum page count.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
|
|
int n;
|
|
sqlite3BtreeEnter(p);
|
|
n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
|
|
sqlite3BtreeLeave(p);
|
|
return n;
|
|
}
|
|
#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
|
|
|
|
/*
|
|
** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
|
|
** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
|
|
** is disabled. The default value for the auto-vacuum property is
|
|
** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
|
|
#ifdef SQLITE_OMIT_AUTOVACUUM
|
|
return SQLITE_READONLY;
|
|
#else
|
|
BtShared *pBt = p->pBt;
|
|
int rc = SQLITE_OK;
|
|
int av = (autoVacuum?1:0);
|
|
|
|
sqlite3BtreeEnter(p);
|
|
if( pBt->pageSizeFixed && av!=pBt->autoVacuum ){
|
|
rc = SQLITE_READONLY;
|
|
}else{
|
|
pBt->autoVacuum = av;
|
|
}
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Return the value of the 'auto-vacuum' property. If auto-vacuum is
|
|
** enabled 1 is returned. Otherwise 0.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *p){
|
|
#ifdef SQLITE_OMIT_AUTOVACUUM
|
|
return BTREE_AUTOVACUUM_NONE;
|
|
#else
|
|
int rc;
|
|
sqlite3BtreeEnter(p);
|
|
rc = (
|
|
(!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
|
|
(!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
|
|
BTREE_AUTOVACUUM_INCR
|
|
);
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
** Get a reference to pPage1 of the database file. This will
|
|
** also acquire a readlock on that file.
|
|
**
|
|
** SQLITE_OK is returned on success. If the file is not a
|
|
** well-formed database file, then SQLITE_CORRUPT is returned.
|
|
** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
|
|
** is returned if we run out of memory.
|
|
*/
|
|
static int lockBtree(BtShared *pBt){
|
|
int rc, pageSize;
|
|
MemPage *pPage1;
|
|
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
if( pBt->pPage1 ) return SQLITE_OK;
|
|
rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
|
|
/* Do some checking to help insure the file we opened really is
|
|
** a valid database file.
|
|
*/
|
|
rc = SQLITE_NOTADB;
|
|
if( sqlite3PagerPagecount(pBt->pPager)>0 ){
|
|
u8 *page1 = pPage1->aData;
|
|
if( memcmp(page1, zMagicHeader, 16)!=0 ){
|
|
goto page1_init_failed;
|
|
}
|
|
if( page1[18]>1 ){
|
|
pBt->readOnly = 1;
|
|
}
|
|
if( page1[19]>1 ){
|
|
goto page1_init_failed;
|
|
}
|
|
pageSize = get2byte(&page1[16]);
|
|
if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
|
|
(SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
|
|
){
|
|
goto page1_init_failed;
|
|
}
|
|
assert( (pageSize & 7)==0 );
|
|
pBt->pageSize = pageSize;
|
|
pBt->usableSize = pageSize - page1[20];
|
|
if( pBt->usableSize<500 ){
|
|
goto page1_init_failed;
|
|
}
|
|
pBt->maxEmbedFrac = page1[21];
|
|
pBt->minEmbedFrac = page1[22];
|
|
pBt->minLeafFrac = page1[23];
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
|
|
pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
|
|
#endif
|
|
}
|
|
|
|
/* maxLocal is the maximum amount of payload to store locally for
|
|
** a cell. Make sure it is small enough so that at least minFanout
|
|
** cells can will fit on one page. We assume a 10-byte page header.
|
|
** Besides the payload, the cell must store:
|
|
** 2-byte pointer to the cell
|
|
** 4-byte child pointer
|
|
** 9-byte nKey value
|
|
** 4-byte nData value
|
|
** 4-byte overflow page pointer
|
|
** So a cell consists of a 2-byte poiner, a header which is as much as
|
|
** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
|
|
** page pointer.
|
|
*/
|
|
pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23;
|
|
pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23;
|
|
pBt->maxLeaf = pBt->usableSize - 35;
|
|
pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23;
|
|
if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){
|
|
goto page1_init_failed;
|
|
}
|
|
assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
|
|
pBt->pPage1 = pPage1;
|
|
return SQLITE_OK;
|
|
|
|
page1_init_failed:
|
|
releasePage(pPage1);
|
|
pBt->pPage1 = 0;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This routine works like lockBtree() except that it also invokes the
|
|
** busy callback if there is lock contention.
|
|
*/
|
|
static int lockBtreeWithRetry(Btree *pRef){
|
|
int rc = SQLITE_OK;
|
|
|
|
assert( sqlite3BtreeHoldsMutex(pRef) );
|
|
if( pRef->inTrans==TRANS_NONE ){
|
|
u8 inTransaction = pRef->pBt->inTransaction;
|
|
btreeIntegrity(pRef);
|
|
rc = sqlite3BtreeBeginTrans(pRef, 0);
|
|
pRef->pBt->inTransaction = inTransaction;
|
|
pRef->inTrans = TRANS_NONE;
|
|
if( rc==SQLITE_OK ){
|
|
pRef->pBt->nTransaction--;
|
|
}
|
|
btreeIntegrity(pRef);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** If there are no outstanding cursors and we are not in the middle
|
|
** of a transaction but there is a read lock on the database, then
|
|
** this routine unrefs the first page of the database file which
|
|
** has the effect of releasing the read lock.
|
|
**
|
|
** If there are any outstanding cursors, this routine is a no-op.
|
|
**
|
|
** If there is a transaction in progress, this routine is a no-op.
|
|
*/
|
|
static void unlockBtreeIfUnused(BtShared *pBt){
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
|
|
if( sqlite3PagerRefcount(pBt->pPager)>=1 ){
|
|
assert( pBt->pPage1->aData );
|
|
#if 0
|
|
if( pBt->pPage1->aData==0 ){
|
|
MemPage *pPage = pBt->pPage1;
|
|
pPage->aData = sqlite3PagerGetData(pPage->pDbPage);
|
|
pPage->pBt = pBt;
|
|
pPage->pgno = 1;
|
|
}
|
|
#endif
|
|
releasePage(pBt->pPage1);
|
|
}
|
|
pBt->pPage1 = 0;
|
|
pBt->inStmt = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Create a new database by initializing the first page of the
|
|
** file.
|
|
*/
|
|
static int newDatabase(BtShared *pBt){
|
|
MemPage *pP1;
|
|
unsigned char *data;
|
|
int rc;
|
|
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
if( sqlite3PagerPagecount(pBt->pPager)>0 ) return SQLITE_OK;
|
|
pP1 = pBt->pPage1;
|
|
assert( pP1!=0 );
|
|
data = pP1->aData;
|
|
rc = sqlite3PagerWrite(pP1->pDbPage);
|
|
if( rc ) return rc;
|
|
memcpy(data, zMagicHeader, sizeof(zMagicHeader));
|
|
assert( sizeof(zMagicHeader)==16 );
|
|
put2byte(&data[16], pBt->pageSize);
|
|
data[18] = 1;
|
|
data[19] = 1;
|
|
data[20] = pBt->pageSize - pBt->usableSize;
|
|
data[21] = pBt->maxEmbedFrac;
|
|
data[22] = pBt->minEmbedFrac;
|
|
data[23] = pBt->minLeafFrac;
|
|
memset(&data[24], 0, 100-24);
|
|
zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
|
|
pBt->pageSizeFixed = 1;
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
|
|
assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
|
|
put4byte(&data[36 + 4*4], pBt->autoVacuum);
|
|
put4byte(&data[36 + 7*4], pBt->incrVacuum);
|
|
#endif
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Attempt to start a new transaction. A write-transaction
|
|
** is started if the second argument is nonzero, otherwise a read-
|
|
** transaction. If the second argument is 2 or more and exclusive
|
|
** transaction is started, meaning that no other process is allowed
|
|
** to access the database. A preexisting transaction may not be
|
|
** upgraded to exclusive by calling this routine a second time - the
|
|
** exclusivity flag only works for a new transaction.
|
|
**
|
|
** A write-transaction must be started before attempting any
|
|
** changes to the database. None of the following routines
|
|
** will work unless a transaction is started first:
|
|
**
|
|
** sqlite3BtreeCreateTable()
|
|
** sqlite3BtreeCreateIndex()
|
|
** sqlite3BtreeClearTable()
|
|
** sqlite3BtreeDropTable()
|
|
** sqlite3BtreeInsert()
|
|
** sqlite3BtreeDelete()
|
|
** sqlite3BtreeUpdateMeta()
|
|
**
|
|
** If an initial attempt to acquire the lock fails because of lock contention
|
|
** and the database was previously unlocked, then invoke the busy handler
|
|
** if there is one. But if there was previously a read-lock, do not
|
|
** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
|
|
** returned when there is already a read-lock in order to avoid a deadlock.
|
|
**
|
|
** Suppose there are two processes A and B. A has a read lock and B has
|
|
** a reserved lock. B tries to promote to exclusive but is blocked because
|
|
** of A's read lock. A tries to promote to reserved but is blocked by B.
|
|
** One or the other of the two processes must give way or there can be
|
|
** no progress. By returning SQLITE_BUSY and not invoking the busy callback
|
|
** when A already has a read lock, we encourage A to give up and let B
|
|
** proceed.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
|
|
BtShared *pBt = p->pBt;
|
|
int rc = SQLITE_OK;
|
|
|
|
sqlite3BtreeEnter(p);
|
|
pBt->db = p->db;
|
|
btreeIntegrity(p);
|
|
|
|
/* If the btree is already in a write-transaction, or it
|
|
** is already in a read-transaction and a read-transaction
|
|
** is requested, this is a no-op.
|
|
*/
|
|
if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
|
|
goto trans_begun;
|
|
}
|
|
|
|
/* Write transactions are not possible on a read-only database */
|
|
if( pBt->readOnly && wrflag ){
|
|
rc = SQLITE_READONLY;
|
|
goto trans_begun;
|
|
}
|
|
|
|
/* If another database handle has already opened a write transaction
|
|
** on this shared-btree structure and a second write transaction is
|
|
** requested, return SQLITE_BUSY.
|
|
*/
|
|
if( pBt->inTransaction==TRANS_WRITE && wrflag ){
|
|
rc = SQLITE_BUSY;
|
|
goto trans_begun;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
if( wrflag>1 ){
|
|
BtLock *pIter;
|
|
for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
|
|
if( pIter->pBtree!=p ){
|
|
rc = SQLITE_BUSY;
|
|
goto trans_begun;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
do {
|
|
if( pBt->pPage1==0 ){
|
|
rc = lockBtree(pBt);
|
|
}
|
|
|
|
if( rc==SQLITE_OK && wrflag ){
|
|
if( pBt->readOnly ){
|
|
rc = SQLITE_READONLY;
|
|
}else{
|
|
rc = sqlite3PagerBegin(pBt->pPage1->pDbPage, wrflag>1);
|
|
if( rc==SQLITE_OK ){
|
|
rc = newDatabase(pBt);
|
|
}
|
|
}
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
if( wrflag ) pBt->inStmt = 0;
|
|
}else{
|
|
unlockBtreeIfUnused(pBt);
|
|
}
|
|
}while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
|
|
sqlite3BtreeInvokeBusyHandler(pBt, 0) );
|
|
|
|
if( rc==SQLITE_OK ){
|
|
if( p->inTrans==TRANS_NONE ){
|
|
pBt->nTransaction++;
|
|
}
|
|
p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
|
|
if( p->inTrans>pBt->inTransaction ){
|
|
pBt->inTransaction = p->inTrans;
|
|
}
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
if( wrflag>1 ){
|
|
assert( !pBt->pExclusive );
|
|
pBt->pExclusive = p;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
trans_begun:
|
|
btreeIntegrity(p);
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
|
|
/*
|
|
** Set the pointer-map entries for all children of page pPage. Also, if
|
|
** pPage contains cells that point to overflow pages, set the pointer
|
|
** map entries for the overflow pages as well.
|
|
*/
|
|
static int setChildPtrmaps(MemPage *pPage){
|
|
int i; /* Counter variable */
|
|
int nCell; /* Number of cells in page pPage */
|
|
int rc; /* Return code */
|
|
BtShared *pBt = pPage->pBt;
|
|
int isInitOrig = pPage->isInit;
|
|
Pgno pgno = pPage->pgno;
|
|
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
rc = sqlite3BtreeInitPage(pPage, pPage->pParent);
|
|
if( rc!=SQLITE_OK ){
|
|
goto set_child_ptrmaps_out;
|
|
}
|
|
nCell = pPage->nCell;
|
|
|
|
for(i=0; i<nCell; i++){
|
|
u8 *pCell = findCell(pPage, i);
|
|
|
|
rc = ptrmapPutOvflPtr(pPage, pCell);
|
|
if( rc!=SQLITE_OK ){
|
|
goto set_child_ptrmaps_out;
|
|
}
|
|
|
|
if( !pPage->leaf ){
|
|
Pgno childPgno = get4byte(pCell);
|
|
rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
|
|
if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
|
|
}
|
|
}
|
|
|
|
if( !pPage->leaf ){
|
|
Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
|
|
rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
|
|
}
|
|
|
|
set_child_ptrmaps_out:
|
|
pPage->isInit = isInitOrig;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow
|
|
** page, is a pointer to page iFrom. Modify this pointer so that it points to
|
|
** iTo. Parameter eType describes the type of pointer to be modified, as
|
|
** follows:
|
|
**
|
|
** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
|
|
** page of pPage.
|
|
**
|
|
** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
|
|
** page pointed to by one of the cells on pPage.
|
|
**
|
|
** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
|
|
** overflow page in the list.
|
|
*/
|
|
static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
if( eType==PTRMAP_OVERFLOW2 ){
|
|
/* The pointer is always the first 4 bytes of the page in this case. */
|
|
if( get4byte(pPage->aData)!=iFrom ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
put4byte(pPage->aData, iTo);
|
|
}else{
|
|
int isInitOrig = pPage->isInit;
|
|
int i;
|
|
int nCell;
|
|
|
|
sqlite3BtreeInitPage(pPage, 0);
|
|
nCell = pPage->nCell;
|
|
|
|
for(i=0; i<nCell; i++){
|
|
u8 *pCell = findCell(pPage, i);
|
|
if( eType==PTRMAP_OVERFLOW1 ){
|
|
CellInfo info;
|
|
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
|
|
if( info.iOverflow ){
|
|
if( iFrom==get4byte(&pCell[info.iOverflow]) ){
|
|
put4byte(&pCell[info.iOverflow], iTo);
|
|
break;
|
|
}
|
|
}
|
|
}else{
|
|
if( get4byte(pCell)==iFrom ){
|
|
put4byte(pCell, iTo);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( i==nCell ){
|
|
if( eType!=PTRMAP_BTREE ||
|
|
get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
|
|
}
|
|
|
|
pPage->isInit = isInitOrig;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
|
|
/*
|
|
** Move the open database page pDbPage to location iFreePage in the
|
|
** database. The pDbPage reference remains valid.
|
|
*/
|
|
static int relocatePage(
|
|
BtShared *pBt, /* Btree */
|
|
MemPage *pDbPage, /* Open page to move */
|
|
u8 eType, /* Pointer map 'type' entry for pDbPage */
|
|
Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
|
|
Pgno iFreePage /* The location to move pDbPage to */
|
|
){
|
|
MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
|
|
Pgno iDbPage = pDbPage->pgno;
|
|
Pager *pPager = pBt->pPager;
|
|
int rc;
|
|
|
|
assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
|
|
eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
assert( pDbPage->pBt==pBt );
|
|
|
|
/* Move page iDbPage from its current location to page number iFreePage */
|
|
TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
|
|
iDbPage, iFreePage, iPtrPage, eType));
|
|
rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
pDbPage->pgno = iFreePage;
|
|
|
|
/* If pDbPage was a btree-page, then it may have child pages and/or cells
|
|
** that point to overflow pages. The pointer map entries for all these
|
|
** pages need to be changed.
|
|
**
|
|
** If pDbPage is an overflow page, then the first 4 bytes may store a
|
|
** pointer to a subsequent overflow page. If this is the case, then
|
|
** the pointer map needs to be updated for the subsequent overflow page.
|
|
*/
|
|
if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
|
|
rc = setChildPtrmaps(pDbPage);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
}else{
|
|
Pgno nextOvfl = get4byte(pDbPage->aData);
|
|
if( nextOvfl!=0 ){
|
|
rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Fix the database pointer on page iPtrPage that pointed at iDbPage so
|
|
** that it points at iFreePage. Also fix the pointer map entry for
|
|
** iPtrPage.
|
|
*/
|
|
if( eType!=PTRMAP_ROOTPAGE ){
|
|
rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
rc = sqlite3PagerWrite(pPtrPage->pDbPage);
|
|
if( rc!=SQLITE_OK ){
|
|
releasePage(pPtrPage);
|
|
return rc;
|
|
}
|
|
rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
|
|
releasePage(pPtrPage);
|
|
if( rc==SQLITE_OK ){
|
|
rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* Forward declaration required by incrVacuumStep(). */
|
|
static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
|
|
|
|
/*
|
|
** Perform a single step of an incremental-vacuum. If successful,
|
|
** return SQLITE_OK. If there is no work to do (and therefore no
|
|
** point in calling this function again), return SQLITE_DONE.
|
|
**
|
|
** More specificly, this function attempts to re-organize the
|
|
** database so that the last page of the file currently in use
|
|
** is no longer in use.
|
|
**
|
|
** If the nFin parameter is non-zero, the implementation assumes
|
|
** that the caller will keep calling incrVacuumStep() until
|
|
** it returns SQLITE_DONE or an error, and that nFin is the
|
|
** number of pages the database file will contain after this
|
|
** process is complete.
|
|
*/
|
|
static int incrVacuumStep(BtShared *pBt, Pgno nFin){
|
|
Pgno iLastPg; /* Last page in the database */
|
|
Pgno nFreeList; /* Number of pages still on the free-list */
|
|
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
iLastPg = pBt->nTrunc;
|
|
if( iLastPg==0 ){
|
|
iLastPg = sqlite3PagerPagecount(pBt->pPager);
|
|
}
|
|
|
|
if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
|
|
int rc;
|
|
u8 eType;
|
|
Pgno iPtrPage;
|
|
|
|
nFreeList = get4byte(&pBt->pPage1->aData[36]);
|
|
if( nFreeList==0 || nFin==iLastPg ){
|
|
return SQLITE_DONE;
|
|
}
|
|
|
|
rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
if( eType==PTRMAP_ROOTPAGE ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
|
|
if( eType==PTRMAP_FREEPAGE ){
|
|
if( nFin==0 ){
|
|
/* Remove the page from the files free-list. This is not required
|
|
** if nFin is non-zero. In that case, the free-list will be
|
|
** truncated to zero after this function returns, so it doesn't
|
|
** matter if it still contains some garbage entries.
|
|
*/
|
|
Pgno iFreePg;
|
|
MemPage *pFreePg;
|
|
rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
assert( iFreePg==iLastPg );
|
|
releasePage(pFreePg);
|
|
}
|
|
} else {
|
|
Pgno iFreePg; /* Index of free page to move pLastPg to */
|
|
MemPage *pLastPg;
|
|
|
|
rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
/* If nFin is zero, this loop runs exactly once and page pLastPg
|
|
** is swapped with the first free page pulled off the free list.
|
|
**
|
|
** On the other hand, if nFin is greater than zero, then keep
|
|
** looping until a free-page located within the first nFin pages
|
|
** of the file is found.
|
|
*/
|
|
do {
|
|
MemPage *pFreePg;
|
|
rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
releasePage(pLastPg);
|
|
return rc;
|
|
}
|
|
releasePage(pFreePg);
|
|
}while( nFin!=0 && iFreePg>nFin );
|
|
assert( iFreePg<iLastPg );
|
|
|
|
rc = sqlite3PagerWrite(pLastPg->pDbPage);
|
|
if( rc==SQLITE_OK ){
|
|
rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg);
|
|
}
|
|
releasePage(pLastPg);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
|
|
pBt->nTrunc = iLastPg - 1;
|
|
while( pBt->nTrunc==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, pBt->nTrunc) ){
|
|
pBt->nTrunc--;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** A write-transaction must be opened before calling this function.
|
|
** It performs a single unit of work towards an incremental vacuum.
|
|
**
|
|
** If the incremental vacuum is finished after this function has run,
|
|
** SQLITE_DONE is returned. If it is not finished, but no error occured,
|
|
** SQLITE_OK is returned. Otherwise an SQLite error code.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *p){
|
|
int rc;
|
|
BtShared *pBt = p->pBt;
|
|
|
|
sqlite3BtreeEnter(p);
|
|
pBt->db = p->db;
|
|
assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
|
|
if( !pBt->autoVacuum ){
|
|
rc = SQLITE_DONE;
|
|
}else{
|
|
invalidateAllOverflowCache(pBt);
|
|
rc = incrVacuumStep(pBt, 0);
|
|
}
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This routine is called prior to sqlite3PagerCommit when a transaction
|
|
** is commited for an auto-vacuum database.
|
|
**
|
|
** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
|
|
** the database file should be truncated to during the commit process.
|
|
** i.e. the database has been reorganized so that only the first *pnTrunc
|
|
** pages are in use.
|
|
*/
|
|
static int autoVacuumCommit(BtShared *pBt, Pgno *pnTrunc){
|
|
int rc = SQLITE_OK;
|
|
Pager *pPager = pBt->pPager;
|
|
#ifndef NDEBUG
|
|
int nRef = sqlite3PagerRefcount(pPager);
|
|
#endif
|
|
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
invalidateAllOverflowCache(pBt);
|
|
assert(pBt->autoVacuum);
|
|
if( !pBt->incrVacuum ){
|
|
Pgno nFin = 0;
|
|
|
|
if( pBt->nTrunc==0 ){
|
|
Pgno nFree;
|
|
Pgno nPtrmap;
|
|
const int pgsz = pBt->pageSize;
|
|
Pgno nOrig = sqlite3PagerPagecount(pBt->pPager);
|
|
|
|
if( PTRMAP_ISPAGE(pBt, nOrig) ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
if( nOrig==PENDING_BYTE_PAGE(pBt) ){
|
|
nOrig--;
|
|
}
|
|
nFree = get4byte(&pBt->pPage1->aData[36]);
|
|
nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+pgsz/5)/(pgsz/5);
|
|
nFin = nOrig - nFree - nPtrmap;
|
|
if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<=PENDING_BYTE_PAGE(pBt) ){
|
|
nFin--;
|
|
}
|
|
while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
|
|
nFin--;
|
|
}
|
|
}
|
|
|
|
while( rc==SQLITE_OK ){
|
|
rc = incrVacuumStep(pBt, nFin);
|
|
}
|
|
if( rc==SQLITE_DONE ){
|
|
assert(nFin==0 || pBt->nTrunc==0 || nFin<=pBt->nTrunc);
|
|
rc = SQLITE_OK;
|
|
if( pBt->nTrunc ){
|
|
rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
|
|
put4byte(&pBt->pPage1->aData[32], 0);
|
|
put4byte(&pBt->pPage1->aData[36], 0);
|
|
pBt->nTrunc = nFin;
|
|
}
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3PagerRollback(pPager);
|
|
}
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
*pnTrunc = pBt->nTrunc;
|
|
pBt->nTrunc = 0;
|
|
}
|
|
assert( nRef==sqlite3PagerRefcount(pPager) );
|
|
return rc;
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
** This routine does the first phase of a two-phase commit. This routine
|
|
** causes a rollback journal to be created (if it does not already exist)
|
|
** and populated with enough information so that if a power loss occurs
|
|
** the database can be restored to its original state by playing back
|
|
** the journal. Then the contents of the journal are flushed out to
|
|
** the disk. After the journal is safely on oxide, the changes to the
|
|
** database are written into the database file and flushed to oxide.
|
|
** At the end of this call, the rollback journal still exists on the
|
|
** disk and we are still holding all locks, so the transaction has not
|
|
** committed. See sqlite3BtreeCommit() for the second phase of the
|
|
** commit process.
|
|
**
|
|
** This call is a no-op if no write-transaction is currently active on pBt.
|
|
**
|
|
** Otherwise, sync the database file for the btree pBt. zMaster points to
|
|
** the name of a master journal file that should be written into the
|
|
** individual journal file, or is NULL, indicating no master journal file
|
|
** (single database transaction).
|
|
**
|
|
** When this is called, the master journal should already have been
|
|
** created, populated with this journal pointer and synced to disk.
|
|
**
|
|
** Once this is routine has returned, the only thing required to commit
|
|
** the write-transaction for this database file is to delete the journal.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
|
|
int rc = SQLITE_OK;
|
|
if( p->inTrans==TRANS_WRITE ){
|
|
BtShared *pBt = p->pBt;
|
|
Pgno nTrunc = 0;
|
|
sqlite3BtreeEnter(p);
|
|
pBt->db = p->db;
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pBt->autoVacuum ){
|
|
rc = autoVacuumCommit(pBt, &nTrunc);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
}
|
|
#endif
|
|
rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, nTrunc);
|
|
sqlite3BtreeLeave(p);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Commit the transaction currently in progress.
|
|
**
|
|
** This routine implements the second phase of a 2-phase commit. The
|
|
** sqlite3BtreeSync() routine does the first phase and should be invoked
|
|
** prior to calling this routine. The sqlite3BtreeSync() routine did
|
|
** all the work of writing information out to disk and flushing the
|
|
** contents so that they are written onto the disk platter. All this
|
|
** routine has to do is delete or truncate the rollback journal
|
|
** (which causes the transaction to commit) and drop locks.
|
|
**
|
|
** This will release the write lock on the database file. If there
|
|
** are no active cursors, it also releases the read lock.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree *p){
|
|
BtShared *pBt = p->pBt;
|
|
|
|
sqlite3BtreeEnter(p);
|
|
pBt->db = p->db;
|
|
btreeIntegrity(p);
|
|
|
|
/* If the handle has a write-transaction open, commit the shared-btrees
|
|
** transaction and set the shared state to TRANS_READ.
|
|
*/
|
|
if( p->inTrans==TRANS_WRITE ){
|
|
int rc;
|
|
assert( pBt->inTransaction==TRANS_WRITE );
|
|
assert( pBt->nTransaction>0 );
|
|
rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
pBt->inTransaction = TRANS_READ;
|
|
pBt->inStmt = 0;
|
|
}
|
|
unlockAllTables(p);
|
|
|
|
/* If the handle has any kind of transaction open, decrement the transaction
|
|
** count of the shared btree. If the transaction count reaches 0, set
|
|
** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below
|
|
** will unlock the pager.
|
|
*/
|
|
if( p->inTrans!=TRANS_NONE ){
|
|
pBt->nTransaction--;
|
|
if( 0==pBt->nTransaction ){
|
|
pBt->inTransaction = TRANS_NONE;
|
|
}
|
|
}
|
|
|
|
/* Set the handles current transaction state to TRANS_NONE and unlock
|
|
** the pager if this call closed the only read or write transaction.
|
|
*/
|
|
p->inTrans = TRANS_NONE;
|
|
unlockBtreeIfUnused(pBt);
|
|
|
|
btreeIntegrity(p);
|
|
sqlite3BtreeLeave(p);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Do both phases of a commit.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeCommit(Btree *p){
|
|
int rc;
|
|
sqlite3BtreeEnter(p);
|
|
rc = sqlite3BtreeCommitPhaseOne(p, 0);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3BtreeCommitPhaseTwo(p);
|
|
}
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/*
|
|
** Return the number of write-cursors open on this handle. This is for use
|
|
** in assert() expressions, so it is only compiled if NDEBUG is not
|
|
** defined.
|
|
**
|
|
** For the purposes of this routine, a write-cursor is any cursor that
|
|
** is capable of writing to the databse. That means the cursor was
|
|
** originally opened for writing and the cursor has not be disabled
|
|
** by having its state changed to CURSOR_FAULT.
|
|
*/
|
|
static int countWriteCursors(BtShared *pBt){
|
|
BtCursor *pCur;
|
|
int r = 0;
|
|
for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
|
|
if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
|
|
}
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** This routine sets the state to CURSOR_FAULT and the error
|
|
** code to errCode for every cursor on BtShared that pBtree
|
|
** references.
|
|
**
|
|
** Every cursor is tripped, including cursors that belong
|
|
** to other database connections that happen to be sharing
|
|
** the cache with pBtree.
|
|
**
|
|
** This routine gets called when a rollback occurs.
|
|
** All cursors using the same cache must be tripped
|
|
** to prevent them from trying to use the btree after
|
|
** the rollback. The rollback may have deleted tables
|
|
** or moved root pages, so it is not sufficient to
|
|
** save the state of the cursor. The cursor must be
|
|
** invalidated.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
|
|
BtCursor *p;
|
|
sqlite3BtreeEnter(pBtree);
|
|
for(p=pBtree->pBt->pCursor; p; p=p->pNext){
|
|
clearCursorPosition(p);
|
|
p->eState = CURSOR_FAULT;
|
|
p->skip = errCode;
|
|
}
|
|
sqlite3BtreeLeave(pBtree);
|
|
}
|
|
|
|
/*
|
|
** Rollback the transaction in progress. All cursors will be
|
|
** invalided by this operation. Any attempt to use a cursor
|
|
** that was open at the beginning of this operation will result
|
|
** in an error.
|
|
**
|
|
** This will release the write lock on the database file. If there
|
|
** are no active cursors, it also releases the read lock.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeRollback(Btree *p){
|
|
int rc;
|
|
BtShared *pBt = p->pBt;
|
|
MemPage *pPage1;
|
|
|
|
sqlite3BtreeEnter(p);
|
|
pBt->db = p->db;
|
|
rc = saveAllCursors(pBt, 0, 0);
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
if( rc!=SQLITE_OK ){
|
|
/* This is a horrible situation. An IO or malloc() error occured whilst
|
|
** trying to save cursor positions. If this is an automatic rollback (as
|
|
** the result of a constraint, malloc() failure or IO error) then
|
|
** the cache may be internally inconsistent (not contain valid trees) so
|
|
** we cannot simply return the error to the caller. Instead, abort
|
|
** all queries that may be using any of the cursors that failed to save.
|
|
*/
|
|
sqlite3BtreeTripAllCursors(p, rc);
|
|
}
|
|
#endif
|
|
btreeIntegrity(p);
|
|
unlockAllTables(p);
|
|
|
|
if( p->inTrans==TRANS_WRITE ){
|
|
int rc2;
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
pBt->nTrunc = 0;
|
|
#endif
|
|
|
|
assert( TRANS_WRITE==pBt->inTransaction );
|
|
rc2 = sqlite3PagerRollback(pBt->pPager);
|
|
if( rc2!=SQLITE_OK ){
|
|
rc = rc2;
|
|
}
|
|
|
|
/* The rollback may have destroyed the pPage1->aData value. So
|
|
** call sqlite3BtreeGetPage() on page 1 again to make
|
|
** sure pPage1->aData is set correctly. */
|
|
if( sqlite3BtreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
|
|
releasePage(pPage1);
|
|
}
|
|
assert( countWriteCursors(pBt)==0 );
|
|
pBt->inTransaction = TRANS_READ;
|
|
}
|
|
|
|
if( p->inTrans!=TRANS_NONE ){
|
|
assert( pBt->nTransaction>0 );
|
|
pBt->nTransaction--;
|
|
if( 0==pBt->nTransaction ){
|
|
pBt->inTransaction = TRANS_NONE;
|
|
}
|
|
}
|
|
|
|
p->inTrans = TRANS_NONE;
|
|
pBt->inStmt = 0;
|
|
unlockBtreeIfUnused(pBt);
|
|
|
|
btreeIntegrity(p);
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Start a statement subtransaction. The subtransaction can
|
|
** can be rolled back independently of the main transaction.
|
|
** You must start a transaction before starting a subtransaction.
|
|
** The subtransaction is ended automatically if the main transaction
|
|
** commits or rolls back.
|
|
**
|
|
** Only one subtransaction may be active at a time. It is an error to try
|
|
** to start a new subtransaction if another subtransaction is already active.
|
|
**
|
|
** Statement subtransactions are used around individual SQL statements
|
|
** that are contained within a BEGIN...COMMIT block. If a constraint
|
|
** error occurs within the statement, the effect of that one statement
|
|
** can be rolled back without having to rollback the entire transaction.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree *p){
|
|
int rc;
|
|
BtShared *pBt = p->pBt;
|
|
sqlite3BtreeEnter(p);
|
|
pBt->db = p->db;
|
|
if( (p->inTrans!=TRANS_WRITE) || pBt->inStmt ){
|
|
rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
|
}else{
|
|
assert( pBt->inTransaction==TRANS_WRITE );
|
|
rc = pBt->readOnly ? SQLITE_OK : sqlite3PagerStmtBegin(pBt->pPager);
|
|
pBt->inStmt = 1;
|
|
}
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Commit the statment subtransaction currently in progress. If no
|
|
** subtransaction is active, this is a no-op.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeCommitStmt(Btree *p){
|
|
int rc;
|
|
BtShared *pBt = p->pBt;
|
|
sqlite3BtreeEnter(p);
|
|
pBt->db = p->db;
|
|
if( pBt->inStmt && !pBt->readOnly ){
|
|
rc = sqlite3PagerStmtCommit(pBt->pPager);
|
|
}else{
|
|
rc = SQLITE_OK;
|
|
}
|
|
pBt->inStmt = 0;
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Rollback the active statement subtransaction. If no subtransaction
|
|
** is active this routine is a no-op.
|
|
**
|
|
** All cursors will be invalidated by this operation. Any attempt
|
|
** to use a cursor that was open at the beginning of this operation
|
|
** will result in an error.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeRollbackStmt(Btree *p){
|
|
int rc = SQLITE_OK;
|
|
BtShared *pBt = p->pBt;
|
|
sqlite3BtreeEnter(p);
|
|
pBt->db = p->db;
|
|
if( pBt->inStmt && !pBt->readOnly ){
|
|
rc = sqlite3PagerStmtRollback(pBt->pPager);
|
|
assert( countWriteCursors(pBt)==0 );
|
|
pBt->inStmt = 0;
|
|
}
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Default key comparison function to be used if no comparison function
|
|
** is specified on the sqlite3BtreeCursor() call.
|
|
*/
|
|
static int dfltCompare(
|
|
void *NotUsed, /* User data is not used */
|
|
int n1, const void *p1, /* First key to compare */
|
|
int n2, const void *p2 /* Second key to compare */
|
|
){
|
|
int c;
|
|
c = memcmp(p1, p2, n1<n2 ? n1 : n2);
|
|
if( c==0 ){
|
|
c = n1 - n2;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
** Create a new cursor for the BTree whose root is on the page
|
|
** iTable. The act of acquiring a cursor gets a read lock on
|
|
** the database file.
|
|
**
|
|
** If wrFlag==0, then the cursor can only be used for reading.
|
|
** If wrFlag==1, then the cursor can be used for reading or for
|
|
** writing if other conditions for writing are also met. These
|
|
** are the conditions that must be met in order for writing to
|
|
** be allowed:
|
|
**
|
|
** 1: The cursor must have been opened with wrFlag==1
|
|
**
|
|
** 2: Other database connections that share the same pager cache
|
|
** but which are not in the READ_UNCOMMITTED state may not have
|
|
** cursors open with wrFlag==0 on the same table. Otherwise
|
|
** the changes made by this write cursor would be visible to
|
|
** the read cursors in the other database connection.
|
|
**
|
|
** 3: The database must be writable (not on read-only media)
|
|
**
|
|
** 4: There must be an active transaction.
|
|
**
|
|
** No checking is done to make sure that page iTable really is the
|
|
** root page of a b-tree. If it is not, then the cursor acquired
|
|
** will not work correctly.
|
|
**
|
|
** The comparison function must be logically the same for every cursor
|
|
** on a particular table. Changing the comparison function will result
|
|
** in incorrect operations. If the comparison function is NULL, a
|
|
** default comparison function is used. The comparison function is
|
|
** always ignored for INTKEY tables.
|
|
*/
|
|
static int btreeCursor(
|
|
Btree *p, /* The btree */
|
|
int iTable, /* Root page of table to open */
|
|
int wrFlag, /* 1 to write. 0 read-only */
|
|
int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */
|
|
void *pArg, /* First arg to xCompare() */
|
|
BtCursor **ppCur /* Write new cursor here */
|
|
){
|
|
int rc;
|
|
BtCursor *pCur;
|
|
BtShared *pBt = p->pBt;
|
|
|
|
assert( sqlite3BtreeHoldsMutex(p) );
|
|
*ppCur = 0;
|
|
if( wrFlag ){
|
|
if( pBt->readOnly ){
|
|
return SQLITE_READONLY;
|
|
}
|
|
if( checkReadLocks(p, iTable, 0) ){
|
|
return SQLITE_LOCKED;
|
|
}
|
|
}
|
|
|
|
if( pBt->pPage1==0 ){
|
|
rc = lockBtreeWithRetry(p);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
if( pBt->readOnly && wrFlag ){
|
|
return SQLITE_READONLY;
|
|
}
|
|
}
|
|
pCur = sqlite3MallocZero( sizeof(*pCur) );
|
|
if( pCur==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
goto create_cursor_exception;
|
|
}
|
|
pCur->pgnoRoot = (Pgno)iTable;
|
|
if( iTable==1 && sqlite3PagerPagecount(pBt->pPager)==0 ){
|
|
rc = SQLITE_EMPTY;
|
|
goto create_cursor_exception;
|
|
}
|
|
rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
goto create_cursor_exception;
|
|
}
|
|
|
|
/* Now that no other errors can occur, finish filling in the BtCursor
|
|
** variables, link the cursor into the BtShared list and set *ppCur (the
|
|
** output argument to this function).
|
|
*/
|
|
pCur->xCompare = xCmp ? xCmp : dfltCompare;
|
|
pCur->pArg = pArg;
|
|
pCur->pBtree = p;
|
|
pCur->pBt = pBt;
|
|
pCur->wrFlag = wrFlag;
|
|
pCur->pNext = pBt->pCursor;
|
|
if( pCur->pNext ){
|
|
pCur->pNext->pPrev = pCur;
|
|
}
|
|
pBt->pCursor = pCur;
|
|
pCur->eState = CURSOR_INVALID;
|
|
*ppCur = pCur;
|
|
|
|
return SQLITE_OK;
|
|
|
|
create_cursor_exception:
|
|
if( pCur ){
|
|
releasePage(pCur->pPage);
|
|
sqlite3_free(pCur);
|
|
}
|
|
unlockBtreeIfUnused(pBt);
|
|
return rc;
|
|
}
|
|
SQLITE_PRIVATE int sqlite3BtreeCursor(
|
|
Btree *p, /* The btree */
|
|
int iTable, /* Root page of table to open */
|
|
int wrFlag, /* 1 to write. 0 read-only */
|
|
int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */
|
|
void *pArg, /* First arg to xCompare() */
|
|
BtCursor **ppCur /* Write new cursor here */
|
|
){
|
|
int rc;
|
|
sqlite3BtreeEnter(p);
|
|
p->pBt->db = p->db;
|
|
rc = btreeCursor(p, iTable, wrFlag, xCmp, pArg, ppCur);
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Close a cursor. The read lock on the database file is released
|
|
** when the last cursor is closed.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *pCur){
|
|
BtShared *pBt = pCur->pBt;
|
|
Btree *pBtree = pCur->pBtree;
|
|
|
|
sqlite3BtreeEnter(pBtree);
|
|
pBt->db = pBtree->db;
|
|
clearCursorPosition(pCur);
|
|
if( pCur->pPrev ){
|
|
pCur->pPrev->pNext = pCur->pNext;
|
|
}else{
|
|
pBt->pCursor = pCur->pNext;
|
|
}
|
|
if( pCur->pNext ){
|
|
pCur->pNext->pPrev = pCur->pPrev;
|
|
}
|
|
releasePage(pCur->pPage);
|
|
unlockBtreeIfUnused(pBt);
|
|
invalidateOverflowCache(pCur);
|
|
sqlite3_free(pCur);
|
|
sqlite3BtreeLeave(pBtree);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Make a temporary cursor by filling in the fields of pTempCur.
|
|
** The temporary cursor is not on the cursor list for the Btree.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){
|
|
assert( cursorHoldsMutex(pCur) );
|
|
memcpy(pTempCur, pCur, sizeof(*pCur));
|
|
pTempCur->pNext = 0;
|
|
pTempCur->pPrev = 0;
|
|
if( pTempCur->pPage ){
|
|
sqlite3PagerRef(pTempCur->pPage->pDbPage);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
|
|
** function above.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){
|
|
assert( cursorHoldsMutex(pCur) );
|
|
if( pCur->pPage ){
|
|
sqlite3PagerUnref(pCur->pPage->pDbPage);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Make sure the BtCursor* given in the argument has a valid
|
|
** BtCursor.info structure. If it is not already valid, call
|
|
** sqlite3BtreeParseCell() to fill it in.
|
|
**
|
|
** BtCursor.info is a cache of the information in the current cell.
|
|
** Using this cache reduces the number of calls to sqlite3BtreeParseCell().
|
|
**
|
|
** 2007-06-25: There is a bug in some versions of MSVC that cause the
|
|
** compiler to crash when getCellInfo() is implemented as a macro.
|
|
** But there is a measureable speed advantage to using the macro on gcc
|
|
** (when less compiler optimizations like -Os or -O0 are used and the
|
|
** compiler is not doing agressive inlining.) So we use a real function
|
|
** for MSVC and a macro for everything else. Ticket #2457.
|
|
*/
|
|
#ifndef NDEBUG
|
|
static void assertCellInfo(BtCursor *pCur){
|
|
CellInfo info;
|
|
memset(&info, 0, sizeof(info));
|
|
sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &info);
|
|
assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
|
|
}
|
|
#else
|
|
#define assertCellInfo(x)
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
/* Use a real function in MSVC to work around bugs in that compiler. */
|
|
static void getCellInfo(BtCursor *pCur){
|
|
if( pCur->info.nSize==0 ){
|
|
sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info);
|
|
}else{
|
|
assertCellInfo(pCur);
|
|
}
|
|
}
|
|
#else /* if not _MSC_VER */
|
|
/* Use a macro in all other compilers so that the function is inlined */
|
|
#define getCellInfo(pCur) \
|
|
if( pCur->info.nSize==0 ){ \
|
|
sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info); \
|
|
}else{ \
|
|
assertCellInfo(pCur); \
|
|
}
|
|
#endif /* _MSC_VER */
|
|
|
|
/*
|
|
** Set *pSize to the size of the buffer needed to hold the value of
|
|
** the key for the current entry. If the cursor is not pointing
|
|
** to a valid entry, *pSize is set to 0.
|
|
**
|
|
** For a table with the INTKEY flag set, this routine returns the key
|
|
** itself, not the number of bytes in the key.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
|
|
int rc;
|
|
|
|
assert( cursorHoldsMutex(pCur) );
|
|
rc = restoreOrClearCursorPosition(pCur);
|
|
if( rc==SQLITE_OK ){
|
|
assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
|
|
if( pCur->eState==CURSOR_INVALID ){
|
|
*pSize = 0;
|
|
}else{
|
|
getCellInfo(pCur);
|
|
*pSize = pCur->info.nKey;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Set *pSize to the number of bytes of data in the entry the
|
|
** cursor currently points to. Always return SQLITE_OK.
|
|
** Failure is not possible. If the cursor is not currently
|
|
** pointing to an entry (which can happen, for example, if
|
|
** the database is empty) then *pSize is set to 0.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
|
|
int rc;
|
|
|
|
assert( cursorHoldsMutex(pCur) );
|
|
rc = restoreOrClearCursorPosition(pCur);
|
|
if( rc==SQLITE_OK ){
|
|
assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
|
|
if( pCur->eState==CURSOR_INVALID ){
|
|
/* Not pointing at a valid entry - set *pSize to 0. */
|
|
*pSize = 0;
|
|
}else{
|
|
getCellInfo(pCur);
|
|
*pSize = pCur->info.nData;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Given the page number of an overflow page in the database (parameter
|
|
** ovfl), this function finds the page number of the next page in the
|
|
** linked list of overflow pages. If possible, it uses the auto-vacuum
|
|
** pointer-map data instead of reading the content of page ovfl to do so.
|
|
**
|
|
** If an error occurs an SQLite error code is returned. Otherwise:
|
|
**
|
|
** Unless pPgnoNext is NULL, the page number of the next overflow
|
|
** page in the linked list is written to *pPgnoNext. If page ovfl
|
|
** is the last page in its linked list, *pPgnoNext is set to zero.
|
|
**
|
|
** If ppPage is not NULL, *ppPage is set to the MemPage* handle
|
|
** for page ovfl. The underlying pager page may have been requested
|
|
** with the noContent flag set, so the page data accessable via
|
|
** this handle may not be trusted.
|
|
*/
|
|
static int getOverflowPage(
|
|
BtShared *pBt,
|
|
Pgno ovfl, /* Overflow page */
|
|
MemPage **ppPage, /* OUT: MemPage handle */
|
|
Pgno *pPgnoNext /* OUT: Next overflow page number */
|
|
){
|
|
Pgno next = 0;
|
|
int rc;
|
|
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
/* One of these must not be NULL. Otherwise, why call this function? */
|
|
assert(ppPage || pPgnoNext);
|
|
|
|
/* If pPgnoNext is NULL, then this function is being called to obtain
|
|
** a MemPage* reference only. No page-data is required in this case.
|
|
*/
|
|
if( !pPgnoNext ){
|
|
return sqlite3BtreeGetPage(pBt, ovfl, ppPage, 1);
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
/* Try to find the next page in the overflow list using the
|
|
** autovacuum pointer-map pages. Guess that the next page in
|
|
** the overflow list is page number (ovfl+1). If that guess turns
|
|
** out to be wrong, fall back to loading the data of page
|
|
** number ovfl to determine the next page number.
|
|
*/
|
|
if( pBt->autoVacuum ){
|
|
Pgno pgno;
|
|
Pgno iGuess = ovfl+1;
|
|
u8 eType;
|
|
|
|
while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
|
|
iGuess++;
|
|
}
|
|
|
|
if( iGuess<=sqlite3PagerPagecount(pBt->pPager) ){
|
|
rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
if( eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
|
|
next = iGuess;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if( next==0 || ppPage ){
|
|
MemPage *pPage = 0;
|
|
|
|
rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, next!=0);
|
|
assert(rc==SQLITE_OK || pPage==0);
|
|
if( next==0 && rc==SQLITE_OK ){
|
|
next = get4byte(pPage->aData);
|
|
}
|
|
|
|
if( ppPage ){
|
|
*ppPage = pPage;
|
|
}else{
|
|
releasePage(pPage);
|
|
}
|
|
}
|
|
*pPgnoNext = next;
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Copy data from a buffer to a page, or from a page to a buffer.
|
|
**
|
|
** pPayload is a pointer to data stored on database page pDbPage.
|
|
** If argument eOp is false, then nByte bytes of data are copied
|
|
** from pPayload to the buffer pointed at by pBuf. If eOp is true,
|
|
** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
|
|
** of data are copied from the buffer pBuf to pPayload.
|
|
**
|
|
** SQLITE_OK is returned on success, otherwise an error code.
|
|
*/
|
|
static int copyPayload(
|
|
void *pPayload, /* Pointer to page data */
|
|
void *pBuf, /* Pointer to buffer */
|
|
int nByte, /* Number of bytes to copy */
|
|
int eOp, /* 0 -> copy from page, 1 -> copy to page */
|
|
DbPage *pDbPage /* Page containing pPayload */
|
|
){
|
|
if( eOp ){
|
|
/* Copy data from buffer to page (a write operation) */
|
|
int rc = sqlite3PagerWrite(pDbPage);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
memcpy(pPayload, pBuf, nByte);
|
|
}else{
|
|
/* Copy data from page to buffer (a read operation) */
|
|
memcpy(pBuf, pPayload, nByte);
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** This function is used to read or overwrite payload information
|
|
** for the entry that the pCur cursor is pointing to. If the eOp
|
|
** parameter is 0, this is a read operation (data copied into
|
|
** buffer pBuf). If it is non-zero, a write (data copied from
|
|
** buffer pBuf).
|
|
**
|
|
** A total of "amt" bytes are read or written beginning at "offset".
|
|
** Data is read to or from the buffer pBuf.
|
|
**
|
|
** This routine does not make a distinction between key and data.
|
|
** It just reads or writes bytes from the payload area. Data might
|
|
** appear on the main page or be scattered out on multiple overflow
|
|
** pages.
|
|
**
|
|
** If the BtCursor.isIncrblobHandle flag is set, and the current
|
|
** cursor entry uses one or more overflow pages, this function
|
|
** allocates space for and lazily popluates the overflow page-list
|
|
** cache array (BtCursor.aOverflow). Subsequent calls use this
|
|
** cache to make seeking to the supplied offset more efficient.
|
|
**
|
|
** Once an overflow page-list cache has been allocated, it may be
|
|
** invalidated if some other cursor writes to the same table, or if
|
|
** the cursor is moved to a different row. Additionally, in auto-vacuum
|
|
** mode, the following events may invalidate an overflow page-list cache.
|
|
**
|
|
** * An incremental vacuum,
|
|
** * A commit in auto_vacuum="full" mode,
|
|
** * Creating a table (may require moving an overflow page).
|
|
*/
|
|
static int accessPayload(
|
|
BtCursor *pCur, /* Cursor pointing to entry to read from */
|
|
int offset, /* Begin reading this far into payload */
|
|
int amt, /* Read this many bytes */
|
|
unsigned char *pBuf, /* Write the bytes into this buffer */
|
|
int skipKey, /* offset begins at data if this is true */
|
|
int eOp /* zero to read. non-zero to write. */
|
|
){
|
|
unsigned char *aPayload;
|
|
int rc = SQLITE_OK;
|
|
u32 nKey;
|
|
int iIdx = 0;
|
|
MemPage *pPage = pCur->pPage; /* Btree page of current cursor entry */
|
|
BtShared *pBt; /* Btree this cursor belongs to */
|
|
|
|
assert( pPage );
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
|
|
assert( offset>=0 );
|
|
assert( cursorHoldsMutex(pCur) );
|
|
|
|
getCellInfo(pCur);
|
|
aPayload = pCur->info.pCell + pCur->info.nHeader;
|
|
nKey = (pPage->intKey ? 0 : pCur->info.nKey);
|
|
|
|
if( skipKey ){
|
|
offset += nKey;
|
|
}
|
|
if( offset+amt > nKey+pCur->info.nData ){
|
|
/* Trying to read or write past the end of the data is an error */
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
/* Check if data must be read/written to/from the btree page itself. */
|
|
if( offset<pCur->info.nLocal ){
|
|
int a = amt;
|
|
if( a+offset>pCur->info.nLocal ){
|
|
a = pCur->info.nLocal - offset;
|
|
}
|
|
rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
|
|
offset = 0;
|
|
pBuf += a;
|
|
amt -= a;
|
|
}else{
|
|
offset -= pCur->info.nLocal;
|
|
}
|
|
|
|
pBt = pCur->pBt;
|
|
if( rc==SQLITE_OK && amt>0 ){
|
|
const int ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
|
|
Pgno nextPage;
|
|
|
|
nextPage = get4byte(&aPayload[pCur->info.nLocal]);
|
|
|
|
#ifndef SQLITE_OMIT_INCRBLOB
|
|
/* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
|
|
** has not been allocated, allocate it now. The array is sized at
|
|
** one entry for each overflow page in the overflow chain. The
|
|
** page number of the first overflow page is stored in aOverflow[0],
|
|
** etc. A value of 0 in the aOverflow[] array means "not yet known"
|
|
** (the cache is lazily populated).
|
|
*/
|
|
if( pCur->isIncrblobHandle && !pCur->aOverflow ){
|
|
int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
|
|
pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
|
|
if( nOvfl && !pCur->aOverflow ){
|
|
rc = SQLITE_NOMEM;
|
|
}
|
|
}
|
|
|
|
/* If the overflow page-list cache has been allocated and the
|
|
** entry for the first required overflow page is valid, skip
|
|
** directly to it.
|
|
*/
|
|
if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
|
|
iIdx = (offset/ovflSize);
|
|
nextPage = pCur->aOverflow[iIdx];
|
|
offset = (offset%ovflSize);
|
|
}
|
|
#endif
|
|
|
|
for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
|
|
|
|
#ifndef SQLITE_OMIT_INCRBLOB
|
|
/* If required, populate the overflow page-list cache. */
|
|
if( pCur->aOverflow ){
|
|
assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
|
|
pCur->aOverflow[iIdx] = nextPage;
|
|
}
|
|
#endif
|
|
|
|
if( offset>=ovflSize ){
|
|
/* The only reason to read this page is to obtain the page
|
|
** number for the next page in the overflow chain. The page
|
|
** data is not required. So first try to lookup the overflow
|
|
** page-list cache, if any, then fall back to the getOverflowPage()
|
|
** function.
|
|
*/
|
|
#ifndef SQLITE_OMIT_INCRBLOB
|
|
if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
|
|
nextPage = pCur->aOverflow[iIdx+1];
|
|
} else
|
|
#endif
|
|
rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
|
|
offset -= ovflSize;
|
|
}else{
|
|
/* Need to read this page properly. It contains some of the
|
|
** range of data that is being read (eOp==0) or written (eOp!=0).
|
|
*/
|
|
DbPage *pDbPage;
|
|
int a = amt;
|
|
rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
|
|
if( rc==SQLITE_OK ){
|
|
aPayload = sqlite3PagerGetData(pDbPage);
|
|
nextPage = get4byte(aPayload);
|
|
if( a + offset > ovflSize ){
|
|
a = ovflSize - offset;
|
|
}
|
|
rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
|
|
sqlite3PagerUnref(pDbPage);
|
|
offset = 0;
|
|
amt -= a;
|
|
pBuf += a;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if( rc==SQLITE_OK && amt>0 ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Read part of the key associated with cursor pCur. Exactly
|
|
** "amt" bytes will be transfered into pBuf[]. The transfer
|
|
** begins at "offset".
|
|
**
|
|
** Return SQLITE_OK on success or an error code if anything goes
|
|
** wrong. An error is returned if "offset+amt" is larger than
|
|
** the available payload.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
|
|
int rc;
|
|
|
|
assert( cursorHoldsMutex(pCur) );
|
|
rc = restoreOrClearCursorPosition(pCur);
|
|
if( rc==SQLITE_OK ){
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
assert( pCur->pPage!=0 );
|
|
if( pCur->pPage->intKey ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
assert( pCur->pPage->intKey==0 );
|
|
assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
|
|
rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Read part of the data associated with cursor pCur. Exactly
|
|
** "amt" bytes will be transfered into pBuf[]. The transfer
|
|
** begins at "offset".
|
|
**
|
|
** Return SQLITE_OK on success or an error code if anything goes
|
|
** wrong. An error is returned if "offset+amt" is larger than
|
|
** the available payload.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
|
|
int rc;
|
|
|
|
assert( cursorHoldsMutex(pCur) );
|
|
rc = restoreOrClearCursorPosition(pCur);
|
|
if( rc==SQLITE_OK ){
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
assert( pCur->pPage!=0 );
|
|
assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
|
|
rc = accessPayload(pCur, offset, amt, pBuf, 1, 0);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to payload information from the entry that the
|
|
** pCur cursor is pointing to. The pointer is to the beginning of
|
|
** the key if skipKey==0 and it points to the beginning of data if
|
|
** skipKey==1. The number of bytes of available key/data is written
|
|
** into *pAmt. If *pAmt==0, then the value returned will not be
|
|
** a valid pointer.
|
|
**
|
|
** This routine is an optimization. It is common for the entire key
|
|
** and data to fit on the local page and for there to be no overflow
|
|
** pages. When that is so, this routine can be used to access the
|
|
** key and data without making a copy. If the key and/or data spills
|
|
** onto overflow pages, then accessPayload() must be used to reassembly
|
|
** the key/data and copy it into a preallocated buffer.
|
|
**
|
|
** The pointer returned by this routine looks directly into the cached
|
|
** page of the database. The data might change or move the next time
|
|
** any btree routine is called.
|
|
*/
|
|
static const unsigned char *fetchPayload(
|
|
BtCursor *pCur, /* Cursor pointing to entry to read from */
|
|
int *pAmt, /* Write the number of available bytes here */
|
|
int skipKey /* read beginning at data if this is true */
|
|
){
|
|
unsigned char *aPayload;
|
|
MemPage *pPage;
|
|
u32 nKey;
|
|
int nLocal;
|
|
|
|
assert( pCur!=0 && pCur->pPage!=0 );
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
assert( cursorHoldsMutex(pCur) );
|
|
pPage = pCur->pPage;
|
|
assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
|
|
getCellInfo(pCur);
|
|
aPayload = pCur->info.pCell;
|
|
aPayload += pCur->info.nHeader;
|
|
if( pPage->intKey ){
|
|
nKey = 0;
|
|
}else{
|
|
nKey = pCur->info.nKey;
|
|
}
|
|
if( skipKey ){
|
|
aPayload += nKey;
|
|
nLocal = pCur->info.nLocal - nKey;
|
|
}else{
|
|
nLocal = pCur->info.nLocal;
|
|
if( nLocal>nKey ){
|
|
nLocal = nKey;
|
|
}
|
|
}
|
|
*pAmt = nLocal;
|
|
return aPayload;
|
|
}
|
|
|
|
|
|
/*
|
|
** For the entry that cursor pCur is point to, return as
|
|
** many bytes of the key or data as are available on the local
|
|
** b-tree page. Write the number of available bytes into *pAmt.
|
|
**
|
|
** The pointer returned is ephemeral. The key/data may move
|
|
** or be destroyed on the next call to any Btree routine,
|
|
** including calls from other threads against the same cache.
|
|
** Hence, a mutex on the BtShared should be held prior to calling
|
|
** this routine.
|
|
**
|
|
** These routines is used to get quick access to key and data
|
|
** in the common case where no overflow pages are used.
|
|
*/
|
|
SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
|
|
assert( cursorHoldsMutex(pCur) );
|
|
if( pCur->eState==CURSOR_VALID ){
|
|
return (const void*)fetchPayload(pCur, pAmt, 0);
|
|
}
|
|
return 0;
|
|
}
|
|
SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
|
|
assert( cursorHoldsMutex(pCur) );
|
|
if( pCur->eState==CURSOR_VALID ){
|
|
return (const void*)fetchPayload(pCur, pAmt, 1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
** Move the cursor down to a new child page. The newPgno argument is the
|
|
** page number of the child page to move to.
|
|
*/
|
|
static int moveToChild(BtCursor *pCur, u32 newPgno){
|
|
int rc;
|
|
MemPage *pNewPage;
|
|
MemPage *pOldPage;
|
|
BtShared *pBt = pCur->pBt;
|
|
|
|
assert( cursorHoldsMutex(pCur) );
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
|
|
if( rc ) return rc;
|
|
pNewPage->idxParent = pCur->idx;
|
|
pOldPage = pCur->pPage;
|
|
pOldPage->idxShift = 0;
|
|
releasePage(pOldPage);
|
|
pCur->pPage = pNewPage;
|
|
pCur->idx = 0;
|
|
pCur->info.nSize = 0;
|
|
if( pNewPage->nCell<1 ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Return true if the page is the virtual root of its table.
|
|
**
|
|
** The virtual root page is the root page for most tables. But
|
|
** for the table rooted on page 1, sometime the real root page
|
|
** is empty except for the right-pointer. In such cases the
|
|
** virtual root page is the page that the right-pointer of page
|
|
** 1 is pointing to.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeIsRootPage(MemPage *pPage){
|
|
MemPage *pParent;
|
|
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
pParent = pPage->pParent;
|
|
if( pParent==0 ) return 1;
|
|
if( pParent->pgno>1 ) return 0;
|
|
if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Move the cursor up to the parent page.
|
|
**
|
|
** pCur->idx is set to the cell index that contains the pointer
|
|
** to the page we are coming from. If we are coming from the
|
|
** right-most child page then pCur->idx is set to one more than
|
|
** the largest cell index.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3BtreeMoveToParent(BtCursor *pCur){
|
|
MemPage *pParent;
|
|
MemPage *pPage;
|
|
int idxParent;
|
|
|
|
assert( cursorHoldsMutex(pCur) );
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
pPage = pCur->pPage;
|
|
assert( pPage!=0 );
|
|
assert( !sqlite3BtreeIsRootPage(pPage) );
|
|
pParent = pPage->pParent;
|
|
assert( pParent!=0 );
|
|
idxParent = pPage->idxParent;
|
|
sqlite3PagerRef(pParent->pDbPage);
|
|
releasePage(pPage);
|
|
pCur->pPage = pParent;
|
|
pCur->info.nSize = 0;
|
|
assert( pParent->idxShift==0 );
|
|
pCur->idx = idxParent;
|
|
}
|
|
|
|
/*
|
|
** Move the cursor to the root page
|
|
*/
|
|
static int moveToRoot(BtCursor *pCur){
|
|
MemPage *pRoot;
|
|
int rc = SQLITE_OK;
|
|
Btree *p = pCur->pBtree;
|
|
BtShared *pBt = p->pBt;
|
|
|
|
assert( cursorHoldsMutex(pCur) );
|
|
assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
|
|
assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
|
|
assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
|
|
if( pCur->eState>=CURSOR_REQUIRESEEK ){
|
|
if( pCur->eState==CURSOR_FAULT ){
|
|
return pCur->skip;
|
|
}
|
|
clearCursorPosition(pCur);
|
|
}
|
|
pRoot = pCur->pPage;
|
|
if( pRoot && pRoot->pgno==pCur->pgnoRoot ){
|
|
assert( pRoot->isInit );
|
|
}else{
|
|
if(
|
|
SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0))
|
|
){
|
|
pCur->eState = CURSOR_INVALID;
|
|
return rc;
|
|
}
|
|
releasePage(pCur->pPage);
|
|
pCur->pPage = pRoot;
|
|
}
|
|
pCur->idx = 0;
|
|
pCur->info.nSize = 0;
|
|
if( pRoot->nCell==0 && !pRoot->leaf ){
|
|
Pgno subpage;
|
|
assert( pRoot->pgno==1 );
|
|
subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
|
|
assert( subpage>0 );
|
|
pCur->eState = CURSOR_VALID;
|
|
rc = moveToChild(pCur, subpage);
|
|
}
|
|
pCur->eState = ((pCur->pPage->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Move the cursor down to the left-most leaf entry beneath the
|
|
** entry to which it is currently pointing.
|
|
**
|
|
** The left-most leaf is the one with the smallest key - the first
|
|
** in ascending order.
|
|
*/
|
|
static int moveToLeftmost(BtCursor *pCur){
|
|
Pgno pgno;
|
|
int rc = SQLITE_OK;
|
|
MemPage *pPage;
|
|
|
|
assert( cursorHoldsMutex(pCur) );
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
|
|
assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
|
|
pgno = get4byte(findCell(pPage, pCur->idx));
|
|
rc = moveToChild(pCur, pgno);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Move the cursor down to the right-most leaf entry beneath the
|
|
** page to which it is currently pointing. Notice the difference
|
|
** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
|
|
** finds the left-most entry beneath the *entry* whereas moveToRightmost()
|
|
** finds the right-most entry beneath the *page*.
|
|
**
|
|
** The right-most entry is the one with the largest key - the last
|
|
** key in ascending order.
|
|
*/
|
|
static int moveToRightmost(BtCursor *pCur){
|
|
Pgno pgno;
|
|
int rc = SQLITE_OK;
|
|
MemPage *pPage;
|
|
|
|
assert( cursorHoldsMutex(pCur) );
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
|
|
pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
|
|
pCur->idx = pPage->nCell;
|
|
rc = moveToChild(pCur, pgno);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
pCur->idx = pPage->nCell - 1;
|
|
pCur->info.nSize = 0;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Move the cursor to the first entry in the table. Return SQLITE_OK
|
|
** on success. Set *pRes to 0 if the cursor actually points to something
|
|
** or set *pRes to 1 if the table is empty.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
|
|
int rc;
|
|
|
|
assert( cursorHoldsMutex(pCur) );
|
|
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
|
|
rc = moveToRoot(pCur);
|
|
if( rc==SQLITE_OK ){
|
|
if( pCur->eState==CURSOR_INVALID ){
|
|
assert( pCur->pPage->nCell==0 );
|
|
*pRes = 1;
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
assert( pCur->pPage->nCell>0 );
|
|
*pRes = 0;
|
|
rc = moveToLeftmost(pCur);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* Move the cursor to the last entry in the table. Return SQLITE_OK
|
|
** on success. Set *pRes to 0 if the cursor actually points to something
|
|
** or set *pRes to 1 if the table is empty.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
|
|
int rc;
|
|
|
|
assert( cursorHoldsMutex(pCur) );
|
|
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
|
|
rc = moveToRoot(pCur);
|
|
if( rc==SQLITE_OK ){
|
|
if( CURSOR_INVALID==pCur->eState ){
|
|
assert( pCur->pPage->nCell==0 );
|
|
*pRes = 1;
|
|
}else{
|
|
assert( pCur->eState==CURSOR_VALID );
|
|
*pRes = 0;
|
|
rc = moveToRightmost(pCur);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* Move the cursor so that it points to an entry near pKey/nKey.
|
|
** Return a success code.
|
|
**
|
|
** For INTKEY tables, only the nKey parameter is used. pKey is
|
|
** ignored. For other tables, nKey is the number of bytes of data
|
|
** in pKey. The comparison function specified when the cursor was
|
|
** created is used to compare keys.
|
|
**
|
|
** If an exact match is not found, then the cursor is always
|
|
** left pointing at a leaf page which would hold the entry if it
|
|
** were present. The cursor might point to an entry that comes
|
|
** before or after the key.
|
|
**
|
|
** The result of comparing the key with the entry to which the
|
|
** cursor is written to *pRes if pRes!=NULL. The meaning of
|
|
** this value is as follows:
|
|
**
|
|
** *pRes<0 The cursor is left pointing at an entry that
|
|
** is smaller than pKey or if the table is empty
|
|
** and the cursor is therefore left point to nothing.
|
|
**
|
|
** *pRes==0 The cursor is left pointing at an entry that
|
|
** exactly matches pKey.
|
|
**
|
|
** *pRes>0 The cursor is left pointing at an entry that
|
|
** is larger than pKey.
|
|
**
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeMoveto(
|
|
BtCursor *pCur, /* The cursor to be moved */
|
|
const void *pKey, /* The key content for indices. Not used by tables */
|
|
i64 nKey, /* Size of pKey. Or the key for tables */
|
|
int biasRight, /* If true, bias the search to the high end */
|
|
int *pRes /* Search result flag */
|
|
){
|
|
int rc;
|
|
|
|
assert( cursorHoldsMutex(pCur) );
|
|
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
|
|
rc = moveToRoot(pCur);
|
|
if( rc ){
|
|
return rc;
|
|
}
|
|
assert( pCur->pPage );
|
|
assert( pCur->pPage->isInit );
|
|
if( pCur->eState==CURSOR_INVALID ){
|
|
*pRes = -1;
|
|
assert( pCur->pPage->nCell==0 );
|
|
return SQLITE_OK;
|
|
}
|
|
for(;;){
|
|
int lwr, upr;
|
|
Pgno chldPg;
|
|
MemPage *pPage = pCur->pPage;
|
|
int c = -1; /* pRes return if table is empty must be -1 */
|
|
lwr = 0;
|
|
upr = pPage->nCell-1;
|
|
if( !pPage->intKey && pKey==0 ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
if( biasRight ){
|
|
pCur->idx = upr;
|
|
}else{
|
|
pCur->idx = (upr+lwr)/2;
|
|
}
|
|
if( lwr<=upr ) for(;;){
|
|
void *pCellKey;
|
|
i64 nCellKey;
|
|
pCur->info.nSize = 0;
|
|
if( pPage->intKey ){
|
|
u8 *pCell;
|
|
pCell = findCell(pPage, pCur->idx) + pPage->childPtrSize;
|
|
if( pPage->hasData ){
|
|
u32 dummy;
|
|
pCell += getVarint32(pCell, &dummy);
|
|
}
|
|
getVarint(pCell, (u64 *)&nCellKey);
|
|
if( nCellKey<nKey ){
|
|
c = -1;
|
|
}else if( nCellKey>nKey ){
|
|
c = +1;
|
|
}else{
|
|
c = 0;
|
|
}
|
|
}else{
|
|
int available;
|
|
pCellKey = (void *)fetchPayload(pCur, &available, 0);
|
|
nCellKey = pCur->info.nKey;
|
|
if( available>=nCellKey ){
|
|
c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
|
|
}else{
|
|
pCellKey = sqlite3_malloc( nCellKey );
|
|
if( pCellKey==0 ) return SQLITE_NOMEM;
|
|
rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey);
|
|
c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
|
|
sqlite3_free(pCellKey);
|
|
if( rc ){
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
if( c==0 ){
|
|
if( pPage->leafData && !pPage->leaf ){
|
|
lwr = pCur->idx;
|
|
upr = lwr - 1;
|
|
break;
|
|
}else{
|
|
if( pRes ) *pRes = 0;
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
if( c<0 ){
|
|
lwr = pCur->idx+1;
|
|
}else{
|
|
upr = pCur->idx-1;
|
|
}
|
|
if( lwr>upr ){
|
|
break;
|
|
}
|
|
pCur->idx = (lwr+upr)/2;
|
|
}
|
|
assert( lwr==upr+1 );
|
|
assert( pPage->isInit );
|
|
if( pPage->leaf ){
|
|
chldPg = 0;
|
|
}else if( lwr>=pPage->nCell ){
|
|
chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
|
|
}else{
|
|
chldPg = get4byte(findCell(pPage, lwr));
|
|
}
|
|
if( chldPg==0 ){
|
|
assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
|
|
if( pRes ) *pRes = c;
|
|
return SQLITE_OK;
|
|
}
|
|
pCur->idx = lwr;
|
|
pCur->info.nSize = 0;
|
|
rc = moveToChild(pCur, chldPg);
|
|
if( rc ){
|
|
return rc;
|
|
}
|
|
}
|
|
/* NOT REACHED */
|
|
}
|
|
|
|
|
|
/*
|
|
** Return TRUE if the cursor is not pointing at an entry of the table.
|
|
**
|
|
** TRUE will be returned after a call to sqlite3BtreeNext() moves
|
|
** past the last entry in the table or sqlite3BtreePrev() moves past
|
|
** the first entry. TRUE is also returned if the table is empty.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor *pCur){
|
|
/* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
|
|
** have been deleted? This API will need to change to return an error code
|
|
** as well as the boolean result value.
|
|
*/
|
|
return (CURSOR_VALID!=pCur->eState);
|
|
}
|
|
|
|
/*
|
|
** Return the database connection handle for a cursor.
|
|
*/
|
|
SQLITE_PRIVATE sqlite3 *sqlite3BtreeCursorDb(const BtCursor *pCur){
|
|
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
|
|
return pCur->pBtree->db;
|
|
}
|
|
|
|
/*
|
|
** Advance the cursor to the next entry in the database. If
|
|
** successful then set *pRes=0. If the cursor
|
|
** was already pointing to the last entry in the database before
|
|
** this routine was called, then set *pRes=1.
|
|
*/
|
|
static int btreeNext(BtCursor *pCur, int *pRes){
|
|
int rc;
|
|
MemPage *pPage;
|
|
|
|
assert( cursorHoldsMutex(pCur) );
|
|
rc = restoreOrClearCursorPosition(pCur);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
assert( pRes!=0 );
|
|
pPage = pCur->pPage;
|
|
if( CURSOR_INVALID==pCur->eState ){
|
|
*pRes = 1;
|
|
return SQLITE_OK;
|
|
}
|
|
if( pCur->skip>0 ){
|
|
pCur->skip = 0;
|
|
*pRes = 0;
|
|
return SQLITE_OK;
|
|
}
|
|
pCur->skip = 0;
|
|
|
|
assert( pPage->isInit );
|
|
assert( pCur->idx<pPage->nCell );
|
|
|
|
pCur->idx++;
|
|
pCur->info.nSize = 0;
|
|
if( pCur->idx>=pPage->nCell ){
|
|
if( !pPage->leaf ){
|
|
rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
|
|
if( rc ) return rc;
|
|
rc = moveToLeftmost(pCur);
|
|
*pRes = 0;
|
|
return rc;
|
|
}
|
|
do{
|
|
if( sqlite3BtreeIsRootPage(pPage) ){
|
|
*pRes = 1;
|
|
pCur->eState = CURSOR_INVALID;
|
|
return SQLITE_OK;
|
|
}
|
|
sqlite3BtreeMoveToParent(pCur);
|
|
pPage = pCur->pPage;
|
|
}while( pCur->idx>=pPage->nCell );
|
|
*pRes = 0;
|
|
if( pPage->leafData ){
|
|
rc = sqlite3BtreeNext(pCur, pRes);
|
|
}else{
|
|
rc = SQLITE_OK;
|
|
}
|
|
return rc;
|
|
}
|
|
*pRes = 0;
|
|
if( pPage->leaf ){
|
|
return SQLITE_OK;
|
|
}
|
|
rc = moveToLeftmost(pCur);
|
|
return rc;
|
|
}
|
|
SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
|
|
int rc;
|
|
assert( cursorHoldsMutex(pCur) );
|
|
rc = btreeNext(pCur, pRes);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Step the cursor to the back to the previous entry in the database. If
|
|
** successful then set *pRes=0. If the cursor
|
|
** was already pointing to the first entry in the database before
|
|
** this routine was called, then set *pRes=1.
|
|
*/
|
|
static int btreePrevious(BtCursor *pCur, int *pRes){
|
|
int rc;
|
|
Pgno pgno;
|
|
MemPage *pPage;
|
|
|
|
assert( cursorHoldsMutex(pCur) );
|
|
rc = restoreOrClearCursorPosition(pCur);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
if( CURSOR_INVALID==pCur->eState ){
|
|
*pRes = 1;
|
|
return SQLITE_OK;
|
|
}
|
|
if( pCur->skip<0 ){
|
|
pCur->skip = 0;
|
|
*pRes = 0;
|
|
return SQLITE_OK;
|
|
}
|
|
pCur->skip = 0;
|
|
|
|
pPage = pCur->pPage;
|
|
assert( pPage->isInit );
|
|
assert( pCur->idx>=0 );
|
|
if( !pPage->leaf ){
|
|
pgno = get4byte( findCell(pPage, pCur->idx) );
|
|
rc = moveToChild(pCur, pgno);
|
|
if( rc ){
|
|
return rc;
|
|
}
|
|
rc = moveToRightmost(pCur);
|
|
}else{
|
|
while( pCur->idx==0 ){
|
|
if( sqlite3BtreeIsRootPage(pPage) ){
|
|
pCur->eState = CURSOR_INVALID;
|
|
*pRes = 1;
|
|
return SQLITE_OK;
|
|
}
|
|
sqlite3BtreeMoveToParent(pCur);
|
|
pPage = pCur->pPage;
|
|
}
|
|
pCur->idx--;
|
|
pCur->info.nSize = 0;
|
|
if( pPage->leafData && !pPage->leaf ){
|
|
rc = sqlite3BtreePrevious(pCur, pRes);
|
|
}else{
|
|
rc = SQLITE_OK;
|
|
}
|
|
}
|
|
*pRes = 0;
|
|
return rc;
|
|
}
|
|
SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
|
|
int rc;
|
|
assert( cursorHoldsMutex(pCur) );
|
|
rc = btreePrevious(pCur, pRes);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Allocate a new page from the database file.
|
|
**
|
|
** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
|
|
** has already been called on the new page.) The new page has also
|
|
** been referenced and the calling routine is responsible for calling
|
|
** sqlite3PagerUnref() on the new page when it is done.
|
|
**
|
|
** SQLITE_OK is returned on success. Any other return value indicates
|
|
** an error. *ppPage and *pPgno are undefined in the event of an error.
|
|
** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
|
|
**
|
|
** If the "nearby" parameter is not 0, then a (feeble) effort is made to
|
|
** locate a page close to the page number "nearby". This can be used in an
|
|
** attempt to keep related pages close to each other in the database file,
|
|
** which in turn can make database access faster.
|
|
**
|
|
** If the "exact" parameter is not 0, and the page-number nearby exists
|
|
** anywhere on the free-list, then it is guarenteed to be returned. This
|
|
** is only used by auto-vacuum databases when allocating a new table.
|
|
*/
|
|
static int allocateBtreePage(
|
|
BtShared *pBt,
|
|
MemPage **ppPage,
|
|
Pgno *pPgno,
|
|
Pgno nearby,
|
|
u8 exact
|
|
){
|
|
MemPage *pPage1;
|
|
int rc;
|
|
int n; /* Number of pages on the freelist */
|
|
int k; /* Number of leaves on the trunk of the freelist */
|
|
MemPage *pTrunk = 0;
|
|
MemPage *pPrevTrunk = 0;
|
|
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
pPage1 = pBt->pPage1;
|
|
n = get4byte(&pPage1->aData[36]);
|
|
if( n>0 ){
|
|
/* There are pages on the freelist. Reuse one of those pages. */
|
|
Pgno iTrunk;
|
|
u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
|
|
|
|
/* If the 'exact' parameter was true and a query of the pointer-map
|
|
** shows that the page 'nearby' is somewhere on the free-list, then
|
|
** the entire-list will be searched for that page.
|
|
*/
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( exact && nearby<=sqlite3PagerPagecount(pBt->pPager) ){
|
|
u8 eType;
|
|
assert( nearby>0 );
|
|
assert( pBt->autoVacuum );
|
|
rc = ptrmapGet(pBt, nearby, &eType, 0);
|
|
if( rc ) return rc;
|
|
if( eType==PTRMAP_FREEPAGE ){
|
|
searchList = 1;
|
|
}
|
|
*pPgno = nearby;
|
|
}
|
|
#endif
|
|
|
|
/* Decrement the free-list count by 1. Set iTrunk to the index of the
|
|
** first free-list trunk page. iPrevTrunk is initially 1.
|
|
*/
|
|
rc = sqlite3PagerWrite(pPage1->pDbPage);
|
|
if( rc ) return rc;
|
|
put4byte(&pPage1->aData[36], n-1);
|
|
|
|
/* The code within this loop is run only once if the 'searchList' variable
|
|
** is not true. Otherwise, it runs once for each trunk-page on the
|
|
** free-list until the page 'nearby' is located.
|
|
*/
|
|
do {
|
|
pPrevTrunk = pTrunk;
|
|
if( pPrevTrunk ){
|
|
iTrunk = get4byte(&pPrevTrunk->aData[0]);
|
|
}else{
|
|
iTrunk = get4byte(&pPage1->aData[32]);
|
|
}
|
|
rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
|
|
if( rc ){
|
|
pTrunk = 0;
|
|
goto end_allocate_page;
|
|
}
|
|
|
|
k = get4byte(&pTrunk->aData[4]);
|
|
if( k==0 && !searchList ){
|
|
/* The trunk has no leaves and the list is not being searched.
|
|
** So extract the trunk page itself and use it as the newly
|
|
** allocated page */
|
|
assert( pPrevTrunk==0 );
|
|
rc = sqlite3PagerWrite(pTrunk->pDbPage);
|
|
if( rc ){
|
|
goto end_allocate_page;
|
|
}
|
|
*pPgno = iTrunk;
|
|
memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
|
|
*ppPage = pTrunk;
|
|
pTrunk = 0;
|
|
TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
|
|
}else if( k>pBt->usableSize/4 - 8 ){
|
|
/* Value of k is out of range. Database corruption */
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
goto end_allocate_page;
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
}else if( searchList && nearby==iTrunk ){
|
|
/* The list is being searched and this trunk page is the page
|
|
** to allocate, regardless of whether it has leaves.
|
|
*/
|
|
assert( *pPgno==iTrunk );
|
|
*ppPage = pTrunk;
|
|
searchList = 0;
|
|
rc = sqlite3PagerWrite(pTrunk->pDbPage);
|
|
if( rc ){
|
|
goto end_allocate_page;
|
|
}
|
|
if( k==0 ){
|
|
if( !pPrevTrunk ){
|
|
memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
|
|
}else{
|
|
memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
|
|
}
|
|
}else{
|
|
/* The trunk page is required by the caller but it contains
|
|
** pointers to free-list leaves. The first leaf becomes a trunk
|
|
** page in this case.
|
|
*/
|
|
MemPage *pNewTrunk;
|
|
Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
|
|
rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
goto end_allocate_page;
|
|
}
|
|
rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
|
|
if( rc!=SQLITE_OK ){
|
|
releasePage(pNewTrunk);
|
|
goto end_allocate_page;
|
|
}
|
|
memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
|
|
put4byte(&pNewTrunk->aData[4], k-1);
|
|
memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
|
|
releasePage(pNewTrunk);
|
|
if( !pPrevTrunk ){
|
|
put4byte(&pPage1->aData[32], iNewTrunk);
|
|
}else{
|
|
rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
|
|
if( rc ){
|
|
goto end_allocate_page;
|
|
}
|
|
put4byte(&pPrevTrunk->aData[0], iNewTrunk);
|
|
}
|
|
}
|
|
pTrunk = 0;
|
|
TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
|
|
#endif
|
|
}else{
|
|
/* Extract a leaf from the trunk */
|
|
int closest;
|
|
Pgno iPage;
|
|
unsigned char *aData = pTrunk->aData;
|
|
rc = sqlite3PagerWrite(pTrunk->pDbPage);
|
|
if( rc ){
|
|
goto end_allocate_page;
|
|
}
|
|
if( nearby>0 ){
|
|
int i, dist;
|
|
closest = 0;
|
|
dist = get4byte(&aData[8]) - nearby;
|
|
if( dist<0 ) dist = -dist;
|
|
for(i=1; i<k; i++){
|
|
int d2 = get4byte(&aData[8+i*4]) - nearby;
|
|
if( d2<0 ) d2 = -d2;
|
|
if( d2<dist ){
|
|
closest = i;
|
|
dist = d2;
|
|
}
|
|
}
|
|
}else{
|
|
closest = 0;
|
|
}
|
|
|
|
iPage = get4byte(&aData[8+closest*4]);
|
|
if( !searchList || iPage==nearby ){
|
|
*pPgno = iPage;
|
|
if( *pPgno>sqlite3PagerPagecount(pBt->pPager) ){
|
|
/* Free page off the end of the file */
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
|
|
": %d more free pages\n",
|
|
*pPgno, closest+1, k, pTrunk->pgno, n-1));
|
|
if( closest<k-1 ){
|
|
memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
|
|
}
|
|
put4byte(&aData[4], k-1);
|
|
rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 1);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3PagerDontRollback((*ppPage)->pDbPage);
|
|
rc = sqlite3PagerWrite((*ppPage)->pDbPage);
|
|
if( rc!=SQLITE_OK ){
|
|
releasePage(*ppPage);
|
|
}
|
|
}
|
|
searchList = 0;
|
|
}
|
|
}
|
|
releasePage(pPrevTrunk);
|
|
pPrevTrunk = 0;
|
|
}while( searchList );
|
|
}else{
|
|
/* There are no pages on the freelist, so create a new page at the
|
|
** end of the file */
|
|
*pPgno = sqlite3PagerPagecount(pBt->pPager) + 1;
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pBt->nTrunc ){
|
|
/* An incr-vacuum has already run within this transaction. So the
|
|
** page to allocate is not from the physical end of the file, but
|
|
** at pBt->nTrunc.
|
|
*/
|
|
*pPgno = pBt->nTrunc+1;
|
|
if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
|
|
(*pPgno)++;
|
|
}
|
|
}
|
|
if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
|
|
/* If *pPgno refers to a pointer-map page, allocate two new pages
|
|
** at the end of the file instead of one. The first allocated page
|
|
** becomes a new pointer-map page, the second is used by the caller.
|
|
*/
|
|
TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
|
|
assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
|
|
(*pPgno)++;
|
|
if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; }
|
|
}
|
|
if( pBt->nTrunc ){
|
|
pBt->nTrunc = *pPgno;
|
|
}
|
|
#endif
|
|
|
|
assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
|
|
rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0);
|
|
if( rc ) return rc;
|
|
rc = sqlite3PagerWrite((*ppPage)->pDbPage);
|
|
if( rc!=SQLITE_OK ){
|
|
releasePage(*ppPage);
|
|
}
|
|
TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
|
|
}
|
|
|
|
assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
|
|
|
|
end_allocate_page:
|
|
releasePage(pTrunk);
|
|
releasePage(pPrevTrunk);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Add a page of the database file to the freelist.
|
|
**
|
|
** sqlite3PagerUnref() is NOT called for pPage.
|
|
*/
|
|
static int freePage(MemPage *pPage){
|
|
BtShared *pBt = pPage->pBt;
|
|
MemPage *pPage1 = pBt->pPage1;
|
|
int rc, n, k;
|
|
|
|
/* Prepare the page for freeing */
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
assert( pPage->pgno>1 );
|
|
pPage->isInit = 0;
|
|
releasePage(pPage->pParent);
|
|
pPage->pParent = 0;
|
|
|
|
/* Increment the free page count on pPage1 */
|
|
rc = sqlite3PagerWrite(pPage1->pDbPage);
|
|
if( rc ) return rc;
|
|
n = get4byte(&pPage1->aData[36]);
|
|
put4byte(&pPage1->aData[36], n+1);
|
|
|
|
#ifdef SQLITE_SECURE_DELETE
|
|
/* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
|
|
** always fully overwrite deleted information with zeros.
|
|
*/
|
|
rc = sqlite3PagerWrite(pPage->pDbPage);
|
|
if( rc ) return rc;
|
|
memset(pPage->aData, 0, pPage->pBt->pageSize);
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
/* If the database supports auto-vacuum, write an entry in the pointer-map
|
|
** to indicate that the page is free.
|
|
*/
|
|
if( pBt->autoVacuum ){
|
|
rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0);
|
|
if( rc ) return rc;
|
|
}
|
|
#endif
|
|
|
|
if( n==0 ){
|
|
/* This is the first free page */
|
|
rc = sqlite3PagerWrite(pPage->pDbPage);
|
|
if( rc ) return rc;
|
|
memset(pPage->aData, 0, 8);
|
|
put4byte(&pPage1->aData[32], pPage->pgno);
|
|
TRACE(("FREE-PAGE: %d first\n", pPage->pgno));
|
|
}else{
|
|
/* Other free pages already exist. Retrive the first trunk page
|
|
** of the freelist and find out how many leaves it has. */
|
|
MemPage *pTrunk;
|
|
rc = sqlite3BtreeGetPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk, 0);
|
|
if( rc ) return rc;
|
|
k = get4byte(&pTrunk->aData[4]);
|
|
if( k>=pBt->usableSize/4 - 8 ){
|
|
/* The trunk is full. Turn the page being freed into a new
|
|
** trunk page with no leaves. */
|
|
rc = sqlite3PagerWrite(pPage->pDbPage);
|
|
if( rc==SQLITE_OK ){
|
|
put4byte(pPage->aData, pTrunk->pgno);
|
|
put4byte(&pPage->aData[4], 0);
|
|
put4byte(&pPage1->aData[32], pPage->pgno);
|
|
TRACE(("FREE-PAGE: %d new trunk page replacing %d\n",
|
|
pPage->pgno, pTrunk->pgno));
|
|
}
|
|
}else if( k<0 ){
|
|
rc = SQLITE_CORRUPT;
|
|
}else{
|
|
/* Add the newly freed page as a leaf on the current trunk */
|
|
rc = sqlite3PagerWrite(pTrunk->pDbPage);
|
|
if( rc==SQLITE_OK ){
|
|
put4byte(&pTrunk->aData[4], k+1);
|
|
put4byte(&pTrunk->aData[8+k*4], pPage->pgno);
|
|
#ifndef SQLITE_SECURE_DELETE
|
|
sqlite3PagerDontWrite(pPage->pDbPage);
|
|
#endif
|
|
}
|
|
TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
|
|
}
|
|
releasePage(pTrunk);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Free any overflow pages associated with the given Cell.
|
|
*/
|
|
static int clearCell(MemPage *pPage, unsigned char *pCell){
|
|
BtShared *pBt = pPage->pBt;
|
|
CellInfo info;
|
|
Pgno ovflPgno;
|
|
int rc;
|
|
int nOvfl;
|
|
int ovflPageSize;
|
|
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
|
|
if( info.iOverflow==0 ){
|
|
return SQLITE_OK; /* No overflow pages. Return without doing anything */
|
|
}
|
|
ovflPgno = get4byte(&pCell[info.iOverflow]);
|
|
ovflPageSize = pBt->usableSize - 4;
|
|
nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
|
|
assert( ovflPgno==0 || nOvfl>0 );
|
|
while( nOvfl-- ){
|
|
MemPage *pOvfl;
|
|
if( ovflPgno==0 || ovflPgno>sqlite3PagerPagecount(pBt->pPager) ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
|
|
rc = getOverflowPage(pBt, ovflPgno, &pOvfl, (nOvfl==0)?0:&ovflPgno);
|
|
if( rc ) return rc;
|
|
rc = freePage(pOvfl);
|
|
sqlite3PagerUnref(pOvfl->pDbPage);
|
|
if( rc ) return rc;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Create the byte sequence used to represent a cell on page pPage
|
|
** and write that byte sequence into pCell[]. Overflow pages are
|
|
** allocated and filled in as necessary. The calling procedure
|
|
** is responsible for making sure sufficient space has been allocated
|
|
** for pCell[].
|
|
**
|
|
** Note that pCell does not necessary need to point to the pPage->aData
|
|
** area. pCell might point to some temporary storage. The cell will
|
|
** be constructed in this temporary area then copied into pPage->aData
|
|
** later.
|
|
*/
|
|
static int fillInCell(
|
|
MemPage *pPage, /* The page that contains the cell */
|
|
unsigned char *pCell, /* Complete text of the cell */
|
|
const void *pKey, i64 nKey, /* The key */
|
|
const void *pData,int nData, /* The data */
|
|
int nZero, /* Extra zero bytes to append to pData */
|
|
int *pnSize /* Write cell size here */
|
|
){
|
|
int nPayload;
|
|
const u8 *pSrc;
|
|
int nSrc, n, rc;
|
|
int spaceLeft;
|
|
MemPage *pOvfl = 0;
|
|
MemPage *pToRelease = 0;
|
|
unsigned char *pPrior;
|
|
unsigned char *pPayload;
|
|
BtShared *pBt = pPage->pBt;
|
|
Pgno pgnoOvfl = 0;
|
|
int nHeader;
|
|
CellInfo info;
|
|
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
|
|
/* Fill in the header. */
|
|
nHeader = 0;
|
|
if( !pPage->leaf ){
|
|
nHeader += 4;
|
|
}
|
|
if( pPage->hasData ){
|
|
nHeader += putVarint(&pCell[nHeader], nData+nZero);
|
|
}else{
|
|
nData = nZero = 0;
|
|
}
|
|
nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
|
|
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
|
|
assert( info.nHeader==nHeader );
|
|
assert( info.nKey==nKey );
|
|
assert( info.nData==nData+nZero );
|
|
|
|
/* Fill in the payload */
|
|
nPayload = nData + nZero;
|
|
if( pPage->intKey ){
|
|
pSrc = pData;
|
|
nSrc = nData;
|
|
nData = 0;
|
|
}else{
|
|
nPayload += nKey;
|
|
pSrc = pKey;
|
|
nSrc = nKey;
|
|
}
|
|
*pnSize = info.nSize;
|
|
spaceLeft = info.nLocal;
|
|
pPayload = &pCell[nHeader];
|
|
pPrior = &pCell[info.iOverflow];
|
|
|
|
while( nPayload>0 ){
|
|
if( spaceLeft==0 ){
|
|
int isExact = 0;
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
|
|
if( pBt->autoVacuum ){
|
|
do{
|
|
pgnoOvfl++;
|
|
} while(
|
|
PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
|
|
);
|
|
if( pgnoOvfl>1 ){
|
|
/* isExact = 1; */
|
|
}
|
|
}
|
|
#endif
|
|
rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, isExact);
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
/* If the database supports auto-vacuum, and the second or subsequent
|
|
** overflow page is being allocated, add an entry to the pointer-map
|
|
** for that page now.
|
|
**
|
|
** If this is the first overflow page, then write a partial entry
|
|
** to the pointer-map. If we write nothing to this pointer-map slot,
|
|
** then the optimistic overflow chain processing in clearCell()
|
|
** may misinterpret the uninitialised values and delete the
|
|
** wrong pages from the database.
|
|
*/
|
|
if( pBt->autoVacuum && rc==SQLITE_OK ){
|
|
u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
|
|
rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
|
|
if( rc ){
|
|
releasePage(pOvfl);
|
|
}
|
|
}
|
|
#endif
|
|
if( rc ){
|
|
releasePage(pToRelease);
|
|
return rc;
|
|
}
|
|
put4byte(pPrior, pgnoOvfl);
|
|
releasePage(pToRelease);
|
|
pToRelease = pOvfl;
|
|
pPrior = pOvfl->aData;
|
|
put4byte(pPrior, 0);
|
|
pPayload = &pOvfl->aData[4];
|
|
spaceLeft = pBt->usableSize - 4;
|
|
}
|
|
n = nPayload;
|
|
if( n>spaceLeft ) n = spaceLeft;
|
|
if( nSrc>0 ){
|
|
if( n>nSrc ) n = nSrc;
|
|
assert( pSrc );
|
|
memcpy(pPayload, pSrc, n);
|
|
}else{
|
|
memset(pPayload, 0, n);
|
|
}
|
|
nPayload -= n;
|
|
pPayload += n;
|
|
pSrc += n;
|
|
nSrc -= n;
|
|
spaceLeft -= n;
|
|
if( nSrc==0 ){
|
|
nSrc = nData;
|
|
pSrc = pData;
|
|
}
|
|
}
|
|
releasePage(pToRelease);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Change the MemPage.pParent pointer on the page whose number is
|
|
** given in the second argument so that MemPage.pParent holds the
|
|
** pointer in the third argument.
|
|
*/
|
|
static int reparentPage(BtShared *pBt, Pgno pgno, MemPage *pNewParent, int idx){
|
|
MemPage *pThis;
|
|
DbPage *pDbPage;
|
|
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
assert( pNewParent!=0 );
|
|
if( pgno==0 ) return SQLITE_OK;
|
|
assert( pBt->pPager!=0 );
|
|
pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
|
|
if( pDbPage ){
|
|
pThis = (MemPage *)sqlite3PagerGetExtra(pDbPage);
|
|
if( pThis->isInit ){
|
|
assert( pThis->aData==sqlite3PagerGetData(pDbPage) );
|
|
if( pThis->pParent!=pNewParent ){
|
|
if( pThis->pParent ) sqlite3PagerUnref(pThis->pParent->pDbPage);
|
|
pThis->pParent = pNewParent;
|
|
sqlite3PagerRef(pNewParent->pDbPage);
|
|
}
|
|
pThis->idxParent = idx;
|
|
}
|
|
sqlite3PagerUnref(pDbPage);
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pBt->autoVacuum ){
|
|
return ptrmapPut(pBt, pgno, PTRMAP_BTREE, pNewParent->pgno);
|
|
}
|
|
#endif
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
** Change the pParent pointer of all children of pPage to point back
|
|
** to pPage.
|
|
**
|
|
** In other words, for every child of pPage, invoke reparentPage()
|
|
** to make sure that each child knows that pPage is its parent.
|
|
**
|
|
** This routine gets called after you memcpy() one page into
|
|
** another.
|
|
*/
|
|
static int reparentChildPages(MemPage *pPage){
|
|
int i;
|
|
BtShared *pBt = pPage->pBt;
|
|
int rc = SQLITE_OK;
|
|
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
if( pPage->leaf ) return SQLITE_OK;
|
|
|
|
for(i=0; i<pPage->nCell; i++){
|
|
u8 *pCell = findCell(pPage, i);
|
|
if( !pPage->leaf ){
|
|
rc = reparentPage(pBt, get4byte(pCell), pPage, i);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}
|
|
}
|
|
if( !pPage->leaf ){
|
|
rc = reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]),
|
|
pPage, i);
|
|
pPage->idxShift = 0;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Remove the i-th cell from pPage. This routine effects pPage only.
|
|
** The cell content is not freed or deallocated. It is assumed that
|
|
** the cell content has been copied someplace else. This routine just
|
|
** removes the reference to the cell from pPage.
|
|
**
|
|
** "sz" must be the number of bytes in the cell.
|
|
*/
|
|
static void dropCell(MemPage *pPage, int idx, int sz){
|
|
int i; /* Loop counter */
|
|
int pc; /* Offset to cell content of cell being deleted */
|
|
u8 *data; /* pPage->aData */
|
|
u8 *ptr; /* Used to move bytes around within data[] */
|
|
|
|
assert( idx>=0 && idx<pPage->nCell );
|
|
assert( sz==cellSize(pPage, idx) );
|
|
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
data = pPage->aData;
|
|
ptr = &data[pPage->cellOffset + 2*idx];
|
|
pc = get2byte(ptr);
|
|
assert( pc>10 && pc+sz<=pPage->pBt->usableSize );
|
|
freeSpace(pPage, pc, sz);
|
|
for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
|
|
ptr[0] = ptr[2];
|
|
ptr[1] = ptr[3];
|
|
}
|
|
pPage->nCell--;
|
|
put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
|
|
pPage->nFree += 2;
|
|
pPage->idxShift = 1;
|
|
}
|
|
|
|
/*
|
|
** Insert a new cell on pPage at cell index "i". pCell points to the
|
|
** content of the cell.
|
|
**
|
|
** If the cell content will fit on the page, then put it there. If it
|
|
** will not fit, then make a copy of the cell content into pTemp if
|
|
** pTemp is not null. Regardless of pTemp, allocate a new entry
|
|
** in pPage->aOvfl[] and make it point to the cell content (either
|
|
** in pTemp or the original pCell) and also record its index.
|
|
** Allocating a new entry in pPage->aCell[] implies that
|
|
** pPage->nOverflow is incremented.
|
|
**
|
|
** If nSkip is non-zero, then do not copy the first nSkip bytes of the
|
|
** cell. The caller will overwrite them after this function returns. If
|
|
** nSkip is non-zero, then pCell may not point to an invalid memory location
|
|
** (but pCell+nSkip is always valid).
|
|
*/
|
|
static int insertCell(
|
|
MemPage *pPage, /* Page into which we are copying */
|
|
int i, /* New cell becomes the i-th cell of the page */
|
|
u8 *pCell, /* Content of the new cell */
|
|
int sz, /* Bytes of content in pCell */
|
|
u8 *pTemp, /* Temp storage space for pCell, if needed */
|
|
u8 nSkip /* Do not write the first nSkip bytes of the cell */
|
|
){
|
|
int idx; /* Where to write new cell content in data[] */
|
|
int j; /* Loop counter */
|
|
int top; /* First byte of content for any cell in data[] */
|
|
int end; /* First byte past the last cell pointer in data[] */
|
|
int ins; /* Index in data[] where new cell pointer is inserted */
|
|
int hdr; /* Offset into data[] of the page header */
|
|
int cellOffset; /* Address of first cell pointer in data[] */
|
|
u8 *data; /* The content of the whole page */
|
|
u8 *ptr; /* Used for moving information around in data[] */
|
|
|
|
assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
|
|
assert( sz==cellSizePtr(pPage, pCell) );
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
if( pPage->nOverflow || sz+2>pPage->nFree ){
|
|
if( pTemp ){
|
|
memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
|
|
pCell = pTemp;
|
|
}
|
|
j = pPage->nOverflow++;
|
|
assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) );
|
|
pPage->aOvfl[j].pCell = pCell;
|
|
pPage->aOvfl[j].idx = i;
|
|
pPage->nFree = 0;
|
|
}else{
|
|
int rc = sqlite3PagerWrite(pPage->pDbPage);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
assert( sqlite3PagerIswriteable(pPage->pDbPage) );
|
|
data = pPage->aData;
|
|
hdr = pPage->hdrOffset;
|
|
top = get2byte(&data[hdr+5]);
|
|
cellOffset = pPage->cellOffset;
|
|
end = cellOffset + 2*pPage->nCell + 2;
|
|
ins = cellOffset + 2*i;
|
|
if( end > top - sz ){
|
|
rc = defragmentPage(pPage);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
top = get2byte(&data[hdr+5]);
|
|
assert( end + sz <= top );
|
|
}
|
|
idx = allocateSpace(pPage, sz);
|
|
assert( idx>0 );
|
|
assert( end <= get2byte(&data[hdr+5]) );
|
|
pPage->nCell++;
|
|
pPage->nFree -= 2;
|
|
memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
|
|
for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
|
|
ptr[0] = ptr[-2];
|
|
ptr[1] = ptr[-1];
|
|
}
|
|
put2byte(&data[ins], idx);
|
|
put2byte(&data[hdr+3], pPage->nCell);
|
|
pPage->idxShift = 1;
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pPage->pBt->autoVacuum ){
|
|
/* The cell may contain a pointer to an overflow page. If so, write
|
|
** the entry for the overflow page into the pointer map.
|
|
*/
|
|
CellInfo info;
|
|
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
|
|
assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
|
|
if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
|
|
Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
|
|
rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Add a list of cells to a page. The page should be initially empty.
|
|
** The cells are guaranteed to fit on the page.
|
|
*/
|
|
static void assemblePage(
|
|
MemPage *pPage, /* The page to be assemblied */
|
|
int nCell, /* The number of cells to add to this page */
|
|
u8 **apCell, /* Pointers to cell bodies */
|
|
int *aSize /* Sizes of the cells */
|
|
){
|
|
int i; /* Loop counter */
|
|
int totalSize; /* Total size of all cells */
|
|
int hdr; /* Index of page header */
|
|
int cellptr; /* Address of next cell pointer */
|
|
int cellbody; /* Address of next cell body */
|
|
u8 *data; /* Data for the page */
|
|
|
|
assert( pPage->nOverflow==0 );
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
totalSize = 0;
|
|
for(i=0; i<nCell; i++){
|
|
totalSize += aSize[i];
|
|
}
|
|
assert( totalSize+2*nCell<=pPage->nFree );
|
|
assert( pPage->nCell==0 );
|
|
cellptr = pPage->cellOffset;
|
|
data = pPage->aData;
|
|
hdr = pPage->hdrOffset;
|
|
put2byte(&data[hdr+3], nCell);
|
|
if( nCell ){
|
|
cellbody = allocateSpace(pPage, totalSize);
|
|
assert( cellbody>0 );
|
|
assert( pPage->nFree >= 2*nCell );
|
|
pPage->nFree -= 2*nCell;
|
|
for(i=0; i<nCell; i++){
|
|
put2byte(&data[cellptr], cellbody);
|
|
memcpy(&data[cellbody], apCell[i], aSize[i]);
|
|
cellptr += 2;
|
|
cellbody += aSize[i];
|
|
}
|
|
assert( cellbody==pPage->pBt->usableSize );
|
|
}
|
|
pPage->nCell = nCell;
|
|
}
|
|
|
|
/*
|
|
** The following parameters determine how many adjacent pages get involved
|
|
** in a balancing operation. NN is the number of neighbors on either side
|
|
** of the page that participate in the balancing operation. NB is the
|
|
** total number of pages that participate, including the target page and
|
|
** NN neighbors on either side.
|
|
**
|
|
** The minimum value of NN is 1 (of course). Increasing NN above 1
|
|
** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
|
|
** in exchange for a larger degradation in INSERT and UPDATE performance.
|
|
** The value of NN appears to give the best results overall.
|
|
*/
|
|
#define NN 1 /* Number of neighbors on either side of pPage */
|
|
#define NB (NN*2+1) /* Total pages involved in the balance */
|
|
|
|
/* Forward reference */
|
|
static int balance(MemPage*, int);
|
|
|
|
#ifndef SQLITE_OMIT_QUICKBALANCE
|
|
/*
|
|
** This version of balance() handles the common special case where
|
|
** a new entry is being inserted on the extreme right-end of the
|
|
** tree, in other words, when the new entry will become the largest
|
|
** entry in the tree.
|
|
**
|
|
** Instead of trying balance the 3 right-most leaf pages, just add
|
|
** a new page to the right-hand side and put the one new entry in
|
|
** that page. This leaves the right side of the tree somewhat
|
|
** unbalanced. But odds are that we will be inserting new entries
|
|
** at the end soon afterwards so the nearly empty page will quickly
|
|
** fill up. On average.
|
|
**
|
|
** pPage is the leaf page which is the right-most page in the tree.
|
|
** pParent is its parent. pPage must have a single overflow entry
|
|
** which is also the right-most entry on the page.
|
|
*/
|
|
static int balance_quick(MemPage *pPage, MemPage *pParent){
|
|
int rc;
|
|
MemPage *pNew;
|
|
Pgno pgnoNew;
|
|
u8 *pCell;
|
|
int szCell;
|
|
CellInfo info;
|
|
BtShared *pBt = pPage->pBt;
|
|
int parentIdx = pParent->nCell; /* pParent new divider cell index */
|
|
int parentSize; /* Size of new divider cell */
|
|
u8 parentCell[64]; /* Space for the new divider cell */
|
|
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
|
|
/* Allocate a new page. Insert the overflow cell from pPage
|
|
** into it. Then remove the overflow cell from pPage.
|
|
*/
|
|
rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
pCell = pPage->aOvfl[0].pCell;
|
|
szCell = cellSizePtr(pPage, pCell);
|
|
zeroPage(pNew, pPage->aData[0]);
|
|
assemblePage(pNew, 1, &pCell, &szCell);
|
|
pPage->nOverflow = 0;
|
|
|
|
/* Set the parent of the newly allocated page to pParent. */
|
|
pNew->pParent = pParent;
|
|
sqlite3PagerRef(pParent->pDbPage);
|
|
|
|
/* pPage is currently the right-child of pParent. Change this
|
|
** so that the right-child is the new page allocated above and
|
|
** pPage is the next-to-right child.
|
|
*/
|
|
assert( pPage->nCell>0 );
|
|
pCell = findCell(pPage, pPage->nCell-1);
|
|
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
|
|
rc = fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, 0, &parentSize);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
assert( parentSize<64 );
|
|
rc = insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno);
|
|
put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
/* If this is an auto-vacuum database, update the pointer map
|
|
** with entries for the new page, and any pointer from the
|
|
** cell on the page to an overflow page.
|
|
*/
|
|
if( pBt->autoVacuum ){
|
|
rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
|
|
if( rc==SQLITE_OK ){
|
|
rc = ptrmapPutOvfl(pNew, 0);
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
releasePage(pNew);
|
|
return rc;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Release the reference to the new page and balance the parent page,
|
|
** in case the divider cell inserted caused it to become overfull.
|
|
*/
|
|
releasePage(pNew);
|
|
return balance(pParent, 0);
|
|
}
|
|
#endif /* SQLITE_OMIT_QUICKBALANCE */
|
|
|
|
/*
|
|
** This routine redistributes Cells on pPage and up to NN*2 siblings
|
|
** of pPage so that all pages have about the same amount of free space.
|
|
** Usually NN siblings on either side of pPage is used in the balancing,
|
|
** though more siblings might come from one side if pPage is the first
|
|
** or last child of its parent. If pPage has fewer than 2*NN siblings
|
|
** (something which can only happen if pPage is the root page or a
|
|
** child of root) then all available siblings participate in the balancing.
|
|
**
|
|
** The number of siblings of pPage might be increased or decreased by one or
|
|
** two in an effort to keep pages nearly full but not over full. The root page
|
|
** is special and is allowed to be nearly empty. If pPage is
|
|
** the root page, then the depth of the tree might be increased
|
|
** or decreased by one, as necessary, to keep the root page from being
|
|
** overfull or completely empty.
|
|
**
|
|
** Note that when this routine is called, some of the Cells on pPage
|
|
** might not actually be stored in pPage->aData[]. This can happen
|
|
** if the page is overfull. Part of the job of this routine is to
|
|
** make sure all Cells for pPage once again fit in pPage->aData[].
|
|
**
|
|
** In the course of balancing the siblings of pPage, the parent of pPage
|
|
** might become overfull or underfull. If that happens, then this routine
|
|
** is called recursively on the parent.
|
|
**
|
|
** If this routine fails for any reason, it might leave the database
|
|
** in a corrupted state. So if this routine fails, the database should
|
|
** be rolled back.
|
|
*/
|
|
static int balance_nonroot(MemPage *pPage){
|
|
MemPage *pParent; /* The parent of pPage */
|
|
BtShared *pBt; /* The whole database */
|
|
int nCell = 0; /* Number of cells in apCell[] */
|
|
int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
|
|
int nOld; /* Number of pages in apOld[] */
|
|
int nNew; /* Number of pages in apNew[] */
|
|
int nDiv; /* Number of cells in apDiv[] */
|
|
int i, j, k; /* Loop counters */
|
|
int idx; /* Index of pPage in pParent->aCell[] */
|
|
int nxDiv; /* Next divider slot in pParent->aCell[] */
|
|
int rc; /* The return code */
|
|
int leafCorrection; /* 4 if pPage is a leaf. 0 if not */
|
|
int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
|
|
int usableSpace; /* Bytes in pPage beyond the header */
|
|
int pageFlags; /* Value of pPage->aData[0] */
|
|
int subtotal; /* Subtotal of bytes in cells on one page */
|
|
int iSpace = 0; /* First unused byte of aSpace[] */
|
|
MemPage *apOld[NB]; /* pPage and up to two siblings */
|
|
Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
|
|
MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
|
|
MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
|
|
Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */
|
|
u8 *apDiv[NB]; /* Divider cells in pParent */
|
|
int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
|
|
int szNew[NB+2]; /* Combined size of cells place on i-th page */
|
|
u8 **apCell = 0; /* All cells begin balanced */
|
|
int *szCell; /* Local size of all cells in apCell[] */
|
|
u8 *aCopy[NB]; /* Space for holding data of apCopy[] */
|
|
u8 *aSpace; /* Space to hold copies of dividers cells */
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
u8 *aFrom = 0;
|
|
#endif
|
|
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
|
|
/*
|
|
** Find the parent page.
|
|
*/
|
|
assert( pPage->isInit );
|
|
assert( sqlite3PagerIswriteable(pPage->pDbPage) || pPage->nOverflow==1 );
|
|
pBt = pPage->pBt;
|
|
pParent = pPage->pParent;
|
|
assert( pParent );
|
|
if( SQLITE_OK!=(rc = sqlite3PagerWrite(pParent->pDbPage)) ){
|
|
return rc;
|
|
}
|
|
TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
|
|
|
|
#ifndef SQLITE_OMIT_QUICKBALANCE
|
|
/*
|
|
** A special case: If a new entry has just been inserted into a
|
|
** table (that is, a btree with integer keys and all data at the leaves)
|
|
** and the new entry is the right-most entry in the tree (it has the
|
|
** largest key) then use the special balance_quick() routine for
|
|
** balancing. balance_quick() is much faster and results in a tighter
|
|
** packing of data in the common case.
|
|
*/
|
|
if( pPage->leaf &&
|
|
pPage->intKey &&
|
|
pPage->leafData &&
|
|
pPage->nOverflow==1 &&
|
|
pPage->aOvfl[0].idx==pPage->nCell &&
|
|
pPage->pParent->pgno!=1 &&
|
|
get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno
|
|
){
|
|
/*
|
|
** TODO: Check the siblings to the left of pPage. It may be that
|
|
** they are not full and no new page is required.
|
|
*/
|
|
return balance_quick(pPage, pParent);
|
|
}
|
|
#endif
|
|
|
|
if( SQLITE_OK!=(rc = sqlite3PagerWrite(pPage->pDbPage)) ){
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Find the cell in the parent page whose left child points back
|
|
** to pPage. The "idx" variable is the index of that cell. If pPage
|
|
** is the rightmost child of pParent then set idx to pParent->nCell
|
|
*/
|
|
if( pParent->idxShift ){
|
|
Pgno pgno;
|
|
pgno = pPage->pgno;
|
|
assert( pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
|
|
for(idx=0; idx<pParent->nCell; idx++){
|
|
if( get4byte(findCell(pParent, idx))==pgno ){
|
|
break;
|
|
}
|
|
}
|
|
assert( idx<pParent->nCell
|
|
|| get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno );
|
|
}else{
|
|
idx = pPage->idxParent;
|
|
}
|
|
|
|
/*
|
|
** Initialize variables so that it will be safe to jump
|
|
** directly to balance_cleanup at any moment.
|
|
*/
|
|
nOld = nNew = 0;
|
|
sqlite3PagerRef(pParent->pDbPage);
|
|
|
|
/*
|
|
** Find sibling pages to pPage and the cells in pParent that divide
|
|
** the siblings. An attempt is made to find NN siblings on either
|
|
** side of pPage. More siblings are taken from one side, however, if
|
|
** pPage there are fewer than NN siblings on the other side. If pParent
|
|
** has NB or fewer children then all children of pParent are taken.
|
|
*/
|
|
nxDiv = idx - NN;
|
|
if( nxDiv + NB > pParent->nCell ){
|
|
nxDiv = pParent->nCell - NB + 1;
|
|
}
|
|
if( nxDiv<0 ){
|
|
nxDiv = 0;
|
|
}
|
|
nDiv = 0;
|
|
for(i=0, k=nxDiv; i<NB; i++, k++){
|
|
if( k<pParent->nCell ){
|
|
apDiv[i] = findCell(pParent, k);
|
|
nDiv++;
|
|
assert( !pParent->leaf );
|
|
pgnoOld[i] = get4byte(apDiv[i]);
|
|
}else if( k==pParent->nCell ){
|
|
pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
|
|
}else{
|
|
break;
|
|
}
|
|
rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent);
|
|
if( rc ) goto balance_cleanup;
|
|
apOld[i]->idxParent = k;
|
|
apCopy[i] = 0;
|
|
assert( i==nOld );
|
|
nOld++;
|
|
nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
|
|
}
|
|
|
|
/* Make nMaxCells a multiple of 2 in order to preserve 8-byte
|
|
** alignment */
|
|
nMaxCells = (nMaxCells + 1)&~1;
|
|
|
|
/*
|
|
** Allocate space for memory structures
|
|
*/
|
|
apCell = sqlite3_malloc(
|
|
nMaxCells*sizeof(u8*) /* apCell */
|
|
+ nMaxCells*sizeof(int) /* szCell */
|
|
+ ROUND8(sizeof(MemPage))*NB /* aCopy */
|
|
+ pBt->pageSize*(5+NB) /* aSpace */
|
|
+ (ISAUTOVACUUM ? nMaxCells : 0) /* aFrom */
|
|
);
|
|
if( apCell==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
goto balance_cleanup;
|
|
}
|
|
szCell = (int*)&apCell[nMaxCells];
|
|
aCopy[0] = (u8*)&szCell[nMaxCells];
|
|
assert( ((aCopy[0] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
|
|
for(i=1; i<NB; i++){
|
|
aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
|
|
assert( ((aCopy[i] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
|
|
}
|
|
aSpace = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
|
|
assert( ((aSpace - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pBt->autoVacuum ){
|
|
aFrom = &aSpace[5*pBt->pageSize];
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Make copies of the content of pPage and its siblings into aOld[].
|
|
** The rest of this function will use data from the copies rather
|
|
** that the original pages since the original pages will be in the
|
|
** process of being overwritten.
|
|
*/
|
|
for(i=0; i<nOld; i++){
|
|
MemPage *p = apCopy[i] = (MemPage*)aCopy[i];
|
|
memcpy(p, apOld[i], sizeof(MemPage));
|
|
p->aData = (void*)&p[1];
|
|
memcpy(p->aData, apOld[i]->aData, pBt->pageSize);
|
|
}
|
|
|
|
/*
|
|
** Load pointers to all cells on sibling pages and the divider cells
|
|
** into the local apCell[] array. Make copies of the divider cells
|
|
** into space obtained form aSpace[] and remove the the divider Cells
|
|
** from pParent.
|
|
**
|
|
** If the siblings are on leaf pages, then the child pointers of the
|
|
** divider cells are stripped from the cells before they are copied
|
|
** into aSpace[]. In this way, all cells in apCell[] are without
|
|
** child pointers. If siblings are not leaves, then all cell in
|
|
** apCell[] include child pointers. Either way, all cells in apCell[]
|
|
** are alike.
|
|
**
|
|
** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
|
|
** leafData: 1 if pPage holds key+data and pParent holds only keys.
|
|
*/
|
|
nCell = 0;
|
|
leafCorrection = pPage->leaf*4;
|
|
leafData = pPage->leafData && pPage->leaf;
|
|
for(i=0; i<nOld; i++){
|
|
MemPage *pOld = apCopy[i];
|
|
int limit = pOld->nCell+pOld->nOverflow;
|
|
for(j=0; j<limit; j++){
|
|
assert( nCell<nMaxCells );
|
|
apCell[nCell] = findOverflowCell(pOld, j);
|
|
szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pBt->autoVacuum ){
|
|
int a;
|
|
aFrom[nCell] = i;
|
|
for(a=0; a<pOld->nOverflow; a++){
|
|
if( pOld->aOvfl[a].pCell==apCell[nCell] ){
|
|
aFrom[nCell] = 0xFF;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
nCell++;
|
|
}
|
|
if( i<nOld-1 ){
|
|
int sz = cellSizePtr(pParent, apDiv[i]);
|
|
if( leafData ){
|
|
/* With the LEAFDATA flag, pParent cells hold only INTKEYs that
|
|
** are duplicates of keys on the child pages. We need to remove
|
|
** the divider cells from pParent, but the dividers cells are not
|
|
** added to apCell[] because they are duplicates of child cells.
|
|
*/
|
|
dropCell(pParent, nxDiv, sz);
|
|
}else{
|
|
u8 *pTemp;
|
|
assert( nCell<nMaxCells );
|
|
szCell[nCell] = sz;
|
|
pTemp = &aSpace[iSpace];
|
|
iSpace += sz;
|
|
assert( iSpace<=pBt->pageSize*5 );
|
|
memcpy(pTemp, apDiv[i], sz);
|
|
apCell[nCell] = pTemp+leafCorrection;
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pBt->autoVacuum ){
|
|
aFrom[nCell] = 0xFF;
|
|
}
|
|
#endif
|
|
dropCell(pParent, nxDiv, sz);
|
|
szCell[nCell] -= leafCorrection;
|
|
assert( get4byte(pTemp)==pgnoOld[i] );
|
|
if( !pOld->leaf ){
|
|
assert( leafCorrection==0 );
|
|
/* The right pointer of the child page pOld becomes the left
|
|
** pointer of the divider cell */
|
|
memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
|
|
}else{
|
|
assert( leafCorrection==4 );
|
|
if( szCell[nCell]<4 ){
|
|
/* Do not allow any cells smaller than 4 bytes. */
|
|
szCell[nCell] = 4;
|
|
}
|
|
}
|
|
nCell++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Figure out the number of pages needed to hold all nCell cells.
|
|
** Store this number in "k". Also compute szNew[] which is the total
|
|
** size of all cells on the i-th page and cntNew[] which is the index
|
|
** in apCell[] of the cell that divides page i from page i+1.
|
|
** cntNew[k] should equal nCell.
|
|
**
|
|
** Values computed by this block:
|
|
**
|
|
** k: The total number of sibling pages
|
|
** szNew[i]: Spaced used on the i-th sibling page.
|
|
** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
|
|
** the right of the i-th sibling page.
|
|
** usableSpace: Number of bytes of space available on each sibling.
|
|
**
|
|
*/
|
|
usableSpace = pBt->usableSize - 12 + leafCorrection;
|
|
for(subtotal=k=i=0; i<nCell; i++){
|
|
assert( i<nMaxCells );
|
|
subtotal += szCell[i] + 2;
|
|
if( subtotal > usableSpace ){
|
|
szNew[k] = subtotal - szCell[i];
|
|
cntNew[k] = i;
|
|
if( leafData ){ i--; }
|
|
subtotal = 0;
|
|
k++;
|
|
}
|
|
}
|
|
szNew[k] = subtotal;
|
|
cntNew[k] = nCell;
|
|
k++;
|
|
|
|
/*
|
|
** The packing computed by the previous block is biased toward the siblings
|
|
** on the left side. The left siblings are always nearly full, while the
|
|
** right-most sibling might be nearly empty. This block of code attempts
|
|
** to adjust the packing of siblings to get a better balance.
|
|
**
|
|
** This adjustment is more than an optimization. The packing above might
|
|
** be so out of balance as to be illegal. For example, the right-most
|
|
** sibling might be completely empty. This adjustment is not optional.
|
|
*/
|
|
for(i=k-1; i>0; i--){
|
|
int szRight = szNew[i]; /* Size of sibling on the right */
|
|
int szLeft = szNew[i-1]; /* Size of sibling on the left */
|
|
int r; /* Index of right-most cell in left sibling */
|
|
int d; /* Index of first cell to the left of right sibling */
|
|
|
|
r = cntNew[i-1] - 1;
|
|
d = r + 1 - leafData;
|
|
assert( d<nMaxCells );
|
|
assert( r<nMaxCells );
|
|
while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
|
|
szRight += szCell[d] + 2;
|
|
szLeft -= szCell[r] + 2;
|
|
cntNew[i-1]--;
|
|
r = cntNew[i-1] - 1;
|
|
d = r + 1 - leafData;
|
|
}
|
|
szNew[i] = szRight;
|
|
szNew[i-1] = szLeft;
|
|
}
|
|
|
|
/* Either we found one or more cells (cntnew[0])>0) or we are the
|
|
** a virtual root page. A virtual root page is when the real root
|
|
** page is page 1 and we are the only child of that page.
|
|
*/
|
|
assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
|
|
|
|
/*
|
|
** Allocate k new pages. Reuse old pages where possible.
|
|
*/
|
|
assert( pPage->pgno>1 );
|
|
pageFlags = pPage->aData[0];
|
|
for(i=0; i<k; i++){
|
|
MemPage *pNew;
|
|
if( i<nOld ){
|
|
pNew = apNew[i] = apOld[i];
|
|
pgnoNew[i] = pgnoOld[i];
|
|
apOld[i] = 0;
|
|
rc = sqlite3PagerWrite(pNew->pDbPage);
|
|
nNew++;
|
|
if( rc ) goto balance_cleanup;
|
|
}else{
|
|
assert( i>0 );
|
|
rc = allocateBtreePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0);
|
|
if( rc ) goto balance_cleanup;
|
|
apNew[i] = pNew;
|
|
nNew++;
|
|
}
|
|
zeroPage(pNew, pageFlags);
|
|
}
|
|
|
|
/* Free any old pages that were not reused as new pages.
|
|
*/
|
|
while( i<nOld ){
|
|
rc = freePage(apOld[i]);
|
|
if( rc ) goto balance_cleanup;
|
|
releasePage(apOld[i]);
|
|
apOld[i] = 0;
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
** Put the new pages in accending order. This helps to
|
|
** keep entries in the disk file in order so that a scan
|
|
** of the table is a linear scan through the file. That
|
|
** in turn helps the operating system to deliver pages
|
|
** from the disk more rapidly.
|
|
**
|
|
** An O(n^2) insertion sort algorithm is used, but since
|
|
** n is never more than NB (a small constant), that should
|
|
** not be a problem.
|
|
**
|
|
** When NB==3, this one optimization makes the database
|
|
** about 25% faster for large insertions and deletions.
|
|
*/
|
|
for(i=0; i<k-1; i++){
|
|
int minV = pgnoNew[i];
|
|
int minI = i;
|
|
for(j=i+1; j<k; j++){
|
|
if( pgnoNew[j]<(unsigned)minV ){
|
|
minI = j;
|
|
minV = pgnoNew[j];
|
|
}
|
|
}
|
|
if( minI>i ){
|
|
int t;
|
|
MemPage *pT;
|
|
t = pgnoNew[i];
|
|
pT = apNew[i];
|
|
pgnoNew[i] = pgnoNew[minI];
|
|
apNew[i] = apNew[minI];
|
|
pgnoNew[minI] = t;
|
|
apNew[minI] = pT;
|
|
}
|
|
}
|
|
TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
|
|
pgnoOld[0],
|
|
nOld>=2 ? pgnoOld[1] : 0,
|
|
nOld>=3 ? pgnoOld[2] : 0,
|
|
pgnoNew[0], szNew[0],
|
|
nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
|
|
nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
|
|
nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
|
|
nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));
|
|
|
|
/*
|
|
** Evenly distribute the data in apCell[] across the new pages.
|
|
** Insert divider cells into pParent as necessary.
|
|
*/
|
|
j = 0;
|
|
for(i=0; i<nNew; i++){
|
|
/* Assemble the new sibling page. */
|
|
MemPage *pNew = apNew[i];
|
|
assert( j<nMaxCells );
|
|
assert( pNew->pgno==pgnoNew[i] );
|
|
assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
|
|
assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
|
|
assert( pNew->nOverflow==0 );
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
/* If this is an auto-vacuum database, update the pointer map entries
|
|
** that point to the siblings that were rearranged. These can be: left
|
|
** children of cells, the right-child of the page, or overflow pages
|
|
** pointed to by cells.
|
|
*/
|
|
if( pBt->autoVacuum ){
|
|
for(k=j; k<cntNew[i]; k++){
|
|
assert( k<nMaxCells );
|
|
if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){
|
|
rc = ptrmapPutOvfl(pNew, k-j);
|
|
if( rc!=SQLITE_OK ){
|
|
goto balance_cleanup;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
j = cntNew[i];
|
|
|
|
/* If the sibling page assembled above was not the right-most sibling,
|
|
** insert a divider cell into the parent page.
|
|
*/
|
|
if( i<nNew-1 && j<nCell ){
|
|
u8 *pCell;
|
|
u8 *pTemp;
|
|
int sz;
|
|
|
|
assert( j<nMaxCells );
|
|
pCell = apCell[j];
|
|
sz = szCell[j] + leafCorrection;
|
|
if( !pNew->leaf ){
|
|
memcpy(&pNew->aData[8], pCell, 4);
|
|
pTemp = 0;
|
|
}else if( leafData ){
|
|
/* If the tree is a leaf-data tree, and the siblings are leaves,
|
|
** then there is no divider cell in apCell[]. Instead, the divider
|
|
** cell consists of the integer key for the right-most cell of
|
|
** the sibling-page assembled above only.
|
|
*/
|
|
CellInfo info;
|
|
j--;
|
|
sqlite3BtreeParseCellPtr(pNew, apCell[j], &info);
|
|
pCell = &aSpace[iSpace];
|
|
fillInCell(pParent, pCell, 0, info.nKey, 0, 0, 0, &sz);
|
|
iSpace += sz;
|
|
assert( iSpace<=pBt->pageSize*5 );
|
|
pTemp = 0;
|
|
}else{
|
|
pCell -= 4;
|
|
pTemp = &aSpace[iSpace];
|
|
iSpace += sz;
|
|
assert( iSpace<=pBt->pageSize*5 );
|
|
/* Obscure case for non-leaf-data trees: If the cell at pCell was
|
|
** previously stored on a leaf node, and its reported size was 4
|
|
** bytes, then it may actually be smaller than this
|
|
** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of
|
|
** any cell). But it is important to pass the correct size to
|
|
** insertCell(), so reparse the cell now.
|
|
**
|
|
** Note that this can never happen in an SQLite data file, as all
|
|
** cells are at least 4 bytes. It only happens in b-trees used
|
|
** to evaluate "IN (SELECT ...)" and similar clauses.
|
|
*/
|
|
if( szCell[j]==4 ){
|
|
assert(leafCorrection==4);
|
|
sz = cellSizePtr(pParent, pCell);
|
|
}
|
|
}
|
|
rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
|
|
if( rc!=SQLITE_OK ) goto balance_cleanup;
|
|
put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
/* If this is an auto-vacuum database, and not a leaf-data tree,
|
|
** then update the pointer map with an entry for the overflow page
|
|
** that the cell just inserted points to (if any).
|
|
*/
|
|
if( pBt->autoVacuum && !leafData ){
|
|
rc = ptrmapPutOvfl(pParent, nxDiv);
|
|
if( rc!=SQLITE_OK ){
|
|
goto balance_cleanup;
|
|
}
|
|
}
|
|
#endif
|
|
j++;
|
|
nxDiv++;
|
|
}
|
|
}
|
|
assert( j==nCell );
|
|
assert( nOld>0 );
|
|
assert( nNew>0 );
|
|
if( (pageFlags & PTF_LEAF)==0 ){
|
|
memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4);
|
|
}
|
|
if( nxDiv==pParent->nCell+pParent->nOverflow ){
|
|
/* Right-most sibling is the right-most child of pParent */
|
|
put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
|
|
}else{
|
|
/* Right-most sibling is the left child of the first entry in pParent
|
|
** past the right-most divider entry */
|
|
put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
|
|
}
|
|
|
|
/*
|
|
** Reparent children of all cells.
|
|
*/
|
|
for(i=0; i<nNew; i++){
|
|
rc = reparentChildPages(apNew[i]);
|
|
if( rc!=SQLITE_OK ) goto balance_cleanup;
|
|
}
|
|
rc = reparentChildPages(pParent);
|
|
if( rc!=SQLITE_OK ) goto balance_cleanup;
|
|
|
|
/*
|
|
** Balance the parent page. Note that the current page (pPage) might
|
|
** have been added to the freelist so it might no longer be initialized.
|
|
** But the parent page will always be initialized.
|
|
*/
|
|
assert( pParent->isInit );
|
|
rc = balance(pParent, 0);
|
|
|
|
/*
|
|
** Cleanup before returning.
|
|
*/
|
|
balance_cleanup:
|
|
sqlite3_free(apCell);
|
|
for(i=0; i<nOld; i++){
|
|
releasePage(apOld[i]);
|
|
}
|
|
for(i=0; i<nNew; i++){
|
|
releasePage(apNew[i]);
|
|
}
|
|
releasePage(pParent);
|
|
TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
|
|
pPage->pgno, nOld, nNew, nCell));
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This routine is called for the root page of a btree when the root
|
|
** page contains no cells. This is an opportunity to make the tree
|
|
** shallower by one level.
|
|
*/
|
|
static int balance_shallower(MemPage *pPage){
|
|
MemPage *pChild; /* The only child page of pPage */
|
|
Pgno pgnoChild; /* Page number for pChild */
|
|
int rc = SQLITE_OK; /* Return code from subprocedures */
|
|
BtShared *pBt; /* The main BTree structure */
|
|
int mxCellPerPage; /* Maximum number of cells per page */
|
|
u8 **apCell; /* All cells from pages being balanced */
|
|
int *szCell; /* Local size of all cells */
|
|
|
|
assert( pPage->pParent==0 );
|
|
assert( pPage->nCell==0 );
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
pBt = pPage->pBt;
|
|
mxCellPerPage = MX_CELL(pBt);
|
|
apCell = sqlite3_malloc( mxCellPerPage*(sizeof(u8*)+sizeof(int)) );
|
|
if( apCell==0 ) return SQLITE_NOMEM;
|
|
szCell = (int*)&apCell[mxCellPerPage];
|
|
if( pPage->leaf ){
|
|
/* The table is completely empty */
|
|
TRACE(("BALANCE: empty table %d\n", pPage->pgno));
|
|
}else{
|
|
/* The root page is empty but has one child. Transfer the
|
|
** information from that one child into the root page if it
|
|
** will fit. This reduces the depth of the tree by one.
|
|
**
|
|
** If the root page is page 1, it has less space available than
|
|
** its child (due to the 100 byte header that occurs at the beginning
|
|
** of the database fle), so it might not be able to hold all of the
|
|
** information currently contained in the child. If this is the
|
|
** case, then do not do the transfer. Leave page 1 empty except
|
|
** for the right-pointer to the child page. The child page becomes
|
|
** the virtual root of the tree.
|
|
*/
|
|
pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
|
|
assert( pgnoChild>0 );
|
|
assert( pgnoChild<=sqlite3PagerPagecount(pPage->pBt->pPager) );
|
|
rc = sqlite3BtreeGetPage(pPage->pBt, pgnoChild, &pChild, 0);
|
|
if( rc ) goto end_shallow_balance;
|
|
if( pPage->pgno==1 ){
|
|
rc = sqlite3BtreeInitPage(pChild, pPage);
|
|
if( rc ) goto end_shallow_balance;
|
|
assert( pChild->nOverflow==0 );
|
|
if( pChild->nFree>=100 ){
|
|
/* The child information will fit on the root page, so do the
|
|
** copy */
|
|
int i;
|
|
zeroPage(pPage, pChild->aData[0]);
|
|
for(i=0; i<pChild->nCell; i++){
|
|
apCell[i] = findCell(pChild,i);
|
|
szCell[i] = cellSizePtr(pChild, apCell[i]);
|
|
}
|
|
assemblePage(pPage, pChild->nCell, apCell, szCell);
|
|
/* Copy the right-pointer of the child to the parent. */
|
|
put4byte(&pPage->aData[pPage->hdrOffset+8],
|
|
get4byte(&pChild->aData[pChild->hdrOffset+8]));
|
|
freePage(pChild);
|
|
TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
|
|
}else{
|
|
/* The child has more information that will fit on the root.
|
|
** The tree is already balanced. Do nothing. */
|
|
TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
|
|
}
|
|
}else{
|
|
memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
|
|
pPage->isInit = 0;
|
|
pPage->pParent = 0;
|
|
rc = sqlite3BtreeInitPage(pPage, 0);
|
|
assert( rc==SQLITE_OK );
|
|
freePage(pChild);
|
|
TRACE(("BALANCE: transfer child %d into root %d\n",
|
|
pChild->pgno, pPage->pgno));
|
|
}
|
|
rc = reparentChildPages(pPage);
|
|
assert( pPage->nOverflow==0 );
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pBt->autoVacuum ){
|
|
int i;
|
|
for(i=0; i<pPage->nCell; i++){
|
|
rc = ptrmapPutOvfl(pPage, i);
|
|
if( rc!=SQLITE_OK ){
|
|
goto end_shallow_balance;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
releasePage(pChild);
|
|
}
|
|
end_shallow_balance:
|
|
sqlite3_free(apCell);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** The root page is overfull
|
|
**
|
|
** When this happens, Create a new child page and copy the
|
|
** contents of the root into the child. Then make the root
|
|
** page an empty page with rightChild pointing to the new
|
|
** child. Finally, call balance_internal() on the new child
|
|
** to cause it to split.
|
|
*/
|
|
static int balance_deeper(MemPage *pPage){
|
|
int rc; /* Return value from subprocedures */
|
|
MemPage *pChild; /* Pointer to a new child page */
|
|
Pgno pgnoChild; /* Page number of the new child page */
|
|
BtShared *pBt; /* The BTree */
|
|
int usableSize; /* Total usable size of a page */
|
|
u8 *data; /* Content of the parent page */
|
|
u8 *cdata; /* Content of the child page */
|
|
int hdr; /* Offset to page header in parent */
|
|
int brk; /* Offset to content of first cell in parent */
|
|
|
|
assert( pPage->pParent==0 );
|
|
assert( pPage->nOverflow>0 );
|
|
pBt = pPage->pBt;
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
rc = allocateBtreePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0);
|
|
if( rc ) return rc;
|
|
assert( sqlite3PagerIswriteable(pChild->pDbPage) );
|
|
usableSize = pBt->usableSize;
|
|
data = pPage->aData;
|
|
hdr = pPage->hdrOffset;
|
|
brk = get2byte(&data[hdr+5]);
|
|
cdata = pChild->aData;
|
|
memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
|
|
memcpy(&cdata[brk], &data[brk], usableSize-brk);
|
|
assert( pChild->isInit==0 );
|
|
rc = sqlite3BtreeInitPage(pChild, pPage);
|
|
if( rc ) goto balancedeeper_out;
|
|
memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0]));
|
|
pChild->nOverflow = pPage->nOverflow;
|
|
if( pChild->nOverflow ){
|
|
pChild->nFree = 0;
|
|
}
|
|
assert( pChild->nCell==pPage->nCell );
|
|
zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
|
|
put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
|
|
TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pBt->autoVacuum ){
|
|
int i;
|
|
rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno);
|
|
if( rc ) goto balancedeeper_out;
|
|
for(i=0; i<pChild->nCell; i++){
|
|
rc = ptrmapPutOvfl(pChild, i);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
rc = balance_nonroot(pChild);
|
|
|
|
balancedeeper_out:
|
|
releasePage(pChild);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Decide if the page pPage needs to be balanced. If balancing is
|
|
** required, call the appropriate balancing routine.
|
|
*/
|
|
static int balance(MemPage *pPage, int insert){
|
|
int rc = SQLITE_OK;
|
|
assert( sqlite3_mutex_held(pPage->pBt->mutex) );
|
|
if( pPage->pParent==0 ){
|
|
rc = sqlite3PagerWrite(pPage->pDbPage);
|
|
if( rc==SQLITE_OK && pPage->nOverflow>0 ){
|
|
rc = balance_deeper(pPage);
|
|
}
|
|
if( rc==SQLITE_OK && pPage->nCell==0 ){
|
|
rc = balance_shallower(pPage);
|
|
}
|
|
}else{
|
|
if( pPage->nOverflow>0 ||
|
|
(!insert && pPage->nFree>pPage->pBt->usableSize*2/3) ){
|
|
rc = balance_nonroot(pPage);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This routine checks all cursors that point to table pgnoRoot.
|
|
** If any of those cursors were opened with wrFlag==0 in a different
|
|
** database connection (a database connection that shares the pager
|
|
** cache with the current connection) and that other connection
|
|
** is not in the ReadUncommmitted state, then this routine returns
|
|
** SQLITE_LOCKED.
|
|
**
|
|
** In addition to checking for read-locks (where a read-lock
|
|
** means a cursor opened with wrFlag==0) this routine also moves
|
|
** all write cursors so that they are pointing to the
|
|
** first Cell on the root page. This is necessary because an insert
|
|
** or delete might change the number of cells on a page or delete
|
|
** a page entirely and we do not want to leave any cursors
|
|
** pointing to non-existant pages or cells.
|
|
*/
|
|
static int checkReadLocks(Btree *pBtree, Pgno pgnoRoot, BtCursor *pExclude){
|
|
BtCursor *p;
|
|
BtShared *pBt = pBtree->pBt;
|
|
sqlite3 *db = pBtree->db;
|
|
assert( sqlite3BtreeHoldsMutex(pBtree) );
|
|
for(p=pBt->pCursor; p; p=p->pNext){
|
|
if( p==pExclude ) continue;
|
|
if( p->eState!=CURSOR_VALID ) continue;
|
|
if( p->pgnoRoot!=pgnoRoot ) continue;
|
|
if( p->wrFlag==0 ){
|
|
sqlite3 *dbOther = p->pBtree->db;
|
|
if( dbOther==0 ||
|
|
(dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0) ){
|
|
return SQLITE_LOCKED;
|
|
}
|
|
}else if( p->pPage->pgno!=p->pgnoRoot ){
|
|
moveToRoot(p);
|
|
}
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Insert a new record into the BTree. The key is given by (pKey,nKey)
|
|
** and the data is given by (pData,nData). The cursor is used only to
|
|
** define what table the record should be inserted into. The cursor
|
|
** is left pointing at a random location.
|
|
**
|
|
** For an INTKEY table, only the nKey value of the key is used. pKey is
|
|
** ignored. For a ZERODATA table, the pData and nData are both ignored.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeInsert(
|
|
BtCursor *pCur, /* Insert data into the table of this cursor */
|
|
const void *pKey, i64 nKey, /* The key of the new record */
|
|
const void *pData, int nData, /* The data of the new record */
|
|
int nZero, /* Number of extra 0 bytes to append to data */
|
|
int appendBias /* True if this is likely an append */
|
|
){
|
|
int rc;
|
|
int loc;
|
|
int szNew;
|
|
MemPage *pPage;
|
|
Btree *p = pCur->pBtree;
|
|
BtShared *pBt = p->pBt;
|
|
unsigned char *oldCell;
|
|
unsigned char *newCell = 0;
|
|
|
|
assert( cursorHoldsMutex(pCur) );
|
|
if( pBt->inTransaction!=TRANS_WRITE ){
|
|
/* Must start a transaction before doing an insert */
|
|
rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
|
return rc;
|
|
}
|
|
assert( !pBt->readOnly );
|
|
if( !pCur->wrFlag ){
|
|
return SQLITE_PERM; /* Cursor not open for writing */
|
|
}
|
|
if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
|
|
return SQLITE_LOCKED; /* The table pCur points to has a read lock */
|
|
}
|
|
if( pCur->eState==CURSOR_FAULT ){
|
|
return pCur->skip;
|
|
}
|
|
|
|
/* Save the positions of any other cursors open on this table */
|
|
clearCursorPosition(pCur);
|
|
if(
|
|
SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) ||
|
|
SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, nKey, appendBias, &loc))
|
|
){
|
|
return rc;
|
|
}
|
|
|
|
pPage = pCur->pPage;
|
|
assert( pPage->intKey || nKey>=0 );
|
|
assert( pPage->leaf || !pPage->leafData );
|
|
TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
|
|
pCur->pgnoRoot, nKey, nData, pPage->pgno,
|
|
loc==0 ? "overwrite" : "new entry"));
|
|
assert( pPage->isInit );
|
|
newCell = sqlite3_malloc( MX_CELL_SIZE(pBt) );
|
|
if( newCell==0 ) return SQLITE_NOMEM;
|
|
rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
|
|
if( rc ) goto end_insert;
|
|
assert( szNew==cellSizePtr(pPage, newCell) );
|
|
assert( szNew<=MX_CELL_SIZE(pBt) );
|
|
if( loc==0 && CURSOR_VALID==pCur->eState ){
|
|
int szOld;
|
|
assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
|
|
rc = sqlite3PagerWrite(pPage->pDbPage);
|
|
if( rc ){
|
|
goto end_insert;
|
|
}
|
|
oldCell = findCell(pPage, pCur->idx);
|
|
if( !pPage->leaf ){
|
|
memcpy(newCell, oldCell, 4);
|
|
}
|
|
szOld = cellSizePtr(pPage, oldCell);
|
|
rc = clearCell(pPage, oldCell);
|
|
if( rc ) goto end_insert;
|
|
dropCell(pPage, pCur->idx, szOld);
|
|
}else if( loc<0 && pPage->nCell>0 ){
|
|
assert( pPage->leaf );
|
|
pCur->idx++;
|
|
pCur->info.nSize = 0;
|
|
}else{
|
|
assert( pPage->leaf );
|
|
}
|
|
rc = insertCell(pPage, pCur->idx, newCell, szNew, 0, 0);
|
|
if( rc!=SQLITE_OK ) goto end_insert;
|
|
rc = balance(pPage, 1);
|
|
/* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
|
|
/* fflush(stdout); */
|
|
if( rc==SQLITE_OK ){
|
|
moveToRoot(pCur);
|
|
}
|
|
end_insert:
|
|
sqlite3_free(newCell);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Delete the entry that the cursor is pointing to. The cursor
|
|
** is left pointing at a random location.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor *pCur){
|
|
MemPage *pPage = pCur->pPage;
|
|
unsigned char *pCell;
|
|
int rc;
|
|
Pgno pgnoChild = 0;
|
|
Btree *p = pCur->pBtree;
|
|
BtShared *pBt = p->pBt;
|
|
|
|
assert( cursorHoldsMutex(pCur) );
|
|
assert( pPage->isInit );
|
|
if( pBt->inTransaction!=TRANS_WRITE ){
|
|
/* Must start a transaction before doing a delete */
|
|
rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
|
return rc;
|
|
}
|
|
assert( !pBt->readOnly );
|
|
if( pCur->eState==CURSOR_FAULT ){
|
|
return pCur->skip;
|
|
}
|
|
if( pCur->idx >= pPage->nCell ){
|
|
return SQLITE_ERROR; /* The cursor is not pointing to anything */
|
|
}
|
|
if( !pCur->wrFlag ){
|
|
return SQLITE_PERM; /* Did not open this cursor for writing */
|
|
}
|
|
if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
|
|
return SQLITE_LOCKED; /* The table pCur points to has a read lock */
|
|
}
|
|
|
|
/* Restore the current cursor position (a no-op if the cursor is not in
|
|
** CURSOR_REQUIRESEEK state) and save the positions of any other cursors
|
|
** open on the same table. Then call sqlite3PagerWrite() on the page
|
|
** that the entry will be deleted from.
|
|
*/
|
|
if(
|
|
(rc = restoreOrClearCursorPosition(pCur))!=0 ||
|
|
(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 ||
|
|
(rc = sqlite3PagerWrite(pPage->pDbPage))!=0
|
|
){
|
|
return rc;
|
|
}
|
|
|
|
/* Locate the cell within its page and leave pCell pointing to the
|
|
** data. The clearCell() call frees any overflow pages associated with the
|
|
** cell. The cell itself is still intact.
|
|
*/
|
|
pCell = findCell(pPage, pCur->idx);
|
|
if( !pPage->leaf ){
|
|
pgnoChild = get4byte(pCell);
|
|
}
|
|
rc = clearCell(pPage, pCell);
|
|
if( rc ){
|
|
return rc;
|
|
}
|
|
|
|
if( !pPage->leaf ){
|
|
/*
|
|
** The entry we are about to delete is not a leaf so if we do not
|
|
** do something we will leave a hole on an internal page.
|
|
** We have to fill the hole by moving in a cell from a leaf. The
|
|
** next Cell after the one to be deleted is guaranteed to exist and
|
|
** to be a leaf so we can use it.
|
|
*/
|
|
BtCursor leafCur;
|
|
unsigned char *pNext;
|
|
int notUsed;
|
|
unsigned char *tempCell = 0;
|
|
assert( !pPage->leafData );
|
|
sqlite3BtreeGetTempCursor(pCur, &leafCur);
|
|
rc = sqlite3BtreeNext(&leafCur, ¬Used);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3PagerWrite(leafCur.pPage->pDbPage);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
int szNext;
|
|
TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
|
|
pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno));
|
|
dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
|
|
pNext = findCell(leafCur.pPage, leafCur.idx);
|
|
szNext = cellSizePtr(leafCur.pPage, pNext);
|
|
assert( MX_CELL_SIZE(pBt)>=szNext+4 );
|
|
tempCell = sqlite3_malloc( MX_CELL_SIZE(pBt) );
|
|
if( tempCell==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
rc = insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell, 0);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild);
|
|
rc = balance(pPage, 0);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
dropCell(leafCur.pPage, leafCur.idx, szNext);
|
|
rc = balance(leafCur.pPage, 0);
|
|
}
|
|
}
|
|
sqlite3_free(tempCell);
|
|
sqlite3BtreeReleaseTempCursor(&leafCur);
|
|
}else{
|
|
TRACE(("DELETE: table=%d delete from leaf %d\n",
|
|
pCur->pgnoRoot, pPage->pgno));
|
|
dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
|
|
rc = balance(pPage, 0);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
moveToRoot(pCur);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Create a new BTree table. Write into *piTable the page
|
|
** number for the root page of the new table.
|
|
**
|
|
** The type of type is determined by the flags parameter. Only the
|
|
** following values of flags are currently in use. Other values for
|
|
** flags might not work:
|
|
**
|
|
** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
|
|
** BTREE_ZERODATA Used for SQL indices
|
|
*/
|
|
static int btreeCreateTable(Btree *p, int *piTable, int flags){
|
|
BtShared *pBt = p->pBt;
|
|
MemPage *pRoot;
|
|
Pgno pgnoRoot;
|
|
int rc;
|
|
|
|
assert( sqlite3BtreeHoldsMutex(p) );
|
|
if( pBt->inTransaction!=TRANS_WRITE ){
|
|
/* Must start a transaction first */
|
|
rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
|
return rc;
|
|
}
|
|
assert( !pBt->readOnly );
|
|
|
|
#ifdef SQLITE_OMIT_AUTOVACUUM
|
|
rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
|
|
if( rc ){
|
|
return rc;
|
|
}
|
|
#else
|
|
if( pBt->autoVacuum ){
|
|
Pgno pgnoMove; /* Move a page here to make room for the root-page */
|
|
MemPage *pPageMove; /* The page to move to. */
|
|
|
|
/* Creating a new table may probably require moving an existing database
|
|
** to make room for the new tables root page. In case this page turns
|
|
** out to be an overflow page, delete all overflow page-map caches
|
|
** held by open cursors.
|
|
*/
|
|
invalidateAllOverflowCache(pBt);
|
|
|
|
/* Read the value of meta[3] from the database to determine where the
|
|
** root page of the new table should go. meta[3] is the largest root-page
|
|
** created so far, so the new root-page is (meta[3]+1).
|
|
*/
|
|
rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
pgnoRoot++;
|
|
|
|
/* The new root-page may not be allocated on a pointer-map page, or the
|
|
** PENDING_BYTE page.
|
|
*/
|
|
while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
|
|
pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
|
|
pgnoRoot++;
|
|
}
|
|
assert( pgnoRoot>=3 );
|
|
|
|
/* Allocate a page. The page that currently resides at pgnoRoot will
|
|
** be moved to the allocated page (unless the allocated page happens
|
|
** to reside at pgnoRoot).
|
|
*/
|
|
rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
if( pgnoMove!=pgnoRoot ){
|
|
/* pgnoRoot is the page that will be used for the root-page of
|
|
** the new table (assuming an error did not occur). But we were
|
|
** allocated pgnoMove. If required (i.e. if it was not allocated
|
|
** by extending the file), the current page at position pgnoMove
|
|
** is already journaled.
|
|
*/
|
|
u8 eType;
|
|
Pgno iPtrPage;
|
|
|
|
releasePage(pPageMove);
|
|
|
|
/* Move the page currently at pgnoRoot to pgnoMove. */
|
|
rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
|
|
if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
|
|
releasePage(pRoot);
|
|
return rc;
|
|
}
|
|
assert( eType!=PTRMAP_ROOTPAGE );
|
|
assert( eType!=PTRMAP_FREEPAGE );
|
|
rc = sqlite3PagerWrite(pRoot->pDbPage);
|
|
if( rc!=SQLITE_OK ){
|
|
releasePage(pRoot);
|
|
return rc;
|
|
}
|
|
rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove);
|
|
releasePage(pRoot);
|
|
|
|
/* Obtain the page at pgnoRoot */
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
rc = sqlite3PagerWrite(pRoot->pDbPage);
|
|
if( rc!=SQLITE_OK ){
|
|
releasePage(pRoot);
|
|
return rc;
|
|
}
|
|
}else{
|
|
pRoot = pPageMove;
|
|
}
|
|
|
|
/* Update the pointer-map and meta-data with the new root-page number. */
|
|
rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
|
|
if( rc ){
|
|
releasePage(pRoot);
|
|
return rc;
|
|
}
|
|
rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
|
|
if( rc ){
|
|
releasePage(pRoot);
|
|
return rc;
|
|
}
|
|
|
|
}else{
|
|
rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
|
|
if( rc ) return rc;
|
|
}
|
|
#endif
|
|
assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
|
|
zeroPage(pRoot, flags | PTF_LEAF);
|
|
sqlite3PagerUnref(pRoot->pDbPage);
|
|
*piTable = (int)pgnoRoot;
|
|
return SQLITE_OK;
|
|
}
|
|
SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
|
|
int rc;
|
|
sqlite3BtreeEnter(p);
|
|
p->pBt->db = p->db;
|
|
rc = btreeCreateTable(p, piTable, flags);
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Erase the given database page and all its children. Return
|
|
** the page to the freelist.
|
|
*/
|
|
static int clearDatabasePage(
|
|
BtShared *pBt, /* The BTree that contains the table */
|
|
Pgno pgno, /* Page number to clear */
|
|
MemPage *pParent, /* Parent page. NULL for the root */
|
|
int freePageFlag /* Deallocate page if true */
|
|
){
|
|
MemPage *pPage = 0;
|
|
int rc;
|
|
unsigned char *pCell;
|
|
int i;
|
|
|
|
assert( sqlite3_mutex_held(pBt->mutex) );
|
|
if( pgno>sqlite3PagerPagecount(pBt->pPager) ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
|
|
rc = getAndInitPage(pBt, pgno, &pPage, pParent);
|
|
if( rc ) goto cleardatabasepage_out;
|
|
for(i=0; i<pPage->nCell; i++){
|
|
pCell = findCell(pPage, i);
|
|
if( !pPage->leaf ){
|
|
rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1);
|
|
if( rc ) goto cleardatabasepage_out;
|
|
}
|
|
rc = clearCell(pPage, pCell);
|
|
if( rc ) goto cleardatabasepage_out;
|
|
}
|
|
if( !pPage->leaf ){
|
|
rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1);
|
|
if( rc ) goto cleardatabasepage_out;
|
|
}
|
|
if( freePageFlag ){
|
|
rc = freePage(pPage);
|
|
}else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
|
|
zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
|
|
}
|
|
|
|
cleardatabasepage_out:
|
|
releasePage(pPage);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Delete all information from a single table in the database. iTable is
|
|
** the page number of the root of the table. After this routine returns,
|
|
** the root page is empty, but still exists.
|
|
**
|
|
** This routine will fail with SQLITE_LOCKED if there are any open
|
|
** read cursors on the table. Open write cursors are moved to the
|
|
** root of the table.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree *p, int iTable){
|
|
int rc;
|
|
BtShared *pBt = p->pBt;
|
|
sqlite3BtreeEnter(p);
|
|
pBt->db = p->db;
|
|
if( p->inTrans!=TRANS_WRITE ){
|
|
rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
|
}else if( (rc = checkReadLocks(p, iTable, 0))!=SQLITE_OK ){
|
|
/* nothing to do */
|
|
}else if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){
|
|
/* nothing to do */
|
|
}else{
|
|
rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0);
|
|
}
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Erase all information in a table and add the root of the table to
|
|
** the freelist. Except, the root of the principle table (the one on
|
|
** page 1) is never added to the freelist.
|
|
**
|
|
** This routine will fail with SQLITE_LOCKED if there are any open
|
|
** cursors on the table.
|
|
**
|
|
** If AUTOVACUUM is enabled and the page at iTable is not the last
|
|
** root page in the database file, then the last root page
|
|
** in the database file is moved into the slot formerly occupied by
|
|
** iTable and that last slot formerly occupied by the last root page
|
|
** is added to the freelist instead of iTable. In this say, all
|
|
** root pages are kept at the beginning of the database file, which
|
|
** is necessary for AUTOVACUUM to work right. *piMoved is set to the
|
|
** page number that used to be the last root page in the file before
|
|
** the move. If no page gets moved, *piMoved is set to 0.
|
|
** The last root page is recorded in meta[3] and the value of
|
|
** meta[3] is updated by this procedure.
|
|
*/
|
|
static int btreeDropTable(Btree *p, int iTable, int *piMoved){
|
|
int rc;
|
|
MemPage *pPage = 0;
|
|
BtShared *pBt = p->pBt;
|
|
|
|
assert( sqlite3BtreeHoldsMutex(p) );
|
|
if( p->inTrans!=TRANS_WRITE ){
|
|
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
|
}
|
|
|
|
/* It is illegal to drop a table if any cursors are open on the
|
|
** database. This is because in auto-vacuum mode the backend may
|
|
** need to move another root-page to fill a gap left by the deleted
|
|
** root page. If an open cursor was using this page a problem would
|
|
** occur.
|
|
*/
|
|
if( pBt->pCursor ){
|
|
return SQLITE_LOCKED;
|
|
}
|
|
|
|
rc = sqlite3BtreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
|
|
if( rc ) return rc;
|
|
rc = sqlite3BtreeClearTable(p, iTable);
|
|
if( rc ){
|
|
releasePage(pPage);
|
|
return rc;
|
|
}
|
|
|
|
*piMoved = 0;
|
|
|
|
if( iTable>1 ){
|
|
#ifdef SQLITE_OMIT_AUTOVACUUM
|
|
rc = freePage(pPage);
|
|
releasePage(pPage);
|
|
#else
|
|
if( pBt->autoVacuum ){
|
|
Pgno maxRootPgno;
|
|
rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno);
|
|
if( rc!=SQLITE_OK ){
|
|
releasePage(pPage);
|
|
return rc;
|
|
}
|
|
|
|
if( iTable==maxRootPgno ){
|
|
/* If the table being dropped is the table with the largest root-page
|
|
** number in the database, put the root page on the free list.
|
|
*/
|
|
rc = freePage(pPage);
|
|
releasePage(pPage);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
}else{
|
|
/* The table being dropped does not have the largest root-page
|
|
** number in the database. So move the page that does into the
|
|
** gap left by the deleted root-page.
|
|
*/
|
|
MemPage *pMove;
|
|
releasePage(pPage);
|
|
rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable);
|
|
releasePage(pMove);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
rc = freePage(pMove);
|
|
releasePage(pMove);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
*piMoved = maxRootPgno;
|
|
}
|
|
|
|
/* Set the new 'max-root-page' value in the database header. This
|
|
** is the old value less one, less one more if that happens to
|
|
** be a root-page number, less one again if that is the
|
|
** PENDING_BYTE_PAGE.
|
|
*/
|
|
maxRootPgno--;
|
|
if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
|
|
maxRootPgno--;
|
|
}
|
|
if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
|
|
maxRootPgno--;
|
|
}
|
|
assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
|
|
|
|
rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
|
|
}else{
|
|
rc = freePage(pPage);
|
|
releasePage(pPage);
|
|
}
|
|
#endif
|
|
}else{
|
|
/* If sqlite3BtreeDropTable was called on page 1. */
|
|
zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
|
|
releasePage(pPage);
|
|
}
|
|
return rc;
|
|
}
|
|
SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
|
|
int rc;
|
|
sqlite3BtreeEnter(p);
|
|
p->pBt->db = p->db;
|
|
rc = btreeDropTable(p, iTable, piMoved);
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Read the meta-information out of a database file. Meta[0]
|
|
** is the number of free pages currently in the database. Meta[1]
|
|
** through meta[15] are available for use by higher layers. Meta[0]
|
|
** is read-only, the others are read/write.
|
|
**
|
|
** The schema layer numbers meta values differently. At the schema
|
|
** layer (and the SetCookie and ReadCookie opcodes) the number of
|
|
** free pages is not visible. So Cookie[0] is the same as Meta[1].
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
|
|
DbPage *pDbPage;
|
|
int rc;
|
|
unsigned char *pP1;
|
|
BtShared *pBt = p->pBt;
|
|
|
|
sqlite3BtreeEnter(p);
|
|
pBt->db = p->db;
|
|
|
|
/* Reading a meta-data value requires a read-lock on page 1 (and hence
|
|
** the sqlite_master table. We grab this lock regardless of whether or
|
|
** not the SQLITE_ReadUncommitted flag is set (the table rooted at page
|
|
** 1 is treated as a special case by queryTableLock() and lockTable()).
|
|
*/
|
|
rc = queryTableLock(p, 1, READ_LOCK);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
assert( idx>=0 && idx<=15 );
|
|
rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage);
|
|
if( rc ){
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
pP1 = (unsigned char *)sqlite3PagerGetData(pDbPage);
|
|
*pMeta = get4byte(&pP1[36 + idx*4]);
|
|
sqlite3PagerUnref(pDbPage);
|
|
|
|
/* If autovacuumed is disabled in this build but we are trying to
|
|
** access an autovacuumed database, then make the database readonly.
|
|
*/
|
|
#ifdef SQLITE_OMIT_AUTOVACUUM
|
|
if( idx==4 && *pMeta>0 ) pBt->readOnly = 1;
|
|
#endif
|
|
|
|
/* Grab the read-lock on page 1. */
|
|
rc = lockTable(p, 1, READ_LOCK);
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Write meta-information back into the database. Meta[0] is
|
|
** read-only and may not be written.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
|
|
BtShared *pBt = p->pBt;
|
|
unsigned char *pP1;
|
|
int rc;
|
|
assert( idx>=1 && idx<=15 );
|
|
sqlite3BtreeEnter(p);
|
|
pBt->db = p->db;
|
|
if( p->inTrans!=TRANS_WRITE ){
|
|
rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
|
}else{
|
|
assert( pBt->pPage1!=0 );
|
|
pP1 = pBt->pPage1->aData;
|
|
rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
|
|
if( rc==SQLITE_OK ){
|
|
put4byte(&pP1[36 + idx*4], iMeta);
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( idx==7 ){
|
|
assert( pBt->autoVacuum || iMeta==0 );
|
|
assert( iMeta==0 || iMeta==1 );
|
|
pBt->incrVacuum = iMeta;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return the flag byte at the beginning of the page that the cursor
|
|
** is currently pointing to.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeFlags(BtCursor *pCur){
|
|
/* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
|
|
** restoreOrClearCursorPosition() here.
|
|
*/
|
|
MemPage *pPage;
|
|
restoreOrClearCursorPosition(pCur);
|
|
pPage = pCur->pPage;
|
|
assert( cursorHoldsMutex(pCur) );
|
|
assert( pPage->pBt==pCur->pBt );
|
|
return pPage ? pPage->aData[pPage->hdrOffset] : 0;
|
|
}
|
|
|
|
|
|
/*
|
|
** Return the pager associated with a BTree. This routine is used for
|
|
** testing and debugging only.
|
|
*/
|
|
SQLITE_PRIVATE Pager *sqlite3BtreePager(Btree *p){
|
|
return p->pBt->pPager;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
|
|
/*
|
|
** Append a message to the error message string.
|
|
*/
|
|
static void checkAppendMsg(
|
|
IntegrityCk *pCheck,
|
|
char *zMsg1,
|
|
const char *zFormat,
|
|
...
|
|
){
|
|
va_list ap;
|
|
char *zMsg2;
|
|
if( !pCheck->mxErr ) return;
|
|
pCheck->mxErr--;
|
|
pCheck->nErr++;
|
|
va_start(ap, zFormat);
|
|
zMsg2 = sqlite3VMPrintf(0, zFormat, ap);
|
|
va_end(ap);
|
|
if( zMsg1==0 ) zMsg1 = "";
|
|
if( pCheck->zErrMsg ){
|
|
char *zOld = pCheck->zErrMsg;
|
|
pCheck->zErrMsg = 0;
|
|
sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
|
|
sqlite3_free(zOld);
|
|
}else{
|
|
sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
|
|
}
|
|
sqlite3_free(zMsg2);
|
|
}
|
|
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
|
|
|
|
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
|
|
/*
|
|
** Add 1 to the reference count for page iPage. If this is the second
|
|
** reference to the page, add an error message to pCheck->zErrMsg.
|
|
** Return 1 if there are 2 ore more references to the page and 0 if
|
|
** if this is the first reference to the page.
|
|
**
|
|
** Also check that the page number is in bounds.
|
|
*/
|
|
static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
|
|
if( iPage==0 ) return 1;
|
|
if( iPage>pCheck->nPage || iPage<0 ){
|
|
checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
|
|
return 1;
|
|
}
|
|
if( pCheck->anRef[iPage]==1 ){
|
|
checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
|
|
return 1;
|
|
}
|
|
return (pCheck->anRef[iPage]++)>1;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
/*
|
|
** Check that the entry in the pointer-map for page iChild maps to
|
|
** page iParent, pointer type ptrType. If not, append an error message
|
|
** to pCheck.
|
|
*/
|
|
static void checkPtrmap(
|
|
IntegrityCk *pCheck, /* Integrity check context */
|
|
Pgno iChild, /* Child page number */
|
|
u8 eType, /* Expected pointer map type */
|
|
Pgno iParent, /* Expected pointer map parent page number */
|
|
char *zContext /* Context description (used for error msg) */
|
|
){
|
|
int rc;
|
|
u8 ePtrmapType;
|
|
Pgno iPtrmapParent;
|
|
|
|
rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
|
|
if( rc!=SQLITE_OK ){
|
|
checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
|
|
return;
|
|
}
|
|
|
|
if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
|
|
checkAppendMsg(pCheck, zContext,
|
|
"Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
|
|
iChild, eType, iParent, ePtrmapType, iPtrmapParent);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Check the integrity of the freelist or of an overflow page list.
|
|
** Verify that the number of pages on the list is N.
|
|
*/
|
|
static void checkList(
|
|
IntegrityCk *pCheck, /* Integrity checking context */
|
|
int isFreeList, /* True for a freelist. False for overflow page list */
|
|
int iPage, /* Page number for first page in the list */
|
|
int N, /* Expected number of pages in the list */
|
|
char *zContext /* Context for error messages */
|
|
){
|
|
int i;
|
|
int expected = N;
|
|
int iFirst = iPage;
|
|
while( N-- > 0 && pCheck->mxErr ){
|
|
DbPage *pOvflPage;
|
|
unsigned char *pOvflData;
|
|
if( iPage<1 ){
|
|
checkAppendMsg(pCheck, zContext,
|
|
"%d of %d pages missing from overflow list starting at %d",
|
|
N+1, expected, iFirst);
|
|
break;
|
|
}
|
|
if( checkRef(pCheck, iPage, zContext) ) break;
|
|
if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
|
|
checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
|
|
break;
|
|
}
|
|
pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
|
|
if( isFreeList ){
|
|
int n = get4byte(&pOvflData[4]);
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pCheck->pBt->autoVacuum ){
|
|
checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
|
|
}
|
|
#endif
|
|
if( n>pCheck->pBt->usableSize/4-8 ){
|
|
checkAppendMsg(pCheck, zContext,
|
|
"freelist leaf count too big on page %d", iPage);
|
|
N--;
|
|
}else{
|
|
for(i=0; i<n; i++){
|
|
Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pCheck->pBt->autoVacuum ){
|
|
checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
|
|
}
|
|
#endif
|
|
checkRef(pCheck, iFreePage, zContext);
|
|
}
|
|
N -= n;
|
|
}
|
|
}
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
else{
|
|
/* If this database supports auto-vacuum and iPage is not the last
|
|
** page in this overflow list, check that the pointer-map entry for
|
|
** the following page matches iPage.
|
|
*/
|
|
if( pCheck->pBt->autoVacuum && N>0 ){
|
|
i = get4byte(pOvflData);
|
|
checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
|
|
}
|
|
}
|
|
#endif
|
|
iPage = get4byte(pOvflData);
|
|
sqlite3PagerUnref(pOvflPage);
|
|
}
|
|
}
|
|
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
|
|
|
|
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
|
|
/*
|
|
** Do various sanity checks on a single page of a tree. Return
|
|
** the tree depth. Root pages return 0. Parents of root pages
|
|
** return 1, and so forth.
|
|
**
|
|
** These checks are done:
|
|
**
|
|
** 1. Make sure that cells and freeblocks do not overlap
|
|
** but combine to completely cover the page.
|
|
** NO 2. Make sure cell keys are in order.
|
|
** NO 3. Make sure no key is less than or equal to zLowerBound.
|
|
** NO 4. Make sure no key is greater than or equal to zUpperBound.
|
|
** 5. Check the integrity of overflow pages.
|
|
** 6. Recursively call checkTreePage on all children.
|
|
** 7. Verify that the depth of all children is the same.
|
|
** 8. Make sure this page is at least 33% full or else it is
|
|
** the root of the tree.
|
|
*/
|
|
static int checkTreePage(
|
|
IntegrityCk *pCheck, /* Context for the sanity check */
|
|
int iPage, /* Page number of the page to check */
|
|
MemPage *pParent, /* Parent page */
|
|
char *zParentContext /* Parent context */
|
|
){
|
|
MemPage *pPage;
|
|
int i, rc, depth, d2, pgno, cnt;
|
|
int hdr, cellStart;
|
|
int nCell;
|
|
u8 *data;
|
|
BtShared *pBt;
|
|
int usableSize;
|
|
char zContext[100];
|
|
char *hit;
|
|
|
|
sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
|
|
|
|
/* Check that the page exists
|
|
*/
|
|
pBt = pCheck->pBt;
|
|
usableSize = pBt->usableSize;
|
|
if( iPage==0 ) return 0;
|
|
if( checkRef(pCheck, iPage, zParentContext) ) return 0;
|
|
if( (rc = sqlite3BtreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
|
|
checkAppendMsg(pCheck, zContext,
|
|
"unable to get the page. error code=%d", rc);
|
|
return 0;
|
|
}
|
|
if( (rc = sqlite3BtreeInitPage(pPage, pParent))!=0 ){
|
|
checkAppendMsg(pCheck, zContext,
|
|
"sqlite3BtreeInitPage() returns error code %d", rc);
|
|
releasePage(pPage);
|
|
return 0;
|
|
}
|
|
|
|
/* Check out all the cells.
|
|
*/
|
|
depth = 0;
|
|
for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
|
|
u8 *pCell;
|
|
int sz;
|
|
CellInfo info;
|
|
|
|
/* Check payload overflow pages
|
|
*/
|
|
sqlite3_snprintf(sizeof(zContext), zContext,
|
|
"On tree page %d cell %d: ", iPage, i);
|
|
pCell = findCell(pPage,i);
|
|
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
|
|
sz = info.nData;
|
|
if( !pPage->intKey ) sz += info.nKey;
|
|
assert( sz==info.nPayload );
|
|
if( sz>info.nLocal ){
|
|
int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
|
|
Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pBt->autoVacuum ){
|
|
checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
|
|
}
|
|
#endif
|
|
checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
|
|
}
|
|
|
|
/* Check sanity of left child page.
|
|
*/
|
|
if( !pPage->leaf ){
|
|
pgno = get4byte(pCell);
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pBt->autoVacuum ){
|
|
checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
|
|
}
|
|
#endif
|
|
d2 = checkTreePage(pCheck,pgno,pPage,zContext);
|
|
if( i>0 && d2!=depth ){
|
|
checkAppendMsg(pCheck, zContext, "Child page depth differs");
|
|
}
|
|
depth = d2;
|
|
}
|
|
}
|
|
if( !pPage->leaf ){
|
|
pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
|
|
sqlite3_snprintf(sizeof(zContext), zContext,
|
|
"On page %d at right child: ", iPage);
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pBt->autoVacuum ){
|
|
checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
|
|
}
|
|
#endif
|
|
checkTreePage(pCheck, pgno, pPage, zContext);
|
|
}
|
|
|
|
/* Check for complete coverage of the page
|
|
*/
|
|
data = pPage->aData;
|
|
hdr = pPage->hdrOffset;
|
|
hit = sqlite3MallocZero( usableSize );
|
|
if( hit ){
|
|
memset(hit, 1, get2byte(&data[hdr+5]));
|
|
nCell = get2byte(&data[hdr+3]);
|
|
cellStart = hdr + 12 - 4*pPage->leaf;
|
|
for(i=0; i<nCell; i++){
|
|
int pc = get2byte(&data[cellStart+i*2]);
|
|
int size = cellSizePtr(pPage, &data[pc]);
|
|
int j;
|
|
if( (pc+size-1)>=usableSize || pc<0 ){
|
|
checkAppendMsg(pCheck, 0,
|
|
"Corruption detected in cell %d on page %d",i,iPage,0);
|
|
}else{
|
|
for(j=pc+size-1; j>=pc; j--) hit[j]++;
|
|
}
|
|
}
|
|
for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000;
|
|
cnt++){
|
|
int size = get2byte(&data[i+2]);
|
|
int j;
|
|
if( (i+size-1)>=usableSize || i<0 ){
|
|
checkAppendMsg(pCheck, 0,
|
|
"Corruption detected in cell %d on page %d",i,iPage,0);
|
|
}else{
|
|
for(j=i+size-1; j>=i; j--) hit[j]++;
|
|
}
|
|
i = get2byte(&data[i]);
|
|
}
|
|
for(i=cnt=0; i<usableSize; i++){
|
|
if( hit[i]==0 ){
|
|
cnt++;
|
|
}else if( hit[i]>1 ){
|
|
checkAppendMsg(pCheck, 0,
|
|
"Multiple uses for byte %d of page %d", i, iPage);
|
|
break;
|
|
}
|
|
}
|
|
if( cnt!=data[hdr+7] ){
|
|
checkAppendMsg(pCheck, 0,
|
|
"Fragmented space is %d byte reported as %d on page %d",
|
|
cnt, data[hdr+7], iPage);
|
|
}
|
|
}
|
|
sqlite3_free(hit);
|
|
|
|
releasePage(pPage);
|
|
return depth+1;
|
|
}
|
|
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
|
|
|
|
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
|
|
/*
|
|
** This routine does a complete check of the given BTree file. aRoot[] is
|
|
** an array of pages numbers were each page number is the root page of
|
|
** a table. nRoot is the number of entries in aRoot.
|
|
**
|
|
** If everything checks out, this routine returns NULL. If something is
|
|
** amiss, an error message is written into memory obtained from malloc()
|
|
** and a pointer to that error message is returned. The calling function
|
|
** is responsible for freeing the error message when it is done.
|
|
*/
|
|
SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(
|
|
Btree *p, /* The btree to be checked */
|
|
int *aRoot, /* An array of root pages numbers for individual trees */
|
|
int nRoot, /* Number of entries in aRoot[] */
|
|
int mxErr, /* Stop reporting errors after this many */
|
|
int *pnErr /* Write number of errors seen to this variable */
|
|
){
|
|
int i;
|
|
int nRef;
|
|
IntegrityCk sCheck;
|
|
BtShared *pBt = p->pBt;
|
|
|
|
sqlite3BtreeEnter(p);
|
|
pBt->db = p->db;
|
|
nRef = sqlite3PagerRefcount(pBt->pPager);
|
|
if( lockBtreeWithRetry(p)!=SQLITE_OK ){
|
|
sqlite3BtreeLeave(p);
|
|
return sqlite3StrDup("Unable to acquire a read lock on the database");
|
|
}
|
|
sCheck.pBt = pBt;
|
|
sCheck.pPager = pBt->pPager;
|
|
sCheck.nPage = sqlite3PagerPagecount(sCheck.pPager);
|
|
sCheck.mxErr = mxErr;
|
|
sCheck.nErr = 0;
|
|
*pnErr = 0;
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pBt->nTrunc!=0 ){
|
|
sCheck.nPage = pBt->nTrunc;
|
|
}
|
|
#endif
|
|
if( sCheck.nPage==0 ){
|
|
unlockBtreeIfUnused(pBt);
|
|
sqlite3BtreeLeave(p);
|
|
return 0;
|
|
}
|
|
sCheck.anRef = sqlite3_malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
|
|
if( !sCheck.anRef ){
|
|
unlockBtreeIfUnused(pBt);
|
|
*pnErr = 1;
|
|
sqlite3BtreeLeave(p);
|
|
return sqlite3MPrintf(p->db, "Unable to malloc %d bytes",
|
|
(sCheck.nPage+1)*sizeof(sCheck.anRef[0]));
|
|
}
|
|
for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
|
|
i = PENDING_BYTE_PAGE(pBt);
|
|
if( i<=sCheck.nPage ){
|
|
sCheck.anRef[i] = 1;
|
|
}
|
|
sCheck.zErrMsg = 0;
|
|
|
|
/* Check the integrity of the freelist
|
|
*/
|
|
checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
|
|
get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
|
|
|
|
/* Check all the tables.
|
|
*/
|
|
for(i=0; i<nRoot && sCheck.mxErr; i++){
|
|
if( aRoot[i]==0 ) continue;
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( pBt->autoVacuum && aRoot[i]>1 ){
|
|
checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
|
|
}
|
|
#endif
|
|
checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ");
|
|
}
|
|
|
|
/* Make sure every page in the file is referenced
|
|
*/
|
|
for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
|
|
#ifdef SQLITE_OMIT_AUTOVACUUM
|
|
if( sCheck.anRef[i]==0 ){
|
|
checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
|
|
}
|
|
#else
|
|
/* If the database supports auto-vacuum, make sure no tables contain
|
|
** references to pointer-map pages.
|
|
*/
|
|
if( sCheck.anRef[i]==0 &&
|
|
(PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
|
|
checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
|
|
}
|
|
if( sCheck.anRef[i]!=0 &&
|
|
(PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
|
|
checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Make sure this analysis did not leave any unref() pages
|
|
*/
|
|
unlockBtreeIfUnused(pBt);
|
|
if( nRef != sqlite3PagerRefcount(pBt->pPager) ){
|
|
checkAppendMsg(&sCheck, 0,
|
|
"Outstanding page count goes from %d to %d during this analysis",
|
|
nRef, sqlite3PagerRefcount(pBt->pPager)
|
|
);
|
|
}
|
|
|
|
/* Clean up and report errors.
|
|
*/
|
|
sqlite3BtreeLeave(p);
|
|
sqlite3_free(sCheck.anRef);
|
|
*pnErr = sCheck.nErr;
|
|
return sCheck.zErrMsg;
|
|
}
|
|
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
|
|
|
|
/*
|
|
** Return the full pathname of the underlying database file.
|
|
**
|
|
** The pager filename is invariant as long as the pager is
|
|
** open so it is safe to access without the BtShared mutex.
|
|
*/
|
|
SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *p){
|
|
assert( p->pBt->pPager!=0 );
|
|
return sqlite3PagerFilename(p->pBt->pPager);
|
|
}
|
|
|
|
/*
|
|
** Return the pathname of the directory that contains the database file.
|
|
**
|
|
** The pager directory name is invariant as long as the pager is
|
|
** open so it is safe to access without the BtShared mutex.
|
|
*/
|
|
SQLITE_PRIVATE const char *sqlite3BtreeGetDirname(Btree *p){
|
|
assert( p->pBt->pPager!=0 );
|
|
return sqlite3PagerDirname(p->pBt->pPager);
|
|
}
|
|
|
|
/*
|
|
** Return the pathname of the journal file for this database. The return
|
|
** value of this routine is the same regardless of whether the journal file
|
|
** has been created or not.
|
|
**
|
|
** The pager journal filename is invariant as long as the pager is
|
|
** open so it is safe to access without the BtShared mutex.
|
|
*/
|
|
SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *p){
|
|
assert( p->pBt->pPager!=0 );
|
|
return sqlite3PagerJournalname(p->pBt->pPager);
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_VACUUM
|
|
/*
|
|
** Copy the complete content of pBtFrom into pBtTo. A transaction
|
|
** must be active for both files.
|
|
**
|
|
** The size of file pBtFrom may be reduced by this operation.
|
|
** If anything goes wrong, the transaction on pBtFrom is rolled back.
|
|
*/
|
|
static int btreeCopyFile(Btree *pTo, Btree *pFrom){
|
|
int rc = SQLITE_OK;
|
|
Pgno i, nPage, nToPage, iSkip;
|
|
|
|
BtShared *pBtTo = pTo->pBt;
|
|
BtShared *pBtFrom = pFrom->pBt;
|
|
pBtTo->db = pTo->db;
|
|
pBtFrom->db = pFrom->db;
|
|
|
|
|
|
if( pTo->inTrans!=TRANS_WRITE || pFrom->inTrans!=TRANS_WRITE ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
if( pBtTo->pCursor ) return SQLITE_BUSY;
|
|
nToPage = sqlite3PagerPagecount(pBtTo->pPager);
|
|
nPage = sqlite3PagerPagecount(pBtFrom->pPager);
|
|
iSkip = PENDING_BYTE_PAGE(pBtTo);
|
|
for(i=1; rc==SQLITE_OK && i<=nPage; i++){
|
|
DbPage *pDbPage;
|
|
if( i==iSkip ) continue;
|
|
rc = sqlite3PagerGet(pBtFrom->pPager, i, &pDbPage);
|
|
if( rc ) break;
|
|
rc = sqlite3PagerOverwrite(pBtTo->pPager, i, sqlite3PagerGetData(pDbPage));
|
|
sqlite3PagerUnref(pDbPage);
|
|
}
|
|
|
|
/* If the file is shrinking, journal the pages that are being truncated
|
|
** so that they can be rolled back if the commit fails.
|
|
*/
|
|
for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
|
|
DbPage *pDbPage;
|
|
if( i==iSkip ) continue;
|
|
rc = sqlite3PagerGet(pBtTo->pPager, i, &pDbPage);
|
|
if( rc ) break;
|
|
rc = sqlite3PagerWrite(pDbPage);
|
|
sqlite3PagerDontWrite(pDbPage);
|
|
/* Yeah. It seems wierd to call DontWrite() right after Write(). But
|
|
** that is because the names of those procedures do not exactly
|
|
** represent what they do. Write() really means "put this page in the
|
|
** rollback journal and mark it as dirty so that it will be written
|
|
** to the database file later." DontWrite() undoes the second part of
|
|
** that and prevents the page from being written to the database. The
|
|
** page is still on the rollback journal, though. And that is the whole
|
|
** point of this loop: to put pages on the rollback journal. */
|
|
sqlite3PagerUnref(pDbPage);
|
|
}
|
|
if( !rc && nPage<nToPage ){
|
|
rc = sqlite3PagerTruncate(pBtTo->pPager, nPage);
|
|
}
|
|
|
|
if( rc ){
|
|
sqlite3BtreeRollback(pTo);
|
|
}
|
|
return rc;
|
|
}
|
|
SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){
|
|
int rc;
|
|
sqlite3BtreeEnter(pTo);
|
|
sqlite3BtreeEnter(pFrom);
|
|
rc = btreeCopyFile(pTo, pFrom);
|
|
sqlite3BtreeLeave(pFrom);
|
|
sqlite3BtreeLeave(pTo);
|
|
return rc;
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_VACUUM */
|
|
|
|
/*
|
|
** Return non-zero if a transaction is active.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree *p){
|
|
assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
|
|
return (p && (p->inTrans==TRANS_WRITE));
|
|
}
|
|
|
|
/*
|
|
** Return non-zero if a statement transaction is active.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeIsInStmt(Btree *p){
|
|
assert( sqlite3BtreeHoldsMutex(p) );
|
|
return (p->pBt && p->pBt->inStmt);
|
|
}
|
|
|
|
/*
|
|
** Return non-zero if a read (or write) transaction is active.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree *p){
|
|
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
return (p && (p->inTrans!=TRANS_NONE));
|
|
}
|
|
|
|
/*
|
|
** This function returns a pointer to a blob of memory associated with
|
|
** a single shared-btree. The memory is used by client code for its own
|
|
** purposes (for example, to store a high-level schema associated with
|
|
** the shared-btree). The btree layer manages reference counting issues.
|
|
**
|
|
** The first time this is called on a shared-btree, nBytes bytes of memory
|
|
** are allocated, zeroed, and returned to the caller. For each subsequent
|
|
** call the nBytes parameter is ignored and a pointer to the same blob
|
|
** of memory returned.
|
|
**
|
|
** Just before the shared-btree is closed, the function passed as the
|
|
** xFree argument when the memory allocation was made is invoked on the
|
|
** blob of allocated memory. This function should not call sqlite3_free()
|
|
** on the memory, the btree layer does that.
|
|
*/
|
|
SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
|
|
BtShared *pBt = p->pBt;
|
|
sqlite3BtreeEnter(p);
|
|
if( !pBt->pSchema ){
|
|
pBt->pSchema = sqlite3MallocZero(nBytes);
|
|
pBt->xFreeSchema = xFree;
|
|
}
|
|
sqlite3BtreeLeave(p);
|
|
return pBt->pSchema;
|
|
}
|
|
|
|
/*
|
|
** Return true if another user of the same shared btree as the argument
|
|
** handle holds an exclusive lock on the sqlite_master table.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *p){
|
|
int rc;
|
|
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
sqlite3BtreeEnter(p);
|
|
rc = (queryTableLock(p, MASTER_ROOT, READ_LOCK)!=SQLITE_OK);
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
/*
|
|
** Obtain a lock on the table whose root page is iTab. The
|
|
** lock is a write lock if isWritelock is true or a read lock
|
|
** if it is false.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
|
|
int rc = SQLITE_OK;
|
|
u8 lockType = (isWriteLock?WRITE_LOCK:READ_LOCK);
|
|
sqlite3BtreeEnter(p);
|
|
rc = queryTableLock(p, iTab, lockType);
|
|
if( rc==SQLITE_OK ){
|
|
rc = lockTable(p, iTab, lockType);
|
|
}
|
|
sqlite3BtreeLeave(p);
|
|
return rc;
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_INCRBLOB
|
|
/*
|
|
** Argument pCsr must be a cursor opened for writing on an
|
|
** INTKEY table currently pointing at a valid table entry.
|
|
** This function modifies the data stored as part of that entry.
|
|
** Only the data content may only be modified, it is not possible
|
|
** to change the length of the data stored.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
|
|
assert( cursorHoldsMutex(pCsr) );
|
|
assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
|
|
assert(pCsr->isIncrblobHandle);
|
|
if( pCsr->eState>=CURSOR_REQUIRESEEK ){
|
|
if( pCsr->eState==CURSOR_FAULT ){
|
|
return pCsr->skip;
|
|
}else{
|
|
return SQLITE_ABORT;
|
|
}
|
|
}
|
|
|
|
/* Check some preconditions:
|
|
** (a) the cursor is open for writing,
|
|
** (b) there is no read-lock on the table being modified and
|
|
** (c) the cursor points at a valid row of an intKey table.
|
|
*/
|
|
if( !pCsr->wrFlag ){
|
|
return SQLITE_READONLY;
|
|
}
|
|
assert( !pCsr->pBt->readOnly
|
|
&& pCsr->pBt->inTransaction==TRANS_WRITE );
|
|
if( checkReadLocks(pCsr->pBtree, pCsr->pgnoRoot, pCsr) ){
|
|
return SQLITE_LOCKED; /* The table pCur points to has a read lock */
|
|
}
|
|
if( pCsr->eState==CURSOR_INVALID || !pCsr->pPage->intKey ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1);
|
|
}
|
|
|
|
/*
|
|
** Set a flag on this cursor to cache the locations of pages from the
|
|
** overflow list for the current row. This is used by cursors opened
|
|
** for incremental blob IO only.
|
|
**
|
|
** This function sets a flag only. The actual page location cache
|
|
** (stored in BtCursor.aOverflow[]) is allocated and used by function
|
|
** accessPayload() (the worker function for sqlite3BtreeData() and
|
|
** sqlite3BtreePutData()).
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *pCur){
|
|
assert( cursorHoldsMutex(pCur) );
|
|
assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
|
|
assert(!pCur->isIncrblobHandle);
|
|
assert(!pCur->aOverflow);
|
|
pCur->isIncrblobHandle = 1;
|
|
}
|
|
#endif
|
|
|
|
/************** End of btree.c ***********************************************/
|
|
/************** Begin file vdbefifo.c ****************************************/
|
|
/*
|
|
** 2005 June 16
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file implements a FIFO queue of rowids used for processing
|
|
** UPDATE and DELETE statements.
|
|
*/
|
|
|
|
/*
|
|
** Allocate a new FifoPage and return a pointer to it. Return NULL if
|
|
** we run out of memory. Leave space on the page for nEntry entries.
|
|
*/
|
|
static FifoPage *allocateFifoPage(int nEntry){
|
|
FifoPage *pPage;
|
|
if( nEntry>32767 ){
|
|
nEntry = 32767;
|
|
}
|
|
pPage = sqlite3_malloc( sizeof(FifoPage) + sizeof(i64)*(nEntry-1) );
|
|
if( pPage ){
|
|
pPage->nSlot = nEntry;
|
|
pPage->iWrite = 0;
|
|
pPage->iRead = 0;
|
|
pPage->pNext = 0;
|
|
}
|
|
return pPage;
|
|
}
|
|
|
|
/*
|
|
** Initialize a Fifo structure.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeFifoInit(Fifo *pFifo){
|
|
memset(pFifo, 0, sizeof(*pFifo));
|
|
}
|
|
|
|
/*
|
|
** Push a single 64-bit integer value into the Fifo. Return SQLITE_OK
|
|
** normally. SQLITE_NOMEM is returned if we are unable to allocate
|
|
** memory.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeFifoPush(Fifo *pFifo, i64 val){
|
|
FifoPage *pPage;
|
|
pPage = pFifo->pLast;
|
|
if( pPage==0 ){
|
|
pPage = pFifo->pLast = pFifo->pFirst = allocateFifoPage(20);
|
|
if( pPage==0 ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
}else if( pPage->iWrite>=pPage->nSlot ){
|
|
pPage->pNext = allocateFifoPage(pFifo->nEntry);
|
|
if( pPage->pNext==0 ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
pPage = pFifo->pLast = pPage->pNext;
|
|
}
|
|
pPage->aSlot[pPage->iWrite++] = val;
|
|
pFifo->nEntry++;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Extract a single 64-bit integer value from the Fifo. The integer
|
|
** extracted is the one least recently inserted. If the Fifo is empty
|
|
** return SQLITE_DONE.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeFifoPop(Fifo *pFifo, i64 *pVal){
|
|
FifoPage *pPage;
|
|
if( pFifo->nEntry==0 ){
|
|
return SQLITE_DONE;
|
|
}
|
|
assert( pFifo->nEntry>0 );
|
|
pPage = pFifo->pFirst;
|
|
assert( pPage!=0 );
|
|
assert( pPage->iWrite>pPage->iRead );
|
|
assert( pPage->iWrite<=pPage->nSlot );
|
|
assert( pPage->iRead<pPage->nSlot );
|
|
assert( pPage->iRead>=0 );
|
|
*pVal = pPage->aSlot[pPage->iRead++];
|
|
pFifo->nEntry--;
|
|
if( pPage->iRead>=pPage->iWrite ){
|
|
pFifo->pFirst = pPage->pNext;
|
|
sqlite3_free(pPage);
|
|
if( pFifo->nEntry==0 ){
|
|
assert( pFifo->pLast==pPage );
|
|
pFifo->pLast = 0;
|
|
}else{
|
|
assert( pFifo->pFirst!=0 );
|
|
}
|
|
}else{
|
|
assert( pFifo->nEntry>0 );
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Delete all information from a Fifo object. Free all memory held
|
|
** by the Fifo.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeFifoClear(Fifo *pFifo){
|
|
FifoPage *pPage, *pNextPage;
|
|
for(pPage=pFifo->pFirst; pPage; pPage=pNextPage){
|
|
pNextPage = pPage->pNext;
|
|
sqlite3_free(pPage);
|
|
}
|
|
sqlite3VdbeFifoInit(pFifo);
|
|
}
|
|
|
|
/************** End of vdbefifo.c ********************************************/
|
|
/************** Begin file vdbemem.c *****************************************/
|
|
/*
|
|
** 2004 May 26
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
**
|
|
** This file contains code use to manipulate "Mem" structure. A "Mem"
|
|
** stores a single value in the VDBE. Mem is an opaque structure visible
|
|
** only within the VDBE. Interface routines refer to a Mem using the
|
|
** name sqlite_value
|
|
*/
|
|
|
|
/*
|
|
** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
|
|
** P if required.
|
|
*/
|
|
#define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
|
|
|
|
/*
|
|
** If pMem is an object with a valid string representation, this routine
|
|
** ensures the internal encoding for the string representation is
|
|
** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
|
|
**
|
|
** If pMem is not a string object, or the encoding of the string
|
|
** representation is already stored using the requested encoding, then this
|
|
** routine is a no-op.
|
|
**
|
|
** SQLITE_OK is returned if the conversion is successful (or not required).
|
|
** SQLITE_NOMEM may be returned if a malloc() fails during conversion
|
|
** between formats.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
|
|
int rc;
|
|
if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
|
|
return SQLITE_OK;
|
|
}
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
#ifdef SQLITE_OMIT_UTF16
|
|
return SQLITE_ERROR;
|
|
#else
|
|
|
|
/* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
|
|
** then the encoding of the value may not have changed.
|
|
*/
|
|
rc = sqlite3VdbeMemTranslate(pMem, desiredEnc);
|
|
assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
|
|
assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
|
|
assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
|
|
return rc;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Make the given Mem object MEM_Dyn.
|
|
**
|
|
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeMemDynamicify(Mem *pMem){
|
|
int n;
|
|
u8 *z;
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
expandBlob(pMem);
|
|
if( (pMem->flags & (MEM_Ephem|MEM_Static|MEM_Short))==0 ){
|
|
return SQLITE_OK;
|
|
}
|
|
assert( (pMem->flags & MEM_Dyn)==0 );
|
|
n = pMem->n;
|
|
assert( pMem->flags & (MEM_Str|MEM_Blob) );
|
|
z = sqlite3DbMallocRaw(pMem->db, n+2 );
|
|
if( z==0 ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
pMem->flags |= MEM_Dyn|MEM_Term;
|
|
pMem->xDel = 0;
|
|
memcpy(z, pMem->z, n );
|
|
z[n] = 0;
|
|
z[n+1] = 0;
|
|
pMem->z = (char*)z;
|
|
pMem->flags &= ~(MEM_Ephem|MEM_Static|MEM_Short);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** If the given Mem* has a zero-filled tail, turn it into an ordinary
|
|
** blob stored in dynamically allocated space.
|
|
*/
|
|
#ifndef SQLITE_OMIT_INCRBLOB
|
|
SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *pMem){
|
|
if( pMem->flags & MEM_Zero ){
|
|
char *pNew;
|
|
int nByte;
|
|
assert( (pMem->flags & MEM_Blob)!=0 );
|
|
nByte = pMem->n + pMem->u.i;
|
|
if( nByte<=0 ) nByte = 1;
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
pNew = sqlite3DbMallocRaw(pMem->db, nByte);
|
|
if( pNew==0 ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
memcpy(pNew, pMem->z, pMem->n);
|
|
memset(&pNew[pMem->n], 0, pMem->u.i);
|
|
sqlite3VdbeMemRelease(pMem);
|
|
pMem->z = pNew;
|
|
pMem->n += pMem->u.i;
|
|
pMem->u.i = 0;
|
|
pMem->flags &= ~(MEM_Zero|MEM_Static|MEM_Ephem|MEM_Short|MEM_Term);
|
|
pMem->flags |= MEM_Dyn;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes
|
|
** of the Mem.z[] array can be modified.
|
|
**
|
|
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem *pMem){
|
|
int n;
|
|
u8 *z;
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
expandBlob(pMem);
|
|
if( (pMem->flags & (MEM_Ephem|MEM_Static))==0 ){
|
|
return SQLITE_OK;
|
|
}
|
|
assert( (pMem->flags & MEM_Dyn)==0 );
|
|
assert( pMem->flags & (MEM_Str|MEM_Blob) );
|
|
if( (n = pMem->n)+2<sizeof(pMem->zShort) ){
|
|
z = (u8*)pMem->zShort;
|
|
pMem->flags |= MEM_Short|MEM_Term;
|
|
}else{
|
|
z = sqlite3DbMallocRaw(pMem->db, n+2 );
|
|
if( z==0 ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
pMem->flags |= MEM_Dyn|MEM_Term;
|
|
pMem->xDel = 0;
|
|
}
|
|
memcpy(z, pMem->z, n );
|
|
z[n] = 0;
|
|
z[n+1] = 0;
|
|
pMem->z = (char*)z;
|
|
pMem->flags &= ~(MEM_Ephem|MEM_Static);
|
|
assert(0==(1&(int)pMem->z));
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Make sure the given Mem is \u0000 terminated.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem *pMem){
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
|
|
return SQLITE_OK; /* Nothing to do */
|
|
}
|
|
if( pMem->flags & (MEM_Static|MEM_Ephem) ){
|
|
return sqlite3VdbeMemMakeWriteable(pMem);
|
|
}else{
|
|
char *z;
|
|
sqlite3VdbeMemExpandBlob(pMem);
|
|
z = sqlite3DbMallocRaw(pMem->db, pMem->n+2);
|
|
if( !z ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
memcpy(z, pMem->z, pMem->n);
|
|
z[pMem->n] = 0;
|
|
z[pMem->n+1] = 0;
|
|
if( pMem->xDel ){
|
|
pMem->xDel(pMem->z);
|
|
}else{
|
|
sqlite3_free(pMem->z);
|
|
}
|
|
pMem->xDel = 0;
|
|
pMem->z = z;
|
|
pMem->flags |= MEM_Term;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Add MEM_Str to the set of representations for the given Mem. Numbers
|
|
** are converted using sqlite3_snprintf(). Converting a BLOB to a string
|
|
** is a no-op.
|
|
**
|
|
** Existing representations MEM_Int and MEM_Real are *not* invalidated.
|
|
**
|
|
** A MEM_Null value will never be passed to this function. This function is
|
|
** used for converting values to text for returning to the user (i.e. via
|
|
** sqlite3_value_text()), or for ensuring that values to be used as btree
|
|
** keys are strings. In the former case a NULL pointer is returned the
|
|
** user and the later is an internal programming error.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem *pMem, int enc){
|
|
int rc = SQLITE_OK;
|
|
int fg = pMem->flags;
|
|
char *z = pMem->zShort;
|
|
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
assert( !(fg&MEM_Zero) );
|
|
assert( !(fg&(MEM_Str|MEM_Blob)) );
|
|
assert( fg&(MEM_Int|MEM_Real) );
|
|
|
|
/* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
|
|
** string representation of the value. Then, if the required encoding
|
|
** is UTF-16le or UTF-16be do a translation.
|
|
**
|
|
** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
|
|
*/
|
|
if( fg & MEM_Int ){
|
|
sqlite3_snprintf(NBFS, z, "%lld", pMem->u.i);
|
|
}else{
|
|
assert( fg & MEM_Real );
|
|
sqlite3_snprintf(NBFS, z, "%!.15g", pMem->r);
|
|
}
|
|
pMem->n = strlen(z);
|
|
pMem->z = z;
|
|
pMem->enc = SQLITE_UTF8;
|
|
pMem->flags |= MEM_Str | MEM_Short | MEM_Term;
|
|
sqlite3VdbeChangeEncoding(pMem, enc);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Memory cell pMem contains the context of an aggregate function.
|
|
** This routine calls the finalize method for that function. The
|
|
** result of the aggregate is stored back into pMem.
|
|
**
|
|
** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
|
|
** otherwise.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
|
|
int rc = SQLITE_OK;
|
|
if( pFunc && pFunc->xFinalize ){
|
|
sqlite3_context ctx;
|
|
assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
ctx.s.flags = MEM_Null;
|
|
ctx.s.z = pMem->zShort;
|
|
ctx.s.db = pMem->db;
|
|
ctx.pMem = pMem;
|
|
ctx.pFunc = pFunc;
|
|
ctx.isError = 0;
|
|
pFunc->xFinalize(&ctx);
|
|
if( pMem->z && pMem->z!=pMem->zShort ){
|
|
sqlite3_free( pMem->z );
|
|
}
|
|
*pMem = ctx.s;
|
|
if( pMem->flags & MEM_Short ){
|
|
pMem->z = pMem->zShort;
|
|
}
|
|
rc = (ctx.isError?SQLITE_ERROR:SQLITE_OK);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Release any memory held by the Mem. This may leave the Mem in an
|
|
** inconsistent state, for example with (Mem.z==0) and
|
|
** (Mem.type==SQLITE_TEXT).
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p){
|
|
assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
|
|
if( p->flags & (MEM_Dyn|MEM_Agg) ){
|
|
if( p->xDel ){
|
|
if( p->flags & MEM_Agg ){
|
|
sqlite3VdbeMemFinalize(p, p->u.pDef);
|
|
assert( (p->flags & MEM_Agg)==0 );
|
|
sqlite3VdbeMemRelease(p);
|
|
}else{
|
|
p->xDel((void *)p->z);
|
|
}
|
|
}else{
|
|
sqlite3_free(p->z);
|
|
}
|
|
p->z = 0;
|
|
p->xDel = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Convert a 64-bit IEEE double into a 64-bit signed integer.
|
|
** If the double is too large, return 0x8000000000000000.
|
|
**
|
|
** Most systems appear to do this simply by assigning
|
|
** variables and without the extra range tests. But
|
|
** there are reports that windows throws an expection
|
|
** if the floating point value is out of range. (See ticket #2880.)
|
|
** Because we do not completely understand the problem, we will
|
|
** take the conservative approach and always do range tests
|
|
** before attempting the conversion.
|
|
*/
|
|
static i64 doubleToInt64(double r){
|
|
/*
|
|
** Many compilers we encounter do not define constants for the
|
|
** minimum and maximum 64-bit integers, or they define them
|
|
** inconsistently. And many do not understand the "LL" notation.
|
|
** So we define our own static constants here using nothing
|
|
** larger than a 32-bit integer constant.
|
|
*/
|
|
static const i64 maxInt = (((i64)0x7fffffff)<<32)|0xffffffff;
|
|
static const i64 minInt = ((i64)0x80000000)<<32;
|
|
|
|
if( r<(double)minInt ){
|
|
return minInt;
|
|
}else if( r>(double)maxInt ){
|
|
return minInt;
|
|
}else{
|
|
return (i64)r;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return some kind of integer value which is the best we can do
|
|
** at representing the value that *pMem describes as an integer.
|
|
** If pMem is an integer, then the value is exact. If pMem is
|
|
** a floating-point then the value returned is the integer part.
|
|
** If pMem is a string or blob, then we make an attempt to convert
|
|
** it into a integer and return that. If pMem is NULL, return 0.
|
|
**
|
|
** If pMem is a string, its encoding might be changed.
|
|
*/
|
|
SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem *pMem){
|
|
int flags;
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
flags = pMem->flags;
|
|
if( flags & MEM_Int ){
|
|
return pMem->u.i;
|
|
}else if( flags & MEM_Real ){
|
|
return doubleToInt64(pMem->r);
|
|
}else if( flags & (MEM_Str|MEM_Blob) ){
|
|
i64 value;
|
|
pMem->flags |= MEM_Str;
|
|
if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
|
|
|| sqlite3VdbeMemNulTerminate(pMem) ){
|
|
return 0;
|
|
}
|
|
assert( pMem->z );
|
|
sqlite3Atoi64(pMem->z, &value);
|
|
return value;
|
|
}else{
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the best representation of pMem that we can get into a
|
|
** double. If pMem is already a double or an integer, return its
|
|
** value. If it is a string or blob, try to convert it to a double.
|
|
** If it is a NULL, return 0.0.
|
|
*/
|
|
SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem *pMem){
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
if( pMem->flags & MEM_Real ){
|
|
return pMem->r;
|
|
}else if( pMem->flags & MEM_Int ){
|
|
return (double)pMem->u.i;
|
|
}else if( pMem->flags & (MEM_Str|MEM_Blob) ){
|
|
double val = 0.0;
|
|
pMem->flags |= MEM_Str;
|
|
if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
|
|
|| sqlite3VdbeMemNulTerminate(pMem) ){
|
|
return 0.0;
|
|
}
|
|
assert( pMem->z );
|
|
sqlite3AtoF(pMem->z, &val);
|
|
return val;
|
|
}else{
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The MEM structure is already a MEM_Real. Try to also make it a
|
|
** MEM_Int if we can.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem *pMem){
|
|
assert( pMem->flags & MEM_Real );
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
|
|
pMem->u.i = doubleToInt64(pMem->r);
|
|
if( pMem->r==(double)pMem->u.i ){
|
|
pMem->flags |= MEM_Int;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Convert pMem to type integer. Invalidate any prior representations.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem *pMem){
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
pMem->u.i = sqlite3VdbeIntValue(pMem);
|
|
sqlite3VdbeMemRelease(pMem);
|
|
pMem->flags = MEM_Int;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Convert pMem so that it is of type MEM_Real.
|
|
** Invalidate any prior representations.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem *pMem){
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
pMem->r = sqlite3VdbeRealValue(pMem);
|
|
sqlite3VdbeMemRelease(pMem);
|
|
pMem->flags = MEM_Real;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Convert pMem so that it has types MEM_Real or MEM_Int or both.
|
|
** Invalidate any prior representations.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem *pMem){
|
|
double r1, r2;
|
|
i64 i;
|
|
assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 );
|
|
assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
r1 = sqlite3VdbeRealValue(pMem);
|
|
i = doubleToInt64(r1);
|
|
r2 = (double)i;
|
|
if( r1==r2 ){
|
|
sqlite3VdbeMemIntegerify(pMem);
|
|
}else{
|
|
pMem->r = r1;
|
|
pMem->flags = MEM_Real;
|
|
sqlite3VdbeMemRelease(pMem);
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Delete any previous value and set the value stored in *pMem to NULL.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem *pMem){
|
|
sqlite3VdbeMemRelease(pMem);
|
|
pMem->flags = MEM_Null;
|
|
pMem->type = SQLITE_NULL;
|
|
pMem->n = 0;
|
|
}
|
|
|
|
/*
|
|
** Delete any previous value and set the value to be a BLOB of length
|
|
** n containing all zeros.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
|
|
sqlite3VdbeMemRelease(pMem);
|
|
pMem->flags = MEM_Blob|MEM_Zero|MEM_Short;
|
|
pMem->type = SQLITE_BLOB;
|
|
pMem->n = 0;
|
|
if( n<0 ) n = 0;
|
|
pMem->u.i = n;
|
|
pMem->z = pMem->zShort;
|
|
pMem->enc = SQLITE_UTF8;
|
|
}
|
|
|
|
/*
|
|
** Delete any previous value and set the value stored in *pMem to val,
|
|
** manifest type INTEGER.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
|
|
sqlite3VdbeMemRelease(pMem);
|
|
pMem->u.i = val;
|
|
pMem->flags = MEM_Int;
|
|
pMem->type = SQLITE_INTEGER;
|
|
}
|
|
|
|
/*
|
|
** Delete any previous value and set the value stored in *pMem to val,
|
|
** manifest type REAL.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
|
|
if( sqlite3_isnan(val) ){
|
|
sqlite3VdbeMemSetNull(pMem);
|
|
}else{
|
|
sqlite3VdbeMemRelease(pMem);
|
|
pMem->r = val;
|
|
pMem->flags = MEM_Real;
|
|
pMem->type = SQLITE_FLOAT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return true if the Mem object contains a TEXT or BLOB that is
|
|
** too large - whose size exceeds SQLITE_MAX_LENGTH.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem *p){
|
|
if( p->flags & (MEM_Str|MEM_Blob) ){
|
|
int n = p->n;
|
|
if( p->flags & MEM_Zero ){
|
|
n += p->u.i;
|
|
}
|
|
return n>SQLITE_MAX_LENGTH;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Make an shallow copy of pFrom into pTo. Prior contents of
|
|
** pTo are freed. The pFrom->z field is not duplicated. If
|
|
** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
|
|
** and flags gets srcType (either MEM_Ephem or MEM_Static).
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
|
|
sqlite3VdbeMemRelease(pTo);
|
|
memcpy(pTo, pFrom, sizeof(*pFrom)-sizeof(pFrom->zShort));
|
|
pTo->xDel = 0;
|
|
if( pTo->flags & (MEM_Str|MEM_Blob) ){
|
|
pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short|MEM_Ephem);
|
|
assert( srcType==MEM_Ephem || srcType==MEM_Static );
|
|
pTo->flags |= srcType;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Make a full copy of pFrom into pTo. Prior contents of pTo are
|
|
** freed before the copy is made.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
|
|
int rc;
|
|
sqlite3VdbeMemShallowCopy(pTo, pFrom, MEM_Ephem);
|
|
if( pTo->flags & MEM_Ephem ){
|
|
rc = sqlite3VdbeMemMakeWriteable(pTo);
|
|
}else{
|
|
rc = SQLITE_OK;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Transfer the contents of pFrom to pTo. Any existing value in pTo is
|
|
** freed. If pFrom contains ephemeral data, a copy is made.
|
|
**
|
|
** pFrom contains an SQL NULL when this routine returns.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
|
|
assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
|
|
assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
|
|
assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
|
|
if( pTo->flags & MEM_Dyn ){
|
|
sqlite3VdbeMemRelease(pTo);
|
|
}
|
|
memcpy(pTo, pFrom, sizeof(Mem));
|
|
if( pFrom->flags & MEM_Short ){
|
|
pTo->z = pTo->zShort;
|
|
}
|
|
pFrom->flags = MEM_Null;
|
|
pFrom->xDel = 0;
|
|
}
|
|
|
|
/*
|
|
** Change the value of a Mem to be a string or a BLOB.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeMemSetStr(
|
|
Mem *pMem, /* Memory cell to set to string value */
|
|
const char *z, /* String pointer */
|
|
int n, /* Bytes in string, or negative */
|
|
u8 enc, /* Encoding of z. 0 for BLOBs */
|
|
void (*xDel)(void*) /* Destructor function */
|
|
){
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
sqlite3VdbeMemRelease(pMem);
|
|
if( !z ){
|
|
pMem->flags = MEM_Null;
|
|
pMem->type = SQLITE_NULL;
|
|
return SQLITE_OK;
|
|
}
|
|
pMem->z = (char *)z;
|
|
if( xDel==SQLITE_STATIC ){
|
|
pMem->flags = MEM_Static;
|
|
}else if( xDel==SQLITE_TRANSIENT ){
|
|
pMem->flags = MEM_Ephem;
|
|
}else{
|
|
pMem->flags = MEM_Dyn;
|
|
pMem->xDel = xDel;
|
|
}
|
|
|
|
pMem->enc = enc;
|
|
pMem->type = enc==0 ? SQLITE_BLOB : SQLITE_TEXT;
|
|
pMem->n = n;
|
|
|
|
assert( enc==0 || enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE
|
|
|| enc==SQLITE_UTF16BE );
|
|
switch( enc ){
|
|
case 0:
|
|
pMem->flags |= MEM_Blob;
|
|
pMem->enc = SQLITE_UTF8;
|
|
break;
|
|
|
|
case SQLITE_UTF8:
|
|
pMem->flags |= MEM_Str;
|
|
if( n<0 ){
|
|
pMem->n = strlen(z);
|
|
pMem->flags |= MEM_Term;
|
|
}
|
|
break;
|
|
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
case SQLITE_UTF16LE:
|
|
case SQLITE_UTF16BE:
|
|
pMem->flags |= MEM_Str;
|
|
if( pMem->n<0 ){
|
|
pMem->n = sqlite3Utf16ByteLen(pMem->z,-1);
|
|
pMem->flags |= MEM_Term;
|
|
}
|
|
if( sqlite3VdbeMemHandleBom(pMem) ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
}
|
|
if( pMem->flags&MEM_Ephem ){
|
|
return sqlite3VdbeMemMakeWriteable(pMem);
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Compare the values contained by the two memory cells, returning
|
|
** negative, zero or positive if pMem1 is less than, equal to, or greater
|
|
** than pMem2. Sorting order is NULL's first, followed by numbers (integers
|
|
** and reals) sorted numerically, followed by text ordered by the collating
|
|
** sequence pColl and finally blob's ordered by memcmp().
|
|
**
|
|
** Two NULL values are considered equal by this function.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
|
|
int rc;
|
|
int f1, f2;
|
|
int combined_flags;
|
|
|
|
/* Interchange pMem1 and pMem2 if the collating sequence specifies
|
|
** DESC order.
|
|
*/
|
|
f1 = pMem1->flags;
|
|
f2 = pMem2->flags;
|
|
combined_flags = f1|f2;
|
|
|
|
/* If one value is NULL, it is less than the other. If both values
|
|
** are NULL, return 0.
|
|
*/
|
|
if( combined_flags&MEM_Null ){
|
|
return (f2&MEM_Null) - (f1&MEM_Null);
|
|
}
|
|
|
|
/* If one value is a number and the other is not, the number is less.
|
|
** If both are numbers, compare as reals if one is a real, or as integers
|
|
** if both values are integers.
|
|
*/
|
|
if( combined_flags&(MEM_Int|MEM_Real) ){
|
|
if( !(f1&(MEM_Int|MEM_Real)) ){
|
|
return 1;
|
|
}
|
|
if( !(f2&(MEM_Int|MEM_Real)) ){
|
|
return -1;
|
|
}
|
|
if( (f1 & f2 & MEM_Int)==0 ){
|
|
double r1, r2;
|
|
if( (f1&MEM_Real)==0 ){
|
|
r1 = pMem1->u.i;
|
|
}else{
|
|
r1 = pMem1->r;
|
|
}
|
|
if( (f2&MEM_Real)==0 ){
|
|
r2 = pMem2->u.i;
|
|
}else{
|
|
r2 = pMem2->r;
|
|
}
|
|
if( r1<r2 ) return -1;
|
|
if( r1>r2 ) return 1;
|
|
return 0;
|
|
}else{
|
|
assert( f1&MEM_Int );
|
|
assert( f2&MEM_Int );
|
|
if( pMem1->u.i < pMem2->u.i ) return -1;
|
|
if( pMem1->u.i > pMem2->u.i ) return 1;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* If one value is a string and the other is a blob, the string is less.
|
|
** If both are strings, compare using the collating functions.
|
|
*/
|
|
if( combined_flags&MEM_Str ){
|
|
if( (f1 & MEM_Str)==0 ){
|
|
return 1;
|
|
}
|
|
if( (f2 & MEM_Str)==0 ){
|
|
return -1;
|
|
}
|
|
|
|
assert( pMem1->enc==pMem2->enc );
|
|
assert( pMem1->enc==SQLITE_UTF8 ||
|
|
pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
|
|
|
|
/* The collation sequence must be defined at this point, even if
|
|
** the user deletes the collation sequence after the vdbe program is
|
|
** compiled (this was not always the case).
|
|
*/
|
|
assert( !pColl || pColl->xCmp );
|
|
|
|
if( pColl ){
|
|
if( pMem1->enc==pColl->enc ){
|
|
/* The strings are already in the correct encoding. Call the
|
|
** comparison function directly */
|
|
return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
|
|
}else{
|
|
u8 origEnc = pMem1->enc;
|
|
const void *v1, *v2;
|
|
int n1, n2;
|
|
/* Convert the strings into the encoding that the comparison
|
|
** function expects */
|
|
v1 = sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc);
|
|
n1 = v1==0 ? 0 : pMem1->n;
|
|
assert( n1==sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc) );
|
|
v2 = sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc);
|
|
n2 = v2==0 ? 0 : pMem2->n;
|
|
assert( n2==sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc) );
|
|
/* Do the comparison */
|
|
rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
|
|
/* Convert the strings back into the database encoding */
|
|
sqlite3ValueText((sqlite3_value*)pMem1, origEnc);
|
|
sqlite3ValueText((sqlite3_value*)pMem2, origEnc);
|
|
return rc;
|
|
}
|
|
}
|
|
/* If a NULL pointer was passed as the collate function, fall through
|
|
** to the blob case and use memcmp(). */
|
|
}
|
|
|
|
/* Both values must be blobs. Compare using memcmp(). */
|
|
rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
|
|
if( rc==0 ){
|
|
rc = pMem1->n - pMem2->n;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Move data out of a btree key or data field and into a Mem structure.
|
|
** The data or key is taken from the entry that pCur is currently pointing
|
|
** to. offset and amt determine what portion of the data or key to retrieve.
|
|
** key is true to get the key or false to get data. The result is written
|
|
** into the pMem element.
|
|
**
|
|
** The pMem structure is assumed to be uninitialized. Any prior content
|
|
** is overwritten without being freed.
|
|
**
|
|
** If this routine fails for any reason (malloc returns NULL or unable
|
|
** to read from the disk) then the pMem is left in an inconsistent state.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(
|
|
BtCursor *pCur, /* Cursor pointing at record to retrieve. */
|
|
int offset, /* Offset from the start of data to return bytes from. */
|
|
int amt, /* Number of bytes to return. */
|
|
int key, /* If true, retrieve from the btree key, not data. */
|
|
Mem *pMem /* OUT: Return data in this Mem structure. */
|
|
){
|
|
char *zData; /* Data from the btree layer */
|
|
int available = 0; /* Number of bytes available on the local btree page */
|
|
sqlite3 *db; /* Database connection */
|
|
|
|
db = sqlite3BtreeCursorDb(pCur);
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
if( key ){
|
|
zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
|
|
}else{
|
|
zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
|
|
}
|
|
assert( zData!=0 );
|
|
|
|
pMem->db = db;
|
|
pMem->n = amt;
|
|
if( offset+amt<=available ){
|
|
pMem->z = &zData[offset];
|
|
pMem->flags = MEM_Blob|MEM_Ephem;
|
|
}else{
|
|
int rc;
|
|
if( amt>NBFS-2 ){
|
|
zData = (char *)sqlite3DbMallocRaw(db, amt+2);
|
|
if( !zData ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
|
|
pMem->xDel = 0;
|
|
}else{
|
|
zData = &(pMem->zShort[0]);
|
|
pMem->flags = MEM_Blob|MEM_Short|MEM_Term;
|
|
}
|
|
pMem->z = zData;
|
|
pMem->enc = 0;
|
|
pMem->type = SQLITE_BLOB;
|
|
|
|
if( key ){
|
|
rc = sqlite3BtreeKey(pCur, offset, amt, zData);
|
|
}else{
|
|
rc = sqlite3BtreeData(pCur, offset, amt, zData);
|
|
}
|
|
zData[amt] = 0;
|
|
zData[amt+1] = 0;
|
|
if( rc!=SQLITE_OK ){
|
|
if( amt>NBFS-2 ){
|
|
assert( zData!=pMem->zShort );
|
|
assert( pMem->flags & MEM_Dyn );
|
|
sqlite3_free(zData);
|
|
} else {
|
|
assert( zData==pMem->zShort );
|
|
assert( pMem->flags & MEM_Short );
|
|
}
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
** Perform various checks on the memory cell pMem. An assert() will
|
|
** fail if pMem is internally inconsistent.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeMemSanity(Mem *pMem){
|
|
int flags = pMem->flags;
|
|
assert( flags!=0 ); /* Must define some type */
|
|
if( flags & (MEM_Str|MEM_Blob) ){
|
|
int x = flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
|
|
assert( x!=0 ); /* Strings must define a string subtype */
|
|
assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */
|
|
assert( pMem->z!=0 ); /* Strings must have a value */
|
|
/* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
|
|
assert( (x & MEM_Short)==0 || pMem->z==pMem->zShort );
|
|
assert( (x & MEM_Short)!=0 || pMem->z!=pMem->zShort );
|
|
/* No destructor unless there is MEM_Dyn */
|
|
assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 );
|
|
|
|
if( (flags & MEM_Str) ){
|
|
assert( pMem->enc==SQLITE_UTF8 ||
|
|
pMem->enc==SQLITE_UTF16BE ||
|
|
pMem->enc==SQLITE_UTF16LE
|
|
);
|
|
/* If the string is UTF-8 encoded and nul terminated, then pMem->n
|
|
** must be the length of the string. (Later:) If the database file
|
|
** has been corrupted, '\000' characters might have been inserted
|
|
** into the middle of the string. In that case, the strlen() might
|
|
** be less.
|
|
*/
|
|
if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){
|
|
assert( strlen(pMem->z)<=pMem->n );
|
|
assert( pMem->z[pMem->n]==0 );
|
|
}
|
|
}
|
|
}else{
|
|
/* Cannot define a string subtype for non-string objects */
|
|
assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
|
|
assert( pMem->xDel==0 );
|
|
}
|
|
/* MEM_Null excludes all other types */
|
|
assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0
|
|
|| (pMem->flags&MEM_Null)==0 );
|
|
/* If the MEM is both real and integer, the values are equal */
|
|
assert( (pMem->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real)
|
|
|| pMem->r==pMem->u.i );
|
|
}
|
|
#endif
|
|
|
|
/* This function is only available internally, it is not part of the
|
|
** external API. It works in a similar way to sqlite3_value_text(),
|
|
** except the data returned is in the encoding specified by the second
|
|
** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
|
|
** SQLITE_UTF8.
|
|
**
|
|
** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
|
|
** If that is the case, then the result must be aligned on an even byte
|
|
** boundary.
|
|
*/
|
|
SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
|
|
if( !pVal ) return 0;
|
|
|
|
assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
|
|
assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
|
|
|
|
if( pVal->flags&MEM_Null ){
|
|
return 0;
|
|
}
|
|
assert( (MEM_Blob>>3) == MEM_Str );
|
|
pVal->flags |= (pVal->flags & MEM_Blob)>>3;
|
|
expandBlob(pVal);
|
|
if( pVal->flags&MEM_Str ){
|
|
sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
|
|
if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&(int)pVal->z) ){
|
|
assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
|
|
if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
|
|
return 0;
|
|
}
|
|
}
|
|
sqlite3VdbeMemNulTerminate(pVal);
|
|
}else{
|
|
assert( (pVal->flags&MEM_Blob)==0 );
|
|
sqlite3VdbeMemStringify(pVal, enc);
|
|
assert( 0==(1&(int)pVal->z) );
|
|
}
|
|
assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
|
|
|| pVal->db->mallocFailed );
|
|
if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
|
|
return pVal->z;
|
|
}else{
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Create a new sqlite3_value object.
|
|
*/
|
|
SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *db){
|
|
Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
|
|
if( p ){
|
|
p->flags = MEM_Null;
|
|
p->type = SQLITE_NULL;
|
|
p->db = db;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Create a new sqlite3_value object, containing the value of pExpr.
|
|
**
|
|
** This only works for very simple expressions that consist of one constant
|
|
** token (i.e. "5", "5.1", "'a string'"). If the expression can
|
|
** be converted directly into a value, then the value is allocated and
|
|
** a pointer written to *ppVal. The caller is responsible for deallocating
|
|
** the value by passing it to sqlite3ValueFree() later on. If the expression
|
|
** cannot be converted to a value, then *ppVal is set to NULL.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3ValueFromExpr(
|
|
sqlite3 *db, /* The database connection */
|
|
Expr *pExpr, /* The expression to evaluate */
|
|
u8 enc, /* Encoding to use */
|
|
u8 affinity, /* Affinity to use */
|
|
sqlite3_value **ppVal /* Write the new value here */
|
|
){
|
|
int op;
|
|
char *zVal = 0;
|
|
sqlite3_value *pVal = 0;
|
|
|
|
if( !pExpr ){
|
|
*ppVal = 0;
|
|
return SQLITE_OK;
|
|
}
|
|
op = pExpr->op;
|
|
|
|
if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
|
|
zVal = sqlite3StrNDup((char*)pExpr->token.z, pExpr->token.n);
|
|
pVal = sqlite3ValueNew(db);
|
|
if( !zVal || !pVal ) goto no_mem;
|
|
sqlite3Dequote(zVal);
|
|
sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, sqlite3_free);
|
|
if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
|
|
sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc);
|
|
}else{
|
|
sqlite3ValueApplyAffinity(pVal, affinity, enc);
|
|
}
|
|
}else if( op==TK_UMINUS ) {
|
|
if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){
|
|
pVal->u.i = -1 * pVal->u.i;
|
|
pVal->r = -1.0 * pVal->r;
|
|
}
|
|
}
|
|
#ifndef SQLITE_OMIT_BLOB_LITERAL
|
|
else if( op==TK_BLOB ){
|
|
int nVal;
|
|
assert( pExpr->token.n>=3 );
|
|
assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
|
|
assert( pExpr->token.z[1]=='\'' );
|
|
assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
|
|
pVal = sqlite3ValueNew(db);
|
|
nVal = pExpr->token.n - 3;
|
|
zVal = (char*)pExpr->token.z + 2;
|
|
sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
|
|
0, sqlite3_free);
|
|
}
|
|
#endif
|
|
|
|
*ppVal = pVal;
|
|
return SQLITE_OK;
|
|
|
|
no_mem:
|
|
db->mallocFailed = 1;
|
|
sqlite3_free(zVal);
|
|
sqlite3ValueFree(pVal);
|
|
*ppVal = 0;
|
|
return SQLITE_NOMEM;
|
|
}
|
|
|
|
/*
|
|
** Change the string value of an sqlite3_value object
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3ValueSetStr(
|
|
sqlite3_value *v, /* Value to be set */
|
|
int n, /* Length of string z */
|
|
const void *z, /* Text of the new string */
|
|
u8 enc, /* Encoding to use */
|
|
void (*xDel)(void*) /* Destructor for the string */
|
|
){
|
|
if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
|
|
}
|
|
|
|
/*
|
|
** Free an sqlite3_value object
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value *v){
|
|
if( !v ) return;
|
|
sqlite3ValueSetStr(v, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
|
|
sqlite3_free(v);
|
|
}
|
|
|
|
/*
|
|
** Return the number of bytes in the sqlite3_value object assuming
|
|
** that it uses the encoding "enc"
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
|
|
Mem *p = (Mem*)pVal;
|
|
if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
|
|
if( p->flags & MEM_Zero ){
|
|
return p->n+p->u.i;
|
|
}else{
|
|
return p->n;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/************** End of vdbemem.c *********************************************/
|
|
/************** Begin file vdbeaux.c *****************************************/
|
|
/*
|
|
** 2003 September 6
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains code used for creating, destroying, and populating
|
|
** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior
|
|
** to version 2.8.7, all this code was combined into the vdbe.c source file.
|
|
** But that file was getting too big so this subroutines were split out.
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
** When debugging the code generator in a symbolic debugger, one can
|
|
** set the sqlite3_vdbe_addop_trace to 1 and all opcodes will be printed
|
|
** as they are added to the instruction stream.
|
|
*/
|
|
#ifdef SQLITE_DEBUG
|
|
SQLITE_API int sqlite3_vdbe_addop_trace = 0;
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Create a new virtual database engine.
|
|
*/
|
|
SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(sqlite3 *db){
|
|
Vdbe *p;
|
|
p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
|
|
if( p==0 ) return 0;
|
|
p->db = db;
|
|
if( db->pVdbe ){
|
|
db->pVdbe->pPrev = p;
|
|
}
|
|
p->pNext = db->pVdbe;
|
|
p->pPrev = 0;
|
|
db->pVdbe = p;
|
|
p->magic = VDBE_MAGIC_INIT;
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Remember the SQL string for a prepared statement.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){
|
|
if( p==0 ) return;
|
|
assert( p->zSql==0 );
|
|
p->zSql = sqlite3DbStrNDup(p->db, z, n);
|
|
}
|
|
|
|
/*
|
|
** Return the SQL associated with a prepared statement
|
|
*/
|
|
SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt){
|
|
return ((Vdbe *)pStmt)->zSql;
|
|
}
|
|
|
|
/*
|
|
** Swap all content between two VDBE structures.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
|
|
Vdbe tmp, *pTmp;
|
|
char *zTmp;
|
|
int nTmp;
|
|
tmp = *pA;
|
|
*pA = *pB;
|
|
*pB = tmp;
|
|
pTmp = pA->pNext;
|
|
pA->pNext = pB->pNext;
|
|
pB->pNext = pTmp;
|
|
pTmp = pA->pPrev;
|
|
pA->pPrev = pB->pPrev;
|
|
pB->pPrev = pTmp;
|
|
zTmp = pA->zSql;
|
|
pA->zSql = pB->zSql;
|
|
pB->zSql = zTmp;
|
|
nTmp = pA->nSql;
|
|
pA->nSql = pB->nSql;
|
|
pB->nSql = nTmp;
|
|
}
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
** Turn tracing on or off
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
|
|
p->trace = trace;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Resize the Vdbe.aOp array so that it contains at least N
|
|
** elements.
|
|
**
|
|
** If an out-of-memory error occurs while resizing the array,
|
|
** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that
|
|
** any opcodes already allocated can be correctly deallocated
|
|
** along with the rest of the Vdbe).
|
|
*/
|
|
static void resizeOpArray(Vdbe *p, int N){
|
|
VdbeOp *pNew;
|
|
int oldSize = p->nOpAlloc;
|
|
pNew = sqlite3DbRealloc(p->db, p->aOp, N*sizeof(Op));
|
|
if( pNew ){
|
|
p->nOpAlloc = N;
|
|
p->aOp = pNew;
|
|
if( N>oldSize ){
|
|
memset(&p->aOp[oldSize], 0, (N-oldSize)*sizeof(Op));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Add a new instruction to the list of instructions current in the
|
|
** VDBE. Return the address of the new instruction.
|
|
**
|
|
** Parameters:
|
|
**
|
|
** p Pointer to the VDBE
|
|
**
|
|
** op The opcode for this instruction
|
|
**
|
|
** p1, p2, p3 Operands
|
|
**
|
|
** Use the sqlite3VdbeResolveLabel() function to fix an address and
|
|
** the sqlite3VdbeChangeP4() function to change the value of the P4
|
|
** operand.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
|
|
int i;
|
|
VdbeOp *pOp;
|
|
|
|
i = p->nOp;
|
|
assert( p->magic==VDBE_MAGIC_INIT );
|
|
if( p->nOpAlloc<=i ){
|
|
resizeOpArray(p, p->nOpAlloc*2 + 100);
|
|
if( p->db->mallocFailed ){
|
|
return 0;
|
|
}
|
|
}
|
|
p->nOp++;
|
|
pOp = &p->aOp[i];
|
|
pOp->opcode = op;
|
|
pOp->p1 = p1;
|
|
pOp->p2 = p2;
|
|
pOp->p3 = p3;
|
|
pOp->p4.p = 0;
|
|
pOp->p4type = P4_NOTUSED;
|
|
p->expired = 0;
|
|
#ifdef SQLITE_DEBUG
|
|
if( sqlite3_vdbe_addop_trace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
|
|
#endif
|
|
return i;
|
|
}
|
|
SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe *p, int op){
|
|
return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
|
|
}
|
|
SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
|
|
return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
|
|
}
|
|
SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
|
|
return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
|
|
}
|
|
|
|
|
|
/*
|
|
** Add an opcode that includes the p4 value as a pointer.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeAddOp4(
|
|
Vdbe *p, /* Add the opcode to this VM */
|
|
int op, /* The new opcode */
|
|
int p1, /* The P1 operand */
|
|
int p2, /* The P2 operand */
|
|
int p3, /* The P3 operand */
|
|
const char *zP4, /* The P4 operand */
|
|
int p4type /* P4 operand type */
|
|
){
|
|
int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
|
|
sqlite3VdbeChangeP4(p, addr, zP4, p4type);
|
|
return addr;
|
|
}
|
|
|
|
/*
|
|
** Create a new symbolic label for an instruction that has yet to be
|
|
** coded. The symbolic label is really just a negative number. The
|
|
** label can be used as the P2 value of an operation. Later, when
|
|
** the label is resolved to a specific address, the VDBE will scan
|
|
** through its operation list and change all values of P2 which match
|
|
** the label into the resolved address.
|
|
**
|
|
** The VDBE knows that a P2 value is a label because labels are
|
|
** always negative and P2 values are suppose to be non-negative.
|
|
** Hence, a negative P2 value is a label that has yet to be resolved.
|
|
**
|
|
** Zero is returned if a malloc() fails.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe *p){
|
|
int i;
|
|
i = p->nLabel++;
|
|
assert( p->magic==VDBE_MAGIC_INIT );
|
|
if( i>=p->nLabelAlloc ){
|
|
p->nLabelAlloc = p->nLabelAlloc*2 + 10;
|
|
p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
|
|
p->nLabelAlloc*sizeof(p->aLabel[0]));
|
|
}
|
|
if( p->aLabel ){
|
|
p->aLabel[i] = -1;
|
|
}
|
|
return -1-i;
|
|
}
|
|
|
|
/*
|
|
** Resolve label "x" to be the address of the next instruction to
|
|
** be inserted. The parameter "x" must have been obtained from
|
|
** a prior call to sqlite3VdbeMakeLabel().
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe *p, int x){
|
|
int j = -1-x;
|
|
assert( p->magic==VDBE_MAGIC_INIT );
|
|
assert( j>=0 && j<p->nLabel );
|
|
if( p->aLabel ){
|
|
p->aLabel[j] = p->nOp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Loop through the program looking for P2 values that are negative
|
|
** on jump instructions. Each such value is a label. Resolve the
|
|
** label by setting the P2 value to its correct non-zero value.
|
|
**
|
|
** This routine is called once after all opcodes have been inserted.
|
|
**
|
|
** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
|
|
** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
|
|
** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
|
|
**
|
|
** This routine also does the following optimization: It scans for
|
|
** instructions that might cause a statement rollback. Such instructions
|
|
** are:
|
|
**
|
|
** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
|
|
** * OP_Destroy
|
|
** * OP_VUpdate
|
|
** * OP_VRename
|
|
**
|
|
** If no such instruction is found, then every Statement instruction
|
|
** is changed to a Noop. In this way, we avoid creating the statement
|
|
** journal file unnecessarily.
|
|
*/
|
|
static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
|
|
int i;
|
|
int nMaxArgs = 0;
|
|
Op *pOp;
|
|
int *aLabel = p->aLabel;
|
|
int doesStatementRollback = 0;
|
|
int hasStatementBegin = 0;
|
|
for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
|
|
u8 opcode = pOp->opcode;
|
|
|
|
if( opcode==OP_Function ){
|
|
if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
|
|
}else if( opcode==OP_AggStep
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|| opcode==OP_VUpdate
|
|
#endif
|
|
){
|
|
if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
|
|
}
|
|
if( opcode==OP_Halt ){
|
|
if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
|
|
doesStatementRollback = 1;
|
|
}
|
|
}else if( opcode==OP_Statement ){
|
|
hasStatementBegin = 1;
|
|
}else if( opcode==OP_Destroy ){
|
|
doesStatementRollback = 1;
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
}else if( opcode==OP_VUpdate || opcode==OP_VRename ){
|
|
doesStatementRollback = 1;
|
|
}else if( opcode==OP_VFilter ){
|
|
int n;
|
|
assert( p->nOp - i >= 3 );
|
|
assert( pOp[-1].opcode==OP_Integer );
|
|
n = pOp[-1].p1;
|
|
if( n>nMaxArgs ) nMaxArgs = n;
|
|
#endif
|
|
}
|
|
|
|
if( sqlite3VdbeOpcodeHasProperty(opcode, OPFLG_JUMP) && pOp->p2<0 ){
|
|
assert( -1-pOp->p2<p->nLabel );
|
|
pOp->p2 = aLabel[-1-pOp->p2];
|
|
}
|
|
}
|
|
sqlite3_free(p->aLabel);
|
|
p->aLabel = 0;
|
|
|
|
*pMaxFuncArgs = nMaxArgs;
|
|
|
|
/* If we never rollback a statement transaction, then statement
|
|
** transactions are not needed. So change every OP_Statement
|
|
** opcode into an OP_Noop. This avoid a call to sqlite3OsOpenExclusive()
|
|
** which can be expensive on some platforms.
|
|
*/
|
|
if( hasStatementBegin && !doesStatementRollback ){
|
|
for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
|
|
if( pOp->opcode==OP_Statement ){
|
|
pOp->opcode = OP_Noop;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the address of the next instruction to be inserted.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe *p){
|
|
assert( p->magic==VDBE_MAGIC_INIT );
|
|
return p->nOp;
|
|
}
|
|
|
|
/*
|
|
** Add a whole list of operations to the operation stack. Return the
|
|
** address of the first operation added.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
|
|
int addr;
|
|
assert( p->magic==VDBE_MAGIC_INIT );
|
|
if( p->nOp + nOp > p->nOpAlloc ){
|
|
resizeOpArray(p, p->nOp*2 + nOp);
|
|
}
|
|
if( p->db->mallocFailed ){
|
|
return 0;
|
|
}
|
|
addr = p->nOp;
|
|
if( nOp>0 ){
|
|
int i;
|
|
VdbeOpList const *pIn = aOp;
|
|
for(i=0; i<nOp; i++, pIn++){
|
|
int p2 = pIn->p2;
|
|
VdbeOp *pOut = &p->aOp[i+addr];
|
|
pOut->opcode = pIn->opcode;
|
|
pOut->p1 = pIn->p1;
|
|
if( p2<0 && sqlite3VdbeOpcodeHasProperty(pOut->opcode, OPFLG_JUMP) ){
|
|
pOut->p2 = addr + ADDR(p2);
|
|
}else{
|
|
pOut->p2 = p2;
|
|
}
|
|
pOut->p3 = pIn->p3;
|
|
pOut->p4type = P4_NOTUSED;
|
|
pOut->p4.p = 0;
|
|
pOut->p5 = 0;
|
|
#ifdef SQLITE_DEBUG
|
|
if( sqlite3_vdbe_addop_trace ){
|
|
sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
|
|
}
|
|
#endif
|
|
}
|
|
p->nOp += nOp;
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
/*
|
|
** Change the value of the P1 operand for a specific instruction.
|
|
** This routine is useful when a large program is loaded from a
|
|
** static array using sqlite3VdbeAddOpList but we want to make a
|
|
** few minor changes to the program.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
|
|
assert( p==0 || p->magic==VDBE_MAGIC_INIT );
|
|
if( p && addr>=0 && p->nOp>addr && p->aOp ){
|
|
p->aOp[addr].p1 = val;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Change the value of the P2 operand for a specific instruction.
|
|
** This routine is useful for setting a jump destination.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
|
|
assert( p==0 || p->magic==VDBE_MAGIC_INIT );
|
|
if( p && addr>=0 && p->nOp>addr && p->aOp ){
|
|
p->aOp[addr].p2 = val;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Change the value of the P3 operand for a specific instruction.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
|
|
assert( p==0 || p->magic==VDBE_MAGIC_INIT );
|
|
if( p && addr>=0 && p->nOp>addr && p->aOp ){
|
|
p->aOp[addr].p3 = val;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Change the value of the P5 operand for the most recently
|
|
** added operation.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
|
|
assert( p==0 || p->magic==VDBE_MAGIC_INIT );
|
|
if( p && p->aOp ){
|
|
assert( p->nOp>0 );
|
|
p->aOp[p->nOp-1].p5 = val;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Change the P2 operand of instruction addr so that it points to
|
|
** the address of the next instruction to be coded.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe *p, int addr){
|
|
sqlite3VdbeChangeP2(p, addr, p->nOp);
|
|
}
|
|
|
|
|
|
/*
|
|
** If the input FuncDef structure is ephemeral, then free it. If
|
|
** the FuncDef is not ephermal, then do nothing.
|
|
*/
|
|
static void freeEphemeralFunction(FuncDef *pDef){
|
|
if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
|
|
sqlite3_free(pDef);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Delete a P4 value if necessary.
|
|
*/
|
|
static void freeP4(int p4type, void *p3){
|
|
if( p3 ){
|
|
switch( p4type ){
|
|
case P4_REAL:
|
|
case P4_INT64:
|
|
case P4_MPRINTF:
|
|
case P4_DYNAMIC:
|
|
case P4_KEYINFO:
|
|
case P4_KEYINFO_HANDOFF: {
|
|
sqlite3_free(p3);
|
|
break;
|
|
}
|
|
case P4_VDBEFUNC: {
|
|
VdbeFunc *pVdbeFunc = (VdbeFunc *)p3;
|
|
freeEphemeralFunction(pVdbeFunc->pFunc);
|
|
sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
|
|
sqlite3_free(pVdbeFunc);
|
|
break;
|
|
}
|
|
case P4_FUNCDEF: {
|
|
freeEphemeralFunction((FuncDef*)p3);
|
|
break;
|
|
}
|
|
case P4_MEM: {
|
|
sqlite3ValueFree((sqlite3_value*)p3);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Change N opcodes starting at addr to No-ops.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
|
|
if( p && p->aOp ){
|
|
VdbeOp *pOp = &p->aOp[addr];
|
|
while( N-- ){
|
|
freeP4(pOp->p4type, pOp->p4.p);
|
|
memset(pOp, 0, sizeof(pOp[0]));
|
|
pOp->opcode = OP_Noop;
|
|
pOp++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Change the value of the P4 operand for a specific instruction.
|
|
** This routine is useful when a large program is loaded from a
|
|
** static array using sqlite3VdbeAddOpList but we want to make a
|
|
** few minor changes to the program.
|
|
**
|
|
** If n>=0 then the P4 operand is dynamic, meaning that a copy of
|
|
** the string is made into memory obtained from sqlite3_malloc().
|
|
** A value of n==0 means copy bytes of zP4 up to and including the
|
|
** first null byte. If n>0 then copy n+1 bytes of zP4.
|
|
**
|
|
** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
|
|
** A copy is made of the KeyInfo structure into memory obtained from
|
|
** sqlite3_malloc, to be freed when the Vdbe is finalized.
|
|
** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
|
|
** stored in memory that the caller has obtained from sqlite3_malloc. The
|
|
** caller should not free the allocation, it will be freed when the Vdbe is
|
|
** finalized.
|
|
**
|
|
** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
|
|
** to a string or structure that is guaranteed to exist for the lifetime of
|
|
** the Vdbe. In these cases we can just copy the pointer.
|
|
**
|
|
** If addr<0 then change P4 on the most recently inserted instruction.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
|
|
Op *pOp;
|
|
assert( p!=0 );
|
|
assert( p->magic==VDBE_MAGIC_INIT );
|
|
if( p->aOp==0 || p->db->mallocFailed ){
|
|
if (n != P4_KEYINFO) {
|
|
freeP4(n, (void*)*(char**)&zP4);
|
|
}
|
|
return;
|
|
}
|
|
assert( addr<p->nOp );
|
|
if( addr<0 ){
|
|
addr = p->nOp - 1;
|
|
if( addr<0 ) return;
|
|
}
|
|
pOp = &p->aOp[addr];
|
|
freeP4(pOp->p4type, pOp->p4.p);
|
|
pOp->p4.p = 0;
|
|
if( n==P4_INT32 ){
|
|
pOp->p4.i = (int)zP4;
|
|
pOp->p4type = n;
|
|
}else if( zP4==0 ){
|
|
pOp->p4.p = 0;
|
|
pOp->p4type = P4_NOTUSED;
|
|
}else if( n==P4_KEYINFO ){
|
|
KeyInfo *pKeyInfo;
|
|
int nField, nByte;
|
|
|
|
nField = ((KeyInfo*)zP4)->nField;
|
|
nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
|
|
pKeyInfo = sqlite3_malloc( nByte );
|
|
pOp->p4.pKeyInfo = pKeyInfo;
|
|
if( pKeyInfo ){
|
|
memcpy(pKeyInfo, zP4, nByte);
|
|
/* In the current implementation, P4_KEYINFO is only ever used on
|
|
** KeyInfo structures that have no aSortOrder component. Elements
|
|
** with an aSortOrder always use P4_KEYINFO_HANDOFF. So we do not
|
|
** need to bother with duplicating the aSortOrder. */
|
|
assert( pKeyInfo->aSortOrder==0 );
|
|
#if 0
|
|
aSortOrder = pKeyInfo->aSortOrder;
|
|
if( aSortOrder ){
|
|
pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
|
|
memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
|
|
}
|
|
#endif
|
|
pOp->p4type = P4_KEYINFO;
|
|
}else{
|
|
p->db->mallocFailed = 1;
|
|
pOp->p4type = P4_NOTUSED;
|
|
}
|
|
}else if( n==P4_KEYINFO_HANDOFF ){
|
|
pOp->p4.p = (void*)zP4;
|
|
pOp->p4type = P4_KEYINFO;
|
|
}else if( n<0 ){
|
|
pOp->p4.p = (void*)zP4;
|
|
pOp->p4type = n;
|
|
}else{
|
|
if( n==0 ) n = strlen(zP4);
|
|
pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
|
|
pOp->p4type = P4_DYNAMIC;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/*
|
|
** Change the comment on the the most recently coded instruction.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
|
|
va_list ap;
|
|
assert( p->nOp>0 || p->aOp==0 );
|
|
assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
|
|
if( p->nOp ){
|
|
char **pz = &p->aOp[p->nOp-1].zComment;
|
|
va_start(ap, zFormat);
|
|
sqlite3_free(*pz);
|
|
*pz = sqlite3VMPrintf(p->db, zFormat, ap);
|
|
va_end(ap);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Return the opcode for a given address.
|
|
*/
|
|
SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
|
|
assert( p->magic==VDBE_MAGIC_INIT );
|
|
assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
|
|
return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0);
|
|
}
|
|
|
|
#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
|
|
|| defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
|
|
/*
|
|
** Compute a string that describes the P4 parameter for an opcode.
|
|
** Use zTemp for any required temporary buffer space.
|
|
*/
|
|
static char *displayP4(Op *pOp, char *zTemp, int nTemp){
|
|
char *zP4 = zTemp;
|
|
assert( nTemp>=20 );
|
|
switch( pOp->p4type ){
|
|
case P4_KEYINFO: {
|
|
int i, j;
|
|
KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
|
|
sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
|
|
i = strlen(zTemp);
|
|
for(j=0; j<pKeyInfo->nField; j++){
|
|
CollSeq *pColl = pKeyInfo->aColl[j];
|
|
if( pColl ){
|
|
int n = strlen(pColl->zName);
|
|
if( i+n>nTemp-6 ){
|
|
memcpy(&zTemp[i],",...",4);
|
|
break;
|
|
}
|
|
zTemp[i++] = ',';
|
|
if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
|
|
zTemp[i++] = '-';
|
|
}
|
|
memcpy(&zTemp[i], pColl->zName,n+1);
|
|
i += n;
|
|
}else if( i+4<nTemp-6 ){
|
|
memcpy(&zTemp[i],",nil",4);
|
|
i += 4;
|
|
}
|
|
}
|
|
zTemp[i++] = ')';
|
|
zTemp[i] = 0;
|
|
assert( i<nTemp );
|
|
break;
|
|
}
|
|
case P4_COLLSEQ: {
|
|
CollSeq *pColl = pOp->p4.pColl;
|
|
sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
|
|
break;
|
|
}
|
|
case P4_FUNCDEF: {
|
|
FuncDef *pDef = pOp->p4.pFunc;
|
|
sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
|
|
break;
|
|
}
|
|
case P4_INT64: {
|
|
sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
|
|
break;
|
|
}
|
|
case P4_INT32: {
|
|
sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
|
|
break;
|
|
}
|
|
case P4_REAL: {
|
|
sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
|
|
break;
|
|
}
|
|
case P4_MEM: {
|
|
Mem *pMem = pOp->p4.pMem;
|
|
assert( (pMem->flags & MEM_Null)==0 );
|
|
if( pMem->flags & MEM_Str ){
|
|
zP4 = pMem->z;
|
|
}else if( pMem->flags & MEM_Int ){
|
|
sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
|
|
}else if( pMem->flags & MEM_Real ){
|
|
sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
|
|
}
|
|
break;
|
|
}
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
case P4_VTAB: {
|
|
sqlite3_vtab *pVtab = pOp->p4.pVtab;
|
|
sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
|
|
break;
|
|
}
|
|
#endif
|
|
default: {
|
|
zP4 = pOp->p4.z;
|
|
if( zP4==0 ){
|
|
zP4 = zTemp;
|
|
zTemp[0] = 0;
|
|
}
|
|
}
|
|
}
|
|
assert( zP4!=0 );
|
|
return zP4;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
|
|
**
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe *p, int i){
|
|
int mask;
|
|
assert( i>=0 && i<p->db->nDb );
|
|
assert( i<sizeof(p->btreeMask)*8 );
|
|
mask = 1<<i;
|
|
if( (p->btreeMask & mask)==0 ){
|
|
p->btreeMask |= mask;
|
|
sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt);
|
|
}
|
|
}
|
|
|
|
|
|
#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
|
|
/*
|
|
** Print a single opcode. This routine is used for debugging only.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
|
|
char *zP4;
|
|
char zPtr[50];
|
|
static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
|
|
if( pOut==0 ) pOut = stdout;
|
|
zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
|
|
fprintf(pOut, zFormat1, pc,
|
|
sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
|
|
#ifdef SQLITE_DEBUG
|
|
pOp->zComment ? pOp->zComment : ""
|
|
#else
|
|
""
|
|
#endif
|
|
);
|
|
fflush(pOut);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Release an array of N Mem elements
|
|
*/
|
|
static void releaseMemArray(Mem *p, int N){
|
|
if( p ){
|
|
while( N-->0 ){
|
|
assert( N<2 || p[0].db==p[1].db );
|
|
sqlite3VdbeMemSetNull(p++);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_EXPLAIN
|
|
/*
|
|
** Give a listing of the program in the virtual machine.
|
|
**
|
|
** The interface is the same as sqlite3VdbeExec(). But instead of
|
|
** running the code, it invokes the callback once for each instruction.
|
|
** This feature is used to implement "EXPLAIN".
|
|
**
|
|
** When p->explain==1, each instruction is listed. When
|
|
** p->explain==2, only OP_Explain instructions are listed and these
|
|
** are shown in a different format. p->explain==2 is used to implement
|
|
** EXPLAIN QUERY PLAN.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeList(
|
|
Vdbe *p /* The VDBE */
|
|
){
|
|
sqlite3 *db = p->db;
|
|
int i;
|
|
int rc = SQLITE_OK;
|
|
Mem *pMem = p->pResultSet = &p->aMem[1];
|
|
|
|
assert( p->explain );
|
|
if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
|
|
assert( db->magic==SQLITE_MAGIC_BUSY );
|
|
assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
|
|
|
|
/* Even though this opcode does not use dynamic strings for
|
|
** the result, result columns may become dynamic if the user calls
|
|
** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
|
|
*/
|
|
releaseMemArray(pMem, p->nMem);
|
|
|
|
do{
|
|
i = p->pc++;
|
|
}while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
|
|
if( i>=p->nOp ){
|
|
p->rc = SQLITE_OK;
|
|
rc = SQLITE_DONE;
|
|
}else if( db->u1.isInterrupted ){
|
|
p->rc = SQLITE_INTERRUPT;
|
|
rc = SQLITE_ERROR;
|
|
sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0);
|
|
}else{
|
|
Op *pOp = &p->aOp[i];
|
|
if( p->explain==1 ){
|
|
pMem->flags = MEM_Int;
|
|
pMem->type = SQLITE_INTEGER;
|
|
pMem->u.i = i; /* Program counter */
|
|
pMem++;
|
|
|
|
pMem->flags = MEM_Static|MEM_Str|MEM_Term;
|
|
pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
|
|
assert( pMem->z!=0 );
|
|
pMem->n = strlen(pMem->z);
|
|
pMem->type = SQLITE_TEXT;
|
|
pMem->enc = SQLITE_UTF8;
|
|
pMem++;
|
|
}
|
|
|
|
pMem->flags = MEM_Int;
|
|
pMem->u.i = pOp->p1; /* P1 */
|
|
pMem->type = SQLITE_INTEGER;
|
|
pMem++;
|
|
|
|
pMem->flags = MEM_Int;
|
|
pMem->u.i = pOp->p2; /* P2 */
|
|
pMem->type = SQLITE_INTEGER;
|
|
pMem++;
|
|
|
|
if( p->explain==1 ){
|
|
pMem->flags = MEM_Int;
|
|
pMem->u.i = pOp->p3; /* P3 */
|
|
pMem->type = SQLITE_INTEGER;
|
|
pMem++;
|
|
}
|
|
|
|
pMem->flags = MEM_Ephem|MEM_Str|MEM_Term; /* P4 */
|
|
pMem->z = displayP4(pOp, pMem->zShort, sizeof(pMem->zShort));
|
|
assert( pMem->z!=0 );
|
|
pMem->n = strlen(pMem->z);
|
|
pMem->type = SQLITE_TEXT;
|
|
pMem->enc = SQLITE_UTF8;
|
|
pMem++;
|
|
|
|
if( p->explain==1 ){
|
|
pMem->flags = MEM_Str|MEM_Term|MEM_Short;
|
|
pMem->n = sprintf(pMem->zShort, "%.2x", pOp->p5); /* P5 */
|
|
pMem->z = pMem->zShort;
|
|
pMem->type = SQLITE_TEXT;
|
|
pMem->enc = SQLITE_UTF8;
|
|
pMem++;
|
|
|
|
pMem->flags = MEM_Null; /* Comment */
|
|
#ifdef SQLITE_DEBUG
|
|
if( pOp->zComment ){
|
|
pMem->flags = MEM_Str|MEM_Term;
|
|
pMem->z = pOp->zComment;
|
|
pMem->n = strlen(pMem->z);
|
|
pMem->enc = SQLITE_UTF8;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
p->nResColumn = 8 - 5*(p->explain-1);
|
|
p->rc = SQLITE_OK;
|
|
rc = SQLITE_ROW;
|
|
}
|
|
return rc;
|
|
}
|
|
#endif /* SQLITE_OMIT_EXPLAIN */
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
** Print the SQL that was used to generate a VDBE program.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe *p){
|
|
int nOp = p->nOp;
|
|
VdbeOp *pOp;
|
|
if( nOp<1 ) return;
|
|
pOp = &p->aOp[0];
|
|
if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
|
|
const char *z = pOp->p4.z;
|
|
while( isspace(*(u8*)z) ) z++;
|
|
printf("SQL: [%s]\n", z);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
|
|
/*
|
|
** Print an IOTRACE message showing SQL content.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe *p){
|
|
int nOp = p->nOp;
|
|
VdbeOp *pOp;
|
|
if( sqlite3_io_trace==0 ) return;
|
|
if( nOp<1 ) return;
|
|
pOp = &p->aOp[0];
|
|
if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
|
|
int i, j;
|
|
char z[1000];
|
|
sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
|
|
for(i=0; isspace((unsigned char)z[i]); i++){}
|
|
for(j=0; z[i]; i++){
|
|
if( isspace((unsigned char)z[i]) ){
|
|
if( z[i-1]!=' ' ){
|
|
z[j++] = ' ';
|
|
}
|
|
}else{
|
|
z[j++] = z[i];
|
|
}
|
|
}
|
|
z[j] = 0;
|
|
sqlite3_io_trace("SQL %s\n", z);
|
|
}
|
|
}
|
|
#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
|
|
|
|
|
|
/*
|
|
** Prepare a virtual machine for execution. This involves things such
|
|
** as allocating stack space and initializing the program counter.
|
|
** After the VDBE has be prepped, it can be executed by one or more
|
|
** calls to sqlite3VdbeExec().
|
|
**
|
|
** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
|
|
** VDBE_MAGIC_RUN.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeMakeReady(
|
|
Vdbe *p, /* The VDBE */
|
|
int nVar, /* Number of '?' see in the SQL statement */
|
|
int nMem, /* Number of memory cells to allocate */
|
|
int nCursor, /* Number of cursors to allocate */
|
|
int isExplain /* True if the EXPLAIN keywords is present */
|
|
){
|
|
int n;
|
|
sqlite3 *db = p->db;
|
|
|
|
assert( p!=0 );
|
|
assert( p->magic==VDBE_MAGIC_INIT );
|
|
|
|
/* There should be at least one opcode.
|
|
*/
|
|
assert( p->nOp>0 );
|
|
|
|
/* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This
|
|
* is because the call to resizeOpArray() below may shrink the
|
|
* p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN
|
|
* state.
|
|
*/
|
|
p->magic = VDBE_MAGIC_RUN;
|
|
|
|
/*
|
|
** Allocation space for registers.
|
|
*/
|
|
if( p->aMem==0 ){
|
|
int nArg; /* Maximum number of args passed to a user function. */
|
|
resolveP2Values(p, &nArg);
|
|
resizeOpArray(p, p->nOp);
|
|
assert( nVar>=0 );
|
|
if( isExplain && nMem<10 ){
|
|
p->nMem = nMem = 10;
|
|
}
|
|
p->aMem = sqlite3DbMallocZero(db,
|
|
nMem*sizeof(Mem) /* aMem */
|
|
+ nVar*sizeof(Mem) /* aVar */
|
|
+ nArg*sizeof(Mem*) /* apArg */
|
|
+ nVar*sizeof(char*) /* azVar */
|
|
+ nCursor*sizeof(Cursor*) + 1 /* apCsr */
|
|
);
|
|
if( !db->mallocFailed ){
|
|
p->aMem--; /* aMem[] goes from 1..nMem */
|
|
p->nMem = nMem; /* not from 0..nMem-1 */
|
|
p->aVar = &p->aMem[nMem+1];
|
|
p->nVar = nVar;
|
|
p->okVar = 0;
|
|
p->apArg = (Mem**)&p->aVar[nVar];
|
|
p->azVar = (char**)&p->apArg[nArg];
|
|
p->apCsr = (Cursor**)&p->azVar[nVar];
|
|
p->nCursor = nCursor;
|
|
for(n=0; n<nVar; n++){
|
|
p->aVar[n].flags = MEM_Null;
|
|
p->aVar[n].db = db;
|
|
}
|
|
for(n=1; n<=nMem; n++){
|
|
p->aMem[n].flags = MEM_Null;
|
|
p->aMem[n].db = db;
|
|
}
|
|
}
|
|
}
|
|
#ifdef SQLITE_DEBUG
|
|
for(n=1; n<p->nMem; n++){
|
|
assert( p->aMem[n].db==db );
|
|
assert( p->aMem[n].flags==MEM_Null );
|
|
}
|
|
#endif
|
|
|
|
p->pc = -1;
|
|
p->rc = SQLITE_OK;
|
|
p->uniqueCnt = 0;
|
|
p->returnDepth = 0;
|
|
p->errorAction = OE_Abort;
|
|
p->explain |= isExplain;
|
|
p->magic = VDBE_MAGIC_RUN;
|
|
p->nChange = 0;
|
|
p->cacheCtr = 1;
|
|
p->minWriteFileFormat = 255;
|
|
p->openedStatement = 0;
|
|
#ifdef VDBE_PROFILE
|
|
{
|
|
int i;
|
|
for(i=0; i<p->nOp; i++){
|
|
p->aOp[i].cnt = 0;
|
|
p->aOp[i].cycles = 0;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Close a VDBE cursor and release all the resources that cursor happens
|
|
** to hold.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *p, Cursor *pCx){
|
|
if( pCx==0 ){
|
|
return;
|
|
}
|
|
if( pCx->pCursor ){
|
|
sqlite3BtreeCloseCursor(pCx->pCursor);
|
|
}
|
|
if( pCx->pBt ){
|
|
sqlite3BtreeClose(pCx->pBt);
|
|
}
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( pCx->pVtabCursor ){
|
|
sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
|
|
const sqlite3_module *pModule = pCx->pModule;
|
|
p->inVtabMethod = 1;
|
|
(void)sqlite3SafetyOff(p->db);
|
|
pModule->xClose(pVtabCursor);
|
|
(void)sqlite3SafetyOn(p->db);
|
|
p->inVtabMethod = 0;
|
|
}
|
|
#endif
|
|
sqlite3_free(pCx->pData);
|
|
sqlite3_free(pCx->aType);
|
|
sqlite3_free(pCx);
|
|
}
|
|
|
|
/*
|
|
** Close all cursors except for VTab cursors that are currently
|
|
** in use.
|
|
*/
|
|
static void closeAllCursorsExceptActiveVtabs(Vdbe *p){
|
|
int i;
|
|
if( p->apCsr==0 ) return;
|
|
for(i=0; i<p->nCursor; i++){
|
|
Cursor *pC = p->apCsr[i];
|
|
if( pC && (!p->inVtabMethod || !pC->pVtabCursor) ){
|
|
sqlite3VdbeFreeCursor(p, pC);
|
|
p->apCsr[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Clean up the VM after execution.
|
|
**
|
|
** This routine will automatically close any cursors, lists, and/or
|
|
** sorters that were left open. It also deletes the values of
|
|
** variables in the aVar[] array.
|
|
*/
|
|
static void Cleanup(Vdbe *p){
|
|
int i;
|
|
closeAllCursorsExceptActiveVtabs(p);
|
|
releaseMemArray(&p->aMem[1], p->nMem);
|
|
sqlite3VdbeFifoClear(&p->sFifo);
|
|
if( p->contextStack ){
|
|
for(i=0; i<p->contextStackTop; i++){
|
|
sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
|
|
}
|
|
sqlite3_free(p->contextStack);
|
|
}
|
|
p->contextStack = 0;
|
|
p->contextStackDepth = 0;
|
|
p->contextStackTop = 0;
|
|
sqlite3_free(p->zErrMsg);
|
|
p->zErrMsg = 0;
|
|
p->pResultSet = 0;
|
|
}
|
|
|
|
/*
|
|
** Set the number of result columns that will be returned by this SQL
|
|
** statement. This is now set at compile time, rather than during
|
|
** execution of the vdbe program so that sqlite3_column_count() can
|
|
** be called on an SQL statement before sqlite3_step().
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
|
|
Mem *pColName;
|
|
int n;
|
|
|
|
releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
|
|
sqlite3_free(p->aColName);
|
|
n = nResColumn*COLNAME_N;
|
|
p->nResColumn = nResColumn;
|
|
p->aColName = pColName = (Mem*)sqlite3DbMallocZero(p->db, sizeof(Mem)*n );
|
|
if( p->aColName==0 ) return;
|
|
while( n-- > 0 ){
|
|
pColName->flags = MEM_Null;
|
|
pColName->db = p->db;
|
|
pColName++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Set the name of the idx'th column to be returned by the SQL statement.
|
|
** zName must be a pointer to a nul terminated string.
|
|
**
|
|
** This call must be made after a call to sqlite3VdbeSetNumCols().
|
|
**
|
|
** If N==P4_STATIC it means that zName is a pointer to a constant static
|
|
** string and we can just copy the pointer. If it is P4_DYNAMIC, then
|
|
** the string is freed using sqlite3_free() when the vdbe is finished with
|
|
** it. Otherwise, N bytes of zName are copied.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){
|
|
int rc;
|
|
Mem *pColName;
|
|
assert( idx<p->nResColumn );
|
|
assert( var<COLNAME_N );
|
|
if( p->db->mallocFailed ) return SQLITE_NOMEM;
|
|
assert( p->aColName!=0 );
|
|
pColName = &(p->aColName[idx+var*p->nResColumn]);
|
|
if( N==P4_DYNAMIC || N==P4_STATIC ){
|
|
rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
|
|
}else{
|
|
rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);
|
|
}
|
|
if( rc==SQLITE_OK && N==P4_DYNAMIC ){
|
|
pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn;
|
|
pColName->xDel = 0;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** A read or write transaction may or may not be active on database handle
|
|
** db. If a transaction is active, commit it. If there is a
|
|
** write-transaction spanning more than one database file, this routine
|
|
** takes care of the master journal trickery.
|
|
*/
|
|
static int vdbeCommit(sqlite3 *db){
|
|
int i;
|
|
int nTrans = 0; /* Number of databases with an active write-transaction */
|
|
int rc = SQLITE_OK;
|
|
int needXcommit = 0;
|
|
|
|
/* Before doing anything else, call the xSync() callback for any
|
|
** virtual module tables written in this transaction. This has to
|
|
** be done before determining whether a master journal file is
|
|
** required, as an xSync() callback may add an attached database
|
|
** to the transaction.
|
|
*/
|
|
rc = sqlite3VtabSync(db, rc);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
/* This loop determines (a) if the commit hook should be invoked and
|
|
** (b) how many database files have open write transactions, not
|
|
** including the temp database. (b) is important because if more than
|
|
** one database file has an open write transaction, a master journal
|
|
** file is required for an atomic commit.
|
|
*/
|
|
for(i=0; i<db->nDb; i++){
|
|
Btree *pBt = db->aDb[i].pBt;
|
|
if( sqlite3BtreeIsInTrans(pBt) ){
|
|
needXcommit = 1;
|
|
if( i!=1 ) nTrans++;
|
|
}
|
|
}
|
|
|
|
/* If there are any write-transactions at all, invoke the commit hook */
|
|
if( needXcommit && db->xCommitCallback ){
|
|
(void)sqlite3SafetyOff(db);
|
|
rc = db->xCommitCallback(db->pCommitArg);
|
|
(void)sqlite3SafetyOn(db);
|
|
if( rc ){
|
|
return SQLITE_CONSTRAINT;
|
|
}
|
|
}
|
|
|
|
/* The simple case - no more than one database file (not counting the
|
|
** TEMP database) has a transaction active. There is no need for the
|
|
** master-journal.
|
|
**
|
|
** If the return value of sqlite3BtreeGetFilename() is a zero length
|
|
** string, it means the main database is :memory:. In that case we do
|
|
** not support atomic multi-file commits, so use the simple case then
|
|
** too.
|
|
*/
|
|
if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){
|
|
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
|
|
Btree *pBt = db->aDb[i].pBt;
|
|
if( pBt ){
|
|
rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
|
|
}
|
|
}
|
|
|
|
/* Do the commit only if all databases successfully complete phase 1.
|
|
** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
|
|
** IO error while deleting or truncating a journal file. It is unlikely,
|
|
** but could happen. In this case abandon processing and return the error.
|
|
*/
|
|
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
|
|
Btree *pBt = db->aDb[i].pBt;
|
|
if( pBt ){
|
|
rc = sqlite3BtreeCommitPhaseTwo(pBt);
|
|
}
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3VtabCommit(db);
|
|
}
|
|
}
|
|
|
|
/* The complex case - There is a multi-file write-transaction active.
|
|
** This requires a master journal file to ensure the transaction is
|
|
** committed atomicly.
|
|
*/
|
|
#ifndef SQLITE_OMIT_DISKIO
|
|
else{
|
|
sqlite3_vfs *pVfs = db->pVfs;
|
|
int needSync = 0;
|
|
char *zMaster = 0; /* File-name for the master journal */
|
|
char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
|
|
sqlite3_file *pMaster = 0;
|
|
i64 offset = 0;
|
|
|
|
/* Select a master journal file name */
|
|
do {
|
|
u32 random;
|
|
sqlite3_free(zMaster);
|
|
sqlite3Randomness(sizeof(random), &random);
|
|
zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random&0x7fffffff);
|
|
if( !zMaster ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
}while( sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS) );
|
|
|
|
/* Open the master journal. */
|
|
rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
|
|
SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
|
|
SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
|
|
);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3_free(zMaster);
|
|
return rc;
|
|
}
|
|
|
|
/* Write the name of each database file in the transaction into the new
|
|
** master journal file. If an error occurs at this point close
|
|
** and delete the master journal file. All the individual journal files
|
|
** still have 'null' as the master journal pointer, so they will roll
|
|
** back independently if a failure occurs.
|
|
*/
|
|
for(i=0; i<db->nDb; i++){
|
|
Btree *pBt = db->aDb[i].pBt;
|
|
if( i==1 ) continue; /* Ignore the TEMP database */
|
|
if( sqlite3BtreeIsInTrans(pBt) ){
|
|
char const *zFile = sqlite3BtreeGetJournalname(pBt);
|
|
if( zFile[0]==0 ) continue; /* Ignore :memory: databases */
|
|
if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
|
|
needSync = 1;
|
|
}
|
|
rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset);
|
|
offset += strlen(zFile)+1;
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3OsCloseFree(pMaster);
|
|
sqlite3OsDelete(pVfs, zMaster, 0);
|
|
sqlite3_free(zMaster);
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Sync the master journal file. If the IOCAP_SEQUENTIAL device
|
|
** flag is set this is not required.
|
|
*/
|
|
zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt);
|
|
if( (needSync
|
|
&& (0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL))
|
|
&& (rc=sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))!=SQLITE_OK) ){
|
|
sqlite3OsCloseFree(pMaster);
|
|
sqlite3OsDelete(pVfs, zMaster, 0);
|
|
sqlite3_free(zMaster);
|
|
return rc;
|
|
}
|
|
|
|
/* Sync all the db files involved in the transaction. The same call
|
|
** sets the master journal pointer in each individual journal. If
|
|
** an error occurs here, do not delete the master journal file.
|
|
**
|
|
** If the error occurs during the first call to
|
|
** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
|
|
** master journal file will be orphaned. But we cannot delete it,
|
|
** in case the master journal file name was written into the journal
|
|
** file before the failure occured.
|
|
*/
|
|
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
|
|
Btree *pBt = db->aDb[i].pBt;
|
|
if( pBt ){
|
|
rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
|
|
}
|
|
}
|
|
sqlite3OsCloseFree(pMaster);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3_free(zMaster);
|
|
return rc;
|
|
}
|
|
|
|
/* Delete the master journal file. This commits the transaction. After
|
|
** doing this the directory is synced again before any individual
|
|
** transaction files are deleted.
|
|
*/
|
|
rc = sqlite3OsDelete(pVfs, zMaster, 1);
|
|
sqlite3_free(zMaster);
|
|
zMaster = 0;
|
|
if( rc ){
|
|
return rc;
|
|
}
|
|
|
|
/* All files and directories have already been synced, so the following
|
|
** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
|
|
** deleting or truncating journals. If something goes wrong while
|
|
** this is happening we don't really care. The integrity of the
|
|
** transaction is already guaranteed, but some stray 'cold' journals
|
|
** may be lying around. Returning an error code won't help matters.
|
|
*/
|
|
disable_simulated_io_errors();
|
|
for(i=0; i<db->nDb; i++){
|
|
Btree *pBt = db->aDb[i].pBt;
|
|
if( pBt ){
|
|
sqlite3BtreeCommitPhaseTwo(pBt);
|
|
}
|
|
}
|
|
enable_simulated_io_errors();
|
|
|
|
sqlite3VtabCommit(db);
|
|
}
|
|
#endif
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This routine checks that the sqlite3.activeVdbeCnt count variable
|
|
** matches the number of vdbe's in the list sqlite3.pVdbe that are
|
|
** currently active. An assertion fails if the two counts do not match.
|
|
** This is an internal self-check only - it is not an essential processing
|
|
** step.
|
|
**
|
|
** This is a no-op if NDEBUG is defined.
|
|
*/
|
|
#ifndef NDEBUG
|
|
static void checkActiveVdbeCnt(sqlite3 *db){
|
|
Vdbe *p;
|
|
int cnt = 0;
|
|
p = db->pVdbe;
|
|
while( p ){
|
|
if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
|
|
cnt++;
|
|
}
|
|
p = p->pNext;
|
|
}
|
|
assert( cnt==db->activeVdbeCnt );
|
|
}
|
|
#else
|
|
#define checkActiveVdbeCnt(x)
|
|
#endif
|
|
|
|
/*
|
|
** For every Btree that in database connection db which
|
|
** has been modified, "trip" or invalidate each cursor in
|
|
** that Btree might have been modified so that the cursor
|
|
** can never be used again. This happens when a rollback
|
|
*** occurs. We have to trip all the other cursors, even
|
|
** cursor from other VMs in different database connections,
|
|
** so that none of them try to use the data at which they
|
|
** were pointing and which now may have been changed due
|
|
** to the rollback.
|
|
**
|
|
** Remember that a rollback can delete tables complete and
|
|
** reorder rootpages. So it is not sufficient just to save
|
|
** the state of the cursor. We have to invalidate the cursor
|
|
** so that it is never used again.
|
|
*/
|
|
static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
|
|
int i;
|
|
for(i=0; i<db->nDb; i++){
|
|
Btree *p = db->aDb[i].pBt;
|
|
if( p && sqlite3BtreeIsInTrans(p) ){
|
|
sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine is called the when a VDBE tries to halt. If the VDBE
|
|
** has made changes and is in autocommit mode, then commit those
|
|
** changes. If a rollback is needed, then do the rollback.
|
|
**
|
|
** This routine is the only way to move the state of a VM from
|
|
** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
|
|
** call this on a VM that is in the SQLITE_MAGIC_HALT state.
|
|
**
|
|
** Return an error code. If the commit could not complete because of
|
|
** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
|
|
** means the close did not happen and needs to be repeated.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe *p){
|
|
sqlite3 *db = p->db;
|
|
int i;
|
|
int (*xFunc)(Btree *pBt) = 0; /* Function to call on each btree backend */
|
|
int isSpecialError; /* Set to true if SQLITE_NOMEM or IOERR */
|
|
|
|
/* This function contains the logic that determines if a statement or
|
|
** transaction will be committed or rolled back as a result of the
|
|
** execution of this virtual machine.
|
|
**
|
|
** If any of the following errors occur:
|
|
**
|
|
** SQLITE_NOMEM
|
|
** SQLITE_IOERR
|
|
** SQLITE_FULL
|
|
** SQLITE_INTERRUPT
|
|
**
|
|
** Then the internal cache might have been left in an inconsistent
|
|
** state. We need to rollback the statement transaction, if there is
|
|
** one, or the complete transaction if there is no statement transaction.
|
|
*/
|
|
|
|
if( p->db->mallocFailed ){
|
|
p->rc = SQLITE_NOMEM;
|
|
}
|
|
closeAllCursorsExceptActiveVtabs(p);
|
|
if( p->magic!=VDBE_MAGIC_RUN ){
|
|
return SQLITE_OK;
|
|
}
|
|
checkActiveVdbeCnt(db);
|
|
|
|
/* No commit or rollback needed if the program never started */
|
|
if( p->pc>=0 ){
|
|
int mrc; /* Primary error code from p->rc */
|
|
|
|
/* Lock all btrees used by the statement */
|
|
sqlite3BtreeMutexArrayEnter(&p->aMutex);
|
|
|
|
/* Check for one of the special errors */
|
|
mrc = p->rc & 0xff;
|
|
isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
|
|
|| mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
|
|
if( isSpecialError ){
|
|
/* This loop does static analysis of the query to see which of the
|
|
** following three categories it falls into:
|
|
**
|
|
** Read-only
|
|
** Query with statement journal
|
|
** Query without statement journal
|
|
**
|
|
** We could do something more elegant than this static analysis (i.e.
|
|
** store the type of query as part of the compliation phase), but
|
|
** handling malloc() or IO failure is a fairly obscure edge case so
|
|
** this is probably easier. Todo: Might be an opportunity to reduce
|
|
** code size a very small amount though...
|
|
*/
|
|
int notReadOnly = 0;
|
|
int isStatement = 0;
|
|
assert(p->aOp || p->nOp==0);
|
|
for(i=0; i<p->nOp; i++){
|
|
switch( p->aOp[i].opcode ){
|
|
case OP_Transaction:
|
|
notReadOnly |= p->aOp[i].p2;
|
|
break;
|
|
case OP_Statement:
|
|
isStatement = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/* If the query was read-only, we need do no rollback at all. Otherwise,
|
|
** proceed with the special handling.
|
|
*/
|
|
if( notReadOnly || mrc!=SQLITE_INTERRUPT ){
|
|
if( p->rc==SQLITE_IOERR_BLOCKED && isStatement ){
|
|
xFunc = sqlite3BtreeRollbackStmt;
|
|
p->rc = SQLITE_BUSY;
|
|
} else if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && isStatement ){
|
|
xFunc = sqlite3BtreeRollbackStmt;
|
|
}else{
|
|
/* We are forced to roll back the active transaction. Before doing
|
|
** so, abort any other statements this handle currently has active.
|
|
*/
|
|
invalidateCursorsOnModifiedBtrees(db);
|
|
sqlite3RollbackAll(db);
|
|
db->autoCommit = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If the auto-commit flag is set and this is the only active vdbe, then
|
|
** we do either a commit or rollback of the current transaction.
|
|
**
|
|
** Note: This block also runs if one of the special errors handled
|
|
** above has occured.
|
|
*/
|
|
if( db->autoCommit && db->activeVdbeCnt==1 ){
|
|
if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
|
|
/* The auto-commit flag is true, and the vdbe program was
|
|
** successful or hit an 'OR FAIL' constraint. This means a commit
|
|
** is required.
|
|
*/
|
|
int rc = vdbeCommit(db);
|
|
if( rc==SQLITE_BUSY ){
|
|
sqlite3BtreeMutexArrayLeave(&p->aMutex);
|
|
return SQLITE_BUSY;
|
|
}else if( rc!=SQLITE_OK ){
|
|
p->rc = rc;
|
|
sqlite3RollbackAll(db);
|
|
}else{
|
|
sqlite3CommitInternalChanges(db);
|
|
}
|
|
}else{
|
|
sqlite3RollbackAll(db);
|
|
}
|
|
}else if( !xFunc ){
|
|
if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
|
|
if( p->openedStatement ){
|
|
xFunc = sqlite3BtreeCommitStmt;
|
|
}
|
|
}else if( p->errorAction==OE_Abort ){
|
|
xFunc = sqlite3BtreeRollbackStmt;
|
|
}else{
|
|
invalidateCursorsOnModifiedBtrees(db);
|
|
sqlite3RollbackAll(db);
|
|
db->autoCommit = 1;
|
|
}
|
|
}
|
|
|
|
/* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or
|
|
** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs
|
|
** and the return code is still SQLITE_OK, set the return code to the new
|
|
** error value.
|
|
*/
|
|
assert(!xFunc ||
|
|
xFunc==sqlite3BtreeCommitStmt ||
|
|
xFunc==sqlite3BtreeRollbackStmt
|
|
);
|
|
for(i=0; xFunc && i<db->nDb; i++){
|
|
int rc;
|
|
Btree *pBt = db->aDb[i].pBt;
|
|
if( pBt ){
|
|
rc = xFunc(pBt);
|
|
if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
|
|
p->rc = rc;
|
|
sqlite3SetString(&p->zErrMsg, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If this was an INSERT, UPDATE or DELETE and the statement was committed,
|
|
** set the change counter.
|
|
*/
|
|
if( p->changeCntOn && p->pc>=0 ){
|
|
if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){
|
|
sqlite3VdbeSetChanges(db, p->nChange);
|
|
}else{
|
|
sqlite3VdbeSetChanges(db, 0);
|
|
}
|
|
p->nChange = 0;
|
|
}
|
|
|
|
/* Rollback or commit any schema changes that occurred. */
|
|
if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
|
|
sqlite3ResetInternalSchema(db, 0);
|
|
db->flags = (db->flags | SQLITE_InternChanges);
|
|
}
|
|
|
|
/* Release the locks */
|
|
sqlite3BtreeMutexArrayLeave(&p->aMutex);
|
|
}
|
|
|
|
/* We have successfully halted and closed the VM. Record this fact. */
|
|
if( p->pc>=0 ){
|
|
db->activeVdbeCnt--;
|
|
}
|
|
p->magic = VDBE_MAGIC_HALT;
|
|
checkActiveVdbeCnt(db);
|
|
if( p->db->mallocFailed ){
|
|
p->rc = SQLITE_NOMEM;
|
|
}
|
|
checkActiveVdbeCnt(db);
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
|
|
/*
|
|
** Each VDBE holds the result of the most recent sqlite3_step() call
|
|
** in p->rc. This routine sets that result back to SQLITE_OK.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe *p){
|
|
p->rc = SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Clean up a VDBE after execution but do not delete the VDBE just yet.
|
|
** Write any error messages into *pzErrMsg. Return the result code.
|
|
**
|
|
** After this routine is run, the VDBE should be ready to be executed
|
|
** again.
|
|
**
|
|
** To look at it another way, this routine resets the state of the
|
|
** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
|
|
** VDBE_MAGIC_INIT.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe *p){
|
|
sqlite3 *db;
|
|
db = p->db;
|
|
|
|
/* If the VM did not run to completion or if it encountered an
|
|
** error, then it might not have been halted properly. So halt
|
|
** it now.
|
|
*/
|
|
(void)sqlite3SafetyOn(db);
|
|
sqlite3VdbeHalt(p);
|
|
(void)sqlite3SafetyOff(db);
|
|
|
|
/* If the VDBE has be run even partially, then transfer the error code
|
|
** and error message from the VDBE into the main database structure. But
|
|
** if the VDBE has just been set to run but has not actually executed any
|
|
** instructions yet, leave the main database error information unchanged.
|
|
*/
|
|
if( p->pc>=0 ){
|
|
if( p->zErrMsg ){
|
|
sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,sqlite3_free);
|
|
db->errCode = p->rc;
|
|
p->zErrMsg = 0;
|
|
}else if( p->rc ){
|
|
sqlite3Error(db, p->rc, 0);
|
|
}else{
|
|
sqlite3Error(db, SQLITE_OK, 0);
|
|
}
|
|
}else if( p->rc && p->expired ){
|
|
/* The expired flag was set on the VDBE before the first call
|
|
** to sqlite3_step(). For consistency (since sqlite3_step() was
|
|
** called), set the database error in this case as well.
|
|
*/
|
|
sqlite3Error(db, p->rc, 0);
|
|
sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, sqlite3_free);
|
|
p->zErrMsg = 0;
|
|
}
|
|
|
|
/* Reclaim all memory used by the VDBE
|
|
*/
|
|
Cleanup(p);
|
|
|
|
/* Save profiling information from this VDBE run.
|
|
*/
|
|
#ifdef VDBE_PROFILE
|
|
{
|
|
FILE *out = fopen("vdbe_profile.out", "a");
|
|
if( out ){
|
|
int i;
|
|
fprintf(out, "---- ");
|
|
for(i=0; i<p->nOp; i++){
|
|
fprintf(out, "%02x", p->aOp[i].opcode);
|
|
}
|
|
fprintf(out, "\n");
|
|
for(i=0; i<p->nOp; i++){
|
|
fprintf(out, "%6d %10lld %8lld ",
|
|
p->aOp[i].cnt,
|
|
p->aOp[i].cycles,
|
|
p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
|
|
);
|
|
sqlite3VdbePrintOp(out, i, &p->aOp[i]);
|
|
}
|
|
fclose(out);
|
|
}
|
|
}
|
|
#endif
|
|
p->magic = VDBE_MAGIC_INIT;
|
|
p->aborted = 0;
|
|
return p->rc & db->errMask;
|
|
}
|
|
|
|
/*
|
|
** Clean up and delete a VDBE after execution. Return an integer which is
|
|
** the result code. Write any error message text into *pzErrMsg.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe *p){
|
|
int rc = SQLITE_OK;
|
|
if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
|
|
rc = sqlite3VdbeReset(p);
|
|
assert( (rc & p->db->errMask)==rc );
|
|
}else if( p->magic!=VDBE_MAGIC_INIT ){
|
|
return SQLITE_MISUSE;
|
|
}
|
|
sqlite3VdbeDelete(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Call the destructor for each auxdata entry in pVdbeFunc for which
|
|
** the corresponding bit in mask is clear. Auxdata entries beyond 31
|
|
** are always destroyed. To destroy all auxdata entries, call this
|
|
** routine with mask==0.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
|
|
int i;
|
|
for(i=0; i<pVdbeFunc->nAux; i++){
|
|
struct AuxData *pAux = &pVdbeFunc->apAux[i];
|
|
if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){
|
|
if( pAux->xDelete ){
|
|
pAux->xDelete(pAux->pAux);
|
|
}
|
|
pAux->pAux = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Delete an entire VDBE.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){
|
|
int i;
|
|
if( p==0 ) return;
|
|
Cleanup(p);
|
|
if( p->pPrev ){
|
|
p->pPrev->pNext = p->pNext;
|
|
}else{
|
|
assert( p->db->pVdbe==p );
|
|
p->db->pVdbe = p->pNext;
|
|
}
|
|
if( p->pNext ){
|
|
p->pNext->pPrev = p->pPrev;
|
|
}
|
|
if( p->aOp ){
|
|
Op *pOp = p->aOp;
|
|
for(i=0; i<p->nOp; i++, pOp++){
|
|
freeP4(pOp->p4type, pOp->p4.p);
|
|
#ifdef SQLITE_DEBUG
|
|
sqlite3_free(pOp->zComment);
|
|
#endif
|
|
}
|
|
sqlite3_free(p->aOp);
|
|
}
|
|
releaseMemArray(p->aVar, p->nVar);
|
|
sqlite3_free(p->aLabel);
|
|
if( p->aMem ){
|
|
sqlite3_free(&p->aMem[1]);
|
|
}
|
|
releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
|
|
sqlite3_free(p->aColName);
|
|
sqlite3_free(p->zSql);
|
|
p->magic = VDBE_MAGIC_DEAD;
|
|
sqlite3_free(p);
|
|
}
|
|
|
|
/*
|
|
** If a MoveTo operation is pending on the given cursor, then do that
|
|
** MoveTo now. Return an error code. If no MoveTo is pending, this
|
|
** routine does nothing and returns SQLITE_OK.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(Cursor *p){
|
|
if( p->deferredMoveto ){
|
|
int res, rc;
|
|
#ifdef SQLITE_TEST
|
|
extern int sqlite3_search_count;
|
|
#endif
|
|
assert( p->isTable );
|
|
rc = sqlite3BtreeMoveto(p->pCursor, 0, p->movetoTarget, 0, &res);
|
|
if( rc ) return rc;
|
|
*p->pIncrKey = 0;
|
|
p->lastRowid = keyToInt(p->movetoTarget);
|
|
p->rowidIsValid = res==0;
|
|
if( res<0 ){
|
|
rc = sqlite3BtreeNext(p->pCursor, &res);
|
|
if( rc ) return rc;
|
|
}
|
|
#ifdef SQLITE_TEST
|
|
sqlite3_search_count++;
|
|
#endif
|
|
p->deferredMoveto = 0;
|
|
p->cacheStatus = CACHE_STALE;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** The following functions:
|
|
**
|
|
** sqlite3VdbeSerialType()
|
|
** sqlite3VdbeSerialTypeLen()
|
|
** sqlite3VdbeSerialRead()
|
|
** sqlite3VdbeSerialLen()
|
|
** sqlite3VdbeSerialWrite()
|
|
**
|
|
** encapsulate the code that serializes values for storage in SQLite
|
|
** data and index records. Each serialized value consists of a
|
|
** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
|
|
** integer, stored as a varint.
|
|
**
|
|
** In an SQLite index record, the serial type is stored directly before
|
|
** the blob of data that it corresponds to. In a table record, all serial
|
|
** types are stored at the start of the record, and the blobs of data at
|
|
** the end. Hence these functions allow the caller to handle the
|
|
** serial-type and data blob seperately.
|
|
**
|
|
** The following table describes the various storage classes for data:
|
|
**
|
|
** serial type bytes of data type
|
|
** -------------- --------------- ---------------
|
|
** 0 0 NULL
|
|
** 1 1 signed integer
|
|
** 2 2 signed integer
|
|
** 3 3 signed integer
|
|
** 4 4 signed integer
|
|
** 5 6 signed integer
|
|
** 6 8 signed integer
|
|
** 7 8 IEEE float
|
|
** 8 0 Integer constant 0
|
|
** 9 0 Integer constant 1
|
|
** 10,11 reserved for expansion
|
|
** N>=12 and even (N-12)/2 BLOB
|
|
** N>=13 and odd (N-13)/2 text
|
|
**
|
|
** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
|
|
** of SQLite will not understand those serial types.
|
|
*/
|
|
|
|
/*
|
|
** Return the serial-type for the value stored in pMem.
|
|
*/
|
|
SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
|
|
int flags = pMem->flags;
|
|
int n;
|
|
|
|
if( flags&MEM_Null ){
|
|
return 0;
|
|
}
|
|
if( flags&MEM_Int ){
|
|
/* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
|
|
# define MAX_6BYTE ((((i64)0x00001000)<<32)-1)
|
|
i64 i = pMem->u.i;
|
|
u64 u;
|
|
if( file_format>=4 && (i&1)==i ){
|
|
return 8+i;
|
|
}
|
|
u = i<0 ? -i : i;
|
|
if( u<=127 ) return 1;
|
|
if( u<=32767 ) return 2;
|
|
if( u<=8388607 ) return 3;
|
|
if( u<=2147483647 ) return 4;
|
|
if( u<=MAX_6BYTE ) return 5;
|
|
return 6;
|
|
}
|
|
if( flags&MEM_Real ){
|
|
return 7;
|
|
}
|
|
assert( flags&(MEM_Str|MEM_Blob) );
|
|
n = pMem->n;
|
|
if( flags & MEM_Zero ){
|
|
n += pMem->u.i;
|
|
}
|
|
assert( n>=0 );
|
|
return ((n*2) + 12 + ((flags&MEM_Str)!=0));
|
|
}
|
|
|
|
/*
|
|
** Return the length of the data corresponding to the supplied serial-type.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeSerialTypeLen(u32 serial_type){
|
|
if( serial_type>=12 ){
|
|
return (serial_type-12)/2;
|
|
}else{
|
|
static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
|
|
return aSize[serial_type];
|
|
}
|
|
}
|
|
|
|
/*
|
|
** If we are on an architecture with mixed-endian floating
|
|
** points (ex: ARM7) then swap the lower 4 bytes with the
|
|
** upper 4 bytes. Return the result.
|
|
**
|
|
** For most architectures, this is a no-op.
|
|
**
|
|
** (later): It is reported to me that the mixed-endian problem
|
|
** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
|
|
** that early versions of GCC stored the two words of a 64-bit
|
|
** float in the wrong order. And that error has been propagated
|
|
** ever since. The blame is not necessarily with GCC, though.
|
|
** GCC might have just copying the problem from a prior compiler.
|
|
** I am also told that newer versions of GCC that follow a different
|
|
** ABI get the byte order right.
|
|
**
|
|
** Developers using SQLite on an ARM7 should compile and run their
|
|
** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
|
|
** enabled, some asserts below will ensure that the byte order of
|
|
** floating point values is correct.
|
|
**
|
|
** (2007-08-30) Frank van Vugt has studied this problem closely
|
|
** and has send his findings to the SQLite developers. Frank
|
|
** writes that some Linux kernels offer floating point hardware
|
|
** emulation that uses only 32-bit mantissas instead of a full
|
|
** 48-bits as required by the IEEE standard. (This is the
|
|
** CONFIG_FPE_FASTFPE option.) On such systems, floating point
|
|
** byte swapping becomes very complicated. To avoid problems,
|
|
** the necessary byte swapping is carried out using a 64-bit integer
|
|
** rather than a 64-bit float. Frank assures us that the code here
|
|
** works for him. We, the developers, have no way to independently
|
|
** verify this, but Frank seems to know what he is talking about
|
|
** so we trust him.
|
|
*/
|
|
#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
|
|
static u64 floatSwap(u64 in){
|
|
union {
|
|
u64 r;
|
|
u32 i[2];
|
|
} u;
|
|
u32 t;
|
|
|
|
u.r = in;
|
|
t = u.i[0];
|
|
u.i[0] = u.i[1];
|
|
u.i[1] = t;
|
|
return u.r;
|
|
}
|
|
# define swapMixedEndianFloat(X) X = floatSwap(X)
|
|
#else
|
|
# define swapMixedEndianFloat(X)
|
|
#endif
|
|
|
|
/*
|
|
** Write the serialized data blob for the value stored in pMem into
|
|
** buf. It is assumed that the caller has allocated sufficient space.
|
|
** Return the number of bytes written.
|
|
**
|
|
** nBuf is the amount of space left in buf[]. nBuf must always be
|
|
** large enough to hold the entire field. Except, if the field is
|
|
** a blob with a zero-filled tail, then buf[] might be just the right
|
|
** size to hold everything except for the zero-filled tail. If buf[]
|
|
** is only big enough to hold the non-zero prefix, then only write that
|
|
** prefix into buf[]. But if buf[] is large enough to hold both the
|
|
** prefix and the tail then write the prefix and set the tail to all
|
|
** zeros.
|
|
**
|
|
** Return the number of bytes actually written into buf[]. The number
|
|
** of bytes in the zero-filled tail is included in the return value only
|
|
** if those bytes were zeroed in buf[].
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
|
|
u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
|
|
int len;
|
|
|
|
/* Integer and Real */
|
|
if( serial_type<=7 && serial_type>0 ){
|
|
u64 v;
|
|
int i;
|
|
if( serial_type==7 ){
|
|
assert( sizeof(v)==sizeof(pMem->r) );
|
|
memcpy(&v, &pMem->r, sizeof(v));
|
|
swapMixedEndianFloat(v);
|
|
}else{
|
|
v = pMem->u.i;
|
|
}
|
|
len = i = sqlite3VdbeSerialTypeLen(serial_type);
|
|
assert( len<=nBuf );
|
|
while( i-- ){
|
|
buf[i] = (v&0xFF);
|
|
v >>= 8;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
/* String or blob */
|
|
if( serial_type>=12 ){
|
|
assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.i:0)
|
|
== sqlite3VdbeSerialTypeLen(serial_type) );
|
|
assert( pMem->n<=nBuf );
|
|
len = pMem->n;
|
|
memcpy(buf, pMem->z, len);
|
|
if( pMem->flags & MEM_Zero ){
|
|
len += pMem->u.i;
|
|
if( len>nBuf ){
|
|
len = nBuf;
|
|
}
|
|
memset(&buf[pMem->n], 0, len-pMem->n);
|
|
}
|
|
return len;
|
|
}
|
|
|
|
/* NULL or constants 0 or 1 */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Deserialize the data blob pointed to by buf as serial type serial_type
|
|
** and store the result in pMem. Return the number of bytes read.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeSerialGet(
|
|
const unsigned char *buf, /* Buffer to deserialize from */
|
|
u32 serial_type, /* Serial type to deserialize */
|
|
Mem *pMem /* Memory cell to write value into */
|
|
){
|
|
switch( serial_type ){
|
|
case 10: /* Reserved for future use */
|
|
case 11: /* Reserved for future use */
|
|
case 0: { /* NULL */
|
|
pMem->flags = MEM_Null;
|
|
break;
|
|
}
|
|
case 1: { /* 1-byte signed integer */
|
|
pMem->u.i = (signed char)buf[0];
|
|
pMem->flags = MEM_Int;
|
|
return 1;
|
|
}
|
|
case 2: { /* 2-byte signed integer */
|
|
pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
|
|
pMem->flags = MEM_Int;
|
|
return 2;
|
|
}
|
|
case 3: { /* 3-byte signed integer */
|
|
pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
|
|
pMem->flags = MEM_Int;
|
|
return 3;
|
|
}
|
|
case 4: { /* 4-byte signed integer */
|
|
pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
|
|
pMem->flags = MEM_Int;
|
|
return 4;
|
|
}
|
|
case 5: { /* 6-byte signed integer */
|
|
u64 x = (((signed char)buf[0])<<8) | buf[1];
|
|
u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
|
|
x = (x<<32) | y;
|
|
pMem->u.i = *(i64*)&x;
|
|
pMem->flags = MEM_Int;
|
|
return 6;
|
|
}
|
|
case 6: /* 8-byte signed integer */
|
|
case 7: { /* IEEE floating point */
|
|
u64 x;
|
|
u32 y;
|
|
#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
|
|
/* Verify that integers and floating point values use the same
|
|
** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
|
|
** defined that 64-bit floating point values really are mixed
|
|
** endian.
|
|
*/
|
|
static const u64 t1 = ((u64)0x3ff00000)<<32;
|
|
static const double r1 = 1.0;
|
|
u64 t2 = t1;
|
|
swapMixedEndianFloat(t2);
|
|
assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
|
|
#endif
|
|
|
|
x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
|
|
y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
|
|
x = (x<<32) | y;
|
|
if( serial_type==6 ){
|
|
pMem->u.i = *(i64*)&x;
|
|
pMem->flags = MEM_Int;
|
|
}else{
|
|
assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
|
|
swapMixedEndianFloat(x);
|
|
memcpy(&pMem->r, &x, sizeof(x));
|
|
pMem->flags = MEM_Real;
|
|
}
|
|
return 8;
|
|
}
|
|
case 8: /* Integer 0 */
|
|
case 9: { /* Integer 1 */
|
|
pMem->u.i = serial_type-8;
|
|
pMem->flags = MEM_Int;
|
|
return 0;
|
|
}
|
|
default: {
|
|
int len = (serial_type-12)/2;
|
|
pMem->z = (char *)buf;
|
|
pMem->n = len;
|
|
pMem->xDel = 0;
|
|
if( serial_type&0x01 ){
|
|
pMem->flags = MEM_Str | MEM_Ephem;
|
|
}else{
|
|
pMem->flags = MEM_Blob | MEM_Ephem;
|
|
}
|
|
return len;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** The header of a record consists of a sequence variable-length integers.
|
|
** These integers are almost always small and are encoded as a single byte.
|
|
** The following macro takes advantage this fact to provide a fast decode
|
|
** of the integers in a record header. It is faster for the common case
|
|
** where the integer is a single byte. It is a little slower when the
|
|
** integer is two or more bytes. But overall it is faster.
|
|
**
|
|
** The following expressions are equivalent:
|
|
**
|
|
** x = sqlite3GetVarint32( A, &B );
|
|
**
|
|
** x = GetVarint( A, B );
|
|
**
|
|
*/
|
|
#define GetVarint(A,B) ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B))
|
|
|
|
/*
|
|
** This function compares the two table rows or index records specified by
|
|
** {nKey1, pKey1} and {nKey2, pKey2}, returning a negative, zero
|
|
** or positive integer if {nKey1, pKey1} is less than, equal to or
|
|
** greater than {nKey2, pKey2}. Both Key1 and Key2 must be byte strings
|
|
** composed by the OP_MakeRecord opcode of the VDBE.
|
|
**
|
|
** Key1 and Key2 do not have to contain the same number of fields.
|
|
** But if the lengths differ, Key2 must be the shorter of the two.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeRecordCompare(
|
|
void *userData,
|
|
int nKey1, const void *pKey1,
|
|
int nKey2, const void *pKey2
|
|
){
|
|
KeyInfo *pKeyInfo = (KeyInfo*)userData;
|
|
u32 d1, d2; /* Offset into aKey[] of next data element */
|
|
u32 idx1, idx2; /* Offset into aKey[] of next header element */
|
|
u32 szHdr1, szHdr2; /* Number of bytes in header */
|
|
int i = 0;
|
|
int nField;
|
|
int rc = 0;
|
|
const unsigned char *aKey1 = (const unsigned char *)pKey1;
|
|
const unsigned char *aKey2 = (const unsigned char *)pKey2;
|
|
|
|
Mem mem1;
|
|
Mem mem2;
|
|
mem1.enc = pKeyInfo->enc;
|
|
mem1.db = pKeyInfo->db;
|
|
mem2.enc = pKeyInfo->enc;
|
|
mem2.db = pKeyInfo->db;
|
|
|
|
idx1 = GetVarint(aKey1, szHdr1);
|
|
d1 = szHdr1;
|
|
idx2 = GetVarint(aKey2, szHdr2);
|
|
d2 = szHdr2;
|
|
nField = pKeyInfo->nField;
|
|
while( idx1<szHdr1 && idx2<szHdr2 ){
|
|
u32 serial_type1;
|
|
u32 serial_type2;
|
|
|
|
/* Read the serial types for the next element in each key. */
|
|
idx1 += GetVarint( aKey1+idx1, serial_type1 );
|
|
if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
|
|
idx2 += GetVarint( aKey2+idx2, serial_type2 );
|
|
if( d2>=nKey2 && sqlite3VdbeSerialTypeLen(serial_type2)>0 ) break;
|
|
|
|
/* Extract the values to be compared.
|
|
*/
|
|
d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
|
|
d2 += sqlite3VdbeSerialGet(&aKey2[d2], serial_type2, &mem2);
|
|
|
|
/* Do the comparison
|
|
*/
|
|
rc = sqlite3MemCompare(&mem1, &mem2, i<nField ? pKeyInfo->aColl[i] : 0);
|
|
if( mem1.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem1);
|
|
if( mem2.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem2);
|
|
if( rc!=0 ){
|
|
break;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
/* One of the keys ran out of fields, but all the fields up to that point
|
|
** were equal. If the incrKey flag is true, then the second key is
|
|
** treated as larger.
|
|
*/
|
|
if( rc==0 ){
|
|
if( pKeyInfo->incrKey ){
|
|
rc = -1;
|
|
}else if( !pKeyInfo->prefixIsEqual ){
|
|
if( d1<nKey1 ){
|
|
rc = 1;
|
|
}else if( d2<nKey2 ){
|
|
rc = -1; /* Only occurs on a corrupt database file */
|
|
}
|
|
}
|
|
}else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
|
|
&& pKeyInfo->aSortOrder[i] ){
|
|
rc = -rc;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** The argument is an index entry composed using the OP_MakeRecord opcode.
|
|
** The last entry in this record should be an integer (specifically
|
|
** an integer rowid). This routine returns the number of bytes in
|
|
** that integer.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeIdxRowidLen(const u8 *aKey){
|
|
u32 szHdr; /* Size of the header */
|
|
u32 typeRowid; /* Serial type of the rowid */
|
|
|
|
sqlite3GetVarint32(aKey, &szHdr);
|
|
sqlite3GetVarint32(&aKey[szHdr-1], &typeRowid);
|
|
return sqlite3VdbeSerialTypeLen(typeRowid);
|
|
}
|
|
|
|
|
|
/*
|
|
** pCur points at an index entry created using the OP_MakeRecord opcode.
|
|
** Read the rowid (the last field in the record) and store it in *rowid.
|
|
** Return SQLITE_OK if everything works, or an error code otherwise.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
|
|
i64 nCellKey = 0;
|
|
int rc;
|
|
u32 szHdr; /* Size of the header */
|
|
u32 typeRowid; /* Serial type of the rowid */
|
|
u32 lenRowid; /* Size of the rowid */
|
|
Mem m, v;
|
|
|
|
sqlite3BtreeKeySize(pCur, &nCellKey);
|
|
if( nCellKey<=0 ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
|
|
if( rc ){
|
|
return rc;
|
|
}
|
|
sqlite3GetVarint32((u8*)m.z, &szHdr);
|
|
sqlite3GetVarint32((u8*)&m.z[szHdr-1], &typeRowid);
|
|
lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
|
|
sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
|
|
*rowid = v.u.i;
|
|
sqlite3VdbeMemRelease(&m);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Compare the key of the index entry that cursor pC is point to against
|
|
** the key string in pKey (of length nKey). Write into *pRes a number
|
|
** that is negative, zero, or positive if pC is less than, equal to,
|
|
** or greater than pKey. Return SQLITE_OK on success.
|
|
**
|
|
** pKey is either created without a rowid or is truncated so that it
|
|
** omits the rowid at the end. The rowid at the end of the index entry
|
|
** is ignored as well.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(
|
|
Cursor *pC, /* The cursor to compare against */
|
|
int nKey, const u8 *pKey, /* The key to compare */
|
|
int *res /* Write the comparison result here */
|
|
){
|
|
i64 nCellKey = 0;
|
|
int rc;
|
|
BtCursor *pCur = pC->pCursor;
|
|
int lenRowid;
|
|
Mem m;
|
|
|
|
sqlite3BtreeKeySize(pCur, &nCellKey);
|
|
if( nCellKey<=0 ){
|
|
*res = 0;
|
|
return SQLITE_OK;
|
|
}
|
|
rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
|
|
if( rc ){
|
|
return rc;
|
|
}
|
|
lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z);
|
|
*res = sqlite3VdbeRecordCompare(pC->pKeyInfo, m.n-lenRowid, m.z, nKey, pKey);
|
|
sqlite3VdbeMemRelease(&m);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** This routine sets the value to be returned by subsequent calls to
|
|
** sqlite3_changes() on the database handle 'db'.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
db->nChange = nChange;
|
|
db->nTotalChange += nChange;
|
|
}
|
|
|
|
/*
|
|
** Set a flag in the vdbe to update the change counter when it is finalised
|
|
** or reset.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe *v){
|
|
v->changeCntOn = 1;
|
|
}
|
|
|
|
/*
|
|
** Mark every prepared statement associated with a database connection
|
|
** as expired.
|
|
**
|
|
** An expired statement means that recompilation of the statement is
|
|
** recommend. Statements expire when things happen that make their
|
|
** programs obsolete. Removing user-defined functions or collating
|
|
** sequences, or changing an authorization function are the types of
|
|
** things that make prepared statements obsolete.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3 *db){
|
|
Vdbe *p;
|
|
for(p = db->pVdbe; p; p=p->pNext){
|
|
p->expired = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the database associated with the Vdbe.
|
|
*/
|
|
SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe *v){
|
|
return v->db;
|
|
}
|
|
|
|
/************** End of vdbeaux.c *********************************************/
|
|
/************** Begin file vdbeapi.c *****************************************/
|
|
/*
|
|
** 2004 May 26
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
**
|
|
** This file contains code use to implement APIs that are part of the
|
|
** VDBE.
|
|
*/
|
|
|
|
/*
|
|
** Return TRUE (non-zero) of the statement supplied as an argument needs
|
|
** to be recompiled. A statement needs to be recompiled whenever the
|
|
** execution environment changes in a way that would alter the program
|
|
** that sqlite3_prepare() generates. For example, if new functions or
|
|
** collating sequences are registered or if an authorizer function is
|
|
** added or changed.
|
|
*/
|
|
SQLITE_API int sqlite3_expired(sqlite3_stmt *pStmt){
|
|
Vdbe *p = (Vdbe*)pStmt;
|
|
return p==0 || p->expired;
|
|
}
|
|
|
|
/*
|
|
** The following routine destroys a virtual machine that is created by
|
|
** the sqlite3_compile() routine. The integer returned is an SQLITE_
|
|
** success/failure code that describes the result of executing the virtual
|
|
** machine.
|
|
**
|
|
** This routine sets the error code and string returned by
|
|
** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
|
|
*/
|
|
SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt){
|
|
int rc;
|
|
if( pStmt==0 ){
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
Vdbe *v = (Vdbe*)pStmt;
|
|
#ifndef SQLITE_MUTEX_NOOP
|
|
sqlite3_mutex *mutex = v->db->mutex;
|
|
#endif
|
|
sqlite3_mutex_enter(mutex);
|
|
rc = sqlite3VdbeFinalize(v);
|
|
sqlite3_mutex_leave(mutex);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Terminate the current execution of an SQL statement and reset it
|
|
** back to its starting state so that it can be reused. A success code from
|
|
** the prior execution is returned.
|
|
**
|
|
** This routine sets the error code and string returned by
|
|
** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
|
|
*/
|
|
SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt){
|
|
int rc;
|
|
if( pStmt==0 ){
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
Vdbe *v = (Vdbe*)pStmt;
|
|
sqlite3_mutex_enter(v->db->mutex);
|
|
rc = sqlite3VdbeReset(v);
|
|
sqlite3VdbeMakeReady(v, -1, 0, 0, 0);
|
|
assert( (rc & (v->db->errMask))==rc );
|
|
sqlite3_mutex_leave(v->db->mutex);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Set all the parameters in the compiled SQL statement to NULL.
|
|
*/
|
|
SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
|
|
int i;
|
|
int rc = SQLITE_OK;
|
|
#ifndef SQLITE_MUTEX_NOOP
|
|
sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
|
|
#endif
|
|
sqlite3_mutex_enter(mutex);
|
|
for(i=1; rc==SQLITE_OK && i<=sqlite3_bind_parameter_count(pStmt); i++){
|
|
rc = sqlite3_bind_null(pStmt, i);
|
|
}
|
|
sqlite3_mutex_leave(mutex);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/**************************** sqlite3_value_ *******************************
|
|
** The following routines extract information from a Mem or sqlite3_value
|
|
** structure.
|
|
*/
|
|
SQLITE_API const void *sqlite3_value_blob(sqlite3_value *pVal){
|
|
Mem *p = (Mem*)pVal;
|
|
if( p->flags & (MEM_Blob|MEM_Str) ){
|
|
sqlite3VdbeMemExpandBlob(p);
|
|
p->flags &= ~MEM_Str;
|
|
p->flags |= MEM_Blob;
|
|
return p->z;
|
|
}else{
|
|
return sqlite3_value_text(pVal);
|
|
}
|
|
}
|
|
SQLITE_API int sqlite3_value_bytes(sqlite3_value *pVal){
|
|
return sqlite3ValueBytes(pVal, SQLITE_UTF8);
|
|
}
|
|
SQLITE_API int sqlite3_value_bytes16(sqlite3_value *pVal){
|
|
return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
|
|
}
|
|
SQLITE_API double sqlite3_value_double(sqlite3_value *pVal){
|
|
return sqlite3VdbeRealValue((Mem*)pVal);
|
|
}
|
|
SQLITE_API int sqlite3_value_int(sqlite3_value *pVal){
|
|
return sqlite3VdbeIntValue((Mem*)pVal);
|
|
}
|
|
SQLITE_API sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
|
|
return sqlite3VdbeIntValue((Mem*)pVal);
|
|
}
|
|
SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
|
|
return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
SQLITE_API const void *sqlite3_value_text16(sqlite3_value* pVal){
|
|
return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
|
|
}
|
|
SQLITE_API const void *sqlite3_value_text16be(sqlite3_value *pVal){
|
|
return sqlite3ValueText(pVal, SQLITE_UTF16BE);
|
|
}
|
|
SQLITE_API const void *sqlite3_value_text16le(sqlite3_value *pVal){
|
|
return sqlite3ValueText(pVal, SQLITE_UTF16LE);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
SQLITE_API int sqlite3_value_type(sqlite3_value* pVal){
|
|
return pVal->type;
|
|
}
|
|
|
|
/**************************** sqlite3_result_ *******************************
|
|
** The following routines are used by user-defined functions to specify
|
|
** the function result.
|
|
*/
|
|
SQLITE_API void sqlite3_result_blob(
|
|
sqlite3_context *pCtx,
|
|
const void *z,
|
|
int n,
|
|
void (*xDel)(void *)
|
|
){
|
|
assert( n>=0 );
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel);
|
|
}
|
|
SQLITE_API void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
|
|
}
|
|
SQLITE_API void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
pCtx->isError = 1;
|
|
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
SQLITE_API void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
pCtx->isError = 1;
|
|
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
|
|
}
|
|
#endif
|
|
SQLITE_API void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
|
|
}
|
|
SQLITE_API void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
|
|
}
|
|
SQLITE_API void sqlite3_result_null(sqlite3_context *pCtx){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetNull(&pCtx->s);
|
|
}
|
|
SQLITE_API void sqlite3_result_text(
|
|
sqlite3_context *pCtx,
|
|
const char *z,
|
|
int n,
|
|
void (*xDel)(void *)
|
|
){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
SQLITE_API void sqlite3_result_text16(
|
|
sqlite3_context *pCtx,
|
|
const void *z,
|
|
int n,
|
|
void (*xDel)(void *)
|
|
){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
|
|
}
|
|
SQLITE_API void sqlite3_result_text16be(
|
|
sqlite3_context *pCtx,
|
|
const void *z,
|
|
int n,
|
|
void (*xDel)(void *)
|
|
){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel);
|
|
}
|
|
SQLITE_API void sqlite3_result_text16le(
|
|
sqlite3_context *pCtx,
|
|
const void *z,
|
|
int n,
|
|
void (*xDel)(void *)
|
|
){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
SQLITE_API void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemCopy(&pCtx->s, pValue);
|
|
}
|
|
SQLITE_API void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
|
|
}
|
|
|
|
/* Force an SQLITE_TOOBIG error. */
|
|
SQLITE_API void sqlite3_result_error_toobig(sqlite3_context *pCtx){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetZeroBlob(&pCtx->s, SQLITE_MAX_LENGTH+1);
|
|
}
|
|
|
|
/* An SQLITE_NOMEM error. */
|
|
SQLITE_API void sqlite3_result_error_nomem(sqlite3_context *pCtx){
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
sqlite3VdbeMemSetNull(&pCtx->s);
|
|
pCtx->isError = 1;
|
|
pCtx->s.db->mallocFailed = 1;
|
|
}
|
|
|
|
/*
|
|
** Execute the statement pStmt, either until a row of data is ready, the
|
|
** statement is completely executed or an error occurs.
|
|
**
|
|
** This routine implements the bulk of the logic behind the sqlite_step()
|
|
** API. The only thing omitted is the automatic recompile if a
|
|
** schema change has occurred. That detail is handled by the
|
|
** outer sqlite3_step() wrapper procedure.
|
|
*/
|
|
static int sqlite3Step(Vdbe *p){
|
|
sqlite3 *db;
|
|
int rc;
|
|
|
|
assert(p);
|
|
if( p->magic!=VDBE_MAGIC_RUN ){
|
|
return SQLITE_MISUSE;
|
|
}
|
|
|
|
/* Assert that malloc() has not failed */
|
|
db = p->db;
|
|
assert( !db->mallocFailed );
|
|
|
|
if( p->aborted ){
|
|
return SQLITE_ABORT;
|
|
}
|
|
if( p->pc<=0 && p->expired ){
|
|
if( p->rc==SQLITE_OK ){
|
|
p->rc = SQLITE_SCHEMA;
|
|
}
|
|
rc = SQLITE_ERROR;
|
|
goto end_of_step;
|
|
}
|
|
if( sqlite3SafetyOn(db) ){
|
|
p->rc = SQLITE_MISUSE;
|
|
return SQLITE_MISUSE;
|
|
}
|
|
if( p->pc<0 ){
|
|
/* If there are no other statements currently running, then
|
|
** reset the interrupt flag. This prevents a call to sqlite3_interrupt
|
|
** from interrupting a statement that has not yet started.
|
|
*/
|
|
if( db->activeVdbeCnt==0 ){
|
|
db->u1.isInterrupted = 0;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_TRACE
|
|
if( db->xProfile && !db->init.busy ){
|
|
double rNow;
|
|
sqlite3OsCurrentTime(db->pVfs, &rNow);
|
|
p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0;
|
|
}
|
|
#endif
|
|
|
|
db->activeVdbeCnt++;
|
|
p->pc = 0;
|
|
}
|
|
#ifndef SQLITE_OMIT_EXPLAIN
|
|
if( p->explain ){
|
|
rc = sqlite3VdbeList(p);
|
|
}else
|
|
#endif /* SQLITE_OMIT_EXPLAIN */
|
|
{
|
|
rc = sqlite3VdbeExec(p);
|
|
}
|
|
|
|
if( sqlite3SafetyOff(db) ){
|
|
rc = SQLITE_MISUSE;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_TRACE
|
|
/* Invoke the profile callback if there is one
|
|
*/
|
|
if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->nOp>0
|
|
&& p->aOp[0].opcode==OP_Trace && p->aOp[0].p4.z!=0 ){
|
|
double rNow;
|
|
u64 elapseTime;
|
|
|
|
sqlite3OsCurrentTime(db->pVfs, &rNow);
|
|
elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime;
|
|
db->xProfile(db->pProfileArg, p->aOp[0].p4.z, elapseTime);
|
|
}
|
|
#endif
|
|
|
|
sqlite3Error(p->db, rc, 0);
|
|
p->rc = sqlite3ApiExit(p->db, p->rc);
|
|
end_of_step:
|
|
assert( (rc&0xff)==rc );
|
|
if( p->zSql && (rc&0xff)<SQLITE_ROW ){
|
|
/* This behavior occurs if sqlite3_prepare_v2() was used to build
|
|
** the prepared statement. Return error codes directly */
|
|
sqlite3Error(p->db, p->rc, 0);
|
|
return p->rc;
|
|
}else{
|
|
/* This is for legacy sqlite3_prepare() builds and when the code
|
|
** is SQLITE_ROW or SQLITE_DONE */
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This is the top-level implementation of sqlite3_step(). Call
|
|
** sqlite3Step() to do most of the work. If a schema error occurs,
|
|
** call sqlite3Reprepare() and try again.
|
|
*/
|
|
#ifdef SQLITE_OMIT_PARSER
|
|
SQLITE_API int sqlite3_step(sqlite3_stmt *pStmt){
|
|
int rc = SQLITE_MISUSE;
|
|
if( pStmt ){
|
|
Vdbe *v;
|
|
v = (Vdbe*)pStmt;
|
|
sqlite3_mutex_enter(v->db->mutex);
|
|
rc = sqlite3Step(v);
|
|
sqlite3_mutex_leave(v->db->mutex);
|
|
}
|
|
return rc;
|
|
}
|
|
#else
|
|
SQLITE_API int sqlite3_step(sqlite3_stmt *pStmt){
|
|
int rc = SQLITE_MISUSE;
|
|
if( pStmt ){
|
|
int cnt = 0;
|
|
Vdbe *v = (Vdbe*)pStmt;
|
|
sqlite3 *db = v->db;
|
|
sqlite3_mutex_enter(db->mutex);
|
|
while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
|
|
&& cnt++ < 5
|
|
&& sqlite3Reprepare(v) ){
|
|
sqlite3_reset(pStmt);
|
|
v->expired = 0;
|
|
}
|
|
if( rc==SQLITE_SCHEMA && v->zSql && db->pErr ){
|
|
/* This case occurs after failing to recompile an sql statement.
|
|
** The error message from the SQL compiler has already been loaded
|
|
** into the database handle. This block copies the error message
|
|
** from the database handle into the statement and sets the statement
|
|
** program counter to 0 to ensure that when the statement is
|
|
** finalized or reset the parser error message is available via
|
|
** sqlite3_errmsg() and sqlite3_errcode().
|
|
*/
|
|
const char *zErr = (const char *)sqlite3_value_text(db->pErr);
|
|
sqlite3_free(v->zErrMsg);
|
|
if( !db->mallocFailed ){
|
|
v->zErrMsg = sqlite3DbStrDup(db, zErr);
|
|
} else {
|
|
v->zErrMsg = 0;
|
|
v->rc = SQLITE_NOMEM;
|
|
}
|
|
}
|
|
rc = sqlite3ApiExit(db, rc);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
}
|
|
return rc;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Extract the user data from a sqlite3_context structure and return a
|
|
** pointer to it.
|
|
*/
|
|
SQLITE_API void *sqlite3_user_data(sqlite3_context *p){
|
|
assert( p && p->pFunc );
|
|
return p->pFunc->pUserData;
|
|
}
|
|
|
|
/*
|
|
** The following is the implementation of an SQL function that always
|
|
** fails with an error message stating that the function is used in the
|
|
** wrong context. The sqlite3_overload_function() API might construct
|
|
** SQL function that use this routine so that the functions will exist
|
|
** for name resolution but are actually overloaded by the xFindFunction
|
|
** method of virtual tables.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3InvalidFunction(
|
|
sqlite3_context *context, /* The function calling context */
|
|
int argc, /* Number of arguments to the function */
|
|
sqlite3_value **argv /* Value of each argument */
|
|
){
|
|
const char *zName = context->pFunc->zName;
|
|
char *zErr;
|
|
zErr = sqlite3MPrintf(0,
|
|
"unable to use function %s in the requested context", zName);
|
|
sqlite3_result_error(context, zErr, -1);
|
|
sqlite3_free(zErr);
|
|
}
|
|
|
|
/*
|
|
** Allocate or return the aggregate context for a user function. A new
|
|
** context is allocated on the first call. Subsequent calls return the
|
|
** same context that was returned on prior calls.
|
|
*/
|
|
SQLITE_API void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
|
|
Mem *pMem;
|
|
assert( p && p->pFunc && p->pFunc->xStep );
|
|
assert( sqlite3_mutex_held(p->s.db->mutex) );
|
|
pMem = p->pMem;
|
|
if( (pMem->flags & MEM_Agg)==0 ){
|
|
if( nByte==0 ){
|
|
assert( pMem->flags==MEM_Null );
|
|
pMem->z = 0;
|
|
}else{
|
|
pMem->flags = MEM_Agg;
|
|
pMem->xDel = sqlite3_free;
|
|
pMem->u.pDef = p->pFunc;
|
|
pMem->z = sqlite3DbMallocZero(p->s.db, nByte);
|
|
}
|
|
}
|
|
return (void*)pMem->z;
|
|
}
|
|
|
|
/*
|
|
** Return the auxilary data pointer, if any, for the iArg'th argument to
|
|
** the user-function defined by pCtx.
|
|
*/
|
|
SQLITE_API void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
|
|
VdbeFunc *pVdbeFunc;
|
|
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
pVdbeFunc = pCtx->pVdbeFunc;
|
|
if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
|
|
return 0;
|
|
}
|
|
return pVdbeFunc->apAux[iArg].pAux;
|
|
}
|
|
|
|
/*
|
|
** Set the auxilary data pointer and delete function, for the iArg'th
|
|
** argument to the user-function defined by pCtx. Any previous value is
|
|
** deleted by calling the delete function specified when it was set.
|
|
*/
|
|
SQLITE_API void sqlite3_set_auxdata(
|
|
sqlite3_context *pCtx,
|
|
int iArg,
|
|
void *pAux,
|
|
void (*xDelete)(void*)
|
|
){
|
|
struct AuxData *pAuxData;
|
|
VdbeFunc *pVdbeFunc;
|
|
if( iArg<0 ) goto failed;
|
|
|
|
assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
|
|
pVdbeFunc = pCtx->pVdbeFunc;
|
|
if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
|
|
int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
|
|
int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
|
|
pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
|
|
if( !pVdbeFunc ){
|
|
goto failed;
|
|
}
|
|
pCtx->pVdbeFunc = pVdbeFunc;
|
|
memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
|
|
pVdbeFunc->nAux = iArg+1;
|
|
pVdbeFunc->pFunc = pCtx->pFunc;
|
|
}
|
|
|
|
pAuxData = &pVdbeFunc->apAux[iArg];
|
|
if( pAuxData->pAux && pAuxData->xDelete ){
|
|
pAuxData->xDelete(pAuxData->pAux);
|
|
}
|
|
pAuxData->pAux = pAux;
|
|
pAuxData->xDelete = xDelete;
|
|
return;
|
|
|
|
failed:
|
|
if( xDelete ){
|
|
xDelete(pAux);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the number of times the Step function of a aggregate has been
|
|
** called.
|
|
**
|
|
** This function is deprecated. Do not use it for new code. It is
|
|
** provide only to avoid breaking legacy code. New aggregate function
|
|
** implementations should keep their own counts within their aggregate
|
|
** context.
|
|
*/
|
|
SQLITE_API int sqlite3_aggregate_count(sqlite3_context *p){
|
|
assert( p && p->pFunc && p->pFunc->xStep );
|
|
return p->pMem->n;
|
|
}
|
|
|
|
/*
|
|
** Return the number of columns in the result set for the statement pStmt.
|
|
*/
|
|
SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt){
|
|
Vdbe *pVm = (Vdbe *)pStmt;
|
|
return pVm ? pVm->nResColumn : 0;
|
|
}
|
|
|
|
/*
|
|
** Return the number of values available from the current row of the
|
|
** currently executing statement pStmt.
|
|
*/
|
|
SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt){
|
|
Vdbe *pVm = (Vdbe *)pStmt;
|
|
if( pVm==0 || pVm->pResultSet==0 ) return 0;
|
|
return pVm->nResColumn;
|
|
}
|
|
|
|
|
|
/*
|
|
** Check to see if column iCol of the given statement is valid. If
|
|
** it is, return a pointer to the Mem for the value of that column.
|
|
** If iCol is not valid, return a pointer to a Mem which has a value
|
|
** of NULL.
|
|
*/
|
|
static Mem *columnMem(sqlite3_stmt *pStmt, int i){
|
|
Vdbe *pVm;
|
|
int vals;
|
|
Mem *pOut;
|
|
|
|
pVm = (Vdbe *)pStmt;
|
|
if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
|
|
sqlite3_mutex_enter(pVm->db->mutex);
|
|
vals = sqlite3_data_count(pStmt);
|
|
pOut = &pVm->pResultSet[i];
|
|
}else{
|
|
static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL };
|
|
if( pVm->db ){
|
|
sqlite3_mutex_enter(pVm->db->mutex);
|
|
sqlite3Error(pVm->db, SQLITE_RANGE, 0);
|
|
}
|
|
pOut = (Mem*)&nullMem;
|
|
}
|
|
return pOut;
|
|
}
|
|
|
|
/*
|
|
** This function is called after invoking an sqlite3_value_XXX function on a
|
|
** column value (i.e. a value returned by evaluating an SQL expression in the
|
|
** select list of a SELECT statement) that may cause a malloc() failure. If
|
|
** malloc() has failed, the threads mallocFailed flag is cleared and the result
|
|
** code of statement pStmt set to SQLITE_NOMEM.
|
|
**
|
|
** Specifically, this is called from within:
|
|
**
|
|
** sqlite3_column_int()
|
|
** sqlite3_column_int64()
|
|
** sqlite3_column_text()
|
|
** sqlite3_column_text16()
|
|
** sqlite3_column_real()
|
|
** sqlite3_column_bytes()
|
|
** sqlite3_column_bytes16()
|
|
**
|
|
** But not for sqlite3_column_blob(), which never calls malloc().
|
|
*/
|
|
static void columnMallocFailure(sqlite3_stmt *pStmt)
|
|
{
|
|
/* If malloc() failed during an encoding conversion within an
|
|
** sqlite3_column_XXX API, then set the return code of the statement to
|
|
** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
|
|
** and _finalize() will return NOMEM.
|
|
*/
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
if( p ){
|
|
p->rc = sqlite3ApiExit(p->db, p->rc);
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
}
|
|
}
|
|
|
|
/**************************** sqlite3_column_ *******************************
|
|
** The following routines are used to access elements of the current row
|
|
** in the result set.
|
|
*/
|
|
SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
|
|
const void *val;
|
|
val = sqlite3_value_blob( columnMem(pStmt,i) );
|
|
/* Even though there is no encoding conversion, value_blob() might
|
|
** need to call malloc() to expand the result of a zeroblob()
|
|
** expression.
|
|
*/
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
SQLITE_API int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
|
|
int val = sqlite3_value_bytes( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
|
|
int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
SQLITE_API double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
|
|
double val = sqlite3_value_double( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
SQLITE_API int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
|
|
int val = sqlite3_value_int( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
SQLITE_API sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
|
|
sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
|
|
const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
|
|
sqlite3_value *pOut = columnMem(pStmt, i);
|
|
columnMallocFailure(pStmt);
|
|
return pOut;
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
|
|
const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return val;
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
SQLITE_API int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
|
|
int iType = sqlite3_value_type( columnMem(pStmt,i) );
|
|
columnMallocFailure(pStmt);
|
|
return iType;
|
|
}
|
|
|
|
/* The following function is experimental and subject to change or
|
|
** removal */
|
|
/*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
|
|
** return sqlite3_value_numeric_type( columnMem(pStmt,i) );
|
|
**}
|
|
*/
|
|
|
|
/*
|
|
** Convert the N-th element of pStmt->pColName[] into a string using
|
|
** xFunc() then return that string. If N is out of range, return 0.
|
|
**
|
|
** There are up to 5 names for each column. useType determines which
|
|
** name is returned. Here are the names:
|
|
**
|
|
** 0 The column name as it should be displayed for output
|
|
** 1 The datatype name for the column
|
|
** 2 The name of the database that the column derives from
|
|
** 3 The name of the table that the column derives from
|
|
** 4 The name of the table column that the result column derives from
|
|
**
|
|
** If the result is not a simple column reference (if it is an expression
|
|
** or a constant) then useTypes 2, 3, and 4 return NULL.
|
|
*/
|
|
static const void *columnName(
|
|
sqlite3_stmt *pStmt,
|
|
int N,
|
|
const void *(*xFunc)(Mem*),
|
|
int useType
|
|
){
|
|
const void *ret = 0;
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
int n;
|
|
|
|
|
|
if( p!=0 ){
|
|
n = sqlite3_column_count(pStmt);
|
|
if( N<n && N>=0 ){
|
|
N += useType*n;
|
|
sqlite3_mutex_enter(p->db->mutex);
|
|
ret = xFunc(&p->aColName[N]);
|
|
|
|
/* A malloc may have failed inside of the xFunc() call. If this
|
|
** is the case, clear the mallocFailed flag and return NULL.
|
|
*/
|
|
if( p->db && p->db->mallocFailed ){
|
|
p->db->mallocFailed = 0;
|
|
ret = 0;
|
|
}
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
** Return the name of the Nth column of the result set returned by SQL
|
|
** statement pStmt.
|
|
*/
|
|
SQLITE_API const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
|
|
return columnName(
|
|
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
|
|
return columnName(
|
|
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Return the column declaration type (if applicable) of the 'i'th column
|
|
** of the result set of SQL statement pStmt.
|
|
*/
|
|
SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
|
|
return columnName(
|
|
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
|
|
return columnName(
|
|
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
|
|
#ifdef SQLITE_ENABLE_COLUMN_METADATA
|
|
/*
|
|
** Return the name of the database from which a result column derives.
|
|
** NULL is returned if the result column is an expression or constant or
|
|
** anything else which is not an unabiguous reference to a database column.
|
|
*/
|
|
SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
|
|
return columnName(
|
|
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
|
|
return columnName(
|
|
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
|
|
/*
|
|
** Return the name of the table from which a result column derives.
|
|
** NULL is returned if the result column is an expression or constant or
|
|
** anything else which is not an unabiguous reference to a database column.
|
|
*/
|
|
SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
|
|
return columnName(
|
|
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
|
|
return columnName(
|
|
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
|
|
/*
|
|
** Return the name of the table column from which a result column derives.
|
|
** NULL is returned if the result column is an expression or constant or
|
|
** anything else which is not an unabiguous reference to a database column.
|
|
*/
|
|
SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
|
|
return columnName(
|
|
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
|
|
return columnName(
|
|
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
#endif /* SQLITE_ENABLE_COLUMN_METADATA */
|
|
|
|
|
|
/******************************* sqlite3_bind_ ***************************
|
|
**
|
|
** Routines used to attach values to wildcards in a compiled SQL statement.
|
|
*/
|
|
/*
|
|
** Unbind the value bound to variable i in virtual machine p. This is the
|
|
** the same as binding a NULL value to the column. If the "i" parameter is
|
|
** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
|
|
**
|
|
** The error code stored in database p->db is overwritten with the return
|
|
** value in any case.
|
|
*/
|
|
static int vdbeUnbind(Vdbe *p, int i){
|
|
Mem *pVar;
|
|
if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
|
|
if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0);
|
|
return SQLITE_MISUSE;
|
|
}
|
|
if( i<1 || i>p->nVar ){
|
|
sqlite3Error(p->db, SQLITE_RANGE, 0);
|
|
return SQLITE_RANGE;
|
|
}
|
|
i--;
|
|
pVar = &p->aVar[i];
|
|
sqlite3VdbeMemRelease(pVar);
|
|
pVar->flags = MEM_Null;
|
|
sqlite3Error(p->db, SQLITE_OK, 0);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Bind a text or BLOB value.
|
|
*/
|
|
static int bindText(
|
|
sqlite3_stmt *pStmt, /* The statement to bind against */
|
|
int i, /* Index of the parameter to bind */
|
|
const void *zData, /* Pointer to the data to be bound */
|
|
int nData, /* Number of bytes of data to be bound */
|
|
void (*xDel)(void*), /* Destructor for the data */
|
|
int encoding /* Encoding for the data */
|
|
){
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
Mem *pVar;
|
|
int rc;
|
|
|
|
if( p==0 ){
|
|
return SQLITE_MISUSE;
|
|
}
|
|
sqlite3_mutex_enter(p->db->mutex);
|
|
rc = vdbeUnbind(p, i);
|
|
if( rc==SQLITE_OK && zData!=0 ){
|
|
pVar = &p->aVar[i-1];
|
|
rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
|
|
if( rc==SQLITE_OK && encoding!=0 ){
|
|
rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
|
|
}
|
|
sqlite3Error(p->db, rc, 0);
|
|
rc = sqlite3ApiExit(p->db, rc);
|
|
}
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Bind a blob value to an SQL statement variable.
|
|
*/
|
|
SQLITE_API int sqlite3_bind_blob(
|
|
sqlite3_stmt *pStmt,
|
|
int i,
|
|
const void *zData,
|
|
int nData,
|
|
void (*xDel)(void*)
|
|
){
|
|
return bindText(pStmt, i, zData, nData, xDel, 0);
|
|
}
|
|
SQLITE_API int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
|
|
int rc;
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
sqlite3_mutex_enter(p->db->mutex);
|
|
rc = vdbeUnbind(p, i);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
|
|
}
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
return rc;
|
|
}
|
|
SQLITE_API int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
|
|
return sqlite3_bind_int64(p, i, (i64)iValue);
|
|
}
|
|
SQLITE_API int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
|
|
int rc;
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
sqlite3_mutex_enter(p->db->mutex);
|
|
rc = vdbeUnbind(p, i);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
|
|
}
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
return rc;
|
|
}
|
|
SQLITE_API int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
|
|
int rc;
|
|
Vdbe *p = (Vdbe*)pStmt;
|
|
sqlite3_mutex_enter(p->db->mutex);
|
|
rc = vdbeUnbind(p, i);
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
return rc;
|
|
}
|
|
SQLITE_API int sqlite3_bind_text(
|
|
sqlite3_stmt *pStmt,
|
|
int i,
|
|
const char *zData,
|
|
int nData,
|
|
void (*xDel)(void*)
|
|
){
|
|
return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
SQLITE_API int sqlite3_bind_text16(
|
|
sqlite3_stmt *pStmt,
|
|
int i,
|
|
const void *zData,
|
|
int nData,
|
|
void (*xDel)(void*)
|
|
){
|
|
return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
SQLITE_API int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
|
|
int rc;
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
sqlite3_mutex_enter(p->db->mutex);
|
|
rc = vdbeUnbind(p, i);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue);
|
|
}
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
return rc;
|
|
}
|
|
SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
|
|
int rc;
|
|
Vdbe *p = (Vdbe *)pStmt;
|
|
sqlite3_mutex_enter(p->db->mutex);
|
|
rc = vdbeUnbind(p, i);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
|
|
}
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return the number of wildcards that can be potentially bound to.
|
|
** This routine is added to support DBD::SQLite.
|
|
*/
|
|
SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
|
|
Vdbe *p = (Vdbe*)pStmt;
|
|
return p ? p->nVar : 0;
|
|
}
|
|
|
|
/*
|
|
** Create a mapping from variable numbers to variable names
|
|
** in the Vdbe.azVar[] array, if such a mapping does not already
|
|
** exist.
|
|
*/
|
|
static void createVarMap(Vdbe *p){
|
|
if( !p->okVar ){
|
|
sqlite3_mutex_enter(p->db->mutex);
|
|
if( !p->okVar ){
|
|
int j;
|
|
Op *pOp;
|
|
for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
|
|
if( pOp->opcode==OP_Variable ){
|
|
assert( pOp->p1>0 && pOp->p1<=p->nVar );
|
|
p->azVar[pOp->p1-1] = pOp->p4.z;
|
|
}
|
|
}
|
|
p->okVar = 1;
|
|
}
|
|
sqlite3_mutex_leave(p->db->mutex);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the name of a wildcard parameter. Return NULL if the index
|
|
** is out of range or if the wildcard is unnamed.
|
|
**
|
|
** The result is always UTF-8.
|
|
*/
|
|
SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
|
|
Vdbe *p = (Vdbe*)pStmt;
|
|
if( p==0 || i<1 || i>p->nVar ){
|
|
return 0;
|
|
}
|
|
createVarMap(p);
|
|
return p->azVar[i-1];
|
|
}
|
|
|
|
/*
|
|
** Given a wildcard parameter name, return the index of the variable
|
|
** with that name. If there is no variable with the given name,
|
|
** return 0.
|
|
*/
|
|
SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
|
|
Vdbe *p = (Vdbe*)pStmt;
|
|
int i;
|
|
if( p==0 ){
|
|
return 0;
|
|
}
|
|
createVarMap(p);
|
|
if( zName ){
|
|
for(i=0; i<p->nVar; i++){
|
|
const char *z = p->azVar[i];
|
|
if( z && strcmp(z,zName)==0 ){
|
|
return i+1;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Transfer all bindings from the first statement over to the second.
|
|
** If the two statements contain a different number of bindings, then
|
|
** an SQLITE_ERROR is returned.
|
|
*/
|
|
SQLITE_API int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
|
|
Vdbe *pFrom = (Vdbe*)pFromStmt;
|
|
Vdbe *pTo = (Vdbe*)pToStmt;
|
|
int i, rc = SQLITE_OK;
|
|
if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT)
|
|
|| (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT)
|
|
|| pTo->db!=pFrom->db ){
|
|
return SQLITE_MISUSE;
|
|
}
|
|
if( pFrom->nVar!=pTo->nVar ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
sqlite3_mutex_enter(pTo->db->mutex);
|
|
for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){
|
|
sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
|
|
}
|
|
sqlite3_mutex_leave(pTo->db->mutex);
|
|
assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return the sqlite3* database handle to which the prepared statement given
|
|
** in the argument belongs. This is the same database handle that was
|
|
** the first argument to the sqlite3_prepare() that was used to create
|
|
** the statement in the first place.
|
|
*/
|
|
SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
|
|
return pStmt ? ((Vdbe*)pStmt)->db : 0;
|
|
}
|
|
|
|
/************** End of vdbeapi.c *********************************************/
|
|
/************** Begin file vdbe.c ********************************************/
|
|
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** The code in this file implements execution method of the
|
|
** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
|
|
** handles housekeeping details such as creating and deleting
|
|
** VDBE instances. This file is solely interested in executing
|
|
** the VDBE program.
|
|
**
|
|
** In the external interface, an "sqlite3_stmt*" is an opaque pointer
|
|
** to a VDBE.
|
|
**
|
|
** The SQL parser generates a program which is then executed by
|
|
** the VDBE to do the work of the SQL statement. VDBE programs are
|
|
** similar in form to assembly language. The program consists of
|
|
** a linear sequence of operations. Each operation has an opcode
|
|
** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
|
|
** is a null-terminated string. Operand P5 is an unsigned character.
|
|
** Few opcodes use all 5 operands.
|
|
**
|
|
** Computation results are stored on a set of registers numbered beginning
|
|
** with 1 and going up to Vdbe.nMem. Each register can store
|
|
** either an integer, a null-terminated string, a floating point
|
|
** number, or the SQL "NULL" value. An inplicit conversion from one
|
|
** type to the other occurs as necessary.
|
|
**
|
|
** Most of the code in this file is taken up by the sqlite3VdbeExec()
|
|
** function which does the work of interpreting a VDBE program.
|
|
** But other routines are also provided to help in building up
|
|
** a program instruction by instruction.
|
|
**
|
|
** Various scripts scan this source file in order to generate HTML
|
|
** documentation, headers files, or other derived files. The formatting
|
|
** of the code in this file is, therefore, important. See other comments
|
|
** in this file for details. If in doubt, do not deviate from existing
|
|
** commenting and indentation practices when changing or adding code.
|
|
**
|
|
** $Id: vdbe.c,v 1.706 2008/01/31 15:53:45 drh Exp $
|
|
*/
|
|
|
|
/*
|
|
** The following global variable is incremented every time a cursor
|
|
** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes. The test
|
|
** procedures use this information to make sure that indices are
|
|
** working correctly. This variable has no function other than to
|
|
** help verify the correct operation of the library.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_API int sqlite3_search_count = 0;
|
|
#endif
|
|
|
|
/*
|
|
** When this global variable is positive, it gets decremented once before
|
|
** each instruction in the VDBE. When reaches zero, the u1.isInterrupted
|
|
** field of the sqlite3 structure is set in order to simulate and interrupt.
|
|
**
|
|
** This facility is used for testing purposes only. It does not function
|
|
** in an ordinary build.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_API int sqlite3_interrupt_count = 0;
|
|
#endif
|
|
|
|
/*
|
|
** The next global variable is incremented each type the OP_Sort opcode
|
|
** is executed. The test procedures use this information to make sure that
|
|
** sorting is occurring or not occuring at appropriate times. This variable
|
|
** has no function other than to help verify the correct operation of the
|
|
** library.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_API int sqlite3_sort_count = 0;
|
|
#endif
|
|
|
|
/*
|
|
** The next global variable records the size of the largest MEM_Blob
|
|
** or MEM_Str that has been used by a VDBE opcode. The test procedures
|
|
** use this information to make sure that the zero-blob functionality
|
|
** is working correctly. This variable has no function other than to
|
|
** help verify the correct operation of the library.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_API int sqlite3_max_blobsize = 0;
|
|
static void updateMaxBlobsize(Mem *p){
|
|
if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
|
|
sqlite3_max_blobsize = p->n;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Test a register to see if it exceeds the current maximum blob size.
|
|
** If it does, record the new maximum blob size.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
|
|
#else
|
|
# define UPDATE_MAX_BLOBSIZE(P)
|
|
#endif
|
|
|
|
/*
|
|
** Release the memory associated with a register. This
|
|
** leaves the Mem.flags field in an inconsistent state.
|
|
*/
|
|
#define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); }
|
|
|
|
/*
|
|
** Convert the given register into a string if it isn't one
|
|
** already. Return non-zero if a malloc() fails.
|
|
*/
|
|
#define Stringify(P, enc) \
|
|
if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
|
|
{ goto no_mem; }
|
|
|
|
/*
|
|
** The header of a record consists of a sequence variable-length integers.
|
|
** These integers are almost always small and are encoded as a single byte.
|
|
** The following macro takes advantage this fact to provide a fast decode
|
|
** of the integers in a record header. It is faster for the common case
|
|
** where the integer is a single byte. It is a little slower when the
|
|
** integer is two or more bytes. But overall it is faster.
|
|
**
|
|
** The following expressions are equivalent:
|
|
**
|
|
** x = sqlite3GetVarint32( A, &B );
|
|
**
|
|
** x = GetVarint( A, B );
|
|
**
|
|
*/
|
|
#define GetVarint(A,B) ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B))
|
|
|
|
/*
|
|
** An ephemeral string value (signified by the MEM_Ephem flag) contains
|
|
** a pointer to a dynamically allocated string where some other entity
|
|
** is responsible for deallocating that string. Because the register
|
|
** does not control the string, it might be deleted without the register
|
|
** knowing it.
|
|
**
|
|
** This routine converts an ephemeral string into a dynamically allocated
|
|
** string that the register itself controls. In other words, it
|
|
** converts an MEM_Ephem string into an MEM_Dyn string.
|
|
*/
|
|
#define Deephemeralize(P) \
|
|
if( ((P)->flags&MEM_Ephem)!=0 \
|
|
&& sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
|
|
|
|
/*
|
|
** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
|
|
** P if required.
|
|
*/
|
|
#define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
|
|
|
|
/*
|
|
** Argument pMem points at a regiser that will be passed to a
|
|
** user-defined function or returned to the user as the result of a query.
|
|
** The second argument, 'db_enc' is the text encoding used by the vdbe for
|
|
** register variables. This routine sets the pMem->enc and pMem->type
|
|
** variables used by the sqlite3_value_*() routines.
|
|
*/
|
|
#define storeTypeInfo(A,B) _storeTypeInfo(A)
|
|
static void _storeTypeInfo(Mem *pMem){
|
|
int flags = pMem->flags;
|
|
if( flags & MEM_Null ){
|
|
pMem->type = SQLITE_NULL;
|
|
}
|
|
else if( flags & MEM_Int ){
|
|
pMem->type = SQLITE_INTEGER;
|
|
}
|
|
else if( flags & MEM_Real ){
|
|
pMem->type = SQLITE_FLOAT;
|
|
}
|
|
else if( flags & MEM_Str ){
|
|
pMem->type = SQLITE_TEXT;
|
|
}else{
|
|
pMem->type = SQLITE_BLOB;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Properties of opcodes. The OPFLG_INITIALIZER macro is
|
|
** created by mkopcodeh.awk during compilation. Data is obtained
|
|
** from the comments following the "case OP_xxxx:" statements in
|
|
** this file.
|
|
*/
|
|
static unsigned char opcodeProperty[] = OPFLG_INITIALIZER;
|
|
|
|
/*
|
|
** Return true if an opcode has any of the OPFLG_xxx properties
|
|
** specified by mask.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeOpcodeHasProperty(int opcode, int mask){
|
|
assert( opcode>0 && opcode<sizeof(opcodeProperty) );
|
|
return (opcodeProperty[opcode]&mask)!=0;
|
|
}
|
|
|
|
/*
|
|
** Allocate cursor number iCur. Return a pointer to it. Return NULL
|
|
** if we run out of memory.
|
|
*/
|
|
static Cursor *allocateCursor(Vdbe *p, int iCur, int iDb){
|
|
Cursor *pCx;
|
|
assert( iCur<p->nCursor );
|
|
if( p->apCsr[iCur] ){
|
|
sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
|
|
}
|
|
p->apCsr[iCur] = pCx = sqlite3MallocZero( sizeof(Cursor) );
|
|
if( pCx ){
|
|
pCx->iDb = iDb;
|
|
}
|
|
return pCx;
|
|
}
|
|
|
|
/*
|
|
** Try to convert a value into a numeric representation if we can
|
|
** do so without loss of information. In other words, if the string
|
|
** looks like a number, convert it into a number. If it does not
|
|
** look like a number, leave it alone.
|
|
*/
|
|
static void applyNumericAffinity(Mem *pRec){
|
|
if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
|
|
int realnum;
|
|
sqlite3VdbeMemNulTerminate(pRec);
|
|
if( (pRec->flags&MEM_Str)
|
|
&& sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){
|
|
i64 value;
|
|
sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8);
|
|
if( !realnum && sqlite3Atoi64(pRec->z, &value) ){
|
|
sqlite3VdbeMemRelease(pRec);
|
|
pRec->u.i = value;
|
|
pRec->flags = MEM_Int;
|
|
}else{
|
|
sqlite3VdbeMemRealify(pRec);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Processing is determine by the affinity parameter:
|
|
**
|
|
** SQLITE_AFF_INTEGER:
|
|
** SQLITE_AFF_REAL:
|
|
** SQLITE_AFF_NUMERIC:
|
|
** Try to convert pRec to an integer representation or a
|
|
** floating-point representation if an integer representation
|
|
** is not possible. Note that the integer representation is
|
|
** always preferred, even if the affinity is REAL, because
|
|
** an integer representation is more space efficient on disk.
|
|
**
|
|
** SQLITE_AFF_TEXT:
|
|
** Convert pRec to a text representation.
|
|
**
|
|
** SQLITE_AFF_NONE:
|
|
** No-op. pRec is unchanged.
|
|
*/
|
|
static void applyAffinity(
|
|
Mem *pRec, /* The value to apply affinity to */
|
|
char affinity, /* The affinity to be applied */
|
|
u8 enc /* Use this text encoding */
|
|
){
|
|
if( affinity==SQLITE_AFF_TEXT ){
|
|
/* Only attempt the conversion to TEXT if there is an integer or real
|
|
** representation (blob and NULL do not get converted) but no string
|
|
** representation.
|
|
*/
|
|
if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
|
|
sqlite3VdbeMemStringify(pRec, enc);
|
|
}
|
|
pRec->flags &= ~(MEM_Real|MEM_Int);
|
|
}else if( affinity!=SQLITE_AFF_NONE ){
|
|
assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
|
|
|| affinity==SQLITE_AFF_NUMERIC );
|
|
applyNumericAffinity(pRec);
|
|
if( pRec->flags & MEM_Real ){
|
|
sqlite3VdbeIntegerAffinity(pRec);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Try to convert the type of a function argument or a result column
|
|
** into a numeric representation. Use either INTEGER or REAL whichever
|
|
** is appropriate. But only do the conversion if it is possible without
|
|
** loss of information and return the revised type of the argument.
|
|
**
|
|
** This is an EXPERIMENTAL api and is subject to change or removal.
|
|
*/
|
|
SQLITE_API int sqlite3_value_numeric_type(sqlite3_value *pVal){
|
|
Mem *pMem = (Mem*)pVal;
|
|
applyNumericAffinity(pMem);
|
|
storeTypeInfo(pMem, 0);
|
|
return pMem->type;
|
|
}
|
|
|
|
/*
|
|
** Exported version of applyAffinity(). This one works on sqlite3_value*,
|
|
** not the internal Mem* type.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3ValueApplyAffinity(
|
|
sqlite3_value *pVal,
|
|
u8 affinity,
|
|
u8 enc
|
|
){
|
|
applyAffinity((Mem *)pVal, affinity, enc);
|
|
}
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
** Write a nice string representation of the contents of cell pMem
|
|
** into buffer zBuf, length nBuf.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
|
|
char *zCsr = zBuf;
|
|
int f = pMem->flags;
|
|
|
|
static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
|
|
|
|
if( f&MEM_Blob ){
|
|
int i;
|
|
char c;
|
|
if( f & MEM_Dyn ){
|
|
c = 'z';
|
|
assert( (f & (MEM_Static|MEM_Ephem))==0 );
|
|
}else if( f & MEM_Static ){
|
|
c = 't';
|
|
assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
|
|
}else if( f & MEM_Ephem ){
|
|
c = 'e';
|
|
assert( (f & (MEM_Static|MEM_Dyn))==0 );
|
|
}else{
|
|
c = 's';
|
|
}
|
|
|
|
sqlite3_snprintf(100, zCsr, "%c", c);
|
|
zCsr += strlen(zCsr);
|
|
sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
|
|
zCsr += strlen(zCsr);
|
|
for(i=0; i<16 && i<pMem->n; i++){
|
|
sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
|
|
zCsr += strlen(zCsr);
|
|
}
|
|
for(i=0; i<16 && i<pMem->n; i++){
|
|
char z = pMem->z[i];
|
|
if( z<32 || z>126 ) *zCsr++ = '.';
|
|
else *zCsr++ = z;
|
|
}
|
|
|
|
sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
|
|
zCsr += strlen(zCsr);
|
|
if( f & MEM_Zero ){
|
|
sqlite3_snprintf(100, zCsr,"+%lldz",pMem->u.i);
|
|
zCsr += strlen(zCsr);
|
|
}
|
|
*zCsr = '\0';
|
|
}else if( f & MEM_Str ){
|
|
int j, k;
|
|
zBuf[0] = ' ';
|
|
if( f & MEM_Dyn ){
|
|
zBuf[1] = 'z';
|
|
assert( (f & (MEM_Static|MEM_Ephem))==0 );
|
|
}else if( f & MEM_Static ){
|
|
zBuf[1] = 't';
|
|
assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
|
|
}else if( f & MEM_Ephem ){
|
|
zBuf[1] = 'e';
|
|
assert( (f & (MEM_Static|MEM_Dyn))==0 );
|
|
}else{
|
|
zBuf[1] = 's';
|
|
}
|
|
k = 2;
|
|
sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
|
|
k += strlen(&zBuf[k]);
|
|
zBuf[k++] = '[';
|
|
for(j=0; j<15 && j<pMem->n; j++){
|
|
u8 c = pMem->z[j];
|
|
if( c>=0x20 && c<0x7f ){
|
|
zBuf[k++] = c;
|
|
}else{
|
|
zBuf[k++] = '.';
|
|
}
|
|
}
|
|
zBuf[k++] = ']';
|
|
sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
|
|
k += strlen(&zBuf[k]);
|
|
zBuf[k++] = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
** Print the value of a register for tracing purposes:
|
|
*/
|
|
static void memTracePrint(FILE *out, Mem *p){
|
|
if( p->flags & MEM_Null ){
|
|
fprintf(out, " NULL");
|
|
}else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
|
|
fprintf(out, " si:%lld", p->u.i);
|
|
}else if( p->flags & MEM_Int ){
|
|
fprintf(out, " i:%lld", p->u.i);
|
|
}else if( p->flags & MEM_Real ){
|
|
fprintf(out, " r:%g", p->r);
|
|
}else{
|
|
char zBuf[200];
|
|
sqlite3VdbeMemPrettyPrint(p, zBuf);
|
|
fprintf(out, " ");
|
|
fprintf(out, "%s", zBuf);
|
|
}
|
|
}
|
|
static void registerTrace(FILE *out, int iReg, Mem *p){
|
|
fprintf(out, "REG[%d] = ", iReg);
|
|
memTracePrint(out, p);
|
|
fprintf(out, "\n");
|
|
}
|
|
#endif
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
# define REGISTER_TRACE(R,M) if(p->trace&&R>0)registerTrace(p->trace,R,M)
|
|
#else
|
|
# define REGISTER_TRACE(R,M)
|
|
#endif
|
|
|
|
|
|
#ifdef VDBE_PROFILE
|
|
/*
|
|
** The following routine only works on pentium-class processors.
|
|
** It uses the RDTSC opcode to read the cycle count value out of the
|
|
** processor and returns that value. This can be used for high-res
|
|
** profiling.
|
|
*/
|
|
__inline__ unsigned long long int hwtime(void){
|
|
unsigned long long int x;
|
|
__asm__("rdtsc\n\t"
|
|
"mov %%edx, %%ecx\n\t"
|
|
:"=A" (x));
|
|
return x;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
|
|
** sqlite3_interrupt() routine has been called. If it has been, then
|
|
** processing of the VDBE program is interrupted.
|
|
**
|
|
** This macro added to every instruction that does a jump in order to
|
|
** implement a loop. This test used to be on every single instruction,
|
|
** but that meant we more testing that we needed. By only testing the
|
|
** flag on jump instructions, we get a (small) speed improvement.
|
|
*/
|
|
#define CHECK_FOR_INTERRUPT \
|
|
if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
|
|
|
|
|
|
/*
|
|
** Execute as much of a VDBE program as we can then return.
|
|
**
|
|
** sqlite3VdbeMakeReady() must be called before this routine in order to
|
|
** close the program with a final OP_Halt and to set up the callbacks
|
|
** and the error message pointer.
|
|
**
|
|
** Whenever a row or result data is available, this routine will either
|
|
** invoke the result callback (if there is one) or return with
|
|
** SQLITE_ROW.
|
|
**
|
|
** If an attempt is made to open a locked database, then this routine
|
|
** will either invoke the busy callback (if there is one) or it will
|
|
** return SQLITE_BUSY.
|
|
**
|
|
** If an error occurs, an error message is written to memory obtained
|
|
** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
|
|
** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
|
|
**
|
|
** If the callback ever returns non-zero, then the program exits
|
|
** immediately. There will be no error message but the p->rc field is
|
|
** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
|
|
**
|
|
** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
|
|
** routine to return SQLITE_ERROR.
|
|
**
|
|
** Other fatal errors return SQLITE_ERROR.
|
|
**
|
|
** After this routine has finished, sqlite3VdbeFinalize() should be
|
|
** used to clean up the mess that was left behind.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VdbeExec(
|
|
Vdbe *p /* The VDBE */
|
|
){
|
|
int pc; /* The program counter */
|
|
Op *pOp; /* Current operation */
|
|
int rc = SQLITE_OK; /* Value to return */
|
|
sqlite3 *db = p->db; /* The database */
|
|
u8 encoding = ENC(db); /* The database encoding */
|
|
Mem *pIn1, *pIn2, *pIn3; /* Input operands */
|
|
Mem *pOut; /* Output operand */
|
|
u8 opProperty;
|
|
#ifdef VDBE_PROFILE
|
|
unsigned long long start; /* CPU clock count at start of opcode */
|
|
int origPc; /* Program counter at start of opcode */
|
|
#endif
|
|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
int nProgressOps = 0; /* Opcodes executed since progress callback. */
|
|
#endif
|
|
|
|
assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
|
|
assert( db->magic==SQLITE_MAGIC_BUSY );
|
|
sqlite3BtreeMutexArrayEnter(&p->aMutex);
|
|
if( p->rc==SQLITE_NOMEM ){
|
|
/* This happens if a malloc() inside a call to sqlite3_column_text() or
|
|
** sqlite3_column_text16() failed. */
|
|
goto no_mem;
|
|
}
|
|
assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
|
|
p->rc = SQLITE_OK;
|
|
assert( p->explain==0 );
|
|
p->pResultSet = 0;
|
|
db->busyHandler.nBusy = 0;
|
|
CHECK_FOR_INTERRUPT;
|
|
sqlite3VdbeIOTraceSql(p);
|
|
#ifdef SQLITE_DEBUG
|
|
if( p->pc==0 && ((p->db->flags & SQLITE_VdbeListing)!=0
|
|
|| sqlite3OsAccess(db->pVfs, "vdbe_explain", SQLITE_ACCESS_EXISTS))
|
|
){
|
|
int i;
|
|
printf("VDBE Program Listing:\n");
|
|
sqlite3VdbePrintSql(p);
|
|
for(i=0; i<p->nOp; i++){
|
|
sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
|
|
}
|
|
}
|
|
if( sqlite3OsAccess(db->pVfs, "vdbe_trace", SQLITE_ACCESS_EXISTS) ){
|
|
p->trace = stdout;
|
|
}
|
|
#endif
|
|
for(pc=p->pc; rc==SQLITE_OK; pc++){
|
|
assert( pc>=0 && pc<p->nOp );
|
|
if( db->mallocFailed ) goto no_mem;
|
|
#ifdef VDBE_PROFILE
|
|
origPc = pc;
|
|
start = hwtime();
|
|
#endif
|
|
pOp = &p->aOp[pc];
|
|
|
|
/* Only allow tracing if SQLITE_DEBUG is defined.
|
|
*/
|
|
#ifdef SQLITE_DEBUG
|
|
if( p->trace ){
|
|
if( pc==0 ){
|
|
printf("VDBE Execution Trace:\n");
|
|
sqlite3VdbePrintSql(p);
|
|
}
|
|
sqlite3VdbePrintOp(p->trace, pc, pOp);
|
|
}
|
|
if( p->trace==0 && pc==0
|
|
&& sqlite3OsAccess(db->pVfs, "vdbe_sqltrace", SQLITE_ACCESS_EXISTS) ){
|
|
sqlite3VdbePrintSql(p);
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Check to see if we need to simulate an interrupt. This only happens
|
|
** if we have a special test build.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
if( sqlite3_interrupt_count>0 ){
|
|
sqlite3_interrupt_count--;
|
|
if( sqlite3_interrupt_count==0 ){
|
|
sqlite3_interrupt(db);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
/* Call the progress callback if it is configured and the required number
|
|
** of VDBE ops have been executed (either since this invocation of
|
|
** sqlite3VdbeExec() or since last time the progress callback was called).
|
|
** If the progress callback returns non-zero, exit the virtual machine with
|
|
** a return code SQLITE_ABORT.
|
|
*/
|
|
if( db->xProgress ){
|
|
if( db->nProgressOps==nProgressOps ){
|
|
int prc;
|
|
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
prc =db->xProgress(db->pProgressArg);
|
|
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
if( prc!=0 ){
|
|
rc = SQLITE_INTERRUPT;
|
|
goto vdbe_error_halt;
|
|
}
|
|
nProgressOps = 0;
|
|
}
|
|
nProgressOps++;
|
|
}
|
|
#endif
|
|
|
|
/* Do common setup processing for any opcode that is marked
|
|
** with the "out2-prerelease" tag. Such opcodes have a single
|
|
** output which is specified by the P2 parameter. The P2 register
|
|
** is initialized to a NULL.
|
|
*/
|
|
opProperty = opcodeProperty[pOp->opcode];
|
|
if( (opProperty & OPFLG_OUT2_PRERELEASE)!=0 ){
|
|
assert( pOp->p2>0 );
|
|
assert( pOp->p2<=p->nMem );
|
|
pOut = &p->aMem[pOp->p2];
|
|
sqlite3VdbeMemRelease(pOut);
|
|
pOut->flags = MEM_Null;
|
|
}else
|
|
|
|
/* Do common setup for opcodes marked with one of the following
|
|
** combinations of properties.
|
|
**
|
|
** in1
|
|
** in1 in2
|
|
** in1 in2 out3
|
|
** in1 in3
|
|
**
|
|
** Variables pIn1, pIn2, and pIn3 are made to point to appropriate
|
|
** registers for inputs. Variable pOut points to the output register.
|
|
*/
|
|
if( (opProperty & OPFLG_IN1)!=0 ){
|
|
assert( pOp->p1>0 );
|
|
assert( pOp->p1<=p->nMem );
|
|
pIn1 = &p->aMem[pOp->p1];
|
|
REGISTER_TRACE(pOp->p1, pIn1);
|
|
if( (opProperty & OPFLG_IN2)!=0 ){
|
|
assert( pOp->p2>0 );
|
|
assert( pOp->p2<=p->nMem );
|
|
pIn2 = &p->aMem[pOp->p2];
|
|
REGISTER_TRACE(pOp->p2, pIn2);
|
|
if( (opProperty & OPFLG_OUT3)!=0 ){
|
|
assert( pOp->p3>0 );
|
|
assert( pOp->p3<=p->nMem );
|
|
pOut = &p->aMem[pOp->p3];
|
|
}
|
|
}else if( (opProperty & OPFLG_IN3)!=0 ){
|
|
assert( pOp->p3>0 );
|
|
assert( pOp->p3<=p->nMem );
|
|
pIn3 = &p->aMem[pOp->p3];
|
|
REGISTER_TRACE(pOp->p3, pIn3);
|
|
}
|
|
}else if( (opProperty & OPFLG_IN2)!=0 ){
|
|
assert( pOp->p2>0 );
|
|
assert( pOp->p2<=p->nMem );
|
|
pIn2 = &p->aMem[pOp->p2];
|
|
REGISTER_TRACE(pOp->p2, pIn2);
|
|
}else if( (opProperty & OPFLG_IN3)!=0 ){
|
|
assert( pOp->p3>0 );
|
|
assert( pOp->p3<=p->nMem );
|
|
pIn3 = &p->aMem[pOp->p3];
|
|
REGISTER_TRACE(pOp->p3, pIn3);
|
|
}
|
|
|
|
switch( pOp->opcode ){
|
|
|
|
/*****************************************************************************
|
|
** What follows is a massive switch statement where each case implements a
|
|
** separate instruction in the virtual machine. If we follow the usual
|
|
** indentation conventions, each case should be indented by 6 spaces. But
|
|
** that is a lot of wasted space on the left margin. So the code within
|
|
** the switch statement will break with convention and be flush-left. Another
|
|
** big comment (similar to this one) will mark the point in the code where
|
|
** we transition back to normal indentation.
|
|
**
|
|
** The formatting of each case is important. The makefile for SQLite
|
|
** generates two C files "opcodes.h" and "opcodes.c" by scanning this
|
|
** file looking for lines that begin with "case OP_". The opcodes.h files
|
|
** will be filled with #defines that give unique integer values to each
|
|
** opcode and the opcodes.c file is filled with an array of strings where
|
|
** each string is the symbolic name for the corresponding opcode. If the
|
|
** case statement is followed by a comment of the form "/# same as ... #/"
|
|
** that comment is used to determine the particular value of the opcode.
|
|
**
|
|
** Other keywords in the comment that follows each case are used to
|
|
** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
|
|
** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
|
|
** the mkopcodeh.awk script for additional information.
|
|
**
|
|
** Documentation about VDBE opcodes is generated by scanning this file
|
|
** for lines of that contain "Opcode:". That line and all subsequent
|
|
** comment lines are used in the generation of the opcode.html documentation
|
|
** file.
|
|
**
|
|
** SUMMARY:
|
|
**
|
|
** Formatting is important to scripts that scan this file.
|
|
** Do not deviate from the formatting style currently in use.
|
|
**
|
|
*****************************************************************************/
|
|
|
|
/* Opcode: Goto * P2 * * *
|
|
**
|
|
** An unconditional jump to address P2.
|
|
** The next instruction executed will be
|
|
** the one at index P2 from the beginning of
|
|
** the program.
|
|
*/
|
|
case OP_Goto: { /* jump */
|
|
CHECK_FOR_INTERRUPT;
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Gosub * P2 * * *
|
|
**
|
|
** Push the current address plus 1 onto the return address stack
|
|
** and then jump to address P2.
|
|
**
|
|
** The return address stack is of limited depth. If too many
|
|
** OP_Gosub operations occur without intervening OP_Returns, then
|
|
** the return address stack will fill up and processing will abort
|
|
** with a fatal error.
|
|
*/
|
|
case OP_Gosub: { /* jump */
|
|
assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) );
|
|
p->returnStack[p->returnDepth++] = pc+1;
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Return * * * * *
|
|
**
|
|
** Jump immediately to the next instruction after the last unreturned
|
|
** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then
|
|
** processing aborts with a fatal error.
|
|
*/
|
|
case OP_Return: {
|
|
assert( p->returnDepth>0 );
|
|
p->returnDepth--;
|
|
pc = p->returnStack[p->returnDepth] - 1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Halt P1 P2 * P4 *
|
|
**
|
|
** Exit immediately. All open cursors, Fifos, etc are closed
|
|
** automatically.
|
|
**
|
|
** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
|
|
** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
|
|
** For errors, it can be some other value. If P1!=0 then P2 will determine
|
|
** whether or not to rollback the current transaction. Do not rollback
|
|
** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
|
|
** then back out all changes that have occurred during this execution of the
|
|
** VDBE, but do not rollback the transaction.
|
|
**
|
|
** If P4 is not null then it is an error message string.
|
|
**
|
|
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
|
|
** every program. So a jump past the last instruction of the program
|
|
** is the same as executing Halt.
|
|
*/
|
|
case OP_Halt: {
|
|
p->rc = pOp->p1;
|
|
p->pc = pc;
|
|
p->errorAction = pOp->p2;
|
|
if( pOp->p4.z ){
|
|
sqlite3SetString(&p->zErrMsg, pOp->p4.z, (char*)0);
|
|
}
|
|
rc = sqlite3VdbeHalt(p);
|
|
assert( rc==SQLITE_BUSY || rc==SQLITE_OK );
|
|
if( rc==SQLITE_BUSY ){
|
|
p->rc = rc = SQLITE_BUSY;
|
|
}else{
|
|
rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
|
|
}
|
|
goto vdbe_return;
|
|
}
|
|
|
|
/* Opcode: Integer P1 P2 * * *
|
|
**
|
|
** The 32-bit integer value P1 is written into register P2.
|
|
*/
|
|
case OP_Integer: { /* out2-prerelease */
|
|
pOut->flags = MEM_Int;
|
|
pOut->u.i = pOp->p1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Int64 * P2 * P4 *
|
|
**
|
|
** P4 is a pointer to a 64-bit integer value.
|
|
** Write that value into register P2.
|
|
*/
|
|
case OP_Int64: { /* out2-prerelease */
|
|
assert( pOp->p4.pI64!=0 );
|
|
pOut->flags = MEM_Int;
|
|
pOut->u.i = *pOp->p4.pI64;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Real * P2 * P4 *
|
|
**
|
|
** P4 is a pointer to a 64-bit floating point value.
|
|
** Write that value into register P2.
|
|
*/
|
|
case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
|
|
pOut->flags = MEM_Real;
|
|
pOut->r = *pOp->p4.pReal;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: String8 * P2 * P4 *
|
|
**
|
|
** P4 points to a nul terminated UTF-8 string. This opcode is transformed
|
|
** into an OP_String before it is executed for the first time.
|
|
*/
|
|
case OP_String8: { /* same as TK_STRING, out2-prerelease */
|
|
assert( pOp->p4.z!=0 );
|
|
pOp->opcode = OP_String;
|
|
pOp->p1 = strlen(pOp->p4.z);
|
|
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
if( encoding!=SQLITE_UTF8 ){
|
|
sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
|
|
if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
|
|
if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pOut) ) goto no_mem;
|
|
pOut->flags &= ~(MEM_Dyn);
|
|
pOut->flags |= MEM_Static;
|
|
if( pOp->p4type==P4_DYNAMIC ){
|
|
sqlite3_free(pOp->p4.z);
|
|
}
|
|
pOp->p4type = P4_DYNAMIC;
|
|
pOp->p4.z = pOut->z;
|
|
pOp->p1 = pOut->n;
|
|
if( pOp->p1>SQLITE_MAX_LENGTH ){
|
|
goto too_big;
|
|
}
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
#endif
|
|
if( pOp->p1>SQLITE_MAX_LENGTH ){
|
|
goto too_big;
|
|
}
|
|
/* Fall through to the next case, OP_String */
|
|
}
|
|
|
|
/* Opcode: String P1 P2 * P4 *
|
|
**
|
|
** The string value P4 of length P1 (bytes) is stored in register P2.
|
|
*/
|
|
case OP_String: { /* out2-prerelease */
|
|
assert( pOp->p4.z!=0 );
|
|
pOut->flags = MEM_Str|MEM_Static|MEM_Term;
|
|
pOut->z = pOp->p4.z;
|
|
pOut->n = pOp->p1;
|
|
pOut->enc = encoding;
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Null * P2 * * *
|
|
**
|
|
** Write a NULL into register P2.
|
|
*/
|
|
case OP_Null: { /* out2-prerelease */
|
|
break;
|
|
}
|
|
|
|
|
|
#ifndef SQLITE_OMIT_BLOB_LITERAL
|
|
/* Opcode: Blob P1 P2 * P4
|
|
**
|
|
** P4 points to a blob of data P1 bytes long. Store this
|
|
** blob in register P2. This instruction is not coded directly
|
|
** by the compiler. Instead, the compiler layer specifies
|
|
** an OP_HexBlob opcode, with the hex string representation of
|
|
** the blob as P4. This opcode is transformed to an OP_Blob
|
|
** the first time it is executed.
|
|
*/
|
|
case OP_Blob: { /* out2-prerelease */
|
|
assert( pOp->p1 <= SQLITE_MAX_LENGTH );
|
|
sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
|
|
pOut->enc = encoding;
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_BLOB_LITERAL */
|
|
|
|
/* Opcode: Variable P1 P2 * * *
|
|
**
|
|
** The value of variable P1 is written into register P2. A variable is
|
|
** an unknown in the original SQL string as handed to sqlite3_compile().
|
|
** Any occurance of the '?' character in the original SQL is considered
|
|
** a variable. Variables in the SQL string are number from left to
|
|
** right beginning with 1. The values of variables are set using the
|
|
** sqlite3_bind() API.
|
|
*/
|
|
case OP_Variable: { /* out2-prerelease */
|
|
int j = pOp->p1 - 1;
|
|
Mem *pVar;
|
|
assert( j>=0 && j<p->nVar );
|
|
|
|
pVar = &p->aVar[j];
|
|
if( sqlite3VdbeMemTooBig(pVar) ){
|
|
goto too_big;
|
|
}
|
|
sqlite3VdbeMemShallowCopy(pOut, &p->aVar[j], MEM_Static);
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Move P1 P2 * * *
|
|
**
|
|
** Move the value in register P1 over into register P2. Register P1
|
|
** is left holding a NULL. It is an error for P1 and P2 to be the
|
|
** same register.
|
|
*/
|
|
/* Opcode: Copy P1 P2 * * *
|
|
**
|
|
** Make a copy of register P1 into register P2.
|
|
**
|
|
** This instruction makes a deep copy of the value. A duplicate
|
|
** is made of any string or blob constant. See also OP_SCopy.
|
|
*/
|
|
/* Opcode: SCopy P1 P2 * * *
|
|
**
|
|
** Make a shallow copy of register P1 into register P2.
|
|
**
|
|
** This instruction makes a shallow copy of the value. If the value
|
|
** is a string or blob, then the copy is only a pointer to the
|
|
** original and hence if the original changes so will the copy.
|
|
** Worse, if the original is deallocated, the copy becomes invalid.
|
|
** Thus the program must guarantee that the original will not change
|
|
** during the lifetime of the copy. Use OP_Copy to make a complete
|
|
** copy.
|
|
*/
|
|
case OP_Move:
|
|
case OP_Copy:
|
|
case OP_SCopy: {
|
|
assert( pOp->p1>0 );
|
|
assert( pOp->p1<=p->nMem );
|
|
pIn1 = &p->aMem[pOp->p1];
|
|
REGISTER_TRACE(pOp->p1, pIn1);
|
|
assert( pOp->p2>0 );
|
|
assert( pOp->p2<=p->nMem );
|
|
pOut = &p->aMem[pOp->p2];
|
|
assert( pOut!=pIn1 );
|
|
if( pOp->opcode==OP_Move ){
|
|
sqlite3VdbeMemMove(pOut, pIn1);
|
|
}else{
|
|
sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
|
|
if( pOp->opcode==OP_Copy ){
|
|
Deephemeralize(pOut);
|
|
}
|
|
}
|
|
REGISTER_TRACE(pOp->p2, pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ResultRow P1 P2 * * *
|
|
**
|
|
** The registers P1 throught P1+P2-1 contain a single row of
|
|
** results. This opcode causes the sqlite3_step() call to terminate
|
|
** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
|
|
** structure to provide access to the top P1 values as the result
|
|
** row.
|
|
*/
|
|
case OP_ResultRow: {
|
|
Mem *pMem;
|
|
int i;
|
|
assert( p->nResColumn==pOp->p2 );
|
|
assert( pOp->p1>0 );
|
|
assert( pOp->p1+pOp->p2<=p->nMem );
|
|
|
|
/* Invalidate all ephemeral cursor row caches */
|
|
p->cacheCtr = (p->cacheCtr + 2)|1;
|
|
|
|
/* Make sure the results of the current row are \000 terminated
|
|
** and have an assigned type. The results are deephemeralized as
|
|
** as side effect.
|
|
*/
|
|
pMem = p->pResultSet = &p->aMem[pOp->p1];
|
|
for(i=0; i<pOp->p2; i++){
|
|
sqlite3VdbeMemNulTerminate(&pMem[i]);
|
|
storeTypeInfo(&pMem[i], encoding);
|
|
}
|
|
|
|
/* Return SQLITE_ROW
|
|
*/
|
|
p->nCallback++;
|
|
p->pc = pc + 1;
|
|
rc = SQLITE_ROW;
|
|
goto vdbe_return;
|
|
}
|
|
|
|
/* Opcode: Concat P1 P2 P3 * *
|
|
**
|
|
** Add the text in register P1 onto the end of the text in
|
|
** register P2 and store the result in register P3.
|
|
** If either the P1 or P2 text are NULL then store NULL in P3.
|
|
*/
|
|
case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
|
|
char *zNew;
|
|
i64 nByte;
|
|
|
|
if( (pIn1->flags | pIn2->flags) & MEM_Null ){
|
|
Release(pOut);
|
|
pOut->flags = MEM_Null;
|
|
break;
|
|
}
|
|
ExpandBlob(pIn1);
|
|
Stringify(pIn1, encoding);
|
|
ExpandBlob(pIn2);
|
|
Stringify(pIn2, encoding);
|
|
nByte = pIn1->n + pIn2->n;
|
|
if( nByte>SQLITE_MAX_LENGTH ){
|
|
goto too_big;
|
|
}
|
|
zNew = sqlite3DbMallocRaw(db, nByte+2);
|
|
if( zNew==0 ){
|
|
goto no_mem;
|
|
}
|
|
memcpy(zNew, pIn2->z, pIn2->n);
|
|
memcpy(&zNew[pIn2->n], pIn1->z, pIn1->n);
|
|
zNew[nByte] = 0;
|
|
zNew[nByte+1] = 0;
|
|
Release(pOut);
|
|
pOut->n = nByte;
|
|
pOut->flags = MEM_Str|MEM_Dyn|MEM_Term;
|
|
pOut->xDel = 0;
|
|
pOut->enc = encoding;
|
|
pOut->z = zNew;
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Add P1 P2 P3 * *
|
|
**
|
|
** Add the value in register P1 to the value in register P2
|
|
** and store the result in regiser P3.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: Multiply P1 P2 P3 * *
|
|
**
|
|
**
|
|
** Multiply the value in regiser P1 by the value in regiser P2
|
|
** and store the result in register P3.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: Subtract P1 P2 P3 * *
|
|
**
|
|
** Subtract the value in register P1 from the value in register P2
|
|
** and store the result in register P3.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: Divide P1 P2 P3 * *
|
|
**
|
|
** Divide the value in register P1 by the value in register P2
|
|
** and store the result in register P3. If the value in register P2
|
|
** is zero, then the result is NULL.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: Remainder P1 P2 P3 * *
|
|
**
|
|
** Compute the remainder after integer division of the value in
|
|
** register P1 by the value in register P2 and store the result in P3.
|
|
** If the value in register P2 is zero the result is NULL.
|
|
** If either operand is NULL, the result is NULL.
|
|
*/
|
|
case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
|
|
case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
|
|
case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
|
|
case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
|
|
case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
|
|
int flags;
|
|
flags = pIn1->flags | pIn2->flags;
|
|
if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
|
|
if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
|
|
i64 a, b;
|
|
a = pIn1->u.i;
|
|
b = pIn2->u.i;
|
|
switch( pOp->opcode ){
|
|
case OP_Add: b += a; break;
|
|
case OP_Subtract: b -= a; break;
|
|
case OP_Multiply: b *= a; break;
|
|
case OP_Divide: {
|
|
if( a==0 ) goto arithmetic_result_is_null;
|
|
/* Dividing the largest possible negative 64-bit integer (1<<63) by
|
|
** -1 returns an integer to large to store in a 64-bit data-type. On
|
|
** some architectures, the value overflows to (1<<63). On others,
|
|
** a SIGFPE is issued. The following statement normalizes this
|
|
** behaviour so that all architectures behave as if integer
|
|
** overflow occured.
|
|
*/
|
|
if( a==-1 && b==(((i64)1)<<63) ) a = 1;
|
|
b /= a;
|
|
break;
|
|
}
|
|
default: {
|
|
if( a==0 ) goto arithmetic_result_is_null;
|
|
if( a==-1 ) a = 1;
|
|
b %= a;
|
|
break;
|
|
}
|
|
}
|
|
Release(pOut);
|
|
pOut->u.i = b;
|
|
pOut->flags = MEM_Int;
|
|
}else{
|
|
double a, b;
|
|
a = sqlite3VdbeRealValue(pIn1);
|
|
b = sqlite3VdbeRealValue(pIn2);
|
|
switch( pOp->opcode ){
|
|
case OP_Add: b += a; break;
|
|
case OP_Subtract: b -= a; break;
|
|
case OP_Multiply: b *= a; break;
|
|
case OP_Divide: {
|
|
if( a==0.0 ) goto arithmetic_result_is_null;
|
|
b /= a;
|
|
break;
|
|
}
|
|
default: {
|
|
i64 ia = (i64)a;
|
|
i64 ib = (i64)b;
|
|
if( ia==0 ) goto arithmetic_result_is_null;
|
|
if( ia==-1 ) ia = 1;
|
|
b = ib % ia;
|
|
break;
|
|
}
|
|
}
|
|
if( sqlite3_isnan(b) ){
|
|
goto arithmetic_result_is_null;
|
|
}
|
|
Release(pOut);
|
|
pOut->r = b;
|
|
pOut->flags = MEM_Real;
|
|
if( (flags & MEM_Real)==0 ){
|
|
sqlite3VdbeIntegerAffinity(pOut);
|
|
}
|
|
}
|
|
break;
|
|
|
|
arithmetic_result_is_null:
|
|
sqlite3VdbeMemSetNull(pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: CollSeq * * P4
|
|
**
|
|
** P4 is a pointer to a CollSeq struct. If the next call to a user function
|
|
** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
|
|
** be returned. This is used by the built-in min(), max() and nullif()
|
|
** functions.
|
|
**
|
|
** The interface used by the implementation of the aforementioned functions
|
|
** to retrieve the collation sequence set by this opcode is not available
|
|
** publicly, only to user functions defined in func.c.
|
|
*/
|
|
case OP_CollSeq: {
|
|
assert( pOp->p4type==P4_COLLSEQ );
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Function P1 P2 P3 P4 P5
|
|
**
|
|
** Invoke a user function (P4 is a pointer to a Function structure that
|
|
** defines the function) with P5 arguments taken from register P2 and
|
|
** successors. The result of the function is stored in register P3.
|
|
**
|
|
** P1 is a 32-bit bitmask indicating whether or not each argument to the
|
|
** function was determined to be constant at compile time. If the first
|
|
** argument was constant then bit 0 of P1 is set. This is used to determine
|
|
** whether meta data associated with a user function argument using the
|
|
** sqlite3_set_auxdata() API may be safely retained until the next
|
|
** invocation of this opcode.
|
|
**
|
|
** See also: AggStep and AggFinal
|
|
*/
|
|
case OP_Function: {
|
|
int i;
|
|
Mem *pArg;
|
|
sqlite3_context ctx;
|
|
sqlite3_value **apVal;
|
|
int n = pOp->p5;
|
|
|
|
apVal = p->apArg;
|
|
assert( apVal || n==0 );
|
|
|
|
assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem) );
|
|
pArg = &p->aMem[pOp->p2];
|
|
for(i=0; i<n; i++, pArg++){
|
|
apVal[i] = pArg;
|
|
storeTypeInfo(pArg, encoding);
|
|
REGISTER_TRACE(pOp->p2, pArg);
|
|
}
|
|
|
|
assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
|
|
if( pOp->p4type==P4_FUNCDEF ){
|
|
ctx.pFunc = pOp->p4.pFunc;
|
|
ctx.pVdbeFunc = 0;
|
|
}else{
|
|
ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
|
|
ctx.pFunc = ctx.pVdbeFunc->pFunc;
|
|
}
|
|
|
|
ctx.s.flags = MEM_Null;
|
|
ctx.s.z = 0;
|
|
ctx.s.xDel = 0;
|
|
ctx.s.db = db;
|
|
ctx.isError = 0;
|
|
if( ctx.pFunc->needCollSeq ){
|
|
assert( pOp>p->aOp );
|
|
assert( pOp[-1].p4type==P4_COLLSEQ );
|
|
assert( pOp[-1].opcode==OP_CollSeq );
|
|
ctx.pColl = pOp[-1].p4.pColl;
|
|
}
|
|
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
(*ctx.pFunc->xFunc)(&ctx, n, apVal);
|
|
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
if( db->mallocFailed ){
|
|
/* Even though a malloc() has failed, the implementation of the
|
|
** user function may have called an sqlite3_result_XXX() function
|
|
** to return a value. The following call releases any resources
|
|
** associated with such a value.
|
|
**
|
|
** Note: Maybe MemRelease() should be called if sqlite3SafetyOn()
|
|
** fails also (the if(...) statement above). But if people are
|
|
** misusing sqlite, they have bigger problems than a leaked value.
|
|
*/
|
|
sqlite3VdbeMemRelease(&ctx.s);
|
|
goto no_mem;
|
|
}
|
|
|
|
/* If any auxilary data functions have been called by this user function,
|
|
** immediately call the destructor for any non-static values.
|
|
*/
|
|
if( ctx.pVdbeFunc ){
|
|
sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
|
|
pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
|
|
pOp->p4type = P4_VDBEFUNC;
|
|
}
|
|
|
|
/* If the function returned an error, throw an exception */
|
|
if( ctx.isError ){
|
|
sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
|
|
/* Copy the result of the function into register P3 */
|
|
sqlite3VdbeChangeEncoding(&ctx.s, encoding);
|
|
assert( pOp->p3>0 && pOp->p3<=p->nMem );
|
|
pOut = &p->aMem[pOp->p3];
|
|
sqlite3VdbeMemMove(pOut, &ctx.s);
|
|
if( sqlite3VdbeMemTooBig(pOut) ){
|
|
goto too_big;
|
|
}
|
|
REGISTER_TRACE(pOp->p3, pOut);
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: BitAnd P1 P2 P3 * *
|
|
**
|
|
** Take the bit-wise AND of the values in register P1 and P2 and
|
|
** store the result in register P3.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: BitOr P1 P2 P3 * *
|
|
**
|
|
** Take the bit-wise OR of the values in register P1 and P2 and
|
|
** store the result in register P3.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: ShiftLeft P1 P2 P3 * *
|
|
**
|
|
** Shift the integer value in register P2 to the left by the
|
|
** number of bits specified by the integer in regiser P1.
|
|
** Store the result in register P3.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: ShiftRight P1 P2 P3 * *
|
|
**
|
|
** Shift the integer value in register P2 to the right by the
|
|
** number of bits specified by the integer in register P1.
|
|
** Store the result in register P3.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
|
|
case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
|
|
case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
|
|
case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
|
|
i64 a, b;
|
|
|
|
if( (pIn1->flags | pIn2->flags) & MEM_Null ){
|
|
sqlite3VdbeMemSetNull(pOut);
|
|
break;
|
|
}
|
|
a = sqlite3VdbeIntValue(pIn2);
|
|
b = sqlite3VdbeIntValue(pIn1);
|
|
switch( pOp->opcode ){
|
|
case OP_BitAnd: a &= b; break;
|
|
case OP_BitOr: a |= b; break;
|
|
case OP_ShiftLeft: a <<= b; break;
|
|
default: assert( pOp->opcode==OP_ShiftRight );
|
|
a >>= b; break;
|
|
}
|
|
Release(pOut);
|
|
pOut->u.i = a;
|
|
pOut->flags = MEM_Int;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AddImm P1 P2 * * *
|
|
**
|
|
** Add the constant P2 the value in register P1.
|
|
** The result is always an integer.
|
|
**
|
|
** To force any register to be an integer, just add 0.
|
|
*/
|
|
case OP_AddImm: { /* in1 */
|
|
sqlite3VdbeMemIntegerify(pIn1);
|
|
pIn1->u.i += pOp->p2;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ForceInt P1 P2 P3 * *
|
|
**
|
|
** Convert value in register P1 into an integer. If the value
|
|
** in P1 is not numeric (meaning that is is a NULL or a string that
|
|
** does not look like an integer or floating point number) then
|
|
** jump to P2. If the value in P1 is numeric then
|
|
** convert it into the least integer that is greater than or equal to its
|
|
** current value if P3==0, or to the least integer that is strictly
|
|
** greater than its current value if P3==1.
|
|
*/
|
|
case OP_ForceInt: { /* jump, in1 */
|
|
i64 v;
|
|
applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
|
|
if( (pIn1->flags & (MEM_Int|MEM_Real))==0 ){
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
if( pIn1->flags & MEM_Int ){
|
|
v = pIn1->u.i + (pOp->p3!=0);
|
|
}else{
|
|
assert( pIn1->flags & MEM_Real );
|
|
v = (sqlite3_int64)pIn1->r;
|
|
if( pIn1->r>(double)v ) v++;
|
|
if( pOp->p3 && pIn1->r==(double)v ) v++;
|
|
}
|
|
Release(pIn1);
|
|
pIn1->u.i = v;
|
|
pIn1->flags = MEM_Int;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: MustBeInt P1 P2 * * *
|
|
**
|
|
** Force the value in register P1 to be an integer. If the value
|
|
** in P1 is not an integer and cannot be converted into an integer
|
|
** without data loss, then jump immediately to P2, or if P2==0
|
|
** raise an SQLITE_MISMATCH exception.
|
|
*/
|
|
case OP_MustBeInt: { /* jump, in1 */
|
|
applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
|
|
if( (pIn1->flags & MEM_Int)==0 ){
|
|
if( pOp->p2==0 ){
|
|
rc = SQLITE_MISMATCH;
|
|
goto abort_due_to_error;
|
|
}else{
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
}else{
|
|
Release(pIn1);
|
|
pIn1->flags = MEM_Int;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: RealAffinity P1 * * * *
|
|
**
|
|
** If register P1 holds an integer convert it to a real value.
|
|
**
|
|
** This opcode is used when extracting information from a column that
|
|
** has REAL affinity. Such column values may still be stored as
|
|
** integers, for space efficiency, but after extraction we want them
|
|
** to have only a real value.
|
|
*/
|
|
case OP_RealAffinity: { /* in1 */
|
|
if( pIn1->flags & MEM_Int ){
|
|
sqlite3VdbeMemRealify(pIn1);
|
|
}
|
|
break;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_CAST
|
|
/* Opcode: ToText P1 * * * *
|
|
**
|
|
** Force the value in register P1 to be text.
|
|
** If the value is numeric, convert it to a string using the
|
|
** equivalent of printf(). Blob values are unchanged and
|
|
** are afterwards simply interpreted as text.
|
|
**
|
|
** A NULL value is not changed by this routine. It remains NULL.
|
|
*/
|
|
case OP_ToText: { /* same as TK_TO_TEXT, in1 */
|
|
if( pIn1->flags & MEM_Null ) break;
|
|
assert( MEM_Str==(MEM_Blob>>3) );
|
|
pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
|
|
applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
|
|
rc = ExpandBlob(pIn1);
|
|
assert( pIn1->flags & MEM_Str );
|
|
pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob);
|
|
UPDATE_MAX_BLOBSIZE(pIn1);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ToBlob P1 * * * *
|
|
**
|
|
** Force the value in register P1 to be a BLOB.
|
|
** If the value is numeric, convert it to a string first.
|
|
** Strings are simply reinterpreted as blobs with no change
|
|
** to the underlying data.
|
|
**
|
|
** A NULL value is not changed by this routine. It remains NULL.
|
|
*/
|
|
case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
|
|
if( pIn1->flags & MEM_Null ) break;
|
|
if( (pIn1->flags & MEM_Blob)==0 ){
|
|
applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
|
|
assert( pIn1->flags & MEM_Str );
|
|
pIn1->flags |= MEM_Blob;
|
|
}
|
|
pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Str);
|
|
UPDATE_MAX_BLOBSIZE(pIn1);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ToNumeric P1 * * * *
|
|
**
|
|
** Force the value in register P1 to be numeric (either an
|
|
** integer or a floating-point number.)
|
|
** If the value is text or blob, try to convert it to an using the
|
|
** equivalent of atoi() or atof() and store 0 if no such conversion
|
|
** is possible.
|
|
**
|
|
** A NULL value is not changed by this routine. It remains NULL.
|
|
*/
|
|
case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
|
|
if( (pIn1->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){
|
|
sqlite3VdbeMemNumerify(pIn1);
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_CAST */
|
|
|
|
/* Opcode: ToInt P1 * * * *
|
|
**
|
|
** Force the value in register P1 be an integer. If
|
|
** The value is currently a real number, drop its fractional part.
|
|
** If the value is text or blob, try to convert it to an integer using the
|
|
** equivalent of atoi() and store 0 if no such conversion is possible.
|
|
**
|
|
** A NULL value is not changed by this routine. It remains NULL.
|
|
*/
|
|
case OP_ToInt: { /* same as TK_TO_INT, in1 */
|
|
if( (pIn1->flags & MEM_Null)==0 ){
|
|
sqlite3VdbeMemIntegerify(pIn1);
|
|
}
|
|
break;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_CAST
|
|
/* Opcode: ToReal P1 * * * *
|
|
**
|
|
** Force the value in register P1 to be a floating point number.
|
|
** If The value is currently an integer, convert it.
|
|
** If the value is text or blob, try to convert it to an integer using the
|
|
** equivalent of atoi() and store 0.0 if no such conversion is possible.
|
|
**
|
|
** A NULL value is not changed by this routine. It remains NULL.
|
|
*/
|
|
case OP_ToReal: { /* same as TK_TO_REAL, in1 */
|
|
if( (pIn1->flags & MEM_Null)==0 ){
|
|
sqlite3VdbeMemRealify(pIn1);
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_CAST */
|
|
|
|
/* Opcode: Lt P1 P2 P3 P4 P5
|
|
**
|
|
** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
|
|
** jump to address P2.
|
|
**
|
|
** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
|
|
** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
|
|
** bit is clear then fall thru if either operand is NULL.
|
|
**
|
|
** If the SQLITE_NULLEQUAL bit of P5 is set then treat NULL operands
|
|
** as being equal to one another. Normally NULLs are not equal to
|
|
** anything including other NULLs.
|
|
**
|
|
** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
|
|
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
|
|
** to coerce both inputs according to this affinity before the
|
|
** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
|
|
** affinity is used. Note that the affinity conversions are stored
|
|
** back into the input registers P1 and P3. So this opcode can cause
|
|
** persistent changes to registers P1 and P3.
|
|
**
|
|
** Once any conversions have taken place, and neither value is NULL,
|
|
** the values are compared. If both values are blobs then memcmp() is
|
|
** used to determine the results of the comparison. If both values
|
|
** are text, then the appropriate collating function specified in
|
|
** P4 is used to do the comparison. If P4 is not specified then
|
|
** memcmp() is used to compare text string. If both values are
|
|
** numeric, then a numeric comparison is used. If the two values
|
|
** are of different types, then numbers are considered less than
|
|
** strings and strings are considered less than blobs.
|
|
**
|
|
** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
|
|
** store a boolean result (either 0, or 1, or NULL) in register P2.
|
|
*/
|
|
/* Opcode: Ne P1 P2 P3 P4 P5
|
|
**
|
|
** This works just like the Lt opcode except that the jump is taken if
|
|
** the operands in registers P1 and P3 are not equal. See the Lt opcode for
|
|
** additional information.
|
|
*/
|
|
/* Opcode: Eq P1 P2 P3 P4 P5
|
|
**
|
|
** This works just like the Lt opcode except that the jump is taken if
|
|
** the operands in registers P1 and P3 are equal.
|
|
** See the Lt opcode for additional information.
|
|
*/
|
|
/* Opcode: Le P1 P2 P3 P4 P5
|
|
**
|
|
** This works just like the Lt opcode except that the jump is taken if
|
|
** the content of register P3 is less than or equal to the content of
|
|
** register P1. See the Lt opcode for additional information.
|
|
*/
|
|
/* Opcode: Gt P1 P2 P3 P4 P5
|
|
**
|
|
** This works just like the Lt opcode except that the jump is taken if
|
|
** the content of register P3 is greater than the content of
|
|
** register P1. See the Lt opcode for additional information.
|
|
*/
|
|
/* Opcode: Ge P1 P2 P3 P4 P5
|
|
**
|
|
** This works just like the Lt opcode except that the jump is taken if
|
|
** the content of register P3 is greater than or equal to the content of
|
|
** register P1. See the Lt opcode for additional information.
|
|
*/
|
|
case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
|
|
case OP_Ne: /* same as TK_NE, jump, in1, in3 */
|
|
case OP_Lt: /* same as TK_LT, jump, in1, in3 */
|
|
case OP_Le: /* same as TK_LE, jump, in1, in3 */
|
|
case OP_Gt: /* same as TK_GT, jump, in1, in3 */
|
|
case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
|
|
int flags;
|
|
int res;
|
|
char affinity;
|
|
Mem x1, x3;
|
|
|
|
flags = pIn1->flags|pIn3->flags;
|
|
|
|
if( flags&MEM_Null ){
|
|
if( (pOp->p5 & SQLITE_NULLEQUAL)!=0 ){
|
|
/*
|
|
** When SQLITE_NULLEQUAL set and either operand is NULL
|
|
** then both operands are converted to integers prior to being
|
|
** passed down into the normal comparison logic below.
|
|
** NULL operands are converted to zero and non-NULL operands
|
|
** are converted to 1. Thus, for example, with SQLITE_NULLEQUAL
|
|
** set, NULL==NULL is true whereas it would normally NULL.
|
|
** Similarly, NULL!=123 is true.
|
|
*/
|
|
x1.flags = MEM_Int;
|
|
x1.u.i = (pIn1->flags & MEM_Null)==0;
|
|
pIn1 = &x1;
|
|
x3.flags = MEM_Int;
|
|
x3.u.i = (pIn3->flags & MEM_Null)==0;
|
|
pIn3 = &x3;
|
|
}else{
|
|
/* If the SQLITE_NULLEQUAL bit is clear and either operand is NULL then
|
|
** the result is always NULL. The jump is taken if the
|
|
** SQLITE_JUMPIFNULL bit is set.
|
|
*/
|
|
if( pOp->p5 & SQLITE_STOREP2 ){
|
|
pOut = &p->aMem[pOp->p2];
|
|
Release(pOut);
|
|
pOut->flags = MEM_Null;
|
|
REGISTER_TRACE(pOp->p2, pOut);
|
|
}else if( pOp->p5 & SQLITE_JUMPIFNULL ){
|
|
pc = pOp->p2-1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
affinity = pOp->p5 & SQLITE_AFF_MASK;
|
|
if( affinity ){
|
|
applyAffinity(pIn1, affinity, encoding);
|
|
applyAffinity(pIn3, affinity, encoding);
|
|
}
|
|
|
|
assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
|
|
ExpandBlob(pIn1);
|
|
ExpandBlob(pIn3);
|
|
res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
|
|
switch( pOp->opcode ){
|
|
case OP_Eq: res = res==0; break;
|
|
case OP_Ne: res = res!=0; break;
|
|
case OP_Lt: res = res<0; break;
|
|
case OP_Le: res = res<=0; break;
|
|
case OP_Gt: res = res>0; break;
|
|
default: res = res>=0; break;
|
|
}
|
|
|
|
if( pOp->p5 & SQLITE_STOREP2 ){
|
|
pOut = &p->aMem[pOp->p2];
|
|
Release(pOut);
|
|
pOut->flags = MEM_Int;
|
|
pOut->u.i = res;
|
|
REGISTER_TRACE(pOp->p2, pOut);
|
|
}else if( res ){
|
|
pc = pOp->p2-1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: And P1 P2 P3 * *
|
|
**
|
|
** Take the logical AND of the values in registers P1 and P2 and
|
|
** write the result into register P3.
|
|
**
|
|
** If either P1 or P2 is 0 (false) then the result is 0 even if
|
|
** the other input is NULL. A NULL and true or two NULLs give
|
|
** a NULL output.
|
|
*/
|
|
/* Opcode: Or P1 P2 P3 * *
|
|
**
|
|
** Take the logical OR of the values in register P1 and P2 and
|
|
** store the answer in register P3.
|
|
**
|
|
** If either P1 or P2 is nonzero (true) then the result is 1 (true)
|
|
** even if the other input is NULL. A NULL and false or two NULLs
|
|
** give a NULL output.
|
|
*/
|
|
case OP_And: /* same as TK_AND, in1, in2, out3 */
|
|
case OP_Or: { /* same as TK_OR, in1, in2, out3 */
|
|
int v1, v2; /* 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
|
|
|
|
if( pIn1->flags & MEM_Null ){
|
|
v1 = 2;
|
|
}else{
|
|
v1 = sqlite3VdbeIntValue(pIn1)!=0;
|
|
}
|
|
if( pIn2->flags & MEM_Null ){
|
|
v2 = 2;
|
|
}else{
|
|
v2 = sqlite3VdbeIntValue(pIn2)!=0;
|
|
}
|
|
if( pOp->opcode==OP_And ){
|
|
static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
|
|
v1 = and_logic[v1*3+v2];
|
|
}else{
|
|
static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
|
|
v1 = or_logic[v1*3+v2];
|
|
}
|
|
Release(pOut);
|
|
if( v1==2 ){
|
|
pOut->flags = MEM_Null;
|
|
}else{
|
|
pOut->u.i = v1;
|
|
pOut->flags = MEM_Int;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Not P1 * * * *
|
|
**
|
|
** Interpret the value in register P1 as a boolean value. Replace it
|
|
** with its complement. If the value in register P1 is NULL its value
|
|
** is unchanged.
|
|
*/
|
|
case OP_Not: { /* same as TK_NOT, in1 */
|
|
if( pIn1->flags & MEM_Null ) break; /* Do nothing to NULLs */
|
|
sqlite3VdbeMemIntegerify(pIn1);
|
|
pIn1->u.i = !pIn1->u.i;
|
|
assert( pIn1->flags==MEM_Int );
|
|
break;
|
|
}
|
|
|
|
/* Opcode: BitNot P1 * * * *
|
|
**
|
|
** Interpret the content of register P1 as an integer. Replace it
|
|
** with its ones-complement. If the value is originally NULL, leave
|
|
** it unchanged.
|
|
*/
|
|
case OP_BitNot: { /* same as TK_BITNOT, in1 */
|
|
if( pIn1->flags & MEM_Null ) break; /* Do nothing to NULLs */
|
|
sqlite3VdbeMemIntegerify(pIn1);
|
|
pIn1->u.i = ~pIn1->u.i;
|
|
assert( pIn1->flags==MEM_Int );
|
|
break;
|
|
}
|
|
|
|
/* Opcode: If P1 P2 P3 * *
|
|
**
|
|
** Jump to P2 if the value in register P1 is true. The value is
|
|
** is considered true if it is numeric and non-zero. If the value
|
|
** in P1 is NULL then take the jump if P3 is true.
|
|
*/
|
|
/* Opcode: IfNot P1 P2 P3 * *
|
|
**
|
|
** Jump to P2 if the value in register P1 is False. The value is
|
|
** is considered true if it has a numeric value of zero. If the value
|
|
** in P1 is NULL then take the jump if P3 is true.
|
|
*/
|
|
case OP_If: /* jump, in1 */
|
|
case OP_IfNot: { /* jump, in1 */
|
|
int c;
|
|
if( pIn1->flags & MEM_Null ){
|
|
c = pOp->p3;
|
|
}else{
|
|
#ifdef SQLITE_OMIT_FLOATING_POINT
|
|
c = sqlite3VdbeIntValue(pIn1);
|
|
#else
|
|
c = sqlite3VdbeRealValue(pIn1)!=0.0;
|
|
#endif
|
|
if( pOp->opcode==OP_IfNot ) c = !c;
|
|
}
|
|
if( c ){
|
|
pc = pOp->p2-1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IsNull P1 P2 P3 * *
|
|
**
|
|
** Jump to P2 if the value in register P1 is NULL. If P3 is greater
|
|
** than zero, then check all values reg(P1), reg(P1+1),
|
|
** reg(P1+2), ..., reg(P1+P3-1).
|
|
*/
|
|
case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
|
|
int n = pOp->p3;
|
|
assert( pOp->p3==0 || pOp->p1>0 );
|
|
do{
|
|
if( (pIn1->flags & MEM_Null)!=0 ){
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
pIn1++;
|
|
}while( --n > 0 );
|
|
break;
|
|
}
|
|
|
|
/* Opcode: NotNull P1 P2 * * *
|
|
**
|
|
** Jump to P2 if the value in register P1 is not NULL.
|
|
*/
|
|
case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
|
|
if( (pIn1->flags & MEM_Null)==0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SetNumColumns P1 P2 * * *
|
|
**
|
|
** Before the OP_Column opcode can be executed on a cursor, this
|
|
** opcode must be called to set the number of fields in the table.
|
|
**
|
|
** This opcode sets the number of columns for cursor P1 to P2.
|
|
**
|
|
** If OP_KeyAsData is to be applied to cursor P1, it must be executed
|
|
** before this op-code.
|
|
*/
|
|
case OP_SetNumColumns: {
|
|
Cursor *pC;
|
|
assert( (pOp->p1)<p->nCursor );
|
|
assert( p->apCsr[pOp->p1]!=0 );
|
|
pC = p->apCsr[pOp->p1];
|
|
pC->nField = pOp->p2;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Column P1 P2 P3 P4 *
|
|
**
|
|
** Interpret the data that cursor P1 points to as a structure built using
|
|
** the MakeRecord instruction. (See the MakeRecord opcode for additional
|
|
** information about the format of the data.) Extract the P2-th column
|
|
** from this record. If there are less that (P2+1)
|
|
** values in the record, extract a NULL.
|
|
**
|
|
** The value extracted is stored in register P3.
|
|
**
|
|
** If the KeyAsData opcode has previously executed on this cursor, then the
|
|
** field might be extracted from the key rather than the data.
|
|
**
|
|
** If the column contains fewer than P2 fields, then extract a NULL. Or,
|
|
** if the P4 argument is a P4_MEM use the value of the P4 argument as
|
|
** the result.
|
|
*/
|
|
case OP_Column: {
|
|
u32 payloadSize; /* Number of bytes in the record */
|
|
int p1 = pOp->p1; /* P1 value of the opcode */
|
|
int p2 = pOp->p2; /* column number to retrieve */
|
|
Cursor *pC = 0; /* The VDBE cursor */
|
|
char *zRec; /* Pointer to complete record-data */
|
|
BtCursor *pCrsr; /* The BTree cursor */
|
|
u32 *aType; /* aType[i] holds the numeric type of the i-th column */
|
|
u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
|
|
u32 nField; /* number of fields in the record */
|
|
int len; /* The length of the serialized data for the column */
|
|
int i; /* Loop counter */
|
|
char *zData; /* Part of the record being decoded */
|
|
Mem *pDest; /* Where to write the extracted value */
|
|
Mem sMem; /* For storing the record being decoded */
|
|
|
|
sMem.flags = 0;
|
|
assert( p1<p->nCursor );
|
|
assert( pOp->p3>0 && pOp->p3<=p->nMem );
|
|
pDest = &p->aMem[pOp->p3];
|
|
sqlite3VdbeMemSetNull(pDest);
|
|
|
|
/* This block sets the variable payloadSize to be the total number of
|
|
** bytes in the record.
|
|
**
|
|
** zRec is set to be the complete text of the record if it is available.
|
|
** The complete record text is always available for pseudo-tables
|
|
** If the record is stored in a cursor, the complete record text
|
|
** might be available in the pC->aRow cache. Or it might not be.
|
|
** If the data is unavailable, zRec is set to NULL.
|
|
**
|
|
** We also compute the number of columns in the record. For cursors,
|
|
** the number of columns is stored in the Cursor.nField element.
|
|
*/
|
|
pC = p->apCsr[p1];
|
|
assert( pC!=0 );
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
assert( pC->pVtabCursor==0 );
|
|
#endif
|
|
if( pC->pCursor!=0 ){
|
|
/* The record is stored in a B-Tree */
|
|
rc = sqlite3VdbeCursorMoveto(pC);
|
|
if( rc ) goto abort_due_to_error;
|
|
zRec = 0;
|
|
pCrsr = pC->pCursor;
|
|
if( pC->nullRow ){
|
|
payloadSize = 0;
|
|
}else if( pC->cacheStatus==p->cacheCtr ){
|
|
payloadSize = pC->payloadSize;
|
|
zRec = (char*)pC->aRow;
|
|
}else if( pC->isIndex ){
|
|
i64 payloadSize64;
|
|
sqlite3BtreeKeySize(pCrsr, &payloadSize64);
|
|
payloadSize = payloadSize64;
|
|
}else{
|
|
sqlite3BtreeDataSize(pCrsr, &payloadSize);
|
|
}
|
|
nField = pC->nField;
|
|
}else{
|
|
assert( pC->pseudoTable );
|
|
/* The record is the sole entry of a pseudo-table */
|
|
payloadSize = pC->nData;
|
|
zRec = pC->pData;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
assert( payloadSize==0 || zRec!=0 );
|
|
nField = pC->nField;
|
|
pCrsr = 0;
|
|
}
|
|
|
|
/* If payloadSize is 0, then just store a NULL */
|
|
if( payloadSize==0 ){
|
|
assert( pDest->flags==MEM_Null );
|
|
goto op_column_out;
|
|
}
|
|
if( payloadSize>SQLITE_MAX_LENGTH ){
|
|
goto too_big;
|
|
}
|
|
|
|
assert( p2<nField );
|
|
|
|
/* Read and parse the table header. Store the results of the parse
|
|
** into the record header cache fields of the cursor.
|
|
*/
|
|
if( pC->cacheStatus==p->cacheCtr ){
|
|
aType = pC->aType;
|
|
aOffset = pC->aOffset;
|
|
}else{
|
|
u8 *zIdx; /* Index into header */
|
|
u8 *zEndHdr; /* Pointer to first byte after the header */
|
|
u32 offset; /* Offset into the data */
|
|
int szHdrSz; /* Size of the header size field at start of record */
|
|
int avail; /* Number of bytes of available data */
|
|
|
|
aType = pC->aType;
|
|
if( aType==0 ){
|
|
pC->aType = aType = sqlite3DbMallocRaw(db, 2*nField*sizeof(aType) );
|
|
}
|
|
if( aType==0 ){
|
|
goto no_mem;
|
|
}
|
|
pC->aOffset = aOffset = &aType[nField];
|
|
pC->payloadSize = payloadSize;
|
|
pC->cacheStatus = p->cacheCtr;
|
|
|
|
/* Figure out how many bytes are in the header */
|
|
if( zRec ){
|
|
zData = zRec;
|
|
}else{
|
|
if( pC->isIndex ){
|
|
zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
|
|
}else{
|
|
zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
|
|
}
|
|
/* If KeyFetch()/DataFetch() managed to get the entire payload,
|
|
** save the payload in the pC->aRow cache. That will save us from
|
|
** having to make additional calls to fetch the content portion of
|
|
** the record.
|
|
*/
|
|
if( avail>=payloadSize ){
|
|
zRec = zData;
|
|
pC->aRow = (u8*)zData;
|
|
}else{
|
|
pC->aRow = 0;
|
|
}
|
|
}
|
|
/* The following assert is true in all cases accept when
|
|
** the database file has been corrupted externally.
|
|
** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
|
|
szHdrSz = GetVarint((u8*)zData, offset);
|
|
|
|
/* The KeyFetch() or DataFetch() above are fast and will get the entire
|
|
** record header in most cases. But they will fail to get the complete
|
|
** record header if the record header does not fit on a single page
|
|
** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
|
|
** acquire the complete header text.
|
|
*/
|
|
if( !zRec && avail<offset ){
|
|
rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem);
|
|
if( rc!=SQLITE_OK ){
|
|
goto op_column_out;
|
|
}
|
|
zData = sMem.z;
|
|
}
|
|
zEndHdr = (u8 *)&zData[offset];
|
|
zIdx = (u8 *)&zData[szHdrSz];
|
|
|
|
/* Scan the header and use it to fill in the aType[] and aOffset[]
|
|
** arrays. aType[i] will contain the type integer for the i-th
|
|
** column and aOffset[i] will contain the offset from the beginning
|
|
** of the record to the start of the data for the i-th column
|
|
*/
|
|
for(i=0; i<nField; i++){
|
|
if( zIdx<zEndHdr ){
|
|
aOffset[i] = offset;
|
|
zIdx += GetVarint(zIdx, aType[i]);
|
|
offset += sqlite3VdbeSerialTypeLen(aType[i]);
|
|
}else{
|
|
/* If i is less that nField, then there are less fields in this
|
|
** record than SetNumColumns indicated there are columns in the
|
|
** table. Set the offset for any extra columns not present in
|
|
** the record to 0. This tells code below to store a NULL
|
|
** instead of deserializing a value from the record.
|
|
*/
|
|
aOffset[i] = 0;
|
|
}
|
|
}
|
|
Release(&sMem);
|
|
sMem.flags = MEM_Null;
|
|
|
|
/* If we have read more header data than was contained in the header,
|
|
** or if the end of the last field appears to be past the end of the
|
|
** record, then we must be dealing with a corrupt database.
|
|
*/
|
|
if( zIdx>zEndHdr || offset>payloadSize ){
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
goto op_column_out;
|
|
}
|
|
}
|
|
|
|
/* Get the column information. If aOffset[p2] is non-zero, then
|
|
** deserialize the value from the record. If aOffset[p2] is zero,
|
|
** then there are not enough fields in the record to satisfy the
|
|
** request. In this case, set the value NULL or to P4 if P4 is
|
|
** a pointer to a Mem object.
|
|
*/
|
|
if( aOffset[p2] ){
|
|
assert( rc==SQLITE_OK );
|
|
if( zRec ){
|
|
zData = &zRec[aOffset[p2]];
|
|
}else{
|
|
len = sqlite3VdbeSerialTypeLen(aType[p2]);
|
|
rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
|
|
if( rc!=SQLITE_OK ){
|
|
goto op_column_out;
|
|
}
|
|
zData = sMem.z;
|
|
}
|
|
sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
|
|
pDest->enc = encoding;
|
|
}else{
|
|
if( pOp->p4type==P4_MEM ){
|
|
sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
|
|
}else{
|
|
assert( pDest->flags==MEM_Null );
|
|
}
|
|
}
|
|
|
|
/* If we dynamically allocated space to hold the data (in the
|
|
** sqlite3VdbeMemFromBtree() call above) then transfer control of that
|
|
** dynamically allocated space over to the pDest structure.
|
|
** This prevents a memory copy.
|
|
*/
|
|
if( (sMem.flags & MEM_Dyn)!=0 ){
|
|
assert( pDest->flags & MEM_Ephem );
|
|
assert( pDest->flags & (MEM_Str|MEM_Blob) );
|
|
assert( pDest->z==sMem.z );
|
|
assert( sMem.flags & MEM_Term );
|
|
pDest->flags &= ~MEM_Ephem;
|
|
pDest->flags |= MEM_Dyn|MEM_Term;
|
|
}
|
|
|
|
/* pDest->z might be pointing to sMem.zShort[]. Fix that so that we
|
|
** can abandon sMem */
|
|
rc = sqlite3VdbeMemMakeWriteable(pDest);
|
|
|
|
op_column_out:
|
|
UPDATE_MAX_BLOBSIZE(pDest);
|
|
REGISTER_TRACE(pOp->p3, pDest);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: MakeRecord P1 P2 P3 P4 *
|
|
**
|
|
** Convert P2 registers beginning with P1 into a single entry
|
|
** suitable for use as a data record in a database table or as a key
|
|
** in an index. The details of the format are irrelavant as long as
|
|
** the OP_Column opcode can decode the record later and as long as the
|
|
** sqlite3VdbeRecordCompare function will correctly compare two encoded
|
|
** records. Refer to source code comments for the details of the record
|
|
** format.
|
|
**
|
|
** P4 may be a string that is P1 characters long. The nth character of the
|
|
** string indicates the column affinity that should be used for the nth
|
|
** field of the index key.
|
|
**
|
|
** The mapping from character to affinity is given by the SQLITE_AFF_
|
|
** macros defined in sqliteInt.h.
|
|
**
|
|
** If P4 is NULL then all index fields have the affinity NONE.
|
|
*/
|
|
case OP_MakeRecord: {
|
|
/* Assuming the record contains N fields, the record format looks
|
|
** like this:
|
|
**
|
|
** ------------------------------------------------------------------------
|
|
** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
|
|
** ------------------------------------------------------------------------
|
|
**
|
|
** Data(0) is taken from register P1. Data(1) comes from register P1+1
|
|
** and so froth.
|
|
**
|
|
** Each type field is a varint representing the serial type of the
|
|
** corresponding data element (see sqlite3VdbeSerialType()). The
|
|
** hdr-size field is also a varint which is the offset from the beginning
|
|
** of the record to data0.
|
|
*/
|
|
u8 *zNewRecord; /* A buffer to hold the data for the new record */
|
|
Mem *pRec; /* The new record */
|
|
u64 nData = 0; /* Number of bytes of data space */
|
|
int nHdr = 0; /* Number of bytes of header space */
|
|
u64 nByte = 0; /* Data space required for this record */
|
|
int nZero = 0; /* Number of zero bytes at the end of the record */
|
|
int nVarint; /* Number of bytes in a varint */
|
|
u32 serial_type; /* Type field */
|
|
Mem *pData0; /* First field to be combined into the record */
|
|
Mem *pLast; /* Last field of the record */
|
|
int nField; /* Number of fields in the record */
|
|
char *zAffinity; /* The affinity string for the record */
|
|
int file_format; /* File format to use for encoding */
|
|
int i; /* Space used in zNewRecord[] */
|
|
char zTemp[NBFS]; /* Space to hold small records */
|
|
|
|
nField = pOp->p1;
|
|
zAffinity = pOp->p4.z;
|
|
assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem );
|
|
pData0 = &p->aMem[nField];
|
|
nField = pOp->p2;
|
|
pLast = &pData0[nField-1];
|
|
file_format = p->minWriteFileFormat;
|
|
|
|
/* Loop through the elements that will make up the record to figure
|
|
** out how much space is required for the new record.
|
|
*/
|
|
for(pRec=pData0; pRec<=pLast; pRec++){
|
|
int len;
|
|
if( zAffinity ){
|
|
applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
|
|
}
|
|
if( pRec->flags&MEM_Zero && pRec->n>0 ){
|
|
sqlite3VdbeMemExpandBlob(pRec);
|
|
}
|
|
serial_type = sqlite3VdbeSerialType(pRec, file_format);
|
|
len = sqlite3VdbeSerialTypeLen(serial_type);
|
|
nData += len;
|
|
nHdr += sqlite3VarintLen(serial_type);
|
|
if( pRec->flags & MEM_Zero ){
|
|
/* Only pure zero-filled BLOBs can be input to this Opcode.
|
|
** We do not allow blobs with a prefix and a zero-filled tail. */
|
|
nZero += pRec->u.i;
|
|
}else if( len ){
|
|
nZero = 0;
|
|
}
|
|
}
|
|
|
|
/* Add the initial header varint and total the size */
|
|
nHdr += nVarint = sqlite3VarintLen(nHdr);
|
|
if( nVarint<sqlite3VarintLen(nHdr) ){
|
|
nHdr++;
|
|
}
|
|
nByte = nHdr+nData-nZero;
|
|
if( nByte>SQLITE_MAX_LENGTH ){
|
|
goto too_big;
|
|
}
|
|
|
|
/* Allocate space for the new record. */
|
|
if( nByte>sizeof(zTemp) ){
|
|
zNewRecord = sqlite3DbMallocRaw(db, nByte);
|
|
if( !zNewRecord ){
|
|
goto no_mem;
|
|
}
|
|
}else{
|
|
zNewRecord = (u8*)zTemp;
|
|
}
|
|
|
|
/* Write the record */
|
|
i = sqlite3PutVarint(zNewRecord, nHdr);
|
|
for(pRec=pData0; pRec<=pLast; pRec++){
|
|
serial_type = sqlite3VdbeSerialType(pRec, file_format);
|
|
i += sqlite3PutVarint(&zNewRecord[i], serial_type); /* serial type */
|
|
}
|
|
for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
|
|
i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRec, file_format);
|
|
}
|
|
assert( i==nByte );
|
|
|
|
assert( pOp->p3>0 && pOp->p3<=p->nMem );
|
|
pOut = &p->aMem[pOp->p3];
|
|
Release(pOut);
|
|
pOut->n = nByte;
|
|
if( nByte<=sizeof(zTemp) ){
|
|
assert( zNewRecord==(unsigned char *)zTemp );
|
|
pOut->z = pOut->zShort;
|
|
memcpy(pOut->zShort, zTemp, nByte);
|
|
pOut->flags = MEM_Blob | MEM_Short;
|
|
}else{
|
|
assert( zNewRecord!=(unsigned char *)zTemp );
|
|
pOut->z = (char*)zNewRecord;
|
|
pOut->flags = MEM_Blob | MEM_Dyn;
|
|
pOut->xDel = 0;
|
|
}
|
|
if( nZero ){
|
|
pOut->u.i = nZero;
|
|
pOut->flags |= MEM_Zero;
|
|
}
|
|
pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
|
|
REGISTER_TRACE(pOp->p3, pOut);
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Statement P1 * * * *
|
|
**
|
|
** Begin an individual statement transaction which is part of a larger
|
|
** BEGIN..COMMIT transaction. This is needed so that the statement
|
|
** can be rolled back after an error without having to roll back the
|
|
** entire transaction. The statement transaction will automatically
|
|
** commit when the VDBE halts.
|
|
**
|
|
** The statement is begun on the database file with index P1. The main
|
|
** database file has an index of 0 and the file used for temporary tables
|
|
** has an index of 1.
|
|
*/
|
|
case OP_Statement: {
|
|
if( db->autoCommit==0 || db->activeVdbeCnt>1 ){
|
|
int i = pOp->p1;
|
|
Btree *pBt;
|
|
assert( i>=0 && i<db->nDb );
|
|
assert( db->aDb[i].pBt!=0 );
|
|
pBt = db->aDb[i].pBt;
|
|
assert( sqlite3BtreeIsInTrans(pBt) );
|
|
assert( (p->btreeMask & (1<<i))!=0 );
|
|
if( !sqlite3BtreeIsInStmt(pBt) ){
|
|
rc = sqlite3BtreeBeginStmt(pBt);
|
|
p->openedStatement = 1;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AutoCommit P1 P2 * * *
|
|
**
|
|
** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
|
|
** back any currently active btree transactions. If there are any active
|
|
** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails.
|
|
**
|
|
** This instruction causes the VM to halt.
|
|
*/
|
|
case OP_AutoCommit: {
|
|
u8 i = pOp->p1;
|
|
u8 rollback = pOp->p2;
|
|
|
|
assert( i==1 || i==0 );
|
|
assert( i==1 || rollback==0 );
|
|
|
|
assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
|
|
|
|
if( db->activeVdbeCnt>1 && i && !db->autoCommit ){
|
|
/* If this instruction implements a COMMIT or ROLLBACK, other VMs are
|
|
** still running, and a transaction is active, return an error indicating
|
|
** that the other VMs must complete first.
|
|
*/
|
|
sqlite3SetString(&p->zErrMsg, "cannot ", rollback?"rollback":"commit",
|
|
" transaction - SQL statements in progress", (char*)0);
|
|
rc = SQLITE_ERROR;
|
|
}else if( i!=db->autoCommit ){
|
|
if( pOp->p2 ){
|
|
assert( i==1 );
|
|
sqlite3RollbackAll(db);
|
|
db->autoCommit = 1;
|
|
}else{
|
|
db->autoCommit = i;
|
|
if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
|
|
p->pc = pc;
|
|
db->autoCommit = 1-i;
|
|
p->rc = rc = SQLITE_BUSY;
|
|
goto vdbe_return;
|
|
}
|
|
}
|
|
if( p->rc==SQLITE_OK ){
|
|
rc = SQLITE_DONE;
|
|
}else{
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
goto vdbe_return;
|
|
}else{
|
|
sqlite3SetString(&p->zErrMsg,
|
|
(!i)?"cannot start a transaction within a transaction":(
|
|
(rollback)?"cannot rollback - no transaction is active":
|
|
"cannot commit - no transaction is active"), (char*)0);
|
|
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Transaction P1 P2 * * *
|
|
**
|
|
** Begin a transaction. The transaction ends when a Commit or Rollback
|
|
** opcode is encountered. Depending on the ON CONFLICT setting, the
|
|
** transaction might also be rolled back if an error is encountered.
|
|
**
|
|
** P1 is the index of the database file on which the transaction is
|
|
** started. Index 0 is the main database file and index 1 is the
|
|
** file used for temporary tables. Indices of 2 or more are used for
|
|
** attached databases.
|
|
**
|
|
** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
|
|
** obtained on the database file when a write-transaction is started. No
|
|
** other process can start another write transaction while this transaction is
|
|
** underway. Starting a write transaction also creates a rollback journal. A
|
|
** write transaction must be started before any changes can be made to the
|
|
** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
|
|
** on the file.
|
|
**
|
|
** If P2 is zero, then a read-lock is obtained on the database file.
|
|
*/
|
|
case OP_Transaction: {
|
|
int i = pOp->p1;
|
|
Btree *pBt;
|
|
|
|
assert( i>=0 && i<db->nDb );
|
|
assert( (p->btreeMask & (1<<i))!=0 );
|
|
pBt = db->aDb[i].pBt;
|
|
|
|
if( pBt ){
|
|
rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
|
|
if( rc==SQLITE_BUSY ){
|
|
p->pc = pc;
|
|
p->rc = rc = SQLITE_BUSY;
|
|
goto vdbe_return;
|
|
}
|
|
if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){
|
|
goto abort_due_to_error;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ReadCookie P1 P2 P3 * *
|
|
**
|
|
** Read cookie number P3 from database P1 and write it into register P2.
|
|
** P3==0 is the schema version. P3==1 is the database format.
|
|
** P3==2 is the recommended pager cache size, and so forth. P1==0 is
|
|
** the main database file and P1==1 is the database file used to store
|
|
** temporary tables.
|
|
**
|
|
** If P1 is negative, then this is a request to read the size of a
|
|
** databases free-list. P3 must be set to 1 in this case. The actual
|
|
** database accessed is ((P1+1)*-1). For example, a P1 parameter of -1
|
|
** corresponds to database 0 ("main"), a P1 of -2 is database 1 ("temp").
|
|
**
|
|
** There must be a read-lock on the database (either a transaction
|
|
** must be started or there must be an open cursor) before
|
|
** executing this instruction.
|
|
*/
|
|
case OP_ReadCookie: { /* out2-prerelease */
|
|
int iMeta;
|
|
int iDb = pOp->p1;
|
|
int iCookie = pOp->p3;
|
|
|
|
assert( pOp->p3<SQLITE_N_BTREE_META );
|
|
if( iDb<0 ){
|
|
iDb = (-1*(iDb+1));
|
|
iCookie *= -1;
|
|
}
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
assert( db->aDb[iDb].pBt!=0 );
|
|
assert( (p->btreeMask & (1<<iDb))!=0 );
|
|
/* The indexing of meta values at the schema layer is off by one from
|
|
** the indexing in the btree layer. The btree considers meta[0] to
|
|
** be the number of free pages in the database (a read-only value)
|
|
** and meta[1] to be the schema cookie. The schema layer considers
|
|
** meta[1] to be the schema cookie. So we have to shift the index
|
|
** by one in the following statement.
|
|
*/
|
|
rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie, (u32 *)&iMeta);
|
|
pOut->u.i = iMeta;
|
|
pOut->flags = MEM_Int;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SetCookie P1 P2 P3 * *
|
|
**
|
|
** Write the content of register P3 (interpreted as an integer)
|
|
** into cookie number P2 of database P1.
|
|
** P2==0 is the schema version. P2==1 is the database format.
|
|
** P2==2 is the recommended pager cache size, and so forth. P1==0 is
|
|
** the main database file and P1==1 is the database file used to store
|
|
** temporary tables.
|
|
**
|
|
** A transaction must be started before executing this opcode.
|
|
*/
|
|
case OP_SetCookie: { /* in3 */
|
|
Db *pDb;
|
|
assert( pOp->p2<SQLITE_N_BTREE_META );
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
assert( (p->btreeMask & (1<<pOp->p1))!=0 );
|
|
pDb = &db->aDb[pOp->p1];
|
|
assert( pDb->pBt!=0 );
|
|
sqlite3VdbeMemIntegerify(pIn3);
|
|
/* See note about index shifting on OP_ReadCookie */
|
|
rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pIn3->u.i);
|
|
if( pOp->p2==0 ){
|
|
/* When the schema cookie changes, record the new cookie internally */
|
|
pDb->pSchema->schema_cookie = pIn3->u.i;
|
|
db->flags |= SQLITE_InternChanges;
|
|
}else if( pOp->p2==1 ){
|
|
/* Record changes in the file format */
|
|
pDb->pSchema->file_format = pIn3->u.i;
|
|
}
|
|
if( pOp->p1==1 ){
|
|
/* Invalidate all prepared statements whenever the TEMP database
|
|
** schema is changed. Ticket #1644 */
|
|
sqlite3ExpirePreparedStatements(db);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: VerifyCookie P1 P2 *
|
|
**
|
|
** Check the value of global database parameter number 0 (the
|
|
** schema version) and make sure it is equal to P2.
|
|
** P1 is the database number which is 0 for the main database file
|
|
** and 1 for the file holding temporary tables and some higher number
|
|
** for auxiliary databases.
|
|
**
|
|
** The cookie changes its value whenever the database schema changes.
|
|
** This operation is used to detect when that the cookie has changed
|
|
** and that the current process needs to reread the schema.
|
|
**
|
|
** Either a transaction needs to have been started or an OP_Open needs
|
|
** to be executed (to establish a read lock) before this opcode is
|
|
** invoked.
|
|
*/
|
|
case OP_VerifyCookie: {
|
|
int iMeta;
|
|
Btree *pBt;
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
assert( (p->btreeMask & (1<<pOp->p1))!=0 );
|
|
pBt = db->aDb[pOp->p1].pBt;
|
|
if( pBt ){
|
|
rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta);
|
|
}else{
|
|
rc = SQLITE_OK;
|
|
iMeta = 0;
|
|
}
|
|
if( rc==SQLITE_OK && iMeta!=pOp->p2 ){
|
|
sqlite3_free(p->zErrMsg);
|
|
p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
|
|
/* If the schema-cookie from the database file matches the cookie
|
|
** stored with the in-memory representation of the schema, do
|
|
** not reload the schema from the database file.
|
|
**
|
|
** If virtual-tables are in use, this is not just an optimisation.
|
|
** Often, v-tables store their data in other SQLite tables, which
|
|
** are queried from within xNext() and other v-table methods using
|
|
** prepared queries. If such a query is out-of-date, we do not want to
|
|
** discard the database schema, as the user code implementing the
|
|
** v-table would have to be ready for the sqlite3_vtab structure itself
|
|
** to be invalidated whenever sqlite3_step() is called from within
|
|
** a v-table method.
|
|
*/
|
|
if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
|
|
sqlite3ResetInternalSchema(db, pOp->p1);
|
|
}
|
|
|
|
sqlite3ExpirePreparedStatements(db);
|
|
rc = SQLITE_SCHEMA;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: OpenRead P1 P2 P3 P4 P5
|
|
**
|
|
** Open a read-only cursor for the database table whose root page is
|
|
** P2 in a database file. The database file is determined by P3.
|
|
** P3==0 means the main database, P3==1 means the database used for
|
|
** temporary tables, and P3>1 means used the corresponding attached
|
|
** database. Give the new cursor an identifier of P1. The P1
|
|
** values need not be contiguous but all P1 values should be small integers.
|
|
** It is an error for P1 to be negative.
|
|
**
|
|
** If P5!=0 then use the content of register P2 as the root page, not
|
|
** the value of P2 itself.
|
|
**
|
|
** There will be a read lock on the database whenever there is an
|
|
** open cursor. If the database was unlocked prior to this instruction
|
|
** then a read lock is acquired as part of this instruction. A read
|
|
** lock allows other processes to read the database but prohibits
|
|
** any other process from modifying the database. The read lock is
|
|
** released when all cursors are closed. If this instruction attempts
|
|
** to get a read lock but fails, the script terminates with an
|
|
** SQLITE_BUSY error code.
|
|
**
|
|
** The P4 value is a pointer to a KeyInfo structure that defines the
|
|
** content and collating sequence of indices. P4 is NULL for cursors
|
|
** that are not pointing to indices.
|
|
**
|
|
** See also OpenWrite.
|
|
*/
|
|
/* Opcode: OpenWrite P1 P2 P3 P4 P5
|
|
**
|
|
** Open a read/write cursor named P1 on the table or index whose root
|
|
** page is P2. Or if P5!=0 use the content of register P2 to find the
|
|
** root page.
|
|
**
|
|
** The P4 value is a pointer to a KeyInfo structure that defines the
|
|
** content and collating sequence of indices. P4 is NULL for cursors
|
|
** that are not pointing to indices.
|
|
**
|
|
** This instruction works just like OpenRead except that it opens the cursor
|
|
** in read/write mode. For a given table, there can be one or more read-only
|
|
** cursors or a single read/write cursor but not both.
|
|
**
|
|
** See also OpenRead.
|
|
*/
|
|
case OP_OpenRead:
|
|
case OP_OpenWrite: {
|
|
int i = pOp->p1;
|
|
int p2 = pOp->p2;
|
|
int iDb = pOp->p3;
|
|
int wrFlag;
|
|
Btree *pX;
|
|
Cursor *pCur;
|
|
Db *pDb;
|
|
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
assert( (p->btreeMask & (1<<iDb))!=0 );
|
|
pDb = &db->aDb[iDb];
|
|
pX = pDb->pBt;
|
|
assert( pX!=0 );
|
|
if( pOp->opcode==OP_OpenWrite ){
|
|
wrFlag = 1;
|
|
if( pDb->pSchema->file_format < p->minWriteFileFormat ){
|
|
p->minWriteFileFormat = pDb->pSchema->file_format;
|
|
}
|
|
}else{
|
|
wrFlag = 0;
|
|
}
|
|
if( pOp->p5 ){
|
|
assert( p2>0 );
|
|
assert( p2<=p->nMem );
|
|
pIn2 = &p->aMem[p2];
|
|
sqlite3VdbeMemIntegerify(pIn2);
|
|
p2 = pIn2->u.i;
|
|
assert( p2>=2 );
|
|
}
|
|
assert( i>=0 );
|
|
pCur = allocateCursor(p, i, iDb);
|
|
if( pCur==0 ) goto no_mem;
|
|
pCur->nullRow = 1;
|
|
/* We always provide a key comparison function. If the table being
|
|
** opened is of type INTKEY, the comparision function will be ignored. */
|
|
rc = sqlite3BtreeCursor(pX, p2, wrFlag,
|
|
sqlite3VdbeRecordCompare, pOp->p4.p,
|
|
&pCur->pCursor);
|
|
if( pOp->p4type==P4_KEYINFO ){
|
|
pCur->pKeyInfo = pOp->p4.pKeyInfo;
|
|
pCur->pIncrKey = &pCur->pKeyInfo->incrKey;
|
|
pCur->pKeyInfo->enc = ENC(p->db);
|
|
}else{
|
|
pCur->pKeyInfo = 0;
|
|
pCur->pIncrKey = &pCur->bogusIncrKey;
|
|
}
|
|
switch( rc ){
|
|
case SQLITE_BUSY: {
|
|
p->pc = pc;
|
|
p->rc = rc = SQLITE_BUSY;
|
|
goto vdbe_return;
|
|
}
|
|
case SQLITE_OK: {
|
|
int flags = sqlite3BtreeFlags(pCur->pCursor);
|
|
/* Sanity checking. Only the lower four bits of the flags byte should
|
|
** be used. Bit 3 (mask 0x08) is unpreditable. The lower 3 bits
|
|
** (mask 0x07) should be either 5 (intkey+leafdata for tables) or
|
|
** 2 (zerodata for indices). If these conditions are not met it can
|
|
** only mean that we are dealing with a corrupt database file
|
|
*/
|
|
if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
goto abort_due_to_error;
|
|
}
|
|
pCur->isTable = (flags & BTREE_INTKEY)!=0;
|
|
pCur->isIndex = (flags & BTREE_ZERODATA)!=0;
|
|
/* If P4==0 it means we are expected to open a table. If P4!=0 then
|
|
** we expect to be opening an index. If this is not what happened,
|
|
** then the database is corrupt
|
|
*/
|
|
if( (pCur->isTable && pOp->p4type==P4_KEYINFO)
|
|
|| (pCur->isIndex && pOp->p4type!=P4_KEYINFO) ){
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
goto abort_due_to_error;
|
|
}
|
|
break;
|
|
}
|
|
case SQLITE_EMPTY: {
|
|
pCur->isTable = pOp->p4type!=P4_KEYINFO;
|
|
pCur->isIndex = !pCur->isTable;
|
|
rc = SQLITE_OK;
|
|
break;
|
|
}
|
|
default: {
|
|
goto abort_due_to_error;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: OpenEphemeral P1 P2 * P4 *
|
|
**
|
|
** Open a new cursor P1 to a transient table.
|
|
** The cursor is always opened read/write even if
|
|
** the main database is read-only. The transient or virtual
|
|
** table is deleted automatically when the cursor is closed.
|
|
**
|
|
** P2 is the number of columns in the virtual table.
|
|
** The cursor points to a BTree table if P4==0 and to a BTree index
|
|
** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
|
|
** that defines the format of keys in the index.
|
|
**
|
|
** This opcode was once called OpenTemp. But that created
|
|
** confusion because the term "temp table", might refer either
|
|
** to a TEMP table at the SQL level, or to a table opened by
|
|
** this opcode. Then this opcode was call OpenVirtual. But
|
|
** that created confusion with the whole virtual-table idea.
|
|
*/
|
|
case OP_OpenEphemeral: {
|
|
int i = pOp->p1;
|
|
Cursor *pCx;
|
|
static const int openFlags =
|
|
SQLITE_OPEN_READWRITE |
|
|
SQLITE_OPEN_CREATE |
|
|
SQLITE_OPEN_EXCLUSIVE |
|
|
SQLITE_OPEN_DELETEONCLOSE |
|
|
SQLITE_OPEN_TRANSIENT_DB;
|
|
|
|
assert( i>=0 );
|
|
pCx = allocateCursor(p, i, -1);
|
|
if( pCx==0 ) goto no_mem;
|
|
pCx->nullRow = 1;
|
|
rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags,
|
|
&pCx->pBt);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
/* If a transient index is required, create it by calling
|
|
** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
|
|
** opening it. If a transient table is required, just use the
|
|
** automatically created table with root-page 1 (an INTKEY table).
|
|
*/
|
|
if( pOp->p4.pKeyInfo ){
|
|
int pgno;
|
|
assert( pOp->p4type==P4_KEYINFO );
|
|
rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA);
|
|
if( rc==SQLITE_OK ){
|
|
assert( pgno==MASTER_ROOT+1 );
|
|
rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, sqlite3VdbeRecordCompare,
|
|
pOp->p4.z, &pCx->pCursor);
|
|
pCx->pKeyInfo = pOp->p4.pKeyInfo;
|
|
pCx->pKeyInfo->enc = ENC(p->db);
|
|
pCx->pIncrKey = &pCx->pKeyInfo->incrKey;
|
|
}
|
|
pCx->isTable = 0;
|
|
}else{
|
|
rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, 0, &pCx->pCursor);
|
|
pCx->isTable = 1;
|
|
pCx->pIncrKey = &pCx->bogusIncrKey;
|
|
}
|
|
}
|
|
pCx->nField = pOp->p2;
|
|
pCx->isIndex = !pCx->isTable;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: OpenPseudo P1 * * * *
|
|
**
|
|
** Open a new cursor that points to a fake table that contains a single
|
|
** row of data. Any attempt to write a second row of data causes the
|
|
** first row to be deleted. All data is deleted when the cursor is
|
|
** closed.
|
|
**
|
|
** A pseudo-table created by this opcode is useful for holding the
|
|
** NEW or OLD tables in a trigger. Also used to hold the a single
|
|
** row output from the sorter so that the row can be decomposed into
|
|
** individual columns using the OP_Column opcode.
|
|
*/
|
|
case OP_OpenPseudo: {
|
|
int i = pOp->p1;
|
|
Cursor *pCx;
|
|
assert( i>=0 );
|
|
pCx = allocateCursor(p, i, -1);
|
|
if( pCx==0 ) goto no_mem;
|
|
pCx->nullRow = 1;
|
|
pCx->pseudoTable = 1;
|
|
pCx->pIncrKey = &pCx->bogusIncrKey;
|
|
pCx->isTable = 1;
|
|
pCx->isIndex = 0;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Close P1 * * * *
|
|
**
|
|
** Close a cursor previously opened as P1. If P1 is not
|
|
** currently open, this instruction is a no-op.
|
|
*/
|
|
case OP_Close: {
|
|
int i = pOp->p1;
|
|
assert( i>=0 && i<p->nCursor );
|
|
sqlite3VdbeFreeCursor(p, p->apCsr[i]);
|
|
p->apCsr[i] = 0;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: MoveGe P1 P2 P3 * *
|
|
**
|
|
** Use the value in register P3 as a key. Reposition
|
|
** cursor P1 so that it points to the smallest entry that is greater
|
|
** than or equal to the key in register P3.
|
|
** If there are no records greater than or equal to the key and P2
|
|
** is not zero, then jump to P2.
|
|
**
|
|
** A special feature of this opcode (and different from the
|
|
** related OP_MoveGt, OP_MoveLt, and OP_MoveLe) is that if P2 is
|
|
** zero and P1 is an SQL table (a b-tree with integer keys) then
|
|
** the seek is deferred until it is actually needed. It might be
|
|
** the case that the cursor is never accessed. By deferring the
|
|
** seek, we avoid unnecessary seeks.
|
|
**
|
|
** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe
|
|
*/
|
|
/* Opcode: MoveGt P1 P2 P3 * *
|
|
**
|
|
** Use the value in register P3 as a key. Reposition
|
|
** cursor P1 so that it points to the smallest entry that is greater
|
|
** than the key in register P3.
|
|
** If there are no records greater than the key
|
|
** then jump to P2.
|
|
**
|
|
** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe
|
|
*/
|
|
/* Opcode: MoveLt P1 P2 P3 * *
|
|
**
|
|
** Use the value in register P3 as a key. Reposition
|
|
** cursor P1 so that it points to the largest entry that is less
|
|
** than the key in register P3.
|
|
** If there are no records less than the key
|
|
** then jump to P2.
|
|
**
|
|
** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe
|
|
*/
|
|
/* Opcode: MoveLe P1 P2 P3 * *
|
|
**
|
|
** Use the value in register P3 as a key. Reposition
|
|
** cursor P1 so that it points to the largest entry that is less than
|
|
** or equal to the key.
|
|
** If there are no records less than or eqal to the key
|
|
** then jump to P2.
|
|
**
|
|
** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt
|
|
*/
|
|
case OP_MoveLt: /* jump, in3 */
|
|
case OP_MoveLe: /* jump, in3 */
|
|
case OP_MoveGe: /* jump, in3 */
|
|
case OP_MoveGt: { /* jump, in3 */
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC!=0 );
|
|
if( pC->pCursor!=0 ){
|
|
int res, oc;
|
|
oc = pOp->opcode;
|
|
pC->nullRow = 0;
|
|
*pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe;
|
|
if( pC->isTable ){
|
|
i64 iKey = sqlite3VdbeIntValue(pIn3);
|
|
if( pOp->p2==0 ){
|
|
assert( pOp->opcode==OP_MoveGe );
|
|
pC->movetoTarget = iKey;
|
|
pC->rowidIsValid = 0;
|
|
pC->deferredMoveto = 1;
|
|
break;
|
|
}
|
|
rc = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)iKey, 0, &res);
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
pC->lastRowid = iKey;
|
|
pC->rowidIsValid = res==0;
|
|
}else{
|
|
assert( pIn3->flags & MEM_Blob );
|
|
ExpandBlob(pIn3);
|
|
rc = sqlite3BtreeMoveto(pC->pCursor, pIn3->z, pIn3->n, 0, &res);
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
pC->rowidIsValid = 0;
|
|
}
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
*pC->pIncrKey = 0;
|
|
#ifdef SQLITE_TEST
|
|
sqlite3_search_count++;
|
|
#endif
|
|
if( oc==OP_MoveGe || oc==OP_MoveGt ){
|
|
if( res<0 ){
|
|
rc = sqlite3BtreeNext(pC->pCursor, &res);
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
pC->rowidIsValid = 0;
|
|
}else{
|
|
res = 0;
|
|
}
|
|
}else{
|
|
assert( oc==OP_MoveLt || oc==OP_MoveLe );
|
|
if( res>=0 ){
|
|
rc = sqlite3BtreePrevious(pC->pCursor, &res);
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
pC->rowidIsValid = 0;
|
|
}else{
|
|
/* res might be negative because the table is empty. Check to
|
|
** see if this is the case.
|
|
*/
|
|
res = sqlite3BtreeEof(pC->pCursor);
|
|
}
|
|
}
|
|
assert( pOp->p2>0 );
|
|
if( res ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Found P1 P2 P3 * *
|
|
**
|
|
** Register P3 holds a blob constructed by MakeRecord. P1 is an index.
|
|
** If an entry that matches the value in register p3 exists in P1 then
|
|
** jump to P2. If the P3 value does not match any entry in P1
|
|
** then fall thru. The P1 cursor is left pointing at the matching entry
|
|
** if it exists.
|
|
**
|
|
** This instruction is used to implement the IN operator where the
|
|
** left-hand side is a SELECT statement. P1 may be a true index, or it
|
|
** may be a temporary index that holds the results of the SELECT
|
|
** statement. This instruction is also used to implement the
|
|
** DISTINCT keyword in SELECT statements.
|
|
**
|
|
** This instruction checks if index P1 contains a record for which
|
|
** the first N serialised values exactly match the N serialised values
|
|
** in the record in register P3, where N is the total number of values in
|
|
** the P3 record (the P3 record is a prefix of the P1 record).
|
|
**
|
|
** See also: NotFound, MoveTo, IsUnique, NotExists
|
|
*/
|
|
/* Opcode: NotFound P1 P2 P3 * *
|
|
**
|
|
** Register P3 holds a blob constructed by MakeRecord. P1 is
|
|
** an index. If no entry exists in P1 that matches the blob then jump
|
|
** to P2. If an entry does existing, fall through. The cursor is left
|
|
** pointing to the entry that matches.
|
|
**
|
|
** See also: Found, MoveTo, NotExists, IsUnique
|
|
*/
|
|
case OP_NotFound: /* jump, in3 */
|
|
case OP_Found: { /* jump, in3 */
|
|
int i = pOp->p1;
|
|
int alreadyExists = 0;
|
|
Cursor *pC;
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
if( (pC = p->apCsr[i])->pCursor!=0 ){
|
|
int res;
|
|
assert( pC->isTable==0 );
|
|
assert( pIn3->flags & MEM_Blob );
|
|
if( pOp->opcode==OP_Found ){
|
|
pC->pKeyInfo->prefixIsEqual = 1;
|
|
}
|
|
rc = sqlite3BtreeMoveto(pC->pCursor, pIn3->z, pIn3->n, 0, &res);
|
|
pC->pKeyInfo->prefixIsEqual = 0;
|
|
if( rc!=SQLITE_OK ){
|
|
break;
|
|
}
|
|
alreadyExists = (res==0);
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
}
|
|
if( pOp->opcode==OP_Found ){
|
|
if( alreadyExists ) pc = pOp->p2 - 1;
|
|
}else{
|
|
if( !alreadyExists ) pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IsUnique P1 P2 P3 P4 *
|
|
**
|
|
** The P3 register contains an integer record number. Call this
|
|
** record number R. The P4 register contains an index key created
|
|
** using MakeIdxRec. Call it K.
|
|
**
|
|
** P1 is an index. So it has no data and its key consists of a
|
|
** record generated by OP_MakeRecord where the last field is the
|
|
** rowid of the entry that the index refers to.
|
|
**
|
|
** This instruction asks if there is an entry in P1 where the
|
|
** fields matches K but the rowid is different from R.
|
|
** If there is no such entry, then there is an immediate
|
|
** jump to P2. If any entry does exist where the index string
|
|
** matches K but the record number is not R, then the record
|
|
** number for that entry is written into P3 and control
|
|
** falls through to the next instruction.
|
|
**
|
|
** See also: NotFound, NotExists, Found
|
|
*/
|
|
case OP_IsUnique: { /* jump, in3 */
|
|
int i = pOp->p1;
|
|
Cursor *pCx;
|
|
BtCursor *pCrsr;
|
|
Mem *pK;
|
|
i64 R;
|
|
|
|
/* Pop the value R off the top of the stack
|
|
*/
|
|
assert( pOp->p4type==P4_INT32 );
|
|
assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
|
|
pK = &p->aMem[pOp->p4.i];
|
|
sqlite3VdbeMemIntegerify(pIn3);
|
|
R = pIn3->u.i;
|
|
assert( (pIn3->flags & MEM_Dyn)==0 );
|
|
assert( i>=0 && i<p->nCursor );
|
|
pCx = p->apCsr[i];
|
|
assert( pCx!=0 );
|
|
pCrsr = pCx->pCursor;
|
|
if( pCrsr!=0 ){
|
|
int res;
|
|
i64 v; /* The record number on the P1 entry that matches K */
|
|
char *zKey; /* The value of K */
|
|
int nKey; /* Number of bytes in K */
|
|
int len; /* Number of bytes in K without the rowid at the end */
|
|
int szRowid; /* Size of the rowid column at the end of zKey */
|
|
|
|
/* Make sure K is a string and make zKey point to K
|
|
*/
|
|
assert( pK->flags & MEM_Blob );
|
|
zKey = pK->z;
|
|
nKey = pK->n;
|
|
|
|
szRowid = sqlite3VdbeIdxRowidLen((u8*)zKey);
|
|
len = nKey-szRowid;
|
|
|
|
/* Search for an entry in P1 where all but the last four bytes match K.
|
|
** If there is no such entry, jump immediately to P2.
|
|
*/
|
|
assert( pCx->deferredMoveto==0 );
|
|
pCx->cacheStatus = CACHE_STALE;
|
|
rc = sqlite3BtreeMoveto(pCrsr, zKey, len, 0, &res);
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
if( res<0 ){
|
|
rc = sqlite3BtreeNext(pCrsr, &res);
|
|
if( res ){
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
}
|
|
rc = sqlite3VdbeIdxKeyCompare(pCx, len, (u8*)zKey, &res);
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
if( res>0 ){
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
|
|
/* At this point, pCrsr is pointing to an entry in P1 where all but
|
|
** the final entry (the rowid) matches K. Check to see if the
|
|
** final rowid column is different from R. If it equals R then jump
|
|
** immediately to P2.
|
|
*/
|
|
rc = sqlite3VdbeIdxRowid(pCrsr, &v);
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
if( v==R ){
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
|
|
/* The final varint of the key is different from R. Store it back
|
|
** into register R3. (The record number of an entry that violates
|
|
** a UNIQUE constraint.)
|
|
*/
|
|
pIn3->u.i = v;
|
|
assert( pIn3->flags==MEM_Int );
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: NotExists P1 P2 P3 * *
|
|
**
|
|
** Use the content of register P3 as a integer key. If a record
|
|
** with that key does not exist in table of P1, then jump to P2.
|
|
** If the record does exist, then fall thru. The cursor is left
|
|
** pointing to the record if it exists.
|
|
**
|
|
** The difference between this operation and NotFound is that this
|
|
** operation assumes the key is an integer and that P1 is a table whereas
|
|
** NotFound assumes key is a blob constructed from MakeRecord and
|
|
** P1 is an index.
|
|
**
|
|
** See also: Found, MoveTo, NotFound, IsUnique
|
|
*/
|
|
case OP_NotExists: { /* jump, in3 */
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
BtCursor *pCrsr;
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
|
|
int res;
|
|
u64 iKey;
|
|
assert( pIn3->flags & MEM_Int );
|
|
assert( p->apCsr[i]->isTable );
|
|
iKey = intToKey(pIn3->u.i);
|
|
rc = sqlite3BtreeMoveto(pCrsr, 0, iKey, 0,&res);
|
|
pC->lastRowid = pIn3->u.i;
|
|
pC->rowidIsValid = res==0;
|
|
pC->nullRow = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
/* res might be uninitialized if rc!=SQLITE_OK. But if rc!=SQLITE_OK
|
|
** processing is about to abort so we really do not care whether or not
|
|
** the following jump is taken. (In other words, do not stress over
|
|
** the error that valgrind sometimes shows on the next statement when
|
|
** running ioerr.test and similar failure-recovery test scripts.) */
|
|
if( res!=0 ){
|
|
pc = pOp->p2 - 1;
|
|
assert( pC->rowidIsValid==0 );
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Sequence P1 P2 * * *
|
|
**
|
|
** Find the next available sequence number for cursor P1.
|
|
** Write the sequence number into register P2.
|
|
** The sequence number on the cursor is incremented after this
|
|
** instruction.
|
|
*/
|
|
case OP_Sequence: { /* out2-prerelease */
|
|
int i = pOp->p1;
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
pOut->u.i = p->apCsr[i]->seqCount++;
|
|
pOut->flags = MEM_Int;
|
|
break;
|
|
}
|
|
|
|
|
|
/* Opcode: NewRowid P1 P2 P3 * *
|
|
**
|
|
** Get a new integer record number (a.k.a "rowid") used as the key to a table.
|
|
** The record number is not previously used as a key in the database
|
|
** table that cursor P1 points to. The new record number is written
|
|
** written to register P2.
|
|
**
|
|
** If P3>0 then P3 is a register that holds the largest previously
|
|
** generated record number. No new record numbers are allowed to be less
|
|
** than this value. When this value reaches its maximum, a SQLITE_FULL
|
|
** error is generated. The P3 register is updated with the generated
|
|
** record number. This P3 mechanism is used to help implement the
|
|
** AUTOINCREMENT feature.
|
|
*/
|
|
case OP_NewRowid: { /* out2-prerelease */
|
|
int i = pOp->p1;
|
|
i64 v = 0;
|
|
Cursor *pC;
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
if( (pC = p->apCsr[i])->pCursor==0 ){
|
|
/* The zero initialization above is all that is needed */
|
|
}else{
|
|
/* The next rowid or record number (different terms for the same
|
|
** thing) is obtained in a two-step algorithm.
|
|
**
|
|
** First we attempt to find the largest existing rowid and add one
|
|
** to that. But if the largest existing rowid is already the maximum
|
|
** positive integer, we have to fall through to the second
|
|
** probabilistic algorithm
|
|
**
|
|
** The second algorithm is to select a rowid at random and see if
|
|
** it already exists in the table. If it does not exist, we have
|
|
** succeeded. If the random rowid does exist, we select a new one
|
|
** and try again, up to 1000 times.
|
|
**
|
|
** For a table with less than 2 billion entries, the probability
|
|
** of not finding a unused rowid is about 1.0e-300. This is a
|
|
** non-zero probability, but it is still vanishingly small and should
|
|
** never cause a problem. You are much, much more likely to have a
|
|
** hardware failure than for this algorithm to fail.
|
|
**
|
|
** The analysis in the previous paragraph assumes that you have a good
|
|
** source of random numbers. Is a library function like lrand48()
|
|
** good enough? Maybe. Maybe not. It's hard to know whether there
|
|
** might be subtle bugs is some implementations of lrand48() that
|
|
** could cause problems. To avoid uncertainty, SQLite uses its own
|
|
** random number generator based on the RC4 algorithm.
|
|
**
|
|
** To promote locality of reference for repetitive inserts, the
|
|
** first few attempts at chosing a random rowid pick values just a little
|
|
** larger than the previous rowid. This has been shown experimentally
|
|
** to double the speed of the COPY operation.
|
|
*/
|
|
int res, rx=SQLITE_OK, cnt;
|
|
i64 x;
|
|
cnt = 0;
|
|
if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) !=
|
|
BTREE_INTKEY ){
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
goto abort_due_to_error;
|
|
}
|
|
assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 );
|
|
assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 );
|
|
|
|
#ifdef SQLITE_32BIT_ROWID
|
|
# define MAX_ROWID 0x7fffffff
|
|
#else
|
|
/* Some compilers complain about constants of the form 0x7fffffffffffffff.
|
|
** Others complain about 0x7ffffffffffffffffLL. The following macro seems
|
|
** to provide the constant while making all compilers happy.
|
|
*/
|
|
# define MAX_ROWID ( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
|
|
#endif
|
|
|
|
if( !pC->useRandomRowid ){
|
|
if( pC->nextRowidValid ){
|
|
v = pC->nextRowid;
|
|
}else{
|
|
rc = sqlite3BtreeLast(pC->pCursor, &res);
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
if( res ){
|
|
v = 1;
|
|
}else{
|
|
sqlite3BtreeKeySize(pC->pCursor, &v);
|
|
v = keyToInt(v);
|
|
if( v==MAX_ROWID ){
|
|
pC->useRandomRowid = 1;
|
|
}else{
|
|
v++;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
if( pOp->p3 ){
|
|
Mem *pMem;
|
|
assert( pOp->p3>0 && pOp->p3<=p->nMem ); /* P3 is a valid memory cell */
|
|
pMem = &p->aMem[pOp->p3];
|
|
REGISTER_TRACE(pOp->p3, pMem);
|
|
sqlite3VdbeMemIntegerify(pMem);
|
|
assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
|
|
if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
|
|
rc = SQLITE_FULL;
|
|
goto abort_due_to_error;
|
|
}
|
|
if( v<pMem->u.i+1 ){
|
|
v = pMem->u.i + 1;
|
|
}
|
|
pMem->u.i = v;
|
|
}
|
|
#endif
|
|
|
|
if( v<MAX_ROWID ){
|
|
pC->nextRowidValid = 1;
|
|
pC->nextRowid = v+1;
|
|
}else{
|
|
pC->nextRowidValid = 0;
|
|
}
|
|
}
|
|
if( pC->useRandomRowid ){
|
|
assert( pOp->p3==0 ); /* SQLITE_FULL must have occurred prior to this */
|
|
v = db->priorNewRowid;
|
|
cnt = 0;
|
|
do{
|
|
if( cnt==0 && (v&0xffffff)==v ){
|
|
v++;
|
|
}else{
|
|
sqlite3Randomness(sizeof(v), &v);
|
|
if( cnt<5 ) v &= 0xffffff;
|
|
}
|
|
if( v==0 ) continue;
|
|
x = intToKey(v);
|
|
rx = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)x, 0, &res);
|
|
cnt++;
|
|
}while( cnt<100 && rx==SQLITE_OK && res==0 );
|
|
db->priorNewRowid = v;
|
|
if( rx==SQLITE_OK && res==0 ){
|
|
rc = SQLITE_FULL;
|
|
goto abort_due_to_error;
|
|
}
|
|
}
|
|
pC->rowidIsValid = 0;
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
}
|
|
pOut->flags = MEM_Int;
|
|
pOut->u.i = v;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Insert P1 P2 P3 P4 P5
|
|
**
|
|
** Write an entry into the table of cursor P1. A new entry is
|
|
** created if it doesn't already exist or the data for an existing
|
|
** entry is overwritten. The data is the value stored register
|
|
** number P2. The key is stored in register P3. The key must
|
|
** be an integer.
|
|
**
|
|
** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
|
|
** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
|
|
** then rowid is stored for subsequent return by the
|
|
** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
|
|
**
|
|
** Parameter P4 may point to a string containing the table-name, or
|
|
** may be NULL. If it is not NULL, then the update-hook
|
|
** (sqlite3.xUpdateCallback) is invoked following a successful insert.
|
|
**
|
|
** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
|
|
** allocated, then ownership of P2 is transferred to the pseudo-cursor
|
|
** and register P2 becomes ephemeral. If the cursor is changed, the
|
|
** value of register P2 will then change. Make sure this does not
|
|
** cause any problems.)
|
|
**
|
|
** This instruction only works on tables. The equivalent instruction
|
|
** for indices is OP_IdxInsert.
|
|
*/
|
|
case OP_Insert: {
|
|
Mem *pData = &p->aMem[pOp->p2];
|
|
Mem *pKey = &p->aMem[pOp->p3];
|
|
|
|
i64 iKey; /* The integer ROWID or key for the record to be inserted */
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC!=0 );
|
|
assert( pC->pCursor!=0 || pC->pseudoTable );
|
|
assert( pKey->flags & MEM_Int );
|
|
assert( pC->isTable );
|
|
REGISTER_TRACE(pOp->p2, pData);
|
|
REGISTER_TRACE(pOp->p3, pKey);
|
|
|
|
iKey = intToKey(pKey->u.i);
|
|
if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
|
|
if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = pKey->u.i;
|
|
if( pC->nextRowidValid && pKey->u.i>=pC->nextRowid ){
|
|
pC->nextRowidValid = 0;
|
|
}
|
|
if( pData->flags & MEM_Null ){
|
|
pData->z = 0;
|
|
pData->n = 0;
|
|
}else{
|
|
assert( pData->flags & (MEM_Blob|MEM_Str) );
|
|
}
|
|
if( pC->pseudoTable ){
|
|
sqlite3_free(pC->pData);
|
|
pC->iKey = iKey;
|
|
pC->nData = pData->n;
|
|
if( pData->flags & MEM_Dyn ){
|
|
pC->pData = pData->z;
|
|
pData->flags &= ~MEM_Dyn;
|
|
pData->flags |= MEM_Ephem;
|
|
}else{
|
|
pC->pData = sqlite3_malloc( pC->nData+2 );
|
|
if( !pC->pData ) goto no_mem;
|
|
memcpy(pC->pData, pData->z, pC->nData);
|
|
pC->pData[pC->nData] = 0;
|
|
pC->pData[pC->nData+1] = 0;
|
|
}
|
|
pC->nullRow = 0;
|
|
}else{
|
|
int nZero;
|
|
if( pData->flags & MEM_Zero ){
|
|
nZero = pData->u.i;
|
|
}else{
|
|
nZero = 0;
|
|
}
|
|
rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
|
|
pData->z, pData->n, nZero,
|
|
pOp->p5 & OPFLAG_APPEND);
|
|
}
|
|
|
|
pC->rowidIsValid = 0;
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
|
|
/* Invoke the update-hook if required. */
|
|
if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
|
|
const char *zDb = db->aDb[pC->iDb].zName;
|
|
const char *zTbl = pOp->p4.z;
|
|
int op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
|
|
assert( pC->isTable );
|
|
db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
|
|
assert( pC->iDb>=0 );
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Delete P1 P2 * P4 *
|
|
**
|
|
** Delete the record at which the P1 cursor is currently pointing.
|
|
**
|
|
** The cursor will be left pointing at either the next or the previous
|
|
** record in the table. If it is left pointing at the next record, then
|
|
** the next Next instruction will be a no-op. Hence it is OK to delete
|
|
** a record from within an Next loop.
|
|
**
|
|
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
|
|
** incremented (otherwise not).
|
|
**
|
|
** P1 must not be pseudo-table. It has to be a real table with
|
|
** multiple rows.
|
|
**
|
|
** If P4 is not NULL, then it is the name of the table that P1 is
|
|
** pointing to. The update hook will be invoked, if it exists.
|
|
** If P4 is not NULL then the P1 cursor must have been positioned
|
|
** using OP_NotFound prior to invoking this opcode.
|
|
*/
|
|
case OP_Delete: {
|
|
int i = pOp->p1;
|
|
i64 iKey;
|
|
Cursor *pC;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC!=0 );
|
|
assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
|
|
|
|
/* If the update-hook will be invoked, set iKey to the rowid of the
|
|
** row being deleted.
|
|
*/
|
|
if( db->xUpdateCallback && pOp->p4.z ){
|
|
assert( pC->isTable );
|
|
assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
|
|
iKey = pC->lastRowid;
|
|
}
|
|
|
|
rc = sqlite3VdbeCursorMoveto(pC);
|
|
if( rc ) goto abort_due_to_error;
|
|
rc = sqlite3BtreeDelete(pC->pCursor);
|
|
pC->nextRowidValid = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
|
|
/* Invoke the update-hook if required. */
|
|
if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
|
|
const char *zDb = db->aDb[pC->iDb].zName;
|
|
const char *zTbl = pOp->p4.z;
|
|
db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
|
|
assert( pC->iDb>=0 );
|
|
}
|
|
if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ResetCount P1 * *
|
|
**
|
|
** This opcode resets the VMs internal change counter to 0. If P1 is true,
|
|
** then the value of the change counter is copied to the database handle
|
|
** change counter (returned by subsequent calls to sqlite3_changes())
|
|
** before it is reset. This is used by trigger programs.
|
|
*/
|
|
case OP_ResetCount: {
|
|
if( pOp->p1 ){
|
|
sqlite3VdbeSetChanges(db, p->nChange);
|
|
}
|
|
p->nChange = 0;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: RowData P1 P2 * * *
|
|
**
|
|
** Write into register P2 the complete row data for cursor P1.
|
|
** There is no interpretation of the data.
|
|
** It is just copied onto the P2 register exactly as
|
|
** it is found in the database file.
|
|
**
|
|
** If the P1 cursor must be pointing to a valid row (not a NULL row)
|
|
** of a real table, not a pseudo-table.
|
|
*/
|
|
/* Opcode: RowKey P1 P2 * * *
|
|
**
|
|
** Write into register P2 the complete row key for cursor P1.
|
|
** There is no interpretation of the data.
|
|
** The key is copied onto the P3 register exactly as
|
|
** it is found in the database file.
|
|
**
|
|
** If the P1 cursor must be pointing to a valid row (not a NULL row)
|
|
** of a real table, not a pseudo-table.
|
|
*/
|
|
case OP_RowKey: /* out2-prerelease */
|
|
case OP_RowData: { /* out2-prerelease */
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
BtCursor *pCrsr;
|
|
u32 n;
|
|
|
|
/* Note that RowKey and RowData are really exactly the same instruction */
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC->isTable || pOp->opcode==OP_RowKey );
|
|
assert( pC->isIndex || pOp->opcode==OP_RowData );
|
|
assert( pC!=0 );
|
|
assert( pC->nullRow==0 );
|
|
assert( pC->pseudoTable==0 );
|
|
assert( pC->pCursor!=0 );
|
|
pCrsr = pC->pCursor;
|
|
rc = sqlite3VdbeCursorMoveto(pC);
|
|
if( rc ) goto abort_due_to_error;
|
|
if( pC->isIndex ){
|
|
i64 n64;
|
|
assert( !pC->isTable );
|
|
sqlite3BtreeKeySize(pCrsr, &n64);
|
|
if( n64>SQLITE_MAX_LENGTH ){
|
|
goto too_big;
|
|
}
|
|
n = n64;
|
|
}else{
|
|
sqlite3BtreeDataSize(pCrsr, &n);
|
|
if( n>SQLITE_MAX_LENGTH ){
|
|
goto too_big;
|
|
}
|
|
}
|
|
pOut->n = n;
|
|
if( n<=NBFS ){
|
|
pOut->flags = MEM_Blob | MEM_Short;
|
|
pOut->z = pOut->zShort;
|
|
}else{
|
|
char *z = sqlite3_malloc( n );
|
|
if( z==0 ) goto no_mem;
|
|
pOut->flags = MEM_Blob | MEM_Dyn;
|
|
pOut->xDel = 0;
|
|
pOut->z = z;
|
|
}
|
|
if( pC->isIndex ){
|
|
rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
|
|
}else{
|
|
rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
|
|
}
|
|
pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Rowid P1 P2 * * *
|
|
**
|
|
** Store in register P2 an integer which is the key of the table entry that
|
|
** P1 is currently point to. If p2==0 then push the integer.
|
|
*/
|
|
case OP_Rowid: { /* out2-prerelease */
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
i64 v;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC!=0 );
|
|
rc = sqlite3VdbeCursorMoveto(pC);
|
|
if( rc ) goto abort_due_to_error;
|
|
if( pC->rowidIsValid ){
|
|
v = pC->lastRowid;
|
|
}else if( pC->pseudoTable ){
|
|
v = keyToInt(pC->iKey);
|
|
}else if( pC->nullRow ){
|
|
/* Leave the rowid set to a NULL */
|
|
break;
|
|
}else{
|
|
assert( pC->pCursor!=0 );
|
|
sqlite3BtreeKeySize(pC->pCursor, &v);
|
|
v = keyToInt(v);
|
|
}
|
|
pOut->u.i = v;
|
|
pOut->flags = MEM_Int;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: NullRow P1 * * * *
|
|
**
|
|
** Move the cursor P1 to a null row. Any OP_Column operations
|
|
** that occur while the cursor is on the null row will always
|
|
** write a NULL.
|
|
*/
|
|
case OP_NullRow: {
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC!=0 );
|
|
pC->nullRow = 1;
|
|
pC->rowidIsValid = 0;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Last P1 P2 * * *
|
|
**
|
|
** The next use of the Rowid or Column or Next instruction for P1
|
|
** will refer to the last entry in the database table or index.
|
|
** If the table or index is empty and P2>0, then jump immediately to P2.
|
|
** If P2 is 0 or if the table or index is not empty, fall through
|
|
** to the following instruction.
|
|
*/
|
|
case OP_Last: { /* jump */
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
BtCursor *pCrsr;
|
|
int res;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC!=0 );
|
|
pCrsr = pC->pCursor;
|
|
assert( pCrsr!=0 );
|
|
rc = sqlite3BtreeLast(pCrsr, &res);
|
|
pC->nullRow = res;
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
if( res && pOp->p2>0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
|
|
/* Opcode: Sort P1 P2 * * *
|
|
**
|
|
** This opcode does exactly the same thing as OP_Rewind except that
|
|
** it increments an undocumented global variable used for testing.
|
|
**
|
|
** Sorting is accomplished by writing records into a sorting index,
|
|
** then rewinding that index and playing it back from beginning to
|
|
** end. We use the OP_Sort opcode instead of OP_Rewind to do the
|
|
** rewinding so that the global variable will be incremented and
|
|
** regression tests can determine whether or not the optimizer is
|
|
** correctly optimizing out sorts.
|
|
*/
|
|
case OP_Sort: { /* jump */
|
|
#ifdef SQLITE_TEST
|
|
sqlite3_sort_count++;
|
|
sqlite3_search_count--;
|
|
#endif
|
|
/* Fall through into OP_Rewind */
|
|
}
|
|
/* Opcode: Rewind P1 P2 * * *
|
|
**
|
|
** The next use of the Rowid or Column or Next instruction for P1
|
|
** will refer to the first entry in the database table or index.
|
|
** If the table or index is empty and P2>0, then jump immediately to P2.
|
|
** If P2 is 0 or if the table or index is not empty, fall through
|
|
** to the following instruction.
|
|
*/
|
|
case OP_Rewind: { /* jump */
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
BtCursor *pCrsr;
|
|
int res;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
pC = p->apCsr[i];
|
|
assert( pC!=0 );
|
|
if( (pCrsr = pC->pCursor)!=0 ){
|
|
rc = sqlite3BtreeFirst(pCrsr, &res);
|
|
pC->atFirst = res==0;
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
}else{
|
|
res = 1;
|
|
}
|
|
pC->nullRow = res;
|
|
assert( pOp->p2>0 && pOp->p2<p->nOp );
|
|
if( res ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Next P1 P2 * * *
|
|
**
|
|
** Advance cursor P1 so that it points to the next key/data pair in its
|
|
** table or index. If there are no more key/value pairs then fall through
|
|
** to the following instruction. But if the cursor advance was successful,
|
|
** jump immediately to P2.
|
|
**
|
|
** The P1 cursor must be for a real table, not a pseudo-table.
|
|
**
|
|
** See also: Prev
|
|
*/
|
|
/* Opcode: Prev P1 P2 * * *
|
|
**
|
|
** Back up cursor P1 so that it points to the previous key/data pair in its
|
|
** table or index. If there is no previous key/value pairs then fall through
|
|
** to the following instruction. But if the cursor backup was successful,
|
|
** jump immediately to P2.
|
|
**
|
|
** The P1 cursor must be for a real table, not a pseudo-table.
|
|
*/
|
|
case OP_Prev: /* jump */
|
|
case OP_Next: { /* jump */
|
|
Cursor *pC;
|
|
BtCursor *pCrsr;
|
|
int res;
|
|
|
|
CHECK_FOR_INTERRUPT;
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
pC = p->apCsr[pOp->p1];
|
|
if( pC==0 ){
|
|
break; /* See ticket #2273 */
|
|
}
|
|
pCrsr = pC->pCursor;
|
|
assert( pCrsr );
|
|
if( pC->nullRow ){
|
|
res = 1;
|
|
}else{
|
|
assert( pC->deferredMoveto==0 );
|
|
rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
|
|
sqlite3BtreePrevious(pCrsr, &res);
|
|
pC->nullRow = res;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
if( res==0 ){
|
|
pc = pOp->p2 - 1;
|
|
#ifdef SQLITE_TEST
|
|
sqlite3_search_count++;
|
|
#endif
|
|
}
|
|
}
|
|
pC->rowidIsValid = 0;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IdxInsert P1 P2 P3 * *
|
|
**
|
|
** Register P2 holds a SQL index key made using the
|
|
** MakeIdxRec instructions. This opcode writes that key
|
|
** into the index P1. Data for the entry is nil.
|
|
**
|
|
** P3 is a flag that provides a hint to the b-tree layer that this
|
|
** insert is likely to be an append.
|
|
**
|
|
** This instruction only works for indices. The equivalent instruction
|
|
** for tables is OP_Insert.
|
|
*/
|
|
case OP_IdxInsert: { /* in2 */
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
BtCursor *pCrsr;
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
assert( pIn2->flags & MEM_Blob );
|
|
if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
|
|
assert( pC->isTable==0 );
|
|
rc = ExpandBlob(pIn2);
|
|
if( rc==SQLITE_OK ){
|
|
int nKey = pIn2->n;
|
|
const char *zKey = pIn2->z;
|
|
rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3);
|
|
assert( pC->deferredMoveto==0 );
|
|
pC->cacheStatus = CACHE_STALE;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IdxDelete P1 P2 * * *
|
|
**
|
|
** The content of register P2 is an index key built using the either the
|
|
** MakeIdxRec opcode. Removes that entry from the index.
|
|
*/
|
|
case OP_IdxDelete: { /* in2 */
|
|
int i = pOp->p1;
|
|
Cursor *pC;
|
|
BtCursor *pCrsr;
|
|
assert( pIn2->flags & MEM_Blob );
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
|
|
int res;
|
|
rc = sqlite3BtreeMoveto(pCrsr, pIn2->z, pIn2->n, 0, &res);
|
|
if( rc==SQLITE_OK && res==0 ){
|
|
rc = sqlite3BtreeDelete(pCrsr);
|
|
}
|
|
assert( pC->deferredMoveto==0 );
|
|
pC->cacheStatus = CACHE_STALE;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IdxRowid P1 P2 * * *
|
|
**
|
|
** Write into register P2 an integer which is the last entry in the record at
|
|
** the end of the index key pointed to by cursor P1. This integer should be
|
|
** the rowid of the table entry to which this index entry points.
|
|
**
|
|
** See also: Rowid, MakeIdxRec.
|
|
*/
|
|
case OP_IdxRowid: { /* out2-prerelease */
|
|
int i = pOp->p1;
|
|
BtCursor *pCrsr;
|
|
Cursor *pC;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
|
|
i64 rowid;
|
|
|
|
assert( pC->deferredMoveto==0 );
|
|
assert( pC->isTable==0 );
|
|
if( !pC->nullRow ){
|
|
rc = sqlite3VdbeIdxRowid(pCrsr, &rowid);
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
pOut->flags = MEM_Int;
|
|
pOut->u.i = rowid;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IdxGE P1 P2 P3 * P5
|
|
**
|
|
** The value in register P3 is an index entry that omits the ROWID. Compare
|
|
** this value against the index that P1 is currently pointing to.
|
|
** Ignore the ROWID on the P1 index.
|
|
**
|
|
** If the P1 index entry is greater than or equal to the value in
|
|
** register P3 then jump to P2. Otherwise fall through to the next
|
|
** instruction.
|
|
**
|
|
** If P5 is non-zero then the value in register P3 is temporarily
|
|
** increased by an epsilon prior to the comparison. This make the opcode work
|
|
** like IdxGT except that if the key from register P3 is a prefix of
|
|
** the key in the cursor, the result is false whereas it would be
|
|
** true with IdxGT.
|
|
*/
|
|
/* Opcode: IdxLT P1 P2 P3 * P5
|
|
**
|
|
** The value in register P3 is an index entry that omits the ROWID. Compare
|
|
** the this value against the index that P1 is currently pointing to.
|
|
** Ignore the ROWID on the P1 index.
|
|
**
|
|
** If the P1 index entry is less than the register P3 value
|
|
** then jump to P2. Otherwise fall through to the next instruction.
|
|
**
|
|
** If P5 is non-zero then the
|
|
** index taken from register P3 is temporarily increased by
|
|
** an epsilon prior to the comparison. This makes the opcode work
|
|
** like IdxLE.
|
|
*/
|
|
case OP_IdxLT: /* jump, in3 */
|
|
case OP_IdxGE: { /* jump, in3 */
|
|
int i= pOp->p1;
|
|
Cursor *pC;
|
|
|
|
assert( i>=0 && i<p->nCursor );
|
|
assert( p->apCsr[i]!=0 );
|
|
if( (pC = p->apCsr[i])->pCursor!=0 ){
|
|
int res;
|
|
|
|
assert( pIn3->flags & MEM_Blob ); /* Created using OP_MakeRecord */
|
|
assert( pC->deferredMoveto==0 );
|
|
ExpandBlob(pIn3);
|
|
assert( pOp->p5==0 || pOp->p5==1 );
|
|
*pC->pIncrKey = pOp->p5;
|
|
rc = sqlite3VdbeIdxKeyCompare(pC, pIn3->n, (u8*)pIn3->z, &res);
|
|
*pC->pIncrKey = 0;
|
|
if( rc!=SQLITE_OK ){
|
|
break;
|
|
}
|
|
if( pOp->opcode==OP_IdxLT ){
|
|
res = -res;
|
|
}else{
|
|
assert( pOp->opcode==OP_IdxGE );
|
|
res++;
|
|
}
|
|
if( res>0 ){
|
|
pc = pOp->p2 - 1 ;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Destroy P1 P2 P3 * *
|
|
**
|
|
** Delete an entire database table or index whose root page in the database
|
|
** file is given by P1.
|
|
**
|
|
** The table being destroyed is in the main database file if P3==0. If
|
|
** P3==1 then the table to be clear is in the auxiliary database file
|
|
** that is used to store tables create using CREATE TEMPORARY TABLE.
|
|
**
|
|
** If AUTOVACUUM is enabled then it is possible that another root page
|
|
** might be moved into the newly deleted root page in order to keep all
|
|
** root pages contiguous at the beginning of the database. The former
|
|
** value of the root page that moved - its value before the move occurred -
|
|
** is stored in register P2. If no page
|
|
** movement was required (because the table being dropped was already
|
|
** the last one in the database) then a zero is stored in register P2.
|
|
** If AUTOVACUUM is disabled then a zero is stored in register P2.
|
|
**
|
|
** See also: Clear
|
|
*/
|
|
case OP_Destroy: { /* out2-prerelease */
|
|
int iMoved;
|
|
int iCnt;
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
Vdbe *pVdbe;
|
|
iCnt = 0;
|
|
for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
|
|
if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
|
|
iCnt++;
|
|
}
|
|
}
|
|
#else
|
|
iCnt = db->activeVdbeCnt;
|
|
#endif
|
|
if( iCnt>1 ){
|
|
rc = SQLITE_LOCKED;
|
|
p->errorAction = OE_Abort;
|
|
}else{
|
|
int iDb = pOp->p3;
|
|
assert( iCnt==1 );
|
|
assert( (p->btreeMask & (1<<iDb))!=0 );
|
|
rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
|
|
pOut->flags = MEM_Int;
|
|
pOut->u.i = iMoved;
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( rc==SQLITE_OK && iMoved!=0 ){
|
|
sqlite3RootPageMoved(&db->aDb[iDb], iMoved, pOp->p1);
|
|
}
|
|
#endif
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Clear P1 P2 *
|
|
**
|
|
** Delete all contents of the database table or index whose root page
|
|
** in the database file is given by P1. But, unlike Destroy, do not
|
|
** remove the table or index from the database file.
|
|
**
|
|
** The table being clear is in the main database file if P2==0. If
|
|
** P2==1 then the table to be clear is in the auxiliary database file
|
|
** that is used to store tables create using CREATE TEMPORARY TABLE.
|
|
**
|
|
** See also: Destroy
|
|
*/
|
|
case OP_Clear: {
|
|
assert( (p->btreeMask & (1<<pOp->p2))!=0 );
|
|
rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: CreateTable P1 P2 * * *
|
|
**
|
|
** Allocate a new table in the main database file if P1==0 or in the
|
|
** auxiliary database file if P1==1 or in an attached database if
|
|
** P1>1. Write the root page number of the new table into
|
|
** register P2
|
|
**
|
|
** The difference between a table and an index is this: A table must
|
|
** have a 4-byte integer key and can have arbitrary data. An index
|
|
** has an arbitrary key but no data.
|
|
**
|
|
** See also: CreateIndex
|
|
*/
|
|
/* Opcode: CreateIndex P1 P2 * * *
|
|
**
|
|
** Allocate a new index in the main database file if P1==0 or in the
|
|
** auxiliary database file if P1==1 or in an attached database if
|
|
** P1>1. Write the root page number of the new table into
|
|
** register P2.
|
|
**
|
|
** See documentation on OP_CreateTable for additional information.
|
|
*/
|
|
case OP_CreateIndex: /* out2-prerelease */
|
|
case OP_CreateTable: { /* out2-prerelease */
|
|
int pgno;
|
|
int flags;
|
|
Db *pDb;
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
assert( (p->btreeMask & (1<<pOp->p1))!=0 );
|
|
pDb = &db->aDb[pOp->p1];
|
|
assert( pDb->pBt!=0 );
|
|
if( pOp->opcode==OP_CreateTable ){
|
|
/* flags = BTREE_INTKEY; */
|
|
flags = BTREE_LEAFDATA|BTREE_INTKEY;
|
|
}else{
|
|
flags = BTREE_ZERODATA;
|
|
}
|
|
rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
|
|
if( rc==SQLITE_OK ){
|
|
pOut->u.i = pgno;
|
|
pOut->flags = MEM_Int;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ParseSchema P1 P2 * P4 *
|
|
**
|
|
** Read and parse all entries from the SQLITE_MASTER table of database P1
|
|
** that match the WHERE clause P4. P2 is the "force" flag. Always do
|
|
** the parsing if P2 is true. If P2 is false, then this routine is a
|
|
** no-op if the schema is not currently loaded. In other words, if P2
|
|
** is false, the SQLITE_MASTER table is only parsed if the rest of the
|
|
** schema is already loaded into the symbol table.
|
|
**
|
|
** This opcode invokes the parser to create a new virtual machine,
|
|
** then runs the new virtual machine. It is thus a reentrant opcode.
|
|
*/
|
|
case OP_ParseSchema: {
|
|
char *zSql;
|
|
int iDb = pOp->p1;
|
|
const char *zMaster;
|
|
InitData initData;
|
|
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
if( !pOp->p2 && !DbHasProperty(db, iDb, DB_SchemaLoaded) ){
|
|
break;
|
|
}
|
|
zMaster = SCHEMA_TABLE(iDb);
|
|
initData.db = db;
|
|
initData.iDb = pOp->p1;
|
|
initData.pzErrMsg = &p->zErrMsg;
|
|
zSql = sqlite3MPrintf(db,
|
|
"SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
|
|
db->aDb[iDb].zName, zMaster, pOp->p4.z);
|
|
if( zSql==0 ) goto no_mem;
|
|
(void)sqlite3SafetyOff(db);
|
|
assert( db->init.busy==0 );
|
|
db->init.busy = 1;
|
|
assert( !db->mallocFailed );
|
|
rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
|
|
if( rc==SQLITE_ABORT ) rc = initData.rc;
|
|
sqlite3_free(zSql);
|
|
db->init.busy = 0;
|
|
(void)sqlite3SafetyOn(db);
|
|
if( rc==SQLITE_NOMEM ){
|
|
goto no_mem;
|
|
}
|
|
break;
|
|
}
|
|
|
|
#if !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)
|
|
/* Opcode: LoadAnalysis P1 * * * *
|
|
**
|
|
** Read the sqlite_stat1 table for database P1 and load the content
|
|
** of that table into the internal index hash table. This will cause
|
|
** the analysis to be used when preparing all subsequent queries.
|
|
*/
|
|
case OP_LoadAnalysis: {
|
|
int iDb = pOp->p1;
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
rc = sqlite3AnalysisLoad(db, iDb);
|
|
break;
|
|
}
|
|
#endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER) */
|
|
|
|
/* Opcode: DropTable P1 * * P4 *
|
|
**
|
|
** Remove the internal (in-memory) data structures that describe
|
|
** the table named P4 in database P1. This is called after a table
|
|
** is dropped in order to keep the internal representation of the
|
|
** schema consistent with what is on disk.
|
|
*/
|
|
case OP_DropTable: {
|
|
sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: DropIndex P1 * * P4 *
|
|
**
|
|
** Remove the internal (in-memory) data structures that describe
|
|
** the index named P4 in database P1. This is called after an index
|
|
** is dropped in order to keep the internal representation of the
|
|
** schema consistent with what is on disk.
|
|
*/
|
|
case OP_DropIndex: {
|
|
sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: DropTrigger P1 * * P4 *
|
|
**
|
|
** Remove the internal (in-memory) data structures that describe
|
|
** the trigger named P4 in database P1. This is called after a trigger
|
|
** is dropped in order to keep the internal representation of the
|
|
** schema consistent with what is on disk.
|
|
*/
|
|
case OP_DropTrigger: {
|
|
sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
|
|
break;
|
|
}
|
|
|
|
|
|
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
|
|
/* Opcode: IntegrityCk P1 P2 P3 * P5
|
|
**
|
|
** Do an analysis of the currently open database. Store in
|
|
** register P1 the text of an error message describing any problems.
|
|
** If no problems are found, store a NULL in register P1.
|
|
**
|
|
** The register P3 contains the maximum number of allowed errors.
|
|
** At most reg(P3) errors will be reported.
|
|
** In other words, the analysis stops as soon as reg(P1) errors are
|
|
** seen. Reg(P1) is updated with the number of errors remaining.
|
|
**
|
|
** The root page numbers of all tables in the database are integer
|
|
** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
|
|
** total.
|
|
**
|
|
** If P5 is not zero, the check is done on the auxiliary database
|
|
** file, not the main database file.
|
|
**
|
|
** This opcode is used to implement the integrity_check pragma.
|
|
*/
|
|
case OP_IntegrityCk: {
|
|
int nRoot; /* Number of tables to check. (Number of root pages.) */
|
|
int *aRoot; /* Array of rootpage numbers for tables to be checked */
|
|
int j; /* Loop counter */
|
|
int nErr; /* Number of errors reported */
|
|
char *z; /* Text of the error report */
|
|
Mem *pnErr; /* Register keeping track of errors remaining */
|
|
|
|
nRoot = pOp->p2;
|
|
assert( nRoot>0 );
|
|
aRoot = sqlite3_malloc( sizeof(int)*(nRoot+1) );
|
|
if( aRoot==0 ) goto no_mem;
|
|
assert( pOp->p3>0 && pOp->p3<=p->nMem );
|
|
pnErr = &p->aMem[pOp->p3];
|
|
assert( (pnErr->flags & MEM_Int)!=0 );
|
|
assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
|
|
pIn1 = &p->aMem[pOp->p1];
|
|
for(j=0; j<nRoot; j++){
|
|
aRoot[j] = sqlite3VdbeIntValue(&pIn1[j]);
|
|
}
|
|
aRoot[j] = 0;
|
|
assert( pOp->p5<db->nDb );
|
|
assert( (p->btreeMask & (1<<pOp->p5))!=0 );
|
|
z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
|
|
pnErr->u.i, &nErr);
|
|
pnErr->u.i -= nErr;
|
|
sqlite3VdbeMemSetNull(pIn1);
|
|
if( nErr==0 ){
|
|
assert( z==0 );
|
|
}else{
|
|
pIn1->z = z;
|
|
pIn1->n = strlen(z);
|
|
pIn1->flags = MEM_Str | MEM_Dyn | MEM_Term;
|
|
pIn1->xDel = 0;
|
|
}
|
|
pIn1->enc = SQLITE_UTF8;
|
|
UPDATE_MAX_BLOBSIZE(pIn1);
|
|
sqlite3VdbeChangeEncoding(pIn1, encoding);
|
|
sqlite3_free(aRoot);
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
|
|
|
|
/* Opcode: FifoWrite P1 * * * *
|
|
**
|
|
** Write the integer from register P1 into the Fifo.
|
|
*/
|
|
case OP_FifoWrite: { /* in1 */
|
|
if( sqlite3VdbeFifoPush(&p->sFifo, sqlite3VdbeIntValue(pIn1))==SQLITE_NOMEM ){
|
|
goto no_mem;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: FifoRead P1 P2 * * *
|
|
**
|
|
** Attempt to read a single integer from the Fifo. Store that
|
|
** integer in register P1.
|
|
**
|
|
** If the Fifo is empty jump to P2.
|
|
*/
|
|
case OP_FifoRead: { /* jump */
|
|
CHECK_FOR_INTERRUPT;
|
|
assert( pOp->p1>0 && pOp->p1<=p->nMem );
|
|
pOut = &p->aMem[pOp->p1];
|
|
Release(pOut);
|
|
pOut->flags = MEM_Int;
|
|
if( sqlite3VdbeFifoPop(&p->sFifo, &pOut->u.i)==SQLITE_DONE ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
/* Opcode: ContextPush * * *
|
|
**
|
|
** Save the current Vdbe context such that it can be restored by a ContextPop
|
|
** opcode. The context stores the last insert row id, the last statement change
|
|
** count, and the current statement change count.
|
|
*/
|
|
case OP_ContextPush: {
|
|
int i = p->contextStackTop++;
|
|
Context *pContext;
|
|
|
|
assert( i>=0 );
|
|
/* FIX ME: This should be allocated as part of the vdbe at compile-time */
|
|
if( i>=p->contextStackDepth ){
|
|
p->contextStackDepth = i+1;
|
|
p->contextStack = sqlite3DbReallocOrFree(db, p->contextStack,
|
|
sizeof(Context)*(i+1));
|
|
if( p->contextStack==0 ) goto no_mem;
|
|
}
|
|
pContext = &p->contextStack[i];
|
|
pContext->lastRowid = db->lastRowid;
|
|
pContext->nChange = p->nChange;
|
|
pContext->sFifo = p->sFifo;
|
|
sqlite3VdbeFifoInit(&p->sFifo);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ContextPop * * *
|
|
**
|
|
** Restore the Vdbe context to the state it was in when contextPush was last
|
|
** executed. The context stores the last insert row id, the last statement
|
|
** change count, and the current statement change count.
|
|
*/
|
|
case OP_ContextPop: {
|
|
Context *pContext = &p->contextStack[--p->contextStackTop];
|
|
assert( p->contextStackTop>=0 );
|
|
db->lastRowid = pContext->lastRowid;
|
|
p->nChange = pContext->nChange;
|
|
sqlite3VdbeFifoClear(&p->sFifo);
|
|
p->sFifo = pContext->sFifo;
|
|
break;
|
|
}
|
|
#endif /* #ifndef SQLITE_OMIT_TRIGGER */
|
|
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
/* Opcode: MemMax P1 P2 * * *
|
|
**
|
|
** Set the value of register P1 to the maximum of its current value
|
|
** and the value in register P2.
|
|
**
|
|
** This instruction throws an error if the memory cell is not initially
|
|
** an integer.
|
|
*/
|
|
case OP_MemMax: { /* in1, in2 */
|
|
sqlite3VdbeMemIntegerify(pIn1);
|
|
sqlite3VdbeMemIntegerify(pIn2);
|
|
if( pIn1->u.i<pIn2->u.i){
|
|
pIn1->u.i = pIn2->u.i;
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_AUTOINCREMENT */
|
|
|
|
/* Opcode: IfPos P1 P2 * * *
|
|
**
|
|
** If the value of register P1 is 1 or greater, jump to P2.
|
|
**
|
|
** It is illegal to use this instruction on a register that does
|
|
** not contain an integer. An assertion fault will result if you try.
|
|
*/
|
|
case OP_IfPos: { /* jump, in1 */
|
|
assert( pIn1->flags==MEM_Int );
|
|
if( pIn1->u.i>0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IfNeg P1 P2 * * *
|
|
**
|
|
** If the value of register P1 is less than zero, jump to P2.
|
|
**
|
|
** It is illegal to use this instruction on a register that does
|
|
** not contain an integer. An assertion fault will result if you try.
|
|
*/
|
|
case OP_IfNeg: { /* jump, in1 */
|
|
assert( pIn1->flags==MEM_Int );
|
|
if( pIn1->u.i<0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IfZero P1 P2 * * *
|
|
**
|
|
** If the value of register P1 is exactly 0, jump to P2.
|
|
**
|
|
** It is illegal to use this instruction on a register that does
|
|
** not contain an integer. An assertion fault will result if you try.
|
|
*/
|
|
case OP_IfZero: { /* jump, in1 */
|
|
assert( pIn1->flags==MEM_Int );
|
|
if( pIn1->u.i==0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AggStep * P2 P3 P4 P5
|
|
**
|
|
** Execute the step function for an aggregate. The
|
|
** function has P5 arguments. P4 is a pointer to the FuncDef
|
|
** structure that specifies the function. Use register
|
|
** P3 as the accumulator.
|
|
**
|
|
** The P5 arguments are taken from register P2 and its
|
|
** successors.
|
|
*/
|
|
case OP_AggStep: {
|
|
int n = pOp->p5;
|
|
int i;
|
|
Mem *pMem, *pRec;
|
|
sqlite3_context ctx;
|
|
sqlite3_value **apVal;
|
|
|
|
assert( n>=0 );
|
|
pRec = &p->aMem[pOp->p2];
|
|
apVal = p->apArg;
|
|
assert( apVal || n==0 );
|
|
for(i=0; i<n; i++, pRec++){
|
|
apVal[i] = pRec;
|
|
storeTypeInfo(pRec, encoding);
|
|
}
|
|
ctx.pFunc = pOp->p4.pFunc;
|
|
assert( pOp->p3>0 && pOp->p3<=p->nMem );
|
|
ctx.pMem = pMem = &p->aMem[pOp->p3];
|
|
pMem->n++;
|
|
ctx.s.flags = MEM_Null;
|
|
ctx.s.z = 0;
|
|
ctx.s.xDel = 0;
|
|
ctx.s.db = db;
|
|
ctx.isError = 0;
|
|
ctx.pColl = 0;
|
|
if( ctx.pFunc->needCollSeq ){
|
|
assert( pOp>p->aOp );
|
|
assert( pOp[-1].p4type==P4_COLLSEQ );
|
|
assert( pOp[-1].opcode==OP_CollSeq );
|
|
ctx.pColl = pOp[-1].p4.pColl;
|
|
}
|
|
(ctx.pFunc->xStep)(&ctx, n, apVal);
|
|
if( ctx.isError ){
|
|
sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
sqlite3VdbeMemRelease(&ctx.s);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AggFinal P1 P2 * P4 *
|
|
**
|
|
** Execute the finalizer function for an aggregate. P1 is
|
|
** the memory location that is the accumulator for the aggregate.
|
|
**
|
|
** P2 is the number of arguments that the step function takes and
|
|
** P4 is a pointer to the FuncDef for this function. The P2
|
|
** argument is not used by this opcode. It is only there to disambiguate
|
|
** functions that can take varying numbers of arguments. The
|
|
** P4 argument is only needed for the degenerate case where
|
|
** the step function was not previously called.
|
|
*/
|
|
case OP_AggFinal: {
|
|
Mem *pMem;
|
|
assert( pOp->p1>0 && pOp->p1<=p->nMem );
|
|
pMem = &p->aMem[pOp->p1];
|
|
assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
|
|
rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
|
|
if( rc==SQLITE_ERROR ){
|
|
sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pMem), (char*)0);
|
|
}
|
|
UPDATE_MAX_BLOBSIZE(pMem);
|
|
if( sqlite3VdbeMemTooBig(pMem) ){
|
|
goto too_big;
|
|
}
|
|
break;
|
|
}
|
|
|
|
|
|
#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
|
|
/* Opcode: Vacuum * * * * *
|
|
**
|
|
** Vacuum the entire database. This opcode will cause other virtual
|
|
** machines to be created and run. It may not be called from within
|
|
** a transaction.
|
|
*/
|
|
case OP_Vacuum: {
|
|
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
rc = sqlite3RunVacuum(&p->zErrMsg, db);
|
|
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#if !defined(SQLITE_OMIT_AUTOVACUUM)
|
|
/* Opcode: IncrVacuum P1 P2 * * *
|
|
**
|
|
** Perform a single step of the incremental vacuum procedure on
|
|
** the P1 database. If the vacuum has finished, jump to instruction
|
|
** P2. Otherwise, fall through to the next instruction.
|
|
*/
|
|
case OP_IncrVacuum: { /* jump */
|
|
Btree *pBt;
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
assert( (p->btreeMask & (1<<pOp->p1))!=0 );
|
|
pBt = db->aDb[pOp->p1].pBt;
|
|
rc = sqlite3BtreeIncrVacuum(pBt);
|
|
if( rc==SQLITE_DONE ){
|
|
pc = pOp->p2 - 1;
|
|
rc = SQLITE_OK;
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
/* Opcode: Expire P1 * * * *
|
|
**
|
|
** Cause precompiled statements to become expired. An expired statement
|
|
** fails with an error code of SQLITE_SCHEMA if it is ever executed
|
|
** (via sqlite3_step()).
|
|
**
|
|
** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
|
|
** then only the currently executing statement is affected.
|
|
*/
|
|
case OP_Expire: {
|
|
if( !pOp->p1 ){
|
|
sqlite3ExpirePreparedStatements(db);
|
|
}else{
|
|
p->expired = 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
/* Opcode: TableLock P1 P2 * P4 *
|
|
**
|
|
** Obtain a lock on a particular table. This instruction is only used when
|
|
** the shared-cache feature is enabled.
|
|
**
|
|
** If P1 is not negative, then it is the index of the database
|
|
** in sqlite3.aDb[] and a read-lock is required. If P1 is negative, a
|
|
** write-lock is required. In this case the index of the database is the
|
|
** absolute value of P1 minus one (iDb = abs(P1) - 1;) and a write-lock is
|
|
** required.
|
|
**
|
|
** P2 contains the root-page of the table to lock.
|
|
**
|
|
** P4 contains a pointer to the name of the table being locked. This is only
|
|
** used to generate an error message if the lock cannot be obtained.
|
|
*/
|
|
case OP_TableLock: {
|
|
int p1 = pOp->p1;
|
|
u8 isWriteLock = (p1<0);
|
|
if( isWriteLock ){
|
|
p1 = (-1*p1)-1;
|
|
}
|
|
assert( p1>=0 && p1<db->nDb );
|
|
assert( (p->btreeMask & (1<<p1))!=0 );
|
|
rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
|
|
if( rc==SQLITE_LOCKED ){
|
|
const char *z = pOp->p4.z;
|
|
sqlite3SetString(&p->zErrMsg, "database table is locked: ", z, (char*)0);
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_SHARED_CACHE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VBegin * * * P4 *
|
|
**
|
|
** P4 a pointer to an sqlite3_vtab structure. Call the xBegin method
|
|
** for that table.
|
|
*/
|
|
case OP_VBegin: {
|
|
rc = sqlite3VtabBegin(db, pOp->p4.pVtab);
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VCreate P1 * * P4 *
|
|
**
|
|
** P4 is the name of a virtual table in database P1. Call the xCreate method
|
|
** for that table.
|
|
*/
|
|
case OP_VCreate: {
|
|
rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VDestroy P1 * * P4 *
|
|
**
|
|
** P4 is the name of a virtual table in database P1. Call the xDestroy method
|
|
** of that table.
|
|
*/
|
|
case OP_VDestroy: {
|
|
p->inVtabMethod = 2;
|
|
rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
|
|
p->inVtabMethod = 0;
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VOpen P1 * * P4 *
|
|
**
|
|
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
|
|
** P1 is a cursor number. This opcode opens a cursor to the virtual
|
|
** table and stores that cursor in P1.
|
|
*/
|
|
case OP_VOpen: {
|
|
Cursor *pCur = 0;
|
|
sqlite3_vtab_cursor *pVtabCursor = 0;
|
|
|
|
sqlite3_vtab *pVtab = pOp->p4.pVtab;
|
|
sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
|
|
|
|
assert(pVtab && pModule);
|
|
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
rc = pModule->xOpen(pVtab, &pVtabCursor);
|
|
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
if( SQLITE_OK==rc ){
|
|
/* Initialise sqlite3_vtab_cursor base class */
|
|
pVtabCursor->pVtab = pVtab;
|
|
|
|
/* Initialise vdbe cursor object */
|
|
pCur = allocateCursor(p, pOp->p1, -1);
|
|
if( pCur ){
|
|
pCur->pVtabCursor = pVtabCursor;
|
|
pCur->pModule = pVtabCursor->pVtab->pModule;
|
|
}else{
|
|
db->mallocFailed = 1;
|
|
pModule->xClose(pVtabCursor);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VFilter P1 P2 P3 P4 *
|
|
**
|
|
** P1 is a cursor opened using VOpen. P2 is an address to jump to if
|
|
** the filtered result set is empty.
|
|
**
|
|
** P4 is either NULL or a string that was generated by the xBestIndex
|
|
** method of the module. The interpretation of the P4 string is left
|
|
** to the module implementation.
|
|
**
|
|
** This opcode invokes the xFilter method on the virtual table specified
|
|
** by P1. The integer query plan parameter to xFilter is stored in register
|
|
** P3. Register P3+1 stores the argc parameter to be passed to the
|
|
** xFilter method. Registers P3+2..P3+1+argc are the argc additional
|
|
** parametersneath additional parameters which are passed to
|
|
** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
|
|
**
|
|
** A jump is made to P2 if the result set after filtering would be empty.
|
|
*/
|
|
case OP_VFilter: { /* jump */
|
|
int nArg;
|
|
int iQuery;
|
|
const sqlite3_module *pModule;
|
|
Mem *pQuery = &p->aMem[pOp->p3];
|
|
Mem *pArgc = &pQuery[1];
|
|
|
|
Cursor *pCur = p->apCsr[pOp->p1];
|
|
|
|
REGISTER_TRACE(pOp->p3, pQuery);
|
|
assert( pCur->pVtabCursor );
|
|
pModule = pCur->pVtabCursor->pVtab->pModule;
|
|
|
|
/* Grab the index number and argc parameters */
|
|
assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
|
|
nArg = pArgc->u.i;
|
|
iQuery = pQuery->u.i;
|
|
|
|
/* Invoke the xFilter method */
|
|
{
|
|
int res = 0;
|
|
int i;
|
|
Mem **apArg = p->apArg;
|
|
for(i = 0; i<nArg; i++){
|
|
apArg[i] = &pArgc[i+1];
|
|
storeTypeInfo(apArg[i], 0);
|
|
}
|
|
|
|
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
p->inVtabMethod = 1;
|
|
rc = pModule->xFilter(pCur->pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
|
|
p->inVtabMethod = 0;
|
|
if( rc==SQLITE_OK ){
|
|
res = pModule->xEof(pCur->pVtabCursor);
|
|
}
|
|
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
|
|
if( res ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VRowid P1 P2 * * *
|
|
**
|
|
** Store into register P2 the rowid of
|
|
** the virtual-table that the P1 cursor is pointing to.
|
|
*/
|
|
case OP_VRowid: { /* out2-prerelease */
|
|
const sqlite3_module *pModule;
|
|
sqlite_int64 iRow;
|
|
Cursor *pCur = p->apCsr[pOp->p1];
|
|
|
|
assert( pCur->pVtabCursor );
|
|
if( pCur->nullRow ){
|
|
break;
|
|
}
|
|
pModule = pCur->pVtabCursor->pVtab->pModule;
|
|
assert( pModule->xRowid );
|
|
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
rc = pModule->xRowid(pCur->pVtabCursor, &iRow);
|
|
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
pOut->flags = MEM_Int;
|
|
pOut->u.i = iRow;
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VColumn P1 P2 P3 * *
|
|
**
|
|
** Store the value of the P2-th column of
|
|
** the row of the virtual-table that the
|
|
** P1 cursor is pointing to into register P3.
|
|
*/
|
|
case OP_VColumn: {
|
|
const sqlite3_module *pModule;
|
|
Mem *pDest;
|
|
sqlite3_context sContext;
|
|
|
|
Cursor *pCur = p->apCsr[pOp->p1];
|
|
assert( pCur->pVtabCursor );
|
|
assert( pOp->p3>0 && pOp->p3<=p->nMem );
|
|
pDest = &p->aMem[pOp->p3];
|
|
if( pCur->nullRow ){
|
|
sqlite3VdbeMemSetNull(pDest);
|
|
break;
|
|
}
|
|
pModule = pCur->pVtabCursor->pVtab->pModule;
|
|
assert( pModule->xColumn );
|
|
memset(&sContext, 0, sizeof(sContext));
|
|
sContext.s.flags = MEM_Null;
|
|
sContext.s.db = db;
|
|
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
|
|
|
|
/* Copy the result of the function to the P3 register. We
|
|
** do this regardless of whether or not an error occured to ensure any
|
|
** dynamic allocation in sContext.s (a Mem struct) is released.
|
|
*/
|
|
sqlite3VdbeChangeEncoding(&sContext.s, encoding);
|
|
REGISTER_TRACE(pOp->p3, pDest);
|
|
sqlite3VdbeMemMove(pDest, &sContext.s);
|
|
UPDATE_MAX_BLOBSIZE(pDest);
|
|
|
|
if( sqlite3SafetyOn(db) ){
|
|
goto abort_due_to_misuse;
|
|
}
|
|
if( sqlite3VdbeMemTooBig(pDest) ){
|
|
goto too_big;
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VNext P1 P2 * * *
|
|
**
|
|
** Advance virtual table P1 to the next row in its result set and
|
|
** jump to instruction P2. Or, if the virtual table has reached
|
|
** the end of its result set, then fall through to the next instruction.
|
|
*/
|
|
case OP_VNext: { /* jump */
|
|
const sqlite3_module *pModule;
|
|
int res = 0;
|
|
|
|
Cursor *pCur = p->apCsr[pOp->p1];
|
|
assert( pCur->pVtabCursor );
|
|
if( pCur->nullRow ){
|
|
break;
|
|
}
|
|
pModule = pCur->pVtabCursor->pVtab->pModule;
|
|
assert( pModule->xNext );
|
|
|
|
/* Invoke the xNext() method of the module. There is no way for the
|
|
** underlying implementation to return an error if one occurs during
|
|
** xNext(). Instead, if an error occurs, true is returned (indicating that
|
|
** data is available) and the error code returned when xColumn or
|
|
** some other method is next invoked on the save virtual table cursor.
|
|
*/
|
|
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
p->inVtabMethod = 1;
|
|
rc = pModule->xNext(pCur->pVtabCursor);
|
|
p->inVtabMethod = 0;
|
|
if( rc==SQLITE_OK ){
|
|
res = pModule->xEof(pCur->pVtabCursor);
|
|
}
|
|
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
|
|
if( !res ){
|
|
/* If there is data, jump to P2 */
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VRename P1 * * P4 *
|
|
**
|
|
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
|
|
** This opcode invokes the corresponding xRename method. The value
|
|
** in register P1 is passed as the zName argument to the xRename method.
|
|
*/
|
|
case OP_VRename: {
|
|
sqlite3_vtab *pVtab = pOp->p4.pVtab;
|
|
Mem *pName = &p->aMem[pOp->p1];
|
|
assert( pVtab->pModule->xRename );
|
|
REGISTER_TRACE(pOp->p1, pName);
|
|
|
|
Stringify(pName, encoding);
|
|
|
|
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
sqlite3VtabLock(pVtab);
|
|
rc = pVtab->pModule->xRename(pVtab, pName->z);
|
|
sqlite3VtabUnlock(db, pVtab);
|
|
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VUpdate P1 P2 P3 P4 *
|
|
**
|
|
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
|
|
** This opcode invokes the corresponding xUpdate method. P2 values
|
|
** are contiguous memory cells starting at P3 to pass to the xUpdate
|
|
** invocation. The value in register (P3+P2-1) corresponds to the
|
|
** p2th element of the argv array passed to xUpdate.
|
|
**
|
|
** The xUpdate method will do a DELETE or an INSERT or both.
|
|
** The argv[0] element (which corresponds to memory cell P3)
|
|
** is the rowid of a row to delete. If argv[0] is NULL then no
|
|
** deletion occurs. The argv[1] element is the rowid of the new
|
|
** row. This can be NULL to have the virtual table select the new
|
|
** rowid for itself. The subsequent elements in the array are
|
|
** the values of columns in the new row.
|
|
**
|
|
** If P2==1 then no insert is performed. argv[0] is the rowid of
|
|
** a row to delete.
|
|
**
|
|
** P1 is a boolean flag. If it is set to true and the xUpdate call
|
|
** is successful, then the value returned by sqlite3_last_insert_rowid()
|
|
** is set to the value of the rowid for the row just inserted.
|
|
*/
|
|
case OP_VUpdate: {
|
|
sqlite3_vtab *pVtab = pOp->p4.pVtab;
|
|
sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
|
|
int nArg = pOp->p2;
|
|
assert( pOp->p4type==P4_VTAB );
|
|
if( pModule->xUpdate==0 ){
|
|
sqlite3SetString(&p->zErrMsg, "read-only table", 0);
|
|
rc = SQLITE_ERROR;
|
|
}else{
|
|
int i;
|
|
sqlite_int64 rowid;
|
|
Mem **apArg = p->apArg;
|
|
Mem *pX = &p->aMem[pOp->p3];
|
|
for(i=0; i<nArg; i++){
|
|
storeTypeInfo(pX, 0);
|
|
apArg[i] = pX;
|
|
pX++;
|
|
}
|
|
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
|
sqlite3VtabLock(pVtab);
|
|
rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
|
|
sqlite3VtabUnlock(db, pVtab);
|
|
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
|
if( pOp->p1 && rc==SQLITE_OK ){
|
|
assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
|
|
db->lastRowid = rowid;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_TRACE
|
|
/* Opcode: Trace * * * P4 *
|
|
**
|
|
** If tracing is enabled (by the sqlite3_trace()) interface, then
|
|
** the UTF-8 string contained in P4 is emitted on the trace callback.
|
|
*/
|
|
case OP_Trace: {
|
|
if( pOp->p4.z ){
|
|
if( db->xTrace ){
|
|
db->xTrace(db->pTraceArg, pOp->p4.z);
|
|
}
|
|
#ifdef SQLITE_DEBUG
|
|
if( (db->flags & SQLITE_SqlTrace)!=0 ){
|
|
sqlite3DebugPrintf("SQL-trace: %s\n", pOp->p4.z);
|
|
}
|
|
#endif /* SQLITE_DEBUG */
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Opcode: Noop * * * * *
|
|
**
|
|
** Do nothing. This instruction is often useful as a jump
|
|
** destination.
|
|
*/
|
|
/*
|
|
** The magic Explain opcode are only inserted when explain==2 (which
|
|
** is to say when the EXPLAIN QUERY PLAN syntax is used.)
|
|
** This opcode records information from the optimizer. It is the
|
|
** the same as a no-op. This opcodesnever appears in a real VM program.
|
|
*/
|
|
default: { /* This is really OP_Noop and OP_Explain */
|
|
break;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
** The cases of the switch statement above this line should all be indented
|
|
** by 6 spaces. But the left-most 6 spaces have been removed to improve the
|
|
** readability. From this point on down, the normal indentation rules are
|
|
** restored.
|
|
*****************************************************************************/
|
|
}
|
|
|
|
#ifdef VDBE_PROFILE
|
|
{
|
|
long long elapse = hwtime() - start;
|
|
pOp->cycles += elapse;
|
|
pOp->cnt++;
|
|
#if 0
|
|
fprintf(stdout, "%10lld ", elapse);
|
|
sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/* The following code adds nothing to the actual functionality
|
|
** of the program. It is only here for testing and debugging.
|
|
** On the other hand, it does burn CPU cycles every time through
|
|
** the evaluator loop. So we can leave it out when NDEBUG is defined.
|
|
*/
|
|
#ifndef NDEBUG
|
|
assert( pc>=-1 && pc<p->nOp );
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
if( p->trace ){
|
|
if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
|
|
if( opProperty & OPFLG_OUT2_PRERELEASE ){
|
|
registerTrace(p->trace, pOp->p2, pOut);
|
|
}
|
|
if( opProperty & OPFLG_OUT3 ){
|
|
registerTrace(p->trace, pOp->p3, pOut);
|
|
}
|
|
}
|
|
#endif /* SQLITE_DEBUG */
|
|
#endif /* NDEBUG */
|
|
} /* The end of the for(;;) loop the loops through opcodes */
|
|
|
|
/* If we reach this point, it means that execution is finished with
|
|
** an error of some kind.
|
|
*/
|
|
vdbe_error_halt:
|
|
assert( rc );
|
|
p->rc = rc;
|
|
rc = SQLITE_ERROR;
|
|
sqlite3VdbeHalt(p);
|
|
|
|
/* This is the only way out of this procedure. We have to
|
|
** release the mutexes on btrees that were acquired at the
|
|
** top. */
|
|
vdbe_return:
|
|
sqlite3BtreeMutexArrayLeave(&p->aMutex);
|
|
return rc;
|
|
|
|
/* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
|
|
** is encountered.
|
|
*/
|
|
too_big:
|
|
sqlite3SetString(&p->zErrMsg, "string or blob too big", (char*)0);
|
|
rc = SQLITE_TOOBIG;
|
|
goto vdbe_error_halt;
|
|
|
|
/* Jump to here if a malloc() fails.
|
|
*/
|
|
no_mem:
|
|
db->mallocFailed = 1;
|
|
sqlite3SetString(&p->zErrMsg, "out of memory", (char*)0);
|
|
rc = SQLITE_NOMEM;
|
|
goto vdbe_error_halt;
|
|
|
|
/* Jump to here for an SQLITE_MISUSE error.
|
|
*/
|
|
abort_due_to_misuse:
|
|
rc = SQLITE_MISUSE;
|
|
/* Fall thru into abort_due_to_error */
|
|
|
|
/* Jump to here for any other kind of fatal error. The "rc" variable
|
|
** should hold the error number.
|
|
*/
|
|
abort_due_to_error:
|
|
assert( p->zErrMsg==0 );
|
|
if( db->mallocFailed ) rc = SQLITE_NOMEM;
|
|
sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
|
|
goto vdbe_error_halt;
|
|
|
|
/* Jump to here if the sqlite3_interrupt() API sets the interrupt
|
|
** flag.
|
|
*/
|
|
abort_due_to_interrupt:
|
|
assert( db->u1.isInterrupted );
|
|
rc = SQLITE_INTERRUPT;
|
|
p->rc = rc;
|
|
sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
|
|
goto vdbe_error_halt;
|
|
}
|
|
|
|
/************** End of vdbe.c ************************************************/
|
|
/************** Begin file vdbeblob.c ****************************************/
|
|
/*
|
|
** 2007 May 1
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
**
|
|
** This file contains code used to implement incremental BLOB I/O.
|
|
**
|
|
** $Id: vdbeblob.c,v 1.20 2008/01/25 15:04:50 drh Exp $
|
|
*/
|
|
|
|
|
|
#ifndef SQLITE_OMIT_INCRBLOB
|
|
|
|
/*
|
|
** Valid sqlite3_blob* handles point to Incrblob structures.
|
|
*/
|
|
typedef struct Incrblob Incrblob;
|
|
struct Incrblob {
|
|
int flags; /* Copy of "flags" passed to sqlite3_blob_open() */
|
|
int nByte; /* Size of open blob, in bytes */
|
|
int iOffset; /* Byte offset of blob in cursor data */
|
|
BtCursor *pCsr; /* Cursor pointing at blob row */
|
|
sqlite3_stmt *pStmt; /* Statement holding cursor open */
|
|
sqlite3 *db; /* The associated database */
|
|
};
|
|
|
|
/*
|
|
** Open a blob handle.
|
|
*/
|
|
SQLITE_API int sqlite3_blob_open(
|
|
sqlite3* db, /* The database connection */
|
|
const char *zDb, /* The attached database containing the blob */
|
|
const char *zTable, /* The table containing the blob */
|
|
const char *zColumn, /* The column containing the blob */
|
|
sqlite_int64 iRow, /* The row containing the glob */
|
|
int flags, /* True -> read/write access, false -> read-only */
|
|
sqlite3_blob **ppBlob /* Handle for accessing the blob returned here */
|
|
){
|
|
int nAttempt = 0;
|
|
int iCol; /* Index of zColumn in row-record */
|
|
|
|
/* This VDBE program seeks a btree cursor to the identified
|
|
** db/table/row entry. The reason for using a vdbe program instead
|
|
** of writing code to use the b-tree layer directly is that the
|
|
** vdbe program will take advantage of the various transaction,
|
|
** locking and error handling infrastructure built into the vdbe.
|
|
**
|
|
** After seeking the cursor, the vdbe executes an OP_ResultRow.
|
|
** Code external to the Vdbe then "borrows" the b-tree cursor and
|
|
** uses it to implement the blob_read(), blob_write() and
|
|
** blob_bytes() functions.
|
|
**
|
|
** The sqlite3_blob_close() function finalizes the vdbe program,
|
|
** which closes the b-tree cursor and (possibly) commits the
|
|
** transaction.
|
|
*/
|
|
static const VdbeOpList openBlob[] = {
|
|
{OP_Transaction, 0, 0, 0}, /* 0: Start a transaction */
|
|
{OP_VerifyCookie, 0, 0, 0}, /* 1: Check the schema cookie */
|
|
|
|
/* One of the following two instructions is replaced by an
|
|
** OP_Noop before exection.
|
|
*/
|
|
{OP_OpenRead, 0, 0, 0}, /* 2: Open cursor 0 for reading */
|
|
{OP_OpenWrite, 0, 0, 0}, /* 3: Open cursor 0 for read/write */
|
|
{OP_SetNumColumns, 0, 0, 0}, /* 4: Num cols for cursor */
|
|
|
|
{OP_Variable, 1, 1, 0}, /* 5: Push the rowid to the stack */
|
|
{OP_NotExists, 0, 10, 1}, /* 6: Seek the cursor */
|
|
{OP_Column, 0, 0, 1}, /* 7 */
|
|
{OP_ResultRow, 1, 0, 0}, /* 8 */
|
|
{OP_Close, 0, 0, 0}, /* 9 */
|
|
{OP_Halt, 0, 0, 0}, /* 10 */
|
|
};
|
|
|
|
Vdbe *v = 0;
|
|
int rc = SQLITE_OK;
|
|
char zErr[128];
|
|
|
|
zErr[0] = 0;
|
|
sqlite3_mutex_enter(db->mutex);
|
|
do {
|
|
Parse sParse;
|
|
Table *pTab;
|
|
|
|
memset(&sParse, 0, sizeof(Parse));
|
|
sParse.db = db;
|
|
|
|
rc = sqlite3SafetyOn(db);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
sqlite3BtreeEnterAll(db);
|
|
pTab = sqlite3LocateTable(&sParse, 0, zTable, zDb);
|
|
if( !pTab ){
|
|
if( sParse.zErrMsg ){
|
|
sqlite3_snprintf(sizeof(zErr), zErr, "%s", sParse.zErrMsg);
|
|
}
|
|
sqlite3_free(sParse.zErrMsg);
|
|
rc = SQLITE_ERROR;
|
|
(void)sqlite3SafetyOff(db);
|
|
sqlite3BtreeLeaveAll(db);
|
|
goto blob_open_out;
|
|
}
|
|
|
|
/* Now search pTab for the exact column. */
|
|
for(iCol=0; iCol < pTab->nCol; iCol++) {
|
|
if( sqlite3StrICmp(pTab->aCol[iCol].zName, zColumn)==0 ){
|
|
break;
|
|
}
|
|
}
|
|
if( iCol==pTab->nCol ){
|
|
sqlite3_snprintf(sizeof(zErr), zErr, "no such column: \"%s\"", zColumn);
|
|
rc = SQLITE_ERROR;
|
|
(void)sqlite3SafetyOff(db);
|
|
sqlite3BtreeLeaveAll(db);
|
|
goto blob_open_out;
|
|
}
|
|
|
|
/* If the value is being opened for writing, check that the
|
|
** column is not indexed. It is against the rules to open an
|
|
** indexed column for writing.
|
|
*/
|
|
if( flags ){
|
|
Index *pIdx;
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
int j;
|
|
for(j=0; j<pIdx->nColumn; j++){
|
|
if( pIdx->aiColumn[j]==iCol ){
|
|
sqlite3_snprintf(sizeof(zErr), zErr,
|
|
"cannot open indexed column for writing");
|
|
rc = SQLITE_ERROR;
|
|
(void)sqlite3SafetyOff(db);
|
|
sqlite3BtreeLeaveAll(db);
|
|
goto blob_open_out;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
v = sqlite3VdbeCreate(db);
|
|
if( v ){
|
|
int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
sqlite3VdbeAddOpList(v, sizeof(openBlob)/sizeof(VdbeOpList), openBlob);
|
|
|
|
/* Configure the OP_Transaction */
|
|
sqlite3VdbeChangeP1(v, 0, iDb);
|
|
sqlite3VdbeChangeP2(v, 0, (flags ? 1 : 0));
|
|
|
|
/* Configure the OP_VerifyCookie */
|
|
sqlite3VdbeChangeP1(v, 1, iDb);
|
|
sqlite3VdbeChangeP2(v, 1, pTab->pSchema->schema_cookie);
|
|
|
|
/* Make sure a mutex is held on the table to be accessed */
|
|
sqlite3VdbeUsesBtree(v, iDb);
|
|
|
|
/* Remove either the OP_OpenWrite or OpenRead. Set the P2
|
|
** parameter of the other to pTab->tnum.
|
|
*/
|
|
sqlite3VdbeChangeToNoop(v, (flags ? 2 : 3), 1);
|
|
sqlite3VdbeChangeP2(v, (flags ? 3 : 2), pTab->tnum);
|
|
sqlite3VdbeChangeP3(v, (flags ? 3 : 2), iDb);
|
|
|
|
/* Configure the OP_SetNumColumns. Configure the cursor to
|
|
** think that the table has one more column than it really
|
|
** does. An OP_Column to retrieve this imaginary column will
|
|
** always return an SQL NULL. This is useful because it means
|
|
** we can invoke OP_Column to fill in the vdbe cursors type
|
|
** and offset cache without causing any IO.
|
|
*/
|
|
sqlite3VdbeChangeP2(v, 4, pTab->nCol+1);
|
|
if( !db->mallocFailed ){
|
|
sqlite3VdbeMakeReady(v, 1, 1, 1, 0);
|
|
}
|
|
}
|
|
|
|
sqlite3BtreeLeaveAll(db);
|
|
rc = sqlite3SafetyOff(db);
|
|
if( rc!=SQLITE_OK || db->mallocFailed ){
|
|
goto blob_open_out;
|
|
}
|
|
|
|
sqlite3_bind_int64((sqlite3_stmt *)v, 1, iRow);
|
|
rc = sqlite3_step((sqlite3_stmt *)v);
|
|
if( rc!=SQLITE_ROW ){
|
|
nAttempt++;
|
|
rc = sqlite3_finalize((sqlite3_stmt *)v);
|
|
sqlite3_snprintf(sizeof(zErr), zErr, sqlite3_errmsg(db));
|
|
v = 0;
|
|
}
|
|
} while( nAttempt<5 && rc==SQLITE_SCHEMA );
|
|
|
|
if( rc==SQLITE_ROW ){
|
|
/* The row-record has been opened successfully. Check that the
|
|
** column in question contains text or a blob. If it contains
|
|
** text, it is up to the caller to get the encoding right.
|
|
*/
|
|
Incrblob *pBlob;
|
|
u32 type = v->apCsr[0]->aType[iCol];
|
|
|
|
if( type<12 ){
|
|
sqlite3_snprintf(sizeof(zErr), zErr, "cannot open value of type %s",
|
|
type==0?"null": type==7?"real": "integer"
|
|
);
|
|
rc = SQLITE_ERROR;
|
|
goto blob_open_out;
|
|
}
|
|
pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob));
|
|
if( db->mallocFailed ){
|
|
sqlite3_free(pBlob);
|
|
goto blob_open_out;
|
|
}
|
|
pBlob->flags = flags;
|
|
pBlob->pCsr = v->apCsr[0]->pCursor;
|
|
sqlite3BtreeEnterCursor(pBlob->pCsr);
|
|
sqlite3BtreeCacheOverflow(pBlob->pCsr);
|
|
sqlite3BtreeLeaveCursor(pBlob->pCsr);
|
|
pBlob->pStmt = (sqlite3_stmt *)v;
|
|
pBlob->iOffset = v->apCsr[0]->aOffset[iCol];
|
|
pBlob->nByte = sqlite3VdbeSerialTypeLen(type);
|
|
pBlob->db = db;
|
|
*ppBlob = (sqlite3_blob *)pBlob;
|
|
rc = SQLITE_OK;
|
|
}else if( rc==SQLITE_OK ){
|
|
sqlite3_snprintf(sizeof(zErr), zErr, "no such rowid: %lld", iRow);
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
|
|
blob_open_out:
|
|
zErr[sizeof(zErr)-1] = '\0';
|
|
if( rc!=SQLITE_OK || db->mallocFailed ){
|
|
sqlite3_finalize((sqlite3_stmt *)v);
|
|
}
|
|
sqlite3Error(db, rc, (rc==SQLITE_OK?0:zErr));
|
|
rc = sqlite3ApiExit(db, rc);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Close a blob handle that was previously created using
|
|
** sqlite3_blob_open().
|
|
*/
|
|
SQLITE_API int sqlite3_blob_close(sqlite3_blob *pBlob){
|
|
Incrblob *p = (Incrblob *)pBlob;
|
|
int rc;
|
|
|
|
rc = sqlite3_finalize(p->pStmt);
|
|
sqlite3_free(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Perform a read or write operation on a blob
|
|
*/
|
|
static int blobReadWrite(
|
|
sqlite3_blob *pBlob,
|
|
void *z,
|
|
int n,
|
|
int iOffset,
|
|
int (*xCall)(BtCursor*, u32, u32, void*)
|
|
){
|
|
int rc;
|
|
Incrblob *p = (Incrblob *)pBlob;
|
|
Vdbe *v;
|
|
sqlite3 *db = p->db;
|
|
|
|
/* Request is out of range. Return a transient error. */
|
|
if( (iOffset+n)>p->nByte ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
sqlite3_mutex_enter(db->mutex);
|
|
|
|
/* If there is no statement handle, then the blob-handle has
|
|
** already been invalidated. Return SQLITE_ABORT in this case.
|
|
*/
|
|
v = (Vdbe*)p->pStmt;
|
|
if( v==0 ){
|
|
rc = SQLITE_ABORT;
|
|
}else{
|
|
/* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is
|
|
** returned, clean-up the statement handle.
|
|
*/
|
|
assert( db == v->db );
|
|
sqlite3BtreeEnterCursor(p->pCsr);
|
|
rc = xCall(p->pCsr, iOffset+p->iOffset, n, z);
|
|
sqlite3BtreeLeaveCursor(p->pCsr);
|
|
if( rc==SQLITE_ABORT ){
|
|
sqlite3VdbeFinalize(v);
|
|
p->pStmt = 0;
|
|
}else{
|
|
db->errCode = rc;
|
|
v->rc = rc;
|
|
}
|
|
}
|
|
rc = sqlite3ApiExit(db, rc);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Read data from a blob handle.
|
|
*/
|
|
SQLITE_API int sqlite3_blob_read(sqlite3_blob *pBlob, void *z, int n, int iOffset){
|
|
return blobReadWrite(pBlob, z, n, iOffset, sqlite3BtreeData);
|
|
}
|
|
|
|
/*
|
|
** Write data to a blob handle.
|
|
*/
|
|
SQLITE_API int sqlite3_blob_write(sqlite3_blob *pBlob, const void *z, int n, int iOffset){
|
|
return blobReadWrite(pBlob, (void *)z, n, iOffset, sqlite3BtreePutData);
|
|
}
|
|
|
|
/*
|
|
** Query a blob handle for the size of the data.
|
|
**
|
|
** The Incrblob.nByte field is fixed for the lifetime of the Incrblob
|
|
** so no mutex is required for access.
|
|
*/
|
|
SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *pBlob){
|
|
Incrblob *p = (Incrblob *)pBlob;
|
|
return p->nByte;
|
|
}
|
|
|
|
#endif /* #ifndef SQLITE_OMIT_INCRBLOB */
|
|
|
|
/************** End of vdbeblob.c ********************************************/
|
|
/************** Begin file journal.c *****************************************/
|
|
/*
|
|
** 2007 August 22
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
**
|
|
** @(#) $Id: journal.c,v 1.7 2007/09/06 13:49:37 drh Exp $
|
|
*/
|
|
|
|
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
|
|
|
|
/*
|
|
** This file implements a special kind of sqlite3_file object used
|
|
** by SQLite to create journal files if the atomic-write optimization
|
|
** is enabled.
|
|
**
|
|
** The distinctive characteristic of this sqlite3_file is that the
|
|
** actual on disk file is created lazily. When the file is created,
|
|
** the caller specifies a buffer size for an in-memory buffer to
|
|
** be used to service read() and write() requests. The actual file
|
|
** on disk is not created or populated until either:
|
|
**
|
|
** 1) The in-memory representation grows too large for the allocated
|
|
** buffer, or
|
|
** 2) The xSync() method is called.
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
** A JournalFile object is a subclass of sqlite3_file used by
|
|
** as an open file handle for journal files.
|
|
*/
|
|
struct JournalFile {
|
|
sqlite3_io_methods *pMethod; /* I/O methods on journal files */
|
|
int nBuf; /* Size of zBuf[] in bytes */
|
|
char *zBuf; /* Space to buffer journal writes */
|
|
int iSize; /* Amount of zBuf[] currently used */
|
|
int flags; /* xOpen flags */
|
|
sqlite3_vfs *pVfs; /* The "real" underlying VFS */
|
|
sqlite3_file *pReal; /* The "real" underlying file descriptor */
|
|
const char *zJournal; /* Name of the journal file */
|
|
};
|
|
typedef struct JournalFile JournalFile;
|
|
|
|
/*
|
|
** If it does not already exists, create and populate the on-disk file
|
|
** for JournalFile p.
|
|
*/
|
|
static int createFile(JournalFile *p){
|
|
int rc = SQLITE_OK;
|
|
if( !p->pReal ){
|
|
sqlite3_file *pReal = (sqlite3_file *)&p[1];
|
|
rc = sqlite3OsOpen(p->pVfs, p->zJournal, pReal, p->flags, 0);
|
|
if( rc==SQLITE_OK ){
|
|
p->pReal = pReal;
|
|
if( p->iSize>0 ){
|
|
assert(p->iSize<=p->nBuf);
|
|
rc = sqlite3OsWrite(p->pReal, p->zBuf, p->iSize, 0);
|
|
}
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Close the file.
|
|
*/
|
|
static int jrnlClose(sqlite3_file *pJfd){
|
|
JournalFile *p = (JournalFile *)pJfd;
|
|
if( p->pReal ){
|
|
sqlite3OsClose(p->pReal);
|
|
}
|
|
sqlite3_free(p->zBuf);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Read data from the file.
|
|
*/
|
|
static int jrnlRead(
|
|
sqlite3_file *pJfd, /* The journal file from which to read */
|
|
void *zBuf, /* Put the results here */
|
|
int iAmt, /* Number of bytes to read */
|
|
sqlite_int64 iOfst /* Begin reading at this offset */
|
|
){
|
|
int rc = SQLITE_OK;
|
|
JournalFile *p = (JournalFile *)pJfd;
|
|
if( p->pReal ){
|
|
rc = sqlite3OsRead(p->pReal, zBuf, iAmt, iOfst);
|
|
}else{
|
|
assert( iAmt+iOfst<=p->iSize );
|
|
memcpy(zBuf, &p->zBuf[iOfst], iAmt);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Write data to the file.
|
|
*/
|
|
static int jrnlWrite(
|
|
sqlite3_file *pJfd, /* The journal file into which to write */
|
|
const void *zBuf, /* Take data to be written from here */
|
|
int iAmt, /* Number of bytes to write */
|
|
sqlite_int64 iOfst /* Begin writing at this offset into the file */
|
|
){
|
|
int rc = SQLITE_OK;
|
|
JournalFile *p = (JournalFile *)pJfd;
|
|
if( !p->pReal && (iOfst+iAmt)>p->nBuf ){
|
|
rc = createFile(p);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
if( p->pReal ){
|
|
rc = sqlite3OsWrite(p->pReal, zBuf, iAmt, iOfst);
|
|
}else{
|
|
memcpy(&p->zBuf[iOfst], zBuf, iAmt);
|
|
if( p->iSize<(iOfst+iAmt) ){
|
|
p->iSize = (iOfst+iAmt);
|
|
}
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Truncate the file.
|
|
*/
|
|
static int jrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){
|
|
int rc = SQLITE_OK;
|
|
JournalFile *p = (JournalFile *)pJfd;
|
|
if( p->pReal ){
|
|
rc = sqlite3OsTruncate(p->pReal, size);
|
|
}else if( size<p->iSize ){
|
|
p->iSize = size;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Sync the file.
|
|
*/
|
|
static int jrnlSync(sqlite3_file *pJfd, int flags){
|
|
int rc;
|
|
JournalFile *p = (JournalFile *)pJfd;
|
|
rc = createFile(p);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3OsSync(p->pReal, flags);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Query the size of the file in bytes.
|
|
*/
|
|
static int jrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){
|
|
int rc = SQLITE_OK;
|
|
JournalFile *p = (JournalFile *)pJfd;
|
|
if( p->pReal ){
|
|
rc = sqlite3OsFileSize(p->pReal, pSize);
|
|
}else{
|
|
*pSize = (sqlite_int64) p->iSize;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Table of methods for JournalFile sqlite3_file object.
|
|
*/
|
|
static struct sqlite3_io_methods JournalFileMethods = {
|
|
1, /* iVersion */
|
|
jrnlClose, /* xClose */
|
|
jrnlRead, /* xRead */
|
|
jrnlWrite, /* xWrite */
|
|
jrnlTruncate, /* xTruncate */
|
|
jrnlSync, /* xSync */
|
|
jrnlFileSize, /* xFileSize */
|
|
0, /* xLock */
|
|
0, /* xUnlock */
|
|
0, /* xCheckReservedLock */
|
|
0, /* xFileControl */
|
|
0, /* xSectorSize */
|
|
0 /* xDeviceCharacteristics */
|
|
};
|
|
|
|
/*
|
|
** Open a journal file.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3JournalOpen(
|
|
sqlite3_vfs *pVfs, /* The VFS to use for actual file I/O */
|
|
const char *zName, /* Name of the journal file */
|
|
sqlite3_file *pJfd, /* Preallocated, blank file handle */
|
|
int flags, /* Opening flags */
|
|
int nBuf /* Bytes buffered before opening the file */
|
|
){
|
|
JournalFile *p = (JournalFile *)pJfd;
|
|
memset(p, 0, sqlite3JournalSize(pVfs));
|
|
if( nBuf>0 ){
|
|
p->zBuf = sqlite3MallocZero(nBuf);
|
|
if( !p->zBuf ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
}else{
|
|
return sqlite3OsOpen(pVfs, zName, pJfd, flags, 0);
|
|
}
|
|
p->pMethod = &JournalFileMethods;
|
|
p->nBuf = nBuf;
|
|
p->flags = flags;
|
|
p->zJournal = zName;
|
|
p->pVfs = pVfs;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** If the argument p points to a JournalFile structure, and the underlying
|
|
** file has not yet been created, create it now.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *p){
|
|
if( p->pMethods!=&JournalFileMethods ){
|
|
return SQLITE_OK;
|
|
}
|
|
return createFile((JournalFile *)p);
|
|
}
|
|
|
|
/*
|
|
** Return the number of bytes required to store a JournalFile that uses vfs
|
|
** pVfs to create the underlying on-disk files.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *pVfs){
|
|
return (pVfs->szOsFile+sizeof(JournalFile));
|
|
}
|
|
#endif
|
|
|
|
/************** End of journal.c *********************************************/
|
|
/************** Begin file expr.c ********************************************/
|
|
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains routines used for analyzing expressions and
|
|
** for generating VDBE code that evaluates expressions in SQLite.
|
|
**
|
|
** $Id: expr.c,v 1.352 2008/01/23 14:51:49 drh Exp $
|
|
*/
|
|
|
|
/*
|
|
** Return the 'affinity' of the expression pExpr if any.
|
|
**
|
|
** If pExpr is a column, a reference to a column via an 'AS' alias,
|
|
** or a sub-select with a column as the return value, then the
|
|
** affinity of that column is returned. Otherwise, 0x00 is returned,
|
|
** indicating no affinity for the expression.
|
|
**
|
|
** i.e. the WHERE clause expresssions in the following statements all
|
|
** have an affinity:
|
|
**
|
|
** CREATE TABLE t1(a);
|
|
** SELECT * FROM t1 WHERE a;
|
|
** SELECT a AS b FROM t1 WHERE b;
|
|
** SELECT * FROM t1 WHERE (select a from t1);
|
|
*/
|
|
SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr){
|
|
int op = pExpr->op;
|
|
if( op==TK_SELECT ){
|
|
return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
|
|
}
|
|
#ifndef SQLITE_OMIT_CAST
|
|
if( op==TK_CAST ){
|
|
return sqlite3AffinityType(&pExpr->token);
|
|
}
|
|
#endif
|
|
return pExpr->affinity;
|
|
}
|
|
|
|
/*
|
|
** Set the collating sequence for expression pExpr to be the collating
|
|
** sequence named by pToken. Return a pointer to the revised expression.
|
|
** The collating sequence is marked as "explicit" using the EP_ExpCollate
|
|
** flag. An explicit collating sequence will override implicit
|
|
** collating sequences.
|
|
*/
|
|
SQLITE_PRIVATE Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){
|
|
char *zColl = 0; /* Dequoted name of collation sequence */
|
|
CollSeq *pColl;
|
|
zColl = sqlite3NameFromToken(pParse->db, pName);
|
|
if( pExpr && zColl ){
|
|
pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
|
|
if( pColl ){
|
|
pExpr->pColl = pColl;
|
|
pExpr->flags |= EP_ExpCollate;
|
|
}
|
|
}
|
|
sqlite3_free(zColl);
|
|
return pExpr;
|
|
}
|
|
|
|
/*
|
|
** Return the default collation sequence for the expression pExpr. If
|
|
** there is no default collation type, return 0.
|
|
*/
|
|
SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
|
|
CollSeq *pColl = 0;
|
|
if( pExpr ){
|
|
int op;
|
|
pColl = pExpr->pColl;
|
|
op = pExpr->op;
|
|
if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){
|
|
return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
|
|
}
|
|
}
|
|
if( sqlite3CheckCollSeq(pParse, pColl) ){
|
|
pColl = 0;
|
|
}
|
|
return pColl;
|
|
}
|
|
|
|
/*
|
|
** pExpr is an operand of a comparison operator. aff2 is the
|
|
** type affinity of the other operand. This routine returns the
|
|
** type affinity that should be used for the comparison operator.
|
|
*/
|
|
SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2){
|
|
char aff1 = sqlite3ExprAffinity(pExpr);
|
|
if( aff1 && aff2 ){
|
|
/* Both sides of the comparison are columns. If one has numeric
|
|
** affinity, use that. Otherwise use no affinity.
|
|
*/
|
|
if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
|
|
return SQLITE_AFF_NUMERIC;
|
|
}else{
|
|
return SQLITE_AFF_NONE;
|
|
}
|
|
}else if( !aff1 && !aff2 ){
|
|
/* Neither side of the comparison is a column. Compare the
|
|
** results directly.
|
|
*/
|
|
return SQLITE_AFF_NONE;
|
|
}else{
|
|
/* One side is a column, the other is not. Use the columns affinity. */
|
|
assert( aff1==0 || aff2==0 );
|
|
return (aff1 + aff2);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** pExpr is a comparison operator. Return the type affinity that should
|
|
** be applied to both operands prior to doing the comparison.
|
|
*/
|
|
static char comparisonAffinity(Expr *pExpr){
|
|
char aff;
|
|
assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
|
|
pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
|
|
pExpr->op==TK_NE );
|
|
assert( pExpr->pLeft );
|
|
aff = sqlite3ExprAffinity(pExpr->pLeft);
|
|
if( pExpr->pRight ){
|
|
aff = sqlite3CompareAffinity(pExpr->pRight, aff);
|
|
}
|
|
else if( pExpr->pSelect ){
|
|
aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
|
|
}
|
|
else if( !aff ){
|
|
aff = SQLITE_AFF_NONE;
|
|
}
|
|
return aff;
|
|
}
|
|
|
|
/*
|
|
** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
|
|
** idx_affinity is the affinity of an indexed column. Return true
|
|
** if the index with affinity idx_affinity may be used to implement
|
|
** the comparison in pExpr.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
|
|
char aff = comparisonAffinity(pExpr);
|
|
switch( aff ){
|
|
case SQLITE_AFF_NONE:
|
|
return 1;
|
|
case SQLITE_AFF_TEXT:
|
|
return idx_affinity==SQLITE_AFF_TEXT;
|
|
default:
|
|
return sqlite3IsNumericAffinity(idx_affinity);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the P5 value that should be used for a binary comparison
|
|
** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
|
|
*/
|
|
static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
|
|
u8 aff = (char)sqlite3ExprAffinity(pExpr2);
|
|
aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull;
|
|
return aff;
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to the collation sequence that should be used by
|
|
** a binary comparison operator comparing pLeft and pRight.
|
|
**
|
|
** If the left hand expression has a collating sequence type, then it is
|
|
** used. Otherwise the collation sequence for the right hand expression
|
|
** is used, or the default (BINARY) if neither expression has a collating
|
|
** type.
|
|
**
|
|
** Argument pRight (but not pLeft) may be a null pointer. In this case,
|
|
** it is not considered.
|
|
*/
|
|
SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(
|
|
Parse *pParse,
|
|
Expr *pLeft,
|
|
Expr *pRight
|
|
){
|
|
CollSeq *pColl;
|
|
assert( pLeft );
|
|
if( pLeft->flags & EP_ExpCollate ){
|
|
assert( pLeft->pColl );
|
|
pColl = pLeft->pColl;
|
|
}else if( pRight && pRight->flags & EP_ExpCollate ){
|
|
assert( pRight->pColl );
|
|
pColl = pRight->pColl;
|
|
}else{
|
|
pColl = sqlite3ExprCollSeq(pParse, pLeft);
|
|
if( !pColl ){
|
|
pColl = sqlite3ExprCollSeq(pParse, pRight);
|
|
}
|
|
}
|
|
return pColl;
|
|
}
|
|
|
|
/*
|
|
** Generate code for a comparison operator.
|
|
*/
|
|
static int codeCompare(
|
|
Parse *pParse, /* The parsing (and code generating) context */
|
|
Expr *pLeft, /* The left operand */
|
|
Expr *pRight, /* The right operand */
|
|
int opcode, /* The comparison opcode */
|
|
int in1, int in2, /* Register holding operands */
|
|
int dest, /* Jump here if true. */
|
|
int jumpIfNull /* If true, jump if either operand is NULL */
|
|
){
|
|
int p5;
|
|
int addr;
|
|
CollSeq *p4;
|
|
|
|
p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
|
|
p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
|
|
addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
|
|
(void*)p4, P4_COLLSEQ);
|
|
sqlite3VdbeChangeP5(pParse->pVdbe, p5);
|
|
return addr;
|
|
}
|
|
|
|
/*
|
|
** Construct a new expression node and return a pointer to it. Memory
|
|
** for this node is obtained from sqlite3_malloc(). The calling function
|
|
** is responsible for making sure the node eventually gets freed.
|
|
*/
|
|
SQLITE_PRIVATE Expr *sqlite3Expr(
|
|
sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
|
|
int op, /* Expression opcode */
|
|
Expr *pLeft, /* Left operand */
|
|
Expr *pRight, /* Right operand */
|
|
const Token *pToken /* Argument token */
|
|
){
|
|
Expr *pNew;
|
|
pNew = sqlite3DbMallocZero(db, sizeof(Expr));
|
|
if( pNew==0 ){
|
|
/* When malloc fails, delete pLeft and pRight. Expressions passed to
|
|
** this function must always be allocated with sqlite3Expr() for this
|
|
** reason.
|
|
*/
|
|
sqlite3ExprDelete(pLeft);
|
|
sqlite3ExprDelete(pRight);
|
|
return 0;
|
|
}
|
|
pNew->op = op;
|
|
pNew->pLeft = pLeft;
|
|
pNew->pRight = pRight;
|
|
pNew->iAgg = -1;
|
|
if( pToken ){
|
|
assert( pToken->dyn==0 );
|
|
pNew->span = pNew->token = *pToken;
|
|
}else if( pLeft ){
|
|
if( pRight ){
|
|
sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
|
|
if( pRight->flags & EP_ExpCollate ){
|
|
pNew->flags |= EP_ExpCollate;
|
|
pNew->pColl = pRight->pColl;
|
|
}
|
|
}
|
|
if( pLeft->flags & EP_ExpCollate ){
|
|
pNew->flags |= EP_ExpCollate;
|
|
pNew->pColl = pLeft->pColl;
|
|
}
|
|
}
|
|
|
|
sqlite3ExprSetHeight(pNew);
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** Works like sqlite3Expr() except that it takes an extra Parse*
|
|
** argument and notifies the associated connection object if malloc fails.
|
|
*/
|
|
SQLITE_PRIVATE Expr *sqlite3PExpr(
|
|
Parse *pParse, /* Parsing context */
|
|
int op, /* Expression opcode */
|
|
Expr *pLeft, /* Left operand */
|
|
Expr *pRight, /* Right operand */
|
|
const Token *pToken /* Argument token */
|
|
){
|
|
return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
|
|
}
|
|
|
|
/*
|
|
** When doing a nested parse, you can include terms in an expression
|
|
** that look like this: #1 #2 ... These terms refer to registers
|
|
** in the virtual machine. #N is the N-th register.
|
|
**
|
|
** This routine is called by the parser to deal with on of those terms.
|
|
** It immediately generates code to store the value in a memory location.
|
|
** The returns an expression that will code to extract the value from
|
|
** that memory location as needed.
|
|
*/
|
|
SQLITE_PRIVATE Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
|
|
Vdbe *v = pParse->pVdbe;
|
|
Expr *p;
|
|
if( pParse->nested==0 ){
|
|
sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
|
|
return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
|
|
}
|
|
if( v==0 ) return 0;
|
|
p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
|
|
if( p==0 ){
|
|
return 0; /* Malloc failed */
|
|
}
|
|
p->iTable = atoi((char*)&pToken->z[1]);
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Join two expressions using an AND operator. If either expression is
|
|
** NULL, then just return the other expression.
|
|
*/
|
|
SQLITE_PRIVATE Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
|
|
if( pLeft==0 ){
|
|
return pRight;
|
|
}else if( pRight==0 ){
|
|
return pLeft;
|
|
}else{
|
|
return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Set the Expr.span field of the given expression to span all
|
|
** text between the two given tokens.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
|
|
assert( pRight!=0 );
|
|
assert( pLeft!=0 );
|
|
if( pExpr && pRight->z && pLeft->z ){
|
|
assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 );
|
|
if( pLeft->dyn==0 && pRight->dyn==0 ){
|
|
pExpr->span.z = pLeft->z;
|
|
pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
|
|
}else{
|
|
pExpr->span.z = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Construct a new expression node for a function with multiple
|
|
** arguments.
|
|
*/
|
|
SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
|
|
Expr *pNew;
|
|
assert( pToken );
|
|
pNew = sqlite3DbMallocZero(pParse->db, sizeof(Expr) );
|
|
if( pNew==0 ){
|
|
sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */
|
|
return 0;
|
|
}
|
|
pNew->op = TK_FUNCTION;
|
|
pNew->pList = pList;
|
|
assert( pToken->dyn==0 );
|
|
pNew->token = *pToken;
|
|
pNew->span = pNew->token;
|
|
|
|
sqlite3ExprSetHeight(pNew);
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** Assign a variable number to an expression that encodes a wildcard
|
|
** in the original SQL statement.
|
|
**
|
|
** Wildcards consisting of a single "?" are assigned the next sequential
|
|
** variable number.
|
|
**
|
|
** Wildcards of the form "?nnn" are assigned the number "nnn". We make
|
|
** sure "nnn" is not too be to avoid a denial of service attack when
|
|
** the SQL statement comes from an external source.
|
|
**
|
|
** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
|
|
** as the previous instance of the same wildcard. Or if this is the first
|
|
** instance of the wildcard, the next sequenial variable number is
|
|
** assigned.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
|
|
Token *pToken;
|
|
sqlite3 *db = pParse->db;
|
|
|
|
if( pExpr==0 ) return;
|
|
pToken = &pExpr->token;
|
|
assert( pToken->n>=1 );
|
|
assert( pToken->z!=0 );
|
|
assert( pToken->z[0]!=0 );
|
|
if( pToken->n==1 ){
|
|
/* Wildcard of the form "?". Assign the next variable number */
|
|
pExpr->iTable = ++pParse->nVar;
|
|
}else if( pToken->z[0]=='?' ){
|
|
/* Wildcard of the form "?nnn". Convert "nnn" to an integer and
|
|
** use it as the variable number */
|
|
int i;
|
|
pExpr->iTable = i = atoi((char*)&pToken->z[1]);
|
|
if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){
|
|
sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
|
|
SQLITE_MAX_VARIABLE_NUMBER);
|
|
}
|
|
if( i>pParse->nVar ){
|
|
pParse->nVar = i;
|
|
}
|
|
}else{
|
|
/* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable
|
|
** number as the prior appearance of the same name, or if the name
|
|
** has never appeared before, reuse the same variable number
|
|
*/
|
|
int i, n;
|
|
n = pToken->n;
|
|
for(i=0; i<pParse->nVarExpr; i++){
|
|
Expr *pE;
|
|
if( (pE = pParse->apVarExpr[i])!=0
|
|
&& pE->token.n==n
|
|
&& memcmp(pE->token.z, pToken->z, n)==0 ){
|
|
pExpr->iTable = pE->iTable;
|
|
break;
|
|
}
|
|
}
|
|
if( i>=pParse->nVarExpr ){
|
|
pExpr->iTable = ++pParse->nVar;
|
|
if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
|
|
pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
|
|
pParse->apVarExpr =
|
|
sqlite3DbReallocOrFree(
|
|
db,
|
|
pParse->apVarExpr,
|
|
pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
|
|
);
|
|
}
|
|
if( !db->mallocFailed ){
|
|
assert( pParse->apVarExpr!=0 );
|
|
pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
|
|
}
|
|
}
|
|
}
|
|
if( !pParse->nErr && pParse->nVar>SQLITE_MAX_VARIABLE_NUMBER ){
|
|
sqlite3ErrorMsg(pParse, "too many SQL variables");
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Recursively delete an expression tree.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3ExprDelete(Expr *p){
|
|
if( p==0 ) return;
|
|
if( p->span.dyn ) sqlite3_free((char*)p->span.z);
|
|
if( p->token.dyn ) sqlite3_free((char*)p->token.z);
|
|
sqlite3ExprDelete(p->pLeft);
|
|
sqlite3ExprDelete(p->pRight);
|
|
sqlite3ExprListDelete(p->pList);
|
|
sqlite3SelectDelete(p->pSelect);
|
|
sqlite3_free(p);
|
|
}
|
|
|
|
/*
|
|
** The Expr.token field might be a string literal that is quoted.
|
|
** If so, remove the quotation marks.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3DequoteExpr(sqlite3 *db, Expr *p){
|
|
if( ExprHasAnyProperty(p, EP_Dequoted) ){
|
|
return;
|
|
}
|
|
ExprSetProperty(p, EP_Dequoted);
|
|
if( p->token.dyn==0 ){
|
|
sqlite3TokenCopy(db, &p->token, &p->token);
|
|
}
|
|
sqlite3Dequote((char*)p->token.z);
|
|
}
|
|
|
|
|
|
/*
|
|
** The following group of routines make deep copies of expressions,
|
|
** expression lists, ID lists, and select statements. The copies can
|
|
** be deleted (by being passed to their respective ...Delete() routines)
|
|
** without effecting the originals.
|
|
**
|
|
** The expression list, ID, and source lists return by sqlite3ExprListDup(),
|
|
** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
|
|
** by subsequent calls to sqlite*ListAppend() routines.
|
|
**
|
|
** Any tables that the SrcList might point to are not duplicated.
|
|
*/
|
|
SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){
|
|
Expr *pNew;
|
|
if( p==0 ) return 0;
|
|
pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
|
|
if( pNew==0 ) return 0;
|
|
memcpy(pNew, p, sizeof(*pNew));
|
|
if( p->token.z!=0 ){
|
|
pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n);
|
|
pNew->token.dyn = 1;
|
|
}else{
|
|
assert( pNew->token.z==0 );
|
|
}
|
|
pNew->span.z = 0;
|
|
pNew->pLeft = sqlite3ExprDup(db, p->pLeft);
|
|
pNew->pRight = sqlite3ExprDup(db, p->pRight);
|
|
pNew->pList = sqlite3ExprListDup(db, p->pList);
|
|
pNew->pSelect = sqlite3SelectDup(db, p->pSelect);
|
|
return pNew;
|
|
}
|
|
SQLITE_PRIVATE void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
|
|
if( pTo->dyn ) sqlite3_free((char*)pTo->z);
|
|
if( pFrom->z ){
|
|
pTo->n = pFrom->n;
|
|
pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
|
|
pTo->dyn = 1;
|
|
}else{
|
|
pTo->z = 0;
|
|
}
|
|
}
|
|
SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){
|
|
ExprList *pNew;
|
|
struct ExprList_item *pItem, *pOldItem;
|
|
int i;
|
|
if( p==0 ) return 0;
|
|
pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
|
|
if( pNew==0 ) return 0;
|
|
pNew->iECursor = 0;
|
|
pNew->nExpr = pNew->nAlloc = p->nExpr;
|
|
pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) );
|
|
if( pItem==0 ){
|
|
sqlite3_free(pNew);
|
|
return 0;
|
|
}
|
|
pOldItem = p->a;
|
|
for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
|
|
Expr *pNewExpr, *pOldExpr;
|
|
pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);
|
|
if( pOldExpr->span.z!=0 && pNewExpr ){
|
|
/* Always make a copy of the span for top-level expressions in the
|
|
** expression list. The logic in SELECT processing that determines
|
|
** the names of columns in the result set needs this information */
|
|
sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
|
|
}
|
|
assert( pNewExpr==0 || pNewExpr->span.z!=0
|
|
|| pOldExpr->span.z==0
|
|
|| db->mallocFailed );
|
|
pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
|
|
pItem->sortOrder = pOldItem->sortOrder;
|
|
pItem->isAgg = pOldItem->isAgg;
|
|
pItem->done = 0;
|
|
}
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** If cursors, triggers, views and subqueries are all omitted from
|
|
** the build, then none of the following routines, except for
|
|
** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
|
|
** called with a NULL argument.
|
|
*/
|
|
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
|
|
|| !defined(SQLITE_OMIT_SUBQUERY)
|
|
SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){
|
|
SrcList *pNew;
|
|
int i;
|
|
int nByte;
|
|
if( p==0 ) return 0;
|
|
nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
|
|
pNew = sqlite3DbMallocRaw(db, nByte );
|
|
if( pNew==0 ) return 0;
|
|
pNew->nSrc = pNew->nAlloc = p->nSrc;
|
|
for(i=0; i<p->nSrc; i++){
|
|
struct SrcList_item *pNewItem = &pNew->a[i];
|
|
struct SrcList_item *pOldItem = &p->a[i];
|
|
Table *pTab;
|
|
pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
|
|
pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
|
|
pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
|
|
pNewItem->jointype = pOldItem->jointype;
|
|
pNewItem->iCursor = pOldItem->iCursor;
|
|
pNewItem->isPopulated = pOldItem->isPopulated;
|
|
pTab = pNewItem->pTab = pOldItem->pTab;
|
|
if( pTab ){
|
|
pTab->nRef++;
|
|
}
|
|
pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);
|
|
pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);
|
|
pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
|
|
pNewItem->colUsed = pOldItem->colUsed;
|
|
}
|
|
return pNew;
|
|
}
|
|
SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
|
|
IdList *pNew;
|
|
int i;
|
|
if( p==0 ) return 0;
|
|
pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
|
|
if( pNew==0 ) return 0;
|
|
pNew->nId = pNew->nAlloc = p->nId;
|
|
pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
|
|
if( pNew->a==0 ){
|
|
sqlite3_free(pNew);
|
|
return 0;
|
|
}
|
|
for(i=0; i<p->nId; i++){
|
|
struct IdList_item *pNewItem = &pNew->a[i];
|
|
struct IdList_item *pOldItem = &p->a[i];
|
|
pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
|
|
pNewItem->idx = pOldItem->idx;
|
|
}
|
|
return pNew;
|
|
}
|
|
SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p){
|
|
Select *pNew;
|
|
if( p==0 ) return 0;
|
|
pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
|
|
if( pNew==0 ) return 0;
|
|
pNew->isDistinct = p->isDistinct;
|
|
pNew->pEList = sqlite3ExprListDup(db, p->pEList);
|
|
pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
|
|
pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
|
|
pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
|
|
pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
|
|
pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
|
|
pNew->op = p->op;
|
|
pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
|
|
pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
|
|
pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
|
|
pNew->iLimit = -1;
|
|
pNew->iOffset = -1;
|
|
pNew->isResolved = p->isResolved;
|
|
pNew->isAgg = p->isAgg;
|
|
pNew->usesEphm = 0;
|
|
pNew->disallowOrderBy = 0;
|
|
pNew->pRightmost = 0;
|
|
pNew->addrOpenEphm[0] = -1;
|
|
pNew->addrOpenEphm[1] = -1;
|
|
pNew->addrOpenEphm[2] = -1;
|
|
return pNew;
|
|
}
|
|
#else
|
|
SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p){
|
|
assert( p==0 );
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Add a new element to the end of an expression list. If pList is
|
|
** initially NULL, then create a new expression list.
|
|
*/
|
|
SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(
|
|
Parse *pParse, /* Parsing context */
|
|
ExprList *pList, /* List to which to append. Might be NULL */
|
|
Expr *pExpr, /* Expression to be appended */
|
|
Token *pName /* AS keyword for the expression */
|
|
){
|
|
sqlite3 *db = pParse->db;
|
|
if( pList==0 ){
|
|
pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
|
|
if( pList==0 ){
|
|
goto no_mem;
|
|
}
|
|
assert( pList->nAlloc==0 );
|
|
}
|
|
if( pList->nAlloc<=pList->nExpr ){
|
|
struct ExprList_item *a;
|
|
int n = pList->nAlloc*2 + 4;
|
|
a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
|
|
if( a==0 ){
|
|
goto no_mem;
|
|
}
|
|
pList->a = a;
|
|
pList->nAlloc = n;
|
|
}
|
|
assert( pList->a!=0 );
|
|
if( pExpr || pName ){
|
|
struct ExprList_item *pItem = &pList->a[pList->nExpr++];
|
|
memset(pItem, 0, sizeof(*pItem));
|
|
pItem->zName = sqlite3NameFromToken(db, pName);
|
|
pItem->pExpr = pExpr;
|
|
}
|
|
return pList;
|
|
|
|
no_mem:
|
|
/* Avoid leaking memory if malloc has failed. */
|
|
sqlite3ExprDelete(pExpr);
|
|
sqlite3ExprListDelete(pList);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** If the expression list pEList contains more than iLimit elements,
|
|
** leave an error message in pParse.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3ExprListCheckLength(
|
|
Parse *pParse,
|
|
ExprList *pEList,
|
|
int iLimit,
|
|
const char *zObject
|
|
){
|
|
if( pEList && pEList->nExpr>iLimit ){
|
|
sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
|
|
}
|
|
}
|
|
|
|
|
|
#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
|
|
/* The following three functions, heightOfExpr(), heightOfExprList()
|
|
** and heightOfSelect(), are used to determine the maximum height
|
|
** of any expression tree referenced by the structure passed as the
|
|
** first argument.
|
|
**
|
|
** If this maximum height is greater than the current value pointed
|
|
** to by pnHeight, the second parameter, then set *pnHeight to that
|
|
** value.
|
|
*/
|
|
static void heightOfExpr(Expr *p, int *pnHeight){
|
|
if( p ){
|
|
if( p->nHeight>*pnHeight ){
|
|
*pnHeight = p->nHeight;
|
|
}
|
|
}
|
|
}
|
|
static void heightOfExprList(ExprList *p, int *pnHeight){
|
|
if( p ){
|
|
int i;
|
|
for(i=0; i<p->nExpr; i++){
|
|
heightOfExpr(p->a[i].pExpr, pnHeight);
|
|
}
|
|
}
|
|
}
|
|
static void heightOfSelect(Select *p, int *pnHeight){
|
|
if( p ){
|
|
heightOfExpr(p->pWhere, pnHeight);
|
|
heightOfExpr(p->pHaving, pnHeight);
|
|
heightOfExpr(p->pLimit, pnHeight);
|
|
heightOfExpr(p->pOffset, pnHeight);
|
|
heightOfExprList(p->pEList, pnHeight);
|
|
heightOfExprList(p->pGroupBy, pnHeight);
|
|
heightOfExprList(p->pOrderBy, pnHeight);
|
|
heightOfSelect(p->pPrior, pnHeight);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Set the Expr.nHeight variable in the structure passed as an
|
|
** argument. An expression with no children, Expr.pList or
|
|
** Expr.pSelect member has a height of 1. Any other expression
|
|
** has a height equal to the maximum height of any other
|
|
** referenced Expr plus one.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3ExprSetHeight(Expr *p){
|
|
int nHeight = 0;
|
|
heightOfExpr(p->pLeft, &nHeight);
|
|
heightOfExpr(p->pRight, &nHeight);
|
|
heightOfExprList(p->pList, &nHeight);
|
|
heightOfSelect(p->pSelect, &nHeight);
|
|
p->nHeight = nHeight + 1;
|
|
}
|
|
|
|
/*
|
|
** Return the maximum height of any expression tree referenced
|
|
** by the select statement passed as an argument.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3SelectExprHeight(Select *p){
|
|
int nHeight = 0;
|
|
heightOfSelect(p, &nHeight);
|
|
return nHeight;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Delete an entire expression list.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3ExprListDelete(ExprList *pList){
|
|
int i;
|
|
struct ExprList_item *pItem;
|
|
if( pList==0 ) return;
|
|
assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
|
|
assert( pList->nExpr<=pList->nAlloc );
|
|
for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
|
|
sqlite3ExprDelete(pItem->pExpr);
|
|
sqlite3_free(pItem->zName);
|
|
}
|
|
sqlite3_free(pList->a);
|
|
sqlite3_free(pList);
|
|
}
|
|
|
|
/*
|
|
** Walk an expression tree. Call xFunc for each node visited.
|
|
**
|
|
** The return value from xFunc determines whether the tree walk continues.
|
|
** 0 means continue walking the tree. 1 means do not walk children
|
|
** of the current node but continue with siblings. 2 means abandon
|
|
** the tree walk completely.
|
|
**
|
|
** The return value from this routine is 1 to abandon the tree walk
|
|
** and 0 to continue.
|
|
**
|
|
** NOTICE: This routine does *not* descend into subqueries.
|
|
*/
|
|
static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);
|
|
static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
|
|
int rc;
|
|
if( pExpr==0 ) return 0;
|
|
rc = (*xFunc)(pArg, pExpr);
|
|
if( rc==0 ){
|
|
if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
|
|
if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
|
|
if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;
|
|
}
|
|
return rc>1;
|
|
}
|
|
|
|
/*
|
|
** Call walkExprTree() for every expression in list p.
|
|
*/
|
|
static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){
|
|
int i;
|
|
struct ExprList_item *pItem;
|
|
if( !p ) return 0;
|
|
for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
|
|
if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Call walkExprTree() for every expression in Select p, not including
|
|
** expressions that are part of sub-selects in any FROM clause or the LIMIT
|
|
** or OFFSET expressions..
|
|
*/
|
|
static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){
|
|
walkExprList(p->pEList, xFunc, pArg);
|
|
walkExprTree(p->pWhere, xFunc, pArg);
|
|
walkExprList(p->pGroupBy, xFunc, pArg);
|
|
walkExprTree(p->pHaving, xFunc, pArg);
|
|
walkExprList(p->pOrderBy, xFunc, pArg);
|
|
if( p->pPrior ){
|
|
walkSelectExpr(p->pPrior, xFunc, pArg);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
** This routine is designed as an xFunc for walkExprTree().
|
|
**
|
|
** pArg is really a pointer to an integer. If we can tell by looking
|
|
** at pExpr that the expression that contains pExpr is not a constant
|
|
** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
|
|
** If pExpr does does not disqualify the expression from being a constant
|
|
** then do nothing.
|
|
**
|
|
** After walking the whole tree, if no nodes are found that disqualify
|
|
** the expression as constant, then we assume the whole expression
|
|
** is constant. See sqlite3ExprIsConstant() for additional information.
|
|
*/
|
|
static int exprNodeIsConstant(void *pArg, Expr *pExpr){
|
|
int *pN = (int*)pArg;
|
|
|
|
/* If *pArg is 3 then any term of the expression that comes from
|
|
** the ON or USING clauses of a join disqualifies the expression
|
|
** from being considered constant. */
|
|
if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
|
|
*pN = 0;
|
|
return 2;
|
|
}
|
|
|
|
switch( pExpr->op ){
|
|
/* Consider functions to be constant if all their arguments are constant
|
|
** and *pArg==2 */
|
|
case TK_FUNCTION:
|
|
if( (*pN)==2 ) return 0;
|
|
/* Fall through */
|
|
case TK_ID:
|
|
case TK_COLUMN:
|
|
case TK_DOT:
|
|
case TK_AGG_FUNCTION:
|
|
case TK_AGG_COLUMN:
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
case TK_SELECT:
|
|
case TK_EXISTS:
|
|
#endif
|
|
*pN = 0;
|
|
return 2;
|
|
case TK_IN:
|
|
if( pExpr->pSelect ){
|
|
*pN = 0;
|
|
return 2;
|
|
}
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Walk an expression tree. Return 1 if the expression is constant
|
|
** and 0 if it involves variables or function calls.
|
|
**
|
|
** For the purposes of this function, a double-quoted string (ex: "abc")
|
|
** is considered a variable but a single-quoted string (ex: 'abc') is
|
|
** a constant.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr *p){
|
|
int isConst = 1;
|
|
walkExprTree(p, exprNodeIsConstant, &isConst);
|
|
return isConst;
|
|
}
|
|
|
|
/*
|
|
** Walk an expression tree. Return 1 if the expression is constant
|
|
** that does no originate from the ON or USING clauses of a join.
|
|
** Return 0 if it involves variables or function calls or terms from
|
|
** an ON or USING clause.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr *p){
|
|
int isConst = 3;
|
|
walkExprTree(p, exprNodeIsConstant, &isConst);
|
|
return isConst!=0;
|
|
}
|
|
|
|
/*
|
|
** Walk an expression tree. Return 1 if the expression is constant
|
|
** or a function call with constant arguments. Return and 0 if there
|
|
** are any variables.
|
|
**
|
|
** For the purposes of this function, a double-quoted string (ex: "abc")
|
|
** is considered a variable but a single-quoted string (ex: 'abc') is
|
|
** a constant.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr *p){
|
|
int isConst = 2;
|
|
walkExprTree(p, exprNodeIsConstant, &isConst);
|
|
return isConst!=0;
|
|
}
|
|
|
|
/*
|
|
** If the expression p codes a constant integer that is small enough
|
|
** to fit in a 32-bit integer, return 1 and put the value of the integer
|
|
** in *pValue. If the expression is not an integer or if it is too big
|
|
** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr *p, int *pValue){
|
|
switch( p->op ){
|
|
case TK_INTEGER: {
|
|
if( sqlite3GetInt32((char*)p->token.z, pValue) ){
|
|
return 1;
|
|
}
|
|
break;
|
|
}
|
|
case TK_UPLUS: {
|
|
return sqlite3ExprIsInteger(p->pLeft, pValue);
|
|
}
|
|
case TK_UMINUS: {
|
|
int v;
|
|
if( sqlite3ExprIsInteger(p->pLeft, &v) ){
|
|
*pValue = -v;
|
|
return 1;
|
|
}
|
|
break;
|
|
}
|
|
default: break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if the given string is a row-id column name.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3IsRowid(const char *z){
|
|
if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
|
|
if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
|
|
if( sqlite3StrICmp(z, "OID")==0 ) return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
|
|
** that name in the set of source tables in pSrcList and make the pExpr
|
|
** expression node refer back to that source column. The following changes
|
|
** are made to pExpr:
|
|
**
|
|
** pExpr->iDb Set the index in db->aDb[] of the database holding
|
|
** the table.
|
|
** pExpr->iTable Set to the cursor number for the table obtained
|
|
** from pSrcList.
|
|
** pExpr->iColumn Set to the column number within the table.
|
|
** pExpr->op Set to TK_COLUMN.
|
|
** pExpr->pLeft Any expression this points to is deleted
|
|
** pExpr->pRight Any expression this points to is deleted.
|
|
**
|
|
** The pDbToken is the name of the database (the "X"). This value may be
|
|
** NULL meaning that name is of the form Y.Z or Z. Any available database
|
|
** can be used. The pTableToken is the name of the table (the "Y"). This
|
|
** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it
|
|
** means that the form of the name is Z and that columns from any table
|
|
** can be used.
|
|
**
|
|
** If the name cannot be resolved unambiguously, leave an error message
|
|
** in pParse and return non-zero. Return zero on success.
|
|
*/
|
|
static int lookupName(
|
|
Parse *pParse, /* The parsing context */
|
|
Token *pDbToken, /* Name of the database containing table, or NULL */
|
|
Token *pTableToken, /* Name of table containing column, or NULL */
|
|
Token *pColumnToken, /* Name of the column. */
|
|
NameContext *pNC, /* The name context used to resolve the name */
|
|
Expr *pExpr /* Make this EXPR node point to the selected column */
|
|
){
|
|
char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */
|
|
char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */
|
|
char *zCol = 0; /* Name of the column. The "Z" */
|
|
int i, j; /* Loop counters */
|
|
int cnt = 0; /* Number of matching column names */
|
|
int cntTab = 0; /* Number of matching table names */
|
|
sqlite3 *db = pParse->db; /* The database */
|
|
struct SrcList_item *pItem; /* Use for looping over pSrcList items */
|
|
struct SrcList_item *pMatch = 0; /* The matching pSrcList item */
|
|
NameContext *pTopNC = pNC; /* First namecontext in the list */
|
|
Schema *pSchema = 0; /* Schema of the expression */
|
|
|
|
assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
|
|
zDb = sqlite3NameFromToken(db, pDbToken);
|
|
zTab = sqlite3NameFromToken(db, pTableToken);
|
|
zCol = sqlite3NameFromToken(db, pColumnToken);
|
|
if( db->mallocFailed ){
|
|
goto lookupname_end;
|
|
}
|
|
|
|
pExpr->iTable = -1;
|
|
while( pNC && cnt==0 ){
|
|
ExprList *pEList;
|
|
SrcList *pSrcList = pNC->pSrcList;
|
|
|
|
if( pSrcList ){
|
|
for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
|
|
Table *pTab;
|
|
int iDb;
|
|
Column *pCol;
|
|
|
|
pTab = pItem->pTab;
|
|
assert( pTab!=0 );
|
|
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
assert( pTab->nCol>0 );
|
|
if( zTab ){
|
|
if( pItem->zAlias ){
|
|
char *zTabName = pItem->zAlias;
|
|
if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
|
|
}else{
|
|
char *zTabName = pTab->zName;
|
|
if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
|
|
if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
if( 0==(cntTab++) ){
|
|
pExpr->iTable = pItem->iCursor;
|
|
pSchema = pTab->pSchema;
|
|
pMatch = pItem;
|
|
}
|
|
for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
|
|
if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
|
|
const char *zColl = pTab->aCol[j].zColl;
|
|
IdList *pUsing;
|
|
cnt++;
|
|
pExpr->iTable = pItem->iCursor;
|
|
pMatch = pItem;
|
|
pSchema = pTab->pSchema;
|
|
/* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
|
|
pExpr->iColumn = j==pTab->iPKey ? -1 : j;
|
|
pExpr->affinity = pTab->aCol[j].affinity;
|
|
if( (pExpr->flags & EP_ExpCollate)==0 ){
|
|
pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
|
|
}
|
|
if( i<pSrcList->nSrc-1 ){
|
|
if( pItem[1].jointype & JT_NATURAL ){
|
|
/* If this match occurred in the left table of a natural join,
|
|
** then skip the right table to avoid a duplicate match */
|
|
pItem++;
|
|
i++;
|
|
}else if( (pUsing = pItem[1].pUsing)!=0 ){
|
|
/* If this match occurs on a column that is in the USING clause
|
|
** of a join, skip the search of the right table of the join
|
|
** to avoid a duplicate match there. */
|
|
int k;
|
|
for(k=0; k<pUsing->nId; k++){
|
|
if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
|
|
pItem++;
|
|
i++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
/* If we have not already resolved the name, then maybe
|
|
** it is a new.* or old.* trigger argument reference
|
|
*/
|
|
if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
|
|
TriggerStack *pTriggerStack = pParse->trigStack;
|
|
Table *pTab = 0;
|
|
u32 *piColMask;
|
|
if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
|
|
pExpr->iTable = pTriggerStack->newIdx;
|
|
assert( pTriggerStack->pTab );
|
|
pTab = pTriggerStack->pTab;
|
|
piColMask = &(pTriggerStack->newColMask);
|
|
}else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
|
|
pExpr->iTable = pTriggerStack->oldIdx;
|
|
assert( pTriggerStack->pTab );
|
|
pTab = pTriggerStack->pTab;
|
|
piColMask = &(pTriggerStack->oldColMask);
|
|
}
|
|
|
|
if( pTab ){
|
|
int iCol;
|
|
Column *pCol = pTab->aCol;
|
|
|
|
pSchema = pTab->pSchema;
|
|
cntTab++;
|
|
for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
|
|
if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
|
|
const char *zColl = pTab->aCol[iCol].zColl;
|
|
cnt++;
|
|
pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
|
|
pExpr->affinity = pTab->aCol[iCol].affinity;
|
|
if( (pExpr->flags & EP_ExpCollate)==0 ){
|
|
pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
|
|
}
|
|
pExpr->pTab = pTab;
|
|
if( iCol>=0 ){
|
|
*piColMask |= ((u32)1<<iCol) | (iCol>=32?0xffffffff:0);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif /* !defined(SQLITE_OMIT_TRIGGER) */
|
|
|
|
/*
|
|
** Perhaps the name is a reference to the ROWID
|
|
*/
|
|
if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
|
|
cnt = 1;
|
|
pExpr->iColumn = -1;
|
|
pExpr->affinity = SQLITE_AFF_INTEGER;
|
|
}
|
|
|
|
/*
|
|
** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
|
|
** might refer to an result-set alias. This happens, for example, when
|
|
** we are resolving names in the WHERE clause of the following command:
|
|
**
|
|
** SELECT a+b AS x FROM table WHERE x<10;
|
|
**
|
|
** In cases like this, replace pExpr with a copy of the expression that
|
|
** forms the result set entry ("a+b" in the example) and return immediately.
|
|
** Note that the expression in the result set should have already been
|
|
** resolved by the time the WHERE clause is resolved.
|
|
*/
|
|
if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
|
|
for(j=0; j<pEList->nExpr; j++){
|
|
char *zAs = pEList->a[j].zName;
|
|
if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
|
|
Expr *pDup, *pOrig;
|
|
assert( pExpr->pLeft==0 && pExpr->pRight==0 );
|
|
assert( pExpr->pList==0 );
|
|
assert( pExpr->pSelect==0 );
|
|
pOrig = pEList->a[j].pExpr;
|
|
if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){
|
|
sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
|
|
sqlite3_free(zCol);
|
|
return 2;
|
|
}
|
|
pDup = sqlite3ExprDup(db, pOrig);
|
|
if( pExpr->flags & EP_ExpCollate ){
|
|
pDup->pColl = pExpr->pColl;
|
|
pDup->flags |= EP_ExpCollate;
|
|
}
|
|
if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z);
|
|
if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z);
|
|
memcpy(pExpr, pDup, sizeof(*pExpr));
|
|
sqlite3_free(pDup);
|
|
cnt = 1;
|
|
pMatch = 0;
|
|
assert( zTab==0 && zDb==0 );
|
|
goto lookupname_end_2;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Advance to the next name context. The loop will exit when either
|
|
** we have a match (cnt>0) or when we run out of name contexts.
|
|
*/
|
|
if( cnt==0 ){
|
|
pNC = pNC->pNext;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** If X and Y are NULL (in other words if only the column name Z is
|
|
** supplied) and the value of Z is enclosed in double-quotes, then
|
|
** Z is a string literal if it doesn't match any column names. In that
|
|
** case, we need to return right away and not make any changes to
|
|
** pExpr.
|
|
**
|
|
** Because no reference was made to outer contexts, the pNC->nRef
|
|
** fields are not changed in any context.
|
|
*/
|
|
if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
|
|
sqlite3_free(zCol);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** cnt==0 means there was not match. cnt>1 means there were two or
|
|
** more matches. Either way, we have an error.
|
|
*/
|
|
if( cnt!=1 ){
|
|
const char *zErr;
|
|
zErr = cnt==0 ? "no such column" : "ambiguous column name";
|
|
if( zDb ){
|
|
sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol);
|
|
}else if( zTab ){
|
|
sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol);
|
|
}else{
|
|
sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol);
|
|
}
|
|
pTopNC->nErr++;
|
|
}
|
|
|
|
/* If a column from a table in pSrcList is referenced, then record
|
|
** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes
|
|
** bit 0 to be set. Column 1 sets bit 1. And so forth. If the
|
|
** column number is greater than the number of bits in the bitmask
|
|
** then set the high-order bit of the bitmask.
|
|
*/
|
|
if( pExpr->iColumn>=0 && pMatch!=0 ){
|
|
int n = pExpr->iColumn;
|
|
if( n>=sizeof(Bitmask)*8 ){
|
|
n = sizeof(Bitmask)*8-1;
|
|
}
|
|
assert( pMatch->iCursor==pExpr->iTable );
|
|
pMatch->colUsed |= ((Bitmask)1)<<n;
|
|
}
|
|
|
|
lookupname_end:
|
|
/* Clean up and return
|
|
*/
|
|
sqlite3_free(zDb);
|
|
sqlite3_free(zTab);
|
|
sqlite3ExprDelete(pExpr->pLeft);
|
|
pExpr->pLeft = 0;
|
|
sqlite3ExprDelete(pExpr->pRight);
|
|
pExpr->pRight = 0;
|
|
pExpr->op = TK_COLUMN;
|
|
lookupname_end_2:
|
|
sqlite3_free(zCol);
|
|
if( cnt==1 ){
|
|
assert( pNC!=0 );
|
|
sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
|
|
if( pMatch && !pMatch->pSelect ){
|
|
pExpr->pTab = pMatch->pTab;
|
|
}
|
|
/* Increment the nRef value on all name contexts from TopNC up to
|
|
** the point where the name matched. */
|
|
for(;;){
|
|
assert( pTopNC!=0 );
|
|
pTopNC->nRef++;
|
|
if( pTopNC==pNC ) break;
|
|
pTopNC = pTopNC->pNext;
|
|
}
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine is designed as an xFunc for walkExprTree().
|
|
**
|
|
** Resolve symbolic names into TK_COLUMN operators for the current
|
|
** node in the expression tree. Return 0 to continue the search down
|
|
** the tree or 2 to abort the tree walk.
|
|
**
|
|
** This routine also does error checking and name resolution for
|
|
** function names. The operator for aggregate functions is changed
|
|
** to TK_AGG_FUNCTION.
|
|
*/
|
|
static int nameResolverStep(void *pArg, Expr *pExpr){
|
|
NameContext *pNC = (NameContext*)pArg;
|
|
Parse *pParse;
|
|
|
|
if( pExpr==0 ) return 1;
|
|
assert( pNC!=0 );
|
|
pParse = pNC->pParse;
|
|
|
|
if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
|
|
ExprSetProperty(pExpr, EP_Resolved);
|
|
#ifndef NDEBUG
|
|
if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
|
|
SrcList *pSrcList = pNC->pSrcList;
|
|
int i;
|
|
for(i=0; i<pNC->pSrcList->nSrc; i++){
|
|
assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
|
|
}
|
|
}
|
|
#endif
|
|
switch( pExpr->op ){
|
|
/* Double-quoted strings (ex: "abc") are used as identifiers if
|
|
** possible. Otherwise they remain as strings. Single-quoted
|
|
** strings (ex: 'abc') are always string literals.
|
|
*/
|
|
case TK_STRING: {
|
|
if( pExpr->token.z[0]=='\'' ) break;
|
|
/* Fall thru into the TK_ID case if this is a double-quoted string */
|
|
}
|
|
/* A lone identifier is the name of a column.
|
|
*/
|
|
case TK_ID: {
|
|
lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
|
|
return 1;
|
|
}
|
|
|
|
/* A table name and column name: ID.ID
|
|
** Or a database, table and column: ID.ID.ID
|
|
*/
|
|
case TK_DOT: {
|
|
Token *pColumn;
|
|
Token *pTable;
|
|
Token *pDb;
|
|
Expr *pRight;
|
|
|
|
/* if( pSrcList==0 ) break; */
|
|
pRight = pExpr->pRight;
|
|
if( pRight->op==TK_ID ){
|
|
pDb = 0;
|
|
pTable = &pExpr->pLeft->token;
|
|
pColumn = &pRight->token;
|
|
}else{
|
|
assert( pRight->op==TK_DOT );
|
|
pDb = &pExpr->pLeft->token;
|
|
pTable = &pRight->pLeft->token;
|
|
pColumn = &pRight->pRight->token;
|
|
}
|
|
lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
|
|
return 1;
|
|
}
|
|
|
|
/* Resolve function names
|
|
*/
|
|
case TK_CONST_FUNC:
|
|
case TK_FUNCTION: {
|
|
ExprList *pList = pExpr->pList; /* The argument list */
|
|
int n = pList ? pList->nExpr : 0; /* Number of arguments */
|
|
int no_such_func = 0; /* True if no such function exists */
|
|
int wrong_num_args = 0; /* True if wrong number of arguments */
|
|
int is_agg = 0; /* True if is an aggregate function */
|
|
int i;
|
|
int auth; /* Authorization to use the function */
|
|
int nId; /* Number of characters in function name */
|
|
const char *zId; /* The function name. */
|
|
FuncDef *pDef; /* Information about the function */
|
|
int enc = ENC(pParse->db); /* The database encoding */
|
|
|
|
zId = (char*)pExpr->token.z;
|
|
nId = pExpr->token.n;
|
|
pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
|
|
if( pDef==0 ){
|
|
pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
|
|
if( pDef==0 ){
|
|
no_such_func = 1;
|
|
}else{
|
|
wrong_num_args = 1;
|
|
}
|
|
}else{
|
|
is_agg = pDef->xFunc==0;
|
|
}
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
if( pDef ){
|
|
auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
|
|
if( auth!=SQLITE_OK ){
|
|
if( auth==SQLITE_DENY ){
|
|
sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
|
|
pDef->zName);
|
|
pNC->nErr++;
|
|
}
|
|
pExpr->op = TK_NULL;
|
|
return 1;
|
|
}
|
|
}
|
|
#endif
|
|
if( is_agg && !pNC->allowAgg ){
|
|
sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
|
|
pNC->nErr++;
|
|
is_agg = 0;
|
|
}else if( no_such_func ){
|
|
sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
|
|
pNC->nErr++;
|
|
}else if( wrong_num_args ){
|
|
sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
|
|
nId, zId);
|
|
pNC->nErr++;
|
|
}
|
|
if( is_agg ){
|
|
pExpr->op = TK_AGG_FUNCTION;
|
|
pNC->hasAgg = 1;
|
|
}
|
|
if( is_agg ) pNC->allowAgg = 0;
|
|
for(i=0; pNC->nErr==0 && i<n; i++){
|
|
walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);
|
|
}
|
|
if( is_agg ) pNC->allowAgg = 1;
|
|
/* FIX ME: Compute pExpr->affinity based on the expected return
|
|
** type of the function
|
|
*/
|
|
return is_agg;
|
|
}
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
case TK_SELECT:
|
|
case TK_EXISTS:
|
|
#endif
|
|
case TK_IN: {
|
|
if( pExpr->pSelect ){
|
|
int nRef = pNC->nRef;
|
|
#ifndef SQLITE_OMIT_CHECK
|
|
if( pNC->isCheck ){
|
|
sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
|
|
}
|
|
#endif
|
|
sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
|
|
assert( pNC->nRef>=nRef );
|
|
if( nRef!=pNC->nRef ){
|
|
ExprSetProperty(pExpr, EP_VarSelect);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
#ifndef SQLITE_OMIT_CHECK
|
|
case TK_VARIABLE: {
|
|
if( pNC->isCheck ){
|
|
sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** This routine walks an expression tree and resolves references to
|
|
** table columns. Nodes of the form ID.ID or ID resolve into an
|
|
** index to the table in the table list and a column offset. The
|
|
** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable
|
|
** value is changed to the index of the referenced table in pTabList
|
|
** plus the "base" value. The base value will ultimately become the
|
|
** VDBE cursor number for a cursor that is pointing into the referenced
|
|
** table. The Expr.iColumn value is changed to the index of the column
|
|
** of the referenced table. The Expr.iColumn value for the special
|
|
** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an
|
|
** alias for ROWID.
|
|
**
|
|
** Also resolve function names and check the functions for proper
|
|
** usage. Make sure all function names are recognized and all functions
|
|
** have the correct number of arguments. Leave an error message
|
|
** in pParse->zErrMsg if anything is amiss. Return the number of errors.
|
|
**
|
|
** If the expression contains aggregate functions then set the EP_Agg
|
|
** property on the expression.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3ExprResolveNames(
|
|
NameContext *pNC, /* Namespace to resolve expressions in. */
|
|
Expr *pExpr /* The expression to be analyzed. */
|
|
){
|
|
int savedHasAgg;
|
|
if( pExpr==0 ) return 0;
|
|
#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
|
|
if( (pExpr->nHeight+pNC->pParse->nHeight)>SQLITE_MAX_EXPR_DEPTH ){
|
|
sqlite3ErrorMsg(pNC->pParse,
|
|
"Expression tree is too large (maximum depth %d)",
|
|
SQLITE_MAX_EXPR_DEPTH
|
|
);
|
|
return 1;
|
|
}
|
|
pNC->pParse->nHeight += pExpr->nHeight;
|
|
#endif
|
|
savedHasAgg = pNC->hasAgg;
|
|
pNC->hasAgg = 0;
|
|
walkExprTree(pExpr, nameResolverStep, pNC);
|
|
#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
|
|
pNC->pParse->nHeight -= pExpr->nHeight;
|
|
#endif
|
|
if( pNC->nErr>0 ){
|
|
ExprSetProperty(pExpr, EP_Error);
|
|
}
|
|
if( pNC->hasAgg ){
|
|
ExprSetProperty(pExpr, EP_Agg);
|
|
}else if( savedHasAgg ){
|
|
pNC->hasAgg = 1;
|
|
}
|
|
return ExprHasProperty(pExpr, EP_Error);
|
|
}
|
|
|
|
/*
|
|
** A pointer instance of this structure is used to pass information
|
|
** through walkExprTree into codeSubqueryStep().
|
|
*/
|
|
typedef struct QueryCoder QueryCoder;
|
|
struct QueryCoder {
|
|
Parse *pParse; /* The parsing context */
|
|
NameContext *pNC; /* Namespace of first enclosing query */
|
|
};
|
|
|
|
#ifdef SQLITE_TEST
|
|
int sqlite3_enable_in_opt = 1;
|
|
#else
|
|
#define sqlite3_enable_in_opt 1
|
|
#endif
|
|
|
|
/*
|
|
** This function is used by the implementation of the IN (...) operator.
|
|
** It's job is to find or create a b-tree structure that may be used
|
|
** either to test for membership of the (...) set or to iterate through
|
|
** its members, skipping duplicates.
|
|
**
|
|
** The cursor opened on the structure (database table, database index
|
|
** or ephermal table) is stored in pX->iTable before this function returns.
|
|
** The returned value indicates the structure type, as follows:
|
|
**
|
|
** IN_INDEX_ROWID - The cursor was opened on a database table.
|
|
** IN_INDEX_INDEX - The cursor was opened on a database index.
|
|
** IN_INDEX_EPH - The cursor was opened on a specially created and
|
|
** populated epheremal table.
|
|
**
|
|
** An existing structure may only be used if the SELECT is of the simple
|
|
** form:
|
|
**
|
|
** SELECT <column> FROM <table>
|
|
**
|
|
** If the mustBeUnique parameter is false, the structure will be used
|
|
** for fast set membership tests. In this case an epheremal table must
|
|
** be used unless <column> is an INTEGER PRIMARY KEY or an index can
|
|
** be found with <column> as its left-most column.
|
|
**
|
|
** If mustBeUnique is true, then the structure will be used to iterate
|
|
** through the set members, skipping any duplicates. In this case an
|
|
** epheremal table must be used unless the selected <column> is guaranteed
|
|
** to be unique - either because it is an INTEGER PRIMARY KEY or it
|
|
** is unique by virtue of a constraint or implicit index.
|
|
*/
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
SQLITE_PRIVATE int sqlite3FindInIndex(Parse *pParse, Expr *pX, int mustBeUnique){
|
|
Select *p;
|
|
int eType = 0;
|
|
int iTab = pParse->nTab++;
|
|
|
|
/* The follwing if(...) expression is true if the SELECT is of the
|
|
** simple form:
|
|
**
|
|
** SELECT <column> FROM <table>
|
|
**
|
|
** If this is the case, it may be possible to use an existing table
|
|
** or index instead of generating an epheremal table.
|
|
*/
|
|
if( sqlite3_enable_in_opt
|
|
&& (p=pX->pSelect) && !p->pPrior
|
|
&& !p->isDistinct && !p->isAgg && !p->pGroupBy
|
|
&& p->pSrc && p->pSrc->nSrc==1 && !p->pSrc->a[0].pSelect
|
|
&& !p->pSrc->a[0].pTab->pSelect
|
|
&& p->pEList->nExpr==1 && p->pEList->a[0].pExpr->op==TK_COLUMN
|
|
&& !p->pLimit && !p->pOffset && !p->pWhere
|
|
){
|
|
sqlite3 *db = pParse->db;
|
|
Index *pIdx;
|
|
Expr *pExpr = p->pEList->a[0].pExpr;
|
|
int iCol = pExpr->iColumn;
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
|
|
/* This function is only called from two places. In both cases the vdbe
|
|
** has already been allocated. So assume sqlite3GetVdbe() is always
|
|
** successful here.
|
|
*/
|
|
assert(v);
|
|
if( iCol<0 ){
|
|
int iMem = ++pParse->nMem;
|
|
int iAddr;
|
|
Table *pTab = p->pSrc->a[0].pTab;
|
|
int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
sqlite3VdbeUsesBtree(v, iDb);
|
|
|
|
iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
|
|
|
|
sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
|
|
eType = IN_INDEX_ROWID;
|
|
|
|
sqlite3VdbeJumpHere(v, iAddr);
|
|
}else{
|
|
/* The collation sequence used by the comparison. If an index is to
|
|
** be used in place of a temp-table, it must be ordered according
|
|
** to this collation sequence.
|
|
*/
|
|
CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
|
|
|
|
/* Check that the affinity that will be used to perform the
|
|
** comparison is the same as the affinity of the column. If
|
|
** it is not, it is not possible to use any index.
|
|
*/
|
|
Table *pTab = p->pSrc->a[0].pTab;
|
|
char aff = comparisonAffinity(pX);
|
|
int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
|
|
|
|
for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
|
|
if( (pIdx->aiColumn[0]==iCol)
|
|
&& (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0))
|
|
&& (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
|
|
){
|
|
int iDb;
|
|
int iMem = ++pParse->nMem;
|
|
int iAddr;
|
|
char *pKey;
|
|
|
|
pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
|
|
iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
|
|
sqlite3VdbeUsesBtree(v, iDb);
|
|
|
|
iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
|
|
|
|
sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
|
|
pKey,P4_KEYINFO_HANDOFF);
|
|
VdbeComment((v, "%s", pIdx->zName));
|
|
eType = IN_INDEX_INDEX;
|
|
sqlite3VdbeAddOp2(v, OP_SetNumColumns, iTab, pIdx->nColumn);
|
|
|
|
sqlite3VdbeJumpHere(v, iAddr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if( eType==0 ){
|
|
sqlite3CodeSubselect(pParse, pX);
|
|
eType = IN_INDEX_EPH;
|
|
}else{
|
|
pX->iTable = iTab;
|
|
}
|
|
return eType;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Generate code for scalar subqueries used as an expression
|
|
** and IN operators. Examples:
|
|
**
|
|
** (SELECT a FROM b) -- subquery
|
|
** EXISTS (SELECT a FROM b) -- EXISTS subquery
|
|
** x IN (4,5,11) -- IN operator with list on right-hand side
|
|
** x IN (SELECT a FROM b) -- IN operator with subquery on the right
|
|
**
|
|
** The pExpr parameter describes the expression that contains the IN
|
|
** operator or subquery.
|
|
*/
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
SQLITE_PRIVATE void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
|
|
int testAddr = 0; /* One-time test address */
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) return;
|
|
|
|
|
|
/* This code must be run in its entirety every time it is encountered
|
|
** if any of the following is true:
|
|
**
|
|
** * The right-hand side is a correlated subquery
|
|
** * The right-hand side is an expression list containing variables
|
|
** * We are inside a trigger
|
|
**
|
|
** If all of the above are false, then we can run this code just once
|
|
** save the results, and reuse the same result on subsequent invocations.
|
|
*/
|
|
if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
|
|
int mem = ++pParse->nMem;
|
|
sqlite3VdbeAddOp1(v, OP_If, mem);
|
|
testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
|
|
assert( testAddr>0 || pParse->db->mallocFailed );
|
|
}
|
|
|
|
switch( pExpr->op ){
|
|
case TK_IN: {
|
|
char affinity;
|
|
KeyInfo keyInfo;
|
|
int addr; /* Address of OP_OpenEphemeral instruction */
|
|
|
|
affinity = sqlite3ExprAffinity(pExpr->pLeft);
|
|
|
|
/* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
|
|
** expression it is handled the same way. A virtual table is
|
|
** filled with single-field index keys representing the results
|
|
** from the SELECT or the <exprlist>.
|
|
**
|
|
** If the 'x' expression is a column value, or the SELECT...
|
|
** statement returns a column value, then the affinity of that
|
|
** column is used to build the index keys. If both 'x' and the
|
|
** SELECT... statement are columns, then numeric affinity is used
|
|
** if either column has NUMERIC or INTEGER affinity. If neither
|
|
** 'x' nor the SELECT... statement are columns, then numeric affinity
|
|
** is used.
|
|
*/
|
|
pExpr->iTable = pParse->nTab++;
|
|
addr = sqlite3VdbeAddOp1(v, OP_OpenEphemeral, pExpr->iTable);
|
|
memset(&keyInfo, 0, sizeof(keyInfo));
|
|
keyInfo.nField = 1;
|
|
sqlite3VdbeAddOp2(v, OP_SetNumColumns, pExpr->iTable, 1);
|
|
|
|
if( pExpr->pSelect ){
|
|
/* Case 1: expr IN (SELECT ...)
|
|
**
|
|
** Generate code to write the results of the select into the temporary
|
|
** table allocated and opened above.
|
|
*/
|
|
SelectDest dest;
|
|
ExprList *pEList;
|
|
|
|
sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
|
|
dest.affinity = (int)affinity;
|
|
assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
|
|
if( sqlite3Select(pParse, pExpr->pSelect, &dest, 0, 0, 0, 0) ){
|
|
return;
|
|
}
|
|
pEList = pExpr->pSelect->pEList;
|
|
if( pEList && pEList->nExpr>0 ){
|
|
keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
|
|
pEList->a[0].pExpr);
|
|
}
|
|
}else if( pExpr->pList ){
|
|
/* Case 2: expr IN (exprlist)
|
|
**
|
|
** For each expression, build an index key from the evaluation and
|
|
** store it in the temporary table. If <expr> is a column, then use
|
|
** that columns affinity when building index keys. If <expr> is not
|
|
** a column, use numeric affinity.
|
|
*/
|
|
int i;
|
|
ExprList *pList = pExpr->pList;
|
|
struct ExprList_item *pItem;
|
|
int r1, r2;
|
|
|
|
if( !affinity ){
|
|
affinity = SQLITE_AFF_NONE;
|
|
}
|
|
keyInfo.aColl[0] = pExpr->pLeft->pColl;
|
|
|
|
/* Loop through each expression in <exprlist>. */
|
|
r1 = sqlite3GetTempReg(pParse);
|
|
r2 = sqlite3GetTempReg(pParse);
|
|
for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
|
|
Expr *pE2 = pItem->pExpr;
|
|
|
|
/* If the expression is not constant then we will need to
|
|
** disable the test that was generated above that makes sure
|
|
** this code only executes once. Because for a non-constant
|
|
** expression we need to rerun this code each time.
|
|
*/
|
|
if( testAddr && !sqlite3ExprIsConstant(pE2) ){
|
|
sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
|
|
testAddr = 0;
|
|
}
|
|
|
|
/* Evaluate the expression and insert it into the temp table */
|
|
sqlite3ExprCode(pParse, pE2, r1);
|
|
sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
|
|
sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
|
|
}
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
sqlite3ReleaseTempReg(pParse, r2);
|
|
}
|
|
sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
|
|
break;
|
|
}
|
|
|
|
case TK_EXISTS:
|
|
case TK_SELECT: {
|
|
/* This has to be a scalar SELECT. Generate code to put the
|
|
** value of this select in a memory cell and record the number
|
|
** of the memory cell in iColumn.
|
|
*/
|
|
static const Token one = { (u8*)"1", 0, 1 };
|
|
Select *pSel;
|
|
SelectDest dest;
|
|
|
|
pSel = pExpr->pSelect;
|
|
sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
|
|
if( pExpr->op==TK_SELECT ){
|
|
dest.eDest = SRT_Mem;
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
|
|
VdbeComment((v, "Init subquery result"));
|
|
}else{
|
|
dest.eDest = SRT_Exists;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
|
|
VdbeComment((v, "Init EXISTS result"));
|
|
}
|
|
sqlite3ExprDelete(pSel->pLimit);
|
|
pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
|
|
if( sqlite3Select(pParse, pSel, &dest, 0, 0, 0, 0) ){
|
|
return;
|
|
}
|
|
pExpr->iColumn = dest.iParm;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if( testAddr ){
|
|
sqlite3VdbeJumpHere(v, testAddr-1);
|
|
}
|
|
|
|
return;
|
|
}
|
|
#endif /* SQLITE_OMIT_SUBQUERY */
|
|
|
|
/*
|
|
** Duplicate an 8-byte value
|
|
*/
|
|
static char *dup8bytes(Vdbe *v, const char *in){
|
|
char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
|
|
if( out ){
|
|
memcpy(out, in, 8);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
/*
|
|
** Generate an instruction that will put the floating point
|
|
** value described by z[0..n-1] into register iMem.
|
|
**
|
|
** The z[] string will probably not be zero-terminated. But the
|
|
** z[n] character is guaranteed to be something that does not look
|
|
** like the continuation of the number.
|
|
*/
|
|
static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){
|
|
assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
|
|
if( z ){
|
|
double value;
|
|
char *zV;
|
|
assert( !isdigit(z[n]) );
|
|
sqlite3AtoF(z, &value);
|
|
if( negateFlag ) value = -value;
|
|
zV = dup8bytes(v, (char*)&value);
|
|
sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Generate an instruction that will put the integer describe by
|
|
** text z[0..n-1] into register iMem.
|
|
**
|
|
** The z[] string will probably not be zero-terminated. But the
|
|
** z[n] character is guaranteed to be something that does not look
|
|
** like the continuation of the number.
|
|
*/
|
|
static void codeInteger(Vdbe *v, const char *z, int n, int negFlag, int iMem){
|
|
assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
|
|
if( z ){
|
|
int i;
|
|
assert( !isdigit(z[n]) );
|
|
if( sqlite3GetInt32(z, &i) ){
|
|
if( negFlag ) i = -i;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
|
|
}else if( sqlite3FitsIn64Bits(z, negFlag) ){
|
|
i64 value;
|
|
char *zV;
|
|
sqlite3Atoi64(z, &value);
|
|
if( negFlag ) value = -value;
|
|
zV = dup8bytes(v, (char*)&value);
|
|
sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
|
|
}else{
|
|
codeReal(v, z, n, negFlag, iMem);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Generate code that will extract the iColumn-th column from
|
|
** table pTab and store the column value in register iReg.
|
|
** There is an open cursor to pTab in
|
|
** iTable. If iColumn<0 then code is generated that extracts the rowid.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3ExprCodeGetColumn(
|
|
Vdbe *v, /* The VM being created */
|
|
Table *pTab, /* Description of the table we are reading from */
|
|
int iColumn, /* Index of the table column */
|
|
int iTable, /* The cursor pointing to the table */
|
|
int iReg /* Store results here */
|
|
){
|
|
if( iColumn<0 ){
|
|
int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
|
|
sqlite3VdbeAddOp2(v, op, iTable, iReg);
|
|
}else if( pTab==0 ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg);
|
|
}else{
|
|
int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
|
|
sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
|
|
sqlite3ColumnDefault(v, pTab, iColumn);
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
|
|
sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate code into the current Vdbe to evaluate the given
|
|
** expression. Attempt to store the results in register "target".
|
|
** Return the register where results are stored.
|
|
**
|
|
** With this routine, there is no guaranteed that results will
|
|
** be stored in target. The result might be stored in some other
|
|
** register if it is convenient to do so. The calling function
|
|
** must check the return code and move the results to the desired
|
|
** register.
|
|
*/
|
|
static int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
|
Vdbe *v = pParse->pVdbe; /* The VM under construction */
|
|
int op; /* The opcode being coded */
|
|
int inReg = target; /* Results stored in register inReg */
|
|
int regFree1 = 0; /* If non-zero free this temporary register */
|
|
int regFree2 = 0; /* If non-zero free this temporary register */
|
|
int r1, r2, r3; /* Various register numbers */
|
|
|
|
assert( v!=0 || pParse->db->mallocFailed );
|
|
assert( target>0 && target<=pParse->nMem );
|
|
if( v==0 ) return 0;
|
|
|
|
if( pExpr==0 ){
|
|
op = TK_NULL;
|
|
}else{
|
|
op = pExpr->op;
|
|
}
|
|
switch( op ){
|
|
case TK_AGG_COLUMN: {
|
|
AggInfo *pAggInfo = pExpr->pAggInfo;
|
|
struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
|
|
if( !pAggInfo->directMode ){
|
|
assert( pCol->iMem>0 );
|
|
inReg = pCol->iMem;
|
|
break;
|
|
}else if( pAggInfo->useSortingIdx ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
|
|
pCol->iSorterColumn, target);
|
|
break;
|
|
}
|
|
/* Otherwise, fall thru into the TK_COLUMN case */
|
|
}
|
|
case TK_COLUMN: {
|
|
if( pExpr->iTable<0 ){
|
|
/* This only happens when coding check constraints */
|
|
assert( pParse->ckBase>0 );
|
|
inReg = pExpr->iColumn + pParse->ckBase;
|
|
}else{
|
|
sqlite3ExprCodeGetColumn(v, pExpr->pTab,
|
|
pExpr->iColumn, pExpr->iTable, target);
|
|
}
|
|
break;
|
|
}
|
|
case TK_INTEGER: {
|
|
codeInteger(v, (char*)pExpr->token.z, pExpr->token.n, 0, target);
|
|
break;
|
|
}
|
|
case TK_FLOAT: {
|
|
codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target);
|
|
break;
|
|
}
|
|
case TK_STRING: {
|
|
sqlite3DequoteExpr(pParse->db, pExpr);
|
|
sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0,
|
|
(char*)pExpr->token.z, pExpr->token.n);
|
|
break;
|
|
}
|
|
case TK_NULL: {
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, target);
|
|
break;
|
|
}
|
|
#ifndef SQLITE_OMIT_BLOB_LITERAL
|
|
case TK_BLOB: {
|
|
int n;
|
|
const char *z;
|
|
char *zBlob;
|
|
assert( pExpr->token.n>=3 );
|
|
assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
|
|
assert( pExpr->token.z[1]=='\'' );
|
|
assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
|
|
n = pExpr->token.n - 3;
|
|
z = (char*)pExpr->token.z + 2;
|
|
zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
|
|
sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
|
|
break;
|
|
}
|
|
#endif
|
|
case TK_VARIABLE: {
|
|
sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target);
|
|
if( pExpr->token.n>1 ){
|
|
sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n);
|
|
}
|
|
break;
|
|
}
|
|
case TK_REGISTER: {
|
|
inReg = pExpr->iTable;
|
|
break;
|
|
}
|
|
#ifndef SQLITE_OMIT_CAST
|
|
case TK_CAST: {
|
|
/* Expressions of the form: CAST(pLeft AS token) */
|
|
int aff, to_op;
|
|
inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
|
|
aff = sqlite3AffinityType(&pExpr->token);
|
|
to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
|
|
assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT );
|
|
assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE );
|
|
assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
|
|
assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER );
|
|
assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL );
|
|
sqlite3VdbeAddOp1(v, to_op, inReg);
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_CAST */
|
|
case TK_LT:
|
|
case TK_LE:
|
|
case TK_GT:
|
|
case TK_GE:
|
|
case TK_NE:
|
|
case TK_EQ: {
|
|
assert( TK_LT==OP_Lt );
|
|
assert( TK_LE==OP_Le );
|
|
assert( TK_GT==OP_Gt );
|
|
assert( TK_GE==OP_Ge );
|
|
assert( TK_EQ==OP_Eq );
|
|
assert( TK_NE==OP_Ne );
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
|
r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
|
codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
|
r1, r2, inReg, SQLITE_STOREP2);
|
|
break;
|
|
}
|
|
case TK_AND:
|
|
case TK_OR:
|
|
case TK_PLUS:
|
|
case TK_STAR:
|
|
case TK_MINUS:
|
|
case TK_REM:
|
|
case TK_BITAND:
|
|
case TK_BITOR:
|
|
case TK_SLASH:
|
|
case TK_LSHIFT:
|
|
case TK_RSHIFT:
|
|
case TK_CONCAT: {
|
|
assert( TK_AND==OP_And );
|
|
assert( TK_OR==OP_Or );
|
|
assert( TK_PLUS==OP_Add );
|
|
assert( TK_MINUS==OP_Subtract );
|
|
assert( TK_REM==OP_Remainder );
|
|
assert( TK_BITAND==OP_BitAnd );
|
|
assert( TK_BITOR==OP_BitOr );
|
|
assert( TK_SLASH==OP_Divide );
|
|
assert( TK_LSHIFT==OP_ShiftLeft );
|
|
assert( TK_RSHIFT==OP_ShiftRight );
|
|
assert( TK_CONCAT==OP_Concat );
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
|
r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
|
sqlite3VdbeAddOp3(v, op, r2, r1, target);
|
|
break;
|
|
}
|
|
case TK_UMINUS: {
|
|
Expr *pLeft = pExpr->pLeft;
|
|
assert( pLeft );
|
|
if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
|
|
Token *p = &pLeft->token;
|
|
if( pLeft->op==TK_FLOAT ){
|
|
codeReal(v, (char*)p->z, p->n, 1, target);
|
|
}else{
|
|
codeInteger(v, (char*)p->z, p->n, 1, target);
|
|
}
|
|
}else{
|
|
regFree1 = r1 = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
|
|
r2 = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
|
|
sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
|
|
}
|
|
inReg = target;
|
|
break;
|
|
}
|
|
case TK_BITNOT:
|
|
case TK_NOT: {
|
|
assert( TK_BITNOT==OP_BitNot );
|
|
assert( TK_NOT==OP_Not );
|
|
inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
|
|
sqlite3VdbeAddOp1(v, op, inReg);
|
|
break;
|
|
}
|
|
case TK_ISNULL:
|
|
case TK_NOTNULL: {
|
|
int addr;
|
|
assert( TK_ISNULL==OP_IsNull );
|
|
assert( TK_NOTNULL==OP_NotNull );
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
|
addr = sqlite3VdbeAddOp1(v, op, r1);
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
break;
|
|
}
|
|
case TK_AGG_FUNCTION: {
|
|
AggInfo *pInfo = pExpr->pAggInfo;
|
|
if( pInfo==0 ){
|
|
sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
|
|
&pExpr->span);
|
|
}else{
|
|
inReg = pInfo->aFunc[pExpr->iAgg].iMem;
|
|
}
|
|
break;
|
|
}
|
|
case TK_CONST_FUNC:
|
|
case TK_FUNCTION: {
|
|
ExprList *pList = pExpr->pList;
|
|
int nExpr = pList ? pList->nExpr : 0;
|
|
FuncDef *pDef;
|
|
int nId;
|
|
const char *zId;
|
|
int constMask = 0;
|
|
int i;
|
|
sqlite3 *db = pParse->db;
|
|
u8 enc = ENC(db);
|
|
CollSeq *pColl = 0;
|
|
|
|
zId = (char*)pExpr->token.z;
|
|
nId = pExpr->token.n;
|
|
pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
|
|
assert( pDef!=0 );
|
|
if( pList ){
|
|
nExpr = pList->nExpr;
|
|
r1 = sqlite3GetTempRange(pParse, nExpr);
|
|
sqlite3ExprCodeExprList(pParse, pList, r1);
|
|
}else{
|
|
nExpr = r1 = 0;
|
|
}
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Possibly overload the function if the first argument is
|
|
** a virtual table column.
|
|
**
|
|
** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
|
|
** second argument, not the first, as the argument to test to
|
|
** see if it is a column in a virtual table. This is done because
|
|
** the left operand of infix functions (the operand we want to
|
|
** control overloading) ends up as the second argument to the
|
|
** function. The expression "A glob B" is equivalent to
|
|
** "glob(B,A). We want to use the A in "A glob B" to test
|
|
** for function overloading. But we use the B term in "glob(B,A)".
|
|
*/
|
|
if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
|
|
pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);
|
|
}else if( nExpr>0 ){
|
|
pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);
|
|
}
|
|
#endif
|
|
for(i=0; i<nExpr && i<32; i++){
|
|
if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
|
|
constMask |= (1<<i);
|
|
}
|
|
if( pDef->needCollSeq && !pColl ){
|
|
pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
|
|
}
|
|
}
|
|
if( pDef->needCollSeq ){
|
|
if( !pColl ) pColl = pParse->db->pDfltColl;
|
|
sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
|
|
}
|
|
sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
|
|
(char*)pDef, P4_FUNCDEF);
|
|
sqlite3VdbeChangeP5(v, nExpr);
|
|
if( nExpr ){
|
|
sqlite3ReleaseTempRange(pParse, r1, nExpr);
|
|
}
|
|
break;
|
|
}
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
case TK_EXISTS:
|
|
case TK_SELECT: {
|
|
if( pExpr->iColumn==0 ){
|
|
sqlite3CodeSubselect(pParse, pExpr);
|
|
}
|
|
inReg = pExpr->iColumn;
|
|
break;
|
|
}
|
|
case TK_IN: {
|
|
int j1, j2, j3, j4, j5;
|
|
char affinity;
|
|
int eType;
|
|
|
|
eType = sqlite3FindInIndex(pParse, pExpr, 0);
|
|
|
|
/* Figure out the affinity to use to create a key from the results
|
|
** of the expression. affinityStr stores a static string suitable for
|
|
** P4 of OP_MakeRecord.
|
|
*/
|
|
affinity = comparisonAffinity(pExpr);
|
|
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
|
|
|
|
/* Code the <expr> from "<expr> IN (...)". The temporary table
|
|
** pExpr->iTable contains the values that make up the (...) set.
|
|
*/
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
|
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, target);
|
|
j2 = sqlite3VdbeAddOp0(v, OP_Goto);
|
|
sqlite3VdbeJumpHere(v, j1);
|
|
if( eType==IN_INDEX_ROWID ){
|
|
j3 = sqlite3VdbeAddOp3(v, OP_MustBeInt, r1, 0, 1);
|
|
j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, r1);
|
|
j5 = sqlite3VdbeAddOp0(v, OP_Goto);
|
|
sqlite3VdbeJumpHere(v, j3);
|
|
sqlite3VdbeJumpHere(v, j4);
|
|
}else{
|
|
r2 = regFree2 = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
|
|
j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
|
|
sqlite3VdbeJumpHere(v, j2);
|
|
sqlite3VdbeJumpHere(v, j5);
|
|
break;
|
|
}
|
|
#endif
|
|
/*
|
|
** x BETWEEN y AND z
|
|
**
|
|
** This is equivalent to
|
|
**
|
|
** x>=y AND x<=z
|
|
**
|
|
** X is stored in pExpr->pLeft.
|
|
** Y is stored in pExpr->pList->a[0].pExpr.
|
|
** Z is stored in pExpr->pList->a[1].pExpr.
|
|
*/
|
|
case TK_BETWEEN: {
|
|
Expr *pLeft = pExpr->pLeft;
|
|
struct ExprList_item *pLItem = pExpr->pList->a;
|
|
Expr *pRight = pLItem->pExpr;
|
|
|
|
r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1);
|
|
r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2);
|
|
r3 = sqlite3GetTempReg(pParse);
|
|
codeCompare(pParse, pLeft, pRight, OP_Ge,
|
|
r1, r2, r3, SQLITE_STOREP2);
|
|
pLItem++;
|
|
pRight = pLItem->pExpr;
|
|
sqlite3ReleaseTempReg(pParse, regFree2);
|
|
r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2);
|
|
codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r2, SQLITE_STOREP2);
|
|
sqlite3VdbeAddOp3(v, OP_And, r3, r2, target);
|
|
sqlite3ReleaseTempReg(pParse, r3);
|
|
break;
|
|
}
|
|
case TK_UPLUS: {
|
|
inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** Form A:
|
|
** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
|
|
**
|
|
** Form B:
|
|
** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
|
|
**
|
|
** Form A is can be transformed into the equivalent form B as follows:
|
|
** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
|
|
** WHEN x=eN THEN rN ELSE y END
|
|
**
|
|
** X (if it exists) is in pExpr->pLeft.
|
|
** Y is in pExpr->pRight. The Y is also optional. If there is no
|
|
** ELSE clause and no other term matches, then the result of the
|
|
** exprssion is NULL.
|
|
** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
|
|
**
|
|
** The result of the expression is the Ri for the first matching Ei,
|
|
** or if there is no matching Ei, the ELSE term Y, or if there is
|
|
** no ELSE term, NULL.
|
|
*/
|
|
case TK_CASE: {
|
|
int endLabel; /* GOTO label for end of CASE stmt */
|
|
int nextCase; /* GOTO label for next WHEN clause */
|
|
int nExpr; /* 2x number of WHEN terms */
|
|
int i; /* Loop counter */
|
|
ExprList *pEList; /* List of WHEN terms */
|
|
struct ExprList_item *aListelem; /* Array of WHEN terms */
|
|
Expr opCompare; /* The X==Ei expression */
|
|
Expr cacheX; /* Cached expression X */
|
|
Expr *pX; /* The X expression */
|
|
Expr *pTest; /* X==Ei (form A) or just Ei (form B) */
|
|
|
|
assert(pExpr->pList);
|
|
assert((pExpr->pList->nExpr % 2) == 0);
|
|
assert(pExpr->pList->nExpr > 0);
|
|
pEList = pExpr->pList;
|
|
aListelem = pEList->a;
|
|
nExpr = pEList->nExpr;
|
|
endLabel = sqlite3VdbeMakeLabel(v);
|
|
if( (pX = pExpr->pLeft)!=0 ){
|
|
cacheX = *pX;
|
|
cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1);
|
|
cacheX.op = TK_REGISTER;
|
|
opCompare.op = TK_EQ;
|
|
opCompare.pLeft = &cacheX;
|
|
pTest = &opCompare;
|
|
}
|
|
for(i=0; i<nExpr; i=i+2){
|
|
if( pX ){
|
|
opCompare.pRight = aListelem[i].pExpr;
|
|
}else{
|
|
pTest = aListelem[i].pExpr;
|
|
}
|
|
nextCase = sqlite3VdbeMakeLabel(v);
|
|
sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
|
|
sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
|
|
sqlite3VdbeResolveLabel(v, nextCase);
|
|
}
|
|
if( pExpr->pRight ){
|
|
sqlite3ExprCode(pParse, pExpr->pRight, target);
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, target);
|
|
}
|
|
sqlite3VdbeResolveLabel(v, endLabel);
|
|
break;
|
|
}
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
case TK_RAISE: {
|
|
if( !pParse->trigStack ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"RAISE() may only be used within a trigger-program");
|
|
return 0;
|
|
}
|
|
if( pExpr->iColumn!=OE_Ignore ){
|
|
assert( pExpr->iColumn==OE_Rollback ||
|
|
pExpr->iColumn == OE_Abort ||
|
|
pExpr->iColumn == OE_Fail );
|
|
sqlite3DequoteExpr(pParse->db, pExpr);
|
|
sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0,
|
|
(char*)pExpr->token.z, pExpr->token.n);
|
|
} else {
|
|
assert( pExpr->iColumn == OE_Ignore );
|
|
sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
|
|
VdbeComment((v, "raise(IGNORE)"));
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
sqlite3ReleaseTempReg(pParse, regFree1);
|
|
sqlite3ReleaseTempReg(pParse, regFree2);
|
|
return inReg;
|
|
}
|
|
|
|
/*
|
|
** Generate code to evaluate an expression and store the results
|
|
** into a register. Return the register number where the results
|
|
** are stored.
|
|
**
|
|
** If the register is a temporary register that can be deallocated,
|
|
** then write its number into *pReg. If the result register is no
|
|
** a temporary, then set *pReg to zero.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
|
|
int r1 = sqlite3GetTempReg(pParse);
|
|
int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
|
|
if( r2==r1 ){
|
|
*pReg = r1;
|
|
}else{
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
*pReg = 0;
|
|
}
|
|
return r2;
|
|
}
|
|
|
|
/*
|
|
** Generate code that will evaluate expression pExpr and store the
|
|
** results in register target. The results are guaranteed to appear
|
|
** in register target.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
|
|
int inReg;
|
|
|
|
assert( target>0 && target<=pParse->nMem );
|
|
inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
|
|
assert( pParse->pVdbe || pParse->db->mallocFailed );
|
|
if( inReg!=target && pParse->pVdbe ){
|
|
sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
|
|
}
|
|
return target;
|
|
}
|
|
|
|
/*
|
|
** Generate code that evalutes the given expression and puts the result
|
|
** in register target.
|
|
**
|
|
** Also make a copy of the expression results into another "cache" register
|
|
** and modify the expression so that the next time it is evaluated,
|
|
** the result is a copy of the cache register.
|
|
**
|
|
** This routine is used for expressions that are used multiple
|
|
** times. They are evaluated once and the results of the expression
|
|
** are reused.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int inReg;
|
|
inReg = sqlite3ExprCode(pParse, pExpr, target);
|
|
assert( target>0 );
|
|
if( pExpr->op!=TK_REGISTER ){
|
|
int iMem;
|
|
iMem = ++pParse->nMem;
|
|
sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
|
|
pExpr->iTable = iMem;
|
|
pExpr->op = TK_REGISTER;
|
|
}
|
|
return inReg;
|
|
}
|
|
|
|
|
|
/*
|
|
** Generate code that pushes the value of every element of the given
|
|
** expression list into a sequence of registers beginning at target.
|
|
**
|
|
** Return the number of elements evaluated.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3ExprCodeExprList(
|
|
Parse *pParse, /* Parsing context */
|
|
ExprList *pList, /* The expression list to be coded */
|
|
int target /* Where to write results */
|
|
){
|
|
struct ExprList_item *pItem;
|
|
int i, n;
|
|
assert( pList!=0 || pParse->db->mallocFailed );
|
|
if( pList==0 ){
|
|
return 0;
|
|
}
|
|
assert( target>0 );
|
|
n = pList->nExpr;
|
|
for(pItem=pList->a, i=n; i>0; i--, pItem++){
|
|
sqlite3ExprCode(pParse, pItem->pExpr, target);
|
|
target++;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Generate code for a boolean expression such that a jump is made
|
|
** to the label "dest" if the expression is true but execution
|
|
** continues straight thru if the expression is false.
|
|
**
|
|
** If the expression evaluates to NULL (neither true nor false), then
|
|
** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
|
|
**
|
|
** This code depends on the fact that certain token values (ex: TK_EQ)
|
|
** are the same as opcode values (ex: OP_Eq) that implement the corresponding
|
|
** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
|
|
** the make process cause these values to align. Assert()s in the code
|
|
** below verify that the numbers are aligned correctly.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int op = 0;
|
|
int regFree1 = 0;
|
|
int regFree2 = 0;
|
|
int r1, r2;
|
|
|
|
assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
|
|
if( v==0 || pExpr==0 ) return;
|
|
op = pExpr->op;
|
|
switch( op ){
|
|
case TK_AND: {
|
|
int d2 = sqlite3VdbeMakeLabel(v);
|
|
sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
|
|
sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
|
|
sqlite3VdbeResolveLabel(v, d2);
|
|
break;
|
|
}
|
|
case TK_OR: {
|
|
sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
|
|
sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
|
|
break;
|
|
}
|
|
case TK_NOT: {
|
|
sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
|
|
break;
|
|
}
|
|
case TK_LT:
|
|
case TK_LE:
|
|
case TK_GT:
|
|
case TK_GE:
|
|
case TK_NE:
|
|
case TK_EQ: {
|
|
assert( TK_LT==OP_Lt );
|
|
assert( TK_LE==OP_Le );
|
|
assert( TK_GT==OP_Gt );
|
|
assert( TK_GE==OP_Ge );
|
|
assert( TK_EQ==OP_Eq );
|
|
assert( TK_NE==OP_Ne );
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
|
r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
|
codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
|
r1, r2, dest, jumpIfNull);
|
|
break;
|
|
}
|
|
case TK_ISNULL:
|
|
case TK_NOTNULL: {
|
|
assert( TK_ISNULL==OP_IsNull );
|
|
assert( TK_NOTNULL==OP_NotNull );
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
|
sqlite3VdbeAddOp2(v, op, r1, dest);
|
|
break;
|
|
}
|
|
case TK_BETWEEN: {
|
|
/* x BETWEEN y AND z
|
|
**
|
|
** Is equivalent to
|
|
**
|
|
** x>=y AND x<=z
|
|
**
|
|
** Code it as such, taking care to do the common subexpression
|
|
** elementation of x.
|
|
*/
|
|
Expr exprAnd;
|
|
Expr compLeft;
|
|
Expr compRight;
|
|
Expr exprX;
|
|
|
|
exprX = *pExpr->pLeft;
|
|
exprAnd.op = TK_AND;
|
|
exprAnd.pLeft = &compLeft;
|
|
exprAnd.pRight = &compRight;
|
|
compLeft.op = TK_GE;
|
|
compLeft.pLeft = &exprX;
|
|
compLeft.pRight = pExpr->pList->a[0].pExpr;
|
|
compRight.op = TK_LE;
|
|
compRight.pLeft = &exprX;
|
|
compRight.pRight = pExpr->pList->a[1].pExpr;
|
|
exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1);
|
|
exprX.op = TK_REGISTER;
|
|
sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
|
|
break;
|
|
}
|
|
default: {
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
|
|
sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
|
|
break;
|
|
}
|
|
}
|
|
sqlite3ReleaseTempReg(pParse, regFree1);
|
|
sqlite3ReleaseTempReg(pParse, regFree2);
|
|
}
|
|
|
|
/*
|
|
** Generate code for a boolean expression such that a jump is made
|
|
** to the label "dest" if the expression is false but execution
|
|
** continues straight thru if the expression is true.
|
|
**
|
|
** If the expression evaluates to NULL (neither true nor false) then
|
|
** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
|
|
** is 0.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int op = 0;
|
|
int regFree1 = 0;
|
|
int regFree2 = 0;
|
|
int r1, r2;
|
|
|
|
assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
|
|
if( v==0 || pExpr==0 ) return;
|
|
|
|
/* The value of pExpr->op and op are related as follows:
|
|
**
|
|
** pExpr->op op
|
|
** --------- ----------
|
|
** TK_ISNULL OP_NotNull
|
|
** TK_NOTNULL OP_IsNull
|
|
** TK_NE OP_Eq
|
|
** TK_EQ OP_Ne
|
|
** TK_GT OP_Le
|
|
** TK_LE OP_Gt
|
|
** TK_GE OP_Lt
|
|
** TK_LT OP_Ge
|
|
**
|
|
** For other values of pExpr->op, op is undefined and unused.
|
|
** The value of TK_ and OP_ constants are arranged such that we
|
|
** can compute the mapping above using the following expression.
|
|
** Assert()s verify that the computation is correct.
|
|
*/
|
|
op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
|
|
|
|
/* Verify correct alignment of TK_ and OP_ constants
|
|
*/
|
|
assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
|
|
assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
|
|
assert( pExpr->op!=TK_NE || op==OP_Eq );
|
|
assert( pExpr->op!=TK_EQ || op==OP_Ne );
|
|
assert( pExpr->op!=TK_LT || op==OP_Ge );
|
|
assert( pExpr->op!=TK_LE || op==OP_Gt );
|
|
assert( pExpr->op!=TK_GT || op==OP_Le );
|
|
assert( pExpr->op!=TK_GE || op==OP_Lt );
|
|
|
|
switch( pExpr->op ){
|
|
case TK_AND: {
|
|
sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
|
|
sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
|
|
break;
|
|
}
|
|
case TK_OR: {
|
|
int d2 = sqlite3VdbeMakeLabel(v);
|
|
sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
|
|
sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
|
|
sqlite3VdbeResolveLabel(v, d2);
|
|
break;
|
|
}
|
|
case TK_NOT: {
|
|
sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
|
|
break;
|
|
}
|
|
case TK_LT:
|
|
case TK_LE:
|
|
case TK_GT:
|
|
case TK_GE:
|
|
case TK_NE:
|
|
case TK_EQ: {
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
|
r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
|
codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
|
r1, r2, dest, jumpIfNull);
|
|
break;
|
|
}
|
|
case TK_ISNULL:
|
|
case TK_NOTNULL: {
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
|
sqlite3VdbeAddOp2(v, op, r1, dest);
|
|
break;
|
|
}
|
|
case TK_BETWEEN: {
|
|
/* x BETWEEN y AND z
|
|
**
|
|
** Is equivalent to
|
|
**
|
|
** x>=y AND x<=z
|
|
**
|
|
** Code it as such, taking care to do the common subexpression
|
|
** elementation of x.
|
|
*/
|
|
Expr exprAnd;
|
|
Expr compLeft;
|
|
Expr compRight;
|
|
Expr exprX;
|
|
|
|
exprX = *pExpr->pLeft;
|
|
exprAnd.op = TK_AND;
|
|
exprAnd.pLeft = &compLeft;
|
|
exprAnd.pRight = &compRight;
|
|
compLeft.op = TK_GE;
|
|
compLeft.pLeft = &exprX;
|
|
compLeft.pRight = pExpr->pList->a[0].pExpr;
|
|
compRight.op = TK_LE;
|
|
compRight.pLeft = &exprX;
|
|
compRight.pRight = pExpr->pList->a[1].pExpr;
|
|
exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1);
|
|
exprX.op = TK_REGISTER;
|
|
sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
|
|
break;
|
|
}
|
|
default: {
|
|
r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
|
|
sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
|
|
break;
|
|
}
|
|
}
|
|
sqlite3ReleaseTempReg(pParse, regFree1);
|
|
sqlite3ReleaseTempReg(pParse, regFree2);
|
|
}
|
|
|
|
/*
|
|
** Do a deep comparison of two expression trees. Return TRUE (non-zero)
|
|
** if they are identical and return FALSE if they differ in any way.
|
|
**
|
|
** Sometimes this routine will return FALSE even if the two expressions
|
|
** really are equivalent. If we cannot prove that the expressions are
|
|
** identical, we return FALSE just to be safe. So if this routine
|
|
** returns false, then you do not really know for certain if the two
|
|
** expressions are the same. But if you get a TRUE return, then you
|
|
** can be sure the expressions are the same. In the places where
|
|
** this routine is used, it does not hurt to get an extra FALSE - that
|
|
** just might result in some slightly slower code. But returning
|
|
** an incorrect TRUE could lead to a malfunction.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3ExprCompare(Expr *pA, Expr *pB){
|
|
int i;
|
|
if( pA==0||pB==0 ){
|
|
return pB==pA;
|
|
}
|
|
if( pA->op!=pB->op ) return 0;
|
|
if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
|
|
if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
|
|
if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
|
|
if( pA->pList ){
|
|
if( pB->pList==0 ) return 0;
|
|
if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
|
|
for(i=0; i<pA->pList->nExpr; i++){
|
|
if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
|
|
return 0;
|
|
}
|
|
}
|
|
}else if( pB->pList ){
|
|
return 0;
|
|
}
|
|
if( pA->pSelect || pB->pSelect ) return 0;
|
|
if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
|
|
if( pA->op!=TK_COLUMN && pA->token.z ){
|
|
if( pB->token.z==0 ) return 0;
|
|
if( pB->token.n!=pA->token.n ) return 0;
|
|
if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
** Add a new element to the pAggInfo->aCol[] array. Return the index of
|
|
** the new element. Return a negative number if malloc fails.
|
|
*/
|
|
static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
|
|
int i;
|
|
pInfo->aCol = sqlite3ArrayAllocate(
|
|
db,
|
|
pInfo->aCol,
|
|
sizeof(pInfo->aCol[0]),
|
|
3,
|
|
&pInfo->nColumn,
|
|
&pInfo->nColumnAlloc,
|
|
&i
|
|
);
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
** Add a new element to the pAggInfo->aFunc[] array. Return the index of
|
|
** the new element. Return a negative number if malloc fails.
|
|
*/
|
|
static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
|
|
int i;
|
|
pInfo->aFunc = sqlite3ArrayAllocate(
|
|
db,
|
|
pInfo->aFunc,
|
|
sizeof(pInfo->aFunc[0]),
|
|
3,
|
|
&pInfo->nFunc,
|
|
&pInfo->nFuncAlloc,
|
|
&i
|
|
);
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
** This is an xFunc for walkExprTree() used to implement
|
|
** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
|
|
** for additional information.
|
|
**
|
|
** This routine analyzes the aggregate function at pExpr.
|
|
*/
|
|
static int analyzeAggregate(void *pArg, Expr *pExpr){
|
|
int i;
|
|
NameContext *pNC = (NameContext *)pArg;
|
|
Parse *pParse = pNC->pParse;
|
|
SrcList *pSrcList = pNC->pSrcList;
|
|
AggInfo *pAggInfo = pNC->pAggInfo;
|
|
|
|
switch( pExpr->op ){
|
|
case TK_AGG_COLUMN:
|
|
case TK_COLUMN: {
|
|
/* Check to see if the column is in one of the tables in the FROM
|
|
** clause of the aggregate query */
|
|
if( pSrcList ){
|
|
struct SrcList_item *pItem = pSrcList->a;
|
|
for(i=0; i<pSrcList->nSrc; i++, pItem++){
|
|
struct AggInfo_col *pCol;
|
|
if( pExpr->iTable==pItem->iCursor ){
|
|
/* If we reach this point, it means that pExpr refers to a table
|
|
** that is in the FROM clause of the aggregate query.
|
|
**
|
|
** Make an entry for the column in pAggInfo->aCol[] if there
|
|
** is not an entry there already.
|
|
*/
|
|
int k;
|
|
pCol = pAggInfo->aCol;
|
|
for(k=0; k<pAggInfo->nColumn; k++, pCol++){
|
|
if( pCol->iTable==pExpr->iTable &&
|
|
pCol->iColumn==pExpr->iColumn ){
|
|
break;
|
|
}
|
|
}
|
|
if( (k>=pAggInfo->nColumn)
|
|
&& (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
|
|
){
|
|
pCol = &pAggInfo->aCol[k];
|
|
pCol->pTab = pExpr->pTab;
|
|
pCol->iTable = pExpr->iTable;
|
|
pCol->iColumn = pExpr->iColumn;
|
|
pCol->iMem = ++pParse->nMem;
|
|
pCol->iSorterColumn = -1;
|
|
pCol->pExpr = pExpr;
|
|
if( pAggInfo->pGroupBy ){
|
|
int j, n;
|
|
ExprList *pGB = pAggInfo->pGroupBy;
|
|
struct ExprList_item *pTerm = pGB->a;
|
|
n = pGB->nExpr;
|
|
for(j=0; j<n; j++, pTerm++){
|
|
Expr *pE = pTerm->pExpr;
|
|
if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
|
|
pE->iColumn==pExpr->iColumn ){
|
|
pCol->iSorterColumn = j;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if( pCol->iSorterColumn<0 ){
|
|
pCol->iSorterColumn = pAggInfo->nSortingColumn++;
|
|
}
|
|
}
|
|
/* There is now an entry for pExpr in pAggInfo->aCol[] (either
|
|
** because it was there before or because we just created it).
|
|
** Convert the pExpr to be a TK_AGG_COLUMN referring to that
|
|
** pAggInfo->aCol[] entry.
|
|
*/
|
|
pExpr->pAggInfo = pAggInfo;
|
|
pExpr->op = TK_AGG_COLUMN;
|
|
pExpr->iAgg = k;
|
|
break;
|
|
} /* endif pExpr->iTable==pItem->iCursor */
|
|
} /* end loop over pSrcList */
|
|
}
|
|
return 1;
|
|
}
|
|
case TK_AGG_FUNCTION: {
|
|
/* The pNC->nDepth==0 test causes aggregate functions in subqueries
|
|
** to be ignored */
|
|
if( pNC->nDepth==0 ){
|
|
/* Check to see if pExpr is a duplicate of another aggregate
|
|
** function that is already in the pAggInfo structure
|
|
*/
|
|
struct AggInfo_func *pItem = pAggInfo->aFunc;
|
|
for(i=0; i<pAggInfo->nFunc; i++, pItem++){
|
|
if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
|
|
break;
|
|
}
|
|
}
|
|
if( i>=pAggInfo->nFunc ){
|
|
/* pExpr is original. Make a new entry in pAggInfo->aFunc[]
|
|
*/
|
|
u8 enc = ENC(pParse->db);
|
|
i = addAggInfoFunc(pParse->db, pAggInfo);
|
|
if( i>=0 ){
|
|
pItem = &pAggInfo->aFunc[i];
|
|
pItem->pExpr = pExpr;
|
|
pItem->iMem = ++pParse->nMem;
|
|
pItem->pFunc = sqlite3FindFunction(pParse->db,
|
|
(char*)pExpr->token.z, pExpr->token.n,
|
|
pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
|
|
if( pExpr->flags & EP_Distinct ){
|
|
pItem->iDistinct = pParse->nTab++;
|
|
}else{
|
|
pItem->iDistinct = -1;
|
|
}
|
|
}
|
|
}
|
|
/* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
|
|
*/
|
|
pExpr->iAgg = i;
|
|
pExpr->pAggInfo = pAggInfo;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Recursively walk subqueries looking for TK_COLUMN nodes that need
|
|
** to be changed to TK_AGG_COLUMN. But increment nDepth so that
|
|
** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
|
|
*/
|
|
if( pExpr->pSelect ){
|
|
pNC->nDepth++;
|
|
walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
|
|
pNC->nDepth--;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Analyze the given expression looking for aggregate functions and
|
|
** for variables that need to be added to the pParse->aAgg[] array.
|
|
** Make additional entries to the pParse->aAgg[] array as necessary.
|
|
**
|
|
** This routine should only be called after the expression has been
|
|
** analyzed by sqlite3ExprResolveNames().
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
|
|
walkExprTree(pExpr, analyzeAggregate, pNC);
|
|
}
|
|
|
|
/*
|
|
** Call sqlite3ExprAnalyzeAggregates() for every expression in an
|
|
** expression list. Return the number of errors.
|
|
**
|
|
** If an error is found, the analysis is cut short.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
|
|
struct ExprList_item *pItem;
|
|
int i;
|
|
if( pList ){
|
|
for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
|
|
sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Allocate or deallocate temporary use registers during code generation.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3GetTempReg(Parse *pParse){
|
|
if( pParse->nTempReg ){
|
|
return pParse->aTempReg[--pParse->nTempReg];
|
|
}else{
|
|
return ++pParse->nMem;
|
|
}
|
|
}
|
|
SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
|
|
if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
|
|
assert( iReg>0 );
|
|
pParse->aTempReg[pParse->nTempReg++] = iReg;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Allocate or deallocate a block of nReg consecutive registers
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3GetTempRange(Parse *pParse, int nReg){
|
|
int i;
|
|
if( nReg<=pParse->nRangeReg ){
|
|
i = pParse->iRangeReg;
|
|
pParse->iRangeReg += nReg;
|
|
pParse->nRangeReg -= nReg;
|
|
}else{
|
|
i = pParse->nMem+1;
|
|
pParse->nMem += nReg;
|
|
}
|
|
return i;
|
|
}
|
|
SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
|
|
if( nReg>pParse->nRangeReg ){
|
|
pParse->nRangeReg = nReg;
|
|
pParse->iRangeReg = iReg;
|
|
}
|
|
}
|
|
|
|
/************** End of expr.c ************************************************/
|
|
/************** Begin file alter.c *******************************************/
|
|
/*
|
|
** 2005 February 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains C code routines that used to generate VDBE code
|
|
** that implements the ALTER TABLE command.
|
|
**
|
|
** $Id: alter.c,v 1.41 2008/01/25 15:04:48 drh Exp $
|
|
*/
|
|
|
|
/*
|
|
** The code in this file only exists if we are not omitting the
|
|
** ALTER TABLE logic from the build.
|
|
*/
|
|
#ifndef SQLITE_OMIT_ALTERTABLE
|
|
|
|
|
|
/*
|
|
** This function is used by SQL generated to implement the
|
|
** ALTER TABLE command. The first argument is the text of a CREATE TABLE or
|
|
** CREATE INDEX command. The second is a table name. The table name in
|
|
** the CREATE TABLE or CREATE INDEX statement is replaced with the third
|
|
** argument and the result returned. Examples:
|
|
**
|
|
** sqlite_rename_table('CREATE TABLE abc(a, b, c)', 'def')
|
|
** -> 'CREATE TABLE def(a, b, c)'
|
|
**
|
|
** sqlite_rename_table('CREATE INDEX i ON abc(a)', 'def')
|
|
** -> 'CREATE INDEX i ON def(a, b, c)'
|
|
*/
|
|
static void renameTableFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
unsigned char const *zSql = sqlite3_value_text(argv[0]);
|
|
unsigned char const *zTableName = sqlite3_value_text(argv[1]);
|
|
|
|
int token;
|
|
Token tname;
|
|
unsigned char const *zCsr = zSql;
|
|
int len = 0;
|
|
char *zRet;
|
|
|
|
sqlite3 *db = sqlite3_user_data(context);
|
|
|
|
/* The principle used to locate the table name in the CREATE TABLE
|
|
** statement is that the table name is the first token that is immediatedly
|
|
** followed by a left parenthesis - TK_LP - or "USING" TK_USING.
|
|
*/
|
|
if( zSql ){
|
|
do {
|
|
if( !*zCsr ){
|
|
/* Ran out of input before finding an opening bracket. Return NULL. */
|
|
return;
|
|
}
|
|
|
|
/* Store the token that zCsr points to in tname. */
|
|
tname.z = zCsr;
|
|
tname.n = len;
|
|
|
|
/* Advance zCsr to the next token. Store that token type in 'token',
|
|
** and its length in 'len' (to be used next iteration of this loop).
|
|
*/
|
|
do {
|
|
zCsr += len;
|
|
len = sqlite3GetToken(zCsr, &token);
|
|
} while( token==TK_SPACE );
|
|
assert( len>0 );
|
|
} while( token!=TK_LP && token!=TK_USING );
|
|
|
|
zRet = sqlite3MPrintf(db, "%.*s%Q%s", tname.z - zSql, zSql,
|
|
zTableName, tname.z+tname.n);
|
|
sqlite3_result_text(context, zRet, -1, sqlite3_free);
|
|
}
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
/* This function is used by SQL generated to implement the
|
|
** ALTER TABLE command. The first argument is the text of a CREATE TRIGGER
|
|
** statement. The second is a table name. The table name in the CREATE
|
|
** TRIGGER statement is replaced with the third argument and the result
|
|
** returned. This is analagous to renameTableFunc() above, except for CREATE
|
|
** TRIGGER, not CREATE INDEX and CREATE TABLE.
|
|
*/
|
|
static void renameTriggerFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
unsigned char const *zSql = sqlite3_value_text(argv[0]);
|
|
unsigned char const *zTableName = sqlite3_value_text(argv[1]);
|
|
|
|
int token;
|
|
Token tname;
|
|
int dist = 3;
|
|
unsigned char const *zCsr = zSql;
|
|
int len = 0;
|
|
char *zRet;
|
|
|
|
sqlite3 *db = sqlite3_user_data(context);
|
|
|
|
/* The principle used to locate the table name in the CREATE TRIGGER
|
|
** statement is that the table name is the first token that is immediatedly
|
|
** preceded by either TK_ON or TK_DOT and immediatedly followed by one
|
|
** of TK_WHEN, TK_BEGIN or TK_FOR.
|
|
*/
|
|
if( zSql ){
|
|
do {
|
|
|
|
if( !*zCsr ){
|
|
/* Ran out of input before finding the table name. Return NULL. */
|
|
return;
|
|
}
|
|
|
|
/* Store the token that zCsr points to in tname. */
|
|
tname.z = zCsr;
|
|
tname.n = len;
|
|
|
|
/* Advance zCsr to the next token. Store that token type in 'token',
|
|
** and its length in 'len' (to be used next iteration of this loop).
|
|
*/
|
|
do {
|
|
zCsr += len;
|
|
len = sqlite3GetToken(zCsr, &token);
|
|
}while( token==TK_SPACE );
|
|
assert( len>0 );
|
|
|
|
/* Variable 'dist' stores the number of tokens read since the most
|
|
** recent TK_DOT or TK_ON. This means that when a WHEN, FOR or BEGIN
|
|
** token is read and 'dist' equals 2, the condition stated above
|
|
** to be met.
|
|
**
|
|
** Note that ON cannot be a database, table or column name, so
|
|
** there is no need to worry about syntax like
|
|
** "CREATE TRIGGER ... ON ON.ON BEGIN ..." etc.
|
|
*/
|
|
dist++;
|
|
if( token==TK_DOT || token==TK_ON ){
|
|
dist = 0;
|
|
}
|
|
} while( dist!=2 || (token!=TK_WHEN && token!=TK_FOR && token!=TK_BEGIN) );
|
|
|
|
/* Variable tname now contains the token that is the old table-name
|
|
** in the CREATE TRIGGER statement.
|
|
*/
|
|
zRet = sqlite3MPrintf(db, "%.*s%Q%s", tname.z - zSql, zSql,
|
|
zTableName, tname.z+tname.n);
|
|
sqlite3_result_text(context, zRet, -1, sqlite3_free);
|
|
}
|
|
}
|
|
#endif /* !SQLITE_OMIT_TRIGGER */
|
|
|
|
/*
|
|
** Register built-in functions used to help implement ALTER TABLE
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3AlterFunctions(sqlite3 *db){
|
|
static const struct {
|
|
char *zName;
|
|
signed char nArg;
|
|
void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
|
|
} aFuncs[] = {
|
|
{ "sqlite_rename_table", 2, renameTableFunc},
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
{ "sqlite_rename_trigger", 2, renameTriggerFunc},
|
|
#endif
|
|
};
|
|
int i;
|
|
|
|
for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
|
|
sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
|
|
SQLITE_UTF8, (void *)db, aFuncs[i].xFunc, 0, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate the text of a WHERE expression which can be used to select all
|
|
** temporary triggers on table pTab from the sqlite_temp_master table. If
|
|
** table pTab has no temporary triggers, or is itself stored in the
|
|
** temporary database, NULL is returned.
|
|
*/
|
|
static char *whereTempTriggers(Parse *pParse, Table *pTab){
|
|
Trigger *pTrig;
|
|
char *zWhere = 0;
|
|
char *tmp = 0;
|
|
const Schema *pTempSchema = pParse->db->aDb[1].pSchema; /* Temp db schema */
|
|
|
|
/* If the table is not located in the temp-db (in which case NULL is
|
|
** returned, loop through the tables list of triggers. For each trigger
|
|
** that is not part of the temp-db schema, add a clause to the WHERE
|
|
** expression being built up in zWhere.
|
|
*/
|
|
if( pTab->pSchema!=pTempSchema ){
|
|
sqlite3 *db = pParse->db;
|
|
for( pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext ){
|
|
if( pTrig->pSchema==pTempSchema ){
|
|
if( !zWhere ){
|
|
zWhere = sqlite3MPrintf(db, "name=%Q", pTrig->name);
|
|
}else{
|
|
tmp = zWhere;
|
|
zWhere = sqlite3MPrintf(db, "%s OR name=%Q", zWhere, pTrig->name);
|
|
sqlite3_free(tmp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return zWhere;
|
|
}
|
|
|
|
/*
|
|
** Generate code to drop and reload the internal representation of table
|
|
** pTab from the database, including triggers and temporary triggers.
|
|
** Argument zName is the name of the table in the database schema at
|
|
** the time the generated code is executed. This can be different from
|
|
** pTab->zName if this function is being called to code part of an
|
|
** "ALTER TABLE RENAME TO" statement.
|
|
*/
|
|
static void reloadTableSchema(Parse *pParse, Table *pTab, const char *zName){
|
|
Vdbe *v;
|
|
char *zWhere;
|
|
int iDb; /* Index of database containing pTab */
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
Trigger *pTrig;
|
|
#endif
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( !v ) return;
|
|
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
|
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
assert( iDb>=0 );
|
|
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
/* Drop any table triggers from the internal schema. */
|
|
for(pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext){
|
|
int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
|
|
assert( iTrigDb==iDb || iTrigDb==1 );
|
|
sqlite3VdbeAddOp4(v, OP_DropTrigger, iTrigDb, 0, 0, pTrig->name, 0);
|
|
}
|
|
#endif
|
|
|
|
/* Drop the table and index from the internal schema */
|
|
sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
|
|
|
|
/* Reload the table, index and permanent trigger schemas. */
|
|
zWhere = sqlite3MPrintf(pParse->db, "tbl_name=%Q", zName);
|
|
if( !zWhere ) return;
|
|
sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
|
|
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
/* Now, if the table is not stored in the temp database, reload any temp
|
|
** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined.
|
|
*/
|
|
if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
|
|
sqlite3VdbeAddOp4(v, OP_ParseSchema, 1, 0, 0, zWhere, P4_DYNAMIC);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy"
|
|
** command.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3AlterRenameTable(
|
|
Parse *pParse, /* Parser context. */
|
|
SrcList *pSrc, /* The table to rename. */
|
|
Token *pName /* The new table name. */
|
|
){
|
|
int iDb; /* Database that contains the table */
|
|
char *zDb; /* Name of database iDb */
|
|
Table *pTab; /* Table being renamed */
|
|
char *zName = 0; /* NULL-terminated version of pName */
|
|
sqlite3 *db = pParse->db; /* Database connection */
|
|
int nTabName; /* Number of UTF-8 characters in zTabName */
|
|
const char *zTabName; /* Original name of the table */
|
|
Vdbe *v;
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
char *zWhere = 0; /* Where clause to locate temp triggers */
|
|
#endif
|
|
int isVirtualRename = 0; /* True if this is a v-table with an xRename() */
|
|
|
|
if( db->mallocFailed ) goto exit_rename_table;
|
|
assert( pSrc->nSrc==1 );
|
|
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
|
|
|
pTab = sqlite3LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase);
|
|
if( !pTab ) goto exit_rename_table;
|
|
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
zDb = db->aDb[iDb].zName;
|
|
|
|
/* Get a NULL terminated version of the new table name. */
|
|
zName = sqlite3NameFromToken(db, pName);
|
|
if( !zName ) goto exit_rename_table;
|
|
|
|
/* Check that a table or index named 'zName' does not already exist
|
|
** in database iDb. If so, this is an error.
|
|
*/
|
|
if( sqlite3FindTable(db, zName, zDb) || sqlite3FindIndex(db, zName, zDb) ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"there is already another table or index with this name: %s", zName);
|
|
goto exit_rename_table;
|
|
}
|
|
|
|
/* Make sure it is not a system table being altered, or a reserved name
|
|
** that the table is being renamed to.
|
|
*/
|
|
if( strlen(pTab->zName)>6 && 0==sqlite3StrNICmp(pTab->zName, "sqlite_", 7) ){
|
|
sqlite3ErrorMsg(pParse, "table %s may not be altered", pTab->zName);
|
|
goto exit_rename_table;
|
|
}
|
|
if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
|
|
goto exit_rename_table;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_VIEW
|
|
if( pTab->pSelect ){
|
|
sqlite3ErrorMsg(pParse, "view %s may not be altered", pTab->zName);
|
|
goto exit_rename_table;
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
/* Invoke the authorization callback. */
|
|
if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
|
|
goto exit_rename_table;
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( sqlite3ViewGetColumnNames(pParse, pTab) ){
|
|
goto exit_rename_table;
|
|
}
|
|
if( IsVirtual(pTab) && pTab->pMod->pModule->xRename ){
|
|
isVirtualRename = 1;
|
|
}
|
|
#endif
|
|
|
|
/* Begin a transaction and code the VerifyCookie for database iDb.
|
|
** Then modify the schema cookie (since the ALTER TABLE modifies the
|
|
** schema). Open a statement transaction if the table is a virtual
|
|
** table.
|
|
*/
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ){
|
|
goto exit_rename_table;
|
|
}
|
|
sqlite3BeginWriteOperation(pParse, isVirtualRename, iDb);
|
|
sqlite3ChangeCookie(pParse, iDb);
|
|
|
|
/* If this is a virtual table, invoke the xRename() function if
|
|
** one is defined. The xRename() callback will modify the names
|
|
** of any resources used by the v-table implementation (including other
|
|
** SQLite tables) that are identified by the name of the virtual table.
|
|
*/
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( isVirtualRename ){
|
|
int i = ++pParse->nMem;
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, i, 0, zName, 0);
|
|
sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pTab->pVtab, P4_VTAB);
|
|
}
|
|
#endif
|
|
|
|
/* figure out how many UTF-8 characters are in zName */
|
|
zTabName = pTab->zName;
|
|
nTabName = sqlite3Utf8CharLen(zTabName, -1);
|
|
|
|
/* Modify the sqlite_master table to use the new table name. */
|
|
sqlite3NestedParse(pParse,
|
|
"UPDATE %Q.%s SET "
|
|
#ifdef SQLITE_OMIT_TRIGGER
|
|
"sql = sqlite_rename_table(sql, %Q), "
|
|
#else
|
|
"sql = CASE "
|
|
"WHEN type = 'trigger' THEN sqlite_rename_trigger(sql, %Q)"
|
|
"ELSE sqlite_rename_table(sql, %Q) END, "
|
|
#endif
|
|
"tbl_name = %Q, "
|
|
"name = CASE "
|
|
"WHEN type='table' THEN %Q "
|
|
"WHEN name LIKE 'sqlite_autoindex%%' AND type='index' THEN "
|
|
"'sqlite_autoindex_' || %Q || substr(name,%d+18) "
|
|
"ELSE name END "
|
|
"WHERE tbl_name=%Q AND "
|
|
"(type='table' OR type='index' OR type='trigger');",
|
|
zDb, SCHEMA_TABLE(iDb), zName, zName, zName,
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
zName,
|
|
#endif
|
|
zName, nTabName, zTabName
|
|
);
|
|
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
/* If the sqlite_sequence table exists in this database, then update
|
|
** it with the new table name.
|
|
*/
|
|
if( sqlite3FindTable(db, "sqlite_sequence", zDb) ){
|
|
sqlite3NestedParse(pParse,
|
|
"UPDATE %Q.sqlite_sequence set name = %Q WHERE name = %Q",
|
|
zDb, zName, pTab->zName);
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
/* If there are TEMP triggers on this table, modify the sqlite_temp_master
|
|
** table. Don't do this if the table being ALTERed is itself located in
|
|
** the temp database.
|
|
*/
|
|
if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
|
|
sqlite3NestedParse(pParse,
|
|
"UPDATE sqlite_temp_master SET "
|
|
"sql = sqlite_rename_trigger(sql, %Q), "
|
|
"tbl_name = %Q "
|
|
"WHERE %s;", zName, zName, zWhere);
|
|
sqlite3_free(zWhere);
|
|
}
|
|
#endif
|
|
|
|
/* Drop and reload the internal table schema. */
|
|
reloadTableSchema(pParse, pTab, zName);
|
|
|
|
exit_rename_table:
|
|
sqlite3SrcListDelete(pSrc);
|
|
sqlite3_free(zName);
|
|
}
|
|
|
|
|
|
/*
|
|
** This function is called after an "ALTER TABLE ... ADD" statement
|
|
** has been parsed. Argument pColDef contains the text of the new
|
|
** column definition.
|
|
**
|
|
** The Table structure pParse->pNewTable was extended to include
|
|
** the new column during parsing.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){
|
|
Table *pNew; /* Copy of pParse->pNewTable */
|
|
Table *pTab; /* Table being altered */
|
|
int iDb; /* Database number */
|
|
const char *zDb; /* Database name */
|
|
const char *zTab; /* Table name */
|
|
char *zCol; /* Null-terminated column definition */
|
|
Column *pCol; /* The new column */
|
|
Expr *pDflt; /* Default value for the new column */
|
|
sqlite3 *db; /* The database connection; */
|
|
|
|
if( pParse->nErr ) return;
|
|
pNew = pParse->pNewTable;
|
|
assert( pNew );
|
|
|
|
db = pParse->db;
|
|
assert( sqlite3BtreeHoldsAllMutexes(db) );
|
|
iDb = sqlite3SchemaToIndex(db, pNew->pSchema);
|
|
zDb = db->aDb[iDb].zName;
|
|
zTab = pNew->zName;
|
|
pCol = &pNew->aCol[pNew->nCol-1];
|
|
pDflt = pCol->pDflt;
|
|
pTab = sqlite3FindTable(db, zTab, zDb);
|
|
assert( pTab );
|
|
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
/* Invoke the authorization callback. */
|
|
if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/* If the default value for the new column was specified with a
|
|
** literal NULL, then set pDflt to 0. This simplifies checking
|
|
** for an SQL NULL default below.
|
|
*/
|
|
if( pDflt && pDflt->op==TK_NULL ){
|
|
pDflt = 0;
|
|
}
|
|
|
|
/* Check that the new column is not specified as PRIMARY KEY or UNIQUE.
|
|
** If there is a NOT NULL constraint, then the default value for the
|
|
** column must not be NULL.
|
|
*/
|
|
if( pCol->isPrimKey ){
|
|
sqlite3ErrorMsg(pParse, "Cannot add a PRIMARY KEY column");
|
|
return;
|
|
}
|
|
if( pNew->pIndex ){
|
|
sqlite3ErrorMsg(pParse, "Cannot add a UNIQUE column");
|
|
return;
|
|
}
|
|
if( pCol->notNull && !pDflt ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"Cannot add a NOT NULL column with default value NULL");
|
|
return;
|
|
}
|
|
|
|
/* Ensure the default expression is something that sqlite3ValueFromExpr()
|
|
** can handle (i.e. not CURRENT_TIME etc.)
|
|
*/
|
|
if( pDflt ){
|
|
sqlite3_value *pVal;
|
|
if( sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){
|
|
db->mallocFailed = 1;
|
|
return;
|
|
}
|
|
if( !pVal ){
|
|
sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default");
|
|
return;
|
|
}
|
|
sqlite3ValueFree(pVal);
|
|
}
|
|
|
|
/* Modify the CREATE TABLE statement. */
|
|
zCol = sqlite3DbStrNDup(db, (char*)pColDef->z, pColDef->n);
|
|
if( zCol ){
|
|
char *zEnd = &zCol[pColDef->n-1];
|
|
while( (zEnd>zCol && *zEnd==';') || isspace(*(unsigned char *)zEnd) ){
|
|
*zEnd-- = '\0';
|
|
}
|
|
sqlite3NestedParse(pParse,
|
|
"UPDATE %Q.%s SET "
|
|
"sql = substr(sql,1,%d) || ', ' || %Q || substr(sql,%d) "
|
|
"WHERE type = 'table' AND name = %Q",
|
|
zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol, pNew->addColOffset+1,
|
|
zTab
|
|
);
|
|
sqlite3_free(zCol);
|
|
}
|
|
|
|
/* If the default value of the new column is NULL, then set the file
|
|
** format to 2. If the default value of the new column is not NULL,
|
|
** the file format becomes 3.
|
|
*/
|
|
sqlite3MinimumFileFormat(pParse, iDb, pDflt ? 3 : 2);
|
|
|
|
/* Reload the schema of the modified table. */
|
|
reloadTableSchema(pParse, pTab, pTab->zName);
|
|
}
|
|
|
|
/*
|
|
** This function is called by the parser after the table-name in
|
|
** an "ALTER TABLE <table-name> ADD" statement is parsed. Argument
|
|
** pSrc is the full-name of the table being altered.
|
|
**
|
|
** This routine makes a (partial) copy of the Table structure
|
|
** for the table being altered and sets Parse.pNewTable to point
|
|
** to it. Routines called by the parser as the column definition
|
|
** is parsed (i.e. sqlite3AddColumn()) add the new Column data to
|
|
** the copy. The copy of the Table structure is deleted by tokenize.c
|
|
** after parsing is finished.
|
|
**
|
|
** Routine sqlite3AlterFinishAddColumn() will be called to complete
|
|
** coding the "ALTER TABLE ... ADD" statement.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){
|
|
Table *pNew;
|
|
Table *pTab;
|
|
Vdbe *v;
|
|
int iDb;
|
|
int i;
|
|
int nAlloc;
|
|
sqlite3 *db = pParse->db;
|
|
|
|
/* Look up the table being altered. */
|
|
assert( pParse->pNewTable==0 );
|
|
assert( sqlite3BtreeHoldsAllMutexes(db) );
|
|
if( db->mallocFailed ) goto exit_begin_add_column;
|
|
pTab = sqlite3LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase);
|
|
if( !pTab ) goto exit_begin_add_column;
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( IsVirtual(pTab) ){
|
|
sqlite3ErrorMsg(pParse, "virtual tables may not be altered");
|
|
goto exit_begin_add_column;
|
|
}
|
|
#endif
|
|
|
|
/* Make sure this is not an attempt to ALTER a view. */
|
|
if( pTab->pSelect ){
|
|
sqlite3ErrorMsg(pParse, "Cannot add a column to a view");
|
|
goto exit_begin_add_column;
|
|
}
|
|
|
|
assert( pTab->addColOffset>0 );
|
|
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
|
|
/* Put a copy of the Table struct in Parse.pNewTable for the
|
|
** sqlite3AddColumn() function and friends to modify.
|
|
*/
|
|
pNew = (Table*)sqlite3DbMallocZero(db, sizeof(Table));
|
|
if( !pNew ) goto exit_begin_add_column;
|
|
pParse->pNewTable = pNew;
|
|
pNew->nRef = 1;
|
|
pNew->nCol = pTab->nCol;
|
|
assert( pNew->nCol>0 );
|
|
nAlloc = (((pNew->nCol-1)/8)*8)+8;
|
|
assert( nAlloc>=pNew->nCol && nAlloc%8==0 && nAlloc-pNew->nCol<8 );
|
|
pNew->aCol = (Column*)sqlite3DbMallocZero(db, sizeof(Column)*nAlloc);
|
|
pNew->zName = sqlite3DbStrDup(db, pTab->zName);
|
|
if( !pNew->aCol || !pNew->zName ){
|
|
db->mallocFailed = 1;
|
|
goto exit_begin_add_column;
|
|
}
|
|
memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol);
|
|
for(i=0; i<pNew->nCol; i++){
|
|
Column *pCol = &pNew->aCol[i];
|
|
pCol->zName = sqlite3DbStrDup(db, pCol->zName);
|
|
pCol->zColl = 0;
|
|
pCol->zType = 0;
|
|
pCol->pDflt = 0;
|
|
}
|
|
pNew->pSchema = db->aDb[iDb].pSchema;
|
|
pNew->addColOffset = pTab->addColOffset;
|
|
pNew->nRef = 1;
|
|
|
|
/* Begin a transaction and increment the schema cookie. */
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( !v ) goto exit_begin_add_column;
|
|
sqlite3ChangeCookie(pParse, iDb);
|
|
|
|
exit_begin_add_column:
|
|
sqlite3SrcListDelete(pSrc);
|
|
return;
|
|
}
|
|
#endif /* SQLITE_ALTER_TABLE */
|
|
|
|
/************** End of alter.c ***********************************************/
|
|
/************** Begin file analyze.c *****************************************/
|
|
/*
|
|
** 2005 July 8
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains code associated with the ANALYZE command.
|
|
**
|
|
** @(#) $Id: analyze.c,v 1.41 2008/01/25 15:04:49 drh Exp $
|
|
*/
|
|
#ifndef SQLITE_OMIT_ANALYZE
|
|
|
|
/*
|
|
** This routine generates code that opens the sqlite_stat1 table on cursor
|
|
** iStatCur.
|
|
**
|
|
** If the sqlite_stat1 tables does not previously exist, it is created.
|
|
** If it does previously exist, all entires associated with table zWhere
|
|
** are removed. If zWhere==0 then all entries are removed.
|
|
*/
|
|
static void openStatTable(
|
|
Parse *pParse, /* Parsing context */
|
|
int iDb, /* The database we are looking in */
|
|
int iStatCur, /* Open the sqlite_stat1 table on this cursor */
|
|
const char *zWhere /* Delete entries associated with this table */
|
|
){
|
|
sqlite3 *db = pParse->db;
|
|
Db *pDb;
|
|
int iRootPage;
|
|
int createStat1 = 0;
|
|
Table *pStat;
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
|
|
if( v==0 ) return;
|
|
assert( sqlite3BtreeHoldsAllMutexes(db) );
|
|
assert( sqlite3VdbeDb(v)==db );
|
|
pDb = &db->aDb[iDb];
|
|
if( (pStat = sqlite3FindTable(db, "sqlite_stat1", pDb->zName))==0 ){
|
|
/* The sqlite_stat1 tables does not exist. Create it.
|
|
** Note that a side-effect of the CREATE TABLE statement is to leave
|
|
** the rootpage of the new table in register pParse->regRoot. This is
|
|
** important because the OpenWrite opcode below will be needing it. */
|
|
sqlite3NestedParse(pParse,
|
|
"CREATE TABLE %Q.sqlite_stat1(tbl,idx,stat)",
|
|
pDb->zName
|
|
);
|
|
iRootPage = pParse->regRoot;
|
|
createStat1 = 1; /* Cause rootpage to be taken from top of stack */
|
|
}else if( zWhere ){
|
|
/* The sqlite_stat1 table exists. Delete all entries associated with
|
|
** the table zWhere. */
|
|
sqlite3NestedParse(pParse,
|
|
"DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q",
|
|
pDb->zName, zWhere
|
|
);
|
|
iRootPage = pStat->tnum;
|
|
}else{
|
|
/* The sqlite_stat1 table already exists. Delete all rows. */
|
|
iRootPage = pStat->tnum;
|
|
sqlite3VdbeAddOp2(v, OP_Clear, pStat->tnum, iDb);
|
|
}
|
|
|
|
/* Open the sqlite_stat1 table for writing. Unless it was created
|
|
** by this vdbe program, lock it for writing at the shared-cache level.
|
|
** If this vdbe did create the sqlite_stat1 table, then it must have
|
|
** already obtained a schema-lock, making the write-lock redundant.
|
|
*/
|
|
if( !createStat1 ){
|
|
sqlite3TableLock(pParse, iDb, iRootPage, 1, "sqlite_stat1");
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur, iRootPage, iDb);
|
|
sqlite3VdbeChangeP5(v, createStat1);
|
|
sqlite3VdbeAddOp2(v, OP_SetNumColumns, iStatCur, 3);
|
|
}
|
|
|
|
/*
|
|
** Generate code to do an analysis of all indices associated with
|
|
** a single table.
|
|
*/
|
|
static void analyzeOneTable(
|
|
Parse *pParse, /* Parser context */
|
|
Table *pTab, /* Table whose indices are to be analyzed */
|
|
int iStatCur, /* Cursor that writes to the sqlite_stat1 table */
|
|
int iMem /* Available memory locations begin here */
|
|
){
|
|
Index *pIdx; /* An index to being analyzed */
|
|
int iIdxCur; /* Cursor number for index being analyzed */
|
|
int nCol; /* Number of columns in the index */
|
|
Vdbe *v; /* The virtual machine being built up */
|
|
int i; /* Loop counter */
|
|
int topOfLoop; /* The top of the loop */
|
|
int endOfLoop; /* The end of the loop */
|
|
int addr; /* The address of an instruction */
|
|
int iDb; /* Index of database containing pTab */
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 || pTab==0 || pTab->pIndex==0 ){
|
|
/* Do no analysis for tables that have no indices */
|
|
return;
|
|
}
|
|
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
|
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
assert( iDb>=0 );
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
|
|
pParse->db->aDb[iDb].zName ) ){
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/* Establish a read-lock on the table at the shared-cache level. */
|
|
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
|
|
|
|
iIdxCur = pParse->nTab;
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
|
|
int regFields; /* Register block for building records */
|
|
int regRec; /* Register holding completed record */
|
|
int regTemp; /* Temporary use register */
|
|
int regCol; /* Content of a column from the table being analyzed */
|
|
int regRowid; /* Rowid for the inserted record */
|
|
int regF2;
|
|
|
|
/* Open a cursor to the index to be analyzed
|
|
*/
|
|
assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) );
|
|
sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
|
|
(char *)pKey, P4_KEYINFO_HANDOFF);
|
|
VdbeComment((v, "%s", pIdx->zName));
|
|
nCol = pIdx->nColumn;
|
|
regFields = iMem+nCol*2;
|
|
regTemp = regRowid = regCol = regFields+3;
|
|
regRec = regCol+1;
|
|
if( regRec>pParse->nMem ){
|
|
pParse->nMem = regRec;
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_SetNumColumns, iIdxCur, nCol+1);
|
|
|
|
/* Memory cells are used as follows:
|
|
**
|
|
** mem[iMem]: The total number of rows in the table.
|
|
** mem[iMem+1]: Number of distinct values in column 1
|
|
** ...
|
|
** mem[iMem+nCol]: Number of distinct values in column N
|
|
** mem[iMem+nCol+1] Last observed value of column 1
|
|
** ...
|
|
** mem[iMem+nCol+nCol]: Last observed value of column N
|
|
**
|
|
** Cells iMem through iMem+nCol are initialized to 0. The others
|
|
** are initialized to NULL.
|
|
*/
|
|
for(i=0; i<=nCol; i++){
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
|
|
}
|
|
for(i=0; i<nCol; i++){
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);
|
|
}
|
|
|
|
/* Do the analysis.
|
|
*/
|
|
endOfLoop = sqlite3VdbeMakeLabel(v);
|
|
sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
|
|
topOfLoop = sqlite3VdbeCurrentAddr(v);
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);
|
|
for(i=0; i<nCol; i++){
|
|
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
|
|
sqlite3VdbeAddOp3(v, OP_Ne, regCol, 0, iMem+nCol+i+1);
|
|
/**** TODO: add collating sequence *****/
|
|
sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
|
|
for(i=0; i<nCol; i++){
|
|
sqlite3VdbeJumpHere(v, topOfLoop + 2*(i + 1));
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
|
|
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
|
|
}
|
|
sqlite3VdbeResolveLabel(v, endOfLoop);
|
|
sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
|
|
sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
|
|
|
|
/* Store the results.
|
|
**
|
|
** The result is a single row of the sqlite_stat1 table. The first
|
|
** two columns are the names of the table and index. The third column
|
|
** is a string composed of a list of integer statistics about the
|
|
** index. The first integer in the list is the total number of entires
|
|
** in the index. There is one additional integer in the list for each
|
|
** column of the table. This additional integer is a guess of how many
|
|
** rows of the table the index will select. If D is the count of distinct
|
|
** values and K is the total number of rows, then the integer is computed
|
|
** as:
|
|
**
|
|
** I = (K+D-1)/D
|
|
**
|
|
** If K==0 then no entry is made into the sqlite_stat1 table.
|
|
** If K>0 then it is always the case the D>0 so division by zero
|
|
** is never possible.
|
|
*/
|
|
addr = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, regFields, 0, pTab->zName, 0);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, regFields+1, 0, pIdx->zName, 0);
|
|
regF2 = regFields+2;
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regF2);
|
|
for(i=0; i<nCol; i++){
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
|
|
sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2);
|
|
sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
|
|
sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
|
|
sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
|
|
sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2);
|
|
}
|
|
sqlite3VdbeAddOp4(v, OP_MakeRecord, regFields, 3, regRec, "aaa", 0);
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
|
|
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate code that will cause the most recent index analysis to
|
|
** be laoded into internal hash tables where is can be used.
|
|
*/
|
|
static void loadAnalysis(Parse *pParse, int iDb){
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate code that will do an analysis of an entire database
|
|
*/
|
|
static void analyzeDatabase(Parse *pParse, int iDb){
|
|
sqlite3 *db = pParse->db;
|
|
Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */
|
|
HashElem *k;
|
|
int iStatCur;
|
|
int iMem;
|
|
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
iStatCur = pParse->nTab++;
|
|
openStatTable(pParse, iDb, iStatCur, 0);
|
|
iMem = pParse->nMem+1;
|
|
for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
|
|
Table *pTab = (Table*)sqliteHashData(k);
|
|
analyzeOneTable(pParse, pTab, iStatCur, iMem);
|
|
}
|
|
loadAnalysis(pParse, iDb);
|
|
}
|
|
|
|
/*
|
|
** Generate code that will do an analysis of a single table in
|
|
** a database.
|
|
*/
|
|
static void analyzeTable(Parse *pParse, Table *pTab){
|
|
int iDb;
|
|
int iStatCur;
|
|
|
|
assert( pTab!=0 );
|
|
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
|
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
iStatCur = pParse->nTab++;
|
|
openStatTable(pParse, iDb, iStatCur, pTab->zName);
|
|
analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem+1);
|
|
loadAnalysis(pParse, iDb);
|
|
}
|
|
|
|
/*
|
|
** Generate code for the ANALYZE command. The parser calls this routine
|
|
** when it recognizes an ANALYZE command.
|
|
**
|
|
** ANALYZE -- 1
|
|
** ANALYZE <database> -- 2
|
|
** ANALYZE ?<database>.?<tablename> -- 3
|
|
**
|
|
** Form 1 causes all indices in all attached databases to be analyzed.
|
|
** Form 2 analyzes all indices the single database named.
|
|
** Form 3 analyzes all indices associated with the named table.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
|
|
sqlite3 *db = pParse->db;
|
|
int iDb;
|
|
int i;
|
|
char *z, *zDb;
|
|
Table *pTab;
|
|
Token *pTableName;
|
|
|
|
/* Read the database schema. If an error occurs, leave an error message
|
|
** and code in pParse and return NULL. */
|
|
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
|
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
|
return;
|
|
}
|
|
|
|
if( pName1==0 ){
|
|
/* Form 1: Analyze everything */
|
|
for(i=0; i<db->nDb; i++){
|
|
if( i==1 ) continue; /* Do not analyze the TEMP database */
|
|
analyzeDatabase(pParse, i);
|
|
}
|
|
}else if( pName2==0 || pName2->n==0 ){
|
|
/* Form 2: Analyze the database or table named */
|
|
iDb = sqlite3FindDb(db, pName1);
|
|
if( iDb>=0 ){
|
|
analyzeDatabase(pParse, iDb);
|
|
}else{
|
|
z = sqlite3NameFromToken(db, pName1);
|
|
if( z ){
|
|
pTab = sqlite3LocateTable(pParse, 0, z, 0);
|
|
sqlite3_free(z);
|
|
if( pTab ){
|
|
analyzeTable(pParse, pTab);
|
|
}
|
|
}
|
|
}
|
|
}else{
|
|
/* Form 3: Analyze the fully qualified table name */
|
|
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
|
|
if( iDb>=0 ){
|
|
zDb = db->aDb[iDb].zName;
|
|
z = sqlite3NameFromToken(db, pTableName);
|
|
if( z ){
|
|
pTab = sqlite3LocateTable(pParse, 0, z, zDb);
|
|
sqlite3_free(z);
|
|
if( pTab ){
|
|
analyzeTable(pParse, pTab);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Used to pass information from the analyzer reader through to the
|
|
** callback routine.
|
|
*/
|
|
typedef struct analysisInfo analysisInfo;
|
|
struct analysisInfo {
|
|
sqlite3 *db;
|
|
const char *zDatabase;
|
|
};
|
|
|
|
/*
|
|
** This callback is invoked once for each index when reading the
|
|
** sqlite_stat1 table.
|
|
**
|
|
** argv[0] = name of the index
|
|
** argv[1] = results of analysis - on integer for each column
|
|
*/
|
|
static int analysisLoader(void *pData, int argc, char **argv, char **azNotUsed){
|
|
analysisInfo *pInfo = (analysisInfo*)pData;
|
|
Index *pIndex;
|
|
int i, c;
|
|
unsigned int v;
|
|
const char *z;
|
|
|
|
assert( argc==2 );
|
|
if( argv==0 || argv[0]==0 || argv[1]==0 ){
|
|
return 0;
|
|
}
|
|
pIndex = sqlite3FindIndex(pInfo->db, argv[0], pInfo->zDatabase);
|
|
if( pIndex==0 ){
|
|
return 0;
|
|
}
|
|
z = argv[1];
|
|
for(i=0; *z && i<=pIndex->nColumn; i++){
|
|
v = 0;
|
|
while( (c=z[0])>='0' && c<='9' ){
|
|
v = v*10 + c - '0';
|
|
z++;
|
|
}
|
|
pIndex->aiRowEst[i] = v;
|
|
if( *z==' ' ) z++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Load the content of the sqlite_stat1 table into the index hash tables.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
|
|
analysisInfo sInfo;
|
|
HashElem *i;
|
|
char *zSql;
|
|
int rc;
|
|
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
assert( db->aDb[iDb].pBt!=0 );
|
|
assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
|
|
|
|
/* Clear any prior statistics */
|
|
for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
|
|
Index *pIdx = sqliteHashData(i);
|
|
sqlite3DefaultRowEst(pIdx);
|
|
}
|
|
|
|
/* Check to make sure the sqlite_stat1 table existss */
|
|
sInfo.db = db;
|
|
sInfo.zDatabase = db->aDb[iDb].zName;
|
|
if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
|
|
/* Load new statistics out of the sqlite_stat1 table */
|
|
zSql = sqlite3MPrintf(db, "SELECT idx, stat FROM %Q.sqlite_stat1",
|
|
sInfo.zDatabase);
|
|
(void)sqlite3SafetyOff(db);
|
|
rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
|
|
(void)sqlite3SafetyOn(db);
|
|
sqlite3_free(zSql);
|
|
return rc;
|
|
}
|
|
|
|
|
|
#endif /* SQLITE_OMIT_ANALYZE */
|
|
|
|
/************** End of analyze.c *********************************************/
|
|
/************** Begin file attach.c ******************************************/
|
|
/*
|
|
** 2003 April 6
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains code used to implement the ATTACH and DETACH commands.
|
|
**
|
|
** $Id: attach.c,v 1.70 2008/01/23 03:03:05 drh Exp $
|
|
*/
|
|
|
|
#ifndef SQLITE_OMIT_ATTACH
|
|
/*
|
|
** Resolve an expression that was part of an ATTACH or DETACH statement. This
|
|
** is slightly different from resolving a normal SQL expression, because simple
|
|
** identifiers are treated as strings, not possible column names or aliases.
|
|
**
|
|
** i.e. if the parser sees:
|
|
**
|
|
** ATTACH DATABASE abc AS def
|
|
**
|
|
** it treats the two expressions as literal strings 'abc' and 'def' instead of
|
|
** looking for columns of the same name.
|
|
**
|
|
** This only applies to the root node of pExpr, so the statement:
|
|
**
|
|
** ATTACH DATABASE abc||def AS 'db2'
|
|
**
|
|
** will fail because neither abc or def can be resolved.
|
|
*/
|
|
static int resolveAttachExpr(NameContext *pName, Expr *pExpr)
|
|
{
|
|
int rc = SQLITE_OK;
|
|
if( pExpr ){
|
|
if( pExpr->op!=TK_ID ){
|
|
rc = sqlite3ExprResolveNames(pName, pExpr);
|
|
if( rc==SQLITE_OK && !sqlite3ExprIsConstant(pExpr) ){
|
|
sqlite3ErrorMsg(pName->pParse, "invalid name: \"%T\"", &pExpr->span);
|
|
return SQLITE_ERROR;
|
|
}
|
|
}else{
|
|
pExpr->op = TK_STRING;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** An SQL user-function registered to do the work of an ATTACH statement. The
|
|
** three arguments to the function come directly from an attach statement:
|
|
**
|
|
** ATTACH DATABASE x AS y KEY z
|
|
**
|
|
** SELECT sqlite_attach(x, y, z)
|
|
**
|
|
** If the optional "KEY z" syntax is omitted, an SQL NULL is passed as the
|
|
** third argument.
|
|
*/
|
|
static void attachFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int i;
|
|
int rc = 0;
|
|
sqlite3 *db = sqlite3_user_data(context);
|
|
const char *zName;
|
|
const char *zFile;
|
|
Db *aNew;
|
|
char *zErrDyn = 0;
|
|
char zErr[128];
|
|
|
|
zFile = (const char *)sqlite3_value_text(argv[0]);
|
|
zName = (const char *)sqlite3_value_text(argv[1]);
|
|
if( zFile==0 ) zFile = "";
|
|
if( zName==0 ) zName = "";
|
|
|
|
/* Check for the following errors:
|
|
**
|
|
** * Too many attached databases,
|
|
** * Transaction currently open
|
|
** * Specified database name already being used.
|
|
*/
|
|
if( db->nDb>=SQLITE_MAX_ATTACHED+2 ){
|
|
sqlite3_snprintf(
|
|
sizeof(zErr), zErr, "too many attached databases - max %d",
|
|
SQLITE_MAX_ATTACHED
|
|
);
|
|
goto attach_error;
|
|
}
|
|
if( !db->autoCommit ){
|
|
sqlite3_snprintf(sizeof(zErr), zErr,
|
|
"cannot ATTACH database within transaction");
|
|
goto attach_error;
|
|
}
|
|
for(i=0; i<db->nDb; i++){
|
|
char *z = db->aDb[i].zName;
|
|
if( z && zName && sqlite3StrICmp(z, zName)==0 ){
|
|
sqlite3_snprintf(sizeof(zErr), zErr,
|
|
"database %s is already in use", zName);
|
|
goto attach_error;
|
|
}
|
|
}
|
|
|
|
/* Allocate the new entry in the db->aDb[] array and initialise the schema
|
|
** hash tables.
|
|
*/
|
|
if( db->aDb==db->aDbStatic ){
|
|
aNew = sqlite3_malloc( sizeof(db->aDb[0])*3 );
|
|
if( aNew==0 ){
|
|
db->mallocFailed = 1;
|
|
return;
|
|
}
|
|
memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2);
|
|
}else{
|
|
aNew = sqlite3_realloc(db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
|
|
if( aNew==0 ){
|
|
db->mallocFailed = 1;
|
|
return;
|
|
}
|
|
}
|
|
db->aDb = aNew;
|
|
aNew = &db->aDb[db->nDb++];
|
|
memset(aNew, 0, sizeof(*aNew));
|
|
|
|
/* Open the database file. If the btree is successfully opened, use
|
|
** it to obtain the database schema. At this point the schema may
|
|
** or may not be initialised.
|
|
*/
|
|
rc = sqlite3BtreeFactory(db, zFile, 0, SQLITE_DEFAULT_CACHE_SIZE,
|
|
db->openFlags | SQLITE_OPEN_MAIN_DB,
|
|
&aNew->pBt);
|
|
if( rc==SQLITE_OK ){
|
|
aNew->pSchema = sqlite3SchemaGet(db, aNew->pBt);
|
|
if( !aNew->pSchema ){
|
|
rc = SQLITE_NOMEM;
|
|
}else if( aNew->pSchema->file_format && aNew->pSchema->enc!=ENC(db) ){
|
|
sqlite3_snprintf(sizeof(zErr), zErr,
|
|
"attached databases must use the same text encoding as main database");
|
|
goto attach_error;
|
|
}
|
|
sqlite3PagerLockingMode(sqlite3BtreePager(aNew->pBt), db->dfltLockMode);
|
|
}
|
|
aNew->zName = sqlite3DbStrDup(db, zName);
|
|
aNew->safety_level = 3;
|
|
|
|
#if SQLITE_HAS_CODEC
|
|
{
|
|
extern int sqlite3CodecAttach(sqlite3*, int, const void*, int);
|
|
extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*);
|
|
int nKey;
|
|
char *zKey;
|
|
int t = sqlite3_value_type(argv[2]);
|
|
switch( t ){
|
|
case SQLITE_INTEGER:
|
|
case SQLITE_FLOAT:
|
|
zErrDyn = sqlite3DbStrDup(db, "Invalid key value");
|
|
rc = SQLITE_ERROR;
|
|
break;
|
|
|
|
case SQLITE_TEXT:
|
|
case SQLITE_BLOB:
|
|
nKey = sqlite3_value_bytes(argv[2]);
|
|
zKey = (char *)sqlite3_value_blob(argv[2]);
|
|
sqlite3CodecAttach(db, db->nDb-1, zKey, nKey);
|
|
break;
|
|
|
|
case SQLITE_NULL:
|
|
/* No key specified. Use the key from the main database */
|
|
sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey);
|
|
sqlite3CodecAttach(db, db->nDb-1, zKey, nKey);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* If the file was opened successfully, read the schema for the new database.
|
|
** If this fails, or if opening the file failed, then close the file and
|
|
** remove the entry from the db->aDb[] array. i.e. put everything back the way
|
|
** we found it.
|
|
*/
|
|
if( rc==SQLITE_OK ){
|
|
(void)sqlite3SafetyOn(db);
|
|
sqlite3BtreeEnterAll(db);
|
|
rc = sqlite3Init(db, &zErrDyn);
|
|
sqlite3BtreeLeaveAll(db);
|
|
(void)sqlite3SafetyOff(db);
|
|
}
|
|
if( rc ){
|
|
int iDb = db->nDb - 1;
|
|
assert( iDb>=2 );
|
|
if( db->aDb[iDb].pBt ){
|
|
sqlite3BtreeClose(db->aDb[iDb].pBt);
|
|
db->aDb[iDb].pBt = 0;
|
|
db->aDb[iDb].pSchema = 0;
|
|
}
|
|
sqlite3ResetInternalSchema(db, 0);
|
|
db->nDb = iDb;
|
|
if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
|
|
db->mallocFailed = 1;
|
|
sqlite3_snprintf(sizeof(zErr),zErr, "out of memory");
|
|
}else{
|
|
sqlite3_snprintf(sizeof(zErr),zErr, "unable to open database: %s", zFile);
|
|
}
|
|
goto attach_error;
|
|
}
|
|
|
|
return;
|
|
|
|
attach_error:
|
|
/* Return an error if we get here */
|
|
if( zErrDyn ){
|
|
sqlite3_result_error(context, zErrDyn, -1);
|
|
sqlite3_free(zErrDyn);
|
|
}else{
|
|
zErr[sizeof(zErr)-1] = 0;
|
|
sqlite3_result_error(context, zErr, -1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** An SQL user-function registered to do the work of an DETACH statement. The
|
|
** three arguments to the function come directly from a detach statement:
|
|
**
|
|
** DETACH DATABASE x
|
|
**
|
|
** SELECT sqlite_detach(x)
|
|
*/
|
|
static void detachFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const char *zName = (const char *)sqlite3_value_text(argv[0]);
|
|
sqlite3 *db = sqlite3_user_data(context);
|
|
int i;
|
|
Db *pDb = 0;
|
|
char zErr[128];
|
|
|
|
if( zName==0 ) zName = "";
|
|
for(i=0; i<db->nDb; i++){
|
|
pDb = &db->aDb[i];
|
|
if( pDb->pBt==0 ) continue;
|
|
if( sqlite3StrICmp(pDb->zName, zName)==0 ) break;
|
|
}
|
|
|
|
if( i>=db->nDb ){
|
|
sqlite3_snprintf(sizeof(zErr),zErr, "no such database: %s", zName);
|
|
goto detach_error;
|
|
}
|
|
if( i<2 ){
|
|
sqlite3_snprintf(sizeof(zErr),zErr, "cannot detach database %s", zName);
|
|
goto detach_error;
|
|
}
|
|
if( !db->autoCommit ){
|
|
sqlite3_snprintf(sizeof(zErr), zErr,
|
|
"cannot DETACH database within transaction");
|
|
goto detach_error;
|
|
}
|
|
if( sqlite3BtreeIsInReadTrans(pDb->pBt) ){
|
|
sqlite3_snprintf(sizeof(zErr),zErr, "database %s is locked", zName);
|
|
goto detach_error;
|
|
}
|
|
|
|
sqlite3BtreeClose(pDb->pBt);
|
|
pDb->pBt = 0;
|
|
pDb->pSchema = 0;
|
|
sqlite3ResetInternalSchema(db, 0);
|
|
return;
|
|
|
|
detach_error:
|
|
sqlite3_result_error(context, zErr, -1);
|
|
}
|
|
|
|
/*
|
|
** This procedure generates VDBE code for a single invocation of either the
|
|
** sqlite_detach() or sqlite_attach() SQL user functions.
|
|
*/
|
|
static void codeAttach(
|
|
Parse *pParse, /* The parser context */
|
|
int type, /* Either SQLITE_ATTACH or SQLITE_DETACH */
|
|
const char *zFunc, /* Either "sqlite_attach" or "sqlite_detach */
|
|
int nFunc, /* Number of args to pass to zFunc */
|
|
Expr *pAuthArg, /* Expression to pass to authorization callback */
|
|
Expr *pFilename, /* Name of database file */
|
|
Expr *pDbname, /* Name of the database to use internally */
|
|
Expr *pKey /* Database key for encryption extension */
|
|
){
|
|
int rc;
|
|
NameContext sName;
|
|
Vdbe *v;
|
|
FuncDef *pFunc;
|
|
sqlite3* db = pParse->db;
|
|
int regArgs;
|
|
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
assert( db->mallocFailed || pAuthArg );
|
|
if( pAuthArg ){
|
|
char *zAuthArg = sqlite3NameFromToken(db, &pAuthArg->span);
|
|
if( !zAuthArg ){
|
|
goto attach_end;
|
|
}
|
|
rc = sqlite3AuthCheck(pParse, type, zAuthArg, 0, 0);
|
|
sqlite3_free(zAuthArg);
|
|
if(rc!=SQLITE_OK ){
|
|
goto attach_end;
|
|
}
|
|
}
|
|
#endif /* SQLITE_OMIT_AUTHORIZATION */
|
|
|
|
memset(&sName, 0, sizeof(NameContext));
|
|
sName.pParse = pParse;
|
|
|
|
if(
|
|
SQLITE_OK!=(rc = resolveAttachExpr(&sName, pFilename)) ||
|
|
SQLITE_OK!=(rc = resolveAttachExpr(&sName, pDbname)) ||
|
|
SQLITE_OK!=(rc = resolveAttachExpr(&sName, pKey))
|
|
){
|
|
pParse->nErr++;
|
|
goto attach_end;
|
|
}
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
regArgs = sqlite3GetTempRange(pParse, 3);
|
|
sqlite3ExprCode(pParse, pFilename, regArgs);
|
|
sqlite3ExprCode(pParse, pDbname, regArgs+1);
|
|
sqlite3ExprCode(pParse, pKey, regArgs+2);
|
|
|
|
assert( v || db->mallocFailed );
|
|
if( v ){
|
|
sqlite3VdbeAddOp3(v, OP_Function, 0, regArgs+3-nFunc, regArgs);
|
|
sqlite3VdbeChangeP5(v, nFunc);
|
|
pFunc = sqlite3FindFunction(db, zFunc, strlen(zFunc), nFunc, SQLITE_UTF8,0);
|
|
sqlite3VdbeChangeP4(v, -1, (char *)pFunc, P4_FUNCDEF);
|
|
|
|
/* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this
|
|
** statement only). For DETACH, set it to false (expire all existing
|
|
** statements).
|
|
*/
|
|
sqlite3VdbeAddOp1(v, OP_Expire, (type==SQLITE_ATTACH));
|
|
}
|
|
|
|
attach_end:
|
|
sqlite3ExprDelete(pFilename);
|
|
sqlite3ExprDelete(pDbname);
|
|
sqlite3ExprDelete(pKey);
|
|
}
|
|
|
|
/*
|
|
** Called by the parser to compile a DETACH statement.
|
|
**
|
|
** DETACH pDbname
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3Detach(Parse *pParse, Expr *pDbname){
|
|
codeAttach(pParse, SQLITE_DETACH, "sqlite_detach", 1, pDbname, 0, 0, pDbname);
|
|
}
|
|
|
|
/*
|
|
** Called by the parser to compile an ATTACH statement.
|
|
**
|
|
** ATTACH p AS pDbname KEY pKey
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){
|
|
codeAttach(pParse, SQLITE_ATTACH, "sqlite_attach", 3, p, p, pDbname, pKey);
|
|
}
|
|
#endif /* SQLITE_OMIT_ATTACH */
|
|
|
|
/*
|
|
** Register the functions sqlite_attach and sqlite_detach.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3AttachFunctions(sqlite3 *db){
|
|
#ifndef SQLITE_OMIT_ATTACH
|
|
static const int enc = SQLITE_UTF8;
|
|
sqlite3CreateFunc(db, "sqlite_attach", 3, enc, db, attachFunc, 0, 0);
|
|
sqlite3CreateFunc(db, "sqlite_detach", 1, enc, db, detachFunc, 0, 0);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Initialize a DbFixer structure. This routine must be called prior
|
|
** to passing the structure to one of the sqliteFixAAAA() routines below.
|
|
**
|
|
** The return value indicates whether or not fixation is required. TRUE
|
|
** means we do need to fix the database references, FALSE means we do not.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3FixInit(
|
|
DbFixer *pFix, /* The fixer to be initialized */
|
|
Parse *pParse, /* Error messages will be written here */
|
|
int iDb, /* This is the database that must be used */
|
|
const char *zType, /* "view", "trigger", or "index" */
|
|
const Token *pName /* Name of the view, trigger, or index */
|
|
){
|
|
sqlite3 *db;
|
|
|
|
if( iDb<0 || iDb==1 ) return 0;
|
|
db = pParse->db;
|
|
assert( db->nDb>iDb );
|
|
pFix->pParse = pParse;
|
|
pFix->zDb = db->aDb[iDb].zName;
|
|
pFix->zType = zType;
|
|
pFix->pName = pName;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** The following set of routines walk through the parse tree and assign
|
|
** a specific database to all table references where the database name
|
|
** was left unspecified in the original SQL statement. The pFix structure
|
|
** must have been initialized by a prior call to sqlite3FixInit().
|
|
**
|
|
** These routines are used to make sure that an index, trigger, or
|
|
** view in one database does not refer to objects in a different database.
|
|
** (Exception: indices, triggers, and views in the TEMP database are
|
|
** allowed to refer to anything.) If a reference is explicitly made
|
|
** to an object in a different database, an error message is added to
|
|
** pParse->zErrMsg and these routines return non-zero. If everything
|
|
** checks out, these routines return 0.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3FixSrcList(
|
|
DbFixer *pFix, /* Context of the fixation */
|
|
SrcList *pList /* The Source list to check and modify */
|
|
){
|
|
int i;
|
|
const char *zDb;
|
|
struct SrcList_item *pItem;
|
|
|
|
if( pList==0 ) return 0;
|
|
zDb = pFix->zDb;
|
|
for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
|
|
if( pItem->zDatabase==0 ){
|
|
pItem->zDatabase = sqlite3DbStrDup(pFix->pParse->db, zDb);
|
|
}else if( sqlite3StrICmp(pItem->zDatabase,zDb)!=0 ){
|
|
sqlite3ErrorMsg(pFix->pParse,
|
|
"%s %T cannot reference objects in database %s",
|
|
pFix->zType, pFix->pName, pItem->zDatabase);
|
|
return 1;
|
|
}
|
|
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
|
|
if( sqlite3FixSelect(pFix, pItem->pSelect) ) return 1;
|
|
if( sqlite3FixExpr(pFix, pItem->pOn) ) return 1;
|
|
#endif
|
|
}
|
|
return 0;
|
|
}
|
|
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
|
|
SQLITE_PRIVATE int sqlite3FixSelect(
|
|
DbFixer *pFix, /* Context of the fixation */
|
|
Select *pSelect /* The SELECT statement to be fixed to one database */
|
|
){
|
|
while( pSelect ){
|
|
if( sqlite3FixExprList(pFix, pSelect->pEList) ){
|
|
return 1;
|
|
}
|
|
if( sqlite3FixSrcList(pFix, pSelect->pSrc) ){
|
|
return 1;
|
|
}
|
|
if( sqlite3FixExpr(pFix, pSelect->pWhere) ){
|
|
return 1;
|
|
}
|
|
if( sqlite3FixExpr(pFix, pSelect->pHaving) ){
|
|
return 1;
|
|
}
|
|
pSelect = pSelect->pPrior;
|
|
}
|
|
return 0;
|
|
}
|
|
SQLITE_PRIVATE int sqlite3FixExpr(
|
|
DbFixer *pFix, /* Context of the fixation */
|
|
Expr *pExpr /* The expression to be fixed to one database */
|
|
){
|
|
while( pExpr ){
|
|
if( sqlite3FixSelect(pFix, pExpr->pSelect) ){
|
|
return 1;
|
|
}
|
|
if( sqlite3FixExprList(pFix, pExpr->pList) ){
|
|
return 1;
|
|
}
|
|
if( sqlite3FixExpr(pFix, pExpr->pRight) ){
|
|
return 1;
|
|
}
|
|
pExpr = pExpr->pLeft;
|
|
}
|
|
return 0;
|
|
}
|
|
SQLITE_PRIVATE int sqlite3FixExprList(
|
|
DbFixer *pFix, /* Context of the fixation */
|
|
ExprList *pList /* The expression to be fixed to one database */
|
|
){
|
|
int i;
|
|
struct ExprList_item *pItem;
|
|
if( pList==0 ) return 0;
|
|
for(i=0, pItem=pList->a; i<pList->nExpr; i++, pItem++){
|
|
if( sqlite3FixExpr(pFix, pItem->pExpr) ){
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
SQLITE_PRIVATE int sqlite3FixTriggerStep(
|
|
DbFixer *pFix, /* Context of the fixation */
|
|
TriggerStep *pStep /* The trigger step be fixed to one database */
|
|
){
|
|
while( pStep ){
|
|
if( sqlite3FixSelect(pFix, pStep->pSelect) ){
|
|
return 1;
|
|
}
|
|
if( sqlite3FixExpr(pFix, pStep->pWhere) ){
|
|
return 1;
|
|
}
|
|
if( sqlite3FixExprList(pFix, pStep->pExprList) ){
|
|
return 1;
|
|
}
|
|
pStep = pStep->pNext;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/************** End of attach.c **********************************************/
|
|
/************** Begin file auth.c ********************************************/
|
|
/*
|
|
** 2003 January 11
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains code used to implement the sqlite3_set_authorizer()
|
|
** API. This facility is an optional feature of the library. Embedded
|
|
** systems that do not need this facility may omit it by recompiling
|
|
** the library with -DSQLITE_OMIT_AUTHORIZATION=1
|
|
**
|
|
** $Id: auth.c,v 1.29 2007/09/18 15:55:07 drh Exp $
|
|
*/
|
|
|
|
/*
|
|
** All of the code in this file may be omitted by defining a single
|
|
** macro.
|
|
*/
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
|
|
/*
|
|
** Set or clear the access authorization function.
|
|
**
|
|
** The access authorization function is be called during the compilation
|
|
** phase to verify that the user has read and/or write access permission on
|
|
** various fields of the database. The first argument to the auth function
|
|
** is a copy of the 3rd argument to this routine. The second argument
|
|
** to the auth function is one of these constants:
|
|
**
|
|
** SQLITE_CREATE_INDEX
|
|
** SQLITE_CREATE_TABLE
|
|
** SQLITE_CREATE_TEMP_INDEX
|
|
** SQLITE_CREATE_TEMP_TABLE
|
|
** SQLITE_CREATE_TEMP_TRIGGER
|
|
** SQLITE_CREATE_TEMP_VIEW
|
|
** SQLITE_CREATE_TRIGGER
|
|
** SQLITE_CREATE_VIEW
|
|
** SQLITE_DELETE
|
|
** SQLITE_DROP_INDEX
|
|
** SQLITE_DROP_TABLE
|
|
** SQLITE_DROP_TEMP_INDEX
|
|
** SQLITE_DROP_TEMP_TABLE
|
|
** SQLITE_DROP_TEMP_TRIGGER
|
|
** SQLITE_DROP_TEMP_VIEW
|
|
** SQLITE_DROP_TRIGGER
|
|
** SQLITE_DROP_VIEW
|
|
** SQLITE_INSERT
|
|
** SQLITE_PRAGMA
|
|
** SQLITE_READ
|
|
** SQLITE_SELECT
|
|
** SQLITE_TRANSACTION
|
|
** SQLITE_UPDATE
|
|
**
|
|
** The third and fourth arguments to the auth function are the name of
|
|
** the table and the column that are being accessed. The auth function
|
|
** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE. If
|
|
** SQLITE_OK is returned, it means that access is allowed. SQLITE_DENY
|
|
** means that the SQL statement will never-run - the sqlite3_exec() call
|
|
** will return with an error. SQLITE_IGNORE means that the SQL statement
|
|
** should run but attempts to read the specified column will return NULL
|
|
** and attempts to write the column will be ignored.
|
|
**
|
|
** Setting the auth function to NULL disables this hook. The default
|
|
** setting of the auth function is NULL.
|
|
*/
|
|
SQLITE_API int sqlite3_set_authorizer(
|
|
sqlite3 *db,
|
|
int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
|
|
void *pArg
|
|
){
|
|
sqlite3_mutex_enter(db->mutex);
|
|
db->xAuth = xAuth;
|
|
db->pAuthArg = pArg;
|
|
sqlite3ExpirePreparedStatements(db);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Write an error message into pParse->zErrMsg that explains that the
|
|
** user-supplied authorization function returned an illegal value.
|
|
*/
|
|
static void sqliteAuthBadReturnCode(Parse *pParse, int rc){
|
|
sqlite3ErrorMsg(pParse, "illegal return value (%d) from the "
|
|
"authorization function - should be SQLITE_OK, SQLITE_IGNORE, "
|
|
"or SQLITE_DENY", rc);
|
|
pParse->rc = SQLITE_ERROR;
|
|
}
|
|
|
|
/*
|
|
** The pExpr should be a TK_COLUMN expression. The table referred to
|
|
** is in pTabList or else it is the NEW or OLD table of a trigger.
|
|
** Check to see if it is OK to read this particular column.
|
|
**
|
|
** If the auth function returns SQLITE_IGNORE, change the TK_COLUMN
|
|
** instruction into a TK_NULL. If the auth function returns SQLITE_DENY,
|
|
** then generate an error.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3AuthRead(
|
|
Parse *pParse, /* The parser context */
|
|
Expr *pExpr, /* The expression to check authorization on */
|
|
Schema *pSchema, /* The schema of the expression */
|
|
SrcList *pTabList /* All table that pExpr might refer to */
|
|
){
|
|
sqlite3 *db = pParse->db;
|
|
int rc;
|
|
Table *pTab = 0; /* The table being read */
|
|
const char *zCol; /* Name of the column of the table */
|
|
int iSrc; /* Index in pTabList->a[] of table being read */
|
|
const char *zDBase; /* Name of database being accessed */
|
|
TriggerStack *pStack; /* The stack of current triggers */
|
|
int iDb; /* The index of the database the expression refers to */
|
|
|
|
if( db->xAuth==0 ) return;
|
|
if( pExpr->op!=TK_COLUMN ) return;
|
|
iDb = sqlite3SchemaToIndex(pParse->db, pSchema);
|
|
if( iDb<0 ){
|
|
/* An attempt to read a column out of a subquery or other
|
|
** temporary table. */
|
|
return;
|
|
}
|
|
for(iSrc=0; pTabList && iSrc<pTabList->nSrc; iSrc++){
|
|
if( pExpr->iTable==pTabList->a[iSrc].iCursor ) break;
|
|
}
|
|
if( iSrc>=0 && pTabList && iSrc<pTabList->nSrc ){
|
|
pTab = pTabList->a[iSrc].pTab;
|
|
}else if( (pStack = pParse->trigStack)!=0 ){
|
|
/* This must be an attempt to read the NEW or OLD pseudo-tables
|
|
** of a trigger.
|
|
*/
|
|
assert( pExpr->iTable==pStack->newIdx || pExpr->iTable==pStack->oldIdx );
|
|
pTab = pStack->pTab;
|
|
}
|
|
if( pTab==0 ) return;
|
|
if( pExpr->iColumn>=0 ){
|
|
assert( pExpr->iColumn<pTab->nCol );
|
|
zCol = pTab->aCol[pExpr->iColumn].zName;
|
|
}else if( pTab->iPKey>=0 ){
|
|
assert( pTab->iPKey<pTab->nCol );
|
|
zCol = pTab->aCol[pTab->iPKey].zName;
|
|
}else{
|
|
zCol = "ROWID";
|
|
}
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
zDBase = db->aDb[iDb].zName;
|
|
rc = db->xAuth(db->pAuthArg, SQLITE_READ, pTab->zName, zCol, zDBase,
|
|
pParse->zAuthContext);
|
|
if( rc==SQLITE_IGNORE ){
|
|
pExpr->op = TK_NULL;
|
|
}else if( rc==SQLITE_DENY ){
|
|
if( db->nDb>2 || iDb!=0 ){
|
|
sqlite3ErrorMsg(pParse, "access to %s.%s.%s is prohibited",
|
|
zDBase, pTab->zName, zCol);
|
|
}else{
|
|
sqlite3ErrorMsg(pParse, "access to %s.%s is prohibited",pTab->zName,zCol);
|
|
}
|
|
pParse->rc = SQLITE_AUTH;
|
|
}else if( rc!=SQLITE_OK ){
|
|
sqliteAuthBadReturnCode(pParse, rc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Do an authorization check using the code and arguments given. Return
|
|
** either SQLITE_OK (zero) or SQLITE_IGNORE or SQLITE_DENY. If SQLITE_DENY
|
|
** is returned, then the error count and error message in pParse are
|
|
** modified appropriately.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3AuthCheck(
|
|
Parse *pParse,
|
|
int code,
|
|
const char *zArg1,
|
|
const char *zArg2,
|
|
const char *zArg3
|
|
){
|
|
sqlite3 *db = pParse->db;
|
|
int rc;
|
|
|
|
/* Don't do any authorization checks if the database is initialising
|
|
** or if the parser is being invoked from within sqlite3_declare_vtab.
|
|
*/
|
|
if( db->init.busy || IN_DECLARE_VTAB ){
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
if( db->xAuth==0 ){
|
|
return SQLITE_OK;
|
|
}
|
|
rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext);
|
|
if( rc==SQLITE_DENY ){
|
|
sqlite3ErrorMsg(pParse, "not authorized");
|
|
pParse->rc = SQLITE_AUTH;
|
|
}else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){
|
|
rc = SQLITE_DENY;
|
|
sqliteAuthBadReturnCode(pParse, rc);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Push an authorization context. After this routine is called, the
|
|
** zArg3 argument to authorization callbacks will be zContext until
|
|
** popped. Or if pParse==0, this routine is a no-op.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3AuthContextPush(
|
|
Parse *pParse,
|
|
AuthContext *pContext,
|
|
const char *zContext
|
|
){
|
|
pContext->pParse = pParse;
|
|
if( pParse ){
|
|
pContext->zAuthContext = pParse->zAuthContext;
|
|
pParse->zAuthContext = zContext;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Pop an authorization context that was previously pushed
|
|
** by sqlite3AuthContextPush
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext *pContext){
|
|
if( pContext->pParse ){
|
|
pContext->pParse->zAuthContext = pContext->zAuthContext;
|
|
pContext->pParse = 0;
|
|
}
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_AUTHORIZATION */
|
|
|
|
/************** End of auth.c ************************************************/
|
|
/************** Begin file build.c *******************************************/
|
|
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains C code routines that are called by the SQLite parser
|
|
** when syntax rules are reduced. The routines in this file handle the
|
|
** following kinds of SQL syntax:
|
|
**
|
|
** CREATE TABLE
|
|
** DROP TABLE
|
|
** CREATE INDEX
|
|
** DROP INDEX
|
|
** creating ID lists
|
|
** BEGIN TRANSACTION
|
|
** COMMIT
|
|
** ROLLBACK
|
|
**
|
|
** $Id: build.c,v 1.472 2008/01/31 13:35:49 drh Exp $
|
|
*/
|
|
|
|
/*
|
|
** This routine is called when a new SQL statement is beginning to
|
|
** be parsed. Initialize the pParse structure as needed.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3BeginParse(Parse *pParse, int explainFlag){
|
|
pParse->explain = explainFlag;
|
|
pParse->nVar = 0;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
/*
|
|
** The TableLock structure is only used by the sqlite3TableLock() and
|
|
** codeTableLocks() functions.
|
|
*/
|
|
struct TableLock {
|
|
int iDb; /* The database containing the table to be locked */
|
|
int iTab; /* The root page of the table to be locked */
|
|
u8 isWriteLock; /* True for write lock. False for a read lock */
|
|
const char *zName; /* Name of the table */
|
|
};
|
|
|
|
/*
|
|
** Record the fact that we want to lock a table at run-time.
|
|
**
|
|
** The table to be locked has root page iTab and is found in database iDb.
|
|
** A read or a write lock can be taken depending on isWritelock.
|
|
**
|
|
** This routine just records the fact that the lock is desired. The
|
|
** code to make the lock occur is generated by a later call to
|
|
** codeTableLocks() which occurs during sqlite3FinishCoding().
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3TableLock(
|
|
Parse *pParse, /* Parsing context */
|
|
int iDb, /* Index of the database containing the table to lock */
|
|
int iTab, /* Root page number of the table to be locked */
|
|
u8 isWriteLock, /* True for a write lock */
|
|
const char *zName /* Name of the table to be locked */
|
|
){
|
|
int i;
|
|
int nBytes;
|
|
TableLock *p;
|
|
|
|
if( iDb<0 ){
|
|
return;
|
|
}
|
|
|
|
for(i=0; i<pParse->nTableLock; i++){
|
|
p = &pParse->aTableLock[i];
|
|
if( p->iDb==iDb && p->iTab==iTab ){
|
|
p->isWriteLock = (p->isWriteLock || isWriteLock);
|
|
return;
|
|
}
|
|
}
|
|
|
|
nBytes = sizeof(TableLock) * (pParse->nTableLock+1);
|
|
pParse->aTableLock =
|
|
sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes);
|
|
if( pParse->aTableLock ){
|
|
p = &pParse->aTableLock[pParse->nTableLock++];
|
|
p->iDb = iDb;
|
|
p->iTab = iTab;
|
|
p->isWriteLock = isWriteLock;
|
|
p->zName = zName;
|
|
}else{
|
|
pParse->nTableLock = 0;
|
|
pParse->db->mallocFailed = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Code an OP_TableLock instruction for each table locked by the
|
|
** statement (configured by calls to sqlite3TableLock()).
|
|
*/
|
|
static void codeTableLocks(Parse *pParse){
|
|
int i;
|
|
Vdbe *pVdbe;
|
|
|
|
if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){
|
|
return;
|
|
}
|
|
|
|
for(i=0; i<pParse->nTableLock; i++){
|
|
TableLock *p = &pParse->aTableLock[i];
|
|
int p1 = p->iDb;
|
|
if( p->isWriteLock ){
|
|
p1 = -1*(p1+1);
|
|
}
|
|
sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, 0, p->zName, P4_STATIC);
|
|
}
|
|
}
|
|
#else
|
|
#define codeTableLocks(x)
|
|
#endif
|
|
|
|
/*
|
|
** This routine is called after a single SQL statement has been
|
|
** parsed and a VDBE program to execute that statement has been
|
|
** prepared. This routine puts the finishing touches on the
|
|
** VDBE program and resets the pParse structure for the next
|
|
** parse.
|
|
**
|
|
** Note that if an error occurred, it might be the case that
|
|
** no VDBE code was generated.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3FinishCoding(Parse *pParse){
|
|
sqlite3 *db;
|
|
Vdbe *v;
|
|
|
|
db = pParse->db;
|
|
if( db->mallocFailed ) return;
|
|
if( pParse->nested ) return;
|
|
if( pParse->nErr ) return;
|
|
if( !pParse->pVdbe ){
|
|
if( pParse->rc==SQLITE_OK && pParse->nErr ){
|
|
pParse->rc = SQLITE_ERROR;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Begin by generating some termination code at the end of the
|
|
** vdbe program
|
|
*/
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
sqlite3VdbeAddOp0(v, OP_Halt);
|
|
|
|
/* The cookie mask contains one bit for each database file open.
|
|
** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
|
|
** set for each database that is used. Generate code to start a
|
|
** transaction on each used database and to verify the schema cookie
|
|
** on each used database.
|
|
*/
|
|
if( pParse->cookieGoto>0 ){
|
|
u32 mask;
|
|
int iDb;
|
|
sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
|
|
for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
|
|
if( (mask & pParse->cookieMask)==0 ) continue;
|
|
sqlite3VdbeUsesBtree(v, iDb);
|
|
sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
|
|
sqlite3VdbeAddOp2(v,OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
|
|
}
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( pParse->pVirtualLock ){
|
|
char *vtab = (char *)pParse->pVirtualLock->pVtab;
|
|
sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
|
|
}
|
|
#endif
|
|
|
|
/* Once all the cookies have been verified and transactions opened,
|
|
** obtain the required table-locks. This is a no-op unless the
|
|
** shared-cache feature is enabled.
|
|
*/
|
|
codeTableLocks(pParse);
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_TRACE
|
|
if( !db->init.busy ){
|
|
/* Change the P4 argument of the first opcode (which will always be
|
|
** an OP_Trace) to be the complete text of the current SQL statement.
|
|
*/
|
|
VdbeOp *pOp = sqlite3VdbeGetOp(v, 0);
|
|
if( pOp && pOp->opcode==OP_Trace ){
|
|
sqlite3VdbeChangeP4(v, 0, pParse->zSql, pParse->zTail-pParse->zSql);
|
|
}
|
|
}
|
|
#endif /* SQLITE_OMIT_TRACE */
|
|
}
|
|
|
|
|
|
/* Get the VDBE program ready for execution
|
|
*/
|
|
if( v && pParse->nErr==0 && !db->mallocFailed ){
|
|
#ifdef SQLITE_DEBUG
|
|
FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
|
|
sqlite3VdbeTrace(v, trace);
|
|
#endif
|
|
sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3,
|
|
pParse->nTab+3, pParse->explain);
|
|
pParse->rc = SQLITE_DONE;
|
|
pParse->colNamesSet = 0;
|
|
}else if( pParse->rc==SQLITE_OK ){
|
|
pParse->rc = SQLITE_ERROR;
|
|
}
|
|
pParse->nTab = 0;
|
|
pParse->nMem = 0;
|
|
pParse->nSet = 0;
|
|
pParse->nVar = 0;
|
|
pParse->cookieMask = 0;
|
|
pParse->cookieGoto = 0;
|
|
}
|
|
|
|
/*
|
|
** Run the parser and code generator recursively in order to generate
|
|
** code for the SQL statement given onto the end of the pParse context
|
|
** currently under construction. When the parser is run recursively
|
|
** this way, the final OP_Halt is not appended and other initialization
|
|
** and finalization steps are omitted because those are handling by the
|
|
** outermost parser.
|
|
**
|
|
** Not everything is nestable. This facility is designed to permit
|
|
** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
|
|
** care if you decide to try to use this routine for some other purposes.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
|
|
va_list ap;
|
|
char *zSql;
|
|
# define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar))
|
|
char saveBuf[SAVE_SZ];
|
|
|
|
if( pParse->nErr ) return;
|
|
assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
|
|
va_start(ap, zFormat);
|
|
zSql = sqlite3VMPrintf(pParse->db, zFormat, ap);
|
|
va_end(ap);
|
|
if( zSql==0 ){
|
|
pParse->db->mallocFailed = 1;
|
|
return; /* A malloc must have failed */
|
|
}
|
|
pParse->nested++;
|
|
memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
|
|
memset(&pParse->nVar, 0, SAVE_SZ);
|
|
sqlite3RunParser(pParse, zSql, 0);
|
|
sqlite3_free(zSql);
|
|
memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
|
|
pParse->nested--;
|
|
}
|
|
|
|
/*
|
|
** Locate the in-memory structure that describes a particular database
|
|
** table given the name of that table and (optionally) the name of the
|
|
** database containing the table. Return NULL if not found.
|
|
**
|
|
** If zDatabase is 0, all databases are searched for the table and the
|
|
** first matching table is returned. (No checking for duplicate table
|
|
** names is done.) The search order is TEMP first, then MAIN, then any
|
|
** auxiliary databases added using the ATTACH command.
|
|
**
|
|
** See also sqlite3LocateTable().
|
|
*/
|
|
SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
|
|
Table *p = 0;
|
|
int i;
|
|
assert( zName!=0 );
|
|
for(i=OMIT_TEMPDB; i<db->nDb; i++){
|
|
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
|
if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
|
|
p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, strlen(zName)+1);
|
|
if( p ) break;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Locate the in-memory structure that describes a particular database
|
|
** table given the name of that table and (optionally) the name of the
|
|
** database containing the table. Return NULL if not found. Also leave an
|
|
** error message in pParse->zErrMsg.
|
|
**
|
|
** The difference between this routine and sqlite3FindTable() is that this
|
|
** routine leaves an error message in pParse->zErrMsg where
|
|
** sqlite3FindTable() does not.
|
|
*/
|
|
SQLITE_PRIVATE Table *sqlite3LocateTable(
|
|
Parse *pParse, /* context in which to report errors */
|
|
int isView, /* True if looking for a VIEW rather than a TABLE */
|
|
const char *zName, /* Name of the table we are looking for */
|
|
const char *zDbase /* Name of the database. Might be NULL */
|
|
){
|
|
Table *p;
|
|
|
|
/* Read the database schema. If an error occurs, leave an error message
|
|
** and code in pParse and return NULL. */
|
|
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
|
return 0;
|
|
}
|
|
|
|
p = sqlite3FindTable(pParse->db, zName, zDbase);
|
|
if( p==0 ){
|
|
const char *zMsg = isView ? "no such view" : "no such table";
|
|
if( zDbase ){
|
|
sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
|
|
}else{
|
|
sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
|
|
}
|
|
pParse->checkSchema = 1;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Locate the in-memory structure that describes
|
|
** a particular index given the name of that index
|
|
** and the name of the database that contains the index.
|
|
** Return NULL if not found.
|
|
**
|
|
** If zDatabase is 0, all databases are searched for the
|
|
** table and the first matching index is returned. (No checking
|
|
** for duplicate index names is done.) The search order is
|
|
** TEMP first, then MAIN, then any auxiliary databases added
|
|
** using the ATTACH command.
|
|
*/
|
|
SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
|
|
Index *p = 0;
|
|
int i;
|
|
for(i=OMIT_TEMPDB; i<db->nDb; i++){
|
|
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
|
Schema *pSchema = db->aDb[j].pSchema;
|
|
if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
|
|
assert( pSchema || (j==1 && !db->aDb[1].pBt) );
|
|
if( pSchema ){
|
|
p = sqlite3HashFind(&pSchema->idxHash, zName, strlen(zName)+1);
|
|
}
|
|
if( p ) break;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Reclaim the memory used by an index
|
|
*/
|
|
static void freeIndex(Index *p){
|
|
sqlite3_free(p->zColAff);
|
|
sqlite3_free(p);
|
|
}
|
|
|
|
/*
|
|
** Remove the given index from the index hash table, and free
|
|
** its memory structures.
|
|
**
|
|
** The index is removed from the database hash tables but
|
|
** it is not unlinked from the Table that it indexes.
|
|
** Unlinking from the Table must be done by the calling function.
|
|
*/
|
|
static void sqliteDeleteIndex(Index *p){
|
|
Index *pOld;
|
|
const char *zName = p->zName;
|
|
|
|
pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen( zName)+1, 0);
|
|
assert( pOld==0 || pOld==p );
|
|
freeIndex(p);
|
|
}
|
|
|
|
/*
|
|
** For the index called zIdxName which is found in the database iDb,
|
|
** unlike that index from its Table then remove the index from
|
|
** the index hash table and free all memory structures associated
|
|
** with the index.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
|
|
Index *pIndex;
|
|
int len;
|
|
Hash *pHash = &db->aDb[iDb].pSchema->idxHash;
|
|
|
|
len = strlen(zIdxName);
|
|
pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0);
|
|
if( pIndex ){
|
|
if( pIndex->pTable->pIndex==pIndex ){
|
|
pIndex->pTable->pIndex = pIndex->pNext;
|
|
}else{
|
|
Index *p;
|
|
for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
|
|
if( p && p->pNext==pIndex ){
|
|
p->pNext = pIndex->pNext;
|
|
}
|
|
}
|
|
freeIndex(pIndex);
|
|
}
|
|
db->flags |= SQLITE_InternChanges;
|
|
}
|
|
|
|
/*
|
|
** Erase all schema information from the in-memory hash tables of
|
|
** a single database. This routine is called to reclaim memory
|
|
** before the database closes. It is also called during a rollback
|
|
** if there were schema changes during the transaction or if a
|
|
** schema-cookie mismatch occurs.
|
|
**
|
|
** If iDb<=0 then reset the internal schema tables for all database
|
|
** files. If iDb>=2 then reset the internal schema for only the
|
|
** single file indicated.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
|
|
int i, j;
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
|
|
if( iDb==0 ){
|
|
sqlite3BtreeEnterAll(db);
|
|
}
|
|
for(i=iDb; i<db->nDb; i++){
|
|
Db *pDb = &db->aDb[i];
|
|
if( pDb->pSchema ){
|
|
assert(i==1 || (pDb->pBt && sqlite3BtreeHoldsMutex(pDb->pBt)));
|
|
sqlite3SchemaFree(pDb->pSchema);
|
|
}
|
|
if( iDb>0 ) return;
|
|
}
|
|
assert( iDb==0 );
|
|
db->flags &= ~SQLITE_InternChanges;
|
|
sqlite3BtreeLeaveAll(db);
|
|
|
|
/* If one or more of the auxiliary database files has been closed,
|
|
** then remove them from the auxiliary database list. We take the
|
|
** opportunity to do this here since we have just deleted all of the
|
|
** schema hash tables and therefore do not have to make any changes
|
|
** to any of those tables.
|
|
*/
|
|
for(i=0; i<db->nDb; i++){
|
|
struct Db *pDb = &db->aDb[i];
|
|
if( pDb->pBt==0 ){
|
|
if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
|
|
pDb->pAux = 0;
|
|
}
|
|
}
|
|
for(i=j=2; i<db->nDb; i++){
|
|
struct Db *pDb = &db->aDb[i];
|
|
if( pDb->pBt==0 ){
|
|
sqlite3_free(pDb->zName);
|
|
pDb->zName = 0;
|
|
continue;
|
|
}
|
|
if( j<i ){
|
|
db->aDb[j] = db->aDb[i];
|
|
}
|
|
j++;
|
|
}
|
|
memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
|
|
db->nDb = j;
|
|
if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
|
|
memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
|
|
sqlite3_free(db->aDb);
|
|
db->aDb = db->aDbStatic;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine is called when a commit occurs.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3 *db){
|
|
db->flags &= ~SQLITE_InternChanges;
|
|
}
|
|
|
|
/*
|
|
** Clear the column names from a table or view.
|
|
*/
|
|
static void sqliteResetColumnNames(Table *pTable){
|
|
int i;
|
|
Column *pCol;
|
|
assert( pTable!=0 );
|
|
if( (pCol = pTable->aCol)!=0 ){
|
|
for(i=0; i<pTable->nCol; i++, pCol++){
|
|
sqlite3_free(pCol->zName);
|
|
sqlite3ExprDelete(pCol->pDflt);
|
|
sqlite3_free(pCol->zType);
|
|
sqlite3_free(pCol->zColl);
|
|
}
|
|
sqlite3_free(pTable->aCol);
|
|
}
|
|
pTable->aCol = 0;
|
|
pTable->nCol = 0;
|
|
}
|
|
|
|
/*
|
|
** Remove the memory data structures associated with the given
|
|
** Table. No changes are made to disk by this routine.
|
|
**
|
|
** This routine just deletes the data structure. It does not unlink
|
|
** the table data structure from the hash table. Nor does it remove
|
|
** foreign keys from the sqlite.aFKey hash table. But it does destroy
|
|
** memory structures of the indices and foreign keys associated with
|
|
** the table.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3DeleteTable(Table *pTable){
|
|
Index *pIndex, *pNext;
|
|
FKey *pFKey, *pNextFKey;
|
|
|
|
if( pTable==0 ) return;
|
|
|
|
/* Do not delete the table until the reference count reaches zero. */
|
|
pTable->nRef--;
|
|
if( pTable->nRef>0 ){
|
|
return;
|
|
}
|
|
assert( pTable->nRef==0 );
|
|
|
|
/* Delete all indices associated with this table
|
|
*/
|
|
for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
|
|
pNext = pIndex->pNext;
|
|
assert( pIndex->pSchema==pTable->pSchema );
|
|
sqliteDeleteIndex(pIndex);
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
/* Delete all foreign keys associated with this table. The keys
|
|
** should have already been unlinked from the pSchema->aFKey hash table
|
|
*/
|
|
for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
|
|
pNextFKey = pFKey->pNextFrom;
|
|
assert( sqlite3HashFind(&pTable->pSchema->aFKey,
|
|
pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
|
|
sqlite3_free(pFKey);
|
|
}
|
|
#endif
|
|
|
|
/* Delete the Table structure itself.
|
|
*/
|
|
sqliteResetColumnNames(pTable);
|
|
sqlite3_free(pTable->zName);
|
|
sqlite3_free(pTable->zColAff);
|
|
sqlite3SelectDelete(pTable->pSelect);
|
|
#ifndef SQLITE_OMIT_CHECK
|
|
sqlite3ExprDelete(pTable->pCheck);
|
|
#endif
|
|
sqlite3VtabClear(pTable);
|
|
sqlite3_free(pTable);
|
|
}
|
|
|
|
/*
|
|
** Unlink the given table from the hash tables and the delete the
|
|
** table structure with all its indices and foreign keys.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
|
|
Table *p;
|
|
FKey *pF1, *pF2;
|
|
Db *pDb;
|
|
|
|
assert( db!=0 );
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
assert( zTabName && zTabName[0] );
|
|
pDb = &db->aDb[iDb];
|
|
p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0);
|
|
if( p ){
|
|
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
|
|
int nTo = strlen(pF1->zTo) + 1;
|
|
pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo);
|
|
if( pF2==pF1 ){
|
|
sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo);
|
|
}else{
|
|
while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
|
|
if( pF2 ){
|
|
pF2->pNextTo = pF1->pNextTo;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
sqlite3DeleteTable(p);
|
|
}
|
|
db->flags |= SQLITE_InternChanges;
|
|
}
|
|
|
|
/*
|
|
** Given a token, return a string that consists of the text of that
|
|
** token with any quotations removed. Space to hold the returned string
|
|
** is obtained from sqliteMalloc() and must be freed by the calling
|
|
** function.
|
|
**
|
|
** Tokens are often just pointers into the original SQL text and so
|
|
** are not \000 terminated and are not persistent. The returned string
|
|
** is \000 terminated and is persistent.
|
|
*/
|
|
SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
|
|
char *zName;
|
|
if( pName ){
|
|
zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
|
|
sqlite3Dequote(zName);
|
|
}else{
|
|
zName = 0;
|
|
}
|
|
return zName;
|
|
}
|
|
|
|
/*
|
|
** Open the sqlite_master table stored in database number iDb for
|
|
** writing. The table is opened using cursor 0.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *p, int iDb){
|
|
Vdbe *v = sqlite3GetVdbe(p);
|
|
sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
|
|
sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
|
|
sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 5); /* sqlite_master has 5 columns */
|
|
}
|
|
|
|
/*
|
|
** The token *pName contains the name of a database (either "main" or
|
|
** "temp" or the name of an attached db). This routine returns the
|
|
** index of the named database in db->aDb[], or -1 if the named db
|
|
** does not exist.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3FindDb(sqlite3 *db, Token *pName){
|
|
int i = -1; /* Database number */
|
|
int n; /* Number of characters in the name */
|
|
Db *pDb; /* A database whose name space is being searched */
|
|
char *zName; /* Name we are searching for */
|
|
|
|
zName = sqlite3NameFromToken(db, pName);
|
|
if( zName ){
|
|
n = strlen(zName);
|
|
for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
|
|
if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) &&
|
|
0==sqlite3StrICmp(pDb->zName, zName) ){
|
|
break;
|
|
}
|
|
}
|
|
sqlite3_free(zName);
|
|
}
|
|
return i;
|
|
}
|
|
|
|
/* The table or view or trigger name is passed to this routine via tokens
|
|
** pName1 and pName2. If the table name was fully qualified, for example:
|
|
**
|
|
** CREATE TABLE xxx.yyy (...);
|
|
**
|
|
** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
|
|
** the table name is not fully qualified, i.e.:
|
|
**
|
|
** CREATE TABLE yyy(...);
|
|
**
|
|
** Then pName1 is set to "yyy" and pName2 is "".
|
|
**
|
|
** This routine sets the *ppUnqual pointer to point at the token (pName1 or
|
|
** pName2) that stores the unqualified table name. The index of the
|
|
** database "xxx" is returned.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3TwoPartName(
|
|
Parse *pParse, /* Parsing and code generating context */
|
|
Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
|
|
Token *pName2, /* The "yyy" in the name "xxx.yyy" */
|
|
Token **pUnqual /* Write the unqualified object name here */
|
|
){
|
|
int iDb; /* Database holding the object */
|
|
sqlite3 *db = pParse->db;
|
|
|
|
if( pName2 && pName2->n>0 ){
|
|
assert( !db->init.busy );
|
|
*pUnqual = pName2;
|
|
iDb = sqlite3FindDb(db, pName1);
|
|
if( iDb<0 ){
|
|
sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
|
|
pParse->nErr++;
|
|
return -1;
|
|
}
|
|
}else{
|
|
assert( db->init.iDb==0 || db->init.busy );
|
|
iDb = db->init.iDb;
|
|
*pUnqual = pName1;
|
|
}
|
|
return iDb;
|
|
}
|
|
|
|
/*
|
|
** This routine is used to check if the UTF-8 string zName is a legal
|
|
** unqualified name for a new schema object (table, index, view or
|
|
** trigger). All names are legal except those that begin with the string
|
|
** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
|
|
** is reserved for internal use.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *pParse, const char *zName){
|
|
if( !pParse->db->init.busy && pParse->nested==0
|
|
&& (pParse->db->flags & SQLITE_WriteSchema)==0
|
|
&& 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
|
|
sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
|
|
return SQLITE_ERROR;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Begin constructing a new table representation in memory. This is
|
|
** the first of several action routines that get called in response
|
|
** to a CREATE TABLE statement. In particular, this routine is called
|
|
** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
|
|
** flag is true if the table should be stored in the auxiliary database
|
|
** file instead of in the main database file. This is normally the case
|
|
** when the "TEMP" or "TEMPORARY" keyword occurs in between
|
|
** CREATE and TABLE.
|
|
**
|
|
** The new table record is initialized and put in pParse->pNewTable.
|
|
** As more of the CREATE TABLE statement is parsed, additional action
|
|
** routines will be called to add more information to this record.
|
|
** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
|
|
** is called to complete the construction of the new table record.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3StartTable(
|
|
Parse *pParse, /* Parser context */
|
|
Token *pName1, /* First part of the name of the table or view */
|
|
Token *pName2, /* Second part of the name of the table or view */
|
|
int isTemp, /* True if this is a TEMP table */
|
|
int isView, /* True if this is a VIEW */
|
|
int isVirtual, /* True if this is a VIRTUAL table */
|
|
int noErr /* Do nothing if table already exists */
|
|
){
|
|
Table *pTable;
|
|
char *zName = 0; /* The name of the new table */
|
|
sqlite3 *db = pParse->db;
|
|
Vdbe *v;
|
|
int iDb; /* Database number to create the table in */
|
|
Token *pName; /* Unqualified name of the table to create */
|
|
|
|
/* The table or view name to create is passed to this routine via tokens
|
|
** pName1 and pName2. If the table name was fully qualified, for example:
|
|
**
|
|
** CREATE TABLE xxx.yyy (...);
|
|
**
|
|
** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
|
|
** the table name is not fully qualified, i.e.:
|
|
**
|
|
** CREATE TABLE yyy(...);
|
|
**
|
|
** Then pName1 is set to "yyy" and pName2 is "".
|
|
**
|
|
** The call below sets the pName pointer to point at the token (pName1 or
|
|
** pName2) that stores the unqualified table name. The variable iDb is
|
|
** set to the index of the database that the table or view is to be
|
|
** created in.
|
|
*/
|
|
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
|
if( iDb<0 ) return;
|
|
if( !OMIT_TEMPDB && isTemp && iDb>1 ){
|
|
/* If creating a temp table, the name may not be qualified */
|
|
sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
|
|
return;
|
|
}
|
|
if( !OMIT_TEMPDB && isTemp ) iDb = 1;
|
|
|
|
pParse->sNameToken = *pName;
|
|
zName = sqlite3NameFromToken(db, pName);
|
|
if( zName==0 ) return;
|
|
if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
|
|
goto begin_table_error;
|
|
}
|
|
if( db->init.iDb==1 ) isTemp = 1;
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
assert( (isTemp & 1)==isTemp );
|
|
{
|
|
int code;
|
|
char *zDb = db->aDb[iDb].zName;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
|
|
goto begin_table_error;
|
|
}
|
|
if( isView ){
|
|
if( !OMIT_TEMPDB && isTemp ){
|
|
code = SQLITE_CREATE_TEMP_VIEW;
|
|
}else{
|
|
code = SQLITE_CREATE_VIEW;
|
|
}
|
|
}else{
|
|
if( !OMIT_TEMPDB && isTemp ){
|
|
code = SQLITE_CREATE_TEMP_TABLE;
|
|
}else{
|
|
code = SQLITE_CREATE_TABLE;
|
|
}
|
|
}
|
|
if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
|
|
goto begin_table_error;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Make sure the new table name does not collide with an existing
|
|
** index or table name in the same database. Issue an error message if
|
|
** it does. The exception is if the statement being parsed was passed
|
|
** to an sqlite3_declare_vtab() call. In that case only the column names
|
|
** and types will be used, so there is no need to test for namespace
|
|
** collisions.
|
|
*/
|
|
if( !IN_DECLARE_VTAB ){
|
|
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
|
goto begin_table_error;
|
|
}
|
|
pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
|
|
if( pTable ){
|
|
if( !noErr ){
|
|
sqlite3ErrorMsg(pParse, "table %T already exists", pName);
|
|
}
|
|
goto begin_table_error;
|
|
}
|
|
if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){
|
|
sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
|
|
goto begin_table_error;
|
|
}
|
|
}
|
|
|
|
pTable = sqlite3DbMallocZero(db, sizeof(Table));
|
|
if( pTable==0 ){
|
|
db->mallocFailed = 1;
|
|
pParse->rc = SQLITE_NOMEM;
|
|
pParse->nErr++;
|
|
goto begin_table_error;
|
|
}
|
|
pTable->zName = zName;
|
|
pTable->iPKey = -1;
|
|
pTable->pSchema = db->aDb[iDb].pSchema;
|
|
pTable->nRef = 1;
|
|
if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable);
|
|
pParse->pNewTable = pTable;
|
|
|
|
/* If this is the magic sqlite_sequence table used by autoincrement,
|
|
** then record a pointer to this table in the main database structure
|
|
** so that INSERT can find the table easily.
|
|
*/
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
|
|
pTable->pSchema->pSeqTab = pTable;
|
|
}
|
|
#endif
|
|
|
|
/* Begin generating the code that will insert the table record into
|
|
** the SQLITE_MASTER table. Note in particular that we must go ahead
|
|
** and allocate the record number for the table entry now. Before any
|
|
** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
|
|
** indices to be created and the table record must come before the
|
|
** indices. Hence, the record number for the table must be allocated
|
|
** now.
|
|
*/
|
|
if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
|
|
int j1;
|
|
int fileFormat;
|
|
int reg1, reg2, reg3;
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( isVirtual ){
|
|
sqlite3VdbeAddOp0(v, OP_VBegin);
|
|
}
|
|
#endif
|
|
|
|
/* If the file format and encoding in the database have not been set,
|
|
** set them now.
|
|
*/
|
|
reg1 = pParse->regRowid = ++pParse->nMem;
|
|
reg2 = pParse->regRoot = ++pParse->nMem;
|
|
reg3 = ++pParse->nMem;
|
|
sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, 1); /* file_format */
|
|
sqlite3VdbeUsesBtree(v, iDb);
|
|
j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
|
|
fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
|
|
1 : SQLITE_MAX_FILE_FORMAT;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
|
|
sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, reg3);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
|
|
sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 4, reg3);
|
|
sqlite3VdbeJumpHere(v, j1);
|
|
|
|
/* This just creates a place-holder record in the sqlite_master table.
|
|
** The record created does not contain anything yet. It will be replaced
|
|
** by the real entry in code generated at sqlite3EndTable().
|
|
**
|
|
** The rowid for the new entry is left on the top of the stack.
|
|
** The rowid value is needed by the code that sqlite3EndTable will
|
|
** generate.
|
|
*/
|
|
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
|
|
if( isView || isVirtual ){
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
|
|
}else
|
|
#endif
|
|
{
|
|
sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
|
|
}
|
|
sqlite3OpenMasterTable(pParse, iDb);
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
|
|
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
|
sqlite3VdbeAddOp0(v, OP_Close);
|
|
}
|
|
|
|
/* Normal (non-error) return. */
|
|
return;
|
|
|
|
/* If an error occurs, we jump here */
|
|
begin_table_error:
|
|
sqlite3_free(zName);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** This macro is used to compare two strings in a case-insensitive manner.
|
|
** It is slightly faster than calling sqlite3StrICmp() directly, but
|
|
** produces larger code.
|
|
**
|
|
** WARNING: This macro is not compatible with the strcmp() family. It
|
|
** returns true if the two strings are equal, otherwise false.
|
|
*/
|
|
#define STRICMP(x, y) (\
|
|
sqlite3UpperToLower[*(unsigned char *)(x)]== \
|
|
sqlite3UpperToLower[*(unsigned char *)(y)] \
|
|
&& sqlite3StrICmp((x)+1,(y)+1)==0 )
|
|
|
|
/*
|
|
** Add a new column to the table currently being constructed.
|
|
**
|
|
** The parser calls this routine once for each column declaration
|
|
** in a CREATE TABLE statement. sqlite3StartTable() gets called
|
|
** first to get things going. Then this routine is called for each
|
|
** column.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3AddColumn(Parse *pParse, Token *pName){
|
|
Table *p;
|
|
int i;
|
|
char *z;
|
|
Column *pCol;
|
|
if( (p = pParse->pNewTable)==0 ) return;
|
|
if( p->nCol+1>SQLITE_MAX_COLUMN ){
|
|
sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
|
|
return;
|
|
}
|
|
z = sqlite3NameFromToken(pParse->db, pName);
|
|
if( z==0 ) return;
|
|
for(i=0; i<p->nCol; i++){
|
|
if( STRICMP(z, p->aCol[i].zName) ){
|
|
sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
|
|
sqlite3_free(z);
|
|
return;
|
|
}
|
|
}
|
|
if( (p->nCol & 0x7)==0 ){
|
|
Column *aNew;
|
|
aNew = sqlite3DbRealloc(pParse->db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
|
|
if( aNew==0 ){
|
|
sqlite3_free(z);
|
|
return;
|
|
}
|
|
p->aCol = aNew;
|
|
}
|
|
pCol = &p->aCol[p->nCol];
|
|
memset(pCol, 0, sizeof(p->aCol[0]));
|
|
pCol->zName = z;
|
|
|
|
/* If there is no type specified, columns have the default affinity
|
|
** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
|
|
** be called next to set pCol->affinity correctly.
|
|
*/
|
|
pCol->affinity = SQLITE_AFF_NONE;
|
|
p->nCol++;
|
|
}
|
|
|
|
/*
|
|
** This routine is called by the parser while in the middle of
|
|
** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
|
|
** been seen on a column. This routine sets the notNull flag on
|
|
** the column currently under construction.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3AddNotNull(Parse *pParse, int onError){
|
|
Table *p;
|
|
int i;
|
|
if( (p = pParse->pNewTable)==0 ) return;
|
|
i = p->nCol-1;
|
|
if( i>=0 ) p->aCol[i].notNull = onError;
|
|
}
|
|
|
|
/*
|
|
** Scan the column type name zType (length nType) and return the
|
|
** associated affinity type.
|
|
**
|
|
** This routine does a case-independent search of zType for the
|
|
** substrings in the following table. If one of the substrings is
|
|
** found, the corresponding affinity is returned. If zType contains
|
|
** more than one of the substrings, entries toward the top of
|
|
** the table take priority. For example, if zType is 'BLOBINT',
|
|
** SQLITE_AFF_INTEGER is returned.
|
|
**
|
|
** Substring | Affinity
|
|
** --------------------------------
|
|
** 'INT' | SQLITE_AFF_INTEGER
|
|
** 'CHAR' | SQLITE_AFF_TEXT
|
|
** 'CLOB' | SQLITE_AFF_TEXT
|
|
** 'TEXT' | SQLITE_AFF_TEXT
|
|
** 'BLOB' | SQLITE_AFF_NONE
|
|
** 'REAL' | SQLITE_AFF_REAL
|
|
** 'FLOA' | SQLITE_AFF_REAL
|
|
** 'DOUB' | SQLITE_AFF_REAL
|
|
**
|
|
** If none of the substrings in the above table are found,
|
|
** SQLITE_AFF_NUMERIC is returned.
|
|
*/
|
|
SQLITE_PRIVATE char sqlite3AffinityType(const Token *pType){
|
|
u32 h = 0;
|
|
char aff = SQLITE_AFF_NUMERIC;
|
|
const unsigned char *zIn = pType->z;
|
|
const unsigned char *zEnd = &pType->z[pType->n];
|
|
|
|
while( zIn!=zEnd ){
|
|
h = (h<<8) + sqlite3UpperToLower[*zIn];
|
|
zIn++;
|
|
if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
|
|
aff = SQLITE_AFF_TEXT;
|
|
}else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
|
|
aff = SQLITE_AFF_TEXT;
|
|
}else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
|
|
aff = SQLITE_AFF_TEXT;
|
|
}else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
|
|
&& (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
|
|
aff = SQLITE_AFF_NONE;
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
}else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
|
|
&& aff==SQLITE_AFF_NUMERIC ){
|
|
aff = SQLITE_AFF_REAL;
|
|
}else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
|
|
&& aff==SQLITE_AFF_NUMERIC ){
|
|
aff = SQLITE_AFF_REAL;
|
|
}else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
|
|
&& aff==SQLITE_AFF_NUMERIC ){
|
|
aff = SQLITE_AFF_REAL;
|
|
#endif
|
|
}else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
|
|
aff = SQLITE_AFF_INTEGER;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return aff;
|
|
}
|
|
|
|
/*
|
|
** This routine is called by the parser while in the middle of
|
|
** parsing a CREATE TABLE statement. The pFirst token is the first
|
|
** token in the sequence of tokens that describe the type of the
|
|
** column currently under construction. pLast is the last token
|
|
** in the sequence. Use this information to construct a string
|
|
** that contains the typename of the column and store that string
|
|
** in zType.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3AddColumnType(Parse *pParse, Token *pType){
|
|
Table *p;
|
|
int i;
|
|
Column *pCol;
|
|
|
|
if( (p = pParse->pNewTable)==0 ) return;
|
|
i = p->nCol-1;
|
|
if( i<0 ) return;
|
|
pCol = &p->aCol[i];
|
|
sqlite3_free(pCol->zType);
|
|
pCol->zType = sqlite3NameFromToken(pParse->db, pType);
|
|
pCol->affinity = sqlite3AffinityType(pType);
|
|
}
|
|
|
|
/*
|
|
** The expression is the default value for the most recently added column
|
|
** of the table currently under construction.
|
|
**
|
|
** Default value expressions must be constant. Raise an exception if this
|
|
** is not the case.
|
|
**
|
|
** This routine is called by the parser while in the middle of
|
|
** parsing a CREATE TABLE statement.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){
|
|
Table *p;
|
|
Column *pCol;
|
|
if( (p = pParse->pNewTable)!=0 ){
|
|
pCol = &(p->aCol[p->nCol-1]);
|
|
if( !sqlite3ExprIsConstantOrFunction(pExpr) ){
|
|
sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
|
|
pCol->zName);
|
|
}else{
|
|
Expr *pCopy;
|
|
sqlite3 *db = pParse->db;
|
|
sqlite3ExprDelete(pCol->pDflt);
|
|
pCol->pDflt = pCopy = sqlite3ExprDup(db, pExpr);
|
|
if( pCopy ){
|
|
sqlite3TokenCopy(db, &pCopy->span, &pExpr->span);
|
|
}
|
|
}
|
|
}
|
|
sqlite3ExprDelete(pExpr);
|
|
}
|
|
|
|
/*
|
|
** Designate the PRIMARY KEY for the table. pList is a list of names
|
|
** of columns that form the primary key. If pList is NULL, then the
|
|
** most recently added column of the table is the primary key.
|
|
**
|
|
** A table can have at most one primary key. If the table already has
|
|
** a primary key (and this is the second primary key) then create an
|
|
** error.
|
|
**
|
|
** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
|
|
** then we will try to use that column as the rowid. Set the Table.iPKey
|
|
** field of the table under construction to be the index of the
|
|
** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
|
|
** no INTEGER PRIMARY KEY.
|
|
**
|
|
** If the key is not an INTEGER PRIMARY KEY, then create a unique
|
|
** index for the key. No index is created for INTEGER PRIMARY KEYs.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3AddPrimaryKey(
|
|
Parse *pParse, /* Parsing context */
|
|
ExprList *pList, /* List of field names to be indexed */
|
|
int onError, /* What to do with a uniqueness conflict */
|
|
int autoInc, /* True if the AUTOINCREMENT keyword is present */
|
|
int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
|
|
){
|
|
Table *pTab = pParse->pNewTable;
|
|
char *zType = 0;
|
|
int iCol = -1, i;
|
|
if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
|
|
if( pTab->hasPrimKey ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"table \"%s\" has more than one primary key", pTab->zName);
|
|
goto primary_key_exit;
|
|
}
|
|
pTab->hasPrimKey = 1;
|
|
if( pList==0 ){
|
|
iCol = pTab->nCol - 1;
|
|
pTab->aCol[iCol].isPrimKey = 1;
|
|
}else{
|
|
for(i=0; i<pList->nExpr; i++){
|
|
for(iCol=0; iCol<pTab->nCol; iCol++){
|
|
if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
|
|
break;
|
|
}
|
|
}
|
|
if( iCol<pTab->nCol ){
|
|
pTab->aCol[iCol].isPrimKey = 1;
|
|
}
|
|
}
|
|
if( pList->nExpr>1 ) iCol = -1;
|
|
}
|
|
if( iCol>=0 && iCol<pTab->nCol ){
|
|
zType = pTab->aCol[iCol].zType;
|
|
}
|
|
if( zType && sqlite3StrICmp(zType, "INTEGER")==0
|
|
&& sortOrder==SQLITE_SO_ASC ){
|
|
pTab->iPKey = iCol;
|
|
pTab->keyConf = onError;
|
|
pTab->autoInc = autoInc;
|
|
}else if( autoInc ){
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
|
|
"INTEGER PRIMARY KEY");
|
|
#endif
|
|
}else{
|
|
sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
|
|
pList = 0;
|
|
}
|
|
|
|
primary_key_exit:
|
|
sqlite3ExprListDelete(pList);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** Add a new CHECK constraint to the table currently under construction.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3AddCheckConstraint(
|
|
Parse *pParse, /* Parsing context */
|
|
Expr *pCheckExpr /* The check expression */
|
|
){
|
|
#ifndef SQLITE_OMIT_CHECK
|
|
Table *pTab = pParse->pNewTable;
|
|
sqlite3 *db = pParse->db;
|
|
if( pTab && !IN_DECLARE_VTAB ){
|
|
/* The CHECK expression must be duplicated so that tokens refer
|
|
** to malloced space and not the (ephemeral) text of the CREATE TABLE
|
|
** statement */
|
|
pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck,
|
|
sqlite3ExprDup(db, pCheckExpr));
|
|
}
|
|
#endif
|
|
sqlite3ExprDelete(pCheckExpr);
|
|
}
|
|
|
|
/*
|
|
** Set the collation function of the most recently parsed table column
|
|
** to the CollSeq given.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3AddCollateType(Parse *pParse, Token *pToken){
|
|
Table *p;
|
|
int i;
|
|
char *zColl; /* Dequoted name of collation sequence */
|
|
|
|
if( (p = pParse->pNewTable)==0 ) return;
|
|
i = p->nCol-1;
|
|
|
|
zColl = sqlite3NameFromToken(pParse->db, pToken);
|
|
if( !zColl ) return;
|
|
|
|
if( sqlite3LocateCollSeq(pParse, zColl, -1) ){
|
|
Index *pIdx;
|
|
p->aCol[i].zColl = zColl;
|
|
|
|
/* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
|
|
** then an index may have been created on this column before the
|
|
** collation type was added. Correct this if it is the case.
|
|
*/
|
|
for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
assert( pIdx->nColumn==1 );
|
|
if( pIdx->aiColumn[0]==i ){
|
|
pIdx->azColl[0] = p->aCol[i].zColl;
|
|
}
|
|
}
|
|
}else{
|
|
sqlite3_free(zColl);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This function returns the collation sequence for database native text
|
|
** encoding identified by the string zName, length nName.
|
|
**
|
|
** If the requested collation sequence is not available, or not available
|
|
** in the database native encoding, the collation factory is invoked to
|
|
** request it. If the collation factory does not supply such a sequence,
|
|
** and the sequence is available in another text encoding, then that is
|
|
** returned instead.
|
|
**
|
|
** If no versions of the requested collations sequence are available, or
|
|
** another error occurs, NULL is returned and an error message written into
|
|
** pParse.
|
|
**
|
|
** This routine is a wrapper around sqlite3FindCollSeq(). This routine
|
|
** invokes the collation factory if the named collation cannot be found
|
|
** and generates an error message.
|
|
*/
|
|
SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){
|
|
sqlite3 *db = pParse->db;
|
|
u8 enc = ENC(db);
|
|
u8 initbusy = db->init.busy;
|
|
CollSeq *pColl;
|
|
|
|
pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy);
|
|
if( !initbusy && (!pColl || !pColl->xCmp) ){
|
|
pColl = sqlite3GetCollSeq(db, pColl, zName, nName);
|
|
if( !pColl ){
|
|
if( nName<0 ){
|
|
nName = strlen(zName);
|
|
}
|
|
sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName);
|
|
pColl = 0;
|
|
}
|
|
}
|
|
|
|
return pColl;
|
|
}
|
|
|
|
|
|
/*
|
|
** Generate code that will increment the schema cookie.
|
|
**
|
|
** The schema cookie is used to determine when the schema for the
|
|
** database changes. After each schema change, the cookie value
|
|
** changes. When a process first reads the schema it records the
|
|
** cookie. Thereafter, whenever it goes to access the database,
|
|
** it checks the cookie to make sure the schema has not changed
|
|
** since it was last read.
|
|
**
|
|
** This plan is not completely bullet-proof. It is possible for
|
|
** the schema to change multiple times and for the cookie to be
|
|
** set back to prior value. But schema changes are infrequent
|
|
** and the probability of hitting the same cookie value is only
|
|
** 1 chance in 2^32. So we're safe enough.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3ChangeCookie(Parse *pParse, int iDb){
|
|
int r1 = sqlite3GetTempReg(pParse);
|
|
sqlite3 *db = pParse->db;
|
|
Vdbe *v = pParse->pVdbe;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
|
|
sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 0, r1);
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
}
|
|
|
|
/*
|
|
** Measure the number of characters needed to output the given
|
|
** identifier. The number returned includes any quotes used
|
|
** but does not include the null terminator.
|
|
**
|
|
** The estimate is conservative. It might be larger that what is
|
|
** really needed.
|
|
*/
|
|
static int identLength(const char *z){
|
|
int n;
|
|
for(n=0; *z; n++, z++){
|
|
if( *z=='"' ){ n++; }
|
|
}
|
|
return n + 2;
|
|
}
|
|
|
|
/*
|
|
** Write an identifier onto the end of the given string. Add
|
|
** quote characters as needed.
|
|
*/
|
|
static void identPut(char *z, int *pIdx, char *zSignedIdent){
|
|
unsigned char *zIdent = (unsigned char*)zSignedIdent;
|
|
int i, j, needQuote;
|
|
i = *pIdx;
|
|
for(j=0; zIdent[j]; j++){
|
|
if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
|
|
}
|
|
needQuote = zIdent[j]!=0 || isdigit(zIdent[0])
|
|
|| sqlite3KeywordCode(zIdent, j)!=TK_ID;
|
|
if( needQuote ) z[i++] = '"';
|
|
for(j=0; zIdent[j]; j++){
|
|
z[i++] = zIdent[j];
|
|
if( zIdent[j]=='"' ) z[i++] = '"';
|
|
}
|
|
if( needQuote ) z[i++] = '"';
|
|
z[i] = 0;
|
|
*pIdx = i;
|
|
}
|
|
|
|
/*
|
|
** Generate a CREATE TABLE statement appropriate for the given
|
|
** table. Memory to hold the text of the statement is obtained
|
|
** from sqliteMalloc() and must be freed by the calling function.
|
|
*/
|
|
static char *createTableStmt(sqlite3 *db, Table *p, int isTemp){
|
|
int i, k, n;
|
|
char *zStmt;
|
|
char *zSep, *zSep2, *zEnd, *z;
|
|
Column *pCol;
|
|
n = 0;
|
|
for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
|
|
n += identLength(pCol->zName);
|
|
z = pCol->zType;
|
|
if( z ){
|
|
n += (strlen(z) + 1);
|
|
}
|
|
}
|
|
n += identLength(p->zName);
|
|
if( n<50 ){
|
|
zSep = "";
|
|
zSep2 = ",";
|
|
zEnd = ")";
|
|
}else{
|
|
zSep = "\n ";
|
|
zSep2 = ",\n ";
|
|
zEnd = "\n)";
|
|
}
|
|
n += 35 + 6*p->nCol;
|
|
zStmt = sqlite3_malloc( n );
|
|
if( zStmt==0 ){
|
|
db->mallocFailed = 1;
|
|
return 0;
|
|
}
|
|
sqlite3_snprintf(n, zStmt,
|
|
!OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE ");
|
|
k = strlen(zStmt);
|
|
identPut(zStmt, &k, p->zName);
|
|
zStmt[k++] = '(';
|
|
for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
|
|
sqlite3_snprintf(n-k, &zStmt[k], zSep);
|
|
k += strlen(&zStmt[k]);
|
|
zSep = zSep2;
|
|
identPut(zStmt, &k, pCol->zName);
|
|
if( (z = pCol->zType)!=0 ){
|
|
zStmt[k++] = ' ';
|
|
assert( strlen(z)+k+1<=n );
|
|
sqlite3_snprintf(n-k, &zStmt[k], "%s", z);
|
|
k += strlen(z);
|
|
}
|
|
}
|
|
sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
|
|
return zStmt;
|
|
}
|
|
|
|
/*
|
|
** This routine is called to report the final ")" that terminates
|
|
** a CREATE TABLE statement.
|
|
**
|
|
** The table structure that other action routines have been building
|
|
** is added to the internal hash tables, assuming no errors have
|
|
** occurred.
|
|
**
|
|
** An entry for the table is made in the master table on disk, unless
|
|
** this is a temporary table or db->init.busy==1. When db->init.busy==1
|
|
** it means we are reading the sqlite_master table because we just
|
|
** connected to the database or because the sqlite_master table has
|
|
** recently changed, so the entry for this table already exists in
|
|
** the sqlite_master table. We do not want to create it again.
|
|
**
|
|
** If the pSelect argument is not NULL, it means that this routine
|
|
** was called to create a table generated from a
|
|
** "CREATE TABLE ... AS SELECT ..." statement. The column names of
|
|
** the new table will match the result set of the SELECT.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3EndTable(
|
|
Parse *pParse, /* Parse context */
|
|
Token *pCons, /* The ',' token after the last column defn. */
|
|
Token *pEnd, /* The final ')' token in the CREATE TABLE */
|
|
Select *pSelect /* Select from a "CREATE ... AS SELECT" */
|
|
){
|
|
Table *p;
|
|
sqlite3 *db = pParse->db;
|
|
int iDb;
|
|
|
|
if( (pEnd==0 && pSelect==0) || pParse->nErr || db->mallocFailed ) {
|
|
return;
|
|
}
|
|
p = pParse->pNewTable;
|
|
if( p==0 ) return;
|
|
|
|
assert( !db->init.busy || !pSelect );
|
|
|
|
iDb = sqlite3SchemaToIndex(db, p->pSchema);
|
|
|
|
#ifndef SQLITE_OMIT_CHECK
|
|
/* Resolve names in all CHECK constraint expressions.
|
|
*/
|
|
if( p->pCheck ){
|
|
SrcList sSrc; /* Fake SrcList for pParse->pNewTable */
|
|
NameContext sNC; /* Name context for pParse->pNewTable */
|
|
|
|
memset(&sNC, 0, sizeof(sNC));
|
|
memset(&sSrc, 0, sizeof(sSrc));
|
|
sSrc.nSrc = 1;
|
|
sSrc.a[0].zName = p->zName;
|
|
sSrc.a[0].pTab = p;
|
|
sSrc.a[0].iCursor = -1;
|
|
sNC.pParse = pParse;
|
|
sNC.pSrcList = &sSrc;
|
|
sNC.isCheck = 1;
|
|
if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){
|
|
return;
|
|
}
|
|
}
|
|
#endif /* !defined(SQLITE_OMIT_CHECK) */
|
|
|
|
/* If the db->init.busy is 1 it means we are reading the SQL off the
|
|
** "sqlite_master" or "sqlite_temp_master" table on the disk.
|
|
** So do not write to the disk again. Extract the root page number
|
|
** for the table from the db->init.newTnum field. (The page number
|
|
** should have been put there by the sqliteOpenCb routine.)
|
|
*/
|
|
if( db->init.busy ){
|
|
p->tnum = db->init.newTnum;
|
|
}
|
|
|
|
/* If not initializing, then create a record for the new table
|
|
** in the SQLITE_MASTER table of the database. The record number
|
|
** for the new table entry should already be on the stack.
|
|
**
|
|
** If this is a TEMPORARY table, write the entry into the auxiliary
|
|
** file instead of into the main database file.
|
|
*/
|
|
if( !db->init.busy ){
|
|
int n;
|
|
Vdbe *v;
|
|
char *zType; /* "view" or "table" */
|
|
char *zType2; /* "VIEW" or "TABLE" */
|
|
char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) return;
|
|
|
|
sqlite3VdbeAddOp1(v, OP_Close, 0);
|
|
|
|
/* Create the rootpage for the new table and push it onto the stack.
|
|
** A view has no rootpage, so just push a zero onto the stack for
|
|
** views. Initialize zType at the same time.
|
|
*/
|
|
if( p->pSelect==0 ){
|
|
/* A regular table */
|
|
zType = "table";
|
|
zType2 = "TABLE";
|
|
#ifndef SQLITE_OMIT_VIEW
|
|
}else{
|
|
/* A view */
|
|
zType = "view";
|
|
zType2 = "VIEW";
|
|
#endif
|
|
}
|
|
|
|
/* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
|
|
** statement to populate the new table. The root-page number for the
|
|
** new table is on the top of the vdbe stack.
|
|
**
|
|
** Once the SELECT has been coded by sqlite3Select(), it is in a
|
|
** suitable state to query for the column names and types to be used
|
|
** by the new table.
|
|
**
|
|
** A shared-cache write-lock is not required to write to the new table,
|
|
** as a schema-lock must have already been obtained to create it. Since
|
|
** a schema-lock excludes all other database users, the write-lock would
|
|
** be redundant.
|
|
*/
|
|
if( pSelect ){
|
|
SelectDest dest;
|
|
Table *pSelTab;
|
|
|
|
sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
|
|
sqlite3VdbeChangeP5(v, 1);
|
|
pParse->nTab = 2;
|
|
sqlite3SelectDestInit(&dest, SRT_Table, 1);
|
|
sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
|
|
sqlite3VdbeAddOp1(v, OP_Close, 1);
|
|
if( pParse->nErr==0 ){
|
|
pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
|
|
if( pSelTab==0 ) return;
|
|
assert( p->aCol==0 );
|
|
p->nCol = pSelTab->nCol;
|
|
p->aCol = pSelTab->aCol;
|
|
pSelTab->nCol = 0;
|
|
pSelTab->aCol = 0;
|
|
sqlite3DeleteTable(pSelTab);
|
|
}
|
|
}
|
|
|
|
/* Compute the complete text of the CREATE statement */
|
|
if( pSelect ){
|
|
zStmt = createTableStmt(db, p, p->pSchema==db->aDb[1].pSchema);
|
|
}else{
|
|
n = pEnd->z - pParse->sNameToken.z + 1;
|
|
zStmt = sqlite3MPrintf(db,
|
|
"CREATE %s %.*s", zType2, n, pParse->sNameToken.z
|
|
);
|
|
}
|
|
|
|
/* A slot for the record has already been allocated in the
|
|
** SQLITE_MASTER table. We just need to update that slot with all
|
|
** the information we've collected. The rowid for the preallocated
|
|
** slot is the 2nd item on the stack. The top of the stack is the
|
|
** root page for the new table (or a 0 if this is a view).
|
|
*/
|
|
sqlite3NestedParse(pParse,
|
|
"UPDATE %Q.%s "
|
|
"SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
|
|
"WHERE rowid=#%d",
|
|
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
|
|
zType,
|
|
p->zName,
|
|
p->zName,
|
|
pParse->regRoot,
|
|
zStmt,
|
|
pParse->regRowid
|
|
);
|
|
sqlite3_free(zStmt);
|
|
sqlite3ChangeCookie(pParse, iDb);
|
|
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
/* Check to see if we need to create an sqlite_sequence table for
|
|
** keeping track of autoincrement keys.
|
|
*/
|
|
if( p->autoInc ){
|
|
Db *pDb = &db->aDb[iDb];
|
|
if( pDb->pSchema->pSeqTab==0 ){
|
|
sqlite3NestedParse(pParse,
|
|
"CREATE TABLE %Q.sqlite_sequence(name,seq)",
|
|
pDb->zName
|
|
);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Reparse everything to update our internal data structures */
|
|
sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
|
|
sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
|
|
}
|
|
|
|
|
|
/* Add the table to the in-memory representation of the database.
|
|
*/
|
|
if( db->init.busy && pParse->nErr==0 ){
|
|
Table *pOld;
|
|
FKey *pFKey;
|
|
Schema *pSchema = p->pSchema;
|
|
pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p);
|
|
if( pOld ){
|
|
assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
|
|
db->mallocFailed = 1;
|
|
return;
|
|
}
|
|
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
|
|
void *data;
|
|
int nTo = strlen(pFKey->zTo) + 1;
|
|
pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo);
|
|
data = sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey);
|
|
if( data==(void *)pFKey ){
|
|
db->mallocFailed = 1;
|
|
}
|
|
}
|
|
#endif
|
|
pParse->pNewTable = 0;
|
|
db->nTable++;
|
|
db->flags |= SQLITE_InternChanges;
|
|
|
|
#ifndef SQLITE_OMIT_ALTERTABLE
|
|
if( !p->pSelect ){
|
|
const char *zName = (const char *)pParse->sNameToken.z;
|
|
int nName;
|
|
assert( !pSelect && pCons && pEnd );
|
|
if( pCons->z==0 ){
|
|
pCons = pEnd;
|
|
}
|
|
nName = (const char *)pCons->z - zName;
|
|
p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_VIEW
|
|
/*
|
|
** The parser calls this routine in order to create a new VIEW
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3CreateView(
|
|
Parse *pParse, /* The parsing context */
|
|
Token *pBegin, /* The CREATE token that begins the statement */
|
|
Token *pName1, /* The token that holds the name of the view */
|
|
Token *pName2, /* The token that holds the name of the view */
|
|
Select *pSelect, /* A SELECT statement that will become the new view */
|
|
int isTemp, /* TRUE for a TEMPORARY view */
|
|
int noErr /* Suppress error messages if VIEW already exists */
|
|
){
|
|
Table *p;
|
|
int n;
|
|
const unsigned char *z;
|
|
Token sEnd;
|
|
DbFixer sFix;
|
|
Token *pName;
|
|
int iDb;
|
|
sqlite3 *db = pParse->db;
|
|
|
|
if( pParse->nVar>0 ){
|
|
sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
|
|
sqlite3SelectDelete(pSelect);
|
|
return;
|
|
}
|
|
sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
|
|
p = pParse->pNewTable;
|
|
if( p==0 || pParse->nErr ){
|
|
sqlite3SelectDelete(pSelect);
|
|
return;
|
|
}
|
|
sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
|
iDb = sqlite3SchemaToIndex(db, p->pSchema);
|
|
if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
|
|
&& sqlite3FixSelect(&sFix, pSelect)
|
|
){
|
|
sqlite3SelectDelete(pSelect);
|
|
return;
|
|
}
|
|
|
|
/* Make a copy of the entire SELECT statement that defines the view.
|
|
** This will force all the Expr.token.z values to be dynamically
|
|
** allocated rather than point to the input string - which means that
|
|
** they will persist after the current sqlite3_exec() call returns.
|
|
*/
|
|
p->pSelect = sqlite3SelectDup(db, pSelect);
|
|
sqlite3SelectDelete(pSelect);
|
|
if( db->mallocFailed ){
|
|
return;
|
|
}
|
|
if( !db->init.busy ){
|
|
sqlite3ViewGetColumnNames(pParse, p);
|
|
}
|
|
|
|
/* Locate the end of the CREATE VIEW statement. Make sEnd point to
|
|
** the end.
|
|
*/
|
|
sEnd = pParse->sLastToken;
|
|
if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
|
|
sEnd.z += sEnd.n;
|
|
}
|
|
sEnd.n = 0;
|
|
n = sEnd.z - pBegin->z;
|
|
z = (const unsigned char*)pBegin->z;
|
|
while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
|
|
sEnd.z = &z[n-1];
|
|
sEnd.n = 1;
|
|
|
|
/* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
|
|
sqlite3EndTable(pParse, 0, &sEnd, 0);
|
|
return;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIEW */
|
|
|
|
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
|
|
/*
|
|
** The Table structure pTable is really a VIEW. Fill in the names of
|
|
** the columns of the view in the pTable structure. Return the number
|
|
** of errors. If an error is seen leave an error message in pParse->zErrMsg.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
|
|
Table *pSelTab; /* A fake table from which we get the result set */
|
|
Select *pSel; /* Copy of the SELECT that implements the view */
|
|
int nErr = 0; /* Number of errors encountered */
|
|
int n; /* Temporarily holds the number of cursors assigned */
|
|
sqlite3 *db = pParse->db; /* Database connection for malloc errors */
|
|
int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
|
|
|
|
assert( pTable );
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( sqlite3VtabCallConnect(pParse, pTable) ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
if( IsVirtual(pTable) ) return 0;
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_VIEW
|
|
/* A positive nCol means the columns names for this view are
|
|
** already known.
|
|
*/
|
|
if( pTable->nCol>0 ) return 0;
|
|
|
|
/* A negative nCol is a special marker meaning that we are currently
|
|
** trying to compute the column names. If we enter this routine with
|
|
** a negative nCol, it means two or more views form a loop, like this:
|
|
**
|
|
** CREATE VIEW one AS SELECT * FROM two;
|
|
** CREATE VIEW two AS SELECT * FROM one;
|
|
**
|
|
** Actually, this error is caught previously and so the following test
|
|
** should always fail. But we will leave it in place just to be safe.
|
|
*/
|
|
if( pTable->nCol<0 ){
|
|
sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
|
|
return 1;
|
|
}
|
|
assert( pTable->nCol>=0 );
|
|
|
|
/* If we get this far, it means we need to compute the table names.
|
|
** Note that the call to sqlite3ResultSetOfSelect() will expand any
|
|
** "*" elements in the results set of the view and will assign cursors
|
|
** to the elements of the FROM clause. But we do not want these changes
|
|
** to be permanent. So the computation is done on a copy of the SELECT
|
|
** statement that defines the view.
|
|
*/
|
|
assert( pTable->pSelect );
|
|
pSel = sqlite3SelectDup(db, pTable->pSelect);
|
|
if( pSel ){
|
|
n = pParse->nTab;
|
|
sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
|
|
pTable->nCol = -1;
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
xAuth = db->xAuth;
|
|
db->xAuth = 0;
|
|
pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
|
|
db->xAuth = xAuth;
|
|
#else
|
|
pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
|
|
#endif
|
|
pParse->nTab = n;
|
|
if( pSelTab ){
|
|
assert( pTable->aCol==0 );
|
|
pTable->nCol = pSelTab->nCol;
|
|
pTable->aCol = pSelTab->aCol;
|
|
pSelTab->nCol = 0;
|
|
pSelTab->aCol = 0;
|
|
sqlite3DeleteTable(pSelTab);
|
|
pTable->pSchema->flags |= DB_UnresetViews;
|
|
}else{
|
|
pTable->nCol = 0;
|
|
nErr++;
|
|
}
|
|
sqlite3SelectDelete(pSel);
|
|
} else {
|
|
nErr++;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIEW */
|
|
return nErr;
|
|
}
|
|
#endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
|
|
|
|
#ifndef SQLITE_OMIT_VIEW
|
|
/*
|
|
** Clear the column names from every VIEW in database idx.
|
|
*/
|
|
static void sqliteViewResetAll(sqlite3 *db, int idx){
|
|
HashElem *i;
|
|
if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
|
|
for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
|
|
Table *pTab = sqliteHashData(i);
|
|
if( pTab->pSelect ){
|
|
sqliteResetColumnNames(pTab);
|
|
}
|
|
}
|
|
DbClearProperty(db, idx, DB_UnresetViews);
|
|
}
|
|
#else
|
|
# define sqliteViewResetAll(A,B)
|
|
#endif /* SQLITE_OMIT_VIEW */
|
|
|
|
/*
|
|
** This function is called by the VDBE to adjust the internal schema
|
|
** used by SQLite when the btree layer moves a table root page. The
|
|
** root-page of a table or index in database iDb has changed from iFrom
|
|
** to iTo.
|
|
**
|
|
** Ticket #1728: The symbol table might still contain information
|
|
** on tables and/or indices that are the process of being deleted.
|
|
** If you are unlucky, one of those deleted indices or tables might
|
|
** have the same rootpage number as the real table or index that is
|
|
** being moved. So we cannot stop searching after the first match
|
|
** because the first match might be for one of the deleted indices
|
|
** or tables and not the table/index that is actually being moved.
|
|
** We must continue looping until all tables and indices with
|
|
** rootpage==iFrom have been converted to have a rootpage of iTo
|
|
** in order to be certain that we got the right one.
|
|
*/
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
SQLITE_PRIVATE void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
|
|
HashElem *pElem;
|
|
Hash *pHash;
|
|
|
|
pHash = &pDb->pSchema->tblHash;
|
|
for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
|
|
Table *pTab = sqliteHashData(pElem);
|
|
if( pTab->tnum==iFrom ){
|
|
pTab->tnum = iTo;
|
|
}
|
|
}
|
|
pHash = &pDb->pSchema->idxHash;
|
|
for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
|
|
Index *pIdx = sqliteHashData(pElem);
|
|
if( pIdx->tnum==iFrom ){
|
|
pIdx->tnum = iTo;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Write code to erase the table with root-page iTable from database iDb.
|
|
** Also write code to modify the sqlite_master table and internal schema
|
|
** if a root-page of another table is moved by the btree-layer whilst
|
|
** erasing iTable (this can happen with an auto-vacuum database).
|
|
*/
|
|
static void destroyRootPage(Parse *pParse, int iTable, int iDb){
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
int r1 = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
/* OP_Destroy stores an in integer r1. If this integer
|
|
** is non-zero, then it is the root page number of a table moved to
|
|
** location iTable. The following code modifies the sqlite_master table to
|
|
** reflect this.
|
|
**
|
|
** The "#%d" in the SQL is a special constant that means whatever value
|
|
** is on the top of the stack. See sqlite3RegisterExpr().
|
|
*/
|
|
sqlite3NestedParse(pParse,
|
|
"UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
|
|
pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
|
|
#endif
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
}
|
|
|
|
/*
|
|
** Write VDBE code to erase table pTab and all associated indices on disk.
|
|
** Code to update the sqlite_master tables and internal schema definitions
|
|
** in case a root-page belonging to another table is moved by the btree layer
|
|
** is also added (this can happen with an auto-vacuum database).
|
|
*/
|
|
static void destroyTable(Parse *pParse, Table *pTab){
|
|
#ifdef SQLITE_OMIT_AUTOVACUUM
|
|
Index *pIdx;
|
|
int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
destroyRootPage(pParse, pTab->tnum, iDb);
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
destroyRootPage(pParse, pIdx->tnum, iDb);
|
|
}
|
|
#else
|
|
/* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
|
|
** is not defined), then it is important to call OP_Destroy on the
|
|
** table and index root-pages in order, starting with the numerically
|
|
** largest root-page number. This guarantees that none of the root-pages
|
|
** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
|
|
** following were coded:
|
|
**
|
|
** OP_Destroy 4 0
|
|
** ...
|
|
** OP_Destroy 5 0
|
|
**
|
|
** and root page 5 happened to be the largest root-page number in the
|
|
** database, then root page 5 would be moved to page 4 by the
|
|
** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
|
|
** a free-list page.
|
|
*/
|
|
int iTab = pTab->tnum;
|
|
int iDestroyed = 0;
|
|
|
|
while( 1 ){
|
|
Index *pIdx;
|
|
int iLargest = 0;
|
|
|
|
if( iDestroyed==0 || iTab<iDestroyed ){
|
|
iLargest = iTab;
|
|
}
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
int iIdx = pIdx->tnum;
|
|
assert( pIdx->pSchema==pTab->pSchema );
|
|
if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
|
|
iLargest = iIdx;
|
|
}
|
|
}
|
|
if( iLargest==0 ){
|
|
return;
|
|
}else{
|
|
int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
destroyRootPage(pParse, iLargest, iDb);
|
|
iDestroyed = iLargest;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** This routine is called to do the work of a DROP TABLE statement.
|
|
** pName is the name of the table to be dropped.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
|
|
Table *pTab;
|
|
Vdbe *v;
|
|
sqlite3 *db = pParse->db;
|
|
int iDb;
|
|
|
|
if( pParse->nErr || db->mallocFailed ){
|
|
goto exit_drop_table;
|
|
}
|
|
assert( pName->nSrc==1 );
|
|
pTab = sqlite3LocateTable(pParse, isView,
|
|
pName->a[0].zName, pName->a[0].zDatabase);
|
|
|
|
if( pTab==0 ){
|
|
if( noErr ){
|
|
sqlite3ErrorClear(pParse);
|
|
}
|
|
goto exit_drop_table;
|
|
}
|
|
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
|
|
/* If pTab is a virtual table, call ViewGetColumnNames() to ensure
|
|
** it is initialized.
|
|
*/
|
|
if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
|
|
goto exit_drop_table;
|
|
}
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
{
|
|
int code;
|
|
const char *zTab = SCHEMA_TABLE(iDb);
|
|
const char *zDb = db->aDb[iDb].zName;
|
|
const char *zArg2 = 0;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
|
|
goto exit_drop_table;
|
|
}
|
|
if( isView ){
|
|
if( !OMIT_TEMPDB && iDb==1 ){
|
|
code = SQLITE_DROP_TEMP_VIEW;
|
|
}else{
|
|
code = SQLITE_DROP_VIEW;
|
|
}
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
}else if( IsVirtual(pTab) ){
|
|
code = SQLITE_DROP_VTABLE;
|
|
zArg2 = pTab->pMod->zName;
|
|
#endif
|
|
}else{
|
|
if( !OMIT_TEMPDB && iDb==1 ){
|
|
code = SQLITE_DROP_TEMP_TABLE;
|
|
}else{
|
|
code = SQLITE_DROP_TABLE;
|
|
}
|
|
}
|
|
if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
|
|
goto exit_drop_table;
|
|
}
|
|
if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
|
|
goto exit_drop_table;
|
|
}
|
|
}
|
|
#endif
|
|
if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){
|
|
sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
|
|
goto exit_drop_table;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_VIEW
|
|
/* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
|
|
** on a table.
|
|
*/
|
|
if( isView && pTab->pSelect==0 ){
|
|
sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
|
|
goto exit_drop_table;
|
|
}
|
|
if( !isView && pTab->pSelect ){
|
|
sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
|
|
goto exit_drop_table;
|
|
}
|
|
#endif
|
|
|
|
/* Generate code to remove the table from the master table
|
|
** on disk.
|
|
*/
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
Trigger *pTrigger;
|
|
Db *pDb = &db->aDb[iDb];
|
|
sqlite3BeginWriteOperation(pParse, 1, iDb);
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( IsVirtual(pTab) ){
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
sqlite3VdbeAddOp0(v, OP_VBegin);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Drop all triggers associated with the table being dropped. Code
|
|
** is generated to remove entries from sqlite_master and/or
|
|
** sqlite_temp_master if required.
|
|
*/
|
|
pTrigger = pTab->pTrigger;
|
|
while( pTrigger ){
|
|
assert( pTrigger->pSchema==pTab->pSchema ||
|
|
pTrigger->pSchema==db->aDb[1].pSchema );
|
|
sqlite3DropTriggerPtr(pParse, pTrigger);
|
|
pTrigger = pTrigger->pNext;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
/* Remove any entries of the sqlite_sequence table associated with
|
|
** the table being dropped. This is done before the table is dropped
|
|
** at the btree level, in case the sqlite_sequence table needs to
|
|
** move as a result of the drop (can happen in auto-vacuum mode).
|
|
*/
|
|
if( pTab->autoInc ){
|
|
sqlite3NestedParse(pParse,
|
|
"DELETE FROM %s.sqlite_sequence WHERE name=%Q",
|
|
pDb->zName, pTab->zName
|
|
);
|
|
}
|
|
#endif
|
|
|
|
/* Drop all SQLITE_MASTER table and index entries that refer to the
|
|
** table. The program name loops through the master table and deletes
|
|
** every row that refers to a table of the same name as the one being
|
|
** dropped. Triggers are handled seperately because a trigger can be
|
|
** created in the temp database that refers to a table in another
|
|
** database.
|
|
*/
|
|
sqlite3NestedParse(pParse,
|
|
"DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
|
|
pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
|
|
if( !isView && !IsVirtual(pTab) ){
|
|
destroyTable(pParse, pTab);
|
|
}
|
|
|
|
/* Remove the table entry from SQLite's internal schema and modify
|
|
** the schema cookie.
|
|
*/
|
|
if( IsVirtual(pTab) ){
|
|
sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
|
|
}
|
|
sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
|
|
sqlite3ChangeCookie(pParse, iDb);
|
|
}
|
|
sqliteViewResetAll(db, iDb);
|
|
|
|
exit_drop_table:
|
|
sqlite3SrcListDelete(pName);
|
|
}
|
|
|
|
/*
|
|
** This routine is called to create a new foreign key on the table
|
|
** currently under construction. pFromCol determines which columns
|
|
** in the current table point to the foreign key. If pFromCol==0 then
|
|
** connect the key to the last column inserted. pTo is the name of
|
|
** the table referred to. pToCol is a list of tables in the other
|
|
** pTo table that the foreign key points to. flags contains all
|
|
** information about the conflict resolution algorithms specified
|
|
** in the ON DELETE, ON UPDATE and ON INSERT clauses.
|
|
**
|
|
** An FKey structure is created and added to the table currently
|
|
** under construction in the pParse->pNewTable field. The new FKey
|
|
** is not linked into db->aFKey at this point - that does not happen
|
|
** until sqlite3EndTable().
|
|
**
|
|
** The foreign key is set for IMMEDIATE processing. A subsequent call
|
|
** to sqlite3DeferForeignKey() might change this to DEFERRED.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3CreateForeignKey(
|
|
Parse *pParse, /* Parsing context */
|
|
ExprList *pFromCol, /* Columns in this table that point to other table */
|
|
Token *pTo, /* Name of the other table */
|
|
ExprList *pToCol, /* Columns in the other table */
|
|
int flags /* Conflict resolution algorithms. */
|
|
){
|
|
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
FKey *pFKey = 0;
|
|
Table *p = pParse->pNewTable;
|
|
int nByte;
|
|
int i;
|
|
int nCol;
|
|
char *z;
|
|
|
|
assert( pTo!=0 );
|
|
if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end;
|
|
if( pFromCol==0 ){
|
|
int iCol = p->nCol-1;
|
|
if( iCol<0 ) goto fk_end;
|
|
if( pToCol && pToCol->nExpr!=1 ){
|
|
sqlite3ErrorMsg(pParse, "foreign key on %s"
|
|
" should reference only one column of table %T",
|
|
p->aCol[iCol].zName, pTo);
|
|
goto fk_end;
|
|
}
|
|
nCol = 1;
|
|
}else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"number of columns in foreign key does not match the number of "
|
|
"columns in the referenced table");
|
|
goto fk_end;
|
|
}else{
|
|
nCol = pFromCol->nExpr;
|
|
}
|
|
nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
|
|
if( pToCol ){
|
|
for(i=0; i<pToCol->nExpr; i++){
|
|
nByte += strlen(pToCol->a[i].zName) + 1;
|
|
}
|
|
}
|
|
pFKey = sqlite3DbMallocZero(pParse->db, nByte );
|
|
if( pFKey==0 ){
|
|
goto fk_end;
|
|
}
|
|
pFKey->pFrom = p;
|
|
pFKey->pNextFrom = p->pFKey;
|
|
z = (char*)&pFKey[1];
|
|
pFKey->aCol = (struct sColMap*)z;
|
|
z += sizeof(struct sColMap)*nCol;
|
|
pFKey->zTo = z;
|
|
memcpy(z, pTo->z, pTo->n);
|
|
z[pTo->n] = 0;
|
|
z += pTo->n+1;
|
|
pFKey->pNextTo = 0;
|
|
pFKey->nCol = nCol;
|
|
if( pFromCol==0 ){
|
|
pFKey->aCol[0].iFrom = p->nCol-1;
|
|
}else{
|
|
for(i=0; i<nCol; i++){
|
|
int j;
|
|
for(j=0; j<p->nCol; j++){
|
|
if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
|
|
pFKey->aCol[i].iFrom = j;
|
|
break;
|
|
}
|
|
}
|
|
if( j>=p->nCol ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"unknown column \"%s\" in foreign key definition",
|
|
pFromCol->a[i].zName);
|
|
goto fk_end;
|
|
}
|
|
}
|
|
}
|
|
if( pToCol ){
|
|
for(i=0; i<nCol; i++){
|
|
int n = strlen(pToCol->a[i].zName);
|
|
pFKey->aCol[i].zCol = z;
|
|
memcpy(z, pToCol->a[i].zName, n);
|
|
z[n] = 0;
|
|
z += n+1;
|
|
}
|
|
}
|
|
pFKey->isDeferred = 0;
|
|
pFKey->deleteConf = flags & 0xff;
|
|
pFKey->updateConf = (flags >> 8 ) & 0xff;
|
|
pFKey->insertConf = (flags >> 16 ) & 0xff;
|
|
|
|
/* Link the foreign key to the table as the last step.
|
|
*/
|
|
p->pFKey = pFKey;
|
|
pFKey = 0;
|
|
|
|
fk_end:
|
|
sqlite3_free(pFKey);
|
|
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
|
|
sqlite3ExprListDelete(pFromCol);
|
|
sqlite3ExprListDelete(pToCol);
|
|
}
|
|
|
|
/*
|
|
** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
|
|
** clause is seen as part of a foreign key definition. The isDeferred
|
|
** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
|
|
** The behavior of the most recently created foreign key is adjusted
|
|
** accordingly.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
|
|
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
Table *pTab;
|
|
FKey *pFKey;
|
|
if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
|
|
pFKey->isDeferred = isDeferred;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Generate code that will erase and refill index *pIdx. This is
|
|
** used to initialize a newly created index or to recompute the
|
|
** content of an index in response to a REINDEX command.
|
|
**
|
|
** if memRootPage is not negative, it means that the index is newly
|
|
** created. The register specified by memRootPage contains the
|
|
** root page number of the index. If memRootPage is negative, then
|
|
** the index already exists and must be cleared before being refilled and
|
|
** the root page number of the index is taken from pIndex->tnum.
|
|
*/
|
|
static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
|
|
Table *pTab = pIndex->pTable; /* The table that is indexed */
|
|
int iTab = pParse->nTab; /* Btree cursor used for pTab */
|
|
int iIdx = pParse->nTab+1; /* Btree cursor used for pIndex */
|
|
int addr1; /* Address of top of loop */
|
|
int tnum; /* Root page of index */
|
|
Vdbe *v; /* Generate code into this virtual machine */
|
|
KeyInfo *pKey; /* KeyInfo for index */
|
|
int regIdxKey; /* Registers containing the index key */
|
|
int regRecord; /* Register holding assemblied index record */
|
|
sqlite3 *db = pParse->db; /* The database connection */
|
|
int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
|
|
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
|
|
db->aDb[iDb].zName ) ){
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/* Require a write-lock on the table to perform this operation */
|
|
sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) return;
|
|
if( memRootPage>=0 ){
|
|
tnum = memRootPage;
|
|
}else{
|
|
tnum = pIndex->tnum;
|
|
sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
|
|
}
|
|
pKey = sqlite3IndexKeyinfo(pParse, pIndex);
|
|
sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
|
|
(char *)pKey, P4_KEYINFO_HANDOFF);
|
|
if( memRootPage>=0 ){
|
|
sqlite3VdbeChangeP5(v, 1);
|
|
}
|
|
sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
|
|
addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
|
|
regRecord = sqlite3GetTempReg(pParse);
|
|
regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord);
|
|
if( pIndex->onError!=OE_None ){
|
|
int j1, j2;
|
|
int regRowid;
|
|
|
|
regRowid = regIdxKey + pIndex->nColumn;
|
|
j1 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdxKey, 0, pIndex->nColumn);
|
|
j2 = sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx,
|
|
0, regRowid, (char*)regRecord, P4_INT32);
|
|
sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 0,
|
|
"indexed columns are not unique", P4_STATIC);
|
|
sqlite3VdbeJumpHere(v, j1);
|
|
sqlite3VdbeJumpHere(v, j2);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
|
|
sqlite3ReleaseTempReg(pParse, regRecord);
|
|
sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
sqlite3VdbeAddOp1(v, OP_Close, iTab);
|
|
sqlite3VdbeAddOp1(v, OP_Close, iIdx);
|
|
}
|
|
|
|
/*
|
|
** Create a new index for an SQL table. pName1.pName2 is the name of the index
|
|
** and pTblList is the name of the table that is to be indexed. Both will
|
|
** be NULL for a primary key or an index that is created to satisfy a
|
|
** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
|
|
** as the table to be indexed. pParse->pNewTable is a table that is
|
|
** currently being constructed by a CREATE TABLE statement.
|
|
**
|
|
** pList is a list of columns to be indexed. pList will be NULL if this
|
|
** is a primary key or unique-constraint on the most recent column added
|
|
** to the table currently under construction.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3CreateIndex(
|
|
Parse *pParse, /* All information about this parse */
|
|
Token *pName1, /* First part of index name. May be NULL */
|
|
Token *pName2, /* Second part of index name. May be NULL */
|
|
SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
|
|
ExprList *pList, /* A list of columns to be indexed */
|
|
int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
|
|
Token *pStart, /* The CREATE token that begins this statement */
|
|
Token *pEnd, /* The ")" that closes the CREATE INDEX statement */
|
|
int sortOrder, /* Sort order of primary key when pList==NULL */
|
|
int ifNotExist /* Omit error if index already exists */
|
|
){
|
|
Table *pTab = 0; /* Table to be indexed */
|
|
Index *pIndex = 0; /* The index to be created */
|
|
char *zName = 0; /* Name of the index */
|
|
int nName; /* Number of characters in zName */
|
|
int i, j;
|
|
Token nullId; /* Fake token for an empty ID list */
|
|
DbFixer sFix; /* For assigning database names to pTable */
|
|
int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
|
|
sqlite3 *db = pParse->db;
|
|
Db *pDb; /* The specific table containing the indexed database */
|
|
int iDb; /* Index of the database that is being written */
|
|
Token *pName = 0; /* Unqualified name of the index to create */
|
|
struct ExprList_item *pListItem; /* For looping over pList */
|
|
int nCol;
|
|
int nExtra = 0;
|
|
char *zExtra;
|
|
|
|
if( pParse->nErr || db->mallocFailed || IN_DECLARE_VTAB ){
|
|
goto exit_create_index;
|
|
}
|
|
|
|
/*
|
|
** Find the table that is to be indexed. Return early if not found.
|
|
*/
|
|
if( pTblName!=0 ){
|
|
|
|
/* Use the two-part index name to determine the database
|
|
** to search for the table. 'Fix' the table name to this db
|
|
** before looking up the table.
|
|
*/
|
|
assert( pName1 && pName2 );
|
|
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
|
if( iDb<0 ) goto exit_create_index;
|
|
|
|
#ifndef SQLITE_OMIT_TEMPDB
|
|
/* If the index name was unqualified, check if the the table
|
|
** is a temp table. If so, set the database to 1. Do not do this
|
|
** if initialising a database schema.
|
|
*/
|
|
if( !db->init.busy ){
|
|
pTab = sqlite3SrcListLookup(pParse, pTblName);
|
|
if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
|
|
iDb = 1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
|
|
sqlite3FixSrcList(&sFix, pTblName)
|
|
){
|
|
/* Because the parser constructs pTblName from a single identifier,
|
|
** sqlite3FixSrcList can never fail. */
|
|
assert(0);
|
|
}
|
|
pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName,
|
|
pTblName->a[0].zDatabase);
|
|
if( !pTab ) goto exit_create_index;
|
|
assert( db->aDb[iDb].pSchema==pTab->pSchema );
|
|
}else{
|
|
assert( pName==0 );
|
|
pTab = pParse->pNewTable;
|
|
if( !pTab ) goto exit_create_index;
|
|
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
}
|
|
pDb = &db->aDb[iDb];
|
|
|
|
if( pTab==0 || pParse->nErr ) goto exit_create_index;
|
|
if( pTab->readOnly ){
|
|
sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
|
|
goto exit_create_index;
|
|
}
|
|
#ifndef SQLITE_OMIT_VIEW
|
|
if( pTab->pSelect ){
|
|
sqlite3ErrorMsg(pParse, "views may not be indexed");
|
|
goto exit_create_index;
|
|
}
|
|
#endif
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( IsVirtual(pTab) ){
|
|
sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
|
|
goto exit_create_index;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Find the name of the index. Make sure there is not already another
|
|
** index or table with the same name.
|
|
**
|
|
** Exception: If we are reading the names of permanent indices from the
|
|
** sqlite_master table (because some other process changed the schema) and
|
|
** one of the index names collides with the name of a temporary table or
|
|
** index, then we will continue to process this index.
|
|
**
|
|
** If pName==0 it means that we are
|
|
** dealing with a primary key or UNIQUE constraint. We have to invent our
|
|
** own name.
|
|
*/
|
|
if( pName ){
|
|
zName = sqlite3NameFromToken(db, pName);
|
|
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
|
|
if( zName==0 ) goto exit_create_index;
|
|
if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
|
|
goto exit_create_index;
|
|
}
|
|
if( !db->init.busy ){
|
|
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
|
|
if( sqlite3FindTable(db, zName, 0)!=0 ){
|
|
sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
|
|
goto exit_create_index;
|
|
}
|
|
}
|
|
if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
|
|
if( !ifNotExist ){
|
|
sqlite3ErrorMsg(pParse, "index %s already exists", zName);
|
|
}
|
|
goto exit_create_index;
|
|
}
|
|
}else{
|
|
char zBuf[30];
|
|
int n;
|
|
Index *pLoop;
|
|
for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
|
|
sqlite3_snprintf(sizeof(zBuf),zBuf,"_%d",n);
|
|
zName = 0;
|
|
sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char*)0);
|
|
if( zName==0 ){
|
|
db->mallocFailed = 1;
|
|
goto exit_create_index;
|
|
}
|
|
}
|
|
|
|
/* Check for authorization to create an index.
|
|
*/
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
{
|
|
const char *zDb = pDb->zName;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
|
|
goto exit_create_index;
|
|
}
|
|
i = SQLITE_CREATE_INDEX;
|
|
if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
|
|
if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
|
|
goto exit_create_index;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* If pList==0, it means this routine was called to make a primary
|
|
** key out of the last column added to the table under construction.
|
|
** So create a fake list to simulate this.
|
|
*/
|
|
if( pList==0 ){
|
|
nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName;
|
|
nullId.n = strlen((char*)nullId.z);
|
|
pList = sqlite3ExprListAppend(pParse, 0, 0, &nullId);
|
|
if( pList==0 ) goto exit_create_index;
|
|
pList->a[0].sortOrder = sortOrder;
|
|
}
|
|
|
|
/* Figure out how many bytes of space are required to store explicitly
|
|
** specified collation sequence names.
|
|
*/
|
|
for(i=0; i<pList->nExpr; i++){
|
|
Expr *pExpr = pList->a[i].pExpr;
|
|
if( pExpr ){
|
|
nExtra += (1 + strlen(pExpr->pColl->zName));
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Allocate the index structure.
|
|
*/
|
|
nName = strlen(zName);
|
|
nCol = pList->nExpr;
|
|
pIndex = sqlite3DbMallocZero(db,
|
|
sizeof(Index) + /* Index structure */
|
|
sizeof(int)*nCol + /* Index.aiColumn */
|
|
sizeof(int)*(nCol+1) + /* Index.aiRowEst */
|
|
sizeof(char *)*nCol + /* Index.azColl */
|
|
sizeof(u8)*nCol + /* Index.aSortOrder */
|
|
nName + 1 + /* Index.zName */
|
|
nExtra /* Collation sequence names */
|
|
);
|
|
if( db->mallocFailed ){
|
|
goto exit_create_index;
|
|
}
|
|
pIndex->azColl = (char**)(&pIndex[1]);
|
|
pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
|
|
pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
|
|
pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
|
|
pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
|
|
zExtra = (char *)(&pIndex->zName[nName+1]);
|
|
memcpy(pIndex->zName, zName, nName+1);
|
|
pIndex->pTable = pTab;
|
|
pIndex->nColumn = pList->nExpr;
|
|
pIndex->onError = onError;
|
|
pIndex->autoIndex = pName==0;
|
|
pIndex->pSchema = db->aDb[iDb].pSchema;
|
|
|
|
/* Check to see if we should honor DESC requests on index columns
|
|
*/
|
|
if( pDb->pSchema->file_format>=4 ){
|
|
sortOrderMask = -1; /* Honor DESC */
|
|
}else{
|
|
sortOrderMask = 0; /* Ignore DESC */
|
|
}
|
|
|
|
/* Scan the names of the columns of the table to be indexed and
|
|
** load the column indices into the Index structure. Report an error
|
|
** if any column is not found.
|
|
*/
|
|
for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
|
|
const char *zColName = pListItem->zName;
|
|
Column *pTabCol;
|
|
int requestedSortOrder;
|
|
char *zColl; /* Collation sequence name */
|
|
|
|
for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
|
|
if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
|
|
}
|
|
if( j>=pTab->nCol ){
|
|
sqlite3ErrorMsg(pParse, "table %s has no column named %s",
|
|
pTab->zName, zColName);
|
|
goto exit_create_index;
|
|
}
|
|
/* TODO: Add a test to make sure that the same column is not named
|
|
** more than once within the same index. Only the first instance of
|
|
** the column will ever be used by the optimizer. Note that using the
|
|
** same column more than once cannot be an error because that would
|
|
** break backwards compatibility - it needs to be a warning.
|
|
*/
|
|
pIndex->aiColumn[i] = j;
|
|
if( pListItem->pExpr ){
|
|
assert( pListItem->pExpr->pColl );
|
|
zColl = zExtra;
|
|
sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName);
|
|
zExtra += (strlen(zColl) + 1);
|
|
}else{
|
|
zColl = pTab->aCol[j].zColl;
|
|
if( !zColl ){
|
|
zColl = db->pDfltColl->zName;
|
|
}
|
|
}
|
|
if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){
|
|
goto exit_create_index;
|
|
}
|
|
pIndex->azColl[i] = zColl;
|
|
requestedSortOrder = pListItem->sortOrder & sortOrderMask;
|
|
pIndex->aSortOrder[i] = requestedSortOrder;
|
|
}
|
|
sqlite3DefaultRowEst(pIndex);
|
|
|
|
if( pTab==pParse->pNewTable ){
|
|
/* This routine has been called to create an automatic index as a
|
|
** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
|
|
** a PRIMARY KEY or UNIQUE clause following the column definitions.
|
|
** i.e. one of:
|
|
**
|
|
** CREATE TABLE t(x PRIMARY KEY, y);
|
|
** CREATE TABLE t(x, y, UNIQUE(x, y));
|
|
**
|
|
** Either way, check to see if the table already has such an index. If
|
|
** so, don't bother creating this one. This only applies to
|
|
** automatically created indices. Users can do as they wish with
|
|
** explicit indices.
|
|
*/
|
|
Index *pIdx;
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
int k;
|
|
assert( pIdx->onError!=OE_None );
|
|
assert( pIdx->autoIndex );
|
|
assert( pIndex->onError!=OE_None );
|
|
|
|
if( pIdx->nColumn!=pIndex->nColumn ) continue;
|
|
for(k=0; k<pIdx->nColumn; k++){
|
|
const char *z1 = pIdx->azColl[k];
|
|
const char *z2 = pIndex->azColl[k];
|
|
if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
|
|
if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break;
|
|
if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
|
|
}
|
|
if( k==pIdx->nColumn ){
|
|
if( pIdx->onError!=pIndex->onError ){
|
|
/* This constraint creates the same index as a previous
|
|
** constraint specified somewhere in the CREATE TABLE statement.
|
|
** However the ON CONFLICT clauses are different. If both this
|
|
** constraint and the previous equivalent constraint have explicit
|
|
** ON CONFLICT clauses this is an error. Otherwise, use the
|
|
** explicitly specified behaviour for the index.
|
|
*/
|
|
if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"conflicting ON CONFLICT clauses specified", 0);
|
|
}
|
|
if( pIdx->onError==OE_Default ){
|
|
pIdx->onError = pIndex->onError;
|
|
}
|
|
}
|
|
goto exit_create_index;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Link the new Index structure to its table and to the other
|
|
** in-memory database structures.
|
|
*/
|
|
if( db->init.busy ){
|
|
Index *p;
|
|
p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
|
|
pIndex->zName, strlen(pIndex->zName)+1, pIndex);
|
|
if( p ){
|
|
assert( p==pIndex ); /* Malloc must have failed */
|
|
db->mallocFailed = 1;
|
|
goto exit_create_index;
|
|
}
|
|
db->flags |= SQLITE_InternChanges;
|
|
if( pTblName!=0 ){
|
|
pIndex->tnum = db->init.newTnum;
|
|
}
|
|
}
|
|
|
|
/* If the db->init.busy is 0 then create the index on disk. This
|
|
** involves writing the index into the master table and filling in the
|
|
** index with the current table contents.
|
|
**
|
|
** The db->init.busy is 0 when the user first enters a CREATE INDEX
|
|
** command. db->init.busy is 1 when a database is opened and
|
|
** CREATE INDEX statements are read out of the master table. In
|
|
** the latter case the index already exists on disk, which is why
|
|
** we don't want to recreate it.
|
|
**
|
|
** If pTblName==0 it means this index is generated as a primary key
|
|
** or UNIQUE constraint of a CREATE TABLE statement. Since the table
|
|
** has just been created, it contains no data and the index initialization
|
|
** step can be skipped.
|
|
*/
|
|
else if( db->init.busy==0 ){
|
|
Vdbe *v;
|
|
char *zStmt;
|
|
int iMem = ++pParse->nMem;
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) goto exit_create_index;
|
|
|
|
|
|
/* Create the rootpage for the index
|
|
*/
|
|
sqlite3BeginWriteOperation(pParse, 1, iDb);
|
|
sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
|
|
|
|
/* Gather the complete text of the CREATE INDEX statement into
|
|
** the zStmt variable
|
|
*/
|
|
if( pStart && pEnd ){
|
|
/* A named index with an explicit CREATE INDEX statement */
|
|
zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
|
|
onError==OE_None ? "" : " UNIQUE",
|
|
pEnd->z - pName->z + 1,
|
|
pName->z);
|
|
}else{
|
|
/* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
|
|
/* zStmt = sqlite3MPrintf(""); */
|
|
zStmt = 0;
|
|
}
|
|
|
|
/* Add an entry in sqlite_master for this index
|
|
*/
|
|
sqlite3NestedParse(pParse,
|
|
"INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
|
|
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
|
|
pIndex->zName,
|
|
pTab->zName,
|
|
iMem,
|
|
zStmt
|
|
);
|
|
sqlite3_free(zStmt);
|
|
|
|
/* Fill the index with data and reparse the schema. Code an OP_Expire
|
|
** to invalidate all pre-compiled statements.
|
|
*/
|
|
if( pTblName ){
|
|
sqlite3RefillIndex(pParse, pIndex, iMem);
|
|
sqlite3ChangeCookie(pParse, iDb);
|
|
sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
|
|
sqlite3MPrintf(db, "name='%q'", pIndex->zName), P4_DYNAMIC);
|
|
sqlite3VdbeAddOp1(v, OP_Expire, 0);
|
|
}
|
|
}
|
|
|
|
/* When adding an index to the list of indices for a table, make
|
|
** sure all indices labeled OE_Replace come after all those labeled
|
|
** OE_Ignore. This is necessary for the correct operation of UPDATE
|
|
** and INSERT.
|
|
*/
|
|
if( db->init.busy || pTblName==0 ){
|
|
if( onError!=OE_Replace || pTab->pIndex==0
|
|
|| pTab->pIndex->onError==OE_Replace){
|
|
pIndex->pNext = pTab->pIndex;
|
|
pTab->pIndex = pIndex;
|
|
}else{
|
|
Index *pOther = pTab->pIndex;
|
|
while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
|
|
pOther = pOther->pNext;
|
|
}
|
|
pIndex->pNext = pOther->pNext;
|
|
pOther->pNext = pIndex;
|
|
}
|
|
pIndex = 0;
|
|
}
|
|
|
|
/* Clean up before exiting */
|
|
exit_create_index:
|
|
if( pIndex ){
|
|
freeIndex(pIndex);
|
|
}
|
|
sqlite3ExprListDelete(pList);
|
|
sqlite3SrcListDelete(pTblName);
|
|
sqlite3_free(zName);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** Generate code to make sure the file format number is at least minFormat.
|
|
** The generated code will increase the file format number if necessary.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
|
|
Vdbe *v;
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
int r1 = sqlite3GetTempReg(pParse);
|
|
int r2 = sqlite3GetTempReg(pParse);
|
|
int j1;
|
|
sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, 1);
|
|
sqlite3VdbeUsesBtree(v, iDb);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2);
|
|
j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1);
|
|
sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, r2);
|
|
sqlite3VdbeJumpHere(v, j1);
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
sqlite3ReleaseTempReg(pParse, r2);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Fill the Index.aiRowEst[] array with default information - information
|
|
** to be used when we have not run the ANALYZE command.
|
|
**
|
|
** aiRowEst[0] is suppose to contain the number of elements in the index.
|
|
** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
|
|
** number of rows in the table that match any particular value of the
|
|
** first column of the index. aiRowEst[2] is an estimate of the number
|
|
** of rows that match any particular combiniation of the first 2 columns
|
|
** of the index. And so forth. It must always be the case that
|
|
*
|
|
** aiRowEst[N]<=aiRowEst[N-1]
|
|
** aiRowEst[N]>=1
|
|
**
|
|
** Apart from that, we have little to go on besides intuition as to
|
|
** how aiRowEst[] should be initialized. The numbers generated here
|
|
** are based on typical values found in actual indices.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3DefaultRowEst(Index *pIdx){
|
|
unsigned *a = pIdx->aiRowEst;
|
|
int i;
|
|
assert( a!=0 );
|
|
a[0] = 1000000;
|
|
for(i=pIdx->nColumn; i>=5; i--){
|
|
a[i] = 5;
|
|
}
|
|
while( i>=1 ){
|
|
a[i] = 11 - i;
|
|
i--;
|
|
}
|
|
if( pIdx->onError!=OE_None ){
|
|
a[pIdx->nColumn] = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine will drop an existing named index. This routine
|
|
** implements the DROP INDEX statement.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
|
|
Index *pIndex;
|
|
Vdbe *v;
|
|
sqlite3 *db = pParse->db;
|
|
int iDb;
|
|
|
|
if( pParse->nErr || db->mallocFailed ){
|
|
goto exit_drop_index;
|
|
}
|
|
assert( pName->nSrc==1 );
|
|
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
|
goto exit_drop_index;
|
|
}
|
|
pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
|
|
if( pIndex==0 ){
|
|
if( !ifExists ){
|
|
sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
|
|
}
|
|
pParse->checkSchema = 1;
|
|
goto exit_drop_index;
|
|
}
|
|
if( pIndex->autoIndex ){
|
|
sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
|
|
"or PRIMARY KEY constraint cannot be dropped", 0);
|
|
goto exit_drop_index;
|
|
}
|
|
iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
{
|
|
int code = SQLITE_DROP_INDEX;
|
|
Table *pTab = pIndex->pTable;
|
|
const char *zDb = db->aDb[iDb].zName;
|
|
const char *zTab = SCHEMA_TABLE(iDb);
|
|
if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
|
|
goto exit_drop_index;
|
|
}
|
|
if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
|
|
if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
|
|
goto exit_drop_index;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Generate code to remove the index and from the master table */
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
sqlite3BeginWriteOperation(pParse, 1, iDb);
|
|
sqlite3NestedParse(pParse,
|
|
"DELETE FROM %Q.%s WHERE name=%Q",
|
|
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
|
|
pIndex->zName
|
|
);
|
|
sqlite3ChangeCookie(pParse, iDb);
|
|
destroyRootPage(pParse, pIndex->tnum, iDb);
|
|
sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
|
|
}
|
|
|
|
exit_drop_index:
|
|
sqlite3SrcListDelete(pName);
|
|
}
|
|
|
|
/*
|
|
** pArray is a pointer to an array of objects. Each object in the
|
|
** array is szEntry bytes in size. This routine allocates a new
|
|
** object on the end of the array.
|
|
**
|
|
** *pnEntry is the number of entries already in use. *pnAlloc is
|
|
** the previously allocated size of the array. initSize is the
|
|
** suggested initial array size allocation.
|
|
**
|
|
** The index of the new entry is returned in *pIdx.
|
|
**
|
|
** This routine returns a pointer to the array of objects. This
|
|
** might be the same as the pArray parameter or it might be a different
|
|
** pointer if the array was resized.
|
|
*/
|
|
SQLITE_PRIVATE void *sqlite3ArrayAllocate(
|
|
sqlite3 *db, /* Connection to notify of malloc failures */
|
|
void *pArray, /* Array of objects. Might be reallocated */
|
|
int szEntry, /* Size of each object in the array */
|
|
int initSize, /* Suggested initial allocation, in elements */
|
|
int *pnEntry, /* Number of objects currently in use */
|
|
int *pnAlloc, /* Current size of the allocation, in elements */
|
|
int *pIdx /* Write the index of a new slot here */
|
|
){
|
|
char *z;
|
|
if( *pnEntry >= *pnAlloc ){
|
|
void *pNew;
|
|
int newSize;
|
|
newSize = (*pnAlloc)*2 + initSize;
|
|
pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
|
|
if( pNew==0 ){
|
|
*pIdx = -1;
|
|
return pArray;
|
|
}
|
|
*pnAlloc = newSize;
|
|
pArray = pNew;
|
|
}
|
|
z = (char*)pArray;
|
|
memset(&z[*pnEntry * szEntry], 0, szEntry);
|
|
*pIdx = *pnEntry;
|
|
++*pnEntry;
|
|
return pArray;
|
|
}
|
|
|
|
/*
|
|
** Append a new element to the given IdList. Create a new IdList if
|
|
** need be.
|
|
**
|
|
** A new IdList is returned, or NULL if malloc() fails.
|
|
*/
|
|
SQLITE_PRIVATE IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
|
|
int i;
|
|
if( pList==0 ){
|
|
pList = sqlite3DbMallocZero(db, sizeof(IdList) );
|
|
if( pList==0 ) return 0;
|
|
pList->nAlloc = 0;
|
|
}
|
|
pList->a = sqlite3ArrayAllocate(
|
|
db,
|
|
pList->a,
|
|
sizeof(pList->a[0]),
|
|
5,
|
|
&pList->nId,
|
|
&pList->nAlloc,
|
|
&i
|
|
);
|
|
if( i<0 ){
|
|
sqlite3IdListDelete(pList);
|
|
return 0;
|
|
}
|
|
pList->a[i].zName = sqlite3NameFromToken(db, pToken);
|
|
return pList;
|
|
}
|
|
|
|
/*
|
|
** Delete an IdList.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3IdListDelete(IdList *pList){
|
|
int i;
|
|
if( pList==0 ) return;
|
|
for(i=0; i<pList->nId; i++){
|
|
sqlite3_free(pList->a[i].zName);
|
|
}
|
|
sqlite3_free(pList->a);
|
|
sqlite3_free(pList);
|
|
}
|
|
|
|
/*
|
|
** Return the index in pList of the identifier named zId. Return -1
|
|
** if not found.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3IdListIndex(IdList *pList, const char *zName){
|
|
int i;
|
|
if( pList==0 ) return -1;
|
|
for(i=0; i<pList->nId; i++){
|
|
if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
** Append a new table name to the given SrcList. Create a new SrcList if
|
|
** need be. A new entry is created in the SrcList even if pToken is NULL.
|
|
**
|
|
** A new SrcList is returned, or NULL if malloc() fails.
|
|
**
|
|
** If pDatabase is not null, it means that the table has an optional
|
|
** database name prefix. Like this: "database.table". The pDatabase
|
|
** points to the table name and the pTable points to the database name.
|
|
** The SrcList.a[].zName field is filled with the table name which might
|
|
** come from pTable (if pDatabase is NULL) or from pDatabase.
|
|
** SrcList.a[].zDatabase is filled with the database name from pTable,
|
|
** or with NULL if no database is specified.
|
|
**
|
|
** In other words, if call like this:
|
|
**
|
|
** sqlite3SrcListAppend(D,A,B,0);
|
|
**
|
|
** Then B is a table name and the database name is unspecified. If called
|
|
** like this:
|
|
**
|
|
** sqlite3SrcListAppend(D,A,B,C);
|
|
**
|
|
** Then C is the table name and B is the database name.
|
|
*/
|
|
SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(
|
|
sqlite3 *db, /* Connection to notify of malloc failures */
|
|
SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
|
|
Token *pTable, /* Table to append */
|
|
Token *pDatabase /* Database of the table */
|
|
){
|
|
struct SrcList_item *pItem;
|
|
if( pList==0 ){
|
|
pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
|
|
if( pList==0 ) return 0;
|
|
pList->nAlloc = 1;
|
|
}
|
|
if( pList->nSrc>=pList->nAlloc ){
|
|
SrcList *pNew;
|
|
pList->nAlloc *= 2;
|
|
pNew = sqlite3DbRealloc(db, pList,
|
|
sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
|
|
if( pNew==0 ){
|
|
sqlite3SrcListDelete(pList);
|
|
return 0;
|
|
}
|
|
pList = pNew;
|
|
}
|
|
pItem = &pList->a[pList->nSrc];
|
|
memset(pItem, 0, sizeof(pList->a[0]));
|
|
if( pDatabase && pDatabase->z==0 ){
|
|
pDatabase = 0;
|
|
}
|
|
if( pDatabase && pTable ){
|
|
Token *pTemp = pDatabase;
|
|
pDatabase = pTable;
|
|
pTable = pTemp;
|
|
}
|
|
pItem->zName = sqlite3NameFromToken(db, pTable);
|
|
pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
|
|
pItem->iCursor = -1;
|
|
pItem->isPopulated = 0;
|
|
pList->nSrc++;
|
|
return pList;
|
|
}
|
|
|
|
/*
|
|
** Assign cursors to all tables in a SrcList
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
|
|
int i;
|
|
struct SrcList_item *pItem;
|
|
assert(pList || pParse->db->mallocFailed );
|
|
if( pList ){
|
|
for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
|
|
if( pItem->iCursor>=0 ) break;
|
|
pItem->iCursor = pParse->nTab++;
|
|
if( pItem->pSelect ){
|
|
sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Delete an entire SrcList including all its substructure.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3SrcListDelete(SrcList *pList){
|
|
int i;
|
|
struct SrcList_item *pItem;
|
|
if( pList==0 ) return;
|
|
for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
|
|
sqlite3_free(pItem->zDatabase);
|
|
sqlite3_free(pItem->zName);
|
|
sqlite3_free(pItem->zAlias);
|
|
sqlite3DeleteTable(pItem->pTab);
|
|
sqlite3SelectDelete(pItem->pSelect);
|
|
sqlite3ExprDelete(pItem->pOn);
|
|
sqlite3IdListDelete(pItem->pUsing);
|
|
}
|
|
sqlite3_free(pList);
|
|
}
|
|
|
|
/*
|
|
** This routine is called by the parser to add a new term to the
|
|
** end of a growing FROM clause. The "p" parameter is the part of
|
|
** the FROM clause that has already been constructed. "p" is NULL
|
|
** if this is the first term of the FROM clause. pTable and pDatabase
|
|
** are the name of the table and database named in the FROM clause term.
|
|
** pDatabase is NULL if the database name qualifier is missing - the
|
|
** usual case. If the term has a alias, then pAlias points to the
|
|
** alias token. If the term is a subquery, then pSubquery is the
|
|
** SELECT statement that the subquery encodes. The pTable and
|
|
** pDatabase parameters are NULL for subqueries. The pOn and pUsing
|
|
** parameters are the content of the ON and USING clauses.
|
|
**
|
|
** Return a new SrcList which encodes is the FROM with the new
|
|
** term added.
|
|
*/
|
|
SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(
|
|
Parse *pParse, /* Parsing context */
|
|
SrcList *p, /* The left part of the FROM clause already seen */
|
|
Token *pTable, /* Name of the table to add to the FROM clause */
|
|
Token *pDatabase, /* Name of the database containing pTable */
|
|
Token *pAlias, /* The right-hand side of the AS subexpression */
|
|
Select *pSubquery, /* A subquery used in place of a table name */
|
|
Expr *pOn, /* The ON clause of a join */
|
|
IdList *pUsing /* The USING clause of a join */
|
|
){
|
|
struct SrcList_item *pItem;
|
|
sqlite3 *db = pParse->db;
|
|
p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
|
|
if( p==0 || p->nSrc==0 ){
|
|
sqlite3ExprDelete(pOn);
|
|
sqlite3IdListDelete(pUsing);
|
|
sqlite3SelectDelete(pSubquery);
|
|
return p;
|
|
}
|
|
pItem = &p->a[p->nSrc-1];
|
|
if( pAlias && pAlias->n ){
|
|
pItem->zAlias = sqlite3NameFromToken(db, pAlias);
|
|
}
|
|
pItem->pSelect = pSubquery;
|
|
pItem->pOn = pOn;
|
|
pItem->pUsing = pUsing;
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** When building up a FROM clause in the parser, the join operator
|
|
** is initially attached to the left operand. But the code generator
|
|
** expects the join operator to be on the right operand. This routine
|
|
** Shifts all join operators from left to right for an entire FROM
|
|
** clause.
|
|
**
|
|
** Example: Suppose the join is like this:
|
|
**
|
|
** A natural cross join B
|
|
**
|
|
** The operator is "natural cross join". The A and B operands are stored
|
|
** in p->a[0] and p->a[1], respectively. The parser initially stores the
|
|
** operator with A. This routine shifts that operator over to B.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(SrcList *p){
|
|
if( p && p->a ){
|
|
int i;
|
|
for(i=p->nSrc-1; i>0; i--){
|
|
p->a[i].jointype = p->a[i-1].jointype;
|
|
}
|
|
p->a[0].jointype = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Begin a transaction
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3BeginTransaction(Parse *pParse, int type){
|
|
sqlite3 *db;
|
|
Vdbe *v;
|
|
int i;
|
|
|
|
if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
|
if( pParse->nErr || db->mallocFailed ) return;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( !v ) return;
|
|
if( type!=TK_DEFERRED ){
|
|
for(i=0; i<db->nDb; i++){
|
|
sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
|
|
sqlite3VdbeUsesBtree(v, i);
|
|
}
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
|
|
}
|
|
|
|
/*
|
|
** Commit a transaction
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3CommitTransaction(Parse *pParse){
|
|
sqlite3 *db;
|
|
Vdbe *v;
|
|
|
|
if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
|
if( pParse->nErr || db->mallocFailed ) return;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Rollback a transaction
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse *pParse){
|
|
sqlite3 *db;
|
|
Vdbe *v;
|
|
|
|
if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
|
if( pParse->nErr || db->mallocFailed ) return;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Make sure the TEMP database is open and available for use. Return
|
|
** the number of errors. Leave any error messages in the pParse structure.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *pParse){
|
|
sqlite3 *db = pParse->db;
|
|
if( db->aDb[1].pBt==0 && !pParse->explain ){
|
|
int rc;
|
|
static const int flags =
|
|
SQLITE_OPEN_READWRITE |
|
|
SQLITE_OPEN_CREATE |
|
|
SQLITE_OPEN_EXCLUSIVE |
|
|
SQLITE_OPEN_DELETEONCLOSE |
|
|
SQLITE_OPEN_TEMP_DB;
|
|
|
|
rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags,
|
|
&db->aDb[1].pBt);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3ErrorMsg(pParse, "unable to open a temporary database "
|
|
"file for storing temporary tables");
|
|
pParse->rc = rc;
|
|
return 1;
|
|
}
|
|
assert( (db->flags & SQLITE_InTrans)==0 || db->autoCommit );
|
|
assert( db->aDb[1].pSchema );
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Generate VDBE code that will verify the schema cookie and start
|
|
** a read-transaction for all named database files.
|
|
**
|
|
** It is important that all schema cookies be verified and all
|
|
** read transactions be started before anything else happens in
|
|
** the VDBE program. But this routine can be called after much other
|
|
** code has been generated. So here is what we do:
|
|
**
|
|
** The first time this routine is called, we code an OP_Goto that
|
|
** will jump to a subroutine at the end of the program. Then we
|
|
** record every database that needs its schema verified in the
|
|
** pParse->cookieMask field. Later, after all other code has been
|
|
** generated, the subroutine that does the cookie verifications and
|
|
** starts the transactions will be coded and the OP_Goto P2 value
|
|
** will be made to point to that subroutine. The generation of the
|
|
** cookie verification subroutine code happens in sqlite3FinishCoding().
|
|
**
|
|
** If iDb<0 then code the OP_Goto only - don't set flag to verify the
|
|
** schema on any databases. This can be used to position the OP_Goto
|
|
** early in the code, before we know if any database tables will be used.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
|
|
sqlite3 *db;
|
|
Vdbe *v;
|
|
int mask;
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) return; /* This only happens if there was a prior error */
|
|
db = pParse->db;
|
|
if( pParse->cookieGoto==0 ){
|
|
pParse->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
|
|
}
|
|
if( iDb>=0 ){
|
|
assert( iDb<db->nDb );
|
|
assert( db->aDb[iDb].pBt!=0 || iDb==1 );
|
|
assert( iDb<SQLITE_MAX_ATTACHED+2 );
|
|
mask = 1<<iDb;
|
|
if( (pParse->cookieMask & mask)==0 ){
|
|
pParse->cookieMask |= mask;
|
|
pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
|
|
if( !OMIT_TEMPDB && iDb==1 ){
|
|
sqlite3OpenTempDatabase(pParse);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate VDBE code that prepares for doing an operation that
|
|
** might change the database.
|
|
**
|
|
** This routine starts a new transaction if we are not already within
|
|
** a transaction. If we are already within a transaction, then a checkpoint
|
|
** is set if the setStatement parameter is true. A checkpoint should
|
|
** be set for operations that might fail (due to a constraint) part of
|
|
** the way through and which will need to undo some writes without having to
|
|
** rollback the whole transaction. For operations where all constraints
|
|
** can be checked before any changes are made to the database, it is never
|
|
** necessary to undo a write and the checkpoint should not be set.
|
|
**
|
|
** Only database iDb and the temp database are made writable by this call.
|
|
** If iDb==0, then the main and temp databases are made writable. If
|
|
** iDb==1 then only the temp database is made writable. If iDb>1 then the
|
|
** specified auxiliary database and the temp database are made writable.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) return;
|
|
sqlite3CodeVerifySchema(pParse, iDb);
|
|
pParse->writeMask |= 1<<iDb;
|
|
if( setStatement && pParse->nested==0 ){
|
|
sqlite3VdbeAddOp1(v, OP_Statement, iDb);
|
|
}
|
|
if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){
|
|
sqlite3BeginWriteOperation(pParse, setStatement, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Check to see if pIndex uses the collating sequence pColl. Return
|
|
** true if it does and false if it does not.
|
|
*/
|
|
#ifndef SQLITE_OMIT_REINDEX
|
|
static int collationMatch(const char *zColl, Index *pIndex){
|
|
int i;
|
|
for(i=0; i<pIndex->nColumn; i++){
|
|
const char *z = pIndex->azColl[i];
|
|
if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Recompute all indices of pTab that use the collating sequence pColl.
|
|
** If pColl==0 then recompute all indices of pTab.
|
|
*/
|
|
#ifndef SQLITE_OMIT_REINDEX
|
|
static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
|
|
Index *pIndex; /* An index associated with pTab */
|
|
|
|
for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
|
|
if( zColl==0 || collationMatch(zColl, pIndex) ){
|
|
int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
sqlite3RefillIndex(pParse, pIndex, -1);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Recompute all indices of all tables in all databases where the
|
|
** indices use the collating sequence pColl. If pColl==0 then recompute
|
|
** all indices everywhere.
|
|
*/
|
|
#ifndef SQLITE_OMIT_REINDEX
|
|
static void reindexDatabases(Parse *pParse, char const *zColl){
|
|
Db *pDb; /* A single database */
|
|
int iDb; /* The database index number */
|
|
sqlite3 *db = pParse->db; /* The database connection */
|
|
HashElem *k; /* For looping over tables in pDb */
|
|
Table *pTab; /* A table in the database */
|
|
|
|
for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
|
|
assert( pDb!=0 );
|
|
for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
|
|
pTab = (Table*)sqliteHashData(k);
|
|
reindexTable(pParse, pTab, zColl);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Generate code for the REINDEX command.
|
|
**
|
|
** REINDEX -- 1
|
|
** REINDEX <collation> -- 2
|
|
** REINDEX ?<database>.?<tablename> -- 3
|
|
** REINDEX ?<database>.?<indexname> -- 4
|
|
**
|
|
** Form 1 causes all indices in all attached databases to be rebuilt.
|
|
** Form 2 rebuilds all indices in all databases that use the named
|
|
** collating function. Forms 3 and 4 rebuild the named index or all
|
|
** indices associated with the named table.
|
|
*/
|
|
#ifndef SQLITE_OMIT_REINDEX
|
|
SQLITE_PRIVATE void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
|
|
CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
|
|
char *z; /* Name of a table or index */
|
|
const char *zDb; /* Name of the database */
|
|
Table *pTab; /* A table in the database */
|
|
Index *pIndex; /* An index associated with pTab */
|
|
int iDb; /* The database index number */
|
|
sqlite3 *db = pParse->db; /* The database connection */
|
|
Token *pObjName; /* Name of the table or index to be reindexed */
|
|
|
|
/* Read the database schema. If an error occurs, leave an error message
|
|
** and code in pParse and return NULL. */
|
|
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
|
return;
|
|
}
|
|
|
|
if( pName1==0 || pName1->z==0 ){
|
|
reindexDatabases(pParse, 0);
|
|
return;
|
|
}else if( pName2==0 || pName2->z==0 ){
|
|
char *zColl;
|
|
assert( pName1->z );
|
|
zColl = sqlite3NameFromToken(pParse->db, pName1);
|
|
if( !zColl ) return;
|
|
pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0);
|
|
if( pColl ){
|
|
if( zColl ){
|
|
reindexDatabases(pParse, zColl);
|
|
sqlite3_free(zColl);
|
|
}
|
|
return;
|
|
}
|
|
sqlite3_free(zColl);
|
|
}
|
|
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
|
|
if( iDb<0 ) return;
|
|
z = sqlite3NameFromToken(db, pObjName);
|
|
if( z==0 ) return;
|
|
zDb = db->aDb[iDb].zName;
|
|
pTab = sqlite3FindTable(db, z, zDb);
|
|
if( pTab ){
|
|
reindexTable(pParse, pTab, 0);
|
|
sqlite3_free(z);
|
|
return;
|
|
}
|
|
pIndex = sqlite3FindIndex(db, z, zDb);
|
|
sqlite3_free(z);
|
|
if( pIndex ){
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
sqlite3RefillIndex(pParse, pIndex, -1);
|
|
return;
|
|
}
|
|
sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Return a dynamicly allocated KeyInfo structure that can be used
|
|
** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
|
|
**
|
|
** If successful, a pointer to the new structure is returned. In this case
|
|
** the caller is responsible for calling sqlite3_free() on the returned
|
|
** pointer. If an error occurs (out of memory or missing collation
|
|
** sequence), NULL is returned and the state of pParse updated to reflect
|
|
** the error.
|
|
*/
|
|
SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
|
|
int i;
|
|
int nCol = pIdx->nColumn;
|
|
int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
|
|
KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(pParse->db, nBytes);
|
|
|
|
if( pKey ){
|
|
pKey->db = pParse->db;
|
|
pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
|
|
assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
|
|
for(i=0; i<nCol; i++){
|
|
char *zColl = pIdx->azColl[i];
|
|
assert( zColl );
|
|
pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1);
|
|
pKey->aSortOrder[i] = pIdx->aSortOrder[i];
|
|
}
|
|
pKey->nField = nCol;
|
|
}
|
|
|
|
if( pParse->nErr ){
|
|
sqlite3_free(pKey);
|
|
pKey = 0;
|
|
}
|
|
return pKey;
|
|
}
|
|
|
|
/************** End of build.c ***********************************************/
|
|
/************** Begin file callback.c ****************************************/
|
|
/*
|
|
** 2005 May 23
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
**
|
|
** This file contains functions used to access the internal hash tables
|
|
** of user defined functions and collation sequences.
|
|
**
|
|
** $Id: callback.c,v 1.23 2007/08/29 12:31:26 danielk1977 Exp $
|
|
*/
|
|
|
|
|
|
/*
|
|
** Invoke the 'collation needed' callback to request a collation sequence
|
|
** in the database text encoding of name zName, length nName.
|
|
** If the collation sequence
|
|
*/
|
|
static void callCollNeeded(sqlite3 *db, const char *zName, int nName){
|
|
assert( !db->xCollNeeded || !db->xCollNeeded16 );
|
|
if( nName<0 ) nName = strlen(zName);
|
|
if( db->xCollNeeded ){
|
|
char *zExternal = sqlite3DbStrNDup(db, zName, nName);
|
|
if( !zExternal ) return;
|
|
db->xCollNeeded(db->pCollNeededArg, db, (int)ENC(db), zExternal);
|
|
sqlite3_free(zExternal);
|
|
}
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
if( db->xCollNeeded16 ){
|
|
char const *zExternal;
|
|
sqlite3_value *pTmp = sqlite3ValueNew(db);
|
|
sqlite3ValueSetStr(pTmp, nName, zName, SQLITE_UTF8, SQLITE_STATIC);
|
|
zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE);
|
|
if( zExternal ){
|
|
db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal);
|
|
}
|
|
sqlite3ValueFree(pTmp);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** This routine is called if the collation factory fails to deliver a
|
|
** collation function in the best encoding but there may be other versions
|
|
** of this collation function (for other text encodings) available. Use one
|
|
** of these instead if they exist. Avoid a UTF-8 <-> UTF-16 conversion if
|
|
** possible.
|
|
*/
|
|
static int synthCollSeq(sqlite3 *db, CollSeq *pColl){
|
|
CollSeq *pColl2;
|
|
char *z = pColl->zName;
|
|
int n = strlen(z);
|
|
int i;
|
|
static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 };
|
|
for(i=0; i<3; i++){
|
|
pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, n, 0);
|
|
if( pColl2->xCmp!=0 ){
|
|
memcpy(pColl, pColl2, sizeof(CollSeq));
|
|
pColl->xDel = 0; /* Do not copy the destructor */
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
/*
|
|
** This function is responsible for invoking the collation factory callback
|
|
** or substituting a collation sequence of a different encoding when the
|
|
** requested collation sequence is not available in the database native
|
|
** encoding.
|
|
**
|
|
** If it is not NULL, then pColl must point to the database native encoding
|
|
** collation sequence with name zName, length nName.
|
|
**
|
|
** The return value is either the collation sequence to be used in database
|
|
** db for collation type name zName, length nName, or NULL, if no collation
|
|
** sequence can be found.
|
|
*/
|
|
SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(
|
|
sqlite3* db,
|
|
CollSeq *pColl,
|
|
const char *zName,
|
|
int nName
|
|
){
|
|
CollSeq *p;
|
|
|
|
p = pColl;
|
|
if( !p ){
|
|
p = sqlite3FindCollSeq(db, ENC(db), zName, nName, 0);
|
|
}
|
|
if( !p || !p->xCmp ){
|
|
/* No collation sequence of this type for this encoding is registered.
|
|
** Call the collation factory to see if it can supply us with one.
|
|
*/
|
|
callCollNeeded(db, zName, nName);
|
|
p = sqlite3FindCollSeq(db, ENC(db), zName, nName, 0);
|
|
}
|
|
if( p && !p->xCmp && synthCollSeq(db, p) ){
|
|
p = 0;
|
|
}
|
|
assert( !p || p->xCmp );
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** This routine is called on a collation sequence before it is used to
|
|
** check that it is defined. An undefined collation sequence exists when
|
|
** a database is loaded that contains references to collation sequences
|
|
** that have not been defined by sqlite3_create_collation() etc.
|
|
**
|
|
** If required, this routine calls the 'collation needed' callback to
|
|
** request a definition of the collating sequence. If this doesn't work,
|
|
** an equivalent collating sequence that uses a text encoding different
|
|
** from the main database is substituted, if one is available.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){
|
|
if( pColl ){
|
|
const char *zName = pColl->zName;
|
|
CollSeq *p = sqlite3GetCollSeq(pParse->db, pColl, zName, -1);
|
|
if( !p ){
|
|
if( pParse->nErr==0 ){
|
|
sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
|
|
}
|
|
pParse->nErr++;
|
|
return SQLITE_ERROR;
|
|
}
|
|
assert( p==pColl );
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
** Locate and return an entry from the db.aCollSeq hash table. If the entry
|
|
** specified by zName and nName is not found and parameter 'create' is
|
|
** true, then create a new entry. Otherwise return NULL.
|
|
**
|
|
** Each pointer stored in the sqlite3.aCollSeq hash table contains an
|
|
** array of three CollSeq structures. The first is the collation sequence
|
|
** prefferred for UTF-8, the second UTF-16le, and the third UTF-16be.
|
|
**
|
|
** Stored immediately after the three collation sequences is a copy of
|
|
** the collation sequence name. A pointer to this string is stored in
|
|
** each collation sequence structure.
|
|
*/
|
|
static CollSeq *findCollSeqEntry(
|
|
sqlite3 *db,
|
|
const char *zName,
|
|
int nName,
|
|
int create
|
|
){
|
|
CollSeq *pColl;
|
|
if( nName<0 ) nName = strlen(zName);
|
|
pColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
|
|
|
|
if( 0==pColl && create ){
|
|
pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName + 1 );
|
|
if( pColl ){
|
|
CollSeq *pDel = 0;
|
|
pColl[0].zName = (char*)&pColl[3];
|
|
pColl[0].enc = SQLITE_UTF8;
|
|
pColl[1].zName = (char*)&pColl[3];
|
|
pColl[1].enc = SQLITE_UTF16LE;
|
|
pColl[2].zName = (char*)&pColl[3];
|
|
pColl[2].enc = SQLITE_UTF16BE;
|
|
memcpy(pColl[0].zName, zName, nName);
|
|
pColl[0].zName[nName] = 0;
|
|
pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, nName, pColl);
|
|
|
|
/* If a malloc() failure occured in sqlite3HashInsert(), it will
|
|
** return the pColl pointer to be deleted (because it wasn't added
|
|
** to the hash table).
|
|
*/
|
|
assert( pDel==0 || pDel==pColl );
|
|
if( pDel!=0 ){
|
|
db->mallocFailed = 1;
|
|
sqlite3_free(pDel);
|
|
pColl = 0;
|
|
}
|
|
}
|
|
}
|
|
return pColl;
|
|
}
|
|
|
|
/*
|
|
** Parameter zName points to a UTF-8 encoded string nName bytes long.
|
|
** Return the CollSeq* pointer for the collation sequence named zName
|
|
** for the encoding 'enc' from the database 'db'.
|
|
**
|
|
** If the entry specified is not found and 'create' is true, then create a
|
|
** new entry. Otherwise return NULL.
|
|
**
|
|
** A separate function sqlite3LocateCollSeq() is a wrapper around
|
|
** this routine. sqlite3LocateCollSeq() invokes the collation factory
|
|
** if necessary and generates an error message if the collating sequence
|
|
** cannot be found.
|
|
*/
|
|
SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(
|
|
sqlite3 *db,
|
|
u8 enc,
|
|
const char *zName,
|
|
int nName,
|
|
int create
|
|
){
|
|
CollSeq *pColl;
|
|
if( zName ){
|
|
pColl = findCollSeqEntry(db, zName, nName, create);
|
|
}else{
|
|
pColl = db->pDfltColl;
|
|
}
|
|
assert( SQLITE_UTF8==1 && SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
|
|
assert( enc>=SQLITE_UTF8 && enc<=SQLITE_UTF16BE );
|
|
if( pColl ) pColl += enc-1;
|
|
return pColl;
|
|
}
|
|
|
|
/*
|
|
** Locate a user function given a name, a number of arguments and a flag
|
|
** indicating whether the function prefers UTF-16 over UTF-8. Return a
|
|
** pointer to the FuncDef structure that defines that function, or return
|
|
** NULL if the function does not exist.
|
|
**
|
|
** If the createFlag argument is true, then a new (blank) FuncDef
|
|
** structure is created and liked into the "db" structure if a
|
|
** no matching function previously existed. When createFlag is true
|
|
** and the nArg parameter is -1, then only a function that accepts
|
|
** any number of arguments will be returned.
|
|
**
|
|
** If createFlag is false and nArg is -1, then the first valid
|
|
** function found is returned. A function is valid if either xFunc
|
|
** or xStep is non-zero.
|
|
**
|
|
** If createFlag is false, then a function with the required name and
|
|
** number of arguments may be returned even if the eTextRep flag does not
|
|
** match that requested.
|
|
*/
|
|
SQLITE_PRIVATE FuncDef *sqlite3FindFunction(
|
|
sqlite3 *db, /* An open database */
|
|
const char *zName, /* Name of the function. Not null-terminated */
|
|
int nName, /* Number of characters in the name */
|
|
int nArg, /* Number of arguments. -1 means any number */
|
|
u8 enc, /* Preferred text encoding */
|
|
int createFlag /* Create new entry if true and does not otherwise exist */
|
|
){
|
|
FuncDef *p; /* Iterator variable */
|
|
FuncDef *pFirst; /* First function with this name */
|
|
FuncDef *pBest = 0; /* Best match found so far */
|
|
int bestmatch = 0;
|
|
|
|
|
|
assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
|
|
if( nArg<-1 ) nArg = -1;
|
|
|
|
pFirst = (FuncDef*)sqlite3HashFind(&db->aFunc, zName, nName);
|
|
for(p=pFirst; p; p=p->pNext){
|
|
/* During the search for the best function definition, bestmatch is set
|
|
** as follows to indicate the quality of the match with the definition
|
|
** pointed to by pBest:
|
|
**
|
|
** 0: pBest is NULL. No match has been found.
|
|
** 1: A variable arguments function that prefers UTF-8 when a UTF-16
|
|
** encoding is requested, or vice versa.
|
|
** 2: A variable arguments function that uses UTF-16BE when UTF-16LE is
|
|
** requested, or vice versa.
|
|
** 3: A variable arguments function using the same text encoding.
|
|
** 4: A function with the exact number of arguments requested that
|
|
** prefers UTF-8 when a UTF-16 encoding is requested, or vice versa.
|
|
** 5: A function with the exact number of arguments requested that
|
|
** prefers UTF-16LE when UTF-16BE is requested, or vice versa.
|
|
** 6: An exact match.
|
|
**
|
|
** A larger value of 'matchqual' indicates a more desirable match.
|
|
*/
|
|
if( p->nArg==-1 || p->nArg==nArg || nArg==-1 ){
|
|
int match = 1; /* Quality of this match */
|
|
if( p->nArg==nArg || nArg==-1 ){
|
|
match = 4;
|
|
}
|
|
if( enc==p->iPrefEnc ){
|
|
match += 2;
|
|
}
|
|
else if( (enc==SQLITE_UTF16LE && p->iPrefEnc==SQLITE_UTF16BE) ||
|
|
(enc==SQLITE_UTF16BE && p->iPrefEnc==SQLITE_UTF16LE) ){
|
|
match += 1;
|
|
}
|
|
|
|
if( match>bestmatch ){
|
|
pBest = p;
|
|
bestmatch = match;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If the createFlag parameter is true, and the seach did not reveal an
|
|
** exact match for the name, number of arguments and encoding, then add a
|
|
** new entry to the hash table and return it.
|
|
*/
|
|
if( createFlag && bestmatch<6 &&
|
|
(pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName))!=0 ){
|
|
pBest->nArg = nArg;
|
|
pBest->pNext = pFirst;
|
|
pBest->iPrefEnc = enc;
|
|
memcpy(pBest->zName, zName, nName);
|
|
pBest->zName[nName] = 0;
|
|
if( pBest==sqlite3HashInsert(&db->aFunc,pBest->zName,nName,(void*)pBest) ){
|
|
db->mallocFailed = 1;
|
|
sqlite3_free(pBest);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if( pBest && (pBest->xStep || pBest->xFunc || createFlag) ){
|
|
return pBest;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Free all resources held by the schema structure. The void* argument points
|
|
** at a Schema struct. This function does not call sqlite3_free() on the
|
|
** pointer itself, it just cleans up subsiduary resources (i.e. the contents
|
|
** of the schema hash tables).
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3SchemaFree(void *p){
|
|
Hash temp1;
|
|
Hash temp2;
|
|
HashElem *pElem;
|
|
Schema *pSchema = (Schema *)p;
|
|
|
|
temp1 = pSchema->tblHash;
|
|
temp2 = pSchema->trigHash;
|
|
sqlite3HashInit(&pSchema->trigHash, SQLITE_HASH_STRING, 0);
|
|
sqlite3HashClear(&pSchema->aFKey);
|
|
sqlite3HashClear(&pSchema->idxHash);
|
|
for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
|
|
sqlite3DeleteTrigger((Trigger*)sqliteHashData(pElem));
|
|
}
|
|
sqlite3HashClear(&temp2);
|
|
sqlite3HashInit(&pSchema->tblHash, SQLITE_HASH_STRING, 0);
|
|
for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
|
|
Table *pTab = sqliteHashData(pElem);
|
|
sqlite3DeleteTable(pTab);
|
|
}
|
|
sqlite3HashClear(&temp1);
|
|
pSchema->pSeqTab = 0;
|
|
pSchema->flags &= ~DB_SchemaLoaded;
|
|
}
|
|
|
|
/*
|
|
** Find and return the schema associated with a BTree. Create
|
|
** a new one if necessary.
|
|
*/
|
|
SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){
|
|
Schema * p;
|
|
if( pBt ){
|
|
p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaFree);
|
|
}else{
|
|
p = (Schema *)sqlite3MallocZero(sizeof(Schema));
|
|
}
|
|
if( !p ){
|
|
db->mallocFailed = 1;
|
|
}else if ( 0==p->file_format ){
|
|
sqlite3HashInit(&p->tblHash, SQLITE_HASH_STRING, 0);
|
|
sqlite3HashInit(&p->idxHash, SQLITE_HASH_STRING, 0);
|
|
sqlite3HashInit(&p->trigHash, SQLITE_HASH_STRING, 0);
|
|
sqlite3HashInit(&p->aFKey, SQLITE_HASH_STRING, 1);
|
|
p->enc = SQLITE_UTF8;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/************** End of callback.c ********************************************/
|
|
/************** Begin file delete.c ******************************************/
|
|
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains C code routines that are called by the parser
|
|
** in order to generate code for DELETE FROM statements.
|
|
**
|
|
** $Id: delete.c,v 1.160 2008/01/25 15:04:50 drh Exp $
|
|
*/
|
|
|
|
/*
|
|
** Look up every table that is named in pSrc. If any table is not found,
|
|
** add an error message to pParse->zErrMsg and return NULL. If all tables
|
|
** are found, return a pointer to the last table.
|
|
*/
|
|
SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){
|
|
Table *pTab = 0;
|
|
int i;
|
|
struct SrcList_item *pItem;
|
|
for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
|
|
pTab = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
|
|
sqlite3DeleteTable(pItem->pTab);
|
|
pItem->pTab = pTab;
|
|
if( pTab ){
|
|
pTab->nRef++;
|
|
}
|
|
}
|
|
return pTab;
|
|
}
|
|
|
|
/*
|
|
** Check to make sure the given table is writable. If it is not
|
|
** writable, generate an error message and return 1. If it is
|
|
** writable return 0;
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){
|
|
if( (pTab->readOnly && (pParse->db->flags & SQLITE_WriteSchema)==0
|
|
&& pParse->nested==0)
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|| (pTab->pMod && pTab->pMod->pModule->xUpdate==0)
|
|
#endif
|
|
){
|
|
sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName);
|
|
return 1;
|
|
}
|
|
#ifndef SQLITE_OMIT_VIEW
|
|
if( !viewOk && pTab->pSelect ){
|
|
sqlite3ErrorMsg(pParse,"cannot modify %s because it is a view",pTab->zName);
|
|
return 1;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Generate code that will open a table for reading.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3OpenTable(
|
|
Parse *p, /* Generate code into this VDBE */
|
|
int iCur, /* The cursor number of the table */
|
|
int iDb, /* The database index in sqlite3.aDb[] */
|
|
Table *pTab, /* The table to be opened */
|
|
int opcode /* OP_OpenRead or OP_OpenWrite */
|
|
){
|
|
Vdbe *v;
|
|
if( IsVirtual(pTab) ) return;
|
|
v = sqlite3GetVdbe(p);
|
|
assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
|
|
sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite), pTab->zName);
|
|
sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb);
|
|
VdbeComment((v, "%s", pTab->zName));
|
|
sqlite3VdbeAddOp2(v, OP_SetNumColumns, iCur, pTab->nCol);
|
|
}
|
|
|
|
|
|
/*
|
|
** Generate code for a DELETE FROM statement.
|
|
**
|
|
** DELETE FROM table_wxyz WHERE a<5 AND b NOT NULL;
|
|
** \________/ \________________/
|
|
** pTabList pWhere
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3DeleteFrom(
|
|
Parse *pParse, /* The parser context */
|
|
SrcList *pTabList, /* The table from which we should delete things */
|
|
Expr *pWhere /* The WHERE clause. May be null */
|
|
){
|
|
Vdbe *v; /* The virtual database engine */
|
|
Table *pTab; /* The table from which records will be deleted */
|
|
const char *zDb; /* Name of database holding pTab */
|
|
int end, addr = 0; /* A couple addresses of generated code */
|
|
int i; /* Loop counter */
|
|
WhereInfo *pWInfo; /* Information about the WHERE clause */
|
|
Index *pIdx; /* For looping over indices of the table */
|
|
int iCur; /* VDBE Cursor number for pTab */
|
|
sqlite3 *db; /* Main database structure */
|
|
AuthContext sContext; /* Authorization context */
|
|
int oldIdx = -1; /* Cursor for the OLD table of AFTER triggers */
|
|
NameContext sNC; /* Name context to resolve expressions in */
|
|
int iDb; /* Database number */
|
|
int memCnt = 0; /* Memory cell used for change counting */
|
|
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
int isView; /* True if attempting to delete from a view */
|
|
int triggers_exist = 0; /* True if any triggers exist */
|
|
#endif
|
|
int iBeginAfterTrigger; /* Address of after trigger program */
|
|
int iEndAfterTrigger; /* Exit of after trigger program */
|
|
int iBeginBeforeTrigger; /* Address of before trigger program */
|
|
int iEndBeforeTrigger; /* Exit of before trigger program */
|
|
u32 old_col_mask = 0; /* Mask of OLD.* columns in use */
|
|
|
|
sContext.pParse = 0;
|
|
db = pParse->db;
|
|
if( pParse->nErr || db->mallocFailed ){
|
|
goto delete_from_cleanup;
|
|
}
|
|
assert( pTabList->nSrc==1 );
|
|
|
|
/* Locate the table which we want to delete. This table has to be
|
|
** put in an SrcList structure because some of the subroutines we
|
|
** will be calling are designed to work with multiple tables and expect
|
|
** an SrcList* parameter instead of just a Table* parameter.
|
|
*/
|
|
pTab = sqlite3SrcListLookup(pParse, pTabList);
|
|
if( pTab==0 ) goto delete_from_cleanup;
|
|
|
|
/* Figure out if we have any triggers and if the table being
|
|
** deleted from is a view
|
|
*/
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0);
|
|
isView = pTab->pSelect!=0;
|
|
#else
|
|
# define triggers_exist 0
|
|
# define isView 0
|
|
#endif
|
|
#ifdef SQLITE_OMIT_VIEW
|
|
# undef isView
|
|
# define isView 0
|
|
#endif
|
|
|
|
if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
|
|
goto delete_from_cleanup;
|
|
}
|
|
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
assert( iDb<db->nDb );
|
|
zDb = db->aDb[iDb].zName;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
|
|
goto delete_from_cleanup;
|
|
}
|
|
|
|
/* If pTab is really a view, make sure it has been initialized.
|
|
*/
|
|
if( sqlite3ViewGetColumnNames(pParse, pTab) ){
|
|
goto delete_from_cleanup;
|
|
}
|
|
|
|
/* Allocate a cursor used to store the old.* data for a trigger.
|
|
*/
|
|
if( triggers_exist ){
|
|
oldIdx = pParse->nTab++;
|
|
}
|
|
|
|
/* Resolve the column names in the WHERE clause.
|
|
*/
|
|
assert( pTabList->nSrc==1 );
|
|
iCur = pTabList->a[0].iCursor = pParse->nTab++;
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
pParse->nTab++;
|
|
}
|
|
memset(&sNC, 0, sizeof(sNC));
|
|
sNC.pParse = pParse;
|
|
sNC.pSrcList = pTabList;
|
|
if( sqlite3ExprResolveNames(&sNC, pWhere) ){
|
|
goto delete_from_cleanup;
|
|
}
|
|
|
|
/* Start the view context
|
|
*/
|
|
if( isView ){
|
|
sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
|
|
}
|
|
|
|
/* Begin generating code.
|
|
*/
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ){
|
|
goto delete_from_cleanup;
|
|
}
|
|
if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
|
|
sqlite3BeginWriteOperation(pParse, triggers_exist, iDb);
|
|
|
|
if( triggers_exist ){
|
|
int orconf = ((pParse->trigStack)?pParse->trigStack->orconf:OE_Default);
|
|
int iGoto = sqlite3VdbeAddOp0(v, OP_Goto);
|
|
addr = sqlite3VdbeMakeLabel(v);
|
|
|
|
iBeginBeforeTrigger = sqlite3VdbeCurrentAddr(v);
|
|
(void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_BEFORE, pTab,
|
|
-1, oldIdx, orconf, addr, &old_col_mask, 0);
|
|
iEndBeforeTrigger = sqlite3VdbeAddOp0(v, OP_Goto);
|
|
|
|
iBeginAfterTrigger = sqlite3VdbeCurrentAddr(v);
|
|
(void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_AFTER, pTab, -1,
|
|
oldIdx, orconf, addr, &old_col_mask, 0);
|
|
iEndAfterTrigger = sqlite3VdbeAddOp0(v, OP_Goto);
|
|
|
|
sqlite3VdbeJumpHere(v, iGoto);
|
|
}
|
|
|
|
/* If we are trying to delete from a view, realize that view into
|
|
** a ephemeral table.
|
|
*/
|
|
if( isView ){
|
|
SelectDest dest;
|
|
Select *pView;
|
|
|
|
pView = sqlite3SelectDup(db, pTab->pSelect);
|
|
sqlite3SelectMask(pParse, pView, old_col_mask);
|
|
sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur);
|
|
sqlite3Select(pParse, pView, &dest, 0, 0, 0, 0);
|
|
sqlite3SelectDelete(pView);
|
|
}
|
|
|
|
/* Initialize the counter of the number of rows deleted, if
|
|
** we are counting rows.
|
|
*/
|
|
if( db->flags & SQLITE_CountRows ){
|
|
memCnt = ++pParse->nMem;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt);
|
|
}
|
|
|
|
/* Special case: A DELETE without a WHERE clause deletes everything.
|
|
** It is easier just to erase the whole table. Note, however, that
|
|
** this means that the row change count will be incorrect.
|
|
*/
|
|
if( pWhere==0 && !triggers_exist && !IsVirtual(pTab) ){
|
|
if( db->flags & SQLITE_CountRows ){
|
|
/* If counting rows deleted, just count the total number of
|
|
** entries in the table. */
|
|
int addr2;
|
|
if( !isView ){
|
|
sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Rewind, iCur, sqlite3VdbeCurrentAddr(v)+2);
|
|
addr2 = sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
|
|
sqlite3VdbeAddOp2(v, OP_Next, iCur, addr2);
|
|
sqlite3VdbeAddOp1(v, OP_Close, iCur);
|
|
}
|
|
if( !isView ){
|
|
sqlite3VdbeAddOp2(v, OP_Clear, pTab->tnum, iDb);
|
|
if( !pParse->nested ){
|
|
sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
|
|
}
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
assert( pIdx->pSchema==pTab->pSchema );
|
|
sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
|
|
}
|
|
}
|
|
}
|
|
/* The usual case: There is a WHERE clause so we have to scan through
|
|
** the table and pick which records to delete.
|
|
*/
|
|
else{
|
|
int iRowid = ++pParse->nMem; /* Used for storing rowid values. */
|
|
|
|
/* Begin the database scan
|
|
*/
|
|
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0);
|
|
if( pWInfo==0 ) goto delete_from_cleanup;
|
|
|
|
/* Remember the rowid of every item to be deleted.
|
|
*/
|
|
sqlite3VdbeAddOp2(v, IsVirtual(pTab) ? OP_VRowid : OP_Rowid, iCur, iRowid);
|
|
sqlite3VdbeAddOp1(v, OP_FifoWrite, iRowid);
|
|
if( db->flags & SQLITE_CountRows ){
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
|
|
}
|
|
|
|
/* End the database scan loop.
|
|
*/
|
|
sqlite3WhereEnd(pWInfo);
|
|
|
|
/* Open the pseudo-table used to store OLD if there are triggers.
|
|
*/
|
|
if( triggers_exist ){
|
|
sqlite3VdbeAddOp1(v, OP_OpenPseudo, oldIdx);
|
|
sqlite3VdbeAddOp2(v, OP_SetNumColumns, oldIdx, pTab->nCol);
|
|
}
|
|
|
|
/* Delete every item whose key was written to the list during the
|
|
** database scan. We have to delete items after the scan is complete
|
|
** because deleting an item can change the scan order.
|
|
*/
|
|
end = sqlite3VdbeMakeLabel(v);
|
|
|
|
if( !isView ){
|
|
/* Open cursors for the table we are deleting from and
|
|
** all its indices.
|
|
*/
|
|
sqlite3OpenTableAndIndices(pParse, pTab, iCur, OP_OpenWrite);
|
|
}
|
|
|
|
/* This is the beginning of the delete loop. If a trigger encounters
|
|
** an IGNORE constraint, it jumps back to here.
|
|
*/
|
|
if( triggers_exist ){
|
|
sqlite3VdbeResolveLabel(v, addr);
|
|
}
|
|
addr = sqlite3VdbeAddOp2(v, OP_FifoRead, iRowid, end);
|
|
|
|
if( triggers_exist ){
|
|
int iData = ++pParse->nMem; /* For storing row data of OLD table */
|
|
|
|
/* If the record is no longer present in the table, jump to the
|
|
** next iteration of the loop through the contents of the fifo.
|
|
*/
|
|
sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, iRowid);
|
|
|
|
/* Populate the OLD.* pseudo-table */
|
|
if( old_col_mask ){
|
|
sqlite3VdbeAddOp2(v, OP_RowData, iCur, iData);
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, iData);
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_Insert, oldIdx, iData, iRowid);
|
|
|
|
/* Jump back and run the BEFORE triggers */
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginBeforeTrigger);
|
|
sqlite3VdbeJumpHere(v, iEndBeforeTrigger);
|
|
}
|
|
|
|
if( !isView ){
|
|
/* Delete the row */
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( IsVirtual(pTab) ){
|
|
const char *pVtab = (const char *)pTab->pVtab;
|
|
pParse->pVirtualLock = pTab;
|
|
sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iRowid, pVtab, P4_VTAB);
|
|
}else
|
|
#endif
|
|
{
|
|
sqlite3GenerateRowDelete(pParse, pTab, iCur, iRowid, pParse->nested==0);
|
|
}
|
|
}
|
|
|
|
/* If there are row triggers, close all cursors then invoke
|
|
** the AFTER triggers
|
|
*/
|
|
if( triggers_exist ){
|
|
/* Jump back and run the AFTER triggers */
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginAfterTrigger);
|
|
sqlite3VdbeJumpHere(v, iEndAfterTrigger);
|
|
}
|
|
|
|
/* End of the delete loop */
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
|
|
sqlite3VdbeResolveLabel(v, end);
|
|
|
|
/* Close the cursors after the loop if there are no row triggers */
|
|
if( !isView && !IsVirtual(pTab) ){
|
|
for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
|
|
sqlite3VdbeAddOp2(v, OP_Close, iCur + i, pIdx->tnum);
|
|
}
|
|
sqlite3VdbeAddOp1(v, OP_Close, iCur);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the number of rows that were deleted. If this routine is
|
|
** generating code because of a call to sqlite3NestedParse(), do not
|
|
** invoke the callback function.
|
|
*/
|
|
if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1);
|
|
sqlite3VdbeSetNumCols(v, 1);
|
|
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", P4_STATIC);
|
|
}
|
|
|
|
delete_from_cleanup:
|
|
sqlite3AuthContextPop(&sContext);
|
|
sqlite3SrcListDelete(pTabList);
|
|
sqlite3ExprDelete(pWhere);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** This routine generates VDBE code that causes a single row of a
|
|
** single table to be deleted.
|
|
**
|
|
** The VDBE must be in a particular state when this routine is called.
|
|
** These are the requirements:
|
|
**
|
|
** 1. A read/write cursor pointing to pTab, the table containing the row
|
|
** to be deleted, must be opened as cursor number "base".
|
|
**
|
|
** 2. Read/write cursors for all indices of pTab must be open as
|
|
** cursor number base+i for the i-th index.
|
|
**
|
|
** 3. The record number of the row to be deleted must be stored in
|
|
** memory cell iRowid.
|
|
**
|
|
** This routine pops the top of the stack to remove the record number
|
|
** and then generates code to remove both the table record and all index
|
|
** entries that point to that record.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3GenerateRowDelete(
|
|
Parse *pParse, /* Parsing context */
|
|
Table *pTab, /* Table containing the row to be deleted */
|
|
int iCur, /* Cursor number for the table */
|
|
int iRowid, /* Memory cell that contains the rowid to delete */
|
|
int count /* Increment the row change counter */
|
|
){
|
|
int addr;
|
|
Vdbe *v;
|
|
|
|
v = pParse->pVdbe;
|
|
addr = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowid);
|
|
sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, 0);
|
|
sqlite3VdbeAddOp2(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0));
|
|
if( count ){
|
|
sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
|
|
}
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
}
|
|
|
|
/*
|
|
** This routine generates VDBE code that causes the deletion of all
|
|
** index entries associated with a single row of a single table.
|
|
**
|
|
** The VDBE must be in a particular state when this routine is called.
|
|
** These are the requirements:
|
|
**
|
|
** 1. A read/write cursor pointing to pTab, the table containing the row
|
|
** to be deleted, must be opened as cursor number "iCur".
|
|
**
|
|
** 2. Read/write cursors for all indices of pTab must be open as
|
|
** cursor number iCur+i for the i-th index.
|
|
**
|
|
** 3. The "iCur" cursor must be pointing to the row that is to be
|
|
** deleted.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(
|
|
Parse *pParse, /* Parsing and code generating context */
|
|
Table *pTab, /* Table containing the row to be deleted */
|
|
int iCur, /* Cursor number for the table */
|
|
int *aRegIdx /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */
|
|
){
|
|
int i;
|
|
Index *pIdx;
|
|
int r1;
|
|
|
|
r1 = sqlite3GetTempReg(pParse);
|
|
for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
|
|
if( aRegIdx!=0 && aRegIdx[i-1]==0 ) continue;
|
|
sqlite3GenerateIndexKey(pParse, pIdx, iCur, r1);
|
|
sqlite3VdbeAddOp2(pParse->pVdbe, OP_IdxDelete, iCur+i, r1);
|
|
}
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
}
|
|
|
|
/*
|
|
** Generate code that will assemble an index key and put it on the top
|
|
** of the tack. The key with be for index pIdx which is an index on pTab.
|
|
** iCur is the index of a cursor open on the pTab table and pointing to
|
|
** the entry that needs indexing.
|
|
**
|
|
** Return a register number which is the first in a block of
|
|
** registers that holds the elements of the index key. The
|
|
** block of registers has already been deallocated by the time
|
|
** this routine returns.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3GenerateIndexKey(
|
|
Parse *pParse, /* Parsing context */
|
|
Index *pIdx, /* The index for which to generate a key */
|
|
int iCur, /* Cursor number for the pIdx->pTable table */
|
|
int regOut /* Write the new index key to this register */
|
|
){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int j;
|
|
Table *pTab = pIdx->pTable;
|
|
int regBase;
|
|
int nCol;
|
|
|
|
nCol = pIdx->nColumn;
|
|
regBase = sqlite3GetTempRange(pParse, nCol+1);
|
|
sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regBase+nCol);
|
|
for(j=0; j<nCol; j++){
|
|
int idx = pIdx->aiColumn[j];
|
|
if( idx==pTab->iPKey ){
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, regBase+nCol, regBase+j);
|
|
}else{
|
|
sqlite3VdbeAddOp3(v, OP_Column, iCur, idx, regBase+j);
|
|
sqlite3ColumnDefault(v, pTab, idx);
|
|
}
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol+1, regOut);
|
|
sqlite3IndexAffinityStr(v, pIdx);
|
|
sqlite3ReleaseTempRange(pParse, regBase, nCol+1);
|
|
return regBase;
|
|
}
|
|
|
|
/************** End of delete.c **********************************************/
|
|
/************** Begin file func.c ********************************************/
|
|
/*
|
|
** 2002 February 23
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains the C functions that implement various SQL
|
|
** functions of SQLite.
|
|
**
|
|
** There is only one exported symbol in this file - the function
|
|
** sqliteRegisterBuildinFunctions() found at the bottom of the file.
|
|
** All other code has file scope.
|
|
**
|
|
** $Id: func.c,v 1.183 2008/01/21 16:22:46 drh Exp $
|
|
*/
|
|
|
|
|
|
/*
|
|
** Return the collating function associated with a function.
|
|
*/
|
|
static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
|
|
return context->pColl;
|
|
}
|
|
|
|
/*
|
|
** Implementation of the non-aggregate min() and max() functions
|
|
*/
|
|
static void minmaxFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int i;
|
|
int mask; /* 0 for min() or 0xffffffff for max() */
|
|
int iBest;
|
|
CollSeq *pColl;
|
|
|
|
if( argc==0 ) return;
|
|
mask = sqlite3_user_data(context)==0 ? 0 : -1;
|
|
pColl = sqlite3GetFuncCollSeq(context);
|
|
assert( pColl );
|
|
assert( mask==-1 || mask==0 );
|
|
iBest = 0;
|
|
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
for(i=1; i<argc; i++){
|
|
if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
|
|
if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
|
|
iBest = i;
|
|
}
|
|
}
|
|
sqlite3_result_value(context, argv[iBest]);
|
|
}
|
|
|
|
/*
|
|
** Return the type of the argument.
|
|
*/
|
|
static void typeofFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const char *z = 0;
|
|
switch( sqlite3_value_type(argv[0]) ){
|
|
case SQLITE_NULL: z = "null"; break;
|
|
case SQLITE_INTEGER: z = "integer"; break;
|
|
case SQLITE_TEXT: z = "text"; break;
|
|
case SQLITE_FLOAT: z = "real"; break;
|
|
case SQLITE_BLOB: z = "blob"; break;
|
|
}
|
|
sqlite3_result_text(context, z, -1, SQLITE_STATIC);
|
|
}
|
|
|
|
|
|
/*
|
|
** Implementation of the length() function
|
|
*/
|
|
static void lengthFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int len;
|
|
|
|
assert( argc==1 );
|
|
switch( sqlite3_value_type(argv[0]) ){
|
|
case SQLITE_BLOB:
|
|
case SQLITE_INTEGER:
|
|
case SQLITE_FLOAT: {
|
|
sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
|
|
break;
|
|
}
|
|
case SQLITE_TEXT: {
|
|
const unsigned char *z = sqlite3_value_text(argv[0]);
|
|
if( z==0 ) return;
|
|
len = 0;
|
|
while( *z ){
|
|
len++;
|
|
SQLITE_SKIP_UTF8(z);
|
|
}
|
|
sqlite3_result_int(context, len);
|
|
break;
|
|
}
|
|
default: {
|
|
sqlite3_result_null(context);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the abs() function
|
|
*/
|
|
static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
assert( argc==1 );
|
|
switch( sqlite3_value_type(argv[0]) ){
|
|
case SQLITE_INTEGER: {
|
|
i64 iVal = sqlite3_value_int64(argv[0]);
|
|
if( iVal<0 ){
|
|
if( (iVal<<1)==0 ){
|
|
sqlite3_result_error(context, "integer overflow", -1);
|
|
return;
|
|
}
|
|
iVal = -iVal;
|
|
}
|
|
sqlite3_result_int64(context, iVal);
|
|
break;
|
|
}
|
|
case SQLITE_NULL: {
|
|
sqlite3_result_null(context);
|
|
break;
|
|
}
|
|
default: {
|
|
double rVal = sqlite3_value_double(argv[0]);
|
|
if( rVal<0 ) rVal = -rVal;
|
|
sqlite3_result_double(context, rVal);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the substr() function.
|
|
**
|
|
** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
|
|
** p1 is 1-indexed. So substr(x,1,1) returns the first character
|
|
** of x. If x is text, then we actually count UTF-8 characters.
|
|
** If x is a blob, then we count bytes.
|
|
**
|
|
** If p1 is negative, then we begin abs(p1) from the end of x[].
|
|
*/
|
|
static void substrFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const unsigned char *z;
|
|
const unsigned char *z2;
|
|
int len;
|
|
int p0type;
|
|
i64 p1, p2;
|
|
|
|
assert( argc==3 || argc==2 );
|
|
p0type = sqlite3_value_type(argv[0]);
|
|
if( p0type==SQLITE_BLOB ){
|
|
len = sqlite3_value_bytes(argv[0]);
|
|
z = sqlite3_value_blob(argv[0]);
|
|
if( z==0 ) return;
|
|
assert( len==sqlite3_value_bytes(argv[0]) );
|
|
}else{
|
|
z = sqlite3_value_text(argv[0]);
|
|
if( z==0 ) return;
|
|
len = 0;
|
|
for(z2=z; *z2; len++){
|
|
SQLITE_SKIP_UTF8(z2);
|
|
}
|
|
}
|
|
p1 = sqlite3_value_int(argv[1]);
|
|
if( argc==3 ){
|
|
p2 = sqlite3_value_int(argv[2]);
|
|
}else{
|
|
p2 = SQLITE_MAX_LENGTH;
|
|
}
|
|
if( p1<0 ){
|
|
p1 += len;
|
|
if( p1<0 ){
|
|
p2 += p1;
|
|
p1 = 0;
|
|
}
|
|
}else if( p1>0 ){
|
|
p1--;
|
|
}
|
|
if( p1+p2>len ){
|
|
p2 = len-p1;
|
|
}
|
|
if( p0type!=SQLITE_BLOB ){
|
|
while( *z && p1 ){
|
|
SQLITE_SKIP_UTF8(z);
|
|
p1--;
|
|
}
|
|
for(z2=z; *z2 && p2; p2--){
|
|
SQLITE_SKIP_UTF8(z2);
|
|
}
|
|
sqlite3_result_text(context, (char*)z, z2-z, SQLITE_TRANSIENT);
|
|
}else{
|
|
if( p2<0 ) p2 = 0;
|
|
sqlite3_result_blob(context, (char*)&z[p1], p2, SQLITE_TRANSIENT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the round() function
|
|
*/
|
|
static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
int n = 0;
|
|
double r;
|
|
char zBuf[500]; /* larger than the %f representation of the largest double */
|
|
assert( argc==1 || argc==2 );
|
|
if( argc==2 ){
|
|
if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
|
|
n = sqlite3_value_int(argv[1]);
|
|
if( n>30 ) n = 30;
|
|
if( n<0 ) n = 0;
|
|
}
|
|
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
r = sqlite3_value_double(argv[0]);
|
|
sqlite3_snprintf(sizeof(zBuf),zBuf,"%.*f",n,r);
|
|
sqlite3AtoF(zBuf, &r);
|
|
sqlite3_result_double(context, r);
|
|
}
|
|
|
|
/*
|
|
** Allocate nByte bytes of space using sqlite3_malloc(). If the
|
|
** allocation fails, call sqlite3_result_error_nomem() to notify
|
|
** the database handle that malloc() has failed.
|
|
*/
|
|
static void *contextMalloc(sqlite3_context *context, int nByte){
|
|
char *z = sqlite3_malloc(nByte);
|
|
if( !z && nByte>0 ){
|
|
sqlite3_result_error_nomem(context);
|
|
}
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
** Implementation of the upper() and lower() SQL functions.
|
|
*/
|
|
static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
char *z1;
|
|
const char *z2;
|
|
int i, n;
|
|
if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
|
|
z2 = (char*)sqlite3_value_text(argv[0]);
|
|
n = sqlite3_value_bytes(argv[0]);
|
|
/* Verify that the call to _bytes() does not invalidate the _text() pointer */
|
|
assert( z2==(char*)sqlite3_value_text(argv[0]) );
|
|
if( z2 ){
|
|
z1 = contextMalloc(context, n+1);
|
|
if( z1 ){
|
|
memcpy(z1, z2, n+1);
|
|
for(i=0; z1[i]; i++){
|
|
z1[i] = toupper(z1[i]);
|
|
}
|
|
sqlite3_result_text(context, z1, -1, sqlite3_free);
|
|
}
|
|
}
|
|
}
|
|
static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
char *z1;
|
|
const char *z2;
|
|
int i, n;
|
|
if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
|
|
z2 = (char*)sqlite3_value_text(argv[0]);
|
|
n = sqlite3_value_bytes(argv[0]);
|
|
/* Verify that the call to _bytes() does not invalidate the _text() pointer */
|
|
assert( z2==(char*)sqlite3_value_text(argv[0]) );
|
|
if( z2 ){
|
|
z1 = contextMalloc(context, n+1);
|
|
if( z1 ){
|
|
memcpy(z1, z2, n+1);
|
|
for(i=0; z1[i]; i++){
|
|
z1[i] = tolower(z1[i]);
|
|
}
|
|
sqlite3_result_text(context, z1, -1, sqlite3_free);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the IFNULL(), NVL(), and COALESCE() functions.
|
|
** All three do the same thing. They return the first non-NULL
|
|
** argument.
|
|
*/
|
|
static void ifnullFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int i;
|
|
for(i=0; i<argc; i++){
|
|
if( SQLITE_NULL!=sqlite3_value_type(argv[i]) ){
|
|
sqlite3_result_value(context, argv[i]);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of random(). Return a random integer.
|
|
*/
|
|
static void randomFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
sqlite_int64 r;
|
|
sqlite3Randomness(sizeof(r), &r);
|
|
if( (r<<1)==0 ) r = 0; /* Prevent 0x8000.... as the result so that we */
|
|
/* can always do abs() of the result */
|
|
sqlite3_result_int64(context, r);
|
|
}
|
|
|
|
/*
|
|
** Implementation of randomblob(N). Return a random blob
|
|
** that is N bytes long.
|
|
*/
|
|
static void randomBlob(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int n;
|
|
unsigned char *p;
|
|
assert( argc==1 );
|
|
n = sqlite3_value_int(argv[0]);
|
|
if( n<1 ){
|
|
n = 1;
|
|
}
|
|
if( n>SQLITE_MAX_LENGTH ){
|
|
sqlite3_result_error_toobig(context);
|
|
return;
|
|
}
|
|
p = contextMalloc(context, n);
|
|
if( p ){
|
|
sqlite3Randomness(n, p);
|
|
sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the last_insert_rowid() SQL function. The return
|
|
** value is the same as the sqlite3_last_insert_rowid() API function.
|
|
*/
|
|
static void last_insert_rowid(
|
|
sqlite3_context *context,
|
|
int arg,
|
|
sqlite3_value **argv
|
|
){
|
|
sqlite3 *db = sqlite3_user_data(context);
|
|
sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
|
|
}
|
|
|
|
/*
|
|
** Implementation of the changes() SQL function. The return value is the
|
|
** same as the sqlite3_changes() API function.
|
|
*/
|
|
static void changes(
|
|
sqlite3_context *context,
|
|
int arg,
|
|
sqlite3_value **argv
|
|
){
|
|
sqlite3 *db = sqlite3_user_data(context);
|
|
sqlite3_result_int(context, sqlite3_changes(db));
|
|
}
|
|
|
|
/*
|
|
** Implementation of the total_changes() SQL function. The return value is
|
|
** the same as the sqlite3_total_changes() API function.
|
|
*/
|
|
static void total_changes(
|
|
sqlite3_context *context,
|
|
int arg,
|
|
sqlite3_value **argv
|
|
){
|
|
sqlite3 *db = sqlite3_user_data(context);
|
|
sqlite3_result_int(context, sqlite3_total_changes(db));
|
|
}
|
|
|
|
/*
|
|
** A structure defining how to do GLOB-style comparisons.
|
|
*/
|
|
struct compareInfo {
|
|
u8 matchAll;
|
|
u8 matchOne;
|
|
u8 matchSet;
|
|
u8 noCase;
|
|
};
|
|
|
|
/*
|
|
** For LIKE and GLOB matching on EBCDIC machines, assume that every
|
|
** character is exactly one byte in size. Also, all characters are
|
|
** able to participate in upper-case-to-lower-case mappings in EBCDIC
|
|
** whereas only characters less than 0x80 do in ASCII.
|
|
*/
|
|
#if defined(SQLITE_EBCDIC)
|
|
# define sqlite3Utf8Read(A,B,C) (*(A++))
|
|
# define GlogUpperToLower(A) A = sqlite3UpperToLower[A]
|
|
#else
|
|
# define GlogUpperToLower(A) if( A<0x80 ){ A = sqlite3UpperToLower[A]; }
|
|
#endif
|
|
|
|
static const struct compareInfo globInfo = { '*', '?', '[', 0 };
|
|
/* The correct SQL-92 behavior is for the LIKE operator to ignore
|
|
** case. Thus 'a' LIKE 'A' would be true. */
|
|
static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 };
|
|
/* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
|
|
** is case sensitive causing 'a' LIKE 'A' to be false */
|
|
static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 };
|
|
|
|
/*
|
|
** Compare two UTF-8 strings for equality where the first string can
|
|
** potentially be a "glob" expression. Return true (1) if they
|
|
** are the same and false (0) if they are different.
|
|
**
|
|
** Globbing rules:
|
|
**
|
|
** '*' Matches any sequence of zero or more characters.
|
|
**
|
|
** '?' Matches exactly one character.
|
|
**
|
|
** [...] Matches one character from the enclosed list of
|
|
** characters.
|
|
**
|
|
** [^...] Matches one character not in the enclosed list.
|
|
**
|
|
** With the [...] and [^...] matching, a ']' character can be included
|
|
** in the list by making it the first character after '[' or '^'. A
|
|
** range of characters can be specified using '-'. Example:
|
|
** "[a-z]" matches any single lower-case letter. To match a '-', make
|
|
** it the last character in the list.
|
|
**
|
|
** This routine is usually quick, but can be N**2 in the worst case.
|
|
**
|
|
** Hints: to match '*' or '?', put them in "[]". Like this:
|
|
**
|
|
** abc[*]xyz Matches "abc*xyz" only
|
|
*/
|
|
static int patternCompare(
|
|
const u8 *zPattern, /* The glob pattern */
|
|
const u8 *zString, /* The string to compare against the glob */
|
|
const struct compareInfo *pInfo, /* Information about how to do the compare */
|
|
const int esc /* The escape character */
|
|
){
|
|
int c, c2;
|
|
int invert;
|
|
int seen;
|
|
u8 matchOne = pInfo->matchOne;
|
|
u8 matchAll = pInfo->matchAll;
|
|
u8 matchSet = pInfo->matchSet;
|
|
u8 noCase = pInfo->noCase;
|
|
int prevEscape = 0; /* True if the previous character was 'escape' */
|
|
|
|
while( (c = sqlite3Utf8Read(zPattern,0,&zPattern))!=0 ){
|
|
if( !prevEscape && c==matchAll ){
|
|
while( (c=sqlite3Utf8Read(zPattern,0,&zPattern)) == matchAll
|
|
|| c == matchOne ){
|
|
if( c==matchOne && sqlite3Utf8Read(zString, 0, &zString)==0 ){
|
|
return 0;
|
|
}
|
|
}
|
|
if( c==0 ){
|
|
return 1;
|
|
}else if( c==esc ){
|
|
c = sqlite3Utf8Read(zPattern, 0, &zPattern);
|
|
if( c==0 ){
|
|
return 0;
|
|
}
|
|
}else if( c==matchSet ){
|
|
assert( esc==0 ); /* This is GLOB, not LIKE */
|
|
assert( matchSet<0x80 ); /* '[' is a single-byte character */
|
|
while( *zString && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){
|
|
SQLITE_SKIP_UTF8(zString);
|
|
}
|
|
return *zString!=0;
|
|
}
|
|
while( (c2 = sqlite3Utf8Read(zString,0,&zString))!=0 ){
|
|
if( noCase ){
|
|
GlogUpperToLower(c2);
|
|
GlogUpperToLower(c);
|
|
while( c2 != 0 && c2 != c ){
|
|
c2 = sqlite3Utf8Read(zString, 0, &zString);
|
|
GlogUpperToLower(c2);
|
|
}
|
|
}else{
|
|
while( c2 != 0 && c2 != c ){
|
|
c2 = sqlite3Utf8Read(zString, 0, &zString);
|
|
}
|
|
}
|
|
if( c2==0 ) return 0;
|
|
if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
|
|
}
|
|
return 0;
|
|
}else if( !prevEscape && c==matchOne ){
|
|
if( sqlite3Utf8Read(zString, 0, &zString)==0 ){
|
|
return 0;
|
|
}
|
|
}else if( c==matchSet ){
|
|
int prior_c = 0;
|
|
assert( esc==0 ); /* This only occurs for GLOB, not LIKE */
|
|
seen = 0;
|
|
invert = 0;
|
|
c = sqlite3Utf8Read(zString, 0, &zString);
|
|
if( c==0 ) return 0;
|
|
c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
|
|
if( c2=='^' ){
|
|
invert = 1;
|
|
c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
|
|
}
|
|
if( c2==']' ){
|
|
if( c==']' ) seen = 1;
|
|
c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
|
|
}
|
|
while( c2 && c2!=']' ){
|
|
if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
|
|
c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
|
|
if( c>=prior_c && c<=c2 ) seen = 1;
|
|
prior_c = 0;
|
|
}else{
|
|
if( c==c2 ){
|
|
seen = 1;
|
|
}
|
|
prior_c = c2;
|
|
}
|
|
c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
|
|
}
|
|
if( c2==0 || (seen ^ invert)==0 ){
|
|
return 0;
|
|
}
|
|
}else if( esc==c && !prevEscape ){
|
|
prevEscape = 1;
|
|
}else{
|
|
c2 = sqlite3Utf8Read(zString, 0, &zString);
|
|
if( noCase ){
|
|
GlogUpperToLower(c);
|
|
GlogUpperToLower(c2);
|
|
}
|
|
if( c!=c2 ){
|
|
return 0;
|
|
}
|
|
prevEscape = 0;
|
|
}
|
|
}
|
|
return *zString==0;
|
|
}
|
|
|
|
/*
|
|
** Count the number of times that the LIKE operator (or GLOB which is
|
|
** just a variation of LIKE) gets called. This is used for testing
|
|
** only.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
SQLITE_API int sqlite3_like_count = 0;
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Implementation of the like() SQL function. This function implements
|
|
** the build-in LIKE operator. The first argument to the function is the
|
|
** pattern and the second argument is the string. So, the SQL statements:
|
|
**
|
|
** A LIKE B
|
|
**
|
|
** is implemented as like(B,A).
|
|
**
|
|
** This same function (with a different compareInfo structure) computes
|
|
** the GLOB operator.
|
|
*/
|
|
static void likeFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const unsigned char *zA, *zB;
|
|
int escape = 0;
|
|
|
|
zB = sqlite3_value_text(argv[0]);
|
|
zA = sqlite3_value_text(argv[1]);
|
|
|
|
/* Limit the length of the LIKE or GLOB pattern to avoid problems
|
|
** of deep recursion and N*N behavior in patternCompare().
|
|
*/
|
|
if( sqlite3_value_bytes(argv[0])>SQLITE_MAX_LIKE_PATTERN_LENGTH ){
|
|
sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
|
|
return;
|
|
}
|
|
assert( zB==sqlite3_value_text(argv[0]) ); /* Encoding did not change */
|
|
|
|
if( argc==3 ){
|
|
/* The escape character string must consist of a single UTF-8 character.
|
|
** Otherwise, return an error.
|
|
*/
|
|
const unsigned char *zEsc = sqlite3_value_text(argv[2]);
|
|
if( zEsc==0 ) return;
|
|
if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
|
|
sqlite3_result_error(context,
|
|
"ESCAPE expression must be a single character", -1);
|
|
return;
|
|
}
|
|
escape = sqlite3Utf8Read(zEsc, 0, &zEsc);
|
|
}
|
|
if( zA && zB ){
|
|
struct compareInfo *pInfo = sqlite3_user_data(context);
|
|
#ifdef SQLITE_TEST
|
|
sqlite3_like_count++;
|
|
#endif
|
|
|
|
sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the NULLIF(x,y) function. The result is the first
|
|
** argument if the arguments are different. The result is NULL if the
|
|
** arguments are equal to each other.
|
|
*/
|
|
static void nullifFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
CollSeq *pColl = sqlite3GetFuncCollSeq(context);
|
|
if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
|
|
sqlite3_result_value(context, argv[0]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the VERSION(*) function. The result is the version
|
|
** of the SQLite library that is running.
|
|
*/
|
|
static void versionFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
sqlite3_result_text(context, sqlite3_version, -1, SQLITE_STATIC);
|
|
}
|
|
|
|
/* Array for converting from half-bytes (nybbles) into ASCII hex
|
|
** digits. */
|
|
static const char hexdigits[] = {
|
|
'0', '1', '2', '3', '4', '5', '6', '7',
|
|
'8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
|
|
};
|
|
|
|
/*
|
|
** EXPERIMENTAL - This is not an official function. The interface may
|
|
** change. This function may disappear. Do not write code that depends
|
|
** on this function.
|
|
**
|
|
** Implementation of the QUOTE() function. This function takes a single
|
|
** argument. If the argument is numeric, the return value is the same as
|
|
** the argument. If the argument is NULL, the return value is the string
|
|
** "NULL". Otherwise, the argument is enclosed in single quotes with
|
|
** single-quote escapes.
|
|
*/
|
|
static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
if( argc<1 ) return;
|
|
switch( sqlite3_value_type(argv[0]) ){
|
|
case SQLITE_NULL: {
|
|
sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
|
|
break;
|
|
}
|
|
case SQLITE_INTEGER:
|
|
case SQLITE_FLOAT: {
|
|
sqlite3_result_value(context, argv[0]);
|
|
break;
|
|
}
|
|
case SQLITE_BLOB: {
|
|
char *zText = 0;
|
|
char const *zBlob = sqlite3_value_blob(argv[0]);
|
|
int nBlob = sqlite3_value_bytes(argv[0]);
|
|
assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
|
|
|
|
if( 2*nBlob+4>SQLITE_MAX_LENGTH ){
|
|
sqlite3_result_error_toobig(context);
|
|
return;
|
|
}
|
|
zText = (char *)contextMalloc(context, (2*nBlob)+4);
|
|
if( zText ){
|
|
int i;
|
|
for(i=0; i<nBlob; i++){
|
|
zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
|
|
zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
|
|
}
|
|
zText[(nBlob*2)+2] = '\'';
|
|
zText[(nBlob*2)+3] = '\0';
|
|
zText[0] = 'X';
|
|
zText[1] = '\'';
|
|
sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
|
|
sqlite3_free(zText);
|
|
}
|
|
break;
|
|
}
|
|
case SQLITE_TEXT: {
|
|
int i,j;
|
|
u64 n;
|
|
const unsigned char *zArg = sqlite3_value_text(argv[0]);
|
|
char *z;
|
|
|
|
if( zArg==0 ) return;
|
|
for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
|
|
if( i+n+3>SQLITE_MAX_LENGTH ){
|
|
sqlite3_result_error_toobig(context);
|
|
return;
|
|
}
|
|
z = contextMalloc(context, i+n+3);
|
|
if( z ){
|
|
z[0] = '\'';
|
|
for(i=0, j=1; zArg[i]; i++){
|
|
z[j++] = zArg[i];
|
|
if( zArg[i]=='\'' ){
|
|
z[j++] = '\'';
|
|
}
|
|
}
|
|
z[j++] = '\'';
|
|
z[j] = 0;
|
|
sqlite3_result_text(context, z, j, sqlite3_free);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The hex() function. Interpret the argument as a blob. Return
|
|
** a hexadecimal rendering as text.
|
|
*/
|
|
static void hexFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int i, n;
|
|
const unsigned char *pBlob;
|
|
char *zHex, *z;
|
|
assert( argc==1 );
|
|
pBlob = sqlite3_value_blob(argv[0]);
|
|
n = sqlite3_value_bytes(argv[0]);
|
|
if( n*2+1>SQLITE_MAX_LENGTH ){
|
|
sqlite3_result_error_toobig(context);
|
|
return;
|
|
}
|
|
assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
|
|
z = zHex = contextMalloc(context, n*2 + 1);
|
|
if( zHex ){
|
|
for(i=0; i<n; i++, pBlob++){
|
|
unsigned char c = *pBlob;
|
|
*(z++) = hexdigits[(c>>4)&0xf];
|
|
*(z++) = hexdigits[c&0xf];
|
|
}
|
|
*z = 0;
|
|
sqlite3_result_text(context, zHex, n*2, sqlite3_free);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The zeroblob(N) function returns a zero-filled blob of size N bytes.
|
|
*/
|
|
static void zeroblobFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
i64 n;
|
|
assert( argc==1 );
|
|
n = sqlite3_value_int64(argv[0]);
|
|
if( n>SQLITE_MAX_LENGTH ){
|
|
sqlite3_result_error_toobig(context);
|
|
}else{
|
|
sqlite3_result_zeroblob(context, n);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The replace() function. Three arguments are all strings: call
|
|
** them A, B, and C. The result is also a string which is derived
|
|
** from A by replacing every occurance of B with C. The match
|
|
** must be exact. Collating sequences are not used.
|
|
*/
|
|
static void replaceFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const unsigned char *zStr; /* The input string A */
|
|
const unsigned char *zPattern; /* The pattern string B */
|
|
const unsigned char *zRep; /* The replacement string C */
|
|
unsigned char *zOut; /* The output */
|
|
int nStr; /* Size of zStr */
|
|
int nPattern; /* Size of zPattern */
|
|
int nRep; /* Size of zRep */
|
|
i64 nOut; /* Maximum size of zOut */
|
|
int loopLimit; /* Last zStr[] that might match zPattern[] */
|
|
int i, j; /* Loop counters */
|
|
|
|
assert( argc==3 );
|
|
zStr = sqlite3_value_text(argv[0]);
|
|
if( zStr==0 ) return;
|
|
nStr = sqlite3_value_bytes(argv[0]);
|
|
assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */
|
|
zPattern = sqlite3_value_text(argv[1]);
|
|
if( zPattern==0 || zPattern[0]==0 ) return;
|
|
nPattern = sqlite3_value_bytes(argv[1]);
|
|
assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */
|
|
zRep = sqlite3_value_text(argv[2]);
|
|
if( zRep==0 ) return;
|
|
nRep = sqlite3_value_bytes(argv[2]);
|
|
assert( zRep==sqlite3_value_text(argv[2]) );
|
|
nOut = nStr + 1;
|
|
assert( nOut<SQLITE_MAX_LENGTH );
|
|
zOut = contextMalloc(context, (int)nOut);
|
|
if( zOut==0 ){
|
|
return;
|
|
}
|
|
loopLimit = nStr - nPattern;
|
|
for(i=j=0; i<=loopLimit; i++){
|
|
if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
|
|
zOut[j++] = zStr[i];
|
|
}else{
|
|
u8 *zOld;
|
|
nOut += nRep - nPattern;
|
|
if( nOut>=SQLITE_MAX_LENGTH ){
|
|
sqlite3_result_error_toobig(context);
|
|
sqlite3_free(zOut);
|
|
return;
|
|
}
|
|
zOld = zOut;
|
|
zOut = sqlite3_realloc(zOut, (int)nOut);
|
|
if( zOut==0 ){
|
|
sqlite3_result_error_nomem(context);
|
|
sqlite3_free(zOld);
|
|
return;
|
|
}
|
|
memcpy(&zOut[j], zRep, nRep);
|
|
j += nRep;
|
|
i += nPattern-1;
|
|
}
|
|
}
|
|
assert( j+nStr-i+1==nOut );
|
|
memcpy(&zOut[j], &zStr[i], nStr-i);
|
|
j += nStr - i;
|
|
assert( j<=nOut );
|
|
zOut[j] = 0;
|
|
sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
|
|
}
|
|
|
|
/*
|
|
** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
|
|
** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
|
|
*/
|
|
static void trimFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const unsigned char *zIn; /* Input string */
|
|
const unsigned char *zCharSet; /* Set of characters to trim */
|
|
int nIn; /* Number of bytes in input */
|
|
int flags; /* 1: trimleft 2: trimright 3: trim */
|
|
int i; /* Loop counter */
|
|
unsigned char *aLen; /* Length of each character in zCharSet */
|
|
unsigned char **azChar; /* Individual characters in zCharSet */
|
|
int nChar; /* Number of characters in zCharSet */
|
|
|
|
if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
|
|
return;
|
|
}
|
|
zIn = sqlite3_value_text(argv[0]);
|
|
if( zIn==0 ) return;
|
|
nIn = sqlite3_value_bytes(argv[0]);
|
|
assert( zIn==sqlite3_value_text(argv[0]) );
|
|
if( argc==1 ){
|
|
static const unsigned char lenOne[] = { 1 };
|
|
static const unsigned char *azOne[] = { (u8*)" " };
|
|
nChar = 1;
|
|
aLen = (u8*)lenOne;
|
|
azChar = (unsigned char **)azOne;
|
|
zCharSet = 0;
|
|
}else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
|
|
return;
|
|
}else{
|
|
const unsigned char *z;
|
|
for(z=zCharSet, nChar=0; *z; nChar++){
|
|
SQLITE_SKIP_UTF8(z);
|
|
}
|
|
if( nChar>0 ){
|
|
azChar = contextMalloc(context, nChar*(sizeof(char*)+1));
|
|
if( azChar==0 ){
|
|
return;
|
|
}
|
|
aLen = (unsigned char*)&azChar[nChar];
|
|
for(z=zCharSet, nChar=0; *z; nChar++){
|
|
azChar[nChar] = (unsigned char *)z;
|
|
SQLITE_SKIP_UTF8(z);
|
|
aLen[nChar] = z - azChar[nChar];
|
|
}
|
|
}
|
|
}
|
|
if( nChar>0 ){
|
|
flags = (int)sqlite3_user_data(context);
|
|
if( flags & 1 ){
|
|
while( nIn>0 ){
|
|
int len;
|
|
for(i=0; i<nChar; i++){
|
|
len = aLen[i];
|
|
if( memcmp(zIn, azChar[i], len)==0 ) break;
|
|
}
|
|
if( i>=nChar ) break;
|
|
zIn += len;
|
|
nIn -= len;
|
|
}
|
|
}
|
|
if( flags & 2 ){
|
|
while( nIn>0 ){
|
|
int len;
|
|
for(i=0; i<nChar; i++){
|
|
len = aLen[i];
|
|
if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
|
|
}
|
|
if( i>=nChar ) break;
|
|
nIn -= len;
|
|
}
|
|
}
|
|
if( zCharSet ){
|
|
sqlite3_free(azChar);
|
|
}
|
|
}
|
|
sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
|
|
}
|
|
|
|
#ifdef SQLITE_SOUNDEX
|
|
/*
|
|
** Compute the soundex encoding of a word.
|
|
*/
|
|
static void soundexFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
char zResult[8];
|
|
const u8 *zIn;
|
|
int i, j;
|
|
static const unsigned char iCode[] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
|
|
1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
|
|
0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
|
|
1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
|
|
};
|
|
assert( argc==1 );
|
|
zIn = (u8*)sqlite3_value_text(argv[0]);
|
|
if( zIn==0 ) zIn = (u8*)"";
|
|
for(i=0; zIn[i] && !isalpha(zIn[i]); i++){}
|
|
if( zIn[i] ){
|
|
u8 prevcode = iCode[zIn[i]&0x7f];
|
|
zResult[0] = toupper(zIn[i]);
|
|
for(j=1; j<4 && zIn[i]; i++){
|
|
int code = iCode[zIn[i]&0x7f];
|
|
if( code>0 ){
|
|
if( code!=prevcode ){
|
|
prevcode = code;
|
|
zResult[j++] = code + '0';
|
|
}
|
|
}else{
|
|
prevcode = 0;
|
|
}
|
|
}
|
|
while( j<4 ){
|
|
zResult[j++] = '0';
|
|
}
|
|
zResult[j] = 0;
|
|
sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
|
|
}else{
|
|
sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
|
/*
|
|
** A function that loads a shared-library extension then returns NULL.
|
|
*/
|
|
static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
const char *zFile = (const char *)sqlite3_value_text(argv[0]);
|
|
const char *zProc;
|
|
sqlite3 *db = sqlite3_user_data(context);
|
|
char *zErrMsg = 0;
|
|
|
|
if( argc==2 ){
|
|
zProc = (const char *)sqlite3_value_text(argv[1]);
|
|
}else{
|
|
zProc = 0;
|
|
}
|
|
if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
|
|
sqlite3_result_error(context, zErrMsg, -1);
|
|
sqlite3_free(zErrMsg);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef SQLITE_TEST
|
|
/*
|
|
** This function generates a string of random characters. Used for
|
|
** generating test data.
|
|
*/
|
|
static void randStr(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
static const unsigned char zSrc[] =
|
|
"abcdefghijklmnopqrstuvwxyz"
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
"0123456789"
|
|
".-!,:*^+=_|?/<> ";
|
|
int iMin, iMax, n, r, i;
|
|
unsigned char zBuf[1000];
|
|
|
|
/* It used to be possible to call randstr() with any number of arguments,
|
|
** but now it is registered with SQLite as requiring exactly 2.
|
|
*/
|
|
assert(argc==2);
|
|
|
|
iMin = sqlite3_value_int(argv[0]);
|
|
if( iMin<0 ) iMin = 0;
|
|
if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1;
|
|
iMax = sqlite3_value_int(argv[1]);
|
|
if( iMax<iMin ) iMax = iMin;
|
|
if( iMax>=sizeof(zBuf) ) iMax = sizeof(zBuf)-1;
|
|
n = iMin;
|
|
if( iMax>iMin ){
|
|
sqlite3Randomness(sizeof(r), &r);
|
|
r &= 0x7fffffff;
|
|
n += r%(iMax + 1 - iMin);
|
|
}
|
|
assert( n<sizeof(zBuf) );
|
|
sqlite3Randomness(n, zBuf);
|
|
for(i=0; i<n; i++){
|
|
zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];
|
|
}
|
|
zBuf[n] = 0;
|
|
sqlite3_result_text(context, (char*)zBuf, n, SQLITE_TRANSIENT);
|
|
}
|
|
#endif /* SQLITE_TEST */
|
|
|
|
#ifdef SQLITE_TEST
|
|
/*
|
|
** The following two SQL functions are used to test returning a text
|
|
** result with a destructor. Function 'test_destructor' takes one argument
|
|
** and returns the same argument interpreted as TEXT. A destructor is
|
|
** passed with the sqlite3_result_text() call.
|
|
**
|
|
** SQL function 'test_destructor_count' returns the number of outstanding
|
|
** allocations made by 'test_destructor';
|
|
**
|
|
** WARNING: Not threadsafe.
|
|
*/
|
|
static int test_destructor_count_var = 0;
|
|
static void destructor(void *p){
|
|
char *zVal = (char *)p;
|
|
assert(zVal);
|
|
zVal--;
|
|
sqlite3_free(zVal);
|
|
test_destructor_count_var--;
|
|
}
|
|
static void test_destructor(
|
|
sqlite3_context *pCtx,
|
|
int nArg,
|
|
sqlite3_value **argv
|
|
){
|
|
char *zVal;
|
|
int len;
|
|
sqlite3 *db = sqlite3_user_data(pCtx);
|
|
|
|
test_destructor_count_var++;
|
|
assert( nArg==1 );
|
|
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
len = sqlite3ValueBytes(argv[0], ENC(db));
|
|
zVal = contextMalloc(pCtx, len+3);
|
|
if( !zVal ){
|
|
return;
|
|
}
|
|
zVal[len+1] = 0;
|
|
zVal[len+2] = 0;
|
|
zVal++;
|
|
memcpy(zVal, sqlite3ValueText(argv[0], ENC(db)), len);
|
|
if( ENC(db)==SQLITE_UTF8 ){
|
|
sqlite3_result_text(pCtx, zVal, -1, destructor);
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
}else if( ENC(db)==SQLITE_UTF16LE ){
|
|
sqlite3_result_text16le(pCtx, zVal, -1, destructor);
|
|
}else{
|
|
sqlite3_result_text16be(pCtx, zVal, -1, destructor);
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
}
|
|
}
|
|
static void test_destructor_count(
|
|
sqlite3_context *pCtx,
|
|
int nArg,
|
|
sqlite3_value **argv
|
|
){
|
|
sqlite3_result_int(pCtx, test_destructor_count_var);
|
|
}
|
|
#endif /* SQLITE_TEST */
|
|
|
|
#ifdef SQLITE_TEST
|
|
/*
|
|
** Routines for testing the sqlite3_get_auxdata() and sqlite3_set_auxdata()
|
|
** interface.
|
|
**
|
|
** The test_auxdata() SQL function attempts to register each of its arguments
|
|
** as auxiliary data. If there are no prior registrations of aux data for
|
|
** that argument (meaning the argument is not a constant or this is its first
|
|
** call) then the result for that argument is 0. If there is a prior
|
|
** registration, the result for that argument is 1. The overall result
|
|
** is the individual argument results separated by spaces.
|
|
*/
|
|
static void free_test_auxdata(void *p) {sqlite3_free(p);}
|
|
static void test_auxdata(
|
|
sqlite3_context *pCtx,
|
|
int nArg,
|
|
sqlite3_value **argv
|
|
){
|
|
int i;
|
|
char *zRet = contextMalloc(pCtx, nArg*2);
|
|
if( !zRet ) return;
|
|
memset(zRet, 0, nArg*2);
|
|
for(i=0; i<nArg; i++){
|
|
char const *z = (char*)sqlite3_value_text(argv[i]);
|
|
if( z ){
|
|
char *zAux = sqlite3_get_auxdata(pCtx, i);
|
|
if( zAux ){
|
|
zRet[i*2] = '1';
|
|
assert( strcmp(zAux,z)==0 );
|
|
}else {
|
|
zRet[i*2] = '0';
|
|
}
|
|
|
|
zAux = contextMalloc(pCtx, strlen(z)+1);
|
|
if( zAux ){
|
|
strcpy(zAux, z);
|
|
sqlite3_set_auxdata(pCtx, i, zAux, free_test_auxdata);
|
|
}
|
|
zRet[i*2+1] = ' ';
|
|
}
|
|
}
|
|
sqlite3_result_text(pCtx, zRet, 2*nArg-1, free_test_auxdata);
|
|
}
|
|
#endif /* SQLITE_TEST */
|
|
|
|
#ifdef SQLITE_TEST
|
|
/*
|
|
** A function to test error reporting from user functions. This function
|
|
** returns a copy of its first argument as an error.
|
|
*/
|
|
static void test_error(
|
|
sqlite3_context *pCtx,
|
|
int nArg,
|
|
sqlite3_value **argv
|
|
){
|
|
sqlite3_result_error(pCtx, (char*)sqlite3_value_text(argv[0]), 0);
|
|
}
|
|
#endif /* SQLITE_TEST */
|
|
|
|
/*
|
|
** An instance of the following structure holds the context of a
|
|
** sum() or avg() aggregate computation.
|
|
*/
|
|
typedef struct SumCtx SumCtx;
|
|
struct SumCtx {
|
|
double rSum; /* Floating point sum */
|
|
i64 iSum; /* Integer sum */
|
|
i64 cnt; /* Number of elements summed */
|
|
u8 overflow; /* True if integer overflow seen */
|
|
u8 approx; /* True if non-integer value was input to the sum */
|
|
};
|
|
|
|
/*
|
|
** Routines used to compute the sum, average, and total.
|
|
**
|
|
** The SUM() function follows the (broken) SQL standard which means
|
|
** that it returns NULL if it sums over no inputs. TOTAL returns
|
|
** 0.0 in that case. In addition, TOTAL always returns a float where
|
|
** SUM might return an integer if it never encounters a floating point
|
|
** value. TOTAL never fails, but SUM might through an exception if
|
|
** it overflows an integer.
|
|
*/
|
|
static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
SumCtx *p;
|
|
int type;
|
|
assert( argc==1 );
|
|
p = sqlite3_aggregate_context(context, sizeof(*p));
|
|
type = sqlite3_value_numeric_type(argv[0]);
|
|
if( p && type!=SQLITE_NULL ){
|
|
p->cnt++;
|
|
if( type==SQLITE_INTEGER ){
|
|
i64 v = sqlite3_value_int64(argv[0]);
|
|
p->rSum += v;
|
|
if( (p->approx|p->overflow)==0 ){
|
|
i64 iNewSum = p->iSum + v;
|
|
int s1 = p->iSum >> (sizeof(i64)*8-1);
|
|
int s2 = v >> (sizeof(i64)*8-1);
|
|
int s3 = iNewSum >> (sizeof(i64)*8-1);
|
|
p->overflow = (s1&s2&~s3) | (~s1&~s2&s3);
|
|
p->iSum = iNewSum;
|
|
}
|
|
}else{
|
|
p->rSum += sqlite3_value_double(argv[0]);
|
|
p->approx = 1;
|
|
}
|
|
}
|
|
}
|
|
static void sumFinalize(sqlite3_context *context){
|
|
SumCtx *p;
|
|
p = sqlite3_aggregate_context(context, 0);
|
|
if( p && p->cnt>0 ){
|
|
if( p->overflow ){
|
|
sqlite3_result_error(context,"integer overflow",-1);
|
|
}else if( p->approx ){
|
|
sqlite3_result_double(context, p->rSum);
|
|
}else{
|
|
sqlite3_result_int64(context, p->iSum);
|
|
}
|
|
}
|
|
}
|
|
static void avgFinalize(sqlite3_context *context){
|
|
SumCtx *p;
|
|
p = sqlite3_aggregate_context(context, 0);
|
|
if( p && p->cnt>0 ){
|
|
sqlite3_result_double(context, p->rSum/(double)p->cnt);
|
|
}
|
|
}
|
|
static void totalFinalize(sqlite3_context *context){
|
|
SumCtx *p;
|
|
p = sqlite3_aggregate_context(context, 0);
|
|
sqlite3_result_double(context, p ? p->rSum : 0.0);
|
|
}
|
|
|
|
/*
|
|
** The following structure keeps track of state information for the
|
|
** count() aggregate function.
|
|
*/
|
|
typedef struct CountCtx CountCtx;
|
|
struct CountCtx {
|
|
i64 n;
|
|
};
|
|
|
|
/*
|
|
** Routines to implement the count() aggregate function.
|
|
*/
|
|
static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
CountCtx *p;
|
|
p = sqlite3_aggregate_context(context, sizeof(*p));
|
|
if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
|
|
p->n++;
|
|
}
|
|
}
|
|
static void countFinalize(sqlite3_context *context){
|
|
CountCtx *p;
|
|
p = sqlite3_aggregate_context(context, 0);
|
|
sqlite3_result_int64(context, p ? p->n : 0);
|
|
}
|
|
|
|
/*
|
|
** Routines to implement min() and max() aggregate functions.
|
|
*/
|
|
static void minmaxStep(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
Mem *pArg = (Mem *)argv[0];
|
|
Mem *pBest;
|
|
|
|
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
|
|
if( !pBest ) return;
|
|
|
|
if( pBest->flags ){
|
|
int max;
|
|
int cmp;
|
|
CollSeq *pColl = sqlite3GetFuncCollSeq(context);
|
|
/* This step function is used for both the min() and max() aggregates,
|
|
** the only difference between the two being that the sense of the
|
|
** comparison is inverted. For the max() aggregate, the
|
|
** sqlite3_user_data() function returns (void *)-1. For min() it
|
|
** returns (void *)db, where db is the sqlite3* database pointer.
|
|
** Therefore the next statement sets variable 'max' to 1 for the max()
|
|
** aggregate, or 0 for min().
|
|
*/
|
|
max = sqlite3_user_data(context)!=0;
|
|
cmp = sqlite3MemCompare(pBest, pArg, pColl);
|
|
if( (max && cmp<0) || (!max && cmp>0) ){
|
|
sqlite3VdbeMemCopy(pBest, pArg);
|
|
}
|
|
}else{
|
|
sqlite3VdbeMemCopy(pBest, pArg);
|
|
}
|
|
}
|
|
static void minMaxFinalize(sqlite3_context *context){
|
|
sqlite3_value *pRes;
|
|
pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
|
|
if( pRes ){
|
|
if( pRes->flags ){
|
|
sqlite3_result_value(context, pRes);
|
|
}
|
|
sqlite3VdbeMemRelease(pRes);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** group_concat(EXPR, ?SEPARATOR?)
|
|
*/
|
|
static void groupConcatStep(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const char *zVal;
|
|
StrAccum *pAccum;
|
|
const char *zSep;
|
|
int nVal, nSep;
|
|
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
|
|
|
|
if( pAccum ){
|
|
pAccum->useMalloc = 1;
|
|
if( pAccum->nChar ){
|
|
if( argc==2 ){
|
|
zSep = (char*)sqlite3_value_text(argv[1]);
|
|
nSep = sqlite3_value_bytes(argv[1]);
|
|
}else{
|
|
zSep = ",";
|
|
nSep = 1;
|
|
}
|
|
sqlite3StrAccumAppend(pAccum, zSep, nSep);
|
|
}
|
|
zVal = (char*)sqlite3_value_text(argv[0]);
|
|
nVal = sqlite3_value_bytes(argv[0]);
|
|
sqlite3StrAccumAppend(pAccum, zVal, nVal);
|
|
}
|
|
}
|
|
static void groupConcatFinalize(sqlite3_context *context){
|
|
StrAccum *pAccum;
|
|
pAccum = sqlite3_aggregate_context(context, 0);
|
|
if( pAccum ){
|
|
if( pAccum->tooBig ){
|
|
sqlite3_result_error_toobig(context);
|
|
}else if( pAccum->mallocFailed ){
|
|
sqlite3_result_error_nomem(context);
|
|
}else{
|
|
sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1,
|
|
sqlite3_free);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This function registered all of the above C functions as SQL
|
|
** functions. This should be the only routine in this file with
|
|
** external linkage.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3 *db){
|
|
static const struct {
|
|
char *zName;
|
|
signed char nArg;
|
|
u8 argType; /* ff: db 1: 0, 2: 1, 3: 2,... N: N-1. */
|
|
u8 eTextRep; /* 1: UTF-16. 0: UTF-8 */
|
|
u8 needCollSeq;
|
|
void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
|
|
} aFuncs[] = {
|
|
{ "min", -1, 0, SQLITE_UTF8, 1, minmaxFunc },
|
|
{ "min", 0, 0, SQLITE_UTF8, 1, 0 },
|
|
{ "max", -1, 1, SQLITE_UTF8, 1, minmaxFunc },
|
|
{ "max", 0, 1, SQLITE_UTF8, 1, 0 },
|
|
{ "typeof", 1, 0, SQLITE_UTF8, 0, typeofFunc },
|
|
{ "length", 1, 0, SQLITE_UTF8, 0, lengthFunc },
|
|
{ "substr", 2, 0, SQLITE_UTF8, 0, substrFunc },
|
|
{ "substr", 3, 0, SQLITE_UTF8, 0, substrFunc },
|
|
{ "abs", 1, 0, SQLITE_UTF8, 0, absFunc },
|
|
{ "round", 1, 0, SQLITE_UTF8, 0, roundFunc },
|
|
{ "round", 2, 0, SQLITE_UTF8, 0, roundFunc },
|
|
{ "upper", 1, 0, SQLITE_UTF8, 0, upperFunc },
|
|
{ "lower", 1, 0, SQLITE_UTF8, 0, lowerFunc },
|
|
{ "coalesce", -1, 0, SQLITE_UTF8, 0, ifnullFunc },
|
|
{ "coalesce", 0, 0, SQLITE_UTF8, 0, 0 },
|
|
{ "coalesce", 1, 0, SQLITE_UTF8, 0, 0 },
|
|
{ "hex", 1, 0, SQLITE_UTF8, 0, hexFunc },
|
|
{ "ifnull", 2, 0, SQLITE_UTF8, 1, ifnullFunc },
|
|
{ "random", -1, 0, SQLITE_UTF8, 0, randomFunc },
|
|
{ "randomblob", 1, 0, SQLITE_UTF8, 0, randomBlob },
|
|
{ "nullif", 2, 0, SQLITE_UTF8, 1, nullifFunc },
|
|
{ "sqlite_version", 0, 0, SQLITE_UTF8, 0, versionFunc},
|
|
{ "quote", 1, 0, SQLITE_UTF8, 0, quoteFunc },
|
|
{ "last_insert_rowid", 0, 0xff, SQLITE_UTF8, 0, last_insert_rowid },
|
|
{ "changes", 0, 0xff, SQLITE_UTF8, 0, changes },
|
|
{ "total_changes", 0, 0xff, SQLITE_UTF8, 0, total_changes },
|
|
{ "replace", 3, 0, SQLITE_UTF8, 0, replaceFunc },
|
|
{ "ltrim", 1, 1, SQLITE_UTF8, 0, trimFunc },
|
|
{ "ltrim", 2, 1, SQLITE_UTF8, 0, trimFunc },
|
|
{ "rtrim", 1, 2, SQLITE_UTF8, 0, trimFunc },
|
|
{ "rtrim", 2, 2, SQLITE_UTF8, 0, trimFunc },
|
|
{ "trim", 1, 3, SQLITE_UTF8, 0, trimFunc },
|
|
{ "trim", 2, 3, SQLITE_UTF8, 0, trimFunc },
|
|
{ "zeroblob", 1, 0, SQLITE_UTF8, 0, zeroblobFunc },
|
|
#ifdef SQLITE_SOUNDEX
|
|
{ "soundex", 1, 0, SQLITE_UTF8, 0, soundexFunc},
|
|
#endif
|
|
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
|
{ "load_extension", 1, 0xff, SQLITE_UTF8, 0, loadExt },
|
|
{ "load_extension", 2, 0xff, SQLITE_UTF8, 0, loadExt },
|
|
#endif
|
|
#ifdef SQLITE_TEST
|
|
{ "randstr", 2, 0, SQLITE_UTF8, 0, randStr },
|
|
{ "test_destructor", 1, 0xff, SQLITE_UTF8, 0, test_destructor},
|
|
{ "test_destructor_count", 0, 0, SQLITE_UTF8, 0, test_destructor_count},
|
|
{ "test_auxdata", -1, 0, SQLITE_UTF8, 0, test_auxdata},
|
|
{ "test_error", 1, 0, SQLITE_UTF8, 0, test_error},
|
|
#endif
|
|
};
|
|
static const struct {
|
|
char *zName;
|
|
signed char nArg;
|
|
u8 argType;
|
|
u8 needCollSeq;
|
|
void (*xStep)(sqlite3_context*,int,sqlite3_value**);
|
|
void (*xFinalize)(sqlite3_context*);
|
|
} aAggs[] = {
|
|
{ "min", 1, 0, 1, minmaxStep, minMaxFinalize },
|
|
{ "max", 1, 1, 1, minmaxStep, minMaxFinalize },
|
|
{ "sum", 1, 0, 0, sumStep, sumFinalize },
|
|
{ "total", 1, 0, 0, sumStep, totalFinalize },
|
|
{ "avg", 1, 0, 0, sumStep, avgFinalize },
|
|
{ "count", 0, 0, 0, countStep, countFinalize },
|
|
{ "count", 1, 0, 0, countStep, countFinalize },
|
|
{ "group_concat", 1, 0, 0, groupConcatStep, groupConcatFinalize },
|
|
{ "group_concat", 2, 0, 0, groupConcatStep, groupConcatFinalize },
|
|
};
|
|
int i;
|
|
|
|
for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
|
|
void *pArg;
|
|
u8 argType = aFuncs[i].argType;
|
|
if( argType==0xff ){
|
|
pArg = db;
|
|
}else{
|
|
pArg = (void*)(int)argType;
|
|
}
|
|
sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
|
|
aFuncs[i].eTextRep, pArg, aFuncs[i].xFunc, 0, 0);
|
|
if( aFuncs[i].needCollSeq ){
|
|
FuncDef *pFunc = sqlite3FindFunction(db, aFuncs[i].zName,
|
|
strlen(aFuncs[i].zName), aFuncs[i].nArg, aFuncs[i].eTextRep, 0);
|
|
if( pFunc && aFuncs[i].needCollSeq ){
|
|
pFunc->needCollSeq = 1;
|
|
}
|
|
}
|
|
}
|
|
#ifndef SQLITE_OMIT_ALTERTABLE
|
|
sqlite3AlterFunctions(db);
|
|
#endif
|
|
#ifndef SQLITE_OMIT_PARSER
|
|
sqlite3AttachFunctions(db);
|
|
#endif
|
|
for(i=0; i<sizeof(aAggs)/sizeof(aAggs[0]); i++){
|
|
void *pArg = (void*)(int)aAggs[i].argType;
|
|
sqlite3CreateFunc(db, aAggs[i].zName, aAggs[i].nArg, SQLITE_UTF8,
|
|
pArg, 0, aAggs[i].xStep, aAggs[i].xFinalize);
|
|
if( aAggs[i].needCollSeq ){
|
|
FuncDef *pFunc = sqlite3FindFunction( db, aAggs[i].zName,
|
|
strlen(aAggs[i].zName), aAggs[i].nArg, SQLITE_UTF8, 0);
|
|
if( pFunc && aAggs[i].needCollSeq ){
|
|
pFunc->needCollSeq = 1;
|
|
}
|
|
}
|
|
}
|
|
sqlite3RegisterDateTimeFunctions(db);
|
|
if( !db->mallocFailed ){
|
|
int rc = sqlite3_overload_function(db, "MATCH", 2);
|
|
assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
|
|
if( rc==SQLITE_NOMEM ){
|
|
db->mallocFailed = 1;
|
|
}
|
|
}
|
|
#ifdef SQLITE_SSE
|
|
(void)sqlite3SseFunctions(db);
|
|
#endif
|
|
#ifdef SQLITE_CASE_SENSITIVE_LIKE
|
|
sqlite3RegisterLikeFunctions(db, 1);
|
|
#else
|
|
sqlite3RegisterLikeFunctions(db, 0);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Set the LIKEOPT flag on the 2-argument function with the given name.
|
|
*/
|
|
static void setLikeOptFlag(sqlite3 *db, const char *zName, int flagVal){
|
|
FuncDef *pDef;
|
|
pDef = sqlite3FindFunction(db, zName, strlen(zName), 2, SQLITE_UTF8, 0);
|
|
if( pDef ){
|
|
pDef->flags = flagVal;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Register the built-in LIKE and GLOB functions. The caseSensitive
|
|
** parameter determines whether or not the LIKE operator is case
|
|
** sensitive. GLOB is always case sensitive.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
|
|
struct compareInfo *pInfo;
|
|
if( caseSensitive ){
|
|
pInfo = (struct compareInfo*)&likeInfoAlt;
|
|
}else{
|
|
pInfo = (struct compareInfo*)&likeInfoNorm;
|
|
}
|
|
sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0);
|
|
sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0);
|
|
sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8,
|
|
(struct compareInfo*)&globInfo, likeFunc, 0,0);
|
|
setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE);
|
|
setLikeOptFlag(db, "like",
|
|
caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);
|
|
}
|
|
|
|
/*
|
|
** pExpr points to an expression which implements a function. If
|
|
** it is appropriate to apply the LIKE optimization to that function
|
|
** then set aWc[0] through aWc[2] to the wildcard characters and
|
|
** return TRUE. If the function is not a LIKE-style function then
|
|
** return FALSE.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
|
|
FuncDef *pDef;
|
|
if( pExpr->op!=TK_FUNCTION || !pExpr->pList ){
|
|
return 0;
|
|
}
|
|
if( pExpr->pList->nExpr!=2 ){
|
|
return 0;
|
|
}
|
|
pDef = sqlite3FindFunction(db, (char*)pExpr->token.z, pExpr->token.n, 2,
|
|
SQLITE_UTF8, 0);
|
|
if( pDef==0 || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){
|
|
return 0;
|
|
}
|
|
|
|
/* The memcpy() statement assumes that the wildcard characters are
|
|
** the first three statements in the compareInfo structure. The
|
|
** asserts() that follow verify that assumption
|
|
*/
|
|
memcpy(aWc, pDef->pUserData, 3);
|
|
assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
|
|
assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
|
|
assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
|
|
*pIsNocase = (pDef->flags & SQLITE_FUNC_CASE)==0;
|
|
return 1;
|
|
}
|
|
|
|
/************** End of func.c ************************************************/
|
|
/************** Begin file insert.c ******************************************/
|
|
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains C code routines that are called by the parser
|
|
** to handle INSERT statements in SQLite.
|
|
**
|
|
** $Id: insert.c,v 1.228 2008/01/25 15:04:50 drh Exp $
|
|
*/
|
|
|
|
/*
|
|
** Set P4 of the most recently inserted opcode to a column affinity
|
|
** string for index pIdx. A column affinity string has one character
|
|
** for each column in the table, according to the affinity of the column:
|
|
**
|
|
** Character Column affinity
|
|
** ------------------------------
|
|
** 'a' TEXT
|
|
** 'b' NONE
|
|
** 'c' NUMERIC
|
|
** 'd' INTEGER
|
|
** 'e' REAL
|
|
**
|
|
** An extra 'b' is appended to the end of the string to cover the
|
|
** rowid that appears as the last column in every index.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
|
|
if( !pIdx->zColAff ){
|
|
/* The first time a column affinity string for a particular index is
|
|
** required, it is allocated and populated here. It is then stored as
|
|
** a member of the Index structure for subsequent use.
|
|
**
|
|
** The column affinity string will eventually be deleted by
|
|
** sqliteDeleteIndex() when the Index structure itself is cleaned
|
|
** up.
|
|
*/
|
|
int n;
|
|
Table *pTab = pIdx->pTable;
|
|
sqlite3 *db = sqlite3VdbeDb(v);
|
|
pIdx->zColAff = (char *)sqlite3DbMallocZero(db, pIdx->nColumn+2);
|
|
if( !pIdx->zColAff ){
|
|
return;
|
|
}
|
|
for(n=0; n<pIdx->nColumn; n++){
|
|
pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
|
|
}
|
|
pIdx->zColAff[n++] = SQLITE_AFF_NONE;
|
|
pIdx->zColAff[n] = 0;
|
|
}
|
|
|
|
sqlite3VdbeChangeP4(v, -1, pIdx->zColAff, 0);
|
|
}
|
|
|
|
/*
|
|
** Set P4 of the most recently inserted opcode to a column affinity
|
|
** string for table pTab. A column affinity string has one character
|
|
** for each column indexed by the index, according to the affinity of the
|
|
** column:
|
|
**
|
|
** Character Column affinity
|
|
** ------------------------------
|
|
** 'a' TEXT
|
|
** 'b' NONE
|
|
** 'c' NUMERIC
|
|
** 'd' INTEGER
|
|
** 'e' REAL
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
|
|
/* The first time a column affinity string for a particular table
|
|
** is required, it is allocated and populated here. It is then
|
|
** stored as a member of the Table structure for subsequent use.
|
|
**
|
|
** The column affinity string will eventually be deleted by
|
|
** sqlite3DeleteTable() when the Table structure itself is cleaned up.
|
|
*/
|
|
if( !pTab->zColAff ){
|
|
char *zColAff;
|
|
int i;
|
|
sqlite3 *db = sqlite3VdbeDb(v);
|
|
|
|
zColAff = (char *)sqlite3DbMallocZero(db, pTab->nCol+1);
|
|
if( !zColAff ){
|
|
return;
|
|
}
|
|
|
|
for(i=0; i<pTab->nCol; i++){
|
|
zColAff[i] = pTab->aCol[i].affinity;
|
|
}
|
|
zColAff[pTab->nCol] = '\0';
|
|
|
|
pTab->zColAff = zColAff;
|
|
}
|
|
|
|
sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0);
|
|
}
|
|
|
|
/*
|
|
** Return non-zero if the table pTab in database iDb or any of its indices
|
|
** have been opened at any point in the VDBE program beginning at location
|
|
** iStartAddr throught the end of the program. This is used to see if
|
|
** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
|
|
** run without using temporary table for the results of the SELECT.
|
|
*/
|
|
static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){
|
|
int i;
|
|
int iEnd = sqlite3VdbeCurrentAddr(v);
|
|
for(i=iStartAddr; i<iEnd; i++){
|
|
VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
|
|
assert( pOp!=0 );
|
|
if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
|
|
Index *pIndex;
|
|
int tnum = pOp->p2;
|
|
if( tnum==pTab->tnum ){
|
|
return 1;
|
|
}
|
|
for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
|
|
if( tnum==pIndex->tnum ){
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pTab->pVtab ){
|
|
assert( pOp->p4.pVtab!=0 );
|
|
assert( pOp->p4type==P4_VTAB );
|
|
return 1;
|
|
}
|
|
#endif
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
/*
|
|
** Write out code to initialize the autoincrement logic. This code
|
|
** looks up the current autoincrement value in the sqlite_sequence
|
|
** table and stores that value in a register. Code generated by
|
|
** autoIncStep() will keep that register holding the largest
|
|
** rowid value. Code generated by autoIncEnd() will write the new
|
|
** largest value of the counter back into the sqlite_sequence table.
|
|
**
|
|
** This routine returns the index of the mem[] cell that contains
|
|
** the maximum rowid counter.
|
|
**
|
|
** Three consecutive registers are allocated by this routine. The
|
|
** first two hold the name of the target table and the maximum rowid
|
|
** inserted into the target table, respectively.
|
|
** The third holds the rowid in sqlite_sequence where we will
|
|
** write back the revised maximum rowid. This routine returns the
|
|
** index of the second of these three registers.
|
|
*/
|
|
static int autoIncBegin(
|
|
Parse *pParse, /* Parsing context */
|
|
int iDb, /* Index of the database holding pTab */
|
|
Table *pTab /* The table we are writing to */
|
|
){
|
|
int memId = 0; /* Register holding maximum rowid */
|
|
if( pTab->autoInc ){
|
|
Vdbe *v = pParse->pVdbe;
|
|
Db *pDb = &pParse->db->aDb[iDb];
|
|
int iCur = pParse->nTab;
|
|
int addr; /* Address of the top of the loop */
|
|
assert( v );
|
|
pParse->nMem++; /* Holds name of table */
|
|
memId = ++pParse->nMem;
|
|
pParse->nMem++;
|
|
sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
|
|
addr = sqlite3VdbeCurrentAddr(v);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, pTab->zName, 0);
|
|
sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+8);
|
|
sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, memId);
|
|
sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
|
|
sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
|
|
sqlite3VdbeAddOp2(v, OP_Rowid, iCur, memId+1);
|
|
sqlite3VdbeAddOp3(v, OP_Column, iCur, 1, memId);
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+8);
|
|
sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+2);
|
|
sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
|
|
}
|
|
return memId;
|
|
}
|
|
|
|
/*
|
|
** Update the maximum rowid for an autoincrement calculation.
|
|
**
|
|
** This routine should be called when the top of the stack holds a
|
|
** new rowid that is about to be inserted. If that new rowid is
|
|
** larger than the maximum rowid in the memId memory cell, then the
|
|
** memory cell is updated. The stack is unchanged.
|
|
*/
|
|
static void autoIncStep(Parse *pParse, int memId, int regRowid){
|
|
if( memId>0 ){
|
|
sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** After doing one or more inserts, the maximum rowid is stored
|
|
** in reg[memId]. Generate code to write this value back into the
|
|
** the sqlite_sequence table.
|
|
*/
|
|
static void autoIncEnd(
|
|
Parse *pParse, /* The parsing context */
|
|
int iDb, /* Index of the database holding pTab */
|
|
Table *pTab, /* Table we are inserting into */
|
|
int memId /* Memory cell holding the maximum rowid */
|
|
){
|
|
if( pTab->autoInc ){
|
|
int iCur = pParse->nTab;
|
|
Vdbe *v = pParse->pVdbe;
|
|
Db *pDb = &pParse->db->aDb[iDb];
|
|
int j1;
|
|
|
|
assert( v );
|
|
sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
|
|
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, memId+1);
|
|
sqlite3VdbeJumpHere(v, j1);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, memId-1);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, iCur, memId-1, memId+1);
|
|
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
|
sqlite3VdbeAddOp1(v, OP_Close, iCur);
|
|
}
|
|
}
|
|
#else
|
|
/*
|
|
** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
|
|
** above are all no-ops
|
|
*/
|
|
# define autoIncBegin(A,B,C) (0)
|
|
# define autoIncStep(A,B,C)
|
|
# define autoIncEnd(A,B,C,D)
|
|
#endif /* SQLITE_OMIT_AUTOINCREMENT */
|
|
|
|
|
|
/* Forward declaration */
|
|
static int xferOptimization(
|
|
Parse *pParse, /* Parser context */
|
|
Table *pDest, /* The table we are inserting into */
|
|
Select *pSelect, /* A SELECT statement to use as the data source */
|
|
int onError, /* How to handle constraint errors */
|
|
int iDbDest /* The database of pDest */
|
|
);
|
|
|
|
/*
|
|
** This routine is call to handle SQL of the following forms:
|
|
**
|
|
** insert into TABLE (IDLIST) values(EXPRLIST)
|
|
** insert into TABLE (IDLIST) select
|
|
**
|
|
** The IDLIST following the table name is always optional. If omitted,
|
|
** then a list of all columns for the table is substituted. The IDLIST
|
|
** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted.
|
|
**
|
|
** The pList parameter holds EXPRLIST in the first form of the INSERT
|
|
** statement above, and pSelect is NULL. For the second form, pList is
|
|
** NULL and pSelect is a pointer to the select statement used to generate
|
|
** data for the insert.
|
|
**
|
|
** The code generated follows one of four templates. For a simple
|
|
** select with data coming from a VALUES clause, the code executes
|
|
** once straight down through. The template looks like this:
|
|
**
|
|
** open write cursor to <table> and its indices
|
|
** puts VALUES clause expressions onto the stack
|
|
** write the resulting record into <table>
|
|
** cleanup
|
|
**
|
|
** The three remaining templates assume the statement is of the form
|
|
**
|
|
** INSERT INTO <table> SELECT ...
|
|
**
|
|
** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
|
|
** in other words if the SELECT pulls all columns from a single table
|
|
** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
|
|
** if <table2> and <table1> are distinct tables but have identical
|
|
** schemas, including all the same indices, then a special optimization
|
|
** is invoked that copies raw records from <table2> over to <table1>.
|
|
** See the xferOptimization() function for the implementation of this
|
|
** template. This is the second template.
|
|
**
|
|
** open a write cursor to <table>
|
|
** open read cursor on <table2>
|
|
** transfer all records in <table2> over to <table>
|
|
** close cursors
|
|
** foreach index on <table>
|
|
** open a write cursor on the <table> index
|
|
** open a read cursor on the corresponding <table2> index
|
|
** transfer all records from the read to the write cursors
|
|
** close cursors
|
|
** end foreach
|
|
**
|
|
** The third template is for when the second template does not apply
|
|
** and the SELECT clause does not read from <table> at any time.
|
|
** The generated code follows this template:
|
|
**
|
|
** goto B
|
|
** A: setup for the SELECT
|
|
** loop over the rows in the SELECT
|
|
** gosub C
|
|
** end loop
|
|
** cleanup after the SELECT
|
|
** goto D
|
|
** B: open write cursor to <table> and its indices
|
|
** goto A
|
|
** C: insert the select result into <table>
|
|
** return
|
|
** D: cleanup
|
|
**
|
|
** The fourth template is used if the insert statement takes its
|
|
** values from a SELECT but the data is being inserted into a table
|
|
** that is also read as part of the SELECT. In the third form,
|
|
** we have to use a intermediate table to store the results of
|
|
** the select. The template is like this:
|
|
**
|
|
** goto B
|
|
** A: setup for the SELECT
|
|
** loop over the tables in the SELECT
|
|
** gosub C
|
|
** end loop
|
|
** cleanup after the SELECT
|
|
** goto D
|
|
** C: insert the select result into the intermediate table
|
|
** return
|
|
** B: open a cursor to an intermediate table
|
|
** goto A
|
|
** D: open write cursor to <table> and its indices
|
|
** loop over the intermediate table
|
|
** transfer values form intermediate table into <table>
|
|
** end the loop
|
|
** cleanup
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3Insert(
|
|
Parse *pParse, /* Parser context */
|
|
SrcList *pTabList, /* Name of table into which we are inserting */
|
|
ExprList *pList, /* List of values to be inserted */
|
|
Select *pSelect, /* A SELECT statement to use as the data source */
|
|
IdList *pColumn, /* Column names corresponding to IDLIST. */
|
|
int onError /* How to handle constraint errors */
|
|
){
|
|
sqlite3 *db; /* The main database structure */
|
|
Table *pTab; /* The table to insert into. aka TABLE */
|
|
char *zTab; /* Name of the table into which we are inserting */
|
|
const char *zDb; /* Name of the database holding this table */
|
|
int i, j, idx; /* Loop counters */
|
|
Vdbe *v; /* Generate code into this virtual machine */
|
|
Index *pIdx; /* For looping over indices of the table */
|
|
int nColumn; /* Number of columns in the data */
|
|
int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
|
|
int baseCur = 0; /* VDBE Cursor number for pTab */
|
|
int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
|
|
int endOfLoop; /* Label for the end of the insertion loop */
|
|
int useTempTable = 0; /* Store SELECT results in intermediate table */
|
|
int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
|
|
int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */
|
|
int iSelectLoop = 0; /* Address of code that implements the SELECT */
|
|
int iCleanup = 0; /* Address of the cleanup code */
|
|
int iInsertBlock = 0; /* Address of the subroutine used to insert data */
|
|
int newIdx = -1; /* Cursor for the NEW pseudo-table */
|
|
int iDb; /* Index of database holding TABLE */
|
|
Db *pDb; /* The database containing table being inserted into */
|
|
int appendFlag = 0; /* True if the insert is likely to be an append */
|
|
|
|
/* Register allocations */
|
|
int regFromSelect; /* Base register for data coming from SELECT */
|
|
int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
|
|
int regRowCount = 0; /* Memory cell used for the row counter */
|
|
int regIns; /* Block of regs holding rowid+data being inserted */
|
|
int regRowid; /* registers holding insert rowid */
|
|
int regData; /* register holding first column to insert */
|
|
int regRecord; /* Holds the assemblied row record */
|
|
int *aRegIdx = 0; /* One register allocated to each index */
|
|
|
|
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
int isView; /* True if attempting to insert into a view */
|
|
int triggers_exist = 0; /* True if there are FOR EACH ROW triggers */
|
|
#endif
|
|
|
|
db = pParse->db;
|
|
if( pParse->nErr || db->mallocFailed ){
|
|
goto insert_cleanup;
|
|
}
|
|
|
|
/* Locate the table into which we will be inserting new information.
|
|
*/
|
|
assert( pTabList->nSrc==1 );
|
|
zTab = pTabList->a[0].zName;
|
|
if( zTab==0 ) goto insert_cleanup;
|
|
pTab = sqlite3SrcListLookup(pParse, pTabList);
|
|
if( pTab==0 ){
|
|
goto insert_cleanup;
|
|
}
|
|
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
assert( iDb<db->nDb );
|
|
pDb = &db->aDb[iDb];
|
|
zDb = pDb->zName;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
|
|
goto insert_cleanup;
|
|
}
|
|
|
|
/* Figure out if we have any triggers and if the table being
|
|
** inserted into is a view
|
|
*/
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0);
|
|
isView = pTab->pSelect!=0;
|
|
#else
|
|
# define triggers_exist 0
|
|
# define isView 0
|
|
#endif
|
|
#ifdef SQLITE_OMIT_VIEW
|
|
# undef isView
|
|
# define isView 0
|
|
#endif
|
|
|
|
/* Ensure that:
|
|
* (a) the table is not read-only,
|
|
* (b) that if it is a view then ON INSERT triggers exist
|
|
*/
|
|
if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
|
|
goto insert_cleanup;
|
|
}
|
|
assert( pTab!=0 );
|
|
|
|
/* If pTab is really a view, make sure it has been initialized.
|
|
** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual
|
|
** module table).
|
|
*/
|
|
if( sqlite3ViewGetColumnNames(pParse, pTab) ){
|
|
goto insert_cleanup;
|
|
}
|
|
|
|
/* Allocate a VDBE
|
|
*/
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) goto insert_cleanup;
|
|
if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
|
|
sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb);
|
|
|
|
/* if there are row triggers, allocate a temp table for new.* references. */
|
|
if( triggers_exist ){
|
|
newIdx = pParse->nTab++;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_XFER_OPT
|
|
/* If the statement is of the form
|
|
**
|
|
** INSERT INTO <table1> SELECT * FROM <table2>;
|
|
**
|
|
** Then special optimizations can be applied that make the transfer
|
|
** very fast and which reduce fragmentation of indices.
|
|
*/
|
|
if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
|
|
assert( !triggers_exist );
|
|
assert( pList==0 );
|
|
goto insert_cleanup;
|
|
}
|
|
#endif /* SQLITE_OMIT_XFER_OPT */
|
|
|
|
/* If this is an AUTOINCREMENT table, look up the sequence number in the
|
|
** sqlite_sequence table and store it in memory cell regAutoinc.
|
|
*/
|
|
regAutoinc = autoIncBegin(pParse, iDb, pTab);
|
|
|
|
/* Figure out how many columns of data are supplied. If the data
|
|
** is coming from a SELECT statement, then this step also generates
|
|
** all the code to implement the SELECT statement and invoke a subroutine
|
|
** to process each row of the result. (Template 2.) If the SELECT
|
|
** statement uses the the table that is being inserted into, then the
|
|
** subroutine is also coded here. That subroutine stores the SELECT
|
|
** results in a temporary table. (Template 3.)
|
|
*/
|
|
if( pSelect ){
|
|
/* Data is coming from a SELECT. Generate code to implement that SELECT
|
|
*/
|
|
SelectDest dest;
|
|
int rc, iInitCode;
|
|
|
|
iInitCode = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
|
|
iSelectLoop = sqlite3VdbeCurrentAddr(v);
|
|
iInsertBlock = sqlite3VdbeMakeLabel(v);
|
|
sqlite3SelectDestInit(&dest, SRT_Subroutine, iInsertBlock);
|
|
|
|
/* Resolve the expressions in the SELECT statement and execute it. */
|
|
rc = sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
|
|
if( rc || pParse->nErr || db->mallocFailed ){
|
|
goto insert_cleanup;
|
|
}
|
|
|
|
regFromSelect = dest.iMem;
|
|
iCleanup = sqlite3VdbeMakeLabel(v);
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, iCleanup);
|
|
assert( pSelect->pEList );
|
|
nColumn = pSelect->pEList->nExpr;
|
|
|
|
/* Set useTempTable to TRUE if the result of the SELECT statement
|
|
** should be written into a temporary table. Set to FALSE if each
|
|
** row of the SELECT can be written directly into the result table.
|
|
**
|
|
** A temp table must be used if the table being updated is also one
|
|
** of the tables being read by the SELECT statement. Also use a
|
|
** temp table in the case of row triggers.
|
|
*/
|
|
if( triggers_exist || readsTable(v, iSelectLoop, iDb, pTab) ){
|
|
useTempTable = 1;
|
|
}
|
|
|
|
if( useTempTable ){
|
|
/* Generate the subroutine that SELECT calls to process each row of
|
|
** the result. Store the result in a temporary table
|
|
*/
|
|
int regRec, regRowid;
|
|
|
|
srcTab = pParse->nTab++;
|
|
regRec = sqlite3GetTempReg(pParse);
|
|
regRowid = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeResolveLabel(v, iInsertBlock);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regRowid);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regRowid);
|
|
sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
|
|
sqlite3ReleaseTempReg(pParse, regRec);
|
|
sqlite3ReleaseTempReg(pParse, regRowid);
|
|
|
|
/* The following code runs first because the GOTO at the very top
|
|
** of the program jumps to it. Create the temporary table, then jump
|
|
** back up and execute the SELECT code above.
|
|
*/
|
|
sqlite3VdbeJumpHere(v, iInitCode);
|
|
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, 0);
|
|
sqlite3VdbeAddOp2(v, OP_SetNumColumns, srcTab, nColumn);
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, iSelectLoop);
|
|
sqlite3VdbeResolveLabel(v, iCleanup);
|
|
}else{
|
|
sqlite3VdbeJumpHere(v, iInitCode);
|
|
}
|
|
}else{
|
|
/* This is the case if the data for the INSERT is coming from a VALUES
|
|
** clause
|
|
*/
|
|
NameContext sNC;
|
|
memset(&sNC, 0, sizeof(sNC));
|
|
sNC.pParse = pParse;
|
|
srcTab = -1;
|
|
assert( useTempTable==0 );
|
|
nColumn = pList ? pList->nExpr : 0;
|
|
for(i=0; i<nColumn; i++){
|
|
if( sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr) ){
|
|
goto insert_cleanup;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Make sure the number of columns in the source data matches the number
|
|
** of columns to be inserted into the table.
|
|
*/
|
|
if( IsVirtual(pTab) ){
|
|
for(i=0; i<pTab->nCol; i++){
|
|
nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
|
|
}
|
|
}
|
|
if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"table %S has %d columns but %d values were supplied",
|
|
pTabList, 0, pTab->nCol, nColumn);
|
|
goto insert_cleanup;
|
|
}
|
|
if( pColumn!=0 && nColumn!=pColumn->nId ){
|
|
sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
|
|
goto insert_cleanup;
|
|
}
|
|
|
|
/* If the INSERT statement included an IDLIST term, then make sure
|
|
** all elements of the IDLIST really are columns of the table and
|
|
** remember the column indices.
|
|
**
|
|
** If the table has an INTEGER PRIMARY KEY column and that column
|
|
** is named in the IDLIST, then record in the keyColumn variable
|
|
** the index into IDLIST of the primary key column. keyColumn is
|
|
** the index of the primary key as it appears in IDLIST, not as
|
|
** is appears in the original table. (The index of the primary
|
|
** key in the original table is pTab->iPKey.)
|
|
*/
|
|
if( pColumn ){
|
|
for(i=0; i<pColumn->nId; i++){
|
|
pColumn->a[i].idx = -1;
|
|
}
|
|
for(i=0; i<pColumn->nId; i++){
|
|
for(j=0; j<pTab->nCol; j++){
|
|
if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
|
|
pColumn->a[i].idx = j;
|
|
if( j==pTab->iPKey ){
|
|
keyColumn = i;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if( j>=pTab->nCol ){
|
|
if( sqlite3IsRowid(pColumn->a[i].zName) ){
|
|
keyColumn = i;
|
|
}else{
|
|
sqlite3ErrorMsg(pParse, "table %S has no column named %s",
|
|
pTabList, 0, pColumn->a[i].zName);
|
|
pParse->nErr++;
|
|
goto insert_cleanup;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If there is no IDLIST term but the table has an integer primary
|
|
** key, the set the keyColumn variable to the primary key column index
|
|
** in the original table definition.
|
|
*/
|
|
if( pColumn==0 && nColumn>0 ){
|
|
keyColumn = pTab->iPKey;
|
|
}
|
|
|
|
/* Open the temp table for FOR EACH ROW triggers
|
|
*/
|
|
if( triggers_exist ){
|
|
sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0);
|
|
sqlite3VdbeAddOp2(v, OP_SetNumColumns, newIdx, pTab->nCol);
|
|
}
|
|
|
|
/* Initialize the count of rows to be inserted
|
|
*/
|
|
if( db->flags & SQLITE_CountRows ){
|
|
regRowCount = ++pParse->nMem;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
|
|
}
|
|
|
|
/* If this is not a view, open the table and and all indices */
|
|
if( !isView ){
|
|
int nIdx;
|
|
int i;
|
|
|
|
baseCur = pParse->nTab;
|
|
nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite);
|
|
aRegIdx = sqlite3DbMallocZero(db, sizeof(int)*(nIdx+1));
|
|
if( aRegIdx==0 ){
|
|
goto insert_cleanup;
|
|
}
|
|
for(i=0; i<nIdx; i++){
|
|
aRegIdx[i] = ++pParse->nMem;
|
|
}
|
|
}
|
|
|
|
/* If the data source is a temporary table, then we have to create
|
|
** a loop because there might be multiple rows of data. If the data
|
|
** source is a subroutine call from the SELECT statement, then we need
|
|
** to launch the SELECT statement processing.
|
|
*/
|
|
if( useTempTable ){
|
|
iBreak = sqlite3VdbeMakeLabel(v);
|
|
sqlite3VdbeAddOp2(v, OP_Rewind, srcTab, iBreak);
|
|
iCont = sqlite3VdbeCurrentAddr(v);
|
|
}else if( pSelect ){
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, iSelectLoop);
|
|
sqlite3VdbeResolveLabel(v, iInsertBlock);
|
|
}
|
|
|
|
/* Allocate registers for holding the rowid of the new row,
|
|
** the content of the new row, and the assemblied row record.
|
|
*/
|
|
regRecord = ++pParse->nMem;
|
|
regRowid = regIns = pParse->nMem+1;
|
|
pParse->nMem += pTab->nCol + 1;
|
|
if( IsVirtual(pTab) ){
|
|
regRowid++;
|
|
pParse->nMem++;
|
|
}
|
|
regData = regRowid+1;
|
|
|
|
/* Run the BEFORE and INSTEAD OF triggers, if there are any
|
|
*/
|
|
endOfLoop = sqlite3VdbeMakeLabel(v);
|
|
if( triggers_exist & TRIGGER_BEFORE ){
|
|
int regRowid;
|
|
int regCols;
|
|
int regRec;
|
|
|
|
/* build the NEW.* reference row. Note that if there is an INTEGER
|
|
** PRIMARY KEY into which a NULL is being inserted, that NULL will be
|
|
** translated into a unique ID for the row. But on a BEFORE trigger,
|
|
** we do not know what the unique ID will be (because the insert has
|
|
** not happened yet) so we substitute a rowid of -1
|
|
*/
|
|
regRowid = sqlite3GetTempReg(pParse);
|
|
if( keyColumn<0 ){
|
|
sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
|
|
}else if( useTempTable ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
|
|
}else{
|
|
int j1;
|
|
assert( pSelect==0 ); /* Otherwise useTempTable is true */
|
|
sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
|
|
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
|
|
sqlite3VdbeJumpHere(v, j1);
|
|
sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
|
|
}
|
|
|
|
/* Cannot have triggers on a virtual table. If it were possible,
|
|
** this block would have to account for hidden column.
|
|
*/
|
|
assert(!IsVirtual(pTab));
|
|
|
|
/* Create the new column data
|
|
*/
|
|
regCols = sqlite3GetTempRange(pParse, pTab->nCol);
|
|
for(i=0; i<pTab->nCol; i++){
|
|
if( pColumn==0 ){
|
|
j = i;
|
|
}else{
|
|
for(j=0; j<pColumn->nId; j++){
|
|
if( pColumn->a[j].idx==i ) break;
|
|
}
|
|
}
|
|
if( pColumn && j>=pColumn->nId ){
|
|
sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i);
|
|
}else if( useTempTable ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i);
|
|
}else{
|
|
assert( pSelect==0 ); /* Otherwise useTempTable is true */
|
|
sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i);
|
|
}
|
|
}
|
|
regRec = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRec);
|
|
|
|
/* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
|
|
** do not attempt any conversions before assembling the record.
|
|
** If this is a real table, attempt conversions as required by the
|
|
** table column affinities.
|
|
*/
|
|
if( !isView ){
|
|
sqlite3TableAffinityStr(v, pTab);
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
|
|
sqlite3ReleaseTempReg(pParse, regRec);
|
|
sqlite3ReleaseTempReg(pParse, regRowid);
|
|
sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
|
|
|
|
/* Fire BEFORE or INSTEAD OF triggers */
|
|
if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab,
|
|
newIdx, -1, onError, endOfLoop, 0, 0) ){
|
|
goto insert_cleanup;
|
|
}
|
|
}
|
|
|
|
/* Push the record number for the new entry onto the stack. The
|
|
** record number is a randomly generate integer created by NewRowid
|
|
** except when the table has an INTEGER PRIMARY KEY column, in which
|
|
** case the record number is the same as that column.
|
|
*/
|
|
if( !isView ){
|
|
if( IsVirtual(pTab) ){
|
|
/* The row that the VUpdate opcode will delete: none */
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
|
|
}
|
|
if( keyColumn>=0 ){
|
|
if( useTempTable ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
|
|
}else if( pSelect ){
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid);
|
|
}else{
|
|
VdbeOp *pOp;
|
|
sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
|
|
pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
|
|
if( pOp && pOp->opcode==OP_Null ){
|
|
appendFlag = 1;
|
|
pOp->opcode = OP_NewRowid;
|
|
pOp->p1 = baseCur;
|
|
pOp->p2 = regRowid;
|
|
pOp->p3 = regAutoinc;
|
|
}
|
|
}
|
|
/* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
|
|
** to generate a unique primary key value.
|
|
*/
|
|
if( !appendFlag ){
|
|
int j1;
|
|
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
|
|
sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
|
|
sqlite3VdbeJumpHere(v, j1);
|
|
sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
|
|
}
|
|
}else if( IsVirtual(pTab) ){
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
|
|
}else{
|
|
sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
|
|
appendFlag = 1;
|
|
}
|
|
autoIncStep(pParse, regAutoinc, regRowid);
|
|
|
|
/* Push onto the stack, data for all columns of the new entry, beginning
|
|
** with the first column.
|
|
*/
|
|
nHidden = 0;
|
|
for(i=0; i<pTab->nCol; i++){
|
|
int iRegStore = regRowid+1+i;
|
|
if( i==pTab->iPKey ){
|
|
/* The value of the INTEGER PRIMARY KEY column is always a NULL.
|
|
** Whenever this column is read, the record number will be substituted
|
|
** in its place. So will fill this column with a NULL to avoid
|
|
** taking up data space with information that will never be used. */
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
|
|
continue;
|
|
}
|
|
if( pColumn==0 ){
|
|
if( IsHiddenColumn(&pTab->aCol[i]) ){
|
|
assert( IsVirtual(pTab) );
|
|
j = -1;
|
|
nHidden++;
|
|
}else{
|
|
j = i - nHidden;
|
|
}
|
|
}else{
|
|
for(j=0; j<pColumn->nId; j++){
|
|
if( pColumn->a[j].idx==i ) break;
|
|
}
|
|
}
|
|
if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
|
|
sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore);
|
|
}else if( useTempTable ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
|
|
}else if( pSelect ){
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
|
|
}else{
|
|
sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
|
|
}
|
|
}
|
|
|
|
/* Generate code to check constraints and generate index keys and
|
|
** do the insertion.
|
|
*/
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( IsVirtual(pTab) ){
|
|
pParse->pVirtualLock = pTab;
|
|
sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns,
|
|
(const char*)pTab->pVtab, P4_VTAB);
|
|
}else
|
|
#endif
|
|
{
|
|
sqlite3GenerateConstraintChecks(
|
|
pParse,
|
|
pTab,
|
|
baseCur,
|
|
regIns,
|
|
aRegIdx,
|
|
keyColumn>=0,
|
|
0,
|
|
onError,
|
|
endOfLoop
|
|
);
|
|
sqlite3CompleteInsertion(
|
|
pParse,
|
|
pTab,
|
|
baseCur,
|
|
regIns,
|
|
aRegIdx,
|
|
0,
|
|
0,
|
|
(triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
|
|
appendFlag
|
|
);
|
|
}
|
|
}
|
|
|
|
/* Update the count of rows that are inserted
|
|
*/
|
|
if( (db->flags & SQLITE_CountRows)!=0 ){
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
|
|
}
|
|
|
|
if( triggers_exist ){
|
|
/* Code AFTER triggers */
|
|
if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
|
|
newIdx, -1, onError, endOfLoop, 0, 0) ){
|
|
goto insert_cleanup;
|
|
}
|
|
}
|
|
|
|
/* The bottom of the loop, if the data source is a SELECT statement
|
|
*/
|
|
sqlite3VdbeResolveLabel(v, endOfLoop);
|
|
if( useTempTable ){
|
|
sqlite3VdbeAddOp2(v, OP_Next, srcTab, iCont);
|
|
sqlite3VdbeResolveLabel(v, iBreak);
|
|
sqlite3VdbeAddOp2(v, OP_Close, srcTab, 0);
|
|
}else if( pSelect ){
|
|
sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
|
|
sqlite3VdbeResolveLabel(v, iCleanup);
|
|
}
|
|
|
|
if( !IsVirtual(pTab) && !isView ){
|
|
/* Close all tables opened */
|
|
sqlite3VdbeAddOp2(v, OP_Close, baseCur, 0);
|
|
for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
|
|
sqlite3VdbeAddOp2(v, OP_Close, idx+baseCur, 0);
|
|
}
|
|
}
|
|
|
|
/* Update the sqlite_sequence table by storing the content of the
|
|
** counter value in memory regAutoinc back into the sqlite_sequence
|
|
** table.
|
|
*/
|
|
autoIncEnd(pParse, iDb, pTab, regAutoinc);
|
|
|
|
/*
|
|
** Return the number of rows inserted. If this routine is
|
|
** generating code because of a call to sqlite3NestedParse(), do not
|
|
** invoke the callback function.
|
|
*/
|
|
if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
|
|
sqlite3VdbeSetNumCols(v, 1);
|
|
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P4_STATIC);
|
|
}
|
|
|
|
insert_cleanup:
|
|
sqlite3SrcListDelete(pTabList);
|
|
sqlite3ExprListDelete(pList);
|
|
sqlite3SelectDelete(pSelect);
|
|
sqlite3IdListDelete(pColumn);
|
|
sqlite3_free(aRegIdx);
|
|
}
|
|
|
|
/*
|
|
** Generate code to do constraint checks prior to an INSERT or an UPDATE.
|
|
**
|
|
** The input is a range of consecutive registers as follows:
|
|
**
|
|
** 1. The rowid of the row to be updated before the update. This
|
|
** value is omitted unless we are doing an UPDATE that involves a
|
|
** change to the record number or writing to a virtual table.
|
|
**
|
|
** 2. The rowid of the row after the update.
|
|
**
|
|
** 3. The data in the first column of the entry after the update.
|
|
**
|
|
** i. Data from middle columns...
|
|
**
|
|
** N. The data in the last column of the entry after the update.
|
|
**
|
|
** The regRowid parameter is the index of the register containing (2).
|
|
**
|
|
** The old rowid shown as entry (1) above is omitted unless both isUpdate
|
|
** and rowidChng are 1. isUpdate is true for UPDATEs and false for
|
|
** INSERTs. RowidChng means that the new rowid is explicitly specified by
|
|
** the update or insert statement. If rowidChng is false, it means that
|
|
** the rowid is computed automatically in an insert or that the rowid value
|
|
** is not modified by the update.
|
|
**
|
|
** The code generated by this routine store new index entries into
|
|
** registers identified by aRegIdx[]. No index entry is created for
|
|
** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
|
|
** the same as the order of indices on the linked list of indices
|
|
** attached to the table.
|
|
**
|
|
** This routine also generates code to check constraints. NOT NULL,
|
|
** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
|
|
** then the appropriate action is performed. There are five possible
|
|
** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
|
|
**
|
|
** Constraint type Action What Happens
|
|
** --------------- ---------- ----------------------------------------
|
|
** any ROLLBACK The current transaction is rolled back and
|
|
** sqlite3_exec() returns immediately with a
|
|
** return code of SQLITE_CONSTRAINT.
|
|
**
|
|
** any ABORT Back out changes from the current command
|
|
** only (do not do a complete rollback) then
|
|
** cause sqlite3_exec() to return immediately
|
|
** with SQLITE_CONSTRAINT.
|
|
**
|
|
** any FAIL Sqlite_exec() returns immediately with a
|
|
** return code of SQLITE_CONSTRAINT. The
|
|
** transaction is not rolled back and any
|
|
** prior changes are retained.
|
|
**
|
|
** any IGNORE The record number and data is popped from
|
|
** the stack and there is an immediate jump
|
|
** to label ignoreDest.
|
|
**
|
|
** NOT NULL REPLACE The NULL value is replace by the default
|
|
** value for that column. If the default value
|
|
** is NULL, the action is the same as ABORT.
|
|
**
|
|
** UNIQUE REPLACE The other row that conflicts with the row
|
|
** being inserted is removed.
|
|
**
|
|
** CHECK REPLACE Illegal. The results in an exception.
|
|
**
|
|
** Which action to take is determined by the overrideError parameter.
|
|
** Or if overrideError==OE_Default, then the pParse->onError parameter
|
|
** is used. Or if pParse->onError==OE_Default then the onError value
|
|
** for the constraint is used.
|
|
**
|
|
** The calling routine must open a read/write cursor for pTab with
|
|
** cursor number "baseCur". All indices of pTab must also have open
|
|
** read/write cursors with cursor number baseCur+i for the i-th cursor.
|
|
** Except, if there is no possibility of a REPLACE action then
|
|
** cursors do not need to be open for indices where aRegIdx[i]==0.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(
|
|
Parse *pParse, /* The parser context */
|
|
Table *pTab, /* the table into which we are inserting */
|
|
int baseCur, /* Index of a read/write cursor pointing at pTab */
|
|
int regRowid, /* Index of the range of input registers */
|
|
int *aRegIdx, /* Register used by each index. 0 for unused indices */
|
|
int rowidChng, /* True if the rowid might collide with existing entry */
|
|
int isUpdate, /* True for UPDATE, False for INSERT */
|
|
int overrideError, /* Override onError to this if not OE_Default */
|
|
int ignoreDest /* Jump to this label on an OE_Ignore resolution */
|
|
){
|
|
int i;
|
|
Vdbe *v;
|
|
int nCol;
|
|
int onError;
|
|
int j1, j2, j3; /* Addresses of jump instructions */
|
|
int regData; /* Register containing first data column */
|
|
int iCur;
|
|
Index *pIdx;
|
|
int seenReplace = 0;
|
|
int hasTwoRowids = (isUpdate && rowidChng);
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
assert( v!=0 );
|
|
assert( pTab->pSelect==0 ); /* This table is not a VIEW */
|
|
nCol = pTab->nCol;
|
|
regData = regRowid + 1;
|
|
|
|
|
|
/* Test all NOT NULL constraints.
|
|
*/
|
|
for(i=0; i<nCol; i++){
|
|
if( i==pTab->iPKey ){
|
|
continue;
|
|
}
|
|
onError = pTab->aCol[i].notNull;
|
|
if( onError==OE_None ) continue;
|
|
if( overrideError!=OE_Default ){
|
|
onError = overrideError;
|
|
}else if( onError==OE_Default ){
|
|
onError = OE_Abort;
|
|
}
|
|
if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
|
|
onError = OE_Abort;
|
|
}
|
|
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i);
|
|
assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
|
|
|| onError==OE_Ignore || onError==OE_Replace );
|
|
switch( onError ){
|
|
case OE_Rollback:
|
|
case OE_Abort:
|
|
case OE_Fail: {
|
|
char *zMsg = 0;
|
|
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
|
|
sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
|
|
" may not be NULL", (char*)0);
|
|
sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
|
|
break;
|
|
}
|
|
case OE_Ignore: {
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
|
|
break;
|
|
}
|
|
case OE_Replace: {
|
|
sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i);
|
|
break;
|
|
}
|
|
}
|
|
sqlite3VdbeJumpHere(v, j1);
|
|
}
|
|
|
|
/* Test all CHECK constraints
|
|
*/
|
|
#ifndef SQLITE_OMIT_CHECK
|
|
if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
|
|
int allOk = sqlite3VdbeMakeLabel(v);
|
|
pParse->ckBase = regData;
|
|
sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL);
|
|
onError = overrideError!=OE_Default ? overrideError : OE_Abort;
|
|
if( onError==OE_Ignore ){
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
|
|
}
|
|
sqlite3VdbeResolveLabel(v, allOk);
|
|
}
|
|
#endif /* !defined(SQLITE_OMIT_CHECK) */
|
|
|
|
/* If we have an INTEGER PRIMARY KEY, make sure the primary key
|
|
** of the new record does not previously exist. Except, if this
|
|
** is an UPDATE and the primary key is not changing, that is OK.
|
|
*/
|
|
if( rowidChng ){
|
|
onError = pTab->keyConf;
|
|
if( overrideError!=OE_Default ){
|
|
onError = overrideError;
|
|
}else if( onError==OE_Default ){
|
|
onError = OE_Abort;
|
|
}
|
|
|
|
if( onError!=OE_Replace || pTab->pIndex ){
|
|
if( isUpdate ){
|
|
j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, regRowid-1);
|
|
}
|
|
j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid);
|
|
switch( onError ){
|
|
default: {
|
|
onError = OE_Abort;
|
|
/* Fall thru into the next case */
|
|
}
|
|
case OE_Rollback:
|
|
case OE_Abort:
|
|
case OE_Fail: {
|
|
sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
|
|
"PRIMARY KEY must be unique", P4_STATIC);
|
|
break;
|
|
}
|
|
case OE_Replace: {
|
|
sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0);
|
|
seenReplace = 1;
|
|
break;
|
|
}
|
|
case OE_Ignore: {
|
|
assert( seenReplace==0 );
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
|
|
break;
|
|
}
|
|
}
|
|
sqlite3VdbeJumpHere(v, j3);
|
|
if( isUpdate ){
|
|
sqlite3VdbeJumpHere(v, j2);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Test all UNIQUE constraints by creating entries for each UNIQUE
|
|
** index and making sure that duplicate entries do not already exist.
|
|
** Add the new records to the indices as we go.
|
|
*/
|
|
for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
|
|
int regIdx;
|
|
int regR;
|
|
|
|
if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */
|
|
|
|
/* Create a key for accessing the index entry */
|
|
regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1);
|
|
for(i=0; i<pIdx->nColumn; i++){
|
|
int idx = pIdx->aiColumn[i];
|
|
if( idx==pTab->iPKey ){
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i);
|
|
}
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]);
|
|
sqlite3IndexAffinityStr(v, pIdx);
|
|
sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
|
|
|
|
/* Find out what action to take in case there is an indexing conflict */
|
|
onError = pIdx->onError;
|
|
if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */
|
|
if( overrideError!=OE_Default ){
|
|
onError = overrideError;
|
|
}else if( onError==OE_Default ){
|
|
onError = OE_Abort;
|
|
}
|
|
if( seenReplace ){
|
|
if( onError==OE_Ignore ) onError = OE_Replace;
|
|
else if( onError==OE_Fail ) onError = OE_Abort;
|
|
}
|
|
|
|
|
|
/* Check to see if the new index entry will be unique */
|
|
j2 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdx, 0, pIdx->nColumn);
|
|
regR = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, regRowid-hasTwoRowids, regR);
|
|
j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0,
|
|
regR, (char*)aRegIdx[iCur], P4_INT32);
|
|
|
|
/* Generate code that executes if the new index entry is not unique */
|
|
assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
|
|
|| onError==OE_Ignore || onError==OE_Replace );
|
|
switch( onError ){
|
|
case OE_Rollback:
|
|
case OE_Abort:
|
|
case OE_Fail: {
|
|
int j, n1, n2;
|
|
char zErrMsg[200];
|
|
sqlite3_snprintf(sizeof(zErrMsg), zErrMsg,
|
|
pIdx->nColumn>1 ? "columns " : "column ");
|
|
n1 = strlen(zErrMsg);
|
|
for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
|
|
char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
|
|
n2 = strlen(zCol);
|
|
if( j>0 ){
|
|
sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", ");
|
|
n1 += 2;
|
|
}
|
|
if( n1+n2>sizeof(zErrMsg)-30 ){
|
|
sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "...");
|
|
n1 += 3;
|
|
break;
|
|
}else{
|
|
sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
|
|
n1 += n2;
|
|
}
|
|
}
|
|
sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1],
|
|
pIdx->nColumn>1 ? " are not unique" : " is not unique");
|
|
sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, zErrMsg,0);
|
|
break;
|
|
}
|
|
case OE_Ignore: {
|
|
assert( seenReplace==0 );
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
|
|
break;
|
|
}
|
|
case OE_Replace: {
|
|
sqlite3GenerateRowDelete(pParse, pTab, baseCur, regR, 0);
|
|
seenReplace = 1;
|
|
break;
|
|
}
|
|
}
|
|
sqlite3VdbeJumpHere(v, j2);
|
|
sqlite3VdbeJumpHere(v, j3);
|
|
sqlite3ReleaseTempReg(pParse, regR);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine generates code to finish the INSERT or UPDATE operation
|
|
** that was started by a prior call to sqlite3GenerateConstraintChecks.
|
|
** A consecutive range of registers starting at regRowid contains the
|
|
** rowid and the content to be inserted.
|
|
**
|
|
** The arguments to this routine should be the same as the first six
|
|
** arguments to sqlite3GenerateConstraintChecks.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3CompleteInsertion(
|
|
Parse *pParse, /* The parser context */
|
|
Table *pTab, /* the table into which we are inserting */
|
|
int baseCur, /* Index of a read/write cursor pointing at pTab */
|
|
int regRowid, /* Range of content */
|
|
int *aRegIdx, /* Register used by each index. 0 for unused indices */
|
|
int rowidChng, /* True if the record number will change */
|
|
int isUpdate, /* True for UPDATE, False for INSERT */
|
|
int newIdx, /* Index of NEW table for triggers. -1 if none */
|
|
int appendBias /* True if this is likely to be an append */
|
|
){
|
|
int i;
|
|
Vdbe *v;
|
|
int nIdx;
|
|
Index *pIdx;
|
|
int pik_flags;
|
|
int regData;
|
|
int regRec;
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
assert( v!=0 );
|
|
assert( pTab->pSelect==0 ); /* This table is not a VIEW */
|
|
for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
|
|
for(i=nIdx-1; i>=0; i--){
|
|
if( aRegIdx[i]==0 ) continue;
|
|
sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]);
|
|
}
|
|
regData = regRowid + 1;
|
|
regRec = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
|
|
sqlite3TableAffinityStr(v, pTab);
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
if( newIdx>=0 ){
|
|
sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
|
|
}
|
|
#endif
|
|
if( pParse->nested ){
|
|
pik_flags = 0;
|
|
}else{
|
|
pik_flags = OPFLAG_NCHANGE;
|
|
pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
|
|
}
|
|
if( appendBias ){
|
|
pik_flags |= OPFLAG_APPEND;
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid);
|
|
if( !pParse->nested ){
|
|
sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
|
|
}
|
|
sqlite3VdbeChangeP5(v, pik_flags);
|
|
}
|
|
|
|
/*
|
|
** Generate code that will open cursors for a table and for all
|
|
** indices of that table. The "baseCur" parameter is the cursor number used
|
|
** for the table. Indices are opened on subsequent cursors.
|
|
**
|
|
** Return the number of indices on the table.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3OpenTableAndIndices(
|
|
Parse *pParse, /* Parsing context */
|
|
Table *pTab, /* Table to be opened */
|
|
int baseCur, /* Cursor number assigned to the table */
|
|
int op /* OP_OpenRead or OP_OpenWrite */
|
|
){
|
|
int i;
|
|
int iDb;
|
|
Index *pIdx;
|
|
Vdbe *v;
|
|
|
|
if( IsVirtual(pTab) ) return 0;
|
|
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
v = sqlite3GetVdbe(pParse);
|
|
assert( v!=0 );
|
|
sqlite3OpenTable(pParse, baseCur, iDb, pTab, op);
|
|
for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
|
|
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
|
|
assert( pIdx->pSchema==pTab->pSchema );
|
|
sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb,
|
|
(char*)pKey, P4_KEYINFO_HANDOFF);
|
|
VdbeComment((v, "%s", pIdx->zName));
|
|
}
|
|
if( pParse->nTab<=baseCur+i ){
|
|
pParse->nTab = baseCur+i;
|
|
}
|
|
return i-1;
|
|
}
|
|
|
|
|
|
#ifdef SQLITE_TEST
|
|
/*
|
|
** The following global variable is incremented whenever the
|
|
** transfer optimization is used. This is used for testing
|
|
** purposes only - to make sure the transfer optimization really
|
|
** is happening when it is suppose to.
|
|
*/
|
|
SQLITE_API int sqlite3_xferopt_count;
|
|
#endif /* SQLITE_TEST */
|
|
|
|
|
|
#ifndef SQLITE_OMIT_XFER_OPT
|
|
/*
|
|
** Check to collation names to see if they are compatible.
|
|
*/
|
|
static int xferCompatibleCollation(const char *z1, const char *z2){
|
|
if( z1==0 ){
|
|
return z2==0;
|
|
}
|
|
if( z2==0 ){
|
|
return 0;
|
|
}
|
|
return sqlite3StrICmp(z1, z2)==0;
|
|
}
|
|
|
|
|
|
/*
|
|
** Check to see if index pSrc is compatible as a source of data
|
|
** for index pDest in an insert transfer optimization. The rules
|
|
** for a compatible index:
|
|
**
|
|
** * The index is over the same set of columns
|
|
** * The same DESC and ASC markings occurs on all columns
|
|
** * The same onError processing (OE_Abort, OE_Ignore, etc)
|
|
** * The same collating sequence on each column
|
|
*/
|
|
static int xferCompatibleIndex(Index *pDest, Index *pSrc){
|
|
int i;
|
|
assert( pDest && pSrc );
|
|
assert( pDest->pTable!=pSrc->pTable );
|
|
if( pDest->nColumn!=pSrc->nColumn ){
|
|
return 0; /* Different number of columns */
|
|
}
|
|
if( pDest->onError!=pSrc->onError ){
|
|
return 0; /* Different conflict resolution strategies */
|
|
}
|
|
for(i=0; i<pSrc->nColumn; i++){
|
|
if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
|
|
return 0; /* Different columns indexed */
|
|
}
|
|
if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
|
|
return 0; /* Different sort orders */
|
|
}
|
|
if( pSrc->azColl[i]!=pDest->azColl[i] ){
|
|
return 0; /* Different collating sequences */
|
|
}
|
|
}
|
|
|
|
/* If no test above fails then the indices must be compatible */
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Attempt the transfer optimization on INSERTs of the form
|
|
**
|
|
** INSERT INTO tab1 SELECT * FROM tab2;
|
|
**
|
|
** This optimization is only attempted if
|
|
**
|
|
** (1) tab1 and tab2 have identical schemas including all the
|
|
** same indices and constraints
|
|
**
|
|
** (2) tab1 and tab2 are different tables
|
|
**
|
|
** (3) There must be no triggers on tab1
|
|
**
|
|
** (4) The result set of the SELECT statement is "*"
|
|
**
|
|
** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
|
|
** or LIMIT clause.
|
|
**
|
|
** (6) The SELECT statement is a simple (not a compound) select that
|
|
** contains only tab2 in its FROM clause
|
|
**
|
|
** This method for implementing the INSERT transfers raw records from
|
|
** tab2 over to tab1. The columns are not decoded. Raw records from
|
|
** the indices of tab2 are transfered to tab1 as well. In so doing,
|
|
** the resulting tab1 has much less fragmentation.
|
|
**
|
|
** This routine returns TRUE if the optimization is attempted. If any
|
|
** of the conditions above fail so that the optimization should not
|
|
** be attempted, then this routine returns FALSE.
|
|
*/
|
|
static int xferOptimization(
|
|
Parse *pParse, /* Parser context */
|
|
Table *pDest, /* The table we are inserting into */
|
|
Select *pSelect, /* A SELECT statement to use as the data source */
|
|
int onError, /* How to handle constraint errors */
|
|
int iDbDest /* The database of pDest */
|
|
){
|
|
ExprList *pEList; /* The result set of the SELECT */
|
|
Table *pSrc; /* The table in the FROM clause of SELECT */
|
|
Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
|
|
struct SrcList_item *pItem; /* An element of pSelect->pSrc */
|
|
int i; /* Loop counter */
|
|
int iDbSrc; /* The database of pSrc */
|
|
int iSrc, iDest; /* Cursors from source and destination */
|
|
int addr1, addr2; /* Loop addresses */
|
|
int emptyDestTest; /* Address of test for empty pDest */
|
|
int emptySrcTest; /* Address of test for empty pSrc */
|
|
Vdbe *v; /* The VDBE we are building */
|
|
KeyInfo *pKey; /* Key information for an index */
|
|
int regAutoinc; /* Memory register used by AUTOINC */
|
|
int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
|
|
int regData, regRowid; /* Registers holding data and rowid */
|
|
|
|
if( pSelect==0 ){
|
|
return 0; /* Must be of the form INSERT INTO ... SELECT ... */
|
|
}
|
|
if( pDest->pTrigger ){
|
|
return 0; /* tab1 must not have triggers */
|
|
}
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( pDest->isVirtual ){
|
|
return 0; /* tab1 must not be a virtual table */
|
|
}
|
|
#endif
|
|
if( onError==OE_Default ){
|
|
onError = OE_Abort;
|
|
}
|
|
if( onError!=OE_Abort && onError!=OE_Rollback ){
|
|
return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
|
|
}
|
|
assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
|
|
if( pSelect->pSrc->nSrc!=1 ){
|
|
return 0; /* FROM clause must have exactly one term */
|
|
}
|
|
if( pSelect->pSrc->a[0].pSelect ){
|
|
return 0; /* FROM clause cannot contain a subquery */
|
|
}
|
|
if( pSelect->pWhere ){
|
|
return 0; /* SELECT may not have a WHERE clause */
|
|
}
|
|
if( pSelect->pOrderBy ){
|
|
return 0; /* SELECT may not have an ORDER BY clause */
|
|
}
|
|
/* Do not need to test for a HAVING clause. If HAVING is present but
|
|
** there is no ORDER BY, we will get an error. */
|
|
if( pSelect->pGroupBy ){
|
|
return 0; /* SELECT may not have a GROUP BY clause */
|
|
}
|
|
if( pSelect->pLimit ){
|
|
return 0; /* SELECT may not have a LIMIT clause */
|
|
}
|
|
assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */
|
|
if( pSelect->pPrior ){
|
|
return 0; /* SELECT may not be a compound query */
|
|
}
|
|
if( pSelect->isDistinct ){
|
|
return 0; /* SELECT may not be DISTINCT */
|
|
}
|
|
pEList = pSelect->pEList;
|
|
assert( pEList!=0 );
|
|
if( pEList->nExpr!=1 ){
|
|
return 0; /* The result set must have exactly one column */
|
|
}
|
|
assert( pEList->a[0].pExpr );
|
|
if( pEList->a[0].pExpr->op!=TK_ALL ){
|
|
return 0; /* The result set must be the special operator "*" */
|
|
}
|
|
|
|
/* At this point we have established that the statement is of the
|
|
** correct syntactic form to participate in this optimization. Now
|
|
** we have to check the semantics.
|
|
*/
|
|
pItem = pSelect->pSrc->a;
|
|
pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
|
|
if( pSrc==0 ){
|
|
return 0; /* FROM clause does not contain a real table */
|
|
}
|
|
if( pSrc==pDest ){
|
|
return 0; /* tab1 and tab2 may not be the same table */
|
|
}
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( pSrc->isVirtual ){
|
|
return 0; /* tab2 must not be a virtual table */
|
|
}
|
|
#endif
|
|
if( pSrc->pSelect ){
|
|
return 0; /* tab2 may not be a view */
|
|
}
|
|
if( pDest->nCol!=pSrc->nCol ){
|
|
return 0; /* Number of columns must be the same in tab1 and tab2 */
|
|
}
|
|
if( pDest->iPKey!=pSrc->iPKey ){
|
|
return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
|
|
}
|
|
for(i=0; i<pDest->nCol; i++){
|
|
if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
|
|
return 0; /* Affinity must be the same on all columns */
|
|
}
|
|
if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
|
|
return 0; /* Collating sequence must be the same on all columns */
|
|
}
|
|
if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
|
|
return 0; /* tab2 must be NOT NULL if tab1 is */
|
|
}
|
|
}
|
|
for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
|
|
if( pDestIdx->onError!=OE_None ){
|
|
destHasUniqueIdx = 1;
|
|
}
|
|
for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
|
|
if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
|
|
}
|
|
if( pSrcIdx==0 ){
|
|
return 0; /* pDestIdx has no corresponding index in pSrc */
|
|
}
|
|
}
|
|
#ifndef SQLITE_OMIT_CHECK
|
|
if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
|
|
return 0; /* Tables have different CHECK constraints. Ticket #2252 */
|
|
}
|
|
#endif
|
|
|
|
/* If we get this far, it means either:
|
|
**
|
|
** * We can always do the transfer if the table contains an
|
|
** an integer primary key
|
|
**
|
|
** * We can conditionally do the transfer if the destination
|
|
** table is empty.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
sqlite3_xferopt_count++;
|
|
#endif
|
|
iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
|
|
v = sqlite3GetVdbe(pParse);
|
|
sqlite3CodeVerifySchema(pParse, iDbSrc);
|
|
iSrc = pParse->nTab++;
|
|
iDest = pParse->nTab++;
|
|
regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
|
|
sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
|
|
if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
|
|
/* If tables do not have an INTEGER PRIMARY KEY and there
|
|
** are indices to be copied and the destination is not empty,
|
|
** we have to disallow the transfer optimization because the
|
|
** the rowids might change which will mess up indexing.
|
|
**
|
|
** Or if the destination has a UNIQUE index and is not empty,
|
|
** we also disallow the transfer optimization because we cannot
|
|
** insure that all entries in the union of DEST and SRC will be
|
|
** unique.
|
|
*/
|
|
addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
|
|
emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
}else{
|
|
emptyDestTest = 0;
|
|
}
|
|
sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
|
|
emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
|
|
regData = sqlite3GetTempReg(pParse);
|
|
regRowid = sqlite3GetTempReg(pParse);
|
|
if( pDest->iPKey>=0 ){
|
|
addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
|
|
addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
|
|
sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
|
|
"PRIMARY KEY must be unique", P4_STATIC);
|
|
sqlite3VdbeJumpHere(v, addr2);
|
|
autoIncStep(pParse, regAutoinc, regRowid);
|
|
}else if( pDest->pIndex==0 ){
|
|
addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
|
|
}else{
|
|
addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
|
|
assert( pDest->autoInc==0 );
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
|
|
sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
|
|
sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
|
|
sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
|
|
autoIncEnd(pParse, iDbDest, pDest, regAutoinc);
|
|
for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
|
|
for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
|
|
if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
|
|
}
|
|
assert( pSrcIdx );
|
|
sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
|
|
sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
|
|
pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
|
|
sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc,
|
|
(char*)pKey, P4_KEYINFO_HANDOFF);
|
|
VdbeComment((v, "%s", pSrcIdx->zName));
|
|
pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
|
|
sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest,
|
|
(char*)pKey, P4_KEYINFO_HANDOFF);
|
|
VdbeComment((v, "%s", pDestIdx->zName));
|
|
addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
|
|
sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
|
|
sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
|
|
sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
}
|
|
sqlite3VdbeJumpHere(v, emptySrcTest);
|
|
sqlite3ReleaseTempReg(pParse, regRowid);
|
|
sqlite3ReleaseTempReg(pParse, regData);
|
|
sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
|
|
sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
|
|
if( emptyDestTest ){
|
|
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
|
|
sqlite3VdbeJumpHere(v, emptyDestTest);
|
|
sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
|
|
return 0;
|
|
}else{
|
|
return 1;
|
|
}
|
|
}
|
|
#endif /* SQLITE_OMIT_XFER_OPT */
|
|
|
|
/************** End of insert.c **********************************************/
|
|
/************** Begin file legacy.c ******************************************/
|
|
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** Main file for the SQLite library. The routines in this file
|
|
** implement the programmer interface to the library. Routines in
|
|
** other files are for internal use by SQLite and should not be
|
|
** accessed by users of the library.
|
|
**
|
|
** $Id: legacy.c,v 1.22 2007/08/29 12:31:26 danielk1977 Exp $
|
|
*/
|
|
|
|
|
|
/*
|
|
** Execute SQL code. Return one of the SQLITE_ success/failure
|
|
** codes. Also write an error message into memory obtained from
|
|
** malloc() and make *pzErrMsg point to that message.
|
|
**
|
|
** If the SQL is a query, then for each row in the query result
|
|
** the xCallback() function is called. pArg becomes the first
|
|
** argument to xCallback(). If xCallback=NULL then no callback
|
|
** is invoked, even for queries.
|
|
*/
|
|
SQLITE_API int sqlite3_exec(
|
|
sqlite3 *db, /* The database on which the SQL executes */
|
|
const char *zSql, /* The SQL to be executed */
|
|
sqlite3_callback xCallback, /* Invoke this callback routine */
|
|
void *pArg, /* First argument to xCallback() */
|
|
char **pzErrMsg /* Write error messages here */
|
|
){
|
|
int rc = SQLITE_OK;
|
|
const char *zLeftover;
|
|
sqlite3_stmt *pStmt = 0;
|
|
char **azCols = 0;
|
|
|
|
int nRetry = 0;
|
|
int nCallback;
|
|
|
|
if( zSql==0 ) return SQLITE_OK;
|
|
|
|
sqlite3_mutex_enter(db->mutex);
|
|
while( (rc==SQLITE_OK || (rc==SQLITE_SCHEMA && (++nRetry)<2)) && zSql[0] ){
|
|
int nCol;
|
|
char **azVals = 0;
|
|
|
|
pStmt = 0;
|
|
rc = sqlite3_prepare(db, zSql, -1, &pStmt, &zLeftover);
|
|
assert( rc==SQLITE_OK || pStmt==0 );
|
|
if( rc!=SQLITE_OK ){
|
|
continue;
|
|
}
|
|
if( !pStmt ){
|
|
/* this happens for a comment or white-space */
|
|
zSql = zLeftover;
|
|
continue;
|
|
}
|
|
|
|
nCallback = 0;
|
|
|
|
nCol = sqlite3_column_count(pStmt);
|
|
azCols = sqlite3DbMallocZero(db, 2*nCol*sizeof(const char *) + 1);
|
|
if( azCols==0 ){
|
|
goto exec_out;
|
|
}
|
|
|
|
while( 1 ){
|
|
int i;
|
|
rc = sqlite3_step(pStmt);
|
|
|
|
/* Invoke the callback function if required */
|
|
if( xCallback && (SQLITE_ROW==rc ||
|
|
(SQLITE_DONE==rc && !nCallback && db->flags&SQLITE_NullCallback)) ){
|
|
if( 0==nCallback ){
|
|
for(i=0; i<nCol; i++){
|
|
azCols[i] = (char *)sqlite3_column_name(pStmt, i);
|
|
}
|
|
nCallback++;
|
|
}
|
|
if( rc==SQLITE_ROW ){
|
|
azVals = &azCols[nCol];
|
|
for(i=0; i<nCol; i++){
|
|
azVals[i] = (char *)sqlite3_column_text(pStmt, i);
|
|
}
|
|
}
|
|
if( xCallback(pArg, nCol, azVals, azCols) ){
|
|
rc = SQLITE_ABORT;
|
|
goto exec_out;
|
|
}
|
|
}
|
|
|
|
if( rc!=SQLITE_ROW ){
|
|
rc = sqlite3_finalize(pStmt);
|
|
pStmt = 0;
|
|
if( rc!=SQLITE_SCHEMA ){
|
|
nRetry = 0;
|
|
zSql = zLeftover;
|
|
while( isspace((unsigned char)zSql[0]) ) zSql++;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
sqlite3_free(azCols);
|
|
azCols = 0;
|
|
}
|
|
|
|
exec_out:
|
|
if( pStmt ) sqlite3_finalize(pStmt);
|
|
if( azCols ) sqlite3_free(azCols);
|
|
|
|
rc = sqlite3ApiExit(db, rc);
|
|
if( rc!=SQLITE_OK && rc==sqlite3_errcode(db) && pzErrMsg ){
|
|
int nErrMsg = 1 + strlen(sqlite3_errmsg(db));
|
|
*pzErrMsg = sqlite3_malloc(nErrMsg);
|
|
if( *pzErrMsg ){
|
|
memcpy(*pzErrMsg, sqlite3_errmsg(db), nErrMsg);
|
|
}
|
|
}else if( pzErrMsg ){
|
|
*pzErrMsg = 0;
|
|
}
|
|
|
|
assert( (rc&db->errMask)==rc );
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
/************** End of legacy.c **********************************************/
|
|
/************** Begin file loadext.c *****************************************/
|
|
/*
|
|
** 2006 June 7
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains code used to dynamically load extensions into
|
|
** the SQLite library.
|
|
*/
|
|
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
|
|
|
#ifndef SQLITE_CORE
|
|
#define SQLITE_CORE 1 /* Disable the API redefinition in sqlite3ext.h */
|
|
#endif
|
|
/************** Include sqlite3ext.h in the middle of loadext.c **************/
|
|
/************** Begin file sqlite3ext.h **************************************/
|
|
/*
|
|
** 2006 June 7
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This header file defines the SQLite interface for use by
|
|
** shared libraries that want to be imported as extensions into
|
|
** an SQLite instance. Shared libraries that intend to be loaded
|
|
** as extensions by SQLite should #include this file instead of
|
|
** sqlite3.h.
|
|
**
|
|
** @(#) $Id: sqlite3ext.h,v 1.17 2007/08/31 16:11:36 drh Exp $
|
|
*/
|
|
#ifndef _SQLITE3EXT_H_
|
|
#define _SQLITE3EXT_H_
|
|
|
|
typedef struct sqlite3_api_routines sqlite3_api_routines;
|
|
|
|
/*
|
|
** The following structure hold pointers to all of the SQLite API
|
|
** routines.
|
|
**
|
|
** WARNING: In order to maintain backwards compatibility, add new
|
|
** interfaces to the end of this structure only. If you insert new
|
|
** interfaces in the middle of this structure, then older different
|
|
** versions of SQLite will not be able to load each others shared
|
|
** libraries!
|
|
*/
|
|
struct sqlite3_api_routines {
|
|
void * (*aggregate_context)(sqlite3_context*,int nBytes);
|
|
int (*aggregate_count)(sqlite3_context*);
|
|
int (*bind_blob)(sqlite3_stmt*,int,const void*,int n,void(*)(void*));
|
|
int (*bind_double)(sqlite3_stmt*,int,double);
|
|
int (*bind_int)(sqlite3_stmt*,int,int);
|
|
int (*bind_int64)(sqlite3_stmt*,int,sqlite_int64);
|
|
int (*bind_null)(sqlite3_stmt*,int);
|
|
int (*bind_parameter_count)(sqlite3_stmt*);
|
|
int (*bind_parameter_index)(sqlite3_stmt*,const char*zName);
|
|
const char * (*bind_parameter_name)(sqlite3_stmt*,int);
|
|
int (*bind_text)(sqlite3_stmt*,int,const char*,int n,void(*)(void*));
|
|
int (*bind_text16)(sqlite3_stmt*,int,const void*,int,void(*)(void*));
|
|
int (*bind_value)(sqlite3_stmt*,int,const sqlite3_value*);
|
|
int (*busy_handler)(sqlite3*,int(*)(void*,int),void*);
|
|
int (*busy_timeout)(sqlite3*,int ms);
|
|
int (*changes)(sqlite3*);
|
|
int (*close)(sqlite3*);
|
|
int (*collation_needed)(sqlite3*,void*,void(*)(void*,sqlite3*,int eTextRep,const char*));
|
|
int (*collation_needed16)(sqlite3*,void*,void(*)(void*,sqlite3*,int eTextRep,const void*));
|
|
const void * (*column_blob)(sqlite3_stmt*,int iCol);
|
|
int (*column_bytes)(sqlite3_stmt*,int iCol);
|
|
int (*column_bytes16)(sqlite3_stmt*,int iCol);
|
|
int (*column_count)(sqlite3_stmt*pStmt);
|
|
const char * (*column_database_name)(sqlite3_stmt*,int);
|
|
const void * (*column_database_name16)(sqlite3_stmt*,int);
|
|
const char * (*column_decltype)(sqlite3_stmt*,int i);
|
|
const void * (*column_decltype16)(sqlite3_stmt*,int);
|
|
double (*column_double)(sqlite3_stmt*,int iCol);
|
|
int (*column_int)(sqlite3_stmt*,int iCol);
|
|
sqlite_int64 (*column_int64)(sqlite3_stmt*,int iCol);
|
|
const char * (*column_name)(sqlite3_stmt*,int);
|
|
const void * (*column_name16)(sqlite3_stmt*,int);
|
|
const char * (*column_origin_name)(sqlite3_stmt*,int);
|
|
const void * (*column_origin_name16)(sqlite3_stmt*,int);
|
|
const char * (*column_table_name)(sqlite3_stmt*,int);
|
|
const void * (*column_table_name16)(sqlite3_stmt*,int);
|
|
const unsigned char * (*column_text)(sqlite3_stmt*,int iCol);
|
|
const void * (*column_text16)(sqlite3_stmt*,int iCol);
|
|
int (*column_type)(sqlite3_stmt*,int iCol);
|
|
sqlite3_value* (*column_value)(sqlite3_stmt*,int iCol);
|
|
void * (*commit_hook)(sqlite3*,int(*)(void*),void*);
|
|
int (*complete)(const char*sql);
|
|
int (*complete16)(const void*sql);
|
|
int (*create_collation)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*));
|
|
int (*create_collation16)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*));
|
|
int (*create_function)(sqlite3*,const char*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*));
|
|
int (*create_function16)(sqlite3*,const void*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*));
|
|
int (*create_module)(sqlite3*,const char*,const sqlite3_module*,void*);
|
|
int (*data_count)(sqlite3_stmt*pStmt);
|
|
sqlite3 * (*db_handle)(sqlite3_stmt*);
|
|
int (*declare_vtab)(sqlite3*,const char*);
|
|
int (*enable_shared_cache)(int);
|
|
int (*errcode)(sqlite3*db);
|
|
const char * (*errmsg)(sqlite3*);
|
|
const void * (*errmsg16)(sqlite3*);
|
|
int (*exec)(sqlite3*,const char*,sqlite3_callback,void*,char**);
|
|
int (*expired)(sqlite3_stmt*);
|
|
int (*finalize)(sqlite3_stmt*pStmt);
|
|
void (*free)(void*);
|
|
void (*free_table)(char**result);
|
|
int (*get_autocommit)(sqlite3*);
|
|
void * (*get_auxdata)(sqlite3_context*,int);
|
|
int (*get_table)(sqlite3*,const char*,char***,int*,int*,char**);
|
|
int (*global_recover)(void);
|
|
void (*interruptx)(sqlite3*);
|
|
sqlite_int64 (*last_insert_rowid)(sqlite3*);
|
|
const char * (*libversion)(void);
|
|
int (*libversion_number)(void);
|
|
void *(*malloc)(int);
|
|
char * (*mprintf)(const char*,...);
|
|
int (*open)(const char*,sqlite3**);
|
|
int (*open16)(const void*,sqlite3**);
|
|
int (*prepare)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
|
|
int (*prepare16)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
|
|
void * (*profile)(sqlite3*,void(*)(void*,const char*,sqlite_uint64),void*);
|
|
void (*progress_handler)(sqlite3*,int,int(*)(void*),void*);
|
|
void *(*realloc)(void*,int);
|
|
int (*reset)(sqlite3_stmt*pStmt);
|
|
void (*result_blob)(sqlite3_context*,const void*,int,void(*)(void*));
|
|
void (*result_double)(sqlite3_context*,double);
|
|
void (*result_error)(sqlite3_context*,const char*,int);
|
|
void (*result_error16)(sqlite3_context*,const void*,int);
|
|
void (*result_int)(sqlite3_context*,int);
|
|
void (*result_int64)(sqlite3_context*,sqlite_int64);
|
|
void (*result_null)(sqlite3_context*);
|
|
void (*result_text)(sqlite3_context*,const char*,int,void(*)(void*));
|
|
void (*result_text16)(sqlite3_context*,const void*,int,void(*)(void*));
|
|
void (*result_text16be)(sqlite3_context*,const void*,int,void(*)(void*));
|
|
void (*result_text16le)(sqlite3_context*,const void*,int,void(*)(void*));
|
|
void (*result_value)(sqlite3_context*,sqlite3_value*);
|
|
void * (*rollback_hook)(sqlite3*,void(*)(void*),void*);
|
|
int (*set_authorizer)(sqlite3*,int(*)(void*,int,const char*,const char*,const char*,const char*),void*);
|
|
void (*set_auxdata)(sqlite3_context*,int,void*,void (*)(void*));
|
|
char * (*snprintf)(int,char*,const char*,...);
|
|
int (*step)(sqlite3_stmt*);
|
|
int (*table_column_metadata)(sqlite3*,const char*,const char*,const char*,char const**,char const**,int*,int*,int*);
|
|
void (*thread_cleanup)(void);
|
|
int (*total_changes)(sqlite3*);
|
|
void * (*trace)(sqlite3*,void(*xTrace)(void*,const char*),void*);
|
|
int (*transfer_bindings)(sqlite3_stmt*,sqlite3_stmt*);
|
|
void * (*update_hook)(sqlite3*,void(*)(void*,int ,char const*,char const*,sqlite_int64),void*);
|
|
void * (*user_data)(sqlite3_context*);
|
|
const void * (*value_blob)(sqlite3_value*);
|
|
int (*value_bytes)(sqlite3_value*);
|
|
int (*value_bytes16)(sqlite3_value*);
|
|
double (*value_double)(sqlite3_value*);
|
|
int (*value_int)(sqlite3_value*);
|
|
sqlite_int64 (*value_int64)(sqlite3_value*);
|
|
int (*value_numeric_type)(sqlite3_value*);
|
|
const unsigned char * (*value_text)(sqlite3_value*);
|
|
const void * (*value_text16)(sqlite3_value*);
|
|
const void * (*value_text16be)(sqlite3_value*);
|
|
const void * (*value_text16le)(sqlite3_value*);
|
|
int (*value_type)(sqlite3_value*);
|
|
char *(*vmprintf)(const char*,va_list);
|
|
/* Added ??? */
|
|
int (*overload_function)(sqlite3*, const char *zFuncName, int nArg);
|
|
/* Added by 3.3.13 */
|
|
int (*prepare_v2)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
|
|
int (*prepare16_v2)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
|
|
int (*clear_bindings)(sqlite3_stmt*);
|
|
/* Added by 3.4.1 */
|
|
int (*create_module_v2)(sqlite3*,const char*,const sqlite3_module*,void*,void (*xDestroy)(void *));
|
|
/* Added by 3.5.0 */
|
|
int (*bind_zeroblob)(sqlite3_stmt*,int,int);
|
|
int (*blob_bytes)(sqlite3_blob*);
|
|
int (*blob_close)(sqlite3_blob*);
|
|
int (*blob_open)(sqlite3*,const char*,const char*,const char*,sqlite3_int64,int,sqlite3_blob**);
|
|
int (*blob_read)(sqlite3_blob*,void*,int,int);
|
|
int (*blob_write)(sqlite3_blob*,const void*,int,int);
|
|
int (*create_collation_v2)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*),void(*)(void*));
|
|
int (*file_control)(sqlite3*,const char*,int,void*);
|
|
sqlite3_int64 (*memory_highwater)(int);
|
|
sqlite3_int64 (*memory_used)(void);
|
|
sqlite3_mutex *(*mutex_alloc)(int);
|
|
void (*mutex_enter)(sqlite3_mutex*);
|
|
void (*mutex_free)(sqlite3_mutex*);
|
|
void (*mutex_leave)(sqlite3_mutex*);
|
|
int (*mutex_try)(sqlite3_mutex*);
|
|
int (*open_v2)(const char*,sqlite3**,int,const char*);
|
|
int (*release_memory)(int);
|
|
void (*result_error_nomem)(sqlite3_context*);
|
|
void (*result_error_toobig)(sqlite3_context*);
|
|
int (*sleep)(int);
|
|
void (*soft_heap_limit)(int);
|
|
sqlite3_vfs *(*vfs_find)(const char*);
|
|
int (*vfs_register)(sqlite3_vfs*,int);
|
|
int (*vfs_unregister)(sqlite3_vfs*);
|
|
};
|
|
|
|
/*
|
|
** The following macros redefine the API routines so that they are
|
|
** redirected throught the global sqlite3_api structure.
|
|
**
|
|
** This header file is also used by the loadext.c source file
|
|
** (part of the main SQLite library - not an extension) so that
|
|
** it can get access to the sqlite3_api_routines structure
|
|
** definition. But the main library does not want to redefine
|
|
** the API. So the redefinition macros are only valid if the
|
|
** SQLITE_CORE macros is undefined.
|
|
*/
|
|
#ifndef SQLITE_CORE
|
|
#define sqlite3_aggregate_context sqlite3_api->aggregate_context
|
|
#define sqlite3_aggregate_count sqlite3_api->aggregate_count
|
|
#define sqlite3_bind_blob sqlite3_api->bind_blob
|
|
#define sqlite3_bind_double sqlite3_api->bind_double
|
|
#define sqlite3_bind_int sqlite3_api->bind_int
|
|
#define sqlite3_bind_int64 sqlite3_api->bind_int64
|
|
#define sqlite3_bind_null sqlite3_api->bind_null
|
|
#define sqlite3_bind_parameter_count sqlite3_api->bind_parameter_count
|
|
#define sqlite3_bind_parameter_index sqlite3_api->bind_parameter_index
|
|
#define sqlite3_bind_parameter_name sqlite3_api->bind_parameter_name
|
|
#define sqlite3_bind_text sqlite3_api->bind_text
|
|
#define sqlite3_bind_text16 sqlite3_api->bind_text16
|
|
#define sqlite3_bind_value sqlite3_api->bind_value
|
|
#define sqlite3_busy_handler sqlite3_api->busy_handler
|
|
#define sqlite3_busy_timeout sqlite3_api->busy_timeout
|
|
#define sqlite3_changes sqlite3_api->changes
|
|
#define sqlite3_close sqlite3_api->close
|
|
#define sqlite3_collation_needed sqlite3_api->collation_needed
|
|
#define sqlite3_collation_needed16 sqlite3_api->collation_needed16
|
|
#define sqlite3_column_blob sqlite3_api->column_blob
|
|
#define sqlite3_column_bytes sqlite3_api->column_bytes
|
|
#define sqlite3_column_bytes16 sqlite3_api->column_bytes16
|
|
#define sqlite3_column_count sqlite3_api->column_count
|
|
#define sqlite3_column_database_name sqlite3_api->column_database_name
|
|
#define sqlite3_column_database_name16 sqlite3_api->column_database_name16
|
|
#define sqlite3_column_decltype sqlite3_api->column_decltype
|
|
#define sqlite3_column_decltype16 sqlite3_api->column_decltype16
|
|
#define sqlite3_column_double sqlite3_api->column_double
|
|
#define sqlite3_column_int sqlite3_api->column_int
|
|
#define sqlite3_column_int64 sqlite3_api->column_int64
|
|
#define sqlite3_column_name sqlite3_api->column_name
|
|
#define sqlite3_column_name16 sqlite3_api->column_name16
|
|
#define sqlite3_column_origin_name sqlite3_api->column_origin_name
|
|
#define sqlite3_column_origin_name16 sqlite3_api->column_origin_name16
|
|
#define sqlite3_column_table_name sqlite3_api->column_table_name
|
|
#define sqlite3_column_table_name16 sqlite3_api->column_table_name16
|
|
#define sqlite3_column_text sqlite3_api->column_text
|
|
#define sqlite3_column_text16 sqlite3_api->column_text16
|
|
#define sqlite3_column_type sqlite3_api->column_type
|
|
#define sqlite3_column_value sqlite3_api->column_value
|
|
#define sqlite3_commit_hook sqlite3_api->commit_hook
|
|
#define sqlite3_complete sqlite3_api->complete
|
|
#define sqlite3_complete16 sqlite3_api->complete16
|
|
#define sqlite3_create_collation sqlite3_api->create_collation
|
|
#define sqlite3_create_collation16 sqlite3_api->create_collation16
|
|
#define sqlite3_create_function sqlite3_api->create_function
|
|
#define sqlite3_create_function16 sqlite3_api->create_function16
|
|
#define sqlite3_create_module sqlite3_api->create_module
|
|
#define sqlite3_create_module_v2 sqlite3_api->create_module_v2
|
|
#define sqlite3_data_count sqlite3_api->data_count
|
|
#define sqlite3_db_handle sqlite3_api->db_handle
|
|
#define sqlite3_declare_vtab sqlite3_api->declare_vtab
|
|
#define sqlite3_enable_shared_cache sqlite3_api->enable_shared_cache
|
|
#define sqlite3_errcode sqlite3_api->errcode
|
|
#define sqlite3_errmsg sqlite3_api->errmsg
|
|
#define sqlite3_errmsg16 sqlite3_api->errmsg16
|
|
#define sqlite3_exec sqlite3_api->exec
|
|
#define sqlite3_expired sqlite3_api->expired
|
|
#define sqlite3_finalize sqlite3_api->finalize
|
|
#define sqlite3_free sqlite3_api->free
|
|
#define sqlite3_free_table sqlite3_api->free_table
|
|
#define sqlite3_get_autocommit sqlite3_api->get_autocommit
|
|
#define sqlite3_get_auxdata sqlite3_api->get_auxdata
|
|
#define sqlite3_get_table sqlite3_api->get_table
|
|
#define sqlite3_global_recover sqlite3_api->global_recover
|
|
#define sqlite3_interrupt sqlite3_api->interruptx
|
|
#define sqlite3_last_insert_rowid sqlite3_api->last_insert_rowid
|
|
#define sqlite3_libversion sqlite3_api->libversion
|
|
#define sqlite3_libversion_number sqlite3_api->libversion_number
|
|
#define sqlite3_malloc sqlite3_api->malloc
|
|
#define sqlite3_mprintf sqlite3_api->mprintf
|
|
#define sqlite3_open sqlite3_api->open
|
|
#define sqlite3_open16 sqlite3_api->open16
|
|
#define sqlite3_prepare sqlite3_api->prepare
|
|
#define sqlite3_prepare16 sqlite3_api->prepare16
|
|
#define sqlite3_prepare_v2 sqlite3_api->prepare_v2
|
|
#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2
|
|
#define sqlite3_profile sqlite3_api->profile
|
|
#define sqlite3_progress_handler sqlite3_api->progress_handler
|
|
#define sqlite3_realloc sqlite3_api->realloc
|
|
#define sqlite3_reset sqlite3_api->reset
|
|
#define sqlite3_result_blob sqlite3_api->result_blob
|
|
#define sqlite3_result_double sqlite3_api->result_double
|
|
#define sqlite3_result_error sqlite3_api->result_error
|
|
#define sqlite3_result_error16 sqlite3_api->result_error16
|
|
#define sqlite3_result_int sqlite3_api->result_int
|
|
#define sqlite3_result_int64 sqlite3_api->result_int64
|
|
#define sqlite3_result_null sqlite3_api->result_null
|
|
#define sqlite3_result_text sqlite3_api->result_text
|
|
#define sqlite3_result_text16 sqlite3_api->result_text16
|
|
#define sqlite3_result_text16be sqlite3_api->result_text16be
|
|
#define sqlite3_result_text16le sqlite3_api->result_text16le
|
|
#define sqlite3_result_value sqlite3_api->result_value
|
|
#define sqlite3_rollback_hook sqlite3_api->rollback_hook
|
|
#define sqlite3_set_authorizer sqlite3_api->set_authorizer
|
|
#define sqlite3_set_auxdata sqlite3_api->set_auxdata
|
|
#define sqlite3_snprintf sqlite3_api->snprintf
|
|
#define sqlite3_step sqlite3_api->step
|
|
#define sqlite3_table_column_metadata sqlite3_api->table_column_metadata
|
|
#define sqlite3_thread_cleanup sqlite3_api->thread_cleanup
|
|
#define sqlite3_total_changes sqlite3_api->total_changes
|
|
#define sqlite3_trace sqlite3_api->trace
|
|
#define sqlite3_transfer_bindings sqlite3_api->transfer_bindings
|
|
#define sqlite3_update_hook sqlite3_api->update_hook
|
|
#define sqlite3_user_data sqlite3_api->user_data
|
|
#define sqlite3_value_blob sqlite3_api->value_blob
|
|
#define sqlite3_value_bytes sqlite3_api->value_bytes
|
|
#define sqlite3_value_bytes16 sqlite3_api->value_bytes16
|
|
#define sqlite3_value_double sqlite3_api->value_double
|
|
#define sqlite3_value_int sqlite3_api->value_int
|
|
#define sqlite3_value_int64 sqlite3_api->value_int64
|
|
#define sqlite3_value_numeric_type sqlite3_api->value_numeric_type
|
|
#define sqlite3_value_text sqlite3_api->value_text
|
|
#define sqlite3_value_text16 sqlite3_api->value_text16
|
|
#define sqlite3_value_text16be sqlite3_api->value_text16be
|
|
#define sqlite3_value_text16le sqlite3_api->value_text16le
|
|
#define sqlite3_value_type sqlite3_api->value_type
|
|
#define sqlite3_vmprintf sqlite3_api->vmprintf
|
|
#define sqlite3_overload_function sqlite3_api->overload_function
|
|
#define sqlite3_prepare_v2 sqlite3_api->prepare_v2
|
|
#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2
|
|
#define sqlite3_clear_bindings sqlite3_api->clear_bindings
|
|
#define sqlite3_bind_zeroblob sqlite3_api->bind_zeroblob
|
|
#define sqlite3_blob_bytes sqlite3_api->blob_bytes
|
|
#define sqlite3_blob_close sqlite3_api->blob_close
|
|
#define sqlite3_blob_open sqlite3_api->blob_open
|
|
#define sqlite3_blob_read sqlite3_api->blob_read
|
|
#define sqlite3_blob_write sqlite3_api->blob_write
|
|
#define sqlite3_create_collation_v2 sqlite3_api->create_collation_v2
|
|
#define sqlite3_file_control sqlite3_api->file_control
|
|
#define sqlite3_memory_highwater sqlite3_api->memory_highwater
|
|
#define sqlite3_memory_used sqlite3_api->memory_used
|
|
#define sqlite3_mutex_alloc sqlite3_api->mutex_alloc
|
|
#define sqlite3_mutex_enter sqlite3_api->mutex_enter
|
|
#define sqlite3_mutex_free sqlite3_api->mutex_free
|
|
#define sqlite3_mutex_leave sqlite3_api->mutex_leave
|
|
#define sqlite3_mutex_try sqlite3_api->mutex_try
|
|
#define sqlite3_open_v2 sqlite3_api->open_v2
|
|
#define sqlite3_release_memory sqlite3_api->release_memory
|
|
#define sqlite3_result_error_nomem sqlite3_api->result_error_nomem
|
|
#define sqlite3_result_error_toobig sqlite3_api->result_error_toobig
|
|
#define sqlite3_sleep sqlite3_api->sleep
|
|
#define sqlite3_soft_heap_limit sqlite3_api->soft_heap_limit
|
|
#define sqlite3_vfs_find sqlite3_api->vfs_find
|
|
#define sqlite3_vfs_register sqlite3_api->vfs_register
|
|
#define sqlite3_vfs_unregister sqlite3_api->vfs_unregister
|
|
#endif /* SQLITE_CORE */
|
|
|
|
#define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api;
|
|
#define SQLITE_EXTENSION_INIT2(v) sqlite3_api = v;
|
|
|
|
#endif /* _SQLITE3EXT_H_ */
|
|
|
|
/************** End of sqlite3ext.h ******************************************/
|
|
/************** Continuing where we left off in loadext.c ********************/
|
|
|
|
/*
|
|
** Some API routines are omitted when various features are
|
|
** excluded from a build of SQLite. Substitute a NULL pointer
|
|
** for any missing APIs.
|
|
*/
|
|
#ifndef SQLITE_ENABLE_COLUMN_METADATA
|
|
# define sqlite3_column_database_name 0
|
|
# define sqlite3_column_database_name16 0
|
|
# define sqlite3_column_table_name 0
|
|
# define sqlite3_column_table_name16 0
|
|
# define sqlite3_column_origin_name 0
|
|
# define sqlite3_column_origin_name16 0
|
|
# define sqlite3_table_column_metadata 0
|
|
#endif
|
|
|
|
#ifdef SQLITE_OMIT_AUTHORIZATION
|
|
# define sqlite3_set_authorizer 0
|
|
#endif
|
|
|
|
#ifdef SQLITE_OMIT_UTF16
|
|
# define sqlite3_bind_text16 0
|
|
# define sqlite3_collation_needed16 0
|
|
# define sqlite3_column_decltype16 0
|
|
# define sqlite3_column_name16 0
|
|
# define sqlite3_column_text16 0
|
|
# define sqlite3_complete16 0
|
|
# define sqlite3_create_collation16 0
|
|
# define sqlite3_create_function16 0
|
|
# define sqlite3_errmsg16 0
|
|
# define sqlite3_open16 0
|
|
# define sqlite3_prepare16 0
|
|
# define sqlite3_prepare16_v2 0
|
|
# define sqlite3_result_error16 0
|
|
# define sqlite3_result_text16 0
|
|
# define sqlite3_result_text16be 0
|
|
# define sqlite3_result_text16le 0
|
|
# define sqlite3_value_text16 0
|
|
# define sqlite3_value_text16be 0
|
|
# define sqlite3_value_text16le 0
|
|
# define sqlite3_column_database_name16 0
|
|
# define sqlite3_column_table_name16 0
|
|
# define sqlite3_column_origin_name16 0
|
|
#endif
|
|
|
|
#ifdef SQLITE_OMIT_COMPLETE
|
|
# define sqlite3_complete 0
|
|
# define sqlite3_complete16 0
|
|
#endif
|
|
|
|
#ifdef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
# define sqlite3_progress_handler 0
|
|
#endif
|
|
|
|
#ifdef SQLITE_OMIT_VIRTUALTABLE
|
|
# define sqlite3_create_module 0
|
|
# define sqlite3_create_module_v2 0
|
|
# define sqlite3_declare_vtab 0
|
|
#endif
|
|
|
|
#ifdef SQLITE_OMIT_SHARED_CACHE
|
|
# define sqlite3_enable_shared_cache 0
|
|
#endif
|
|
|
|
#ifdef SQLITE_OMIT_TRACE
|
|
# define sqlite3_profile 0
|
|
# define sqlite3_trace 0
|
|
#endif
|
|
|
|
#ifdef SQLITE_OMIT_GET_TABLE
|
|
# define sqlite3_free_table 0
|
|
# define sqlite3_get_table 0
|
|
#endif
|
|
|
|
#ifdef SQLITE_OMIT_INCRBLOB
|
|
#define sqlite3_bind_zeroblob 0
|
|
#define sqlite3_blob_bytes 0
|
|
#define sqlite3_blob_close 0
|
|
#define sqlite3_blob_open 0
|
|
#define sqlite3_blob_read 0
|
|
#define sqlite3_blob_write 0
|
|
#endif
|
|
|
|
/*
|
|
** The following structure contains pointers to all SQLite API routines.
|
|
** A pointer to this structure is passed into extensions when they are
|
|
** loaded so that the extension can make calls back into the SQLite
|
|
** library.
|
|
**
|
|
** When adding new APIs, add them to the bottom of this structure
|
|
** in order to preserve backwards compatibility.
|
|
**
|
|
** Extensions that use newer APIs should first call the
|
|
** sqlite3_libversion_number() to make sure that the API they
|
|
** intend to use is supported by the library. Extensions should
|
|
** also check to make sure that the pointer to the function is
|
|
** not NULL before calling it.
|
|
*/
|
|
SQLITE_API const sqlite3_api_routines sqlite3_apis = {
|
|
sqlite3_aggregate_context,
|
|
sqlite3_aggregate_count,
|
|
sqlite3_bind_blob,
|
|
sqlite3_bind_double,
|
|
sqlite3_bind_int,
|
|
sqlite3_bind_int64,
|
|
sqlite3_bind_null,
|
|
sqlite3_bind_parameter_count,
|
|
sqlite3_bind_parameter_index,
|
|
sqlite3_bind_parameter_name,
|
|
sqlite3_bind_text,
|
|
sqlite3_bind_text16,
|
|
sqlite3_bind_value,
|
|
sqlite3_busy_handler,
|
|
sqlite3_busy_timeout,
|
|
sqlite3_changes,
|
|
sqlite3_close,
|
|
sqlite3_collation_needed,
|
|
sqlite3_collation_needed16,
|
|
sqlite3_column_blob,
|
|
sqlite3_column_bytes,
|
|
sqlite3_column_bytes16,
|
|
sqlite3_column_count,
|
|
sqlite3_column_database_name,
|
|
sqlite3_column_database_name16,
|
|
sqlite3_column_decltype,
|
|
sqlite3_column_decltype16,
|
|
sqlite3_column_double,
|
|
sqlite3_column_int,
|
|
sqlite3_column_int64,
|
|
sqlite3_column_name,
|
|
sqlite3_column_name16,
|
|
sqlite3_column_origin_name,
|
|
sqlite3_column_origin_name16,
|
|
sqlite3_column_table_name,
|
|
sqlite3_column_table_name16,
|
|
sqlite3_column_text,
|
|
sqlite3_column_text16,
|
|
sqlite3_column_type,
|
|
sqlite3_column_value,
|
|
sqlite3_commit_hook,
|
|
sqlite3_complete,
|
|
sqlite3_complete16,
|
|
sqlite3_create_collation,
|
|
sqlite3_create_collation16,
|
|
sqlite3_create_function,
|
|
sqlite3_create_function16,
|
|
sqlite3_create_module,
|
|
sqlite3_data_count,
|
|
sqlite3_db_handle,
|
|
sqlite3_declare_vtab,
|
|
sqlite3_enable_shared_cache,
|
|
sqlite3_errcode,
|
|
sqlite3_errmsg,
|
|
sqlite3_errmsg16,
|
|
sqlite3_exec,
|
|
sqlite3_expired,
|
|
sqlite3_finalize,
|
|
sqlite3_free,
|
|
sqlite3_free_table,
|
|
sqlite3_get_autocommit,
|
|
sqlite3_get_auxdata,
|
|
sqlite3_get_table,
|
|
0, /* Was sqlite3_global_recover(), but that function is deprecated */
|
|
sqlite3_interrupt,
|
|
sqlite3_last_insert_rowid,
|
|
sqlite3_libversion,
|
|
sqlite3_libversion_number,
|
|
sqlite3_malloc,
|
|
sqlite3_mprintf,
|
|
sqlite3_open,
|
|
sqlite3_open16,
|
|
sqlite3_prepare,
|
|
sqlite3_prepare16,
|
|
sqlite3_profile,
|
|
sqlite3_progress_handler,
|
|
sqlite3_realloc,
|
|
sqlite3_reset,
|
|
sqlite3_result_blob,
|
|
sqlite3_result_double,
|
|
sqlite3_result_error,
|
|
sqlite3_result_error16,
|
|
sqlite3_result_int,
|
|
sqlite3_result_int64,
|
|
sqlite3_result_null,
|
|
sqlite3_result_text,
|
|
sqlite3_result_text16,
|
|
sqlite3_result_text16be,
|
|
sqlite3_result_text16le,
|
|
sqlite3_result_value,
|
|
sqlite3_rollback_hook,
|
|
sqlite3_set_authorizer,
|
|
sqlite3_set_auxdata,
|
|
sqlite3_snprintf,
|
|
sqlite3_step,
|
|
sqlite3_table_column_metadata,
|
|
sqlite3_thread_cleanup,
|
|
sqlite3_total_changes,
|
|
sqlite3_trace,
|
|
sqlite3_transfer_bindings,
|
|
sqlite3_update_hook,
|
|
sqlite3_user_data,
|
|
sqlite3_value_blob,
|
|
sqlite3_value_bytes,
|
|
sqlite3_value_bytes16,
|
|
sqlite3_value_double,
|
|
sqlite3_value_int,
|
|
sqlite3_value_int64,
|
|
sqlite3_value_numeric_type,
|
|
sqlite3_value_text,
|
|
sqlite3_value_text16,
|
|
sqlite3_value_text16be,
|
|
sqlite3_value_text16le,
|
|
sqlite3_value_type,
|
|
sqlite3_vmprintf,
|
|
/*
|
|
** The original API set ends here. All extensions can call any
|
|
** of the APIs above provided that the pointer is not NULL. But
|
|
** before calling APIs that follow, extension should check the
|
|
** sqlite3_libversion_number() to make sure they are dealing with
|
|
** a library that is new enough to support that API.
|
|
*************************************************************************
|
|
*/
|
|
sqlite3_overload_function,
|
|
|
|
/*
|
|
** Added after 3.3.13
|
|
*/
|
|
sqlite3_prepare_v2,
|
|
sqlite3_prepare16_v2,
|
|
sqlite3_clear_bindings,
|
|
|
|
/*
|
|
** Added for 3.4.1
|
|
*/
|
|
sqlite3_create_module_v2,
|
|
|
|
/*
|
|
** Added for 3.5.0
|
|
*/
|
|
sqlite3_bind_zeroblob,
|
|
sqlite3_blob_bytes,
|
|
sqlite3_blob_close,
|
|
sqlite3_blob_open,
|
|
sqlite3_blob_read,
|
|
sqlite3_blob_write,
|
|
sqlite3_create_collation_v2,
|
|
sqlite3_file_control,
|
|
sqlite3_memory_highwater,
|
|
sqlite3_memory_used,
|
|
#ifdef SQLITE_MUTEX_NOOP
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
#else
|
|
sqlite3_mutex_alloc,
|
|
sqlite3_mutex_enter,
|
|
sqlite3_mutex_free,
|
|
sqlite3_mutex_leave,
|
|
sqlite3_mutex_try,
|
|
#endif
|
|
sqlite3_open_v2,
|
|
sqlite3_release_memory,
|
|
sqlite3_result_error_nomem,
|
|
sqlite3_result_error_toobig,
|
|
sqlite3_sleep,
|
|
sqlite3_soft_heap_limit,
|
|
sqlite3_vfs_find,
|
|
sqlite3_vfs_register,
|
|
sqlite3_vfs_unregister,
|
|
};
|
|
|
|
/*
|
|
** Attempt to load an SQLite extension library contained in the file
|
|
** zFile. The entry point is zProc. zProc may be 0 in which case a
|
|
** default entry point name (sqlite3_extension_init) is used. Use
|
|
** of the default name is recommended.
|
|
**
|
|
** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong.
|
|
**
|
|
** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with
|
|
** error message text. The calling function should free this memory
|
|
** by calling sqlite3_free().
|
|
*/
|
|
static int sqlite3LoadExtension(
|
|
sqlite3 *db, /* Load the extension into this database connection */
|
|
const char *zFile, /* Name of the shared library containing extension */
|
|
const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */
|
|
char **pzErrMsg /* Put error message here if not 0 */
|
|
){
|
|
sqlite3_vfs *pVfs = db->pVfs;
|
|
void *handle;
|
|
int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*);
|
|
char *zErrmsg = 0;
|
|
void **aHandle;
|
|
|
|
/* Ticket #1863. To avoid a creating security problems for older
|
|
** applications that relink against newer versions of SQLite, the
|
|
** ability to run load_extension is turned off by default. One
|
|
** must call sqlite3_enable_load_extension() to turn on extension
|
|
** loading. Otherwise you get the following error.
|
|
*/
|
|
if( (db->flags & SQLITE_LoadExtension)==0 ){
|
|
if( pzErrMsg ){
|
|
*pzErrMsg = sqlite3_mprintf("not authorized");
|
|
}
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
if( zProc==0 ){
|
|
zProc = "sqlite3_extension_init";
|
|
}
|
|
|
|
handle = sqlite3OsDlOpen(pVfs, zFile);
|
|
if( handle==0 ){
|
|
if( pzErrMsg ){
|
|
char zErr[256];
|
|
zErr[sizeof(zErr)-1] = '\0';
|
|
sqlite3_snprintf(sizeof(zErr)-1, zErr,
|
|
"unable to open shared library [%s]", zFile);
|
|
sqlite3OsDlError(pVfs, sizeof(zErr)-1, zErr);
|
|
*pzErrMsg = sqlite3DbStrDup(db, zErr);
|
|
}
|
|
return SQLITE_ERROR;
|
|
}
|
|
xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*))
|
|
sqlite3OsDlSym(pVfs, handle, zProc);
|
|
if( xInit==0 ){
|
|
if( pzErrMsg ){
|
|
char zErr[256];
|
|
zErr[sizeof(zErr)-1] = '\0';
|
|
sqlite3_snprintf(sizeof(zErr)-1, zErr,
|
|
"no entry point [%s] in shared library [%s]", zProc,zFile);
|
|
sqlite3OsDlError(pVfs, sizeof(zErr)-1, zErr);
|
|
*pzErrMsg = sqlite3DbStrDup(db, zErr);
|
|
sqlite3OsDlClose(pVfs, handle);
|
|
}
|
|
return SQLITE_ERROR;
|
|
}else if( xInit(db, &zErrmsg, &sqlite3_apis) ){
|
|
if( pzErrMsg ){
|
|
*pzErrMsg = sqlite3_mprintf("error during initialization: %s", zErrmsg);
|
|
}
|
|
sqlite3_free(zErrmsg);
|
|
sqlite3OsDlClose(pVfs, handle);
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
/* Append the new shared library handle to the db->aExtension array. */
|
|
db->nExtension++;
|
|
aHandle = sqlite3DbMallocZero(db, sizeof(handle)*db->nExtension);
|
|
if( aHandle==0 ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
if( db->nExtension>0 ){
|
|
memcpy(aHandle, db->aExtension, sizeof(handle)*(db->nExtension-1));
|
|
}
|
|
sqlite3_free(db->aExtension);
|
|
db->aExtension = aHandle;
|
|
|
|
db->aExtension[db->nExtension-1] = handle;
|
|
return SQLITE_OK;
|
|
}
|
|
SQLITE_API int sqlite3_load_extension(
|
|
sqlite3 *db, /* Load the extension into this database connection */
|
|
const char *zFile, /* Name of the shared library containing extension */
|
|
const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */
|
|
char **pzErrMsg /* Put error message here if not 0 */
|
|
){
|
|
int rc;
|
|
sqlite3_mutex_enter(db->mutex);
|
|
rc = sqlite3LoadExtension(db, zFile, zProc, pzErrMsg);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Call this routine when the database connection is closing in order
|
|
** to clean up loaded extensions
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3 *db){
|
|
int i;
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
for(i=0; i<db->nExtension; i++){
|
|
sqlite3OsDlClose(db->pVfs, db->aExtension[i]);
|
|
}
|
|
sqlite3_free(db->aExtension);
|
|
}
|
|
|
|
/*
|
|
** Enable or disable extension loading. Extension loading is disabled by
|
|
** default so as not to open security holes in older applications.
|
|
*/
|
|
SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff){
|
|
sqlite3_mutex_enter(db->mutex);
|
|
if( onoff ){
|
|
db->flags |= SQLITE_LoadExtension;
|
|
}else{
|
|
db->flags &= ~SQLITE_LoadExtension;
|
|
}
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** The following object holds the list of automatically loaded
|
|
** extensions.
|
|
**
|
|
** This list is shared across threads. The SQLITE_MUTEX_STATIC_MASTER
|
|
** mutex must be held while accessing this list.
|
|
*/
|
|
static struct {
|
|
int nExt; /* Number of entries in aExt[] */
|
|
void **aExt; /* Pointers to the extension init functions */
|
|
} autoext = { 0, 0 };
|
|
|
|
|
|
/*
|
|
** Register a statically linked extension that is automatically
|
|
** loaded by every new database connection.
|
|
*/
|
|
SQLITE_API int sqlite3_auto_extension(void *xInit){
|
|
int i;
|
|
int rc = SQLITE_OK;
|
|
sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
|
|
sqlite3_mutex_enter(mutex);
|
|
for(i=0; i<autoext.nExt; i++){
|
|
if( autoext.aExt[i]==xInit ) break;
|
|
}
|
|
if( i==autoext.nExt ){
|
|
int nByte = (autoext.nExt+1)*sizeof(autoext.aExt[0]);
|
|
void **aNew;
|
|
aNew = sqlite3_realloc(autoext.aExt, nByte);
|
|
if( aNew==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
autoext.aExt = aNew;
|
|
autoext.aExt[autoext.nExt] = xInit;
|
|
autoext.nExt++;
|
|
}
|
|
}
|
|
sqlite3_mutex_leave(mutex);
|
|
assert( (rc&0xff)==rc );
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Reset the automatic extension loading mechanism.
|
|
*/
|
|
SQLITE_API void sqlite3_reset_auto_extension(void){
|
|
sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
|
|
sqlite3_mutex_enter(mutex);
|
|
sqlite3_free(autoext.aExt);
|
|
autoext.aExt = 0;
|
|
autoext.nExt = 0;
|
|
sqlite3_mutex_leave(mutex);
|
|
}
|
|
|
|
/*
|
|
** Load all automatic extensions.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3AutoLoadExtensions(sqlite3 *db){
|
|
int i;
|
|
int go = 1;
|
|
int rc = SQLITE_OK;
|
|
int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*);
|
|
|
|
if( autoext.nExt==0 ){
|
|
/* Common case: early out without every having to acquire a mutex */
|
|
return SQLITE_OK;
|
|
}
|
|
for(i=0; go; i++){
|
|
char *zErrmsg = 0;
|
|
sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
|
|
sqlite3_mutex_enter(mutex);
|
|
if( i>=autoext.nExt ){
|
|
xInit = 0;
|
|
go = 0;
|
|
}else{
|
|
xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*))
|
|
autoext.aExt[i];
|
|
}
|
|
sqlite3_mutex_leave(mutex);
|
|
if( xInit && xInit(db, &zErrmsg, &sqlite3_apis) ){
|
|
sqlite3Error(db, SQLITE_ERROR,
|
|
"automatic extension loading failed: %s", zErrmsg);
|
|
go = 0;
|
|
rc = SQLITE_ERROR;
|
|
sqlite3_free(zErrmsg);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_LOAD_EXTENSION */
|
|
|
|
/************** End of loadext.c *********************************************/
|
|
/************** Begin file pragma.c ******************************************/
|
|
/*
|
|
** 2003 April 6
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains code used to implement the PRAGMA command.
|
|
**
|
|
** $Id: pragma.c,v 1.169 2008/01/22 01:48:09 drh Exp $
|
|
*/
|
|
|
|
/* Ignore this whole file if pragmas are disabled
|
|
*/
|
|
#if !defined(SQLITE_OMIT_PRAGMA) && !defined(SQLITE_OMIT_PARSER)
|
|
|
|
/*
|
|
** Interpret the given string as a safety level. Return 0 for OFF,
|
|
** 1 for ON or NORMAL and 2 for FULL. Return 1 for an empty or
|
|
** unrecognized string argument.
|
|
**
|
|
** Note that the values returned are one less that the values that
|
|
** should be passed into sqlite3BtreeSetSafetyLevel(). The is done
|
|
** to support legacy SQL code. The safety level used to be boolean
|
|
** and older scripts may have used numbers 0 for OFF and 1 for ON.
|
|
*/
|
|
static int getSafetyLevel(const char *z){
|
|
/* 123456789 123456789 */
|
|
static const char zText[] = "onoffalseyestruefull";
|
|
static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 16};
|
|
static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 4};
|
|
static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 2};
|
|
int i, n;
|
|
if( isdigit(*z) ){
|
|
return atoi(z);
|
|
}
|
|
n = strlen(z);
|
|
for(i=0; i<sizeof(iLength); i++){
|
|
if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0 ){
|
|
return iValue[i];
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Interpret the given string as a boolean value.
|
|
*/
|
|
static int getBoolean(const char *z){
|
|
return getSafetyLevel(z)&1;
|
|
}
|
|
|
|
/*
|
|
** Interpret the given string as a locking mode value.
|
|
*/
|
|
static int getLockingMode(const char *z){
|
|
if( z ){
|
|
if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
|
|
if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL;
|
|
}
|
|
return PAGER_LOCKINGMODE_QUERY;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
/*
|
|
** Interpret the given string as an auto-vacuum mode value.
|
|
**
|
|
** The following strings, "none", "full" and "incremental" are
|
|
** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively.
|
|
*/
|
|
static int getAutoVacuum(const char *z){
|
|
int i;
|
|
if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE;
|
|
if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL;
|
|
if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR;
|
|
i = atoi(z);
|
|
return ((i>=0&&i<=2)?i:0);
|
|
}
|
|
#endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
|
|
|
|
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
|
/*
|
|
** Interpret the given string as a temp db location. Return 1 for file
|
|
** backed temporary databases, 2 for the Red-Black tree in memory database
|
|
** and 0 to use the compile-time default.
|
|
*/
|
|
static int getTempStore(const char *z){
|
|
if( z[0]>='0' && z[0]<='2' ){
|
|
return z[0] - '0';
|
|
}else if( sqlite3StrICmp(z, "file")==0 ){
|
|
return 1;
|
|
}else if( sqlite3StrICmp(z, "memory")==0 ){
|
|
return 2;
|
|
}else{
|
|
return 0;
|
|
}
|
|
}
|
|
#endif /* SQLITE_PAGER_PRAGMAS */
|
|
|
|
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
|
/*
|
|
** Invalidate temp storage, either when the temp storage is changed
|
|
** from default, or when 'file' and the temp_store_directory has changed
|
|
*/
|
|
static int invalidateTempStorage(Parse *pParse){
|
|
sqlite3 *db = pParse->db;
|
|
if( db->aDb[1].pBt!=0 ){
|
|
if( !db->autoCommit ){
|
|
sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
|
|
"from within a transaction");
|
|
return SQLITE_ERROR;
|
|
}
|
|
sqlite3BtreeClose(db->aDb[1].pBt);
|
|
db->aDb[1].pBt = 0;
|
|
sqlite3ResetInternalSchema(db, 0);
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
#endif /* SQLITE_PAGER_PRAGMAS */
|
|
|
|
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
|
/*
|
|
** If the TEMP database is open, close it and mark the database schema
|
|
** as needing reloading. This must be done when using the TEMP_STORE
|
|
** or DEFAULT_TEMP_STORE pragmas.
|
|
*/
|
|
static int changeTempStorage(Parse *pParse, const char *zStorageType){
|
|
int ts = getTempStore(zStorageType);
|
|
sqlite3 *db = pParse->db;
|
|
if( db->temp_store==ts ) return SQLITE_OK;
|
|
if( invalidateTempStorage( pParse ) != SQLITE_OK ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
db->temp_store = ts;
|
|
return SQLITE_OK;
|
|
}
|
|
#endif /* SQLITE_PAGER_PRAGMAS */
|
|
|
|
/*
|
|
** Generate code to return a single integer value.
|
|
*/
|
|
static void returnSingleInt(Parse *pParse, const char *zLabel, int value){
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
int mem = ++pParse->nMem;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, value, mem);
|
|
if( pParse->explain==0 ){
|
|
sqlite3VdbeSetNumCols(v, 1);
|
|
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLabel, P4_STATIC);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, mem, 1);
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_FLAG_PRAGMAS
|
|
/*
|
|
** Check to see if zRight and zLeft refer to a pragma that queries
|
|
** or changes one of the flags in db->flags. Return 1 if so and 0 if not.
|
|
** Also, implement the pragma.
|
|
*/
|
|
static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){
|
|
static const struct sPragmaType {
|
|
const char *zName; /* Name of the pragma */
|
|
int mask; /* Mask for the db->flags value */
|
|
} aPragma[] = {
|
|
{ "full_column_names", SQLITE_FullColNames },
|
|
{ "short_column_names", SQLITE_ShortColNames },
|
|
{ "count_changes", SQLITE_CountRows },
|
|
{ "empty_result_callbacks", SQLITE_NullCallback },
|
|
{ "legacy_file_format", SQLITE_LegacyFileFmt },
|
|
{ "fullfsync", SQLITE_FullFSync },
|
|
#ifdef SQLITE_DEBUG
|
|
{ "sql_trace", SQLITE_SqlTrace },
|
|
{ "vdbe_listing", SQLITE_VdbeListing },
|
|
{ "vdbe_trace", SQLITE_VdbeTrace },
|
|
#endif
|
|
#ifndef SQLITE_OMIT_CHECK
|
|
{ "ignore_check_constraints", SQLITE_IgnoreChecks },
|
|
#endif
|
|
/* The following is VERY experimental */
|
|
{ "writable_schema", SQLITE_WriteSchema|SQLITE_RecoveryMode },
|
|
{ "omit_readlock", SQLITE_NoReadlock },
|
|
|
|
/* TODO: Maybe it shouldn't be possible to change the ReadUncommitted
|
|
** flag if there are any active statements. */
|
|
{ "read_uncommitted", SQLITE_ReadUncommitted },
|
|
};
|
|
int i;
|
|
const struct sPragmaType *p;
|
|
for(i=0, p=aPragma; i<sizeof(aPragma)/sizeof(aPragma[0]); i++, p++){
|
|
if( sqlite3StrICmp(zLeft, p->zName)==0 ){
|
|
sqlite3 *db = pParse->db;
|
|
Vdbe *v;
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
if( zRight==0 ){
|
|
returnSingleInt(pParse, p->zName, (db->flags & p->mask)!=0 );
|
|
}else{
|
|
if( getBoolean(zRight) ){
|
|
db->flags |= p->mask;
|
|
}else{
|
|
db->flags &= ~p->mask;
|
|
}
|
|
|
|
/* Many of the flag-pragmas modify the code generated by the SQL
|
|
** compiler (eg. count_changes). So add an opcode to expire all
|
|
** compiled SQL statements after modifying a pragma value.
|
|
*/
|
|
sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#endif /* SQLITE_OMIT_FLAG_PRAGMAS */
|
|
|
|
/*
|
|
** Process a pragma statement.
|
|
**
|
|
** Pragmas are of this form:
|
|
**
|
|
** PRAGMA [database.]id [= value]
|
|
**
|
|
** The identifier might also be a string. The value is a string, and
|
|
** identifier, or a number. If minusFlag is true, then the value is
|
|
** a number that was preceded by a minus sign.
|
|
**
|
|
** If the left side is "database.id" then pId1 is the database name
|
|
** and pId2 is the id. If the left side is just "id" then pId1 is the
|
|
** id and pId2 is any empty string.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3Pragma(
|
|
Parse *pParse,
|
|
Token *pId1, /* First part of [database.]id field */
|
|
Token *pId2, /* Second part of [database.]id field, or NULL */
|
|
Token *pValue, /* Token for <value>, or NULL */
|
|
int minusFlag /* True if a '-' sign preceded <value> */
|
|
){
|
|
char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */
|
|
char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */
|
|
const char *zDb = 0; /* The database name */
|
|
Token *pId; /* Pointer to <id> token */
|
|
int iDb; /* Database index for <database> */
|
|
sqlite3 *db = pParse->db;
|
|
Db *pDb;
|
|
Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(db);
|
|
if( v==0 ) return;
|
|
pParse->nMem = 2;
|
|
|
|
/* Interpret the [database.] part of the pragma statement. iDb is the
|
|
** index of the database this pragma is being applied to in db.aDb[]. */
|
|
iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
|
|
if( iDb<0 ) return;
|
|
pDb = &db->aDb[iDb];
|
|
|
|
/* If the temp database has been explicitly named as part of the
|
|
** pragma, make sure it is open.
|
|
*/
|
|
if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){
|
|
return;
|
|
}
|
|
|
|
zLeft = sqlite3NameFromToken(db, pId);
|
|
if( !zLeft ) return;
|
|
if( minusFlag ){
|
|
zRight = sqlite3MPrintf(db, "-%T", pValue);
|
|
}else{
|
|
zRight = sqlite3NameFromToken(db, pValue);
|
|
}
|
|
|
|
zDb = ((iDb>0)?pDb->zName:0);
|
|
if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
|
|
goto pragma_out;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
|
/*
|
|
** PRAGMA [database.]default_cache_size
|
|
** PRAGMA [database.]default_cache_size=N
|
|
**
|
|
** The first form reports the current persistent setting for the
|
|
** page cache size. The value returned is the maximum number of
|
|
** pages in the page cache. The second form sets both the current
|
|
** page cache size value and the persistent page cache size value
|
|
** stored in the database file.
|
|
**
|
|
** The default cache size is stored in meta-value 2 of page 1 of the
|
|
** database file. The cache size is actually the absolute value of
|
|
** this memory location. The sign of meta-value 2 determines the
|
|
** synchronous setting. A negative value means synchronous is off
|
|
** and a positive value means synchronous is on.
|
|
*/
|
|
if( sqlite3StrICmp(zLeft,"default_cache_size")==0 ){
|
|
static const VdbeOpList getCacheSize[] = {
|
|
{ OP_ReadCookie, 0, 1, 2}, /* 0 */
|
|
{ OP_IfPos, 1, 6, 0},
|
|
{ OP_Integer, 0, 2, 0},
|
|
{ OP_Subtract, 1, 2, 1},
|
|
{ OP_IfPos, 1, 6, 0},
|
|
{ OP_Integer, 0, 1, 0}, /* 5 */
|
|
{ OP_ResultRow, 1, 1, 0},
|
|
};
|
|
int addr;
|
|
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
|
|
sqlite3VdbeUsesBtree(v, iDb);
|
|
if( !zRight ){
|
|
sqlite3VdbeSetNumCols(v, 1);
|
|
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", P4_STATIC);
|
|
pParse->nMem += 2;
|
|
addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
|
|
sqlite3VdbeChangeP1(v, addr, iDb);
|
|
sqlite3VdbeChangeP1(v, addr+5, SQLITE_DEFAULT_CACHE_SIZE);
|
|
}else{
|
|
int size = atoi(zRight);
|
|
if( size<0 ) size = -size;
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, size, 1);
|
|
sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, 2, 2);
|
|
addr = sqlite3VdbeAddOp2(v, OP_IfPos, 2, 0);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, -size, 1);
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 2, 1);
|
|
pDb->pSchema->cache_size = size;
|
|
sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
|
|
}
|
|
}else
|
|
|
|
/*
|
|
** PRAGMA [database.]page_size
|
|
** PRAGMA [database.]page_size=N
|
|
**
|
|
** The first form reports the current setting for the
|
|
** database page size in bytes. The second form sets the
|
|
** database page size value. The value can only be set if
|
|
** the database has not yet been created.
|
|
*/
|
|
if( sqlite3StrICmp(zLeft,"page_size")==0 ){
|
|
Btree *pBt = pDb->pBt;
|
|
if( !zRight ){
|
|
int size = pBt ? sqlite3BtreeGetPageSize(pBt) : 0;
|
|
returnSingleInt(pParse, "page_size", size);
|
|
}else{
|
|
/* Malloc may fail when setting the page-size, as there is an internal
|
|
** buffer that the pager module resizes using sqlite3_realloc().
|
|
*/
|
|
if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, atoi(zRight), -1) ){
|
|
db->mallocFailed = 1;
|
|
}
|
|
}
|
|
}else
|
|
|
|
/*
|
|
** PRAGMA [database.]max_page_count
|
|
** PRAGMA [database.]max_page_count=N
|
|
**
|
|
** The first form reports the current setting for the
|
|
** maximum number of pages in the database file. The
|
|
** second form attempts to change this setting. Both
|
|
** forms return the current setting.
|
|
*/
|
|
if( sqlite3StrICmp(zLeft,"max_page_count")==0 ){
|
|
Btree *pBt = pDb->pBt;
|
|
int newMax = 0;
|
|
if( zRight ){
|
|
newMax = atoi(zRight);
|
|
}
|
|
if( pBt ){
|
|
newMax = sqlite3BtreeMaxPageCount(pBt, newMax);
|
|
}
|
|
returnSingleInt(pParse, "max_page_count", newMax);
|
|
}else
|
|
|
|
/*
|
|
** PRAGMA [database.]locking_mode
|
|
** PRAGMA [database.]locking_mode = (normal|exclusive)
|
|
*/
|
|
if( sqlite3StrICmp(zLeft,"locking_mode")==0 ){
|
|
const char *zRet = "normal";
|
|
int eMode = getLockingMode(zRight);
|
|
|
|
if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
|
|
/* Simple "PRAGMA locking_mode;" statement. This is a query for
|
|
** the current default locking mode (which may be different to
|
|
** the locking-mode of the main database).
|
|
*/
|
|
eMode = db->dfltLockMode;
|
|
}else{
|
|
Pager *pPager;
|
|
if( pId2->n==0 ){
|
|
/* This indicates that no database name was specified as part
|
|
** of the PRAGMA command. In this case the locking-mode must be
|
|
** set on all attached databases, as well as the main db file.
|
|
**
|
|
** Also, the sqlite3.dfltLockMode variable is set so that
|
|
** any subsequently attached databases also use the specified
|
|
** locking mode.
|
|
*/
|
|
int ii;
|
|
assert(pDb==&db->aDb[0]);
|
|
for(ii=2; ii<db->nDb; ii++){
|
|
pPager = sqlite3BtreePager(db->aDb[ii].pBt);
|
|
sqlite3PagerLockingMode(pPager, eMode);
|
|
}
|
|
db->dfltLockMode = eMode;
|
|
}
|
|
pPager = sqlite3BtreePager(pDb->pBt);
|
|
eMode = sqlite3PagerLockingMode(pPager, eMode);
|
|
}
|
|
|
|
assert(eMode==PAGER_LOCKINGMODE_NORMAL||eMode==PAGER_LOCKINGMODE_EXCLUSIVE);
|
|
if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
|
|
zRet = "exclusive";
|
|
}
|
|
sqlite3VdbeSetNumCols(v, 1);
|
|
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "locking_mode", P4_STATIC);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, zRet, 0);
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
|
|
}else
|
|
#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
|
|
|
|
/*
|
|
** PRAGMA [database.]auto_vacuum
|
|
** PRAGMA [database.]auto_vacuum=N
|
|
**
|
|
** Get or set the (boolean) value of the database 'auto-vacuum' parameter.
|
|
*/
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( sqlite3StrICmp(zLeft,"auto_vacuum")==0 ){
|
|
Btree *pBt = pDb->pBt;
|
|
if( sqlite3ReadSchema(pParse) ){
|
|
goto pragma_out;
|
|
}
|
|
if( !zRight ){
|
|
int auto_vacuum =
|
|
pBt ? sqlite3BtreeGetAutoVacuum(pBt) : SQLITE_DEFAULT_AUTOVACUUM;
|
|
returnSingleInt(pParse, "auto_vacuum", auto_vacuum);
|
|
}else{
|
|
int eAuto = getAutoVacuum(zRight);
|
|
db->nextAutovac = eAuto;
|
|
if( eAuto>=0 ){
|
|
/* Call SetAutoVacuum() to set initialize the internal auto and
|
|
** incr-vacuum flags. This is required in case this connection
|
|
** creates the database file. It is important that it is created
|
|
** as an auto-vacuum capable db.
|
|
*/
|
|
int rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
|
|
if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
|
|
/* When setting the auto_vacuum mode to either "full" or
|
|
** "incremental", write the value of meta[6] in the database
|
|
** file. Before writing to meta[6], check that meta[3] indicates
|
|
** that this really is an auto-vacuum capable database.
|
|
*/
|
|
static const VdbeOpList setMeta6[] = {
|
|
{ OP_Transaction, 0, 1, 0}, /* 0 */
|
|
{ OP_ReadCookie, 0, 1, 3}, /* 1 */
|
|
{ OP_If, 1, 0, 0}, /* 2 */
|
|
{ OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */
|
|
{ OP_Integer, 0, 1, 0}, /* 4 */
|
|
{ OP_SetCookie, 0, 6, 1}, /* 5 */
|
|
};
|
|
int iAddr;
|
|
iAddr = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6);
|
|
sqlite3VdbeChangeP1(v, iAddr, iDb);
|
|
sqlite3VdbeChangeP1(v, iAddr+1, iDb);
|
|
sqlite3VdbeChangeP2(v, iAddr+2, iAddr+4);
|
|
sqlite3VdbeChangeP1(v, iAddr+4, eAuto-1);
|
|
sqlite3VdbeChangeP1(v, iAddr+5, iDb);
|
|
sqlite3VdbeUsesBtree(v, iDb);
|
|
}
|
|
}
|
|
}
|
|
}else
|
|
#endif
|
|
|
|
/*
|
|
** PRAGMA [database.]incremental_vacuum(N)
|
|
**
|
|
** Do N steps of incremental vacuuming on a database.
|
|
*/
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( sqlite3StrICmp(zLeft,"incremental_vacuum")==0 ){
|
|
int iLimit, addr;
|
|
if( sqlite3ReadSchema(pParse) ){
|
|
goto pragma_out;
|
|
}
|
|
if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
|
|
iLimit = 0x7fffffff;
|
|
}
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
|
|
addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb);
|
|
sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
|
|
sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr);
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
}else
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
|
/*
|
|
** PRAGMA [database.]cache_size
|
|
** PRAGMA [database.]cache_size=N
|
|
**
|
|
** The first form reports the current local setting for the
|
|
** page cache size. The local setting can be different from
|
|
** the persistent cache size value that is stored in the database
|
|
** file itself. The value returned is the maximum number of
|
|
** pages in the page cache. The second form sets the local
|
|
** page cache size value. It does not change the persistent
|
|
** cache size stored on the disk so the cache size will revert
|
|
** to its default value when the database is closed and reopened.
|
|
** N should be a positive integer.
|
|
*/
|
|
if( sqlite3StrICmp(zLeft,"cache_size")==0 ){
|
|
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
|
|
if( !zRight ){
|
|
returnSingleInt(pParse, "cache_size", pDb->pSchema->cache_size);
|
|
}else{
|
|
int size = atoi(zRight);
|
|
if( size<0 ) size = -size;
|
|
pDb->pSchema->cache_size = size;
|
|
sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
|
|
}
|
|
}else
|
|
|
|
/*
|
|
** PRAGMA temp_store
|
|
** PRAGMA temp_store = "default"|"memory"|"file"
|
|
**
|
|
** Return or set the local value of the temp_store flag. Changing
|
|
** the local value does not make changes to the disk file and the default
|
|
** value will be restored the next time the database is opened.
|
|
**
|
|
** Note that it is possible for the library compile-time options to
|
|
** override this setting
|
|
*/
|
|
if( sqlite3StrICmp(zLeft, "temp_store")==0 ){
|
|
if( !zRight ){
|
|
returnSingleInt(pParse, "temp_store", db->temp_store);
|
|
}else{
|
|
changeTempStorage(pParse, zRight);
|
|
}
|
|
}else
|
|
|
|
/*
|
|
** PRAGMA temp_store_directory
|
|
** PRAGMA temp_store_directory = ""|"directory_name"
|
|
**
|
|
** Return or set the local value of the temp_store_directory flag. Changing
|
|
** the value sets a specific directory to be used for temporary files.
|
|
** Setting to a null string reverts to the default temporary directory search.
|
|
** If temporary directory is changed, then invalidateTempStorage.
|
|
**
|
|
*/
|
|
if( sqlite3StrICmp(zLeft, "temp_store_directory")==0 ){
|
|
if( !zRight ){
|
|
if( sqlite3_temp_directory ){
|
|
sqlite3VdbeSetNumCols(v, 1);
|
|
sqlite3VdbeSetColName(v, 0, COLNAME_NAME,
|
|
"temp_store_directory", P4_STATIC);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, sqlite3_temp_directory, 0);
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
|
|
}
|
|
}else{
|
|
if( zRight[0]
|
|
&& !sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE)
|
|
){
|
|
sqlite3ErrorMsg(pParse, "not a writable directory");
|
|
goto pragma_out;
|
|
}
|
|
if( TEMP_STORE==0
|
|
|| (TEMP_STORE==1 && db->temp_store<=1)
|
|
|| (TEMP_STORE==2 && db->temp_store==1)
|
|
){
|
|
invalidateTempStorage(pParse);
|
|
}
|
|
sqlite3_free(sqlite3_temp_directory);
|
|
if( zRight[0] ){
|
|
sqlite3_temp_directory = zRight;
|
|
zRight = 0;
|
|
}else{
|
|
sqlite3_temp_directory = 0;
|
|
}
|
|
}
|
|
}else
|
|
|
|
/*
|
|
** PRAGMA [database.]synchronous
|
|
** PRAGMA [database.]synchronous=OFF|ON|NORMAL|FULL
|
|
**
|
|
** Return or set the local value of the synchronous flag. Changing
|
|
** the local value does not make changes to the disk file and the
|
|
** default value will be restored the next time the database is
|
|
** opened.
|
|
*/
|
|
if( sqlite3StrICmp(zLeft,"synchronous")==0 ){
|
|
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
|
|
if( !zRight ){
|
|
returnSingleInt(pParse, "synchronous", pDb->safety_level-1);
|
|
}else{
|
|
if( !db->autoCommit ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"Safety level may not be changed inside a transaction");
|
|
}else{
|
|
pDb->safety_level = getSafetyLevel(zRight)+1;
|
|
}
|
|
}
|
|
}else
|
|
#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
|
|
|
|
#ifndef SQLITE_OMIT_FLAG_PRAGMAS
|
|
if( flagPragma(pParse, zLeft, zRight) ){
|
|
/* The flagPragma() subroutine also generates any necessary code
|
|
** there is nothing more to do here */
|
|
}else
|
|
#endif /* SQLITE_OMIT_FLAG_PRAGMAS */
|
|
|
|
#ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
|
|
/*
|
|
** PRAGMA table_info(<table>)
|
|
**
|
|
** Return a single row for each column of the named table. The columns of
|
|
** the returned data set are:
|
|
**
|
|
** cid: Column id (numbered from left to right, starting at 0)
|
|
** name: Column name
|
|
** type: Column declaration type.
|
|
** notnull: True if 'NOT NULL' is part of column declaration
|
|
** dflt_value: The default value for the column, if any.
|
|
*/
|
|
if( sqlite3StrICmp(zLeft, "table_info")==0 && zRight ){
|
|
Table *pTab;
|
|
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
|
|
pTab = sqlite3FindTable(db, zRight, zDb);
|
|
if( pTab ){
|
|
int i;
|
|
int nHidden = 0;
|
|
Column *pCol;
|
|
sqlite3VdbeSetNumCols(v, 6);
|
|
pParse->nMem = 6;
|
|
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", P4_STATIC);
|
|
sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
|
|
sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", P4_STATIC);
|
|
sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", P4_STATIC);
|
|
sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", P4_STATIC);
|
|
sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", P4_STATIC);
|
|
sqlite3ViewGetColumnNames(pParse, pTab);
|
|
for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
|
|
const Token *pDflt;
|
|
if( IsHiddenColumn(pCol) ){
|
|
nHidden++;
|
|
continue;
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Integer, i-nHidden, 1);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pCol->zName, 0);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
|
|
pCol->zType ? pCol->zType : "", 0);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, pCol->notNull, 4);
|
|
if( pCol->pDflt && (pDflt = &pCol->pDflt->span)->z ){
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, 5, 0, (char*)pDflt->z, pDflt->n);
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, 5);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Integer, pCol->isPrimKey, 6);
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6);
|
|
}
|
|
}
|
|
}else
|
|
|
|
if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){
|
|
Index *pIdx;
|
|
Table *pTab;
|
|
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
|
|
pIdx = sqlite3FindIndex(db, zRight, zDb);
|
|
if( pIdx ){
|
|
int i;
|
|
pTab = pIdx->pTable;
|
|
sqlite3VdbeSetNumCols(v, 3);
|
|
pParse->nMem = 3;
|
|
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", P4_STATIC);
|
|
sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", P4_STATIC);
|
|
sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", P4_STATIC);
|
|
for(i=0; i<pIdx->nColumn; i++){
|
|
int cnum = pIdx->aiColumn[i];
|
|
sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, cnum, 2);
|
|
assert( pTab->nCol>cnum );
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pTab->aCol[cnum].zName, 0);
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
|
|
}
|
|
}
|
|
}else
|
|
|
|
if( sqlite3StrICmp(zLeft, "index_list")==0 && zRight ){
|
|
Index *pIdx;
|
|
Table *pTab;
|
|
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
|
|
pTab = sqlite3FindTable(db, zRight, zDb);
|
|
if( pTab ){
|
|
v = sqlite3GetVdbe(pParse);
|
|
pIdx = pTab->pIndex;
|
|
if( pIdx ){
|
|
int i = 0;
|
|
sqlite3VdbeSetNumCols(v, 3);
|
|
pParse->nMem = 3;
|
|
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC);
|
|
sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
|
|
sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", P4_STATIC);
|
|
while(pIdx){
|
|
sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, pIdx->onError!=OE_None, 3);
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
|
|
++i;
|
|
pIdx = pIdx->pNext;
|
|
}
|
|
}
|
|
}
|
|
}else
|
|
|
|
if( sqlite3StrICmp(zLeft, "database_list")==0 ){
|
|
int i;
|
|
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
|
|
sqlite3VdbeSetNumCols(v, 3);
|
|
pParse->nMem = 3;
|
|
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC);
|
|
sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
|
|
sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "file", P4_STATIC);
|
|
for(i=0; i<db->nDb; i++){
|
|
if( db->aDb[i].pBt==0 ) continue;
|
|
assert( db->aDb[i].zName!=0 );
|
|
sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, db->aDb[i].zName, 0);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
|
|
sqlite3BtreeGetFilename(db->aDb[i].pBt), 0);
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
|
|
}
|
|
}else
|
|
|
|
if( sqlite3StrICmp(zLeft, "collation_list")==0 ){
|
|
int i = 0;
|
|
HashElem *p;
|
|
sqlite3VdbeSetNumCols(v, 2);
|
|
pParse->nMem = 2;
|
|
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC);
|
|
sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
|
|
for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
|
|
CollSeq *pColl = (CollSeq *)sqliteHashData(p);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, i++, 1);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pColl->zName, 0);
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2);
|
|
}
|
|
}else
|
|
#endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
|
|
|
|
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
if( sqlite3StrICmp(zLeft, "foreign_key_list")==0 && zRight ){
|
|
FKey *pFK;
|
|
Table *pTab;
|
|
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
|
|
pTab = sqlite3FindTable(db, zRight, zDb);
|
|
if( pTab ){
|
|
v = sqlite3GetVdbe(pParse);
|
|
pFK = pTab->pFKey;
|
|
if( pFK ){
|
|
int i = 0;
|
|
sqlite3VdbeSetNumCols(v, 5);
|
|
pParse->nMem = 5;
|
|
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", P4_STATIC);
|
|
sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", P4_STATIC);
|
|
sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", P4_STATIC);
|
|
sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", P4_STATIC);
|
|
sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", P4_STATIC);
|
|
while(pFK){
|
|
int j;
|
|
for(j=0; j<pFK->nCol; j++){
|
|
char *zCol = pFK->aCol[j].zCol;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, j, 2);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pFK->zTo, 0);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0,
|
|
pTab->aCol[pFK->aCol[j].iFrom].zName, 0);
|
|
sqlite3VdbeAddOp4(v, zCol ? OP_String8 : OP_Null, 0, 5, 0, zCol, 0);
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5);
|
|
}
|
|
++i;
|
|
pFK = pFK->pNextFrom;
|
|
}
|
|
}
|
|
}
|
|
}else
|
|
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
|
|
|
|
#ifndef NDEBUG
|
|
if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){
|
|
if( zRight ){
|
|
if( getBoolean(zRight) ){
|
|
sqlite3ParserTrace(stderr, "parser: ");
|
|
}else{
|
|
sqlite3ParserTrace(0, 0);
|
|
}
|
|
}
|
|
}else
|
|
#endif
|
|
|
|
/* Reinstall the LIKE and GLOB functions. The variant of LIKE
|
|
** used will be case sensitive or not depending on the RHS.
|
|
*/
|
|
if( sqlite3StrICmp(zLeft, "case_sensitive_like")==0 ){
|
|
if( zRight ){
|
|
sqlite3RegisterLikeFunctions(db, getBoolean(zRight));
|
|
}
|
|
}else
|
|
|
|
#ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
|
|
# define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
|
|
/* Pragma "quick_check" is an experimental reduced version of
|
|
** integrity_check designed to detect most database corruption
|
|
** without most of the overhead of a full integrity-check.
|
|
*/
|
|
if( sqlite3StrICmp(zLeft, "integrity_check")==0
|
|
|| sqlite3StrICmp(zLeft, "quick_check")==0
|
|
){
|
|
int i, j, addr, mxErr;
|
|
|
|
/* Code that appears at the end of the integrity check. If no error
|
|
** messages have been generated, output OK. Otherwise output the
|
|
** error message
|
|
*/
|
|
static const VdbeOpList endCode[] = {
|
|
{ OP_AddImm, 1, 0, 0}, /* 0 */
|
|
{ OP_IfNeg, 1, 0, 0}, /* 1 */
|
|
{ OP_String8, 0, 3, 0}, /* 2 */
|
|
{ OP_ResultRow, 3, 1, 0},
|
|
};
|
|
|
|
int isQuick = (zLeft[0]=='q');
|
|
|
|
/* Initialize the VDBE program */
|
|
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
|
|
pParse->nMem = 6;
|
|
sqlite3VdbeSetNumCols(v, 1);
|
|
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "integrity_check", P4_STATIC);
|
|
|
|
/* Set the maximum error count */
|
|
mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
|
|
if( zRight ){
|
|
mxErr = atoi(zRight);
|
|
if( mxErr<=0 ){
|
|
mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
|
|
}
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Integer, mxErr, 1); /* reg[1] holds errors left */
|
|
|
|
/* Do an integrity check on each database file */
|
|
for(i=0; i<db->nDb; i++){
|
|
HashElem *x;
|
|
Hash *pTbls;
|
|
int cnt = 0;
|
|
|
|
if( OMIT_TEMPDB && i==1 ) continue;
|
|
|
|
sqlite3CodeVerifySchema(pParse, i);
|
|
addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */
|
|
sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
|
|
/* Do an integrity check of the B-Tree
|
|
**
|
|
** Begin by filling registers 2, 3, ... with the root pages numbers
|
|
** for all tables and indices in the database.
|
|
*/
|
|
pTbls = &db->aDb[i].pSchema->tblHash;
|
|
for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
|
|
Table *pTab = sqliteHashData(x);
|
|
Index *pIdx;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, pTab->tnum, 2+cnt);
|
|
cnt++;
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 2+cnt);
|
|
cnt++;
|
|
}
|
|
}
|
|
if( cnt==0 ) continue;
|
|
|
|
/* Make sure sufficient number of registers have been allocated */
|
|
if( pParse->nMem < cnt+3 ){
|
|
pParse->nMem = cnt+3;
|
|
}
|
|
|
|
/* Do the b-tree integrity checks */
|
|
sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1);
|
|
sqlite3VdbeChangeP5(v, i);
|
|
addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
|
|
sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName),
|
|
P4_DYNAMIC);
|
|
sqlite3VdbeAddOp3(v, OP_Concat, 2, 3, 2);
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1);
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
|
|
/* Make sure all the indices are constructed correctly.
|
|
*/
|
|
for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){
|
|
Table *pTab = sqliteHashData(x);
|
|
Index *pIdx;
|
|
int loopTop;
|
|
|
|
if( pTab->pIndex==0 ) continue;
|
|
addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Stop if out of errors */
|
|
sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, 2); /* reg(2) will count entries */
|
|
loopTop = sqlite3VdbeAddOp2(v, OP_Rewind, 1, 0);
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, 2, 1); /* increment entry count */
|
|
for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
|
|
int jmp2;
|
|
static const VdbeOpList idxErr[] = {
|
|
{ OP_AddImm, 1, -1, 0},
|
|
{ OP_String8, 0, 3, 0}, /* 1 */
|
|
{ OP_Rowid, 1, 4, 0},
|
|
{ OP_String8, 0, 5, 0}, /* 3 */
|
|
{ OP_String8, 0, 6, 0}, /* 4 */
|
|
{ OP_Concat, 4, 3, 3},
|
|
{ OP_Concat, 5, 3, 3},
|
|
{ OP_Concat, 6, 3, 3},
|
|
{ OP_ResultRow, 3, 1, 0},
|
|
};
|
|
sqlite3GenerateIndexKey(pParse, pIdx, 1, 3);
|
|
jmp2 = sqlite3VdbeAddOp3(v, OP_Found, j+2, 0, 3);
|
|
addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr);
|
|
sqlite3VdbeChangeP4(v, addr+1, "rowid ", P4_STATIC);
|
|
sqlite3VdbeChangeP4(v, addr+3, " missing from index ", P4_STATIC);
|
|
sqlite3VdbeChangeP4(v, addr+4, pIdx->zName, P4_STATIC);
|
|
sqlite3VdbeJumpHere(v, jmp2);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Next, 1, loopTop+1);
|
|
sqlite3VdbeJumpHere(v, loopTop);
|
|
for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
|
|
static const VdbeOpList cntIdx[] = {
|
|
{ OP_Integer, 0, 3, 0},
|
|
{ OP_Rewind, 0, 0, 0}, /* 1 */
|
|
{ OP_AddImm, 3, 1, 0},
|
|
{ OP_Next, 0, 0, 0}, /* 3 */
|
|
{ OP_Eq, 2, 0, 3}, /* 4 */
|
|
{ OP_AddImm, 1, -1, 0},
|
|
{ OP_String8, 0, 2, 0}, /* 6 */
|
|
{ OP_String8, 0, 3, 0}, /* 7 */
|
|
{ OP_Concat, 3, 2, 2},
|
|
{ OP_ResultRow, 2, 1, 0},
|
|
};
|
|
if( pIdx->tnum==0 ) continue;
|
|
addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1);
|
|
sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
addr = sqlite3VdbeAddOpList(v, ArraySize(cntIdx), cntIdx);
|
|
sqlite3VdbeChangeP1(v, addr+1, j+2);
|
|
sqlite3VdbeChangeP2(v, addr+1, addr+4);
|
|
sqlite3VdbeChangeP1(v, addr+3, j+2);
|
|
sqlite3VdbeChangeP2(v, addr+3, addr+2);
|
|
sqlite3VdbeJumpHere(v, addr+4);
|
|
sqlite3VdbeChangeP4(v, addr+6,
|
|
"wrong # of entries in index ", P4_STATIC);
|
|
sqlite3VdbeChangeP4(v, addr+7, pIdx->zName, P4_STATIC);
|
|
}
|
|
}
|
|
}
|
|
addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode);
|
|
sqlite3VdbeChangeP2(v, addr, -mxErr);
|
|
sqlite3VdbeJumpHere(v, addr+1);
|
|
sqlite3VdbeChangeP4(v, addr+2, "ok", P4_STATIC);
|
|
}else
|
|
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
|
|
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
/*
|
|
** PRAGMA encoding
|
|
** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
|
|
**
|
|
** In its first form, this pragma returns the encoding of the main
|
|
** database. If the database is not initialized, it is initialized now.
|
|
**
|
|
** The second form of this pragma is a no-op if the main database file
|
|
** has not already been initialized. In this case it sets the default
|
|
** encoding that will be used for the main database file if a new file
|
|
** is created. If an existing main database file is opened, then the
|
|
** default text encoding for the existing database is used.
|
|
**
|
|
** In all cases new databases created using the ATTACH command are
|
|
** created to use the same default text encoding as the main database. If
|
|
** the main database has not been initialized and/or created when ATTACH
|
|
** is executed, this is done before the ATTACH operation.
|
|
**
|
|
** In the second form this pragma sets the text encoding to be used in
|
|
** new database files created using this database handle. It is only
|
|
** useful if invoked immediately after the main database i
|
|
*/
|
|
if( sqlite3StrICmp(zLeft, "encoding")==0 ){
|
|
static const struct EncName {
|
|
char *zName;
|
|
u8 enc;
|
|
} encnames[] = {
|
|
{ "UTF-8", SQLITE_UTF8 },
|
|
{ "UTF8", SQLITE_UTF8 },
|
|
{ "UTF-16le", SQLITE_UTF16LE },
|
|
{ "UTF16le", SQLITE_UTF16LE },
|
|
{ "UTF-16be", SQLITE_UTF16BE },
|
|
{ "UTF16be", SQLITE_UTF16BE },
|
|
{ "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */
|
|
{ "UTF16", 0 }, /* SQLITE_UTF16NATIVE */
|
|
{ 0, 0 }
|
|
};
|
|
const struct EncName *pEnc;
|
|
if( !zRight ){ /* "PRAGMA encoding" */
|
|
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
|
|
sqlite3VdbeSetNumCols(v, 1);
|
|
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "encoding", P4_STATIC);
|
|
sqlite3VdbeAddOp2(v, OP_String8, 0, 1);
|
|
for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
|
|
if( pEnc->enc==ENC(pParse->db) ){
|
|
sqlite3VdbeChangeP4(v, -1, pEnc->zName, P4_STATIC);
|
|
break;
|
|
}
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
|
|
}else{ /* "PRAGMA encoding = XXX" */
|
|
/* Only change the value of sqlite.enc if the database handle is not
|
|
** initialized. If the main database exists, the new sqlite.enc value
|
|
** will be overwritten when the schema is next loaded. If it does not
|
|
** already exists, it will be created to use the new encoding value.
|
|
*/
|
|
if(
|
|
!(DbHasProperty(db, 0, DB_SchemaLoaded)) ||
|
|
DbHasProperty(db, 0, DB_Empty)
|
|
){
|
|
for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
|
|
if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
|
|
ENC(pParse->db) = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
|
|
break;
|
|
}
|
|
}
|
|
if( !pEnc->zName ){
|
|
sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
|
|
}
|
|
}
|
|
}
|
|
}else
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
|
|
#ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
|
|
/*
|
|
** PRAGMA [database.]schema_version
|
|
** PRAGMA [database.]schema_version = <integer>
|
|
**
|
|
** PRAGMA [database.]user_version
|
|
** PRAGMA [database.]user_version = <integer>
|
|
**
|
|
** The pragma's schema_version and user_version are used to set or get
|
|
** the value of the schema-version and user-version, respectively. Both
|
|
** the schema-version and the user-version are 32-bit signed integers
|
|
** stored in the database header.
|
|
**
|
|
** The schema-cookie is usually only manipulated internally by SQLite. It
|
|
** is incremented by SQLite whenever the database schema is modified (by
|
|
** creating or dropping a table or index). The schema version is used by
|
|
** SQLite each time a query is executed to ensure that the internal cache
|
|
** of the schema used when compiling the SQL query matches the schema of
|
|
** the database against which the compiled query is actually executed.
|
|
** Subverting this mechanism by using "PRAGMA schema_version" to modify
|
|
** the schema-version is potentially dangerous and may lead to program
|
|
** crashes or database corruption. Use with caution!
|
|
**
|
|
** The user-version is not used internally by SQLite. It may be used by
|
|
** applications for any purpose.
|
|
*/
|
|
if( sqlite3StrICmp(zLeft, "schema_version")==0
|
|
|| sqlite3StrICmp(zLeft, "user_version")==0
|
|
|| sqlite3StrICmp(zLeft, "freelist_count")==0
|
|
){
|
|
|
|
int iCookie; /* Cookie index. 0 for schema-cookie, 6 for user-cookie. */
|
|
sqlite3VdbeUsesBtree(v, iDb);
|
|
switch( zLeft[0] ){
|
|
case 's': case 'S':
|
|
iCookie = 0;
|
|
break;
|
|
case 'f': case 'F':
|
|
iCookie = 1;
|
|
iDb = (-1*(iDb+1));
|
|
assert(iDb<=0);
|
|
break;
|
|
default:
|
|
iCookie = 5;
|
|
break;
|
|
}
|
|
|
|
if( zRight && iDb>=0 ){
|
|
/* Write the specified cookie value */
|
|
static const VdbeOpList setCookie[] = {
|
|
{ OP_Transaction, 0, 1, 0}, /* 0 */
|
|
{ OP_Integer, 0, 1, 0}, /* 1 */
|
|
{ OP_SetCookie, 0, 0, 1}, /* 2 */
|
|
};
|
|
int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie);
|
|
sqlite3VdbeChangeP1(v, addr, iDb);
|
|
sqlite3VdbeChangeP1(v, addr+1, atoi(zRight));
|
|
sqlite3VdbeChangeP1(v, addr+2, iDb);
|
|
sqlite3VdbeChangeP2(v, addr+2, iCookie);
|
|
}else{
|
|
/* Read the specified cookie value */
|
|
static const VdbeOpList readCookie[] = {
|
|
{ OP_ReadCookie, 0, 1, 0}, /* 0 */
|
|
{ OP_ResultRow, 1, 1, 0}
|
|
};
|
|
int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie);
|
|
sqlite3VdbeChangeP1(v, addr, iDb);
|
|
sqlite3VdbeChangeP3(v, addr, iCookie);
|
|
sqlite3VdbeSetNumCols(v, 1);
|
|
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, P4_TRANSIENT);
|
|
}
|
|
}else
|
|
#endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
|
|
|
|
#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
|
|
/*
|
|
** Report the current state of file logs for all databases
|
|
*/
|
|
if( sqlite3StrICmp(zLeft, "lock_status")==0 ){
|
|
static const char *const azLockName[] = {
|
|
"unlocked", "shared", "reserved", "pending", "exclusive"
|
|
};
|
|
int i;
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
sqlite3VdbeSetNumCols(v, 2);
|
|
pParse->nMem = 2;
|
|
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "database", P4_STATIC);
|
|
sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "status", P4_STATIC);
|
|
for(i=0; i<db->nDb; i++){
|
|
Btree *pBt;
|
|
Pager *pPager;
|
|
const char *zState = "unknown";
|
|
int j;
|
|
if( db->aDb[i].zName==0 ) continue;
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, db->aDb[i].zName, P4_STATIC);
|
|
pBt = db->aDb[i].pBt;
|
|
if( pBt==0 || (pPager = sqlite3BtreePager(pBt))==0 ){
|
|
zState = "closed";
|
|
}else if( sqlite3_file_control(db, i ? db->aDb[i].zName : 0,
|
|
SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
|
|
zState = azLockName[j];
|
|
}
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, zState, P4_STATIC);
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2);
|
|
}
|
|
}else
|
|
#endif
|
|
|
|
#ifdef SQLITE_SSE
|
|
/*
|
|
** Check to see if the sqlite_statements table exists. Create it
|
|
** if it does not.
|
|
*/
|
|
if( sqlite3StrICmp(zLeft, "create_sqlite_statement_table")==0 ){
|
|
extern int sqlite3CreateStatementsTable(Parse*);
|
|
sqlite3CreateStatementsTable(pParse);
|
|
}else
|
|
#endif
|
|
|
|
#if SQLITE_HAS_CODEC
|
|
if( sqlite3StrICmp(zLeft, "key")==0 ){
|
|
sqlite3_key(db, zRight, strlen(zRight));
|
|
}else
|
|
#endif
|
|
#if SQLITE_HAS_CODEC || defined(SQLITE_ENABLE_CEROD)
|
|
if( sqlite3StrICmp(zLeft, "activate_extensions")==0 ){
|
|
#if SQLITE_HAS_CODEC
|
|
if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){
|
|
extern void sqlite3_activate_see(const char*);
|
|
sqlite3_activate_see(&zRight[4]);
|
|
}
|
|
#endif
|
|
#ifdef SQLITE_ENABLE_CEROD
|
|
if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
|
|
extern void sqlite3_activate_cerod(const char*);
|
|
sqlite3_activate_cerod(&zRight[6]);
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
{}
|
|
|
|
if( v ){
|
|
/* Code an OP_Expire at the end of each PRAGMA program to cause
|
|
** the VDBE implementing the pragma to expire. Most (all?) pragmas
|
|
** are only valid for a single execution.
|
|
*/
|
|
sqlite3VdbeAddOp2(v, OP_Expire, 1, 0);
|
|
|
|
/*
|
|
** Reset the safety level, in case the fullfsync flag or synchronous
|
|
** setting changed.
|
|
*/
|
|
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
|
if( db->autoCommit ){
|
|
sqlite3BtreeSetSafetyLevel(pDb->pBt, pDb->safety_level,
|
|
(db->flags&SQLITE_FullFSync)!=0);
|
|
}
|
|
#endif
|
|
}
|
|
pragma_out:
|
|
sqlite3_free(zLeft);
|
|
sqlite3_free(zRight);
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_PRAGMA || SQLITE_OMIT_PARSER */
|
|
|
|
/************** End of pragma.c **********************************************/
|
|
/************** Begin file prepare.c *****************************************/
|
|
/*
|
|
** 2005 May 25
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains the implementation of the sqlite3_prepare()
|
|
** interface, and routines that contribute to loading the database schema
|
|
** from disk.
|
|
**
|
|
** $Id: prepare.c,v 1.75 2008/01/23 03:03:05 drh Exp $
|
|
*/
|
|
|
|
/*
|
|
** Fill the InitData structure with an error message that indicates
|
|
** that the database is corrupt.
|
|
*/
|
|
static void corruptSchema(InitData *pData, const char *zExtra){
|
|
if( !pData->db->mallocFailed ){
|
|
sqlite3SetString(pData->pzErrMsg, "malformed database schema",
|
|
zExtra!=0 && zExtra[0]!=0 ? " - " : (char*)0, zExtra, (char*)0);
|
|
}
|
|
pData->rc = SQLITE_CORRUPT;
|
|
}
|
|
|
|
/*
|
|
** This is the callback routine for the code that initializes the
|
|
** database. See sqlite3Init() below for additional information.
|
|
** This routine is also called from the OP_ParseSchema opcode of the VDBE.
|
|
**
|
|
** Each callback contains the following information:
|
|
**
|
|
** argv[0] = name of thing being created
|
|
** argv[1] = root page number for table or index. 0 for trigger or view.
|
|
** argv[2] = SQL text for the CREATE statement.
|
|
**
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3InitCallback(void *pInit, int argc, char **argv, char **azColName){
|
|
InitData *pData = (InitData*)pInit;
|
|
sqlite3 *db = pData->db;
|
|
int iDb = pData->iDb;
|
|
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
pData->rc = SQLITE_OK;
|
|
DbClearProperty(db, iDb, DB_Empty);
|
|
if( db->mallocFailed ){
|
|
corruptSchema(pData, 0);
|
|
return SQLITE_NOMEM;
|
|
}
|
|
|
|
assert( argc==3 );
|
|
if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */
|
|
if( argv[1]==0 ){
|
|
corruptSchema(pData, 0);
|
|
return 1;
|
|
}
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
if( argv[2] && argv[2][0] ){
|
|
/* Call the parser to process a CREATE TABLE, INDEX or VIEW.
|
|
** But because db->init.busy is set to 1, no VDBE code is generated
|
|
** or executed. All the parser does is build the internal data
|
|
** structures that describe the table, index, or view.
|
|
*/
|
|
char *zErr;
|
|
int rc;
|
|
assert( db->init.busy );
|
|
db->init.iDb = iDb;
|
|
db->init.newTnum = atoi(argv[1]);
|
|
rc = sqlite3_exec(db, argv[2], 0, 0, &zErr);
|
|
db->init.iDb = 0;
|
|
assert( rc!=SQLITE_OK || zErr==0 );
|
|
if( SQLITE_OK!=rc ){
|
|
pData->rc = rc;
|
|
if( rc==SQLITE_NOMEM ){
|
|
db->mallocFailed = 1;
|
|
}else if( rc!=SQLITE_INTERRUPT ){
|
|
corruptSchema(pData, zErr);
|
|
}
|
|
sqlite3_free(zErr);
|
|
return 1;
|
|
}
|
|
}else if( argv[0]==0 ){
|
|
corruptSchema(pData, 0);
|
|
}else{
|
|
/* If the SQL column is blank it means this is an index that
|
|
** was created to be the PRIMARY KEY or to fulfill a UNIQUE
|
|
** constraint for a CREATE TABLE. The index should have already
|
|
** been created when we processed the CREATE TABLE. All we have
|
|
** to do here is record the root page number for that index.
|
|
*/
|
|
Index *pIndex;
|
|
pIndex = sqlite3FindIndex(db, argv[0], db->aDb[iDb].zName);
|
|
if( pIndex==0 || pIndex->tnum!=0 ){
|
|
/* This can occur if there exists an index on a TEMP table which
|
|
** has the same name as another index on a permanent index. Since
|
|
** the permanent table is hidden by the TEMP table, we can also
|
|
** safely ignore the index on the permanent table.
|
|
*/
|
|
/* Do Nothing */;
|
|
}else{
|
|
pIndex->tnum = atoi(argv[1]);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Attempt to read the database schema and initialize internal
|
|
** data structures for a single database file. The index of the
|
|
** database file is given by iDb. iDb==0 is used for the main
|
|
** database. iDb==1 should never be used. iDb>=2 is used for
|
|
** auxiliary databases. Return one of the SQLITE_ error codes to
|
|
** indicate success or failure.
|
|
*/
|
|
static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
|
|
int rc;
|
|
BtCursor *curMain;
|
|
int size;
|
|
Table *pTab;
|
|
Db *pDb;
|
|
char const *azArg[4];
|
|
int meta[10];
|
|
InitData initData;
|
|
char const *zMasterSchema;
|
|
char const *zMasterName = SCHEMA_TABLE(iDb);
|
|
|
|
/*
|
|
** The master database table has a structure like this
|
|
*/
|
|
static const char master_schema[] =
|
|
"CREATE TABLE sqlite_master(\n"
|
|
" type text,\n"
|
|
" name text,\n"
|
|
" tbl_name text,\n"
|
|
" rootpage integer,\n"
|
|
" sql text\n"
|
|
")"
|
|
;
|
|
#ifndef SQLITE_OMIT_TEMPDB
|
|
static const char temp_master_schema[] =
|
|
"CREATE TEMP TABLE sqlite_temp_master(\n"
|
|
" type text,\n"
|
|
" name text,\n"
|
|
" tbl_name text,\n"
|
|
" rootpage integer,\n"
|
|
" sql text\n"
|
|
")"
|
|
;
|
|
#else
|
|
#define temp_master_schema 0
|
|
#endif
|
|
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
assert( db->aDb[iDb].pSchema );
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
|
|
|
|
/* zMasterSchema and zInitScript are set to point at the master schema
|
|
** and initialisation script appropriate for the database being
|
|
** initialised. zMasterName is the name of the master table.
|
|
*/
|
|
if( !OMIT_TEMPDB && iDb==1 ){
|
|
zMasterSchema = temp_master_schema;
|
|
}else{
|
|
zMasterSchema = master_schema;
|
|
}
|
|
zMasterName = SCHEMA_TABLE(iDb);
|
|
|
|
/* Construct the schema tables. */
|
|
azArg[0] = zMasterName;
|
|
azArg[1] = "1";
|
|
azArg[2] = zMasterSchema;
|
|
azArg[3] = 0;
|
|
initData.db = db;
|
|
initData.iDb = iDb;
|
|
initData.pzErrMsg = pzErrMsg;
|
|
(void)sqlite3SafetyOff(db);
|
|
rc = sqlite3InitCallback(&initData, 3, (char **)azArg, 0);
|
|
(void)sqlite3SafetyOn(db);
|
|
if( rc ){
|
|
rc = initData.rc;
|
|
goto error_out;
|
|
}
|
|
pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName);
|
|
if( pTab ){
|
|
pTab->readOnly = 1;
|
|
}
|
|
|
|
/* Create a cursor to hold the database open
|
|
*/
|
|
pDb = &db->aDb[iDb];
|
|
if( pDb->pBt==0 ){
|
|
if( !OMIT_TEMPDB && iDb==1 ){
|
|
DbSetProperty(db, 1, DB_SchemaLoaded);
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
sqlite3BtreeEnter(pDb->pBt);
|
|
rc = sqlite3BtreeCursor(pDb->pBt, MASTER_ROOT, 0, 0, 0, &curMain);
|
|
if( rc!=SQLITE_OK && rc!=SQLITE_EMPTY ){
|
|
sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0);
|
|
sqlite3BtreeLeave(pDb->pBt);
|
|
goto error_out;
|
|
}
|
|
|
|
/* Get the database meta information.
|
|
**
|
|
** Meta values are as follows:
|
|
** meta[0] Schema cookie. Changes with each schema change.
|
|
** meta[1] File format of schema layer.
|
|
** meta[2] Size of the page cache.
|
|
** meta[3] Use freelist if 0. Autovacuum if greater than zero.
|
|
** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE
|
|
** meta[5] The user cookie. Used by the application.
|
|
** meta[6] Incremental-vacuum flag.
|
|
** meta[7]
|
|
** meta[8]
|
|
** meta[9]
|
|
**
|
|
** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
|
|
** the possible values of meta[4].
|
|
*/
|
|
if( rc==SQLITE_OK ){
|
|
int i;
|
|
for(i=0; rc==SQLITE_OK && i<sizeof(meta)/sizeof(meta[0]); i++){
|
|
rc = sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);
|
|
}
|
|
if( rc ){
|
|
sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0);
|
|
sqlite3BtreeCloseCursor(curMain);
|
|
sqlite3BtreeLeave(pDb->pBt);
|
|
goto error_out;
|
|
}
|
|
}else{
|
|
memset(meta, 0, sizeof(meta));
|
|
}
|
|
pDb->pSchema->schema_cookie = meta[0];
|
|
|
|
/* If opening a non-empty database, check the text encoding. For the
|
|
** main database, set sqlite3.enc to the encoding of the main database.
|
|
** For an attached db, it is an error if the encoding is not the same
|
|
** as sqlite3.enc.
|
|
*/
|
|
if( meta[4] ){ /* text encoding */
|
|
if( iDb==0 ){
|
|
/* If opening the main database, set ENC(db). */
|
|
ENC(db) = (u8)meta[4];
|
|
db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0);
|
|
}else{
|
|
/* If opening an attached database, the encoding much match ENC(db) */
|
|
if( meta[4]!=ENC(db) ){
|
|
sqlite3BtreeCloseCursor(curMain);
|
|
sqlite3SetString(pzErrMsg, "attached databases must use the same"
|
|
" text encoding as main database", (char*)0);
|
|
sqlite3BtreeLeave(pDb->pBt);
|
|
return SQLITE_ERROR;
|
|
}
|
|
}
|
|
}else{
|
|
DbSetProperty(db, iDb, DB_Empty);
|
|
}
|
|
pDb->pSchema->enc = ENC(db);
|
|
|
|
size = meta[2];
|
|
if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; }
|
|
if( size<0 ) size = -size;
|
|
pDb->pSchema->cache_size = size;
|
|
sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
|
|
|
|
/*
|
|
** file_format==1 Version 3.0.0.
|
|
** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN
|
|
** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults
|
|
** file_format==4 Version 3.3.0. // DESC indices. Boolean constants
|
|
*/
|
|
pDb->pSchema->file_format = meta[1];
|
|
if( pDb->pSchema->file_format==0 ){
|
|
pDb->pSchema->file_format = 1;
|
|
}
|
|
if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){
|
|
sqlite3BtreeCloseCursor(curMain);
|
|
sqlite3SetString(pzErrMsg, "unsupported file format", (char*)0);
|
|
sqlite3BtreeLeave(pDb->pBt);
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
/* Ticket #2804: When we open a database in the newer file format,
|
|
** clear the legacy_file_format pragma flag so that a VACUUM will
|
|
** not downgrade the database and thus invalidate any descending
|
|
** indices that the user might have created.
|
|
*/
|
|
if( iDb==0 && meta[1]>=4 ){
|
|
db->flags &= ~SQLITE_LegacyFileFmt;
|
|
}
|
|
|
|
/* Read the schema information out of the schema tables
|
|
*/
|
|
assert( db->init.busy );
|
|
if( rc==SQLITE_EMPTY ){
|
|
/* For an empty database, there is nothing to read */
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
char *zSql;
|
|
zSql = sqlite3MPrintf(db,
|
|
"SELECT name, rootpage, sql FROM '%q'.%s",
|
|
db->aDb[iDb].zName, zMasterName);
|
|
(void)sqlite3SafetyOff(db);
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
{
|
|
int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
|
|
xAuth = db->xAuth;
|
|
db->xAuth = 0;
|
|
#endif
|
|
rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
db->xAuth = xAuth;
|
|
}
|
|
#endif
|
|
if( rc==SQLITE_ABORT ) rc = initData.rc;
|
|
(void)sqlite3SafetyOn(db);
|
|
sqlite3_free(zSql);
|
|
#ifndef SQLITE_OMIT_ANALYZE
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3AnalysisLoad(db, iDb);
|
|
}
|
|
#endif
|
|
sqlite3BtreeCloseCursor(curMain);
|
|
}
|
|
if( db->mallocFailed ){
|
|
/* sqlite3SetString(pzErrMsg, "out of memory", (char*)0); */
|
|
rc = SQLITE_NOMEM;
|
|
sqlite3ResetInternalSchema(db, 0);
|
|
}
|
|
if( rc==SQLITE_OK || (db->flags&SQLITE_RecoveryMode)){
|
|
/* Black magic: If the SQLITE_RecoveryMode flag is set, then consider
|
|
** the schema loaded, even if errors occured. In this situation the
|
|
** current sqlite3_prepare() operation will fail, but the following one
|
|
** will attempt to compile the supplied statement against whatever subset
|
|
** of the schema was loaded before the error occured. The primary
|
|
** purpose of this is to allow access to the sqlite_master table
|
|
** even when its contents have been corrupted.
|
|
*/
|
|
DbSetProperty(db, iDb, DB_SchemaLoaded);
|
|
rc = SQLITE_OK;
|
|
}
|
|
sqlite3BtreeLeave(pDb->pBt);
|
|
|
|
error_out:
|
|
if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
|
|
db->mallocFailed = 1;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Initialize all database files - the main database file, the file
|
|
** used to store temporary tables, and any additional database files
|
|
** created using ATTACH statements. Return a success code. If an
|
|
** error occurs, write an error message into *pzErrMsg.
|
|
**
|
|
** After a database is initialized, the DB_SchemaLoaded bit is set
|
|
** bit is set in the flags field of the Db structure. If the database
|
|
** file was of zero-length, then the DB_Empty flag is also set.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3Init(sqlite3 *db, char **pzErrMsg){
|
|
int i, rc;
|
|
int commit_internal = !(db->flags&SQLITE_InternChanges);
|
|
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
if( db->init.busy ) return SQLITE_OK;
|
|
rc = SQLITE_OK;
|
|
db->init.busy = 1;
|
|
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
|
|
if( DbHasProperty(db, i, DB_SchemaLoaded) || i==1 ) continue;
|
|
rc = sqlite3InitOne(db, i, pzErrMsg);
|
|
if( rc ){
|
|
sqlite3ResetInternalSchema(db, i);
|
|
}
|
|
}
|
|
|
|
/* Once all the other databases have been initialised, load the schema
|
|
** for the TEMP database. This is loaded last, as the TEMP database
|
|
** schema may contain references to objects in other databases.
|
|
*/
|
|
#ifndef SQLITE_OMIT_TEMPDB
|
|
if( rc==SQLITE_OK && db->nDb>1 && !DbHasProperty(db, 1, DB_SchemaLoaded) ){
|
|
rc = sqlite3InitOne(db, 1, pzErrMsg);
|
|
if( rc ){
|
|
sqlite3ResetInternalSchema(db, 1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
db->init.busy = 0;
|
|
if( rc==SQLITE_OK && commit_internal ){
|
|
sqlite3CommitInternalChanges(db);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This routine is a no-op if the database schema is already initialised.
|
|
** Otherwise, the schema is loaded. An error code is returned.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse){
|
|
int rc = SQLITE_OK;
|
|
sqlite3 *db = pParse->db;
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
if( !db->init.busy ){
|
|
rc = sqlite3Init(db, &pParse->zErrMsg);
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
pParse->rc = rc;
|
|
pParse->nErr++;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Check schema cookies in all databases. If any cookie is out
|
|
** of date, return 0. If all schema cookies are current, return 1.
|
|
*/
|
|
static int schemaIsValid(sqlite3 *db){
|
|
int iDb;
|
|
int rc;
|
|
BtCursor *curTemp;
|
|
int cookie;
|
|
int allOk = 1;
|
|
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
for(iDb=0; allOk && iDb<db->nDb; iDb++){
|
|
Btree *pBt;
|
|
pBt = db->aDb[iDb].pBt;
|
|
if( pBt==0 ) continue;
|
|
rc = sqlite3BtreeCursor(pBt, MASTER_ROOT, 0, 0, 0, &curTemp);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&cookie);
|
|
if( rc==SQLITE_OK && cookie!=db->aDb[iDb].pSchema->schema_cookie ){
|
|
allOk = 0;
|
|
}
|
|
sqlite3BtreeCloseCursor(curTemp);
|
|
}
|
|
if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
|
|
db->mallocFailed = 1;
|
|
}
|
|
}
|
|
return allOk;
|
|
}
|
|
|
|
/*
|
|
** Convert a schema pointer into the iDb index that indicates
|
|
** which database file in db->aDb[] the schema refers to.
|
|
**
|
|
** If the same database is attached more than once, the first
|
|
** attached database is returned.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){
|
|
int i = -1000000;
|
|
|
|
/* If pSchema is NULL, then return -1000000. This happens when code in
|
|
** expr.c is trying to resolve a reference to a transient table (i.e. one
|
|
** created by a sub-select). In this case the return value of this
|
|
** function should never be used.
|
|
**
|
|
** We return -1000000 instead of the more usual -1 simply because using
|
|
** -1000000 as incorrectly using -1000000 index into db->aDb[] is much
|
|
** more likely to cause a segfault than -1 (of course there are assert()
|
|
** statements too, but it never hurts to play the odds).
|
|
*/
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
if( pSchema ){
|
|
for(i=0; i<db->nDb; i++){
|
|
if( db->aDb[i].pSchema==pSchema ){
|
|
break;
|
|
}
|
|
}
|
|
assert( i>=0 &&i>=0 && i<db->nDb );
|
|
}
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
** Compile the UTF-8 encoded SQL statement zSql into a statement handle.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3Prepare(
|
|
sqlite3 *db, /* Database handle. */
|
|
const char *zSql, /* UTF-8 encoded SQL statement. */
|
|
int nBytes, /* Length of zSql in bytes. */
|
|
int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */
|
|
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
|
const char **pzTail /* OUT: End of parsed string */
|
|
){
|
|
Parse sParse;
|
|
char *zErrMsg = 0;
|
|
int rc = SQLITE_OK;
|
|
int i;
|
|
|
|
assert( ppStmt );
|
|
*ppStmt = 0;
|
|
if( sqlite3SafetyOn(db) ){
|
|
return SQLITE_MISUSE;
|
|
}
|
|
assert( !db->mallocFailed );
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
|
|
/* If any attached database schemas are locked, do not proceed with
|
|
** compilation. Instead return SQLITE_LOCKED immediately.
|
|
*/
|
|
for(i=0; i<db->nDb; i++) {
|
|
Btree *pBt = db->aDb[i].pBt;
|
|
if( pBt ){
|
|
int rc;
|
|
rc = sqlite3BtreeSchemaLocked(pBt);
|
|
if( rc ){
|
|
const char *zDb = db->aDb[i].zName;
|
|
sqlite3Error(db, SQLITE_LOCKED, "database schema is locked: %s", zDb);
|
|
(void)sqlite3SafetyOff(db);
|
|
return SQLITE_LOCKED;
|
|
}
|
|
}
|
|
}
|
|
|
|
memset(&sParse, 0, sizeof(sParse));
|
|
sParse.db = db;
|
|
if( nBytes>=0 && zSql[nBytes]!=0 ){
|
|
char *zSqlCopy;
|
|
if( SQLITE_MAX_SQL_LENGTH>0 && nBytes>SQLITE_MAX_SQL_LENGTH ){
|
|
sqlite3Error(db, SQLITE_TOOBIG, "statement too long");
|
|
(void)sqlite3SafetyOff(db);
|
|
return SQLITE_TOOBIG;
|
|
}
|
|
zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes);
|
|
if( zSqlCopy ){
|
|
sqlite3RunParser(&sParse, zSqlCopy, &zErrMsg);
|
|
sqlite3_free(zSqlCopy);
|
|
}
|
|
sParse.zTail = &zSql[nBytes];
|
|
}else{
|
|
sqlite3RunParser(&sParse, zSql, &zErrMsg);
|
|
}
|
|
|
|
if( db->mallocFailed ){
|
|
sParse.rc = SQLITE_NOMEM;
|
|
}
|
|
if( sParse.rc==SQLITE_DONE ) sParse.rc = SQLITE_OK;
|
|
if( sParse.checkSchema && !schemaIsValid(db) ){
|
|
sParse.rc = SQLITE_SCHEMA;
|
|
}
|
|
if( sParse.rc==SQLITE_SCHEMA ){
|
|
sqlite3ResetInternalSchema(db, 0);
|
|
}
|
|
if( db->mallocFailed ){
|
|
sParse.rc = SQLITE_NOMEM;
|
|
}
|
|
if( pzTail ){
|
|
*pzTail = sParse.zTail;
|
|
}
|
|
rc = sParse.rc;
|
|
|
|
#ifndef SQLITE_OMIT_EXPLAIN
|
|
if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){
|
|
if( sParse.explain==2 ){
|
|
sqlite3VdbeSetNumCols(sParse.pVdbe, 3);
|
|
sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "order", P4_STATIC);
|
|
sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "from", P4_STATIC);
|
|
sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "detail", P4_STATIC);
|
|
}else{
|
|
sqlite3VdbeSetNumCols(sParse.pVdbe, 8);
|
|
sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "addr", P4_STATIC);
|
|
sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "opcode", P4_STATIC);
|
|
sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "p1", P4_STATIC);
|
|
sqlite3VdbeSetColName(sParse.pVdbe, 3, COLNAME_NAME, "p2", P4_STATIC);
|
|
sqlite3VdbeSetColName(sParse.pVdbe, 4, COLNAME_NAME, "p3", P4_STATIC);
|
|
sqlite3VdbeSetColName(sParse.pVdbe, 5, COLNAME_NAME, "p4", P4_STATIC);
|
|
sqlite3VdbeSetColName(sParse.pVdbe, 6, COLNAME_NAME, "p5", P4_STATIC);
|
|
sqlite3VdbeSetColName(sParse.pVdbe, 7, COLNAME_NAME, "comment",P4_STATIC);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if( sqlite3SafetyOff(db) ){
|
|
rc = SQLITE_MISUSE;
|
|
}
|
|
|
|
if( saveSqlFlag ){
|
|
sqlite3VdbeSetSql(sParse.pVdbe, zSql, sParse.zTail - zSql);
|
|
}
|
|
if( rc!=SQLITE_OK || db->mallocFailed ){
|
|
sqlite3_finalize((sqlite3_stmt*)sParse.pVdbe);
|
|
assert(!(*ppStmt));
|
|
}else{
|
|
*ppStmt = (sqlite3_stmt*)sParse.pVdbe;
|
|
}
|
|
|
|
if( zErrMsg ){
|
|
sqlite3Error(db, rc, "%s", zErrMsg);
|
|
sqlite3_free(zErrMsg);
|
|
}else{
|
|
sqlite3Error(db, rc, 0);
|
|
}
|
|
|
|
rc = sqlite3ApiExit(db, rc);
|
|
assert( (rc&db->errMask)==rc );
|
|
return rc;
|
|
}
|
|
static int sqlite3LockAndPrepare(
|
|
sqlite3 *db, /* Database handle. */
|
|
const char *zSql, /* UTF-8 encoded SQL statement. */
|
|
int nBytes, /* Length of zSql in bytes. */
|
|
int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */
|
|
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
|
const char **pzTail /* OUT: End of parsed string */
|
|
){
|
|
int rc;
|
|
if( !sqlite3SafetyCheckOk(db) ){
|
|
return SQLITE_MISUSE;
|
|
}
|
|
sqlite3_mutex_enter(db->mutex);
|
|
sqlite3BtreeEnterAll(db);
|
|
rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, ppStmt, pzTail);
|
|
sqlite3BtreeLeaveAll(db);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Rerun the compilation of a statement after a schema change.
|
|
** Return true if the statement was recompiled successfully.
|
|
** Return false if there is an error of some kind.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3Reprepare(Vdbe *p){
|
|
int rc;
|
|
sqlite3_stmt *pNew;
|
|
const char *zSql;
|
|
sqlite3 *db;
|
|
|
|
assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) );
|
|
zSql = sqlite3_sql((sqlite3_stmt *)p);
|
|
assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */
|
|
db = sqlite3VdbeDb(p);
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
rc = sqlite3LockAndPrepare(db, zSql, -1, 0, &pNew, 0);
|
|
if( rc ){
|
|
if( rc==SQLITE_NOMEM ){
|
|
db->mallocFailed = 1;
|
|
}
|
|
assert( pNew==0 );
|
|
return 0;
|
|
}else{
|
|
assert( pNew!=0 );
|
|
}
|
|
sqlite3VdbeSwap((Vdbe*)pNew, p);
|
|
sqlite3_transfer_bindings(pNew, (sqlite3_stmt*)p);
|
|
sqlite3VdbeResetStepResult((Vdbe*)pNew);
|
|
sqlite3VdbeFinalize((Vdbe*)pNew);
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
** Two versions of the official API. Legacy and new use. In the legacy
|
|
** version, the original SQL text is not saved in the prepared statement
|
|
** and so if a schema change occurs, SQLITE_SCHEMA is returned by
|
|
** sqlite3_step(). In the new version, the original SQL text is retained
|
|
** and the statement is automatically recompiled if an schema change
|
|
** occurs.
|
|
*/
|
|
SQLITE_API int sqlite3_prepare(
|
|
sqlite3 *db, /* Database handle. */
|
|
const char *zSql, /* UTF-8 encoded SQL statement. */
|
|
int nBytes, /* Length of zSql in bytes. */
|
|
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
|
const char **pzTail /* OUT: End of parsed string */
|
|
){
|
|
return sqlite3LockAndPrepare(db,zSql,nBytes,0,ppStmt,pzTail);
|
|
}
|
|
SQLITE_API int sqlite3_prepare_v2(
|
|
sqlite3 *db, /* Database handle. */
|
|
const char *zSql, /* UTF-8 encoded SQL statement. */
|
|
int nBytes, /* Length of zSql in bytes. */
|
|
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
|
const char **pzTail /* OUT: End of parsed string */
|
|
){
|
|
return sqlite3LockAndPrepare(db,zSql,nBytes,1,ppStmt,pzTail);
|
|
}
|
|
|
|
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
/*
|
|
** Compile the UTF-16 encoded SQL statement zSql into a statement handle.
|
|
*/
|
|
static int sqlite3Prepare16(
|
|
sqlite3 *db, /* Database handle. */
|
|
const void *zSql, /* UTF-8 encoded SQL statement. */
|
|
int nBytes, /* Length of zSql in bytes. */
|
|
int saveSqlFlag, /* True to save SQL text into the sqlite3_stmt */
|
|
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
|
const void **pzTail /* OUT: End of parsed string */
|
|
){
|
|
/* This function currently works by first transforming the UTF-16
|
|
** encoded string to UTF-8, then invoking sqlite3_prepare(). The
|
|
** tricky bit is figuring out the pointer to return in *pzTail.
|
|
*/
|
|
char *zSql8;
|
|
const char *zTail8 = 0;
|
|
int rc = SQLITE_OK;
|
|
|
|
if( !sqlite3SafetyCheckOk(db) ){
|
|
return SQLITE_MISUSE;
|
|
}
|
|
sqlite3_mutex_enter(db->mutex);
|
|
zSql8 = sqlite3Utf16to8(db, zSql, nBytes);
|
|
if( zSql8 ){
|
|
rc = sqlite3LockAndPrepare(db, zSql8, -1, saveSqlFlag, ppStmt, &zTail8);
|
|
}
|
|
|
|
if( zTail8 && pzTail ){
|
|
/* If sqlite3_prepare returns a tail pointer, we calculate the
|
|
** equivalent pointer into the UTF-16 string by counting the unicode
|
|
** characters between zSql8 and zTail8, and then returning a pointer
|
|
** the same number of characters into the UTF-16 string.
|
|
*/
|
|
int chars_parsed = sqlite3Utf8CharLen(zSql8, zTail8-zSql8);
|
|
*pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed);
|
|
}
|
|
sqlite3_free(zSql8);
|
|
rc = sqlite3ApiExit(db, rc);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Two versions of the official API. Legacy and new use. In the legacy
|
|
** version, the original SQL text is not saved in the prepared statement
|
|
** and so if a schema change occurs, SQLITE_SCHEMA is returned by
|
|
** sqlite3_step(). In the new version, the original SQL text is retained
|
|
** and the statement is automatically recompiled if an schema change
|
|
** occurs.
|
|
*/
|
|
SQLITE_API int sqlite3_prepare16(
|
|
sqlite3 *db, /* Database handle. */
|
|
const void *zSql, /* UTF-8 encoded SQL statement. */
|
|
int nBytes, /* Length of zSql in bytes. */
|
|
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
|
const void **pzTail /* OUT: End of parsed string */
|
|
){
|
|
return sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail);
|
|
}
|
|
SQLITE_API int sqlite3_prepare16_v2(
|
|
sqlite3 *db, /* Database handle. */
|
|
const void *zSql, /* UTF-8 encoded SQL statement. */
|
|
int nBytes, /* Length of zSql in bytes. */
|
|
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
|
const void **pzTail /* OUT: End of parsed string */
|
|
){
|
|
return sqlite3Prepare16(db,zSql,nBytes,1,ppStmt,pzTail);
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
|
|
/************** End of prepare.c *********************************************/
|
|
/************** Begin file select.c ******************************************/
|
|
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains C code routines that are called by the parser
|
|
** to handle SELECT statements in SQLite.
|
|
**
|
|
** $Id: select.c,v 1.411 2008/01/25 15:04:50 drh Exp $
|
|
*/
|
|
|
|
|
|
/*
|
|
** Delete all the content of a Select structure but do not deallocate
|
|
** the select structure itself.
|
|
*/
|
|
static void clearSelect(Select *p){
|
|
sqlite3ExprListDelete(p->pEList);
|
|
sqlite3SrcListDelete(p->pSrc);
|
|
sqlite3ExprDelete(p->pWhere);
|
|
sqlite3ExprListDelete(p->pGroupBy);
|
|
sqlite3ExprDelete(p->pHaving);
|
|
sqlite3ExprListDelete(p->pOrderBy);
|
|
sqlite3SelectDelete(p->pPrior);
|
|
sqlite3ExprDelete(p->pLimit);
|
|
sqlite3ExprDelete(p->pOffset);
|
|
}
|
|
|
|
/*
|
|
** Initialize a SelectDest structure.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
|
|
pDest->eDest = eDest;
|
|
pDest->iParm = iParm;
|
|
pDest->affinity = 0;
|
|
pDest->iMem = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
** Allocate a new Select structure and return a pointer to that
|
|
** structure.
|
|
*/
|
|
SQLITE_PRIVATE Select *sqlite3SelectNew(
|
|
Parse *pParse, /* Parsing context */
|
|
ExprList *pEList, /* which columns to include in the result */
|
|
SrcList *pSrc, /* the FROM clause -- which tables to scan */
|
|
Expr *pWhere, /* the WHERE clause */
|
|
ExprList *pGroupBy, /* the GROUP BY clause */
|
|
Expr *pHaving, /* the HAVING clause */
|
|
ExprList *pOrderBy, /* the ORDER BY clause */
|
|
int isDistinct, /* true if the DISTINCT keyword is present */
|
|
Expr *pLimit, /* LIMIT value. NULL means not used */
|
|
Expr *pOffset /* OFFSET value. NULL means no offset */
|
|
){
|
|
Select *pNew;
|
|
Select standin;
|
|
sqlite3 *db = pParse->db;
|
|
pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
|
|
assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */
|
|
if( pNew==0 ){
|
|
pNew = &standin;
|
|
memset(pNew, 0, sizeof(*pNew));
|
|
}
|
|
if( pEList==0 ){
|
|
pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0);
|
|
}
|
|
pNew->pEList = pEList;
|
|
pNew->pSrc = pSrc;
|
|
pNew->pWhere = pWhere;
|
|
pNew->pGroupBy = pGroupBy;
|
|
pNew->pHaving = pHaving;
|
|
pNew->pOrderBy = pOrderBy;
|
|
pNew->isDistinct = isDistinct;
|
|
pNew->op = TK_SELECT;
|
|
assert( pOffset==0 || pLimit!=0 );
|
|
pNew->pLimit = pLimit;
|
|
pNew->pOffset = pOffset;
|
|
pNew->iLimit = -1;
|
|
pNew->iOffset = -1;
|
|
pNew->addrOpenEphm[0] = -1;
|
|
pNew->addrOpenEphm[1] = -1;
|
|
pNew->addrOpenEphm[2] = -1;
|
|
if( pNew==&standin) {
|
|
clearSelect(pNew);
|
|
pNew = 0;
|
|
}
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** Delete the given Select structure and all of its substructures.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3SelectDelete(Select *p){
|
|
if( p ){
|
|
clearSelect(p);
|
|
sqlite3_free(p);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
|
|
** type of join. Return an integer constant that expresses that type
|
|
** in terms of the following bit values:
|
|
**
|
|
** JT_INNER
|
|
** JT_CROSS
|
|
** JT_OUTER
|
|
** JT_NATURAL
|
|
** JT_LEFT
|
|
** JT_RIGHT
|
|
**
|
|
** A full outer join is the combination of JT_LEFT and JT_RIGHT.
|
|
**
|
|
** If an illegal or unsupported join type is seen, then still return
|
|
** a join type, but put an error in the pParse structure.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
|
|
int jointype = 0;
|
|
Token *apAll[3];
|
|
Token *p;
|
|
static const struct {
|
|
const char zKeyword[8];
|
|
u8 nChar;
|
|
u8 code;
|
|
} keywords[] = {
|
|
{ "natural", 7, JT_NATURAL },
|
|
{ "left", 4, JT_LEFT|JT_OUTER },
|
|
{ "right", 5, JT_RIGHT|JT_OUTER },
|
|
{ "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER },
|
|
{ "outer", 5, JT_OUTER },
|
|
{ "inner", 5, JT_INNER },
|
|
{ "cross", 5, JT_INNER|JT_CROSS },
|
|
};
|
|
int i, j;
|
|
apAll[0] = pA;
|
|
apAll[1] = pB;
|
|
apAll[2] = pC;
|
|
for(i=0; i<3 && apAll[i]; i++){
|
|
p = apAll[i];
|
|
for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
|
|
if( p->n==keywords[j].nChar
|
|
&& sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
|
|
jointype |= keywords[j].code;
|
|
break;
|
|
}
|
|
}
|
|
if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
|
|
jointype |= JT_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
if(
|
|
(jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
|
|
(jointype & JT_ERROR)!=0
|
|
){
|
|
const char *zSp1 = " ";
|
|
const char *zSp2 = " ";
|
|
if( pB==0 ){ zSp1++; }
|
|
if( pC==0 ){ zSp2++; }
|
|
sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
|
|
"%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
|
|
jointype = JT_INNER;
|
|
}else if( jointype & JT_RIGHT ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"RIGHT and FULL OUTER JOINs are not currently supported");
|
|
jointype = JT_INNER;
|
|
}
|
|
return jointype;
|
|
}
|
|
|
|
/*
|
|
** Return the index of a column in a table. Return -1 if the column
|
|
** is not contained in the table.
|
|
*/
|
|
static int columnIndex(Table *pTab, const char *zCol){
|
|
int i;
|
|
for(i=0; i<pTab->nCol; i++){
|
|
if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
** Set the value of a token to a '\000'-terminated string.
|
|
*/
|
|
static void setToken(Token *p, const char *z){
|
|
p->z = (u8*)z;
|
|
p->n = z ? strlen(z) : 0;
|
|
p->dyn = 0;
|
|
}
|
|
|
|
/*
|
|
** Set the token to the double-quoted and escaped version of the string pointed
|
|
** to by z. For example;
|
|
**
|
|
** {a"bc} -> {"a""bc"}
|
|
*/
|
|
static void setQuotedToken(Parse *pParse, Token *p, const char *z){
|
|
p->z = (u8 *)sqlite3MPrintf(0, "\"%w\"", z);
|
|
p->dyn = 1;
|
|
if( p->z ){
|
|
p->n = strlen((char *)p->z);
|
|
}else{
|
|
pParse->db->mallocFailed = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Create an expression node for an identifier with the name of zName
|
|
*/
|
|
SQLITE_PRIVATE Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
|
|
Token dummy;
|
|
setToken(&dummy, zName);
|
|
return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy);
|
|
}
|
|
|
|
|
|
/*
|
|
** Add a term to the WHERE expression in *ppExpr that requires the
|
|
** zCol column to be equal in the two tables pTab1 and pTab2.
|
|
*/
|
|
static void addWhereTerm(
|
|
Parse *pParse, /* Parsing context */
|
|
const char *zCol, /* Name of the column */
|
|
const Table *pTab1, /* First table */
|
|
const char *zAlias1, /* Alias for first table. May be NULL */
|
|
const Table *pTab2, /* Second table */
|
|
const char *zAlias2, /* Alias for second table. May be NULL */
|
|
int iRightJoinTable, /* VDBE cursor for the right table */
|
|
Expr **ppExpr /* Add the equality term to this expression */
|
|
){
|
|
Expr *pE1a, *pE1b, *pE1c;
|
|
Expr *pE2a, *pE2b, *pE2c;
|
|
Expr *pE;
|
|
|
|
pE1a = sqlite3CreateIdExpr(pParse, zCol);
|
|
pE2a = sqlite3CreateIdExpr(pParse, zCol);
|
|
if( zAlias1==0 ){
|
|
zAlias1 = pTab1->zName;
|
|
}
|
|
pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
|
|
if( zAlias2==0 ){
|
|
zAlias2 = pTab2->zName;
|
|
}
|
|
pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
|
|
pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
|
|
pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
|
|
pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
|
|
if( pE ){
|
|
ExprSetProperty(pE, EP_FromJoin);
|
|
pE->iRightJoinTable = iRightJoinTable;
|
|
}
|
|
*ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
|
|
}
|
|
|
|
/*
|
|
** Set the EP_FromJoin property on all terms of the given expression.
|
|
** And set the Expr.iRightJoinTable to iTable for every term in the
|
|
** expression.
|
|
**
|
|
** The EP_FromJoin property is used on terms of an expression to tell
|
|
** the LEFT OUTER JOIN processing logic that this term is part of the
|
|
** join restriction specified in the ON or USING clause and not a part
|
|
** of the more general WHERE clause. These terms are moved over to the
|
|
** WHERE clause during join processing but we need to remember that they
|
|
** originated in the ON or USING clause.
|
|
**
|
|
** The Expr.iRightJoinTable tells the WHERE clause processing that the
|
|
** expression depends on table iRightJoinTable even if that table is not
|
|
** explicitly mentioned in the expression. That information is needed
|
|
** for cases like this:
|
|
**
|
|
** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
|
|
**
|
|
** The where clause needs to defer the handling of the t1.x=5
|
|
** term until after the t2 loop of the join. In that way, a
|
|
** NULL t2 row will be inserted whenever t1.x!=5. If we do not
|
|
** defer the handling of t1.x=5, it will be processed immediately
|
|
** after the t1 loop and rows with t1.x!=5 will never appear in
|
|
** the output, which is incorrect.
|
|
*/
|
|
static void setJoinExpr(Expr *p, int iTable){
|
|
while( p ){
|
|
ExprSetProperty(p, EP_FromJoin);
|
|
p->iRightJoinTable = iTable;
|
|
setJoinExpr(p->pLeft, iTable);
|
|
p = p->pRight;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine processes the join information for a SELECT statement.
|
|
** ON and USING clauses are converted into extra terms of the WHERE clause.
|
|
** NATURAL joins also create extra WHERE clause terms.
|
|
**
|
|
** The terms of a FROM clause are contained in the Select.pSrc structure.
|
|
** The left most table is the first entry in Select.pSrc. The right-most
|
|
** table is the last entry. The join operator is held in the entry to
|
|
** the left. Thus entry 0 contains the join operator for the join between
|
|
** entries 0 and 1. Any ON or USING clauses associated with the join are
|
|
** also attached to the left entry.
|
|
**
|
|
** This routine returns the number of errors encountered.
|
|
*/
|
|
static int sqliteProcessJoin(Parse *pParse, Select *p){
|
|
SrcList *pSrc; /* All tables in the FROM clause */
|
|
int i, j; /* Loop counters */
|
|
struct SrcList_item *pLeft; /* Left table being joined */
|
|
struct SrcList_item *pRight; /* Right table being joined */
|
|
|
|
pSrc = p->pSrc;
|
|
pLeft = &pSrc->a[0];
|
|
pRight = &pLeft[1];
|
|
for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
|
|
Table *pLeftTab = pLeft->pTab;
|
|
Table *pRightTab = pRight->pTab;
|
|
|
|
if( pLeftTab==0 || pRightTab==0 ) continue;
|
|
|
|
/* When the NATURAL keyword is present, add WHERE clause terms for
|
|
** every column that the two tables have in common.
|
|
*/
|
|
if( pRight->jointype & JT_NATURAL ){
|
|
if( pRight->pOn || pRight->pUsing ){
|
|
sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
|
|
"an ON or USING clause", 0);
|
|
return 1;
|
|
}
|
|
for(j=0; j<pLeftTab->nCol; j++){
|
|
char *zName = pLeftTab->aCol[j].zName;
|
|
if( columnIndex(pRightTab, zName)>=0 ){
|
|
addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
|
|
pRightTab, pRight->zAlias,
|
|
pRight->iCursor, &p->pWhere);
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Disallow both ON and USING clauses in the same join
|
|
*/
|
|
if( pRight->pOn && pRight->pUsing ){
|
|
sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
|
|
"clauses in the same join");
|
|
return 1;
|
|
}
|
|
|
|
/* Add the ON clause to the end of the WHERE clause, connected by
|
|
** an AND operator.
|
|
*/
|
|
if( pRight->pOn ){
|
|
setJoinExpr(pRight->pOn, pRight->iCursor);
|
|
p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
|
|
pRight->pOn = 0;
|
|
}
|
|
|
|
/* Create extra terms on the WHERE clause for each column named
|
|
** in the USING clause. Example: If the two tables to be joined are
|
|
** A and B and the USING clause names X, Y, and Z, then add this
|
|
** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
|
|
** Report an error if any column mentioned in the USING clause is
|
|
** not contained in both tables to be joined.
|
|
*/
|
|
if( pRight->pUsing ){
|
|
IdList *pList = pRight->pUsing;
|
|
for(j=0; j<pList->nId; j++){
|
|
char *zName = pList->a[j].zName;
|
|
if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
|
|
sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
|
|
"not present in both tables", zName);
|
|
return 1;
|
|
}
|
|
addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
|
|
pRightTab, pRight->zAlias,
|
|
pRight->iCursor, &p->pWhere);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Insert code into "v" that will push the record on the top of the
|
|
** stack into the sorter.
|
|
*/
|
|
static void pushOntoSorter(
|
|
Parse *pParse, /* Parser context */
|
|
ExprList *pOrderBy, /* The ORDER BY clause */
|
|
Select *pSelect, /* The whole SELECT statement */
|
|
int regData /* Register holding data to be sorted */
|
|
){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int nExpr = pOrderBy->nExpr;
|
|
int regBase = sqlite3GetTempRange(pParse, nExpr+2);
|
|
int regRecord = sqlite3GetTempReg(pParse);
|
|
sqlite3ExprCodeExprList(pParse, pOrderBy, regBase);
|
|
sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
|
|
sqlite3VdbeAddOp2(v, OP_Move, regData, regBase+nExpr+1);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
|
|
sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
|
|
sqlite3ReleaseTempReg(pParse, regRecord);
|
|
sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
|
|
if( pSelect->iLimit>=0 ){
|
|
int addr1, addr2;
|
|
int iLimit;
|
|
if( pSelect->pOffset ){
|
|
iLimit = pSelect->iOffset+1;
|
|
}else{
|
|
iLimit = pSelect->iLimit;
|
|
}
|
|
addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
|
|
addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
|
|
sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
|
|
sqlite3VdbeJumpHere(v, addr2);
|
|
pSelect->iLimit = -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Add code to implement the OFFSET
|
|
*/
|
|
static void codeOffset(
|
|
Vdbe *v, /* Generate code into this VM */
|
|
Select *p, /* The SELECT statement being coded */
|
|
int iContinue /* Jump here to skip the current record */
|
|
){
|
|
if( p->iOffset>=0 && iContinue!=0 ){
|
|
int addr;
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
|
|
addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
|
|
VdbeComment((v, "skip OFFSET records"));
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Add code that will check to make sure the N registers starting at iMem
|
|
** form a distinct entry. iTab is a sorting index that holds previously
|
|
** seen combinations of the N values. A new entry is made in iTab
|
|
** if the current N values are new.
|
|
**
|
|
** A jump to addrRepeat is made and the N+1 values are popped from the
|
|
** stack if the top N elements are not distinct.
|
|
*/
|
|
static void codeDistinct(
|
|
Parse *pParse, /* Parsing and code generating context */
|
|
int iTab, /* A sorting index used to test for distinctness */
|
|
int addrRepeat, /* Jump to here if not distinct */
|
|
int N, /* Number of elements */
|
|
int iMem /* First element */
|
|
){
|
|
Vdbe *v;
|
|
int r1;
|
|
|
|
v = pParse->pVdbe;
|
|
r1 = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
|
|
sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1);
|
|
sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
}
|
|
|
|
/*
|
|
** Generate an error message when a SELECT is used within a subexpression
|
|
** (example: "a IN (SELECT * FROM table)") but it has more than 1 result
|
|
** column. We do this in a subroutine because the error occurs in multiple
|
|
** places.
|
|
*/
|
|
static int checkForMultiColumnSelectError(
|
|
Parse *pParse, /* Parse context. */
|
|
SelectDest *pDest, /* Destination of SELECT results */
|
|
int nExpr /* Number of result columns returned by SELECT */
|
|
){
|
|
int eDest = pDest->eDest;
|
|
if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
|
|
sqlite3ErrorMsg(pParse, "only a single result allowed for "
|
|
"a SELECT that is part of an expression");
|
|
return 1;
|
|
}else{
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine generates the code for the inside of the inner loop
|
|
** of a SELECT.
|
|
**
|
|
** If srcTab and nColumn are both zero, then the pEList expressions
|
|
** are evaluated in order to get the data for this row. If nColumn>0
|
|
** then data is pulled from srcTab and pEList is used only to get the
|
|
** datatypes for each column.
|
|
*/
|
|
static void selectInnerLoop(
|
|
Parse *pParse, /* The parser context */
|
|
Select *p, /* The complete select statement being coded */
|
|
ExprList *pEList, /* List of values being extracted */
|
|
int srcTab, /* Pull data from this table */
|
|
int nColumn, /* Number of columns in the source table */
|
|
ExprList *pOrderBy, /* If not NULL, sort results using this key */
|
|
int distinct, /* If >=0, make sure results are distinct */
|
|
SelectDest *pDest, /* How to dispose of the results */
|
|
int iContinue, /* Jump here to continue with next row */
|
|
int iBreak, /* Jump here to break out of the inner loop */
|
|
char *aff /* affinity string if eDest is SRT_Union */
|
|
){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int i;
|
|
int hasDistinct; /* True if the DISTINCT keyword is present */
|
|
int regResult; /* Start of memory holding result set */
|
|
int eDest = pDest->eDest; /* How to dispose of results */
|
|
int iParm = pDest->iParm; /* First argument to disposal method */
|
|
int nResultCol; /* Number of result columns */
|
|
int nToFree; /* Number of result columns to release */
|
|
|
|
if( v==0 ) return;
|
|
assert( pEList!=0 );
|
|
|
|
/* If there was a LIMIT clause on the SELECT statement, then do the check
|
|
** to see if this row should be output.
|
|
*/
|
|
hasDistinct = distinct>=0 && pEList->nExpr>0;
|
|
if( pOrderBy==0 && !hasDistinct ){
|
|
codeOffset(v, p, iContinue);
|
|
}
|
|
|
|
/* Pull the requested columns.
|
|
*/
|
|
if( nColumn>0 ){
|
|
nResultCol = nColumn;
|
|
}else{
|
|
nResultCol = pEList->nExpr;
|
|
}
|
|
if( pDest->iMem>0 ){
|
|
regResult = pDest->iMem;
|
|
nToFree = 0;
|
|
}else{
|
|
pDest->iMem = regResult = sqlite3GetTempRange(pParse, nResultCol);
|
|
nToFree = nResultCol;
|
|
}
|
|
if( nColumn>0 ){
|
|
for(i=0; i<nColumn; i++){
|
|
sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
|
|
}
|
|
}else if( eDest!=SRT_Exists ){
|
|
/* If the destination is an EXISTS(...) expression, the actual
|
|
** values returned by the SELECT are not required.
|
|
*/
|
|
for(i=0; i<nResultCol; i++){
|
|
sqlite3ExprCode(pParse, pEList->a[i].pExpr, regResult+i);
|
|
}
|
|
}
|
|
nColumn = nResultCol;
|
|
|
|
/* If the DISTINCT keyword was present on the SELECT statement
|
|
** and this row has been seen before, then do not make this row
|
|
** part of the result.
|
|
*/
|
|
if( hasDistinct ){
|
|
assert( pEList!=0 );
|
|
assert( pEList->nExpr==nColumn );
|
|
codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
|
|
if( pOrderBy==0 ){
|
|
codeOffset(v, p, iContinue);
|
|
}
|
|
}
|
|
|
|
if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
|
|
return;
|
|
}
|
|
|
|
switch( eDest ){
|
|
/* In this mode, write each query result to the key of the temporary
|
|
** table iParm.
|
|
*/
|
|
#ifndef SQLITE_OMIT_COMPOUND_SELECT
|
|
case SRT_Union: {
|
|
int r1;
|
|
r1 = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
|
|
if( aff ){
|
|
sqlite3VdbeChangeP4(v, -1, aff, P4_STATIC);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
break;
|
|
}
|
|
|
|
/* Construct a record from the query result, but instead of
|
|
** saving that record, use it as a key to delete elements from
|
|
** the temporary table iParm.
|
|
*/
|
|
case SRT_Except: {
|
|
int r1;
|
|
r1 = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
|
|
sqlite3VdbeChangeP4(v, -1, aff, P4_STATIC);
|
|
sqlite3VdbeAddOp2(v, OP_IdxDelete, iParm, r1);
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
/* Store the result as data using a unique key.
|
|
*/
|
|
case SRT_Table:
|
|
case SRT_EphemTab: {
|
|
int r1 = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
|
|
if( pOrderBy ){
|
|
pushOntoSorter(pParse, pOrderBy, p, r1);
|
|
}else{
|
|
int r2 = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
|
|
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
|
sqlite3ReleaseTempReg(pParse, r2);
|
|
}
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
break;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
/* If we are creating a set for an "expr IN (SELECT ...)" construct,
|
|
** then there should be a single item on the stack. Write this
|
|
** item into the set table with bogus data.
|
|
*/
|
|
case SRT_Set: {
|
|
int addr2;
|
|
|
|
assert( nColumn==1 );
|
|
addr2 = sqlite3VdbeAddOp1(v, OP_IsNull, regResult);
|
|
p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
|
|
if( pOrderBy ){
|
|
/* At first glance you would think we could optimize out the
|
|
** ORDER BY in this case since the order of entries in the set
|
|
** does not matter. But there might be a LIMIT clause, in which
|
|
** case the order does matter */
|
|
pushOntoSorter(pParse, pOrderBy, p, regResult);
|
|
}else{
|
|
int r1 = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
|
|
sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
}
|
|
sqlite3VdbeJumpHere(v, addr2);
|
|
break;
|
|
}
|
|
|
|
/* If any row exist in the result set, record that fact and abort.
|
|
*/
|
|
case SRT_Exists: {
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
|
|
/* The LIMIT clause will terminate the loop for us */
|
|
break;
|
|
}
|
|
|
|
/* If this is a scalar select that is part of an expression, then
|
|
** store the results in the appropriate memory cell and break out
|
|
** of the scan loop.
|
|
*/
|
|
case SRT_Mem: {
|
|
assert( nColumn==1 );
|
|
if( pOrderBy ){
|
|
pushOntoSorter(pParse, pOrderBy, p, regResult);
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_Move, regResult, iParm);
|
|
/* The LIMIT clause will jump out of the loop for us */
|
|
}
|
|
break;
|
|
}
|
|
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
|
|
|
|
/* Send the data to the callback function or to a subroutine. In the
|
|
** case of a subroutine, the subroutine itself is responsible for
|
|
** popping the data from the stack.
|
|
*/
|
|
case SRT_Subroutine:
|
|
case SRT_Callback: {
|
|
if( pOrderBy ){
|
|
int r1 = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
|
|
pushOntoSorter(pParse, pOrderBy, p, r1);
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
}else if( eDest==SRT_Subroutine ){
|
|
nToFree = 0; /* Preserve registers. Subroutine will need them. */
|
|
sqlite3VdbeAddOp2(v, OP_Gosub, 0, iParm);
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
|
|
}
|
|
break;
|
|
}
|
|
|
|
#if !defined(SQLITE_OMIT_TRIGGER)
|
|
/* Discard the results. This is used for SELECT statements inside
|
|
** the body of a TRIGGER. The purpose of such selects is to call
|
|
** user-defined functions that have side effects. We do not care
|
|
** about the actual results of the select.
|
|
*/
|
|
default: {
|
|
assert( eDest==SRT_Discard );
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Jump to the end of the loop if the LIMIT is reached.
|
|
*/
|
|
if( p->iLimit>=0 && pOrderBy==0 ){
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
|
|
sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
|
|
}
|
|
sqlite3ReleaseTempRange(pParse, regResult, nToFree);
|
|
}
|
|
|
|
/*
|
|
** Given an expression list, generate a KeyInfo structure that records
|
|
** the collating sequence for each expression in that expression list.
|
|
**
|
|
** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
|
|
** KeyInfo structure is appropriate for initializing a virtual index to
|
|
** implement that clause. If the ExprList is the result set of a SELECT
|
|
** then the KeyInfo structure is appropriate for initializing a virtual
|
|
** index to implement a DISTINCT test.
|
|
**
|
|
** Space to hold the KeyInfo structure is obtain from malloc. The calling
|
|
** function is responsible for seeing that this structure is eventually
|
|
** freed. Add the KeyInfo structure to the P4 field of an opcode using
|
|
** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
|
|
*/
|
|
static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
|
|
sqlite3 *db = pParse->db;
|
|
int nExpr;
|
|
KeyInfo *pInfo;
|
|
struct ExprList_item *pItem;
|
|
int i;
|
|
|
|
nExpr = pList->nExpr;
|
|
pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
|
|
if( pInfo ){
|
|
pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
|
|
pInfo->nField = nExpr;
|
|
pInfo->enc = ENC(db);
|
|
for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
|
|
CollSeq *pColl;
|
|
pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
|
|
if( !pColl ){
|
|
pColl = db->pDfltColl;
|
|
}
|
|
pInfo->aColl[i] = pColl;
|
|
pInfo->aSortOrder[i] = pItem->sortOrder;
|
|
}
|
|
}
|
|
return pInfo;
|
|
}
|
|
|
|
|
|
/*
|
|
** If the inner loop was generated using a non-null pOrderBy argument,
|
|
** then the results were placed in a sorter. After the loop is terminated
|
|
** we need to run the sorter and output the results. The following
|
|
** routine generates the code needed to do that.
|
|
*/
|
|
static void generateSortTail(
|
|
Parse *pParse, /* Parsing context */
|
|
Select *p, /* The SELECT statement */
|
|
Vdbe *v, /* Generate code into this VDBE */
|
|
int nColumn, /* Number of columns of data */
|
|
SelectDest *pDest /* Write the sorted results here */
|
|
){
|
|
int brk = sqlite3VdbeMakeLabel(v);
|
|
int cont = sqlite3VdbeMakeLabel(v);
|
|
int addr;
|
|
int iTab;
|
|
int pseudoTab = 0;
|
|
ExprList *pOrderBy = p->pOrderBy;
|
|
|
|
int eDest = pDest->eDest;
|
|
int iParm = pDest->iParm;
|
|
|
|
int regRow;
|
|
int regRowid;
|
|
|
|
iTab = pOrderBy->iECursor;
|
|
if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
|
|
pseudoTab = pParse->nTab++;
|
|
sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, 0);
|
|
sqlite3VdbeAddOp2(v, OP_SetNumColumns, pseudoTab, nColumn);
|
|
}
|
|
addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk);
|
|
codeOffset(v, p, cont);
|
|
regRow = sqlite3GetTempReg(pParse);
|
|
regRowid = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
|
|
switch( eDest ){
|
|
case SRT_Table:
|
|
case SRT_EphemTab: {
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
|
|
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
|
break;
|
|
}
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
case SRT_Set: {
|
|
int j1;
|
|
assert( nColumn==1 );
|
|
j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regRow);
|
|
sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRow, &p->affinity, 1);
|
|
sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRow);
|
|
sqlite3VdbeJumpHere(v, j1);
|
|
break;
|
|
}
|
|
case SRT_Mem: {
|
|
assert( nColumn==1 );
|
|
sqlite3VdbeAddOp2(v, OP_Move, regRow, iParm);
|
|
/* The LIMIT clause will terminate the loop for us */
|
|
break;
|
|
}
|
|
#endif
|
|
case SRT_Callback:
|
|
case SRT_Subroutine: {
|
|
int i;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid);
|
|
for(i=0; i<nColumn; i++){
|
|
sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
|
|
}
|
|
if( eDest==SRT_Callback ){
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_Gosub, 0, iParm);
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
/* Do nothing */
|
|
break;
|
|
}
|
|
}
|
|
sqlite3ReleaseTempReg(pParse, regRow);
|
|
sqlite3ReleaseTempReg(pParse, regRowid);
|
|
|
|
/* Jump to the end of the loop when the LIMIT is reached
|
|
*/
|
|
if( p->iLimit>=0 ){
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
|
|
sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, brk);
|
|
}
|
|
|
|
/* The bottom of the loop
|
|
*/
|
|
sqlite3VdbeResolveLabel(v, cont);
|
|
sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
|
|
sqlite3VdbeResolveLabel(v, brk);
|
|
if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
|
|
sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to a string containing the 'declaration type' of the
|
|
** expression pExpr. The string may be treated as static by the caller.
|
|
**
|
|
** The declaration type is the exact datatype definition extracted from the
|
|
** original CREATE TABLE statement if the expression is a column. The
|
|
** declaration type for a ROWID field is INTEGER. Exactly when an expression
|
|
** is considered a column can be complex in the presence of subqueries. The
|
|
** result-set expression in all of the following SELECT statements is
|
|
** considered a column by this function.
|
|
**
|
|
** SELECT col FROM tbl;
|
|
** SELECT (SELECT col FROM tbl;
|
|
** SELECT (SELECT col FROM tbl);
|
|
** SELECT abc FROM (SELECT col AS abc FROM tbl);
|
|
**
|
|
** The declaration type for any expression other than a column is NULL.
|
|
*/
|
|
static const char *columnType(
|
|
NameContext *pNC,
|
|
Expr *pExpr,
|
|
const char **pzOriginDb,
|
|
const char **pzOriginTab,
|
|
const char **pzOriginCol
|
|
){
|
|
char const *zType = 0;
|
|
char const *zOriginDb = 0;
|
|
char const *zOriginTab = 0;
|
|
char const *zOriginCol = 0;
|
|
int j;
|
|
if( pExpr==0 || pNC->pSrcList==0 ) return 0;
|
|
|
|
switch( pExpr->op ){
|
|
case TK_AGG_COLUMN:
|
|
case TK_COLUMN: {
|
|
/* The expression is a column. Locate the table the column is being
|
|
** extracted from in NameContext.pSrcList. This table may be real
|
|
** database table or a subquery.
|
|
*/
|
|
Table *pTab = 0; /* Table structure column is extracted from */
|
|
Select *pS = 0; /* Select the column is extracted from */
|
|
int iCol = pExpr->iColumn; /* Index of column in pTab */
|
|
while( pNC && !pTab ){
|
|
SrcList *pTabList = pNC->pSrcList;
|
|
for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
|
|
if( j<pTabList->nSrc ){
|
|
pTab = pTabList->a[j].pTab;
|
|
pS = pTabList->a[j].pSelect;
|
|
}else{
|
|
pNC = pNC->pNext;
|
|
}
|
|
}
|
|
|
|
if( pTab==0 ){
|
|
/* FIX ME:
|
|
** This can occurs if you have something like "SELECT new.x;" inside
|
|
** a trigger. In other words, if you reference the special "new"
|
|
** table in the result set of a select. We do not have a good way
|
|
** to find the actual table type, so call it "TEXT". This is really
|
|
** something of a bug, but I do not know how to fix it.
|
|
**
|
|
** This code does not produce the correct answer - it just prevents
|
|
** a segfault. See ticket #1229.
|
|
*/
|
|
zType = "TEXT";
|
|
break;
|
|
}
|
|
|
|
assert( pTab );
|
|
if( pS ){
|
|
/* The "table" is actually a sub-select or a view in the FROM clause
|
|
** of the SELECT statement. Return the declaration type and origin
|
|
** data for the result-set column of the sub-select.
|
|
*/
|
|
if( iCol>=0 && iCol<pS->pEList->nExpr ){
|
|
/* If iCol is less than zero, then the expression requests the
|
|
** rowid of the sub-select or view. This expression is legal (see
|
|
** test case misc2.2.2) - it always evaluates to NULL.
|
|
*/
|
|
NameContext sNC;
|
|
Expr *p = pS->pEList->a[iCol].pExpr;
|
|
sNC.pSrcList = pS->pSrc;
|
|
sNC.pNext = 0;
|
|
sNC.pParse = pNC->pParse;
|
|
zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
|
|
}
|
|
}else if( pTab->pSchema ){
|
|
/* A real table */
|
|
assert( !pS );
|
|
if( iCol<0 ) iCol = pTab->iPKey;
|
|
assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
|
|
if( iCol<0 ){
|
|
zType = "INTEGER";
|
|
zOriginCol = "rowid";
|
|
}else{
|
|
zType = pTab->aCol[iCol].zType;
|
|
zOriginCol = pTab->aCol[iCol].zName;
|
|
}
|
|
zOriginTab = pTab->zName;
|
|
if( pNC->pParse ){
|
|
int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
|
|
zOriginDb = pNC->pParse->db->aDb[iDb].zName;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
case TK_SELECT: {
|
|
/* The expression is a sub-select. Return the declaration type and
|
|
** origin info for the single column in the result set of the SELECT
|
|
** statement.
|
|
*/
|
|
NameContext sNC;
|
|
Select *pS = pExpr->pSelect;
|
|
Expr *p = pS->pEList->a[0].pExpr;
|
|
sNC.pSrcList = pS->pSrc;
|
|
sNC.pNext = pNC;
|
|
sNC.pParse = pNC->pParse;
|
|
zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
if( pzOriginDb ){
|
|
assert( pzOriginTab && pzOriginCol );
|
|
*pzOriginDb = zOriginDb;
|
|
*pzOriginTab = zOriginTab;
|
|
*pzOriginCol = zOriginCol;
|
|
}
|
|
return zType;
|
|
}
|
|
|
|
/*
|
|
** Generate code that will tell the VDBE the declaration types of columns
|
|
** in the result set.
|
|
*/
|
|
static void generateColumnTypes(
|
|
Parse *pParse, /* Parser context */
|
|
SrcList *pTabList, /* List of tables */
|
|
ExprList *pEList /* Expressions defining the result set */
|
|
){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int i;
|
|
NameContext sNC;
|
|
sNC.pSrcList = pTabList;
|
|
sNC.pParse = pParse;
|
|
for(i=0; i<pEList->nExpr; i++){
|
|
Expr *p = pEList->a[i].pExpr;
|
|
const char *zOrigDb = 0;
|
|
const char *zOrigTab = 0;
|
|
const char *zOrigCol = 0;
|
|
const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
|
|
|
|
/* The vdbe must make its own copy of the column-type and other
|
|
** column specific strings, in case the schema is reset before this
|
|
** virtual machine is deleted.
|
|
*/
|
|
sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P4_TRANSIENT);
|
|
sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P4_TRANSIENT);
|
|
sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P4_TRANSIENT);
|
|
sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P4_TRANSIENT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate code that will tell the VDBE the names of columns
|
|
** in the result set. This information is used to provide the
|
|
** azCol[] values in the callback.
|
|
*/
|
|
static void generateColumnNames(
|
|
Parse *pParse, /* Parser context */
|
|
SrcList *pTabList, /* List of tables */
|
|
ExprList *pEList /* Expressions defining the result set */
|
|
){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int i, j;
|
|
sqlite3 *db = pParse->db;
|
|
int fullNames, shortNames;
|
|
|
|
#ifndef SQLITE_OMIT_EXPLAIN
|
|
/* If this is an EXPLAIN, skip this step */
|
|
if( pParse->explain ){
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
assert( v!=0 );
|
|
if( pParse->colNamesSet || v==0 || db->mallocFailed ) return;
|
|
pParse->colNamesSet = 1;
|
|
fullNames = (db->flags & SQLITE_FullColNames)!=0;
|
|
shortNames = (db->flags & SQLITE_ShortColNames)!=0;
|
|
sqlite3VdbeSetNumCols(v, pEList->nExpr);
|
|
for(i=0; i<pEList->nExpr; i++){
|
|
Expr *p;
|
|
p = pEList->a[i].pExpr;
|
|
if( p==0 ) continue;
|
|
if( pEList->a[i].zName ){
|
|
char *zName = pEList->a[i].zName;
|
|
sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
|
|
continue;
|
|
}
|
|
if( p->op==TK_COLUMN && pTabList ){
|
|
Table *pTab;
|
|
char *zCol;
|
|
int iCol = p->iColumn;
|
|
for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
|
|
assert( j<pTabList->nSrc );
|
|
pTab = pTabList->a[j].pTab;
|
|
if( iCol<0 ) iCol = pTab->iPKey;
|
|
assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
|
|
if( iCol<0 ){
|
|
zCol = "rowid";
|
|
}else{
|
|
zCol = pTab->aCol[iCol].zName;
|
|
}
|
|
if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
|
|
sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
|
|
}else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
|
|
char *zName = 0;
|
|
char *zTab;
|
|
|
|
zTab = pTabList->a[j].zAlias;
|
|
if( fullNames || zTab==0 ) zTab = pTab->zName;
|
|
sqlite3SetString(&zName, zTab, ".", zCol, (char*)0);
|
|
sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P4_DYNAMIC);
|
|
}else{
|
|
sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
|
|
}
|
|
}else if( p->span.z && p->span.z[0] ){
|
|
sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
|
|
/* sqlite3VdbeCompressSpace(v, addr); */
|
|
}else{
|
|
char zName[30];
|
|
assert( p->op!=TK_COLUMN || pTabList==0 );
|
|
sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1);
|
|
sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0);
|
|
}
|
|
}
|
|
generateColumnTypes(pParse, pTabList, pEList);
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_COMPOUND_SELECT
|
|
/*
|
|
** Name of the connection operator, used for error messages.
|
|
*/
|
|
static const char *selectOpName(int id){
|
|
char *z;
|
|
switch( id ){
|
|
case TK_ALL: z = "UNION ALL"; break;
|
|
case TK_INTERSECT: z = "INTERSECT"; break;
|
|
case TK_EXCEPT: z = "EXCEPT"; break;
|
|
default: z = "UNION"; break;
|
|
}
|
|
return z;
|
|
}
|
|
#endif /* SQLITE_OMIT_COMPOUND_SELECT */
|
|
|
|
/*
|
|
** Forward declaration
|
|
*/
|
|
static int prepSelectStmt(Parse*, Select*);
|
|
|
|
/*
|
|
** Given a SELECT statement, generate a Table structure that describes
|
|
** the result set of that SELECT.
|
|
*/
|
|
SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
|
|
Table *pTab;
|
|
int i, j;
|
|
ExprList *pEList;
|
|
Column *aCol, *pCol;
|
|
sqlite3 *db = pParse->db;
|
|
|
|
while( pSelect->pPrior ) pSelect = pSelect->pPrior;
|
|
if( prepSelectStmt(pParse, pSelect) ){
|
|
return 0;
|
|
}
|
|
if( sqlite3SelectResolve(pParse, pSelect, 0) ){
|
|
return 0;
|
|
}
|
|
pTab = sqlite3DbMallocZero(db, sizeof(Table) );
|
|
if( pTab==0 ){
|
|
return 0;
|
|
}
|
|
pTab->nRef = 1;
|
|
pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0;
|
|
pEList = pSelect->pEList;
|
|
pTab->nCol = pEList->nExpr;
|
|
assert( pTab->nCol>0 );
|
|
pTab->aCol = aCol = sqlite3DbMallocZero(db, sizeof(pTab->aCol[0])*pTab->nCol);
|
|
for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
|
|
Expr *p, *pR;
|
|
char *zType;
|
|
char *zName;
|
|
int nName;
|
|
CollSeq *pColl;
|
|
int cnt;
|
|
NameContext sNC;
|
|
|
|
/* Get an appropriate name for the column
|
|
*/
|
|
p = pEList->a[i].pExpr;
|
|
assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
|
|
if( (zName = pEList->a[i].zName)!=0 ){
|
|
/* If the column contains an "AS <name>" phrase, use <name> as the name */
|
|
zName = sqlite3DbStrDup(db, zName);
|
|
}else if( p->op==TK_DOT
|
|
&& (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
|
|
/* For columns of the from A.B use B as the name */
|
|
zName = sqlite3MPrintf(db, "%T", &pR->token);
|
|
}else if( p->span.z && p->span.z[0] ){
|
|
/* Use the original text of the column expression as its name */
|
|
zName = sqlite3MPrintf(db, "%T", &p->span);
|
|
}else{
|
|
/* If all else fails, make up a name */
|
|
zName = sqlite3MPrintf(db, "column%d", i+1);
|
|
}
|
|
if( !zName || db->mallocFailed ){
|
|
db->mallocFailed = 1;
|
|
sqlite3_free(zName);
|
|
sqlite3DeleteTable(pTab);
|
|
return 0;
|
|
}
|
|
sqlite3Dequote(zName);
|
|
|
|
/* Make sure the column name is unique. If the name is not unique,
|
|
** append a integer to the name so that it becomes unique.
|
|
*/
|
|
nName = strlen(zName);
|
|
for(j=cnt=0; j<i; j++){
|
|
if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
|
|
zName[nName] = 0;
|
|
zName = sqlite3MPrintf(db, "%z:%d", zName, ++cnt);
|
|
j = -1;
|
|
if( zName==0 ) break;
|
|
}
|
|
}
|
|
pCol->zName = zName;
|
|
|
|
/* Get the typename, type affinity, and collating sequence for the
|
|
** column.
|
|
*/
|
|
memset(&sNC, 0, sizeof(sNC));
|
|
sNC.pSrcList = pSelect->pSrc;
|
|
zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
|
|
pCol->zType = zType;
|
|
pCol->affinity = sqlite3ExprAffinity(p);
|
|
pColl = sqlite3ExprCollSeq(pParse, p);
|
|
if( pColl ){
|
|
pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
|
|
}
|
|
}
|
|
pTab->iPKey = -1;
|
|
return pTab;
|
|
}
|
|
|
|
/*
|
|
** Prepare a SELECT statement for processing by doing the following
|
|
** things:
|
|
**
|
|
** (1) Make sure VDBE cursor numbers have been assigned to every
|
|
** element of the FROM clause.
|
|
**
|
|
** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
|
|
** defines FROM clause. When views appear in the FROM clause,
|
|
** fill pTabList->a[].pSelect with a copy of the SELECT statement
|
|
** that implements the view. A copy is made of the view's SELECT
|
|
** statement so that we can freely modify or delete that statement
|
|
** without worrying about messing up the presistent representation
|
|
** of the view.
|
|
**
|
|
** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword
|
|
** on joins and the ON and USING clause of joins.
|
|
**
|
|
** (4) Scan the list of columns in the result set (pEList) looking
|
|
** for instances of the "*" operator or the TABLE.* operator.
|
|
** If found, expand each "*" to be every column in every table
|
|
** and TABLE.* to be every column in TABLE.
|
|
**
|
|
** Return 0 on success. If there are problems, leave an error message
|
|
** in pParse and return non-zero.
|
|
*/
|
|
static int prepSelectStmt(Parse *pParse, Select *p){
|
|
int i, j, k, rc;
|
|
SrcList *pTabList;
|
|
ExprList *pEList;
|
|
struct SrcList_item *pFrom;
|
|
sqlite3 *db = pParse->db;
|
|
|
|
if( p==0 || p->pSrc==0 || db->mallocFailed ){
|
|
return 1;
|
|
}
|
|
pTabList = p->pSrc;
|
|
pEList = p->pEList;
|
|
|
|
/* Make sure cursor numbers have been assigned to all entries in
|
|
** the FROM clause of the SELECT statement.
|
|
*/
|
|
sqlite3SrcListAssignCursors(pParse, p->pSrc);
|
|
|
|
/* Look up every table named in the FROM clause of the select. If
|
|
** an entry of the FROM clause is a subquery instead of a table or view,
|
|
** then create a transient table structure to describe the subquery.
|
|
*/
|
|
for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
|
|
Table *pTab;
|
|
if( pFrom->pTab!=0 ){
|
|
/* This statement has already been prepared. There is no need
|
|
** to go further. */
|
|
assert( i==0 );
|
|
return 0;
|
|
}
|
|
if( pFrom->zName==0 ){
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
/* A sub-query in the FROM clause of a SELECT */
|
|
assert( pFrom->pSelect!=0 );
|
|
if( pFrom->zAlias==0 ){
|
|
pFrom->zAlias =
|
|
sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pFrom->pSelect);
|
|
}
|
|
assert( pFrom->pTab==0 );
|
|
pFrom->pTab = pTab =
|
|
sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
|
|
if( pTab==0 ){
|
|
return 1;
|
|
}
|
|
/* The isEphem flag indicates that the Table structure has been
|
|
** dynamically allocated and may be freed at any time. In other words,
|
|
** pTab is not pointing to a persistent table structure that defines
|
|
** part of the schema. */
|
|
pTab->isEphem = 1;
|
|
#endif
|
|
}else{
|
|
/* An ordinary table or view name in the FROM clause */
|
|
assert( pFrom->pTab==0 );
|
|
pFrom->pTab = pTab =
|
|
sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
|
|
if( pTab==0 ){
|
|
return 1;
|
|
}
|
|
pTab->nRef++;
|
|
#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
|
|
if( pTab->pSelect || IsVirtual(pTab) ){
|
|
/* We reach here if the named table is a really a view */
|
|
if( sqlite3ViewGetColumnNames(pParse, pTab) ){
|
|
return 1;
|
|
}
|
|
/* If pFrom->pSelect!=0 it means we are dealing with a
|
|
** view within a view. The SELECT structure has already been
|
|
** copied by the outer view so we can skip the copy step here
|
|
** in the inner view.
|
|
*/
|
|
if( pFrom->pSelect==0 ){
|
|
pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* Process NATURAL keywords, and ON and USING clauses of joins.
|
|
*/
|
|
if( sqliteProcessJoin(pParse, p) ) return 1;
|
|
|
|
/* For every "*" that occurs in the column list, insert the names of
|
|
** all columns in all tables. And for every TABLE.* insert the names
|
|
** of all columns in TABLE. The parser inserted a special expression
|
|
** with the TK_ALL operator for each "*" that it found in the column list.
|
|
** The following code just has to locate the TK_ALL expressions and expand
|
|
** each one to the list of all columns in all tables.
|
|
**
|
|
** The first loop just checks to see if there are any "*" operators
|
|
** that need expanding.
|
|
*/
|
|
for(k=0; k<pEList->nExpr; k++){
|
|
Expr *pE = pEList->a[k].pExpr;
|
|
if( pE->op==TK_ALL ) break;
|
|
if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
|
|
&& pE->pLeft && pE->pLeft->op==TK_ID ) break;
|
|
}
|
|
rc = 0;
|
|
if( k<pEList->nExpr ){
|
|
/*
|
|
** If we get here it means the result set contains one or more "*"
|
|
** operators that need to be expanded. Loop through each expression
|
|
** in the result set and expand them one by one.
|
|
*/
|
|
struct ExprList_item *a = pEList->a;
|
|
ExprList *pNew = 0;
|
|
int flags = pParse->db->flags;
|
|
int longNames = (flags & SQLITE_FullColNames)!=0 &&
|
|
(flags & SQLITE_ShortColNames)==0;
|
|
|
|
for(k=0; k<pEList->nExpr; k++){
|
|
Expr *pE = a[k].pExpr;
|
|
if( pE->op!=TK_ALL &&
|
|
(pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
|
|
/* This particular expression does not need to be expanded.
|
|
*/
|
|
pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
|
|
if( pNew ){
|
|
pNew->a[pNew->nExpr-1].zName = a[k].zName;
|
|
}else{
|
|
rc = 1;
|
|
}
|
|
a[k].pExpr = 0;
|
|
a[k].zName = 0;
|
|
}else{
|
|
/* This expression is a "*" or a "TABLE.*" and needs to be
|
|
** expanded. */
|
|
int tableSeen = 0; /* Set to 1 when TABLE matches */
|
|
char *zTName; /* text of name of TABLE */
|
|
if( pE->op==TK_DOT && pE->pLeft ){
|
|
zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
|
|
}else{
|
|
zTName = 0;
|
|
}
|
|
for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
|
|
Table *pTab = pFrom->pTab;
|
|
char *zTabName = pFrom->zAlias;
|
|
if( zTabName==0 || zTabName[0]==0 ){
|
|
zTabName = pTab->zName;
|
|
}
|
|
if( zTName && (zTabName==0 || zTabName[0]==0 ||
|
|
sqlite3StrICmp(zTName, zTabName)!=0) ){
|
|
continue;
|
|
}
|
|
tableSeen = 1;
|
|
for(j=0; j<pTab->nCol; j++){
|
|
Expr *pExpr, *pRight;
|
|
char *zName = pTab->aCol[j].zName;
|
|
|
|
/* If a column is marked as 'hidden' (currently only possible
|
|
** for virtual tables), do not include it in the expanded
|
|
** result-set list.
|
|
*/
|
|
if( IsHiddenColumn(&pTab->aCol[j]) ){
|
|
assert(IsVirtual(pTab));
|
|
continue;
|
|
}
|
|
|
|
if( i>0 ){
|
|
struct SrcList_item *pLeft = &pTabList->a[i-1];
|
|
if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
|
|
columnIndex(pLeft->pTab, zName)>=0 ){
|
|
/* In a NATURAL join, omit the join columns from the
|
|
** table on the right */
|
|
continue;
|
|
}
|
|
if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
|
|
/* In a join with a USING clause, omit columns in the
|
|
** using clause from the table on the right. */
|
|
continue;
|
|
}
|
|
}
|
|
pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
|
|
if( pRight==0 ) break;
|
|
setQuotedToken(pParse, &pRight->token, zName);
|
|
if( zTabName && (longNames || pTabList->nSrc>1) ){
|
|
Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
|
|
pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
|
|
if( pExpr==0 ) break;
|
|
setQuotedToken(pParse, &pLeft->token, zTabName);
|
|
setToken(&pExpr->span,
|
|
sqlite3MPrintf(db, "%s.%s", zTabName, zName));
|
|
pExpr->span.dyn = 1;
|
|
pExpr->token.z = 0;
|
|
pExpr->token.n = 0;
|
|
pExpr->token.dyn = 0;
|
|
}else{
|
|
pExpr = pRight;
|
|
pExpr->span = pExpr->token;
|
|
pExpr->span.dyn = 0;
|
|
}
|
|
if( longNames ){
|
|
pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
|
|
}else{
|
|
pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
|
|
}
|
|
}
|
|
}
|
|
if( !tableSeen ){
|
|
if( zTName ){
|
|
sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
|
|
}else{
|
|
sqlite3ErrorMsg(pParse, "no tables specified");
|
|
}
|
|
rc = 1;
|
|
}
|
|
sqlite3_free(zTName);
|
|
}
|
|
}
|
|
sqlite3ExprListDelete(pEList);
|
|
p->pEList = pNew;
|
|
}
|
|
if( p->pEList && p->pEList->nExpr>SQLITE_MAX_COLUMN ){
|
|
sqlite3ErrorMsg(pParse, "too many columns in result set");
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
if( db->mallocFailed ){
|
|
rc = SQLITE_NOMEM;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** pE is a pointer to an expression which is a single term in
|
|
** ORDER BY or GROUP BY clause.
|
|
**
|
|
** If pE evaluates to an integer constant i, then return i.
|
|
** This is an indication to the caller that it should sort
|
|
** by the i-th column of the result set.
|
|
**
|
|
** If pE is a well-formed expression and the SELECT statement
|
|
** is not compound, then return 0. This indicates to the
|
|
** caller that it should sort by the value of the ORDER BY
|
|
** expression.
|
|
**
|
|
** If the SELECT is compound, then attempt to match pE against
|
|
** result set columns in the left-most SELECT statement. Return
|
|
** the index i of the matching column, as an indication to the
|
|
** caller that it should sort by the i-th column. If there is
|
|
** no match, return -1 and leave an error message in pParse.
|
|
*/
|
|
static int matchOrderByTermToExprList(
|
|
Parse *pParse, /* Parsing context for error messages */
|
|
Select *pSelect, /* The SELECT statement with the ORDER BY clause */
|
|
Expr *pE, /* The specific ORDER BY term */
|
|
int idx, /* When ORDER BY term is this */
|
|
int isCompound, /* True if this is a compound SELECT */
|
|
u8 *pHasAgg /* True if expression contains aggregate functions */
|
|
){
|
|
int i; /* Loop counter */
|
|
ExprList *pEList; /* The columns of the result set */
|
|
NameContext nc; /* Name context for resolving pE */
|
|
|
|
|
|
/* If the term is an integer constant, return the value of that
|
|
** constant */
|
|
pEList = pSelect->pEList;
|
|
if( sqlite3ExprIsInteger(pE, &i) ){
|
|
if( i<=0 ){
|
|
/* If i is too small, make it too big. That way the calling
|
|
** function still sees a value that is out of range, but does
|
|
** not confuse the column number with 0 or -1 result code.
|
|
*/
|
|
i = pEList->nExpr+1;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
/* If the term is a simple identifier that try to match that identifier
|
|
** against a column name in the result set.
|
|
*/
|
|
if( pE->op==TK_ID || (pE->op==TK_STRING && pE->token.z[0]!='\'') ){
|
|
sqlite3 *db = pParse->db;
|
|
char *zCol = sqlite3NameFromToken(db, &pE->token);
|
|
if( zCol==0 ){
|
|
return -1;
|
|
}
|
|
for(i=0; i<pEList->nExpr; i++){
|
|
char *zAs = pEList->a[i].zName;
|
|
if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
|
|
sqlite3_free(zCol);
|
|
return i+1;
|
|
}
|
|
}
|
|
sqlite3_free(zCol);
|
|
}
|
|
|
|
/* Resolve all names in the ORDER BY term expression
|
|
*/
|
|
memset(&nc, 0, sizeof(nc));
|
|
nc.pParse = pParse;
|
|
nc.pSrcList = pSelect->pSrc;
|
|
nc.pEList = pEList;
|
|
nc.allowAgg = 1;
|
|
nc.nErr = 0;
|
|
if( sqlite3ExprResolveNames(&nc, pE) ){
|
|
if( isCompound ){
|
|
sqlite3ErrorClear(pParse);
|
|
return 0;
|
|
}else{
|
|
return -1;
|
|
}
|
|
}
|
|
if( nc.hasAgg && pHasAgg ){
|
|
*pHasAgg = 1;
|
|
}
|
|
|
|
/* For a compound SELECT, we need to try to match the ORDER BY
|
|
** expression against an expression in the result set
|
|
*/
|
|
if( isCompound ){
|
|
for(i=0; i<pEList->nExpr; i++){
|
|
if( sqlite3ExprCompare(pEList->a[i].pExpr, pE) ){
|
|
return i+1;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
** Analyze and ORDER BY or GROUP BY clause in a simple SELECT statement.
|
|
** Return the number of errors seen.
|
|
**
|
|
** Every term of the ORDER BY or GROUP BY clause needs to be an
|
|
** expression. If any expression is an integer constant, then
|
|
** that expression is replaced by the corresponding
|
|
** expression from the result set.
|
|
*/
|
|
static int processOrderGroupBy(
|
|
Parse *pParse, /* Parsing context. Leave error messages here */
|
|
Select *pSelect, /* The SELECT statement containing the clause */
|
|
ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */
|
|
int isOrder, /* 1 for ORDER BY. 0 for GROUP BY */
|
|
u8 *pHasAgg /* Set to TRUE if any term contains an aggregate */
|
|
){
|
|
int i;
|
|
sqlite3 *db = pParse->db;
|
|
ExprList *pEList;
|
|
|
|
if( pOrderBy==0 || pParse->db->mallocFailed ) return 0;
|
|
if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){
|
|
const char *zType = isOrder ? "ORDER" : "GROUP";
|
|
sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
|
|
return 1;
|
|
}
|
|
pEList = pSelect->pEList;
|
|
if( pEList==0 ){
|
|
return 0;
|
|
}
|
|
for(i=0; i<pOrderBy->nExpr; i++){
|
|
int iCol;
|
|
Expr *pE = pOrderBy->a[i].pExpr;
|
|
iCol = matchOrderByTermToExprList(pParse, pSelect, pE, i+1, 0, pHasAgg);
|
|
if( iCol<0 ){
|
|
return 1;
|
|
}
|
|
if( iCol>pEList->nExpr ){
|
|
const char *zType = isOrder ? "ORDER" : "GROUP";
|
|
sqlite3ErrorMsg(pParse,
|
|
"%r %s BY term out of range - should be "
|
|
"between 1 and %d", i+1, zType, pEList->nExpr);
|
|
return 1;
|
|
}
|
|
if( iCol>0 ){
|
|
CollSeq *pColl = pE->pColl;
|
|
int flags = pE->flags & EP_ExpCollate;
|
|
sqlite3ExprDelete(pE);
|
|
pE = sqlite3ExprDup(db, pEList->a[iCol-1].pExpr);
|
|
pOrderBy->a[i].pExpr = pE;
|
|
if( pE && pColl && flags ){
|
|
pE->pColl = pColl;
|
|
pE->flags |= flags;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return
|
|
** the number of errors seen.
|
|
**
|
|
** The processing depends on whether the SELECT is simple or compound.
|
|
** For a simple SELECT statement, evry term of the ORDER BY or GROUP BY
|
|
** clause needs to be an expression. If any expression is an integer
|
|
** constant, then that expression is replaced by the corresponding
|
|
** expression from the result set.
|
|
**
|
|
** For compound SELECT statements, every expression needs to be of
|
|
** type TK_COLUMN with a iTable value as given in the 4th parameter.
|
|
** If any expression is an integer, that becomes the column number.
|
|
** Otherwise, match the expression against result set columns from
|
|
** the left-most SELECT.
|
|
*/
|
|
static int processCompoundOrderBy(
|
|
Parse *pParse, /* Parsing context. Leave error messages here */
|
|
Select *pSelect, /* The SELECT statement containing the ORDER BY */
|
|
int iTable /* Output table for compound SELECT statements */
|
|
){
|
|
int i;
|
|
ExprList *pOrderBy;
|
|
ExprList *pEList;
|
|
sqlite3 *db;
|
|
int moreToDo = 1;
|
|
|
|
pOrderBy = pSelect->pOrderBy;
|
|
if( pOrderBy==0 ) return 0;
|
|
if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){
|
|
sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause");
|
|
return 1;
|
|
}
|
|
db = pParse->db;
|
|
for(i=0; i<pOrderBy->nExpr; i++){
|
|
pOrderBy->a[i].done = 0;
|
|
}
|
|
while( pSelect->pPrior ){
|
|
pSelect = pSelect->pPrior;
|
|
}
|
|
while( pSelect && moreToDo ){
|
|
moreToDo = 0;
|
|
for(i=0; i<pOrderBy->nExpr; i++){
|
|
int iCol = -1;
|
|
Expr *pE, *pDup;
|
|
if( pOrderBy->a[i].done ) continue;
|
|
pE = pOrderBy->a[i].pExpr;
|
|
pDup = sqlite3ExprDup(db, pE);
|
|
if( !db->mallocFailed ){
|
|
assert(pDup);
|
|
iCol = matchOrderByTermToExprList(pParse, pSelect, pDup, i+1, 1, 0);
|
|
}
|
|
sqlite3ExprDelete(pDup);
|
|
if( iCol<0 ){
|
|
return 1;
|
|
}
|
|
pEList = pSelect->pEList;
|
|
if( pEList==0 ){
|
|
return 1;
|
|
}
|
|
if( iCol>pEList->nExpr ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"%r ORDER BY term out of range - should be "
|
|
"between 1 and %d", i+1, pEList->nExpr);
|
|
return 1;
|
|
}
|
|
if( iCol>0 ){
|
|
pE->op = TK_COLUMN;
|
|
pE->iTable = iTable;
|
|
pE->iAgg = -1;
|
|
pE->iColumn = iCol-1;
|
|
pE->pTab = 0;
|
|
pOrderBy->a[i].done = 1;
|
|
}else{
|
|
moreToDo = 1;
|
|
}
|
|
}
|
|
pSelect = pSelect->pNext;
|
|
}
|
|
for(i=0; i<pOrderBy->nExpr; i++){
|
|
if( pOrderBy->a[i].done==0 ){
|
|
sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any "
|
|
"column in the result set", i+1);
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Get a VDBE for the given parser context. Create a new one if necessary.
|
|
** If an error occurs, return NULL and leave a message in pParse.
|
|
*/
|
|
SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse *pParse){
|
|
Vdbe *v = pParse->pVdbe;
|
|
if( v==0 ){
|
|
v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
|
|
#ifndef SQLITE_OMIT_TRACE
|
|
if( v ){
|
|
sqlite3VdbeAddOp0(v, OP_Trace);
|
|
}
|
|
#endif
|
|
}
|
|
return v;
|
|
}
|
|
|
|
|
|
/*
|
|
** Compute the iLimit and iOffset fields of the SELECT based on the
|
|
** pLimit and pOffset expressions. pLimit and pOffset hold the expressions
|
|
** that appear in the original SQL statement after the LIMIT and OFFSET
|
|
** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
|
|
** are the integer memory register numbers for counters used to compute
|
|
** the limit and offset. If there is no limit and/or offset, then
|
|
** iLimit and iOffset are negative.
|
|
**
|
|
** This routine changes the values of iLimit and iOffset only if
|
|
** a limit or offset is defined by pLimit and pOffset. iLimit and
|
|
** iOffset should have been preset to appropriate default values
|
|
** (usually but not always -1) prior to calling this routine.
|
|
** Only if pLimit!=0 or pOffset!=0 do the limit registers get
|
|
** redefined. The UNION ALL operator uses this property to force
|
|
** the reuse of the same limit and offset registers across multiple
|
|
** SELECT statements.
|
|
*/
|
|
static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
|
|
Vdbe *v = 0;
|
|
int iLimit = 0;
|
|
int iOffset;
|
|
int addr1;
|
|
|
|
/*
|
|
** "LIMIT -1" always shows all rows. There is some
|
|
** contraversy about what the correct behavior should be.
|
|
** The current implementation interprets "LIMIT 0" to mean
|
|
** no rows.
|
|
*/
|
|
if( p->pLimit ){
|
|
p->iLimit = iLimit = ++pParse->nMem;
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) return;
|
|
sqlite3ExprCode(pParse, p->pLimit, iLimit);
|
|
sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
|
|
VdbeComment((v, "LIMIT counter"));
|
|
sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
|
|
}
|
|
if( p->pOffset ){
|
|
p->iOffset = iOffset = ++pParse->nMem;
|
|
if( p->pLimit ){
|
|
pParse->nMem++; /* Allocate an extra register for limit+offset */
|
|
}
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) return;
|
|
sqlite3ExprCode(pParse, p->pOffset, iOffset);
|
|
sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
|
|
VdbeComment((v, "OFFSET counter"));
|
|
addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
if( p->pLimit ){
|
|
sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
|
|
VdbeComment((v, "LIMIT+OFFSET"));
|
|
addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Allocate a virtual index to use for sorting.
|
|
*/
|
|
static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){
|
|
if( pOrderBy ){
|
|
int addr;
|
|
assert( pOrderBy->iECursor==0 );
|
|
pOrderBy->iECursor = pParse->nTab++;
|
|
addr = sqlite3VdbeAddOp2(pParse->pVdbe, OP_OpenEphemeral,
|
|
pOrderBy->iECursor, pOrderBy->nExpr+1);
|
|
assert( p->addrOpenEphm[2] == -1 );
|
|
p->addrOpenEphm[2] = addr;
|
|
}
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_COMPOUND_SELECT
|
|
/*
|
|
** Return the appropriate collating sequence for the iCol-th column of
|
|
** the result set for the compound-select statement "p". Return NULL if
|
|
** the column has no default collating sequence.
|
|
**
|
|
** The collating sequence for the compound select is taken from the
|
|
** left-most term of the select that has a collating sequence.
|
|
*/
|
|
static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
|
|
CollSeq *pRet;
|
|
if( p->pPrior ){
|
|
pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
|
|
}else{
|
|
pRet = 0;
|
|
}
|
|
if( pRet==0 ){
|
|
pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
|
|
}
|
|
return pRet;
|
|
}
|
|
#endif /* SQLITE_OMIT_COMPOUND_SELECT */
|
|
|
|
#ifndef SQLITE_OMIT_COMPOUND_SELECT
|
|
/*
|
|
** This routine is called to process a query that is really the union
|
|
** or intersection of two or more separate queries.
|
|
**
|
|
** "p" points to the right-most of the two queries. the query on the
|
|
** left is p->pPrior. The left query could also be a compound query
|
|
** in which case this routine will be called recursively.
|
|
**
|
|
** The results of the total query are to be written into a destination
|
|
** of type eDest with parameter iParm.
|
|
**
|
|
** Example 1: Consider a three-way compound SQL statement.
|
|
**
|
|
** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
|
|
**
|
|
** This statement is parsed up as follows:
|
|
**
|
|
** SELECT c FROM t3
|
|
** |
|
|
** `-----> SELECT b FROM t2
|
|
** |
|
|
** `------> SELECT a FROM t1
|
|
**
|
|
** The arrows in the diagram above represent the Select.pPrior pointer.
|
|
** So if this routine is called with p equal to the t3 query, then
|
|
** pPrior will be the t2 query. p->op will be TK_UNION in this case.
|
|
**
|
|
** Notice that because of the way SQLite parses compound SELECTs, the
|
|
** individual selects always group from left to right.
|
|
*/
|
|
static int multiSelect(
|
|
Parse *pParse, /* Parsing context */
|
|
Select *p, /* The right-most of SELECTs to be coded */
|
|
SelectDest *pDest, /* What to do with query results */
|
|
char *aff /* If eDest is SRT_Union, the affinity string */
|
|
){
|
|
int rc = SQLITE_OK; /* Success code from a subroutine */
|
|
Select *pPrior; /* Another SELECT immediately to our left */
|
|
Vdbe *v; /* Generate code to this VDBE */
|
|
int nCol; /* Number of columns in the result set */
|
|
ExprList *pOrderBy; /* The ORDER BY clause on p */
|
|
int aSetP2[2]; /* Set P2 value of these op to number of columns */
|
|
int nSetP2 = 0; /* Number of slots in aSetP2[] used */
|
|
SelectDest dest; /* Alternative data destination */
|
|
|
|
dest = *pDest;
|
|
|
|
/* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
|
|
** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
|
|
*/
|
|
if( p==0 || p->pPrior==0 ){
|
|
rc = 1;
|
|
goto multi_select_end;
|
|
}
|
|
pPrior = p->pPrior;
|
|
assert( pPrior->pRightmost!=pPrior );
|
|
assert( pPrior->pRightmost==p->pRightmost );
|
|
if( pPrior->pOrderBy ){
|
|
sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
|
|
selectOpName(p->op));
|
|
rc = 1;
|
|
goto multi_select_end;
|
|
}
|
|
if( pPrior->pLimit ){
|
|
sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
|
|
selectOpName(p->op));
|
|
rc = 1;
|
|
goto multi_select_end;
|
|
}
|
|
|
|
/* Make sure we have a valid query engine. If not, create a new one.
|
|
*/
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ){
|
|
rc = 1;
|
|
goto multi_select_end;
|
|
}
|
|
|
|
/* Create the destination temporary table if necessary
|
|
*/
|
|
if( dest.eDest==SRT_EphemTab ){
|
|
assert( p->pEList );
|
|
assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
|
|
aSetP2[nSetP2++] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, 0);
|
|
dest.eDest = SRT_Table;
|
|
}
|
|
|
|
/* Generate code for the left and right SELECT statements.
|
|
*/
|
|
pOrderBy = p->pOrderBy;
|
|
switch( p->op ){
|
|
case TK_ALL: {
|
|
if( pOrderBy==0 ){
|
|
int addr = 0;
|
|
assert( !pPrior->pLimit );
|
|
pPrior->pLimit = p->pLimit;
|
|
pPrior->pOffset = p->pOffset;
|
|
rc = sqlite3Select(pParse, pPrior, &dest, 0, 0, 0, aff);
|
|
p->pLimit = 0;
|
|
p->pOffset = 0;
|
|
if( rc ){
|
|
goto multi_select_end;
|
|
}
|
|
p->pPrior = 0;
|
|
p->iLimit = pPrior->iLimit;
|
|
p->iOffset = pPrior->iOffset;
|
|
if( p->iLimit>=0 ){
|
|
addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
|
|
VdbeComment((v, "Jump ahead if LIMIT reached"));
|
|
}
|
|
rc = sqlite3Select(pParse, p, &dest, 0, 0, 0, aff);
|
|
p->pPrior = pPrior;
|
|
if( rc ){
|
|
goto multi_select_end;
|
|
}
|
|
if( addr ){
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
}
|
|
break;
|
|
}
|
|
/* For UNION ALL ... ORDER BY fall through to the next case */
|
|
}
|
|
case TK_EXCEPT:
|
|
case TK_UNION: {
|
|
int unionTab; /* Cursor number of the temporary table holding result */
|
|
int op = 0; /* One of the SRT_ operations to apply to self */
|
|
int priorOp; /* The SRT_ operation to apply to prior selects */
|
|
Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
|
|
int addr;
|
|
SelectDest uniondest;
|
|
|
|
priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
|
|
if( dest.eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){
|
|
/* We can reuse a temporary table generated by a SELECT to our
|
|
** right.
|
|
*/
|
|
unionTab = dest.iParm;
|
|
}else{
|
|
/* We will need to create our own temporary table to hold the
|
|
** intermediate results.
|
|
*/
|
|
unionTab = pParse->nTab++;
|
|
if( processCompoundOrderBy(pParse, p, unionTab) ){
|
|
rc = 1;
|
|
goto multi_select_end;
|
|
}
|
|
addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
|
|
if( priorOp==SRT_Table ){
|
|
assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
|
|
aSetP2[nSetP2++] = addr;
|
|
}else{
|
|
assert( p->addrOpenEphm[0] == -1 );
|
|
p->addrOpenEphm[0] = addr;
|
|
p->pRightmost->usesEphm = 1;
|
|
}
|
|
createSortingIndex(pParse, p, pOrderBy);
|
|
assert( p->pEList );
|
|
}
|
|
|
|
/* Code the SELECT statements to our left
|
|
*/
|
|
assert( !pPrior->pOrderBy );
|
|
sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
|
|
rc = sqlite3Select(pParse, pPrior, &uniondest, 0, 0, 0, aff);
|
|
if( rc ){
|
|
goto multi_select_end;
|
|
}
|
|
|
|
/* Code the current SELECT statement
|
|
*/
|
|
switch( p->op ){
|
|
case TK_EXCEPT: op = SRT_Except; break;
|
|
case TK_UNION: op = SRT_Union; break;
|
|
case TK_ALL: op = SRT_Table; break;
|
|
}
|
|
p->pPrior = 0;
|
|
p->pOrderBy = 0;
|
|
p->disallowOrderBy = pOrderBy!=0;
|
|
pLimit = p->pLimit;
|
|
p->pLimit = 0;
|
|
pOffset = p->pOffset;
|
|
p->pOffset = 0;
|
|
uniondest.eDest = op;
|
|
rc = sqlite3Select(pParse, p, &uniondest, 0, 0, 0, aff);
|
|
/* Query flattening in sqlite3Select() might refill p->pOrderBy.
|
|
** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
|
|
sqlite3ExprListDelete(p->pOrderBy);
|
|
p->pPrior = pPrior;
|
|
p->pOrderBy = pOrderBy;
|
|
sqlite3ExprDelete(p->pLimit);
|
|
p->pLimit = pLimit;
|
|
p->pOffset = pOffset;
|
|
p->iLimit = -1;
|
|
p->iOffset = -1;
|
|
if( rc ){
|
|
goto multi_select_end;
|
|
}
|
|
|
|
|
|
/* Convert the data in the temporary table into whatever form
|
|
** it is that we currently need.
|
|
*/
|
|
if( dest.eDest!=priorOp || unionTab!=dest.iParm ){
|
|
int iCont, iBreak, iStart;
|
|
assert( p->pEList );
|
|
if( dest.eDest==SRT_Callback ){
|
|
Select *pFirst = p;
|
|
while( pFirst->pPrior ) pFirst = pFirst->pPrior;
|
|
generateColumnNames(pParse, 0, pFirst->pEList);
|
|
}
|
|
iBreak = sqlite3VdbeMakeLabel(v);
|
|
iCont = sqlite3VdbeMakeLabel(v);
|
|
computeLimitRegisters(pParse, p, iBreak);
|
|
sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
|
|
iStart = sqlite3VdbeCurrentAddr(v);
|
|
selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
|
|
pOrderBy, -1, &dest, iCont, iBreak, 0);
|
|
sqlite3VdbeResolveLabel(v, iCont);
|
|
sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
|
|
sqlite3VdbeResolveLabel(v, iBreak);
|
|
sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
|
|
}
|
|
break;
|
|
}
|
|
case TK_INTERSECT: {
|
|
int tab1, tab2;
|
|
int iCont, iBreak, iStart;
|
|
Expr *pLimit, *pOffset;
|
|
int addr;
|
|
SelectDest intersectdest;
|
|
int r1;
|
|
|
|
/* INTERSECT is different from the others since it requires
|
|
** two temporary tables. Hence it has its own case. Begin
|
|
** by allocating the tables we will need.
|
|
*/
|
|
tab1 = pParse->nTab++;
|
|
tab2 = pParse->nTab++;
|
|
if( processCompoundOrderBy(pParse, p, tab1) ){
|
|
rc = 1;
|
|
goto multi_select_end;
|
|
}
|
|
createSortingIndex(pParse, p, pOrderBy);
|
|
|
|
addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
|
|
assert( p->addrOpenEphm[0] == -1 );
|
|
p->addrOpenEphm[0] = addr;
|
|
p->pRightmost->usesEphm = 1;
|
|
assert( p->pEList );
|
|
|
|
/* Code the SELECTs to our left into temporary table "tab1".
|
|
*/
|
|
sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
|
|
rc = sqlite3Select(pParse, pPrior, &intersectdest, 0, 0, 0, aff);
|
|
if( rc ){
|
|
goto multi_select_end;
|
|
}
|
|
|
|
/* Code the current SELECT into temporary table "tab2"
|
|
*/
|
|
addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
|
|
assert( p->addrOpenEphm[1] == -1 );
|
|
p->addrOpenEphm[1] = addr;
|
|
p->pPrior = 0;
|
|
pLimit = p->pLimit;
|
|
p->pLimit = 0;
|
|
pOffset = p->pOffset;
|
|
p->pOffset = 0;
|
|
intersectdest.iParm = tab2;
|
|
rc = sqlite3Select(pParse, p, &intersectdest, 0, 0, 0, aff);
|
|
p->pPrior = pPrior;
|
|
sqlite3ExprDelete(p->pLimit);
|
|
p->pLimit = pLimit;
|
|
p->pOffset = pOffset;
|
|
if( rc ){
|
|
goto multi_select_end;
|
|
}
|
|
|
|
/* Generate code to take the intersection of the two temporary
|
|
** tables.
|
|
*/
|
|
assert( p->pEList );
|
|
if( dest.eDest==SRT_Callback ){
|
|
Select *pFirst = p;
|
|
while( pFirst->pPrior ) pFirst = pFirst->pPrior;
|
|
generateColumnNames(pParse, 0, pFirst->pEList);
|
|
}
|
|
iBreak = sqlite3VdbeMakeLabel(v);
|
|
iCont = sqlite3VdbeMakeLabel(v);
|
|
computeLimitRegisters(pParse, p, iBreak);
|
|
sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
|
|
r1 = sqlite3GetTempReg(pParse);
|
|
iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
|
|
sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1);
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
|
|
pOrderBy, -1, &dest, iCont, iBreak, 0);
|
|
sqlite3VdbeResolveLabel(v, iCont);
|
|
sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
|
|
sqlite3VdbeResolveLabel(v, iBreak);
|
|
sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
|
|
sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Make sure all SELECTs in the statement have the same number of elements
|
|
** in their result sets.
|
|
*/
|
|
assert( p->pEList && pPrior->pEList );
|
|
if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
|
|
sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
|
|
" do not have the same number of result columns", selectOpName(p->op));
|
|
rc = 1;
|
|
goto multi_select_end;
|
|
}
|
|
|
|
/* Set the number of columns in temporary tables
|
|
*/
|
|
nCol = p->pEList->nExpr;
|
|
while( nSetP2 ){
|
|
sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol);
|
|
}
|
|
|
|
/* Compute collating sequences used by either the ORDER BY clause or
|
|
** by any temporary tables needed to implement the compound select.
|
|
** Attach the KeyInfo structure to all temporary tables. Invoke the
|
|
** ORDER BY processing if there is an ORDER BY clause.
|
|
**
|
|
** This section is run by the right-most SELECT statement only.
|
|
** SELECT statements to the left always skip this part. The right-most
|
|
** SELECT might also skip this part if it has no ORDER BY clause and
|
|
** no temp tables are required.
|
|
*/
|
|
if( pOrderBy || p->usesEphm ){
|
|
int i; /* Loop counter */
|
|
KeyInfo *pKeyInfo; /* Collating sequence for the result set */
|
|
Select *pLoop; /* For looping through SELECT statements */
|
|
int nKeyCol; /* Number of entries in pKeyInfo->aCol[] */
|
|
CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
|
|
CollSeq **aCopy; /* A copy of pKeyInfo->aColl[] */
|
|
|
|
assert( p->pRightmost==p );
|
|
nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0);
|
|
pKeyInfo = sqlite3DbMallocZero(pParse->db,
|
|
sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1));
|
|
if( !pKeyInfo ){
|
|
rc = SQLITE_NOMEM;
|
|
goto multi_select_end;
|
|
}
|
|
|
|
pKeyInfo->enc = ENC(pParse->db);
|
|
pKeyInfo->nField = nCol;
|
|
|
|
for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
|
|
*apColl = multiSelectCollSeq(pParse, p, i);
|
|
if( 0==*apColl ){
|
|
*apColl = pParse->db->pDfltColl;
|
|
}
|
|
}
|
|
|
|
for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
|
|
for(i=0; i<2; i++){
|
|
int addr = pLoop->addrOpenEphm[i];
|
|
if( addr<0 ){
|
|
/* If [0] is unused then [1] is also unused. So we can
|
|
** always safely abort as soon as the first unused slot is found */
|
|
assert( pLoop->addrOpenEphm[1]<0 );
|
|
break;
|
|
}
|
|
sqlite3VdbeChangeP2(v, addr, nCol);
|
|
sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
|
|
pLoop->addrOpenEphm[i] = -1;
|
|
}
|
|
}
|
|
|
|
if( pOrderBy ){
|
|
struct ExprList_item *pOTerm = pOrderBy->a;
|
|
int nOrderByExpr = pOrderBy->nExpr;
|
|
int addr;
|
|
u8 *pSortOrder;
|
|
|
|
/* Reuse the same pKeyInfo for the ORDER BY as was used above for
|
|
** the compound select statements. Except we have to change out the
|
|
** pKeyInfo->aColl[] values. Some of the aColl[] values will be
|
|
** reused when constructing the pKeyInfo for the ORDER BY, so make
|
|
** a copy. Sufficient space to hold both the nCol entries for
|
|
** the compound select and the nOrderbyExpr entries for the ORDER BY
|
|
** was allocated above. But we need to move the compound select
|
|
** entries out of the way before constructing the ORDER BY entries.
|
|
** Move the compound select entries into aCopy[] where they can be
|
|
** accessed and reused when constructing the ORDER BY entries.
|
|
** Because nCol might be greater than or less than nOrderByExpr
|
|
** we have to use memmove() when doing the copy.
|
|
*/
|
|
aCopy = &pKeyInfo->aColl[nOrderByExpr];
|
|
pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol];
|
|
memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*));
|
|
|
|
apColl = pKeyInfo->aColl;
|
|
for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){
|
|
Expr *pExpr = pOTerm->pExpr;
|
|
if( (pExpr->flags & EP_ExpCollate) ){
|
|
assert( pExpr->pColl!=0 );
|
|
*apColl = pExpr->pColl;
|
|
}else{
|
|
*apColl = aCopy[pExpr->iColumn];
|
|
}
|
|
*pSortOrder = pOTerm->sortOrder;
|
|
}
|
|
assert( p->pRightmost==p );
|
|
assert( p->addrOpenEphm[2]>=0 );
|
|
addr = p->addrOpenEphm[2];
|
|
sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2);
|
|
pKeyInfo->nField = nOrderByExpr;
|
|
sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
|
|
pKeyInfo = 0;
|
|
generateSortTail(pParse, p, v, p->pEList->nExpr, &dest);
|
|
}
|
|
|
|
sqlite3_free(pKeyInfo);
|
|
}
|
|
|
|
multi_select_end:
|
|
pDest->iMem = dest.iMem;
|
|
return rc;
|
|
}
|
|
#endif /* SQLITE_OMIT_COMPOUND_SELECT */
|
|
|
|
#ifndef SQLITE_OMIT_VIEW
|
|
/* Forward Declarations */
|
|
static void substExprList(sqlite3*, ExprList*, int, ExprList*);
|
|
static void substSelect(sqlite3*, Select *, int, ExprList *);
|
|
|
|
/*
|
|
** Scan through the expression pExpr. Replace every reference to
|
|
** a column in table number iTable with a copy of the iColumn-th
|
|
** entry in pEList. (But leave references to the ROWID column
|
|
** unchanged.)
|
|
**
|
|
** This routine is part of the flattening procedure. A subquery
|
|
** whose result set is defined by pEList appears as entry in the
|
|
** FROM clause of a SELECT such that the VDBE cursor assigned to that
|
|
** FORM clause entry is iTable. This routine make the necessary
|
|
** changes to pExpr so that it refers directly to the source table
|
|
** of the subquery rather the result set of the subquery.
|
|
*/
|
|
static void substExpr(
|
|
sqlite3 *db, /* Report malloc errors to this connection */
|
|
Expr *pExpr, /* Expr in which substitution occurs */
|
|
int iTable, /* Table to be substituted */
|
|
ExprList *pEList /* Substitute expressions */
|
|
){
|
|
if( pExpr==0 ) return;
|
|
if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
|
|
if( pExpr->iColumn<0 ){
|
|
pExpr->op = TK_NULL;
|
|
}else{
|
|
Expr *pNew;
|
|
assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
|
|
assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
|
|
pNew = pEList->a[pExpr->iColumn].pExpr;
|
|
assert( pNew!=0 );
|
|
pExpr->op = pNew->op;
|
|
assert( pExpr->pLeft==0 );
|
|
pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft);
|
|
assert( pExpr->pRight==0 );
|
|
pExpr->pRight = sqlite3ExprDup(db, pNew->pRight);
|
|
assert( pExpr->pList==0 );
|
|
pExpr->pList = sqlite3ExprListDup(db, pNew->pList);
|
|
pExpr->iTable = pNew->iTable;
|
|
pExpr->pTab = pNew->pTab;
|
|
pExpr->iColumn = pNew->iColumn;
|
|
pExpr->iAgg = pNew->iAgg;
|
|
sqlite3TokenCopy(db, &pExpr->token, &pNew->token);
|
|
sqlite3TokenCopy(db, &pExpr->span, &pNew->span);
|
|
pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect);
|
|
pExpr->flags = pNew->flags;
|
|
}
|
|
}else{
|
|
substExpr(db, pExpr->pLeft, iTable, pEList);
|
|
substExpr(db, pExpr->pRight, iTable, pEList);
|
|
substSelect(db, pExpr->pSelect, iTable, pEList);
|
|
substExprList(db, pExpr->pList, iTable, pEList);
|
|
}
|
|
}
|
|
static void substExprList(
|
|
sqlite3 *db, /* Report malloc errors here */
|
|
ExprList *pList, /* List to scan and in which to make substitutes */
|
|
int iTable, /* Table to be substituted */
|
|
ExprList *pEList /* Substitute values */
|
|
){
|
|
int i;
|
|
if( pList==0 ) return;
|
|
for(i=0; i<pList->nExpr; i++){
|
|
substExpr(db, pList->a[i].pExpr, iTable, pEList);
|
|
}
|
|
}
|
|
static void substSelect(
|
|
sqlite3 *db, /* Report malloc errors here */
|
|
Select *p, /* SELECT statement in which to make substitutions */
|
|
int iTable, /* Table to be replaced */
|
|
ExprList *pEList /* Substitute values */
|
|
){
|
|
if( !p ) return;
|
|
substExprList(db, p->pEList, iTable, pEList);
|
|
substExprList(db, p->pGroupBy, iTable, pEList);
|
|
substExprList(db, p->pOrderBy, iTable, pEList);
|
|
substExpr(db, p->pHaving, iTable, pEList);
|
|
substExpr(db, p->pWhere, iTable, pEList);
|
|
substSelect(db, p->pPrior, iTable, pEList);
|
|
}
|
|
#endif /* !defined(SQLITE_OMIT_VIEW) */
|
|
|
|
#ifndef SQLITE_OMIT_VIEW
|
|
/*
|
|
** This routine attempts to flatten subqueries in order to speed
|
|
** execution. It returns 1 if it makes changes and 0 if no flattening
|
|
** occurs.
|
|
**
|
|
** To understand the concept of flattening, consider the following
|
|
** query:
|
|
**
|
|
** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
|
|
**
|
|
** The default way of implementing this query is to execute the
|
|
** subquery first and store the results in a temporary table, then
|
|
** run the outer query on that temporary table. This requires two
|
|
** passes over the data. Furthermore, because the temporary table
|
|
** has no indices, the WHERE clause on the outer query cannot be
|
|
** optimized.
|
|
**
|
|
** This routine attempts to rewrite queries such as the above into
|
|
** a single flat select, like this:
|
|
**
|
|
** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
|
|
**
|
|
** The code generated for this simpification gives the same result
|
|
** but only has to scan the data once. And because indices might
|
|
** exist on the table t1, a complete scan of the data might be
|
|
** avoided.
|
|
**
|
|
** Flattening is only attempted if all of the following are true:
|
|
**
|
|
** (1) The subquery and the outer query do not both use aggregates.
|
|
**
|
|
** (2) The subquery is not an aggregate or the outer query is not a join.
|
|
**
|
|
** (3) The subquery is not the right operand of a left outer join, or
|
|
** the subquery is not itself a join. (Ticket #306)
|
|
**
|
|
** (4) The subquery is not DISTINCT or the outer query is not a join.
|
|
**
|
|
** (5) The subquery is not DISTINCT or the outer query does not use
|
|
** aggregates.
|
|
**
|
|
** (6) The subquery does not use aggregates or the outer query is not
|
|
** DISTINCT.
|
|
**
|
|
** (7) The subquery has a FROM clause.
|
|
**
|
|
** (8) The subquery does not use LIMIT or the outer query is not a join.
|
|
**
|
|
** (9) The subquery does not use LIMIT or the outer query does not use
|
|
** aggregates.
|
|
**
|
|
** (10) The subquery does not use aggregates or the outer query does not
|
|
** use LIMIT.
|
|
**
|
|
** (11) The subquery and the outer query do not both have ORDER BY clauses.
|
|
**
|
|
** (12) The subquery is not the right term of a LEFT OUTER JOIN or the
|
|
** subquery has no WHERE clause. (added by ticket #350)
|
|
**
|
|
** (13) The subquery and outer query do not both use LIMIT
|
|
**
|
|
** (14) The subquery does not use OFFSET
|
|
**
|
|
** (15) The outer query is not part of a compound select or the
|
|
** subquery does not have both an ORDER BY and a LIMIT clause.
|
|
** (See ticket #2339)
|
|
**
|
|
** In this routine, the "p" parameter is a pointer to the outer query.
|
|
** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
|
|
** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
|
|
**
|
|
** If flattening is not attempted, this routine is a no-op and returns 0.
|
|
** If flattening is attempted this routine returns 1.
|
|
**
|
|
** All of the expression analysis must occur on both the outer query and
|
|
** the subquery before this routine runs.
|
|
*/
|
|
static int flattenSubquery(
|
|
sqlite3 *db, /* Database connection */
|
|
Select *p, /* The parent or outer SELECT statement */
|
|
int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
|
|
int isAgg, /* True if outer SELECT uses aggregate functions */
|
|
int subqueryIsAgg /* True if the subquery uses aggregate functions */
|
|
){
|
|
Select *pSub; /* The inner query or "subquery" */
|
|
SrcList *pSrc; /* The FROM clause of the outer query */
|
|
SrcList *pSubSrc; /* The FROM clause of the subquery */
|
|
ExprList *pList; /* The result set of the outer query */
|
|
int iParent; /* VDBE cursor number of the pSub result set temp table */
|
|
int i; /* Loop counter */
|
|
Expr *pWhere; /* The WHERE clause */
|
|
struct SrcList_item *pSubitem; /* The subquery */
|
|
|
|
/* Check to see if flattening is permitted. Return 0 if not.
|
|
*/
|
|
if( p==0 ) return 0;
|
|
pSrc = p->pSrc;
|
|
assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
|
|
pSubitem = &pSrc->a[iFrom];
|
|
pSub = pSubitem->pSelect;
|
|
assert( pSub!=0 );
|
|
if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */
|
|
if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */
|
|
pSubSrc = pSub->pSrc;
|
|
assert( pSubSrc );
|
|
/* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
|
|
** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
|
|
** because they could be computed at compile-time. But when LIMIT and OFFSET
|
|
** became arbitrary expressions, we were forced to add restrictions (13)
|
|
** and (14). */
|
|
if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
|
|
if( pSub->pOffset ) return 0; /* Restriction (14) */
|
|
if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
|
|
return 0; /* Restriction (15) */
|
|
}
|
|
if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
|
|
if( (pSub->isDistinct || pSub->pLimit)
|
|
&& (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */
|
|
return 0;
|
|
}
|
|
if( p->isDistinct && subqueryIsAgg ) return 0; /* Restriction (6) */
|
|
if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){
|
|
return 0; /* Restriction (11) */
|
|
}
|
|
|
|
/* Restriction 3: If the subquery is a join, make sure the subquery is
|
|
** not used as the right operand of an outer join. Examples of why this
|
|
** is not allowed:
|
|
**
|
|
** t1 LEFT OUTER JOIN (t2 JOIN t3)
|
|
**
|
|
** If we flatten the above, we would get
|
|
**
|
|
** (t1 LEFT OUTER JOIN t2) JOIN t3
|
|
**
|
|
** which is not at all the same thing.
|
|
*/
|
|
if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){
|
|
return 0;
|
|
}
|
|
|
|
/* Restriction 12: If the subquery is the right operand of a left outer
|
|
** join, make sure the subquery has no WHERE clause.
|
|
** An examples of why this is not allowed:
|
|
**
|
|
** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
|
|
**
|
|
** If we flatten the above, we would get
|
|
**
|
|
** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
|
|
**
|
|
** But the t2.x>0 test will always fail on a NULL row of t2, which
|
|
** effectively converts the OUTER JOIN into an INNER JOIN.
|
|
*/
|
|
if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){
|
|
return 0;
|
|
}
|
|
|
|
/* If we reach this point, it means flattening is permitted for the
|
|
** iFrom-th entry of the FROM clause in the outer query.
|
|
*/
|
|
|
|
/* Move all of the FROM elements of the subquery into the
|
|
** the FROM clause of the outer query. Before doing this, remember
|
|
** the cursor number for the original outer query FROM element in
|
|
** iParent. The iParent cursor will never be used. Subsequent code
|
|
** will scan expressions looking for iParent references and replace
|
|
** those references with expressions that resolve to the subquery FROM
|
|
** elements we are now copying in.
|
|
*/
|
|
iParent = pSubitem->iCursor;
|
|
{
|
|
int nSubSrc = pSubSrc->nSrc;
|
|
int jointype = pSubitem->jointype;
|
|
|
|
sqlite3DeleteTable(pSubitem->pTab);
|
|
sqlite3_free(pSubitem->zDatabase);
|
|
sqlite3_free(pSubitem->zName);
|
|
sqlite3_free(pSubitem->zAlias);
|
|
pSubitem->pTab = 0;
|
|
pSubitem->zDatabase = 0;
|
|
pSubitem->zName = 0;
|
|
pSubitem->zAlias = 0;
|
|
if( nSubSrc>1 ){
|
|
int extra = nSubSrc - 1;
|
|
for(i=1; i<nSubSrc; i++){
|
|
pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0);
|
|
if( pSrc==0 ){
|
|
p->pSrc = 0;
|
|
return 1;
|
|
}
|
|
}
|
|
p->pSrc = pSrc;
|
|
for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
|
|
pSrc->a[i] = pSrc->a[i-extra];
|
|
}
|
|
}
|
|
for(i=0; i<nSubSrc; i++){
|
|
pSrc->a[i+iFrom] = pSubSrc->a[i];
|
|
memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
|
|
}
|
|
pSrc->a[iFrom].jointype = jointype;
|
|
}
|
|
|
|
/* Now begin substituting subquery result set expressions for
|
|
** references to the iParent in the outer query.
|
|
**
|
|
** Example:
|
|
**
|
|
** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
|
|
** \ \_____________ subquery __________/ /
|
|
** \_____________________ outer query ______________________________/
|
|
**
|
|
** We look at every expression in the outer query and every place we see
|
|
** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
|
|
*/
|
|
pList = p->pEList;
|
|
for(i=0; i<pList->nExpr; i++){
|
|
Expr *pExpr;
|
|
if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
|
|
pList->a[i].zName =
|
|
sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
|
|
}
|
|
}
|
|
substExprList(db, p->pEList, iParent, pSub->pEList);
|
|
if( isAgg ){
|
|
substExprList(db, p->pGroupBy, iParent, pSub->pEList);
|
|
substExpr(db, p->pHaving, iParent, pSub->pEList);
|
|
}
|
|
if( pSub->pOrderBy ){
|
|
assert( p->pOrderBy==0 );
|
|
p->pOrderBy = pSub->pOrderBy;
|
|
pSub->pOrderBy = 0;
|
|
}else if( p->pOrderBy ){
|
|
substExprList(db, p->pOrderBy, iParent, pSub->pEList);
|
|
}
|
|
if( pSub->pWhere ){
|
|
pWhere = sqlite3ExprDup(db, pSub->pWhere);
|
|
}else{
|
|
pWhere = 0;
|
|
}
|
|
if( subqueryIsAgg ){
|
|
assert( p->pHaving==0 );
|
|
p->pHaving = p->pWhere;
|
|
p->pWhere = pWhere;
|
|
substExpr(db, p->pHaving, iParent, pSub->pEList);
|
|
p->pHaving = sqlite3ExprAnd(db, p->pHaving,
|
|
sqlite3ExprDup(db, pSub->pHaving));
|
|
assert( p->pGroupBy==0 );
|
|
p->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy);
|
|
}else{
|
|
substExpr(db, p->pWhere, iParent, pSub->pEList);
|
|
p->pWhere = sqlite3ExprAnd(db, p->pWhere, pWhere);
|
|
}
|
|
|
|
/* The flattened query is distinct if either the inner or the
|
|
** outer query is distinct.
|
|
*/
|
|
p->isDistinct = p->isDistinct || pSub->isDistinct;
|
|
|
|
/*
|
|
** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
|
|
**
|
|
** One is tempted to try to add a and b to combine the limits. But this
|
|
** does not work if either limit is negative.
|
|
*/
|
|
if( pSub->pLimit ){
|
|
p->pLimit = pSub->pLimit;
|
|
pSub->pLimit = 0;
|
|
}
|
|
|
|
/* Finially, delete what is left of the subquery and return
|
|
** success.
|
|
*/
|
|
sqlite3SelectDelete(pSub);
|
|
return 1;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIEW */
|
|
|
|
/*
|
|
** Analyze the SELECT statement passed as an argument to see if it
|
|
** is a min() or max() query. Return ORDERBY_MIN or ORDERBY_MAX if
|
|
** it is, or 0 otherwise. At present, a query is considered to be
|
|
** a min()/max() query if:
|
|
**
|
|
** 1. There is a single object in the FROM clause.
|
|
**
|
|
** 2. There is a single expression in the result set, and it is
|
|
** either min(x) or max(x), where x is a column reference.
|
|
*/
|
|
static int minMaxQuery(Parse *pParse, Select *p){
|
|
Expr *pExpr;
|
|
ExprList *pEList = p->pEList;
|
|
|
|
if( pEList->nExpr!=1 ) return ORDERBY_NORMAL;
|
|
pExpr = pEList->a[0].pExpr;
|
|
pEList = pExpr->pList;
|
|
if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0;
|
|
if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return ORDERBY_NORMAL;
|
|
if( pExpr->token.n!=3 ) return ORDERBY_NORMAL;
|
|
if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
|
|
return ORDERBY_MIN;
|
|
}else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
|
|
return ORDERBY_MAX;
|
|
}
|
|
return ORDERBY_NORMAL;
|
|
}
|
|
|
|
/*
|
|
** This routine resolves any names used in the result set of the
|
|
** supplied SELECT statement. If the SELECT statement being resolved
|
|
** is a sub-select, then pOuterNC is a pointer to the NameContext
|
|
** of the parent SELECT.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3SelectResolve(
|
|
Parse *pParse, /* The parser context */
|
|
Select *p, /* The SELECT statement being coded. */
|
|
NameContext *pOuterNC /* The outer name context. May be NULL. */
|
|
){
|
|
ExprList *pEList; /* Result set. */
|
|
int i; /* For-loop variable used in multiple places */
|
|
NameContext sNC; /* Local name-context */
|
|
ExprList *pGroupBy; /* The group by clause */
|
|
|
|
/* If this routine has run before, return immediately. */
|
|
if( p->isResolved ){
|
|
assert( !pOuterNC );
|
|
return SQLITE_OK;
|
|
}
|
|
p->isResolved = 1;
|
|
|
|
/* If there have already been errors, do nothing. */
|
|
if( pParse->nErr>0 ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
/* Prepare the select statement. This call will allocate all cursors
|
|
** required to handle the tables and subqueries in the FROM clause.
|
|
*/
|
|
if( prepSelectStmt(pParse, p) ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
/* Resolve the expressions in the LIMIT and OFFSET clauses. These
|
|
** are not allowed to refer to any names, so pass an empty NameContext.
|
|
*/
|
|
memset(&sNC, 0, sizeof(sNC));
|
|
sNC.pParse = pParse;
|
|
if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
|
|
sqlite3ExprResolveNames(&sNC, p->pOffset) ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
/* Set up the local name-context to pass to ExprResolveNames() to
|
|
** resolve the expression-list.
|
|
*/
|
|
sNC.allowAgg = 1;
|
|
sNC.pSrcList = p->pSrc;
|
|
sNC.pNext = pOuterNC;
|
|
|
|
/* Resolve names in the result set. */
|
|
pEList = p->pEList;
|
|
if( !pEList ) return SQLITE_ERROR;
|
|
for(i=0; i<pEList->nExpr; i++){
|
|
Expr *pX = pEList->a[i].pExpr;
|
|
if( sqlite3ExprResolveNames(&sNC, pX) ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
}
|
|
|
|
/* If there are no aggregate functions in the result-set, and no GROUP BY
|
|
** expression, do not allow aggregates in any of the other expressions.
|
|
*/
|
|
assert( !p->isAgg );
|
|
pGroupBy = p->pGroupBy;
|
|
if( pGroupBy || sNC.hasAgg ){
|
|
p->isAgg = 1;
|
|
}else{
|
|
sNC.allowAgg = 0;
|
|
}
|
|
|
|
/* If a HAVING clause is present, then there must be a GROUP BY clause.
|
|
*/
|
|
if( p->pHaving && !pGroupBy ){
|
|
sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
/* Add the expression list to the name-context before parsing the
|
|
** other expressions in the SELECT statement. This is so that
|
|
** expressions in the WHERE clause (etc.) can refer to expressions by
|
|
** aliases in the result set.
|
|
**
|
|
** Minor point: If this is the case, then the expression will be
|
|
** re-evaluated for each reference to it.
|
|
*/
|
|
sNC.pEList = p->pEList;
|
|
if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
|
|
sqlite3ExprResolveNames(&sNC, p->pHaving) ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
if( p->pPrior==0 ){
|
|
if( processOrderGroupBy(pParse, p, p->pOrderBy, 1, &sNC.hasAgg) ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
}
|
|
if( processOrderGroupBy(pParse, p, pGroupBy, 0, &sNC.hasAgg) ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
if( pParse->db->mallocFailed ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
|
|
/* Make sure the GROUP BY clause does not contain aggregate functions.
|
|
*/
|
|
if( pGroupBy ){
|
|
struct ExprList_item *pItem;
|
|
|
|
for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
|
|
if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
|
|
sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
|
|
"the GROUP BY clause");
|
|
return SQLITE_ERROR;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If this is one SELECT of a compound, be sure to resolve names
|
|
** in the other SELECTs.
|
|
*/
|
|
if( p->pPrior ){
|
|
return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC);
|
|
}else{
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Reset the aggregate accumulator.
|
|
**
|
|
** The aggregate accumulator is a set of memory cells that hold
|
|
** intermediate results while calculating an aggregate. This
|
|
** routine simply stores NULLs in all of those memory cells.
|
|
*/
|
|
static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int i;
|
|
struct AggInfo_func *pFunc;
|
|
if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
|
|
return;
|
|
}
|
|
for(i=0; i<pAggInfo->nColumn; i++){
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
|
|
}
|
|
for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
|
|
if( pFunc->iDistinct>=0 ){
|
|
Expr *pE = pFunc->pExpr;
|
|
if( pE->pList==0 || pE->pList->nExpr!=1 ){
|
|
sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
|
|
"by an expression");
|
|
pFunc->iDistinct = -1;
|
|
}else{
|
|
KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
|
|
sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
|
|
(char*)pKeyInfo, P4_KEYINFO_HANDOFF);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Invoke the OP_AggFinalize opcode for every aggregate function
|
|
** in the AggInfo structure.
|
|
*/
|
|
static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int i;
|
|
struct AggInfo_func *pF;
|
|
for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
|
|
ExprList *pList = pF->pExpr->pList;
|
|
sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
|
|
(void*)pF->pFunc, P4_FUNCDEF);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Update the accumulator memory cells for an aggregate based on
|
|
** the current cursor position.
|
|
*/
|
|
static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int i;
|
|
struct AggInfo_func *pF;
|
|
struct AggInfo_col *pC;
|
|
|
|
pAggInfo->directMode = 1;
|
|
for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
|
|
int nArg;
|
|
int addrNext = 0;
|
|
int regAgg;
|
|
ExprList *pList = pF->pExpr->pList;
|
|
if( pList ){
|
|
nArg = pList->nExpr;
|
|
regAgg = sqlite3GetTempRange(pParse, nArg);
|
|
sqlite3ExprCodeExprList(pParse, pList, regAgg);
|
|
}else{
|
|
nArg = 0;
|
|
regAgg = 0;
|
|
}
|
|
if( pF->iDistinct>=0 ){
|
|
addrNext = sqlite3VdbeMakeLabel(v);
|
|
assert( nArg==1 );
|
|
codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
|
|
}
|
|
if( pF->pFunc->needCollSeq ){
|
|
CollSeq *pColl = 0;
|
|
struct ExprList_item *pItem;
|
|
int j;
|
|
assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */
|
|
for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
|
|
pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
|
|
}
|
|
if( !pColl ){
|
|
pColl = pParse->db->pDfltColl;
|
|
}
|
|
sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
|
|
}
|
|
sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
|
|
(void*)pF->pFunc, P4_FUNCDEF);
|
|
sqlite3VdbeChangeP5(v, nArg);
|
|
sqlite3ReleaseTempRange(pParse, regAgg, nArg);
|
|
if( addrNext ){
|
|
sqlite3VdbeResolveLabel(v, addrNext);
|
|
}
|
|
}
|
|
for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
|
|
sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
|
|
}
|
|
pAggInfo->directMode = 0;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
/*
|
|
** This function is used when a SELECT statement is used to create a
|
|
** temporary table for iterating through when running an INSTEAD OF
|
|
** UPDATE or INSTEAD OF DELETE trigger.
|
|
**
|
|
** If possible, the SELECT statement is modified so that NULL values
|
|
** are stored in the temporary table for all columns for which the
|
|
** corresponding bit in argument mask is not set. If mask takes the
|
|
** special value 0xffffffff, then all columns are populated.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3SelectMask(Parse *pParse, Select *p, u32 mask){
|
|
if( p && !p->pPrior && !p->isDistinct && mask!=0xffffffff ){
|
|
ExprList *pEList;
|
|
int i;
|
|
sqlite3SelectResolve(pParse, p, 0);
|
|
pEList = p->pEList;
|
|
for(i=0; pEList && i<pEList->nExpr && i<32; i++){
|
|
if( !(mask&((u32)1<<i)) ){
|
|
sqlite3ExprDelete(pEList->a[i].pExpr);
|
|
pEList->a[i].pExpr = sqlite3Expr(pParse->db, TK_NULL, 0, 0, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Generate code for the given SELECT statement.
|
|
**
|
|
** The results are distributed in various ways depending on the
|
|
** contents of the SelectDest structure pointed to by argument pDest
|
|
** as follows:
|
|
**
|
|
** pDest->eDest Result
|
|
** ------------ -------------------------------------------
|
|
** SRT_Callback Invoke the callback for each row of the result.
|
|
**
|
|
** SRT_Mem Store first result in memory cell pDest->iParm
|
|
**
|
|
** SRT_Set Store non-null results as keys of table pDest->iParm.
|
|
** Apply the affinity pDest->affinity before storing them.
|
|
**
|
|
** SRT_Union Store results as a key in a temporary table pDest->iParm.
|
|
**
|
|
** SRT_Except Remove results from the temporary table pDest->iParm.
|
|
**
|
|
** SRT_Table Store results in temporary table pDest->iParm
|
|
**
|
|
** SRT_EphemTab Create an temporary table pDest->iParm and store
|
|
** the result there. The cursor is left open after
|
|
** returning.
|
|
**
|
|
** SRT_Subroutine For each row returned, push the results onto the
|
|
** vdbe stack and call the subroutine (via OP_Gosub)
|
|
** at address pDest->iParm.
|
|
**
|
|
** SRT_Exists Store a 1 in memory cell pDest->iParm if the result
|
|
** set is not empty.
|
|
**
|
|
** SRT_Discard Throw the results away.
|
|
**
|
|
** See the selectInnerLoop() function for a canonical listing of the
|
|
** allowed values of eDest and their meanings.
|
|
**
|
|
** This routine returns the number of errors. If any errors are
|
|
** encountered, then an appropriate error message is left in
|
|
** pParse->zErrMsg.
|
|
**
|
|
** This routine does NOT free the Select structure passed in. The
|
|
** calling function needs to do that.
|
|
**
|
|
** The pParent, parentTab, and *pParentAgg fields are filled in if this
|
|
** SELECT is a subquery. This routine may try to combine this SELECT
|
|
** with its parent to form a single flat query. In so doing, it might
|
|
** change the parent query from a non-aggregate to an aggregate query.
|
|
** For that reason, the pParentAgg flag is passed as a pointer, so it
|
|
** can be changed.
|
|
**
|
|
** Example 1: The meaning of the pParent parameter.
|
|
**
|
|
** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
|
|
** \ \_______ subquery _______/ /
|
|
** \ /
|
|
** \____________________ outer query ___________________/
|
|
**
|
|
** This routine is called for the outer query first. For that call,
|
|
** pParent will be NULL. During the processing of the outer query, this
|
|
** routine is called recursively to handle the subquery. For the recursive
|
|
** call, pParent will point to the outer query. Because the subquery is
|
|
** the second element in a three-way join, the parentTab parameter will
|
|
** be 1 (the 2nd value of a 0-indexed array.)
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3Select(
|
|
Parse *pParse, /* The parser context */
|
|
Select *p, /* The SELECT statement being coded. */
|
|
SelectDest *pDest, /* What to do with the query results */
|
|
Select *pParent, /* Another SELECT for which this is a sub-query */
|
|
int parentTab, /* Index in pParent->pSrc of this query */
|
|
int *pParentAgg, /* True if pParent uses aggregate functions */
|
|
char *aff /* If eDest is SRT_Union, the affinity string */
|
|
){
|
|
int i, j; /* Loop counters */
|
|
WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
|
|
Vdbe *v; /* The virtual machine under construction */
|
|
int isAgg; /* True for select lists like "count(*)" */
|
|
ExprList *pEList; /* List of columns to extract. */
|
|
SrcList *pTabList; /* List of tables to select from */
|
|
Expr *pWhere; /* The WHERE clause. May be NULL */
|
|
ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */
|
|
ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
|
|
Expr *pHaving; /* The HAVING clause. May be NULL */
|
|
int isDistinct; /* True if the DISTINCT keyword is present */
|
|
int distinct; /* Table to use for the distinct set */
|
|
int rc = 1; /* Value to return from this function */
|
|
int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */
|
|
AggInfo sAggInfo; /* Information used by aggregate queries */
|
|
int iEnd; /* Address of the end of the query */
|
|
sqlite3 *db; /* The database connection */
|
|
|
|
db = pParse->db;
|
|
if( p==0 || db->mallocFailed || pParse->nErr ){
|
|
return 1;
|
|
}
|
|
if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
|
|
memset(&sAggInfo, 0, sizeof(sAggInfo));
|
|
|
|
pOrderBy = p->pOrderBy;
|
|
if( IgnorableOrderby(pDest) ){
|
|
p->pOrderBy = 0;
|
|
|
|
/* In these cases the DISTINCT operator makes no difference to the
|
|
** results, so remove it if it were specified.
|
|
*/
|
|
assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
|
|
pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
|
|
p->isDistinct = 0;
|
|
}
|
|
if( sqlite3SelectResolve(pParse, p, 0) ){
|
|
goto select_end;
|
|
}
|
|
p->pOrderBy = pOrderBy;
|
|
|
|
#ifndef SQLITE_OMIT_COMPOUND_SELECT
|
|
/* If there is are a sequence of queries, do the earlier ones first.
|
|
*/
|
|
if( p->pPrior ){
|
|
if( p->pRightmost==0 ){
|
|
Select *pLoop, *pRight = 0;
|
|
int cnt = 0;
|
|
for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
|
|
pLoop->pRightmost = p;
|
|
pLoop->pNext = pRight;
|
|
pRight = pLoop;
|
|
}
|
|
if( SQLITE_MAX_COMPOUND_SELECT>0 && cnt>SQLITE_MAX_COMPOUND_SELECT ){
|
|
sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
|
|
return 1;
|
|
}
|
|
}
|
|
return multiSelect(pParse, p, pDest, aff);
|
|
}
|
|
#endif
|
|
|
|
/* Make local copies of the parameters for this query.
|
|
*/
|
|
pTabList = p->pSrc;
|
|
pWhere = p->pWhere;
|
|
pGroupBy = p->pGroupBy;
|
|
pHaving = p->pHaving;
|
|
isAgg = p->isAgg;
|
|
isDistinct = p->isDistinct;
|
|
pEList = p->pEList;
|
|
if( pEList==0 ) goto select_end;
|
|
|
|
/*
|
|
** Do not even attempt to generate any code if we have already seen
|
|
** errors before this routine starts.
|
|
*/
|
|
if( pParse->nErr>0 ) goto select_end;
|
|
|
|
/* If writing to memory or generating a set
|
|
** only a single column may be output.
|
|
*/
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
|
|
goto select_end;
|
|
}
|
|
#endif
|
|
|
|
/* ORDER BY is ignored for some destinations.
|
|
*/
|
|
if( IgnorableOrderby(pDest) ){
|
|
pOrderBy = 0;
|
|
}
|
|
|
|
/* Begin generating code.
|
|
*/
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) goto select_end;
|
|
|
|
/* Generate code for all sub-queries in the FROM clause
|
|
*/
|
|
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
|
|
for(i=0; i<pTabList->nSrc; i++){
|
|
const char *zSavedAuthContext = 0;
|
|
int needRestoreContext;
|
|
struct SrcList_item *pItem = &pTabList->a[i];
|
|
SelectDest dest;
|
|
|
|
if( pItem->pSelect==0 || pItem->isPopulated ) continue;
|
|
if( pItem->zName!=0 ){
|
|
zSavedAuthContext = pParse->zAuthContext;
|
|
pParse->zAuthContext = pItem->zName;
|
|
needRestoreContext = 1;
|
|
}else{
|
|
needRestoreContext = 0;
|
|
}
|
|
#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
|
|
/* Increment Parse.nHeight by the height of the largest expression
|
|
** tree refered to by this, the parent select. The child select
|
|
** may contain expression trees of at most
|
|
** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
|
|
** more conservative than necessary, but much easier than enforcing
|
|
** an exact limit.
|
|
*/
|
|
pParse->nHeight += sqlite3SelectExprHeight(p);
|
|
#endif
|
|
sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
|
|
sqlite3Select(pParse, pItem->pSelect, &dest, p, i, &isAgg, 0);
|
|
if( db->mallocFailed ){
|
|
goto select_end;
|
|
}
|
|
#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
|
|
pParse->nHeight -= sqlite3SelectExprHeight(p);
|
|
#endif
|
|
if( needRestoreContext ){
|
|
pParse->zAuthContext = zSavedAuthContext;
|
|
}
|
|
pTabList = p->pSrc;
|
|
pWhere = p->pWhere;
|
|
if( !IgnorableOrderby(pDest) ){
|
|
pOrderBy = p->pOrderBy;
|
|
}
|
|
pGroupBy = p->pGroupBy;
|
|
pHaving = p->pHaving;
|
|
isDistinct = p->isDistinct;
|
|
}
|
|
#endif
|
|
|
|
/* Check for the special case of a min() or max() function by itself
|
|
** in the result set.
|
|
*/
|
|
#if 0
|
|
if( simpleMinMaxQuery(pParse, p, pDest) ){
|
|
rc = 0;
|
|
goto select_end;
|
|
}
|
|
#endif
|
|
|
|
/* Check to see if this is a subquery that can be "flattened" into its parent.
|
|
** If flattening is a possiblity, do so and return immediately.
|
|
*/
|
|
#ifndef SQLITE_OMIT_VIEW
|
|
if( pParent && pParentAgg &&
|
|
flattenSubquery(db, pParent, parentTab, *pParentAgg, isAgg) ){
|
|
if( isAgg ) *pParentAgg = 1;
|
|
goto select_end;
|
|
}
|
|
#endif
|
|
|
|
/* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
|
|
** GROUP BY may use an index, DISTINCT never does.
|
|
*/
|
|
if( p->isDistinct && !p->isAgg && !p->pGroupBy ){
|
|
p->pGroupBy = sqlite3ExprListDup(db, p->pEList);
|
|
pGroupBy = p->pGroupBy;
|
|
p->isDistinct = 0;
|
|
isDistinct = 0;
|
|
}
|
|
|
|
/* If there is an ORDER BY clause, then this sorting
|
|
** index might end up being unused if the data can be
|
|
** extracted in pre-sorted order. If that is the case, then the
|
|
** OP_OpenEphemeral instruction will be changed to an OP_Noop once
|
|
** we figure out that the sorting index is not needed. The addrSortIndex
|
|
** variable is used to facilitate that change.
|
|
*/
|
|
if( pOrderBy ){
|
|
KeyInfo *pKeyInfo;
|
|
pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
|
|
pOrderBy->iECursor = pParse->nTab++;
|
|
p->addrOpenEphm[2] = addrSortIndex =
|
|
sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
|
|
pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
|
|
(char*)pKeyInfo, P4_KEYINFO_HANDOFF);
|
|
}else{
|
|
addrSortIndex = -1;
|
|
}
|
|
|
|
/* If the output is destined for a temporary table, open that table.
|
|
*/
|
|
if( pDest->eDest==SRT_EphemTab ){
|
|
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
|
|
}
|
|
|
|
/* Set the limiter.
|
|
*/
|
|
iEnd = sqlite3VdbeMakeLabel(v);
|
|
computeLimitRegisters(pParse, p, iEnd);
|
|
|
|
/* Open a virtual index to use for the distinct set.
|
|
*/
|
|
if( isDistinct ){
|
|
KeyInfo *pKeyInfo;
|
|
assert( isAgg || pGroupBy );
|
|
distinct = pParse->nTab++;
|
|
pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
|
|
sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
|
|
(char*)pKeyInfo, P4_KEYINFO_HANDOFF);
|
|
}else{
|
|
distinct = -1;
|
|
}
|
|
|
|
/* Aggregate and non-aggregate queries are handled differently */
|
|
if( !isAgg && pGroupBy==0 ){
|
|
/* This case is for non-aggregate queries
|
|
** Begin the database scan
|
|
*/
|
|
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
|
|
if( pWInfo==0 ) goto select_end;
|
|
|
|
/* If sorting index that was created by a prior OP_OpenEphemeral
|
|
** instruction ended up not being needed, then change the OP_OpenEphemeral
|
|
** into an OP_Noop.
|
|
*/
|
|
if( addrSortIndex>=0 && pOrderBy==0 ){
|
|
sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
|
|
p->addrOpenEphm[2] = -1;
|
|
}
|
|
|
|
/* Use the standard inner loop
|
|
*/
|
|
assert(!isDistinct);
|
|
selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
|
|
pWInfo->iContinue, pWInfo->iBreak, aff);
|
|
|
|
/* End the database scan loop.
|
|
*/
|
|
sqlite3WhereEnd(pWInfo);
|
|
}else{
|
|
/* This is the processing for aggregate queries */
|
|
NameContext sNC; /* Name context for processing aggregate information */
|
|
int iAMem; /* First Mem address for storing current GROUP BY */
|
|
int iBMem; /* First Mem address for previous GROUP BY */
|
|
int iUseFlag; /* Mem address holding flag indicating that at least
|
|
** one row of the input to the aggregator has been
|
|
** processed */
|
|
int iAbortFlag; /* Mem address which causes query abort if positive */
|
|
int groupBySort; /* Rows come from source in GROUP BY order */
|
|
|
|
|
|
/* The following variables hold addresses or labels for parts of the
|
|
** virtual machine program we are putting together */
|
|
int addrOutputRow; /* Start of subroutine that outputs a result row */
|
|
int addrSetAbort; /* Set the abort flag and return */
|
|
int addrInitializeLoop; /* Start of code that initializes the input loop */
|
|
int addrTopOfLoop; /* Top of the input loop */
|
|
int addrGroupByChange; /* Code that runs when any GROUP BY term changes */
|
|
int addrProcessRow; /* Code to process a single input row */
|
|
int addrEnd; /* End of all processing */
|
|
int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
|
|
int addrReset; /* Subroutine for resetting the accumulator */
|
|
|
|
addrEnd = sqlite3VdbeMakeLabel(v);
|
|
|
|
/* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
|
|
** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
|
|
** SELECT statement.
|
|
*/
|
|
memset(&sNC, 0, sizeof(sNC));
|
|
sNC.pParse = pParse;
|
|
sNC.pSrcList = pTabList;
|
|
sNC.pAggInfo = &sAggInfo;
|
|
sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
|
|
sAggInfo.pGroupBy = pGroupBy;
|
|
sqlite3ExprAnalyzeAggList(&sNC, pEList);
|
|
sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
|
|
if( pHaving ){
|
|
sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
|
|
}
|
|
sAggInfo.nAccumulator = sAggInfo.nColumn;
|
|
for(i=0; i<sAggInfo.nFunc; i++){
|
|
sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList);
|
|
}
|
|
if( db->mallocFailed ) goto select_end;
|
|
|
|
/* Processing for aggregates with GROUP BY is very different and
|
|
** much more complex than aggregates without a GROUP BY.
|
|
*/
|
|
if( pGroupBy ){
|
|
KeyInfo *pKeyInfo; /* Keying information for the group by clause */
|
|
|
|
/* Create labels that we will be needing
|
|
*/
|
|
|
|
addrInitializeLoop = sqlite3VdbeMakeLabel(v);
|
|
addrGroupByChange = sqlite3VdbeMakeLabel(v);
|
|
addrProcessRow = sqlite3VdbeMakeLabel(v);
|
|
|
|
/* If there is a GROUP BY clause we might need a sorting index to
|
|
** implement it. Allocate that sorting index now. If it turns out
|
|
** that we do not need it after all, the OpenEphemeral instruction
|
|
** will be converted into a Noop.
|
|
*/
|
|
sAggInfo.sortingIdx = pParse->nTab++;
|
|
pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
|
|
addrSortingIdx =
|
|
sqlite3VdbeAddOp4(v, OP_OpenEphemeral, sAggInfo.sortingIdx,
|
|
sAggInfo.nSortingColumn, 0,
|
|
(char*)pKeyInfo, P4_KEYINFO_HANDOFF);
|
|
|
|
/* Initialize memory locations used by GROUP BY aggregate processing
|
|
*/
|
|
iUseFlag = ++pParse->nMem;
|
|
iAbortFlag = ++pParse->nMem;
|
|
iAMem = pParse->nMem + 1;
|
|
pParse->nMem += pGroupBy->nExpr;
|
|
iBMem = pParse->nMem + 1;
|
|
pParse->nMem += pGroupBy->nExpr;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
|
|
VdbeComment((v, "clear abort flag"));
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
|
|
VdbeComment((v, "indicate accumulator empty"));
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrInitializeLoop);
|
|
|
|
/* Generate a subroutine that outputs a single row of the result
|
|
** set. This subroutine first looks at the iUseFlag. If iUseFlag
|
|
** is less than or equal to zero, the subroutine is a no-op. If
|
|
** the processing calls for the query to abort, this subroutine
|
|
** increments the iAbortFlag memory location before returning in
|
|
** order to signal the caller to abort.
|
|
*/
|
|
addrSetAbort = sqlite3VdbeCurrentAddr(v);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
|
|
VdbeComment((v, "set abort flag"));
|
|
sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
|
|
addrOutputRow = sqlite3VdbeCurrentAddr(v);
|
|
sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
|
|
VdbeComment((v, "Groupby result generator entry point"));
|
|
sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
|
|
finalizeAggFunctions(pParse, &sAggInfo);
|
|
if( pHaving ){
|
|
sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
|
|
}
|
|
selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
|
|
distinct, pDest,
|
|
addrOutputRow+1, addrSetAbort, aff);
|
|
sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
|
|
VdbeComment((v, "end groupby result generator"));
|
|
|
|
/* Generate a subroutine that will reset the group-by accumulator
|
|
*/
|
|
addrReset = sqlite3VdbeCurrentAddr(v);
|
|
resetAccumulator(pParse, &sAggInfo);
|
|
sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
|
|
|
|
/* Begin a loop that will extract all source rows in GROUP BY order.
|
|
** This might involve two separate loops with an OP_Sort in between, or
|
|
** it might be a single loop that uses an index to extract information
|
|
** in the right order to begin with.
|
|
*/
|
|
sqlite3VdbeResolveLabel(v, addrInitializeLoop);
|
|
sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrReset);
|
|
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
|
|
if( pWInfo==0 ) goto select_end;
|
|
if( pGroupBy==0 ){
|
|
/* The optimizer is able to deliver rows in group by order so
|
|
** we do not have to sort. The OP_OpenEphemeral table will be
|
|
** cancelled later because we still need to use the pKeyInfo
|
|
*/
|
|
pGroupBy = p->pGroupBy;
|
|
groupBySort = 0;
|
|
}else{
|
|
/* Rows are coming out in undetermined order. We have to push
|
|
** each row into a sorting index, terminate the first loop,
|
|
** then loop over the sorting index in order to get the output
|
|
** in sorted order
|
|
*/
|
|
int regBase;
|
|
int regRecord;
|
|
int nCol;
|
|
int nGroupBy;
|
|
|
|
groupBySort = 1;
|
|
nGroupBy = pGroupBy->nExpr;
|
|
nCol = nGroupBy + 1;
|
|
j = nGroupBy+1;
|
|
for(i=0; i<sAggInfo.nColumn; i++){
|
|
if( sAggInfo.aCol[i].iSorterColumn>=j ){
|
|
nCol++;
|
|
j++;
|
|
}
|
|
}
|
|
regBase = sqlite3GetTempRange(pParse, nCol);
|
|
sqlite3ExprCodeExprList(pParse, pGroupBy, regBase);
|
|
sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
|
|
j = nGroupBy+1;
|
|
for(i=0; i<sAggInfo.nColumn; i++){
|
|
struct AggInfo_col *pCol = &sAggInfo.aCol[i];
|
|
if( pCol->iSorterColumn>=j ){
|
|
sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable,
|
|
j + regBase);
|
|
j++;
|
|
}
|
|
}
|
|
regRecord = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
|
|
sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
|
|
sqlite3ReleaseTempReg(pParse, regRecord);
|
|
sqlite3ReleaseTempRange(pParse, regBase, nCol);
|
|
sqlite3WhereEnd(pWInfo);
|
|
sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
|
|
VdbeComment((v, "GROUP BY sort"));
|
|
sAggInfo.useSortingIdx = 1;
|
|
}
|
|
|
|
/* Evaluate the current GROUP BY terms and store in b0, b1, b2...
|
|
** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
|
|
** Then compare the current GROUP BY terms against the GROUP BY terms
|
|
** from the previous row currently stored in a0, a1, a2...
|
|
*/
|
|
addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
|
|
for(j=0; j<pGroupBy->nExpr; j++){
|
|
if( groupBySort ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
|
|
}else{
|
|
sAggInfo.directMode = 1;
|
|
sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
|
|
}
|
|
}
|
|
for(j=pGroupBy->nExpr-1; j>=0; j--){
|
|
if( j==0 ){
|
|
sqlite3VdbeAddOp3(v, OP_Eq, iAMem+j, addrProcessRow, iBMem+j);
|
|
}else{
|
|
sqlite3VdbeAddOp3(v, OP_Ne, iAMem+j, addrGroupByChange, iBMem+j);
|
|
}
|
|
sqlite3VdbeChangeP4(v, -1, (void*)pKeyInfo->aColl[j], P4_COLLSEQ);
|
|
sqlite3VdbeChangeP5(v, SQLITE_NULLEQUAL);
|
|
}
|
|
|
|
/* Generate code that runs whenever the GROUP BY changes.
|
|
** Change in the GROUP BY are detected by the previous code
|
|
** block. If there were no changes, this block is skipped.
|
|
**
|
|
** This code copies current group by terms in b0,b1,b2,...
|
|
** over to a0,a1,a2. It then calls the output subroutine
|
|
** and resets the aggregate accumulator registers in preparation
|
|
** for the next GROUP BY batch.
|
|
*/
|
|
sqlite3VdbeResolveLabel(v, addrGroupByChange);
|
|
for(j=0; j<pGroupBy->nExpr; j++){
|
|
sqlite3VdbeAddOp2(v, OP_Move, iBMem+j, iAMem+j);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrOutputRow);
|
|
VdbeComment((v, "output one row"));
|
|
sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
|
|
VdbeComment((v, "check abort flag"));
|
|
sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrReset);
|
|
VdbeComment((v, "reset accumulator"));
|
|
|
|
/* Update the aggregate accumulators based on the content of
|
|
** the current row
|
|
*/
|
|
sqlite3VdbeResolveLabel(v, addrProcessRow);
|
|
updateAccumulator(pParse, &sAggInfo);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
|
|
VdbeComment((v, "indicate data in accumulator"));
|
|
|
|
/* End of the loop
|
|
*/
|
|
if( groupBySort ){
|
|
sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
|
|
}else{
|
|
sqlite3WhereEnd(pWInfo);
|
|
sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
|
|
}
|
|
|
|
/* Output the final row of result
|
|
*/
|
|
sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrOutputRow);
|
|
VdbeComment((v, "output final row"));
|
|
|
|
} /* endif pGroupBy */
|
|
else {
|
|
ExprList *pMinMax = 0;
|
|
ExprList *pDel = 0;
|
|
u8 flag;
|
|
|
|
/* Check if the query is of one of the following forms:
|
|
**
|
|
** SELECT min(x) FROM ...
|
|
** SELECT max(x) FROM ...
|
|
**
|
|
** If it is, then ask the code in where.c to attempt to sort results
|
|
** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
|
|
** If where.c is able to produce results sorted in this order, then
|
|
** add vdbe code to break out of the processing loop after the
|
|
** first iteration (since the first iteration of the loop is
|
|
** guaranteed to operate on the row with the minimum or maximum
|
|
** value of x, the only row required).
|
|
**
|
|
** A special flag must be passed to sqlite3WhereBegin() to slightly
|
|
** modify behaviour as follows:
|
|
**
|
|
** + If the query is a "SELECT min(x)", then the loop coded by
|
|
** where.c should not iterate over any values with a NULL value
|
|
** for x.
|
|
**
|
|
** + The optimizer code in where.c (the thing that decides which
|
|
** index or indices to use) should place a different priority on
|
|
** satisfying the 'ORDER BY' clause than it does in other cases.
|
|
** Refer to code and comments in where.c for details.
|
|
*/
|
|
flag = minMaxQuery(pParse, p);
|
|
if( flag ){
|
|
pDel = pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList);
|
|
if( pMinMax && !db->mallocFailed ){
|
|
pMinMax->a[0].sortOrder = ((flag==ORDERBY_MIN)?0:1);
|
|
pMinMax->a[0].pExpr->op = TK_COLUMN;
|
|
}
|
|
}
|
|
|
|
/* This case runs if the aggregate has no GROUP BY clause. The
|
|
** processing is much simpler since there is only a single row
|
|
** of output.
|
|
*/
|
|
resetAccumulator(pParse, &sAggInfo);
|
|
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
|
|
if( pWInfo==0 ){
|
|
sqlite3ExprListDelete(pDel);
|
|
goto select_end;
|
|
}
|
|
updateAccumulator(pParse, &sAggInfo);
|
|
if( !pMinMax && flag ){
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
|
|
VdbeComment((v, "%s() by index", (flag==ORDERBY_MIN?"min":"max")));
|
|
}
|
|
sqlite3WhereEnd(pWInfo);
|
|
finalizeAggFunctions(pParse, &sAggInfo);
|
|
pOrderBy = 0;
|
|
if( pHaving ){
|
|
sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
|
|
}
|
|
selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
|
|
pDest, addrEnd, addrEnd, aff);
|
|
|
|
sqlite3ExprListDelete(pDel);
|
|
}
|
|
sqlite3VdbeResolveLabel(v, addrEnd);
|
|
|
|
} /* endif aggregate query */
|
|
|
|
/* If there is an ORDER BY clause, then we need to sort the results
|
|
** and send them to the callback one by one.
|
|
*/
|
|
if( pOrderBy ){
|
|
generateSortTail(pParse, p, v, pEList->nExpr, pDest);
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
/* If this was a subquery, we have now converted the subquery into a
|
|
** temporary table. So set the SrcList_item.isPopulated flag to prevent
|
|
** this subquery from being evaluated again and to force the use of
|
|
** the temporary table.
|
|
*/
|
|
if( pParent ){
|
|
assert( pParent->pSrc->nSrc>parentTab );
|
|
assert( pParent->pSrc->a[parentTab].pSelect==p );
|
|
pParent->pSrc->a[parentTab].isPopulated = 1;
|
|
}
|
|
#endif
|
|
|
|
/* Jump here to skip this query
|
|
*/
|
|
sqlite3VdbeResolveLabel(v, iEnd);
|
|
|
|
/* The SELECT was successfully coded. Set the return code to 0
|
|
** to indicate no errors.
|
|
*/
|
|
rc = 0;
|
|
|
|
/* Control jumps to here if an error is encountered above, or upon
|
|
** successful coding of the SELECT.
|
|
*/
|
|
select_end:
|
|
|
|
/* Identify column names if we will be using them in a callback. This
|
|
** step is skipped if the output is going to some other destination.
|
|
*/
|
|
if( rc==SQLITE_OK && pDest->eDest==SRT_Callback ){
|
|
generateColumnNames(pParse, pTabList, pEList);
|
|
}
|
|
|
|
sqlite3_free(sAggInfo.aCol);
|
|
sqlite3_free(sAggInfo.aFunc);
|
|
return rc;
|
|
}
|
|
|
|
#if defined(SQLITE_DEBUG)
|
|
/*
|
|
*******************************************************************************
|
|
** The following code is used for testing and debugging only. The code
|
|
** that follows does not appear in normal builds.
|
|
**
|
|
** These routines are used to print out the content of all or part of a
|
|
** parse structures such as Select or Expr. Such printouts are useful
|
|
** for helping to understand what is happening inside the code generator
|
|
** during the execution of complex SELECT statements.
|
|
**
|
|
** These routine are not called anywhere from within the normal
|
|
** code base. Then are intended to be called from within the debugger
|
|
** or from temporary "printf" statements inserted for debugging.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3PrintExpr(Expr *p){
|
|
if( p->token.z && p->token.n>0 ){
|
|
sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
|
|
}else{
|
|
sqlite3DebugPrintf("(%d", p->op);
|
|
}
|
|
if( p->pLeft ){
|
|
sqlite3DebugPrintf(" ");
|
|
sqlite3PrintExpr(p->pLeft);
|
|
}
|
|
if( p->pRight ){
|
|
sqlite3DebugPrintf(" ");
|
|
sqlite3PrintExpr(p->pRight);
|
|
}
|
|
sqlite3DebugPrintf(")");
|
|
}
|
|
SQLITE_PRIVATE void sqlite3PrintExprList(ExprList *pList){
|
|
int i;
|
|
for(i=0; i<pList->nExpr; i++){
|
|
sqlite3PrintExpr(pList->a[i].pExpr);
|
|
if( i<pList->nExpr-1 ){
|
|
sqlite3DebugPrintf(", ");
|
|
}
|
|
}
|
|
}
|
|
SQLITE_PRIVATE void sqlite3PrintSelect(Select *p, int indent){
|
|
sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
|
|
sqlite3PrintExprList(p->pEList);
|
|
sqlite3DebugPrintf("\n");
|
|
if( p->pSrc ){
|
|
char *zPrefix;
|
|
int i;
|
|
zPrefix = "FROM";
|
|
for(i=0; i<p->pSrc->nSrc; i++){
|
|
struct SrcList_item *pItem = &p->pSrc->a[i];
|
|
sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
|
|
zPrefix = "";
|
|
if( pItem->pSelect ){
|
|
sqlite3DebugPrintf("(\n");
|
|
sqlite3PrintSelect(pItem->pSelect, indent+10);
|
|
sqlite3DebugPrintf("%*s)", indent+8, "");
|
|
}else if( pItem->zName ){
|
|
sqlite3DebugPrintf("%s", pItem->zName);
|
|
}
|
|
if( pItem->pTab ){
|
|
sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
|
|
}
|
|
if( pItem->zAlias ){
|
|
sqlite3DebugPrintf(" AS %s", pItem->zAlias);
|
|
}
|
|
if( i<p->pSrc->nSrc-1 ){
|
|
sqlite3DebugPrintf(",");
|
|
}
|
|
sqlite3DebugPrintf("\n");
|
|
}
|
|
}
|
|
if( p->pWhere ){
|
|
sqlite3DebugPrintf("%*s WHERE ", indent, "");
|
|
sqlite3PrintExpr(p->pWhere);
|
|
sqlite3DebugPrintf("\n");
|
|
}
|
|
if( p->pGroupBy ){
|
|
sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
|
|
sqlite3PrintExprList(p->pGroupBy);
|
|
sqlite3DebugPrintf("\n");
|
|
}
|
|
if( p->pHaving ){
|
|
sqlite3DebugPrintf("%*s HAVING ", indent, "");
|
|
sqlite3PrintExpr(p->pHaving);
|
|
sqlite3DebugPrintf("\n");
|
|
}
|
|
if( p->pOrderBy ){
|
|
sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
|
|
sqlite3PrintExprList(p->pOrderBy);
|
|
sqlite3DebugPrintf("\n");
|
|
}
|
|
}
|
|
/* End of the structure debug printing code
|
|
*****************************************************************************/
|
|
#endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
|
|
|
|
/************** End of select.c **********************************************/
|
|
/************** Begin file table.c *******************************************/
|
|
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains the sqlite3_get_table() and sqlite3_free_table()
|
|
** interface routines. These are just wrappers around the main
|
|
** interface routine of sqlite3_exec().
|
|
**
|
|
** These routines are in a separate files so that they will not be linked
|
|
** if they are not used.
|
|
*/
|
|
|
|
#ifndef SQLITE_OMIT_GET_TABLE
|
|
|
|
/*
|
|
** This structure is used to pass data from sqlite3_get_table() through
|
|
** to the callback function is uses to build the result.
|
|
*/
|
|
typedef struct TabResult {
|
|
char **azResult;
|
|
char *zErrMsg;
|
|
int nResult;
|
|
int nAlloc;
|
|
int nRow;
|
|
int nColumn;
|
|
int nData;
|
|
int rc;
|
|
} TabResult;
|
|
|
|
/*
|
|
** This routine is called once for each row in the result table. Its job
|
|
** is to fill in the TabResult structure appropriately, allocating new
|
|
** memory as necessary.
|
|
*/
|
|
static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){
|
|
TabResult *p = (TabResult*)pArg;
|
|
int need;
|
|
int i;
|
|
char *z;
|
|
|
|
/* Make sure there is enough space in p->azResult to hold everything
|
|
** we need to remember from this invocation of the callback.
|
|
*/
|
|
if( p->nRow==0 && argv!=0 ){
|
|
need = nCol*2;
|
|
}else{
|
|
need = nCol;
|
|
}
|
|
if( p->nData + need >= p->nAlloc ){
|
|
char **azNew;
|
|
p->nAlloc = p->nAlloc*2 + need + 1;
|
|
azNew = sqlite3_realloc( p->azResult, sizeof(char*)*p->nAlloc );
|
|
if( azNew==0 ) goto malloc_failed;
|
|
p->azResult = azNew;
|
|
}
|
|
|
|
/* If this is the first row, then generate an extra row containing
|
|
** the names of all columns.
|
|
*/
|
|
if( p->nRow==0 ){
|
|
p->nColumn = nCol;
|
|
for(i=0; i<nCol; i++){
|
|
z = sqlite3_mprintf("%s", colv[i]);
|
|
if( z==0 ) goto malloc_failed;
|
|
p->azResult[p->nData++] = z;
|
|
}
|
|
}else if( p->nColumn!=nCol ){
|
|
sqlite3_free(p->zErrMsg);
|
|
p->zErrMsg = sqlite3_mprintf(
|
|
"sqlite3_get_table() called with two or more incompatible queries"
|
|
);
|
|
p->rc = SQLITE_ERROR;
|
|
return 1;
|
|
}
|
|
|
|
/* Copy over the row data
|
|
*/
|
|
if( argv!=0 ){
|
|
for(i=0; i<nCol; i++){
|
|
if( argv[i]==0 ){
|
|
z = 0;
|
|
}else{
|
|
int n = strlen(argv[i])+1;
|
|
z = sqlite3_malloc( n );
|
|
if( z==0 ) goto malloc_failed;
|
|
memcpy(z, argv[i], n);
|
|
}
|
|
p->azResult[p->nData++] = z;
|
|
}
|
|
p->nRow++;
|
|
}
|
|
return 0;
|
|
|
|
malloc_failed:
|
|
p->rc = SQLITE_NOMEM;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Query the database. But instead of invoking a callback for each row,
|
|
** malloc() for space to hold the result and return the entire results
|
|
** at the conclusion of the call.
|
|
**
|
|
** The result that is written to ***pazResult is held in memory obtained
|
|
** from malloc(). But the caller cannot free this memory directly.
|
|
** Instead, the entire table should be passed to sqlite3_free_table() when
|
|
** the calling procedure is finished using it.
|
|
*/
|
|
SQLITE_API int sqlite3_get_table(
|
|
sqlite3 *db, /* The database on which the SQL executes */
|
|
const char *zSql, /* The SQL to be executed */
|
|
char ***pazResult, /* Write the result table here */
|
|
int *pnRow, /* Write the number of rows in the result here */
|
|
int *pnColumn, /* Write the number of columns of result here */
|
|
char **pzErrMsg /* Write error messages here */
|
|
){
|
|
int rc;
|
|
TabResult res;
|
|
|
|
*pazResult = 0;
|
|
if( pnColumn ) *pnColumn = 0;
|
|
if( pnRow ) *pnRow = 0;
|
|
res.zErrMsg = 0;
|
|
res.nResult = 0;
|
|
res.nRow = 0;
|
|
res.nColumn = 0;
|
|
res.nData = 1;
|
|
res.nAlloc = 20;
|
|
res.rc = SQLITE_OK;
|
|
res.azResult = sqlite3_malloc(sizeof(char*)*res.nAlloc );
|
|
if( res.azResult==0 ){
|
|
db->errCode = SQLITE_NOMEM;
|
|
return SQLITE_NOMEM;
|
|
}
|
|
res.azResult[0] = 0;
|
|
rc = sqlite3_exec(db, zSql, sqlite3_get_table_cb, &res, pzErrMsg);
|
|
assert( sizeof(res.azResult[0])>= sizeof(res.nData) );
|
|
res.azResult[0] = (char*)res.nData;
|
|
if( (rc&0xff)==SQLITE_ABORT ){
|
|
sqlite3_free_table(&res.azResult[1]);
|
|
if( res.zErrMsg ){
|
|
if( pzErrMsg ){
|
|
sqlite3_free(*pzErrMsg);
|
|
*pzErrMsg = sqlite3_mprintf("%s",res.zErrMsg);
|
|
}
|
|
sqlite3_free(res.zErrMsg);
|
|
}
|
|
db->errCode = res.rc; /* Assume 32-bit assignment is atomic */
|
|
return res.rc;
|
|
}
|
|
sqlite3_free(res.zErrMsg);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3_free_table(&res.azResult[1]);
|
|
return rc;
|
|
}
|
|
if( res.nAlloc>res.nData ){
|
|
char **azNew;
|
|
azNew = sqlite3_realloc( res.azResult, sizeof(char*)*(res.nData+1) );
|
|
if( azNew==0 ){
|
|
sqlite3_free_table(&res.azResult[1]);
|
|
db->errCode = SQLITE_NOMEM;
|
|
return SQLITE_NOMEM;
|
|
}
|
|
res.nAlloc = res.nData+1;
|
|
res.azResult = azNew;
|
|
}
|
|
*pazResult = &res.azResult[1];
|
|
if( pnColumn ) *pnColumn = res.nColumn;
|
|
if( pnRow ) *pnRow = res.nRow;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This routine frees the space the sqlite3_get_table() malloced.
|
|
*/
|
|
SQLITE_API void sqlite3_free_table(
|
|
char **azResult /* Result returned from from sqlite3_get_table() */
|
|
){
|
|
if( azResult ){
|
|
int i, n;
|
|
azResult--;
|
|
assert( azResult!=0 );
|
|
n = (int)azResult[0];
|
|
for(i=1; i<n; i++){ if( azResult[i] ) sqlite3_free(azResult[i]); }
|
|
sqlite3_free(azResult);
|
|
}
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_GET_TABLE */
|
|
|
|
/************** End of table.c ***********************************************/
|
|
/************** Begin file trigger.c *****************************************/
|
|
/*
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
*
|
|
*/
|
|
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
/*
|
|
** Delete a linked list of TriggerStep structures.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3DeleteTriggerStep(TriggerStep *pTriggerStep){
|
|
while( pTriggerStep ){
|
|
TriggerStep * pTmp = pTriggerStep;
|
|
pTriggerStep = pTriggerStep->pNext;
|
|
|
|
if( pTmp->target.dyn ) sqlite3_free((char*)pTmp->target.z);
|
|
sqlite3ExprDelete(pTmp->pWhere);
|
|
sqlite3ExprListDelete(pTmp->pExprList);
|
|
sqlite3SelectDelete(pTmp->pSelect);
|
|
sqlite3IdListDelete(pTmp->pIdList);
|
|
|
|
sqlite3_free(pTmp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This is called by the parser when it sees a CREATE TRIGGER statement
|
|
** up to the point of the BEGIN before the trigger actions. A Trigger
|
|
** structure is generated based on the information available and stored
|
|
** in pParse->pNewTrigger. After the trigger actions have been parsed, the
|
|
** sqlite3FinishTrigger() function is called to complete the trigger
|
|
** construction process.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3BeginTrigger(
|
|
Parse *pParse, /* The parse context of the CREATE TRIGGER statement */
|
|
Token *pName1, /* The name of the trigger */
|
|
Token *pName2, /* The name of the trigger */
|
|
int tr_tm, /* One of TK_BEFORE, TK_AFTER, TK_INSTEAD */
|
|
int op, /* One of TK_INSERT, TK_UPDATE, TK_DELETE */
|
|
IdList *pColumns, /* column list if this is an UPDATE OF trigger */
|
|
SrcList *pTableName,/* The name of the table/view the trigger applies to */
|
|
Expr *pWhen, /* WHEN clause */
|
|
int isTemp, /* True if the TEMPORARY keyword is present */
|
|
int noErr /* Suppress errors if the trigger already exists */
|
|
){
|
|
Trigger *pTrigger = 0;
|
|
Table *pTab;
|
|
char *zName = 0; /* Name of the trigger */
|
|
sqlite3 *db = pParse->db;
|
|
int iDb; /* The database to store the trigger in */
|
|
Token *pName; /* The unqualified db name */
|
|
DbFixer sFix;
|
|
int iTabDb;
|
|
|
|
assert( pName1!=0 ); /* pName1->z might be NULL, but not pName1 itself */
|
|
assert( pName2!=0 );
|
|
if( isTemp ){
|
|
/* If TEMP was specified, then the trigger name may not be qualified. */
|
|
if( pName2->n>0 ){
|
|
sqlite3ErrorMsg(pParse, "temporary trigger may not have qualified name");
|
|
goto trigger_cleanup;
|
|
}
|
|
iDb = 1;
|
|
pName = pName1;
|
|
}else{
|
|
/* Figure out the db that the the trigger will be created in */
|
|
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
|
if( iDb<0 ){
|
|
goto trigger_cleanup;
|
|
}
|
|
}
|
|
|
|
/* If the trigger name was unqualified, and the table is a temp table,
|
|
** then set iDb to 1 to create the trigger in the temporary database.
|
|
** If sqlite3SrcListLookup() returns 0, indicating the table does not
|
|
** exist, the error is caught by the block below.
|
|
*/
|
|
if( !pTableName || db->mallocFailed ){
|
|
goto trigger_cleanup;
|
|
}
|
|
pTab = sqlite3SrcListLookup(pParse, pTableName);
|
|
if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
|
|
iDb = 1;
|
|
}
|
|
|
|
/* Ensure the table name matches database name and that the table exists */
|
|
if( db->mallocFailed ) goto trigger_cleanup;
|
|
assert( pTableName->nSrc==1 );
|
|
if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", pName) &&
|
|
sqlite3FixSrcList(&sFix, pTableName) ){
|
|
goto trigger_cleanup;
|
|
}
|
|
pTab = sqlite3SrcListLookup(pParse, pTableName);
|
|
if( !pTab ){
|
|
/* The table does not exist. */
|
|
goto trigger_cleanup;
|
|
}
|
|
if( IsVirtual(pTab) ){
|
|
sqlite3ErrorMsg(pParse, "cannot create triggers on virtual tables");
|
|
goto trigger_cleanup;
|
|
}
|
|
|
|
/* Check that the trigger name is not reserved and that no trigger of the
|
|
** specified name exists */
|
|
zName = sqlite3NameFromToken(db, pName);
|
|
if( !zName || SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
|
|
goto trigger_cleanup;
|
|
}
|
|
if( sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash), zName,strlen(zName)) ){
|
|
if( !noErr ){
|
|
sqlite3ErrorMsg(pParse, "trigger %T already exists", pName);
|
|
}
|
|
goto trigger_cleanup;
|
|
}
|
|
|
|
/* Do not create a trigger on a system table */
|
|
if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
|
|
sqlite3ErrorMsg(pParse, "cannot create trigger on system table");
|
|
pParse->nErr++;
|
|
goto trigger_cleanup;
|
|
}
|
|
|
|
/* INSTEAD of triggers are only for views and views only support INSTEAD
|
|
** of triggers.
|
|
*/
|
|
if( pTab->pSelect && tr_tm!=TK_INSTEAD ){
|
|
sqlite3ErrorMsg(pParse, "cannot create %s trigger on view: %S",
|
|
(tr_tm == TK_BEFORE)?"BEFORE":"AFTER", pTableName, 0);
|
|
goto trigger_cleanup;
|
|
}
|
|
if( !pTab->pSelect && tr_tm==TK_INSTEAD ){
|
|
sqlite3ErrorMsg(pParse, "cannot create INSTEAD OF"
|
|
" trigger on table: %S", pTableName, 0);
|
|
goto trigger_cleanup;
|
|
}
|
|
iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
{
|
|
int code = SQLITE_CREATE_TRIGGER;
|
|
const char *zDb = db->aDb[iTabDb].zName;
|
|
const char *zDbTrig = isTemp ? db->aDb[1].zName : zDb;
|
|
if( iTabDb==1 || isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER;
|
|
if( sqlite3AuthCheck(pParse, code, zName, pTab->zName, zDbTrig) ){
|
|
goto trigger_cleanup;
|
|
}
|
|
if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iTabDb),0,zDb)){
|
|
goto trigger_cleanup;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* INSTEAD OF triggers can only appear on views and BEFORE triggers
|
|
** cannot appear on views. So we might as well translate every
|
|
** INSTEAD OF trigger into a BEFORE trigger. It simplifies code
|
|
** elsewhere.
|
|
*/
|
|
if (tr_tm == TK_INSTEAD){
|
|
tr_tm = TK_BEFORE;
|
|
}
|
|
|
|
/* Build the Trigger object */
|
|
pTrigger = (Trigger*)sqlite3DbMallocZero(db, sizeof(Trigger));
|
|
if( pTrigger==0 ) goto trigger_cleanup;
|
|
pTrigger->name = zName;
|
|
zName = 0;
|
|
pTrigger->table = sqlite3DbStrDup(db, pTableName->a[0].zName);
|
|
pTrigger->pSchema = db->aDb[iDb].pSchema;
|
|
pTrigger->pTabSchema = pTab->pSchema;
|
|
pTrigger->op = op;
|
|
pTrigger->tr_tm = tr_tm==TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER;
|
|
pTrigger->pWhen = sqlite3ExprDup(db, pWhen);
|
|
pTrigger->pColumns = sqlite3IdListDup(db, pColumns);
|
|
sqlite3TokenCopy(db, &pTrigger->nameToken,pName);
|
|
assert( pParse->pNewTrigger==0 );
|
|
pParse->pNewTrigger = pTrigger;
|
|
|
|
trigger_cleanup:
|
|
sqlite3_free(zName);
|
|
sqlite3SrcListDelete(pTableName);
|
|
sqlite3IdListDelete(pColumns);
|
|
sqlite3ExprDelete(pWhen);
|
|
if( !pParse->pNewTrigger ){
|
|
sqlite3DeleteTrigger(pTrigger);
|
|
}else{
|
|
assert( pParse->pNewTrigger==pTrigger );
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine is called after all of the trigger actions have been parsed
|
|
** in order to complete the process of building the trigger.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3FinishTrigger(
|
|
Parse *pParse, /* Parser context */
|
|
TriggerStep *pStepList, /* The triggered program */
|
|
Token *pAll /* Token that describes the complete CREATE TRIGGER */
|
|
){
|
|
Trigger *pTrig = 0; /* The trigger whose construction is finishing up */
|
|
sqlite3 *db = pParse->db; /* The database */
|
|
DbFixer sFix;
|
|
int iDb; /* Database containing the trigger */
|
|
|
|
pTrig = pParse->pNewTrigger;
|
|
pParse->pNewTrigger = 0;
|
|
if( pParse->nErr || !pTrig ) goto triggerfinish_cleanup;
|
|
iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
|
|
pTrig->step_list = pStepList;
|
|
while( pStepList ){
|
|
pStepList->pTrig = pTrig;
|
|
pStepList = pStepList->pNext;
|
|
}
|
|
if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", &pTrig->nameToken)
|
|
&& sqlite3FixTriggerStep(&sFix, pTrig->step_list) ){
|
|
goto triggerfinish_cleanup;
|
|
}
|
|
|
|
/* if we are not initializing, and this trigger is not on a TEMP table,
|
|
** build the sqlite_master entry
|
|
*/
|
|
if( !db->init.busy ){
|
|
Vdbe *v;
|
|
char *z;
|
|
|
|
/* Make an entry in the sqlite_master table */
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) goto triggerfinish_cleanup;
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
z = sqlite3DbStrNDup(db, (char*)pAll->z, pAll->n);
|
|
sqlite3NestedParse(pParse,
|
|
"INSERT INTO %Q.%s VALUES('trigger',%Q,%Q,0,'CREATE TRIGGER %q')",
|
|
db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pTrig->name,
|
|
pTrig->table, z);
|
|
sqlite3_free(z);
|
|
sqlite3ChangeCookie(pParse, iDb);
|
|
sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, sqlite3MPrintf(
|
|
db, "type='trigger' AND name='%q'", pTrig->name), P4_DYNAMIC
|
|
);
|
|
}
|
|
|
|
if( db->init.busy ){
|
|
int n;
|
|
Table *pTab;
|
|
Trigger *pDel;
|
|
pDel = sqlite3HashInsert(&db->aDb[iDb].pSchema->trigHash,
|
|
pTrig->name, strlen(pTrig->name), pTrig);
|
|
if( pDel ){
|
|
assert( pDel==pTrig );
|
|
db->mallocFailed = 1;
|
|
goto triggerfinish_cleanup;
|
|
}
|
|
n = strlen(pTrig->table) + 1;
|
|
pTab = sqlite3HashFind(&pTrig->pTabSchema->tblHash, pTrig->table, n);
|
|
assert( pTab!=0 );
|
|
pTrig->pNext = pTab->pTrigger;
|
|
pTab->pTrigger = pTrig;
|
|
pTrig = 0;
|
|
}
|
|
|
|
triggerfinish_cleanup:
|
|
sqlite3DeleteTrigger(pTrig);
|
|
assert( !pParse->pNewTrigger );
|
|
sqlite3DeleteTriggerStep(pStepList);
|
|
}
|
|
|
|
/*
|
|
** Make a copy of all components of the given trigger step. This has
|
|
** the effect of copying all Expr.token.z values into memory obtained
|
|
** from sqlite3_malloc(). As initially created, the Expr.token.z values
|
|
** all point to the input string that was fed to the parser. But that
|
|
** string is ephemeral - it will go away as soon as the sqlite3_exec()
|
|
** call that started the parser exits. This routine makes a persistent
|
|
** copy of all the Expr.token.z strings so that the TriggerStep structure
|
|
** will be valid even after the sqlite3_exec() call returns.
|
|
*/
|
|
static void sqlitePersistTriggerStep(sqlite3 *db, TriggerStep *p){
|
|
if( p->target.z ){
|
|
p->target.z = (u8*)sqlite3DbStrNDup(db, (char*)p->target.z, p->target.n);
|
|
p->target.dyn = 1;
|
|
}
|
|
if( p->pSelect ){
|
|
Select *pNew = sqlite3SelectDup(db, p->pSelect);
|
|
sqlite3SelectDelete(p->pSelect);
|
|
p->pSelect = pNew;
|
|
}
|
|
if( p->pWhere ){
|
|
Expr *pNew = sqlite3ExprDup(db, p->pWhere);
|
|
sqlite3ExprDelete(p->pWhere);
|
|
p->pWhere = pNew;
|
|
}
|
|
if( p->pExprList ){
|
|
ExprList *pNew = sqlite3ExprListDup(db, p->pExprList);
|
|
sqlite3ExprListDelete(p->pExprList);
|
|
p->pExprList = pNew;
|
|
}
|
|
if( p->pIdList ){
|
|
IdList *pNew = sqlite3IdListDup(db, p->pIdList);
|
|
sqlite3IdListDelete(p->pIdList);
|
|
p->pIdList = pNew;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Turn a SELECT statement (that the pSelect parameter points to) into
|
|
** a trigger step. Return a pointer to a TriggerStep structure.
|
|
**
|
|
** The parser calls this routine when it finds a SELECT statement in
|
|
** body of a TRIGGER.
|
|
*/
|
|
SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3 *db, Select *pSelect){
|
|
TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
|
|
if( pTriggerStep==0 ) {
|
|
sqlite3SelectDelete(pSelect);
|
|
return 0;
|
|
}
|
|
|
|
pTriggerStep->op = TK_SELECT;
|
|
pTriggerStep->pSelect = pSelect;
|
|
pTriggerStep->orconf = OE_Default;
|
|
sqlitePersistTriggerStep(db, pTriggerStep);
|
|
|
|
return pTriggerStep;
|
|
}
|
|
|
|
/*
|
|
** Build a trigger step out of an INSERT statement. Return a pointer
|
|
** to the new trigger step.
|
|
**
|
|
** The parser calls this routine when it sees an INSERT inside the
|
|
** body of a trigger.
|
|
*/
|
|
SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(
|
|
sqlite3 *db, /* The database connection */
|
|
Token *pTableName, /* Name of the table into which we insert */
|
|
IdList *pColumn, /* List of columns in pTableName to insert into */
|
|
ExprList *pEList, /* The VALUE clause: a list of values to be inserted */
|
|
Select *pSelect, /* A SELECT statement that supplies values */
|
|
int orconf /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
|
|
){
|
|
TriggerStep *pTriggerStep;
|
|
|
|
assert(pEList == 0 || pSelect == 0);
|
|
assert(pEList != 0 || pSelect != 0 || db->mallocFailed);
|
|
|
|
pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
|
|
if( pTriggerStep ){
|
|
pTriggerStep->op = TK_INSERT;
|
|
pTriggerStep->pSelect = pSelect;
|
|
pTriggerStep->target = *pTableName;
|
|
pTriggerStep->pIdList = pColumn;
|
|
pTriggerStep->pExprList = pEList;
|
|
pTriggerStep->orconf = orconf;
|
|
sqlitePersistTriggerStep(db, pTriggerStep);
|
|
}else{
|
|
sqlite3IdListDelete(pColumn);
|
|
sqlite3ExprListDelete(pEList);
|
|
sqlite3SelectDelete(pSelect);
|
|
}
|
|
|
|
return pTriggerStep;
|
|
}
|
|
|
|
/*
|
|
** Construct a trigger step that implements an UPDATE statement and return
|
|
** a pointer to that trigger step. The parser calls this routine when it
|
|
** sees an UPDATE statement inside the body of a CREATE TRIGGER.
|
|
*/
|
|
SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(
|
|
sqlite3 *db, /* The database connection */
|
|
Token *pTableName, /* Name of the table to be updated */
|
|
ExprList *pEList, /* The SET clause: list of column and new values */
|
|
Expr *pWhere, /* The WHERE clause */
|
|
int orconf /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */
|
|
){
|
|
TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
|
|
if( pTriggerStep==0 ){
|
|
sqlite3ExprListDelete(pEList);
|
|
sqlite3ExprDelete(pWhere);
|
|
return 0;
|
|
}
|
|
|
|
pTriggerStep->op = TK_UPDATE;
|
|
pTriggerStep->target = *pTableName;
|
|
pTriggerStep->pExprList = pEList;
|
|
pTriggerStep->pWhere = pWhere;
|
|
pTriggerStep->orconf = orconf;
|
|
sqlitePersistTriggerStep(db, pTriggerStep);
|
|
|
|
return pTriggerStep;
|
|
}
|
|
|
|
/*
|
|
** Construct a trigger step that implements a DELETE statement and return
|
|
** a pointer to that trigger step. The parser calls this routine when it
|
|
** sees a DELETE statement inside the body of a CREATE TRIGGER.
|
|
*/
|
|
SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(
|
|
sqlite3 *db, /* Database connection */
|
|
Token *pTableName, /* The table from which rows are deleted */
|
|
Expr *pWhere /* The WHERE clause */
|
|
){
|
|
TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
|
|
if( pTriggerStep==0 ){
|
|
sqlite3ExprDelete(pWhere);
|
|
return 0;
|
|
}
|
|
|
|
pTriggerStep->op = TK_DELETE;
|
|
pTriggerStep->target = *pTableName;
|
|
pTriggerStep->pWhere = pWhere;
|
|
pTriggerStep->orconf = OE_Default;
|
|
sqlitePersistTriggerStep(db, pTriggerStep);
|
|
|
|
return pTriggerStep;
|
|
}
|
|
|
|
/*
|
|
** Recursively delete a Trigger structure
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3DeleteTrigger(Trigger *pTrigger){
|
|
if( pTrigger==0 ) return;
|
|
sqlite3DeleteTriggerStep(pTrigger->step_list);
|
|
sqlite3_free(pTrigger->name);
|
|
sqlite3_free(pTrigger->table);
|
|
sqlite3ExprDelete(pTrigger->pWhen);
|
|
sqlite3IdListDelete(pTrigger->pColumns);
|
|
if( pTrigger->nameToken.dyn ) sqlite3_free((char*)pTrigger->nameToken.z);
|
|
sqlite3_free(pTrigger);
|
|
}
|
|
|
|
/*
|
|
** This function is called to drop a trigger from the database schema.
|
|
**
|
|
** This may be called directly from the parser and therefore identifies
|
|
** the trigger by name. The sqlite3DropTriggerPtr() routine does the
|
|
** same job as this routine except it takes a pointer to the trigger
|
|
** instead of the trigger name.
|
|
**/
|
|
SQLITE_PRIVATE void sqlite3DropTrigger(Parse *pParse, SrcList *pName, int noErr){
|
|
Trigger *pTrigger = 0;
|
|
int i;
|
|
const char *zDb;
|
|
const char *zName;
|
|
int nName;
|
|
sqlite3 *db = pParse->db;
|
|
|
|
if( db->mallocFailed ) goto drop_trigger_cleanup;
|
|
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
|
goto drop_trigger_cleanup;
|
|
}
|
|
|
|
assert( pName->nSrc==1 );
|
|
zDb = pName->a[0].zDatabase;
|
|
zName = pName->a[0].zName;
|
|
nName = strlen(zName);
|
|
for(i=OMIT_TEMPDB; i<db->nDb; i++){
|
|
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
|
if( zDb && sqlite3StrICmp(db->aDb[j].zName, zDb) ) continue;
|
|
pTrigger = sqlite3HashFind(&(db->aDb[j].pSchema->trigHash), zName, nName);
|
|
if( pTrigger ) break;
|
|
}
|
|
if( !pTrigger ){
|
|
if( !noErr ){
|
|
sqlite3ErrorMsg(pParse, "no such trigger: %S", pName, 0);
|
|
}
|
|
goto drop_trigger_cleanup;
|
|
}
|
|
sqlite3DropTriggerPtr(pParse, pTrigger);
|
|
|
|
drop_trigger_cleanup:
|
|
sqlite3SrcListDelete(pName);
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to the Table structure for the table that a trigger
|
|
** is set on.
|
|
*/
|
|
static Table *tableOfTrigger(Trigger *pTrigger){
|
|
int n = strlen(pTrigger->table) + 1;
|
|
return sqlite3HashFind(&pTrigger->pTabSchema->tblHash, pTrigger->table, n);
|
|
}
|
|
|
|
|
|
/*
|
|
** Drop a trigger given a pointer to that trigger.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger){
|
|
Table *pTable;
|
|
Vdbe *v;
|
|
sqlite3 *db = pParse->db;
|
|
int iDb;
|
|
|
|
iDb = sqlite3SchemaToIndex(pParse->db, pTrigger->pSchema);
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
pTable = tableOfTrigger(pTrigger);
|
|
assert( pTable );
|
|
assert( pTable->pSchema==pTrigger->pSchema || iDb==1 );
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
{
|
|
int code = SQLITE_DROP_TRIGGER;
|
|
const char *zDb = db->aDb[iDb].zName;
|
|
const char *zTab = SCHEMA_TABLE(iDb);
|
|
if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER;
|
|
if( sqlite3AuthCheck(pParse, code, pTrigger->name, pTable->zName, zDb) ||
|
|
sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Generate code to destroy the database record of the trigger.
|
|
*/
|
|
assert( pTable!=0 );
|
|
if( (v = sqlite3GetVdbe(pParse))!=0 ){
|
|
int base;
|
|
static const VdbeOpList dropTrigger[] = {
|
|
{ OP_Rewind, 0, ADDR(9), 0},
|
|
{ OP_String8, 0, 1, 0}, /* 1 */
|
|
{ OP_Column, 0, 1, 2},
|
|
{ OP_Ne, 2, ADDR(8), 1},
|
|
{ OP_String8, 0, 1, 0}, /* 4: "trigger" */
|
|
{ OP_Column, 0, 0, 2},
|
|
{ OP_Ne, 2, ADDR(8), 1},
|
|
{ OP_Delete, 0, 0, 0},
|
|
{ OP_Next, 0, ADDR(1), 0}, /* 8 */
|
|
};
|
|
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
sqlite3OpenMasterTable(pParse, iDb);
|
|
base = sqlite3VdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger);
|
|
sqlite3VdbeChangeP4(v, base+1, pTrigger->name, 0);
|
|
sqlite3VdbeChangeP4(v, base+4, "trigger", P4_STATIC);
|
|
sqlite3ChangeCookie(pParse, iDb);
|
|
sqlite3VdbeAddOp2(v, OP_Close, 0, 0);
|
|
sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->name, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Remove a trigger from the hash tables of the sqlite* pointer.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){
|
|
Trigger *pTrigger;
|
|
int nName = strlen(zName);
|
|
pTrigger = sqlite3HashInsert(&(db->aDb[iDb].pSchema->trigHash),
|
|
zName, nName, 0);
|
|
if( pTrigger ){
|
|
Table *pTable = tableOfTrigger(pTrigger);
|
|
assert( pTable!=0 );
|
|
if( pTable->pTrigger == pTrigger ){
|
|
pTable->pTrigger = pTrigger->pNext;
|
|
}else{
|
|
Trigger *cc = pTable->pTrigger;
|
|
while( cc ){
|
|
if( cc->pNext == pTrigger ){
|
|
cc->pNext = cc->pNext->pNext;
|
|
break;
|
|
}
|
|
cc = cc->pNext;
|
|
}
|
|
assert(cc);
|
|
}
|
|
sqlite3DeleteTrigger(pTrigger);
|
|
db->flags |= SQLITE_InternChanges;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** pEList is the SET clause of an UPDATE statement. Each entry
|
|
** in pEList is of the format <id>=<expr>. If any of the entries
|
|
** in pEList have an <id> which matches an identifier in pIdList,
|
|
** then return TRUE. If pIdList==NULL, then it is considered a
|
|
** wildcard that matches anything. Likewise if pEList==NULL then
|
|
** it matches anything so always return true. Return false only
|
|
** if there is no match.
|
|
*/
|
|
static int checkColumnOverLap(IdList *pIdList, ExprList *pEList){
|
|
int e;
|
|
if( !pIdList || !pEList ) return 1;
|
|
for(e=0; e<pEList->nExpr; e++){
|
|
if( sqlite3IdListIndex(pIdList, pEList->a[e].zName)>=0 ) return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Return a bit vector to indicate what kind of triggers exist for operation
|
|
** "op" on table pTab. If pChanges is not NULL then it is a list of columns
|
|
** that are being updated. Triggers only match if the ON clause of the
|
|
** trigger definition overlaps the set of columns being updated.
|
|
**
|
|
** The returned bit vector is some combination of TRIGGER_BEFORE and
|
|
** TRIGGER_AFTER.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3TriggersExist(
|
|
Parse *pParse, /* Used to check for recursive triggers */
|
|
Table *pTab, /* The table the contains the triggers */
|
|
int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */
|
|
ExprList *pChanges /* Columns that change in an UPDATE statement */
|
|
){
|
|
Trigger *pTrigger;
|
|
int mask = 0;
|
|
|
|
pTrigger = IsVirtual(pTab) ? 0 : pTab->pTrigger;
|
|
while( pTrigger ){
|
|
if( pTrigger->op==op && checkColumnOverLap(pTrigger->pColumns, pChanges) ){
|
|
mask |= pTrigger->tr_tm;
|
|
}
|
|
pTrigger = pTrigger->pNext;
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
/*
|
|
** Convert the pStep->target token into a SrcList and return a pointer
|
|
** to that SrcList.
|
|
**
|
|
** This routine adds a specific database name, if needed, to the target when
|
|
** forming the SrcList. This prevents a trigger in one database from
|
|
** referring to a target in another database. An exception is when the
|
|
** trigger is in TEMP in which case it can refer to any other database it
|
|
** wants.
|
|
*/
|
|
static SrcList *targetSrcList(
|
|
Parse *pParse, /* The parsing context */
|
|
TriggerStep *pStep /* The trigger containing the target token */
|
|
){
|
|
Token sDb; /* Dummy database name token */
|
|
int iDb; /* Index of the database to use */
|
|
SrcList *pSrc; /* SrcList to be returned */
|
|
|
|
iDb = sqlite3SchemaToIndex(pParse->db, pStep->pTrig->pSchema);
|
|
if( iDb==0 || iDb>=2 ){
|
|
assert( iDb<pParse->db->nDb );
|
|
sDb.z = (u8*)pParse->db->aDb[iDb].zName;
|
|
sDb.n = strlen((char*)sDb.z);
|
|
pSrc = sqlite3SrcListAppend(pParse->db, 0, &sDb, &pStep->target);
|
|
} else {
|
|
pSrc = sqlite3SrcListAppend(pParse->db, 0, &pStep->target, 0);
|
|
}
|
|
return pSrc;
|
|
}
|
|
|
|
/*
|
|
** Generate VDBE code for zero or more statements inside the body of a
|
|
** trigger.
|
|
*/
|
|
static int codeTriggerProgram(
|
|
Parse *pParse, /* The parser context */
|
|
TriggerStep *pStepList, /* List of statements inside the trigger body */
|
|
int orconfin /* Conflict algorithm. (OE_Abort, etc) */
|
|
){
|
|
TriggerStep * pTriggerStep = pStepList;
|
|
int orconf;
|
|
Vdbe *v = pParse->pVdbe;
|
|
sqlite3 *db = pParse->db;
|
|
|
|
assert( pTriggerStep!=0 );
|
|
assert( v!=0 );
|
|
sqlite3VdbeAddOp2(v, OP_ContextPush, 0, 0);
|
|
VdbeComment((v, "begin trigger %s", pStepList->pTrig->name));
|
|
while( pTriggerStep ){
|
|
orconf = (orconfin == OE_Default)?pTriggerStep->orconf:orconfin;
|
|
pParse->trigStack->orconf = orconf;
|
|
switch( pTriggerStep->op ){
|
|
case TK_SELECT: {
|
|
Select *ss = sqlite3SelectDup(db, pTriggerStep->pSelect);
|
|
if( ss ){
|
|
SelectDest dest;
|
|
|
|
sqlite3SelectDestInit(&dest, SRT_Discard, 0);
|
|
sqlite3SelectResolve(pParse, ss, 0);
|
|
sqlite3Select(pParse, ss, &dest, 0, 0, 0, 0);
|
|
sqlite3SelectDelete(ss);
|
|
}
|
|
break;
|
|
}
|
|
case TK_UPDATE: {
|
|
SrcList *pSrc;
|
|
pSrc = targetSrcList(pParse, pTriggerStep);
|
|
sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
|
|
sqlite3Update(pParse, pSrc,
|
|
sqlite3ExprListDup(db, pTriggerStep->pExprList),
|
|
sqlite3ExprDup(db, pTriggerStep->pWhere), orconf);
|
|
sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
|
|
break;
|
|
}
|
|
case TK_INSERT: {
|
|
SrcList *pSrc;
|
|
pSrc = targetSrcList(pParse, pTriggerStep);
|
|
sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
|
|
sqlite3Insert(pParse, pSrc,
|
|
sqlite3ExprListDup(db, pTriggerStep->pExprList),
|
|
sqlite3SelectDup(db, pTriggerStep->pSelect),
|
|
sqlite3IdListDup(db, pTriggerStep->pIdList), orconf);
|
|
sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
|
|
break;
|
|
}
|
|
case TK_DELETE: {
|
|
SrcList *pSrc;
|
|
sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
|
|
pSrc = targetSrcList(pParse, pTriggerStep);
|
|
sqlite3DeleteFrom(pParse, pSrc,
|
|
sqlite3ExprDup(db, pTriggerStep->pWhere));
|
|
sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
|
|
break;
|
|
}
|
|
default:
|
|
assert(0);
|
|
}
|
|
pTriggerStep = pTriggerStep->pNext;
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
|
|
VdbeComment((v, "end trigger %s", pStepList->pTrig->name));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** This is called to code FOR EACH ROW triggers.
|
|
**
|
|
** When the code that this function generates is executed, the following
|
|
** must be true:
|
|
**
|
|
** 1. No cursors may be open in the main database. (But newIdx and oldIdx
|
|
** can be indices of cursors in temporary tables. See below.)
|
|
**
|
|
** 2. If the triggers being coded are ON INSERT or ON UPDATE triggers, then
|
|
** a temporary vdbe cursor (index newIdx) must be open and pointing at
|
|
** a row containing values to be substituted for new.* expressions in the
|
|
** trigger program(s).
|
|
**
|
|
** 3. If the triggers being coded are ON DELETE or ON UPDATE triggers, then
|
|
** a temporary vdbe cursor (index oldIdx) must be open and pointing at
|
|
** a row containing values to be substituted for old.* expressions in the
|
|
** trigger program(s).
|
|
**
|
|
** If they are not NULL, the piOldColMask and piNewColMask output variables
|
|
** are set to values that describe the columns used by the trigger program
|
|
** in the OLD.* and NEW.* tables respectively. If column N of the
|
|
** pseudo-table is read at least once, the corresponding bit of the output
|
|
** mask is set. If a column with an index greater than 32 is read, the
|
|
** output mask is set to the special value 0xffffffff.
|
|
**
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3CodeRowTrigger(
|
|
Parse *pParse, /* Parse context */
|
|
int op, /* One of TK_UPDATE, TK_INSERT, TK_DELETE */
|
|
ExprList *pChanges, /* Changes list for any UPDATE OF triggers */
|
|
int tr_tm, /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
|
|
Table *pTab, /* The table to code triggers from */
|
|
int newIdx, /* The indice of the "new" row to access */
|
|
int oldIdx, /* The indice of the "old" row to access */
|
|
int orconf, /* ON CONFLICT policy */
|
|
int ignoreJump, /* Instruction to jump to for RAISE(IGNORE) */
|
|
u32 *piOldColMask, /* OUT: Mask of columns used from the OLD.* table */
|
|
u32 *piNewColMask /* OUT: Mask of columns used from the NEW.* table */
|
|
){
|
|
Trigger *p;
|
|
sqlite3 *db = pParse->db;
|
|
TriggerStack trigStackEntry;
|
|
|
|
trigStackEntry.oldColMask = 0;
|
|
trigStackEntry.newColMask = 0;
|
|
|
|
assert(op == TK_UPDATE || op == TK_INSERT || op == TK_DELETE);
|
|
assert(tr_tm == TRIGGER_BEFORE || tr_tm == TRIGGER_AFTER );
|
|
|
|
assert(newIdx != -1 || oldIdx != -1);
|
|
|
|
for(p=pTab->pTrigger; p; p=p->pNext){
|
|
int fire_this = 0;
|
|
|
|
/* Determine whether we should code this trigger */
|
|
if(
|
|
p->op==op &&
|
|
p->tr_tm==tr_tm &&
|
|
(p->pSchema==p->pTabSchema || p->pSchema==db->aDb[1].pSchema) &&
|
|
(op!=TK_UPDATE||!p->pColumns||checkColumnOverLap(p->pColumns,pChanges))
|
|
){
|
|
TriggerStack *pS; /* Pointer to trigger-stack entry */
|
|
for(pS=pParse->trigStack; pS && p!=pS->pTrigger; pS=pS->pNext){}
|
|
if( !pS ){
|
|
fire_this = 1;
|
|
}
|
|
#if 0 /* Give no warning for recursive triggers. Just do not do them */
|
|
else{
|
|
sqlite3ErrorMsg(pParse, "recursive triggers not supported (%s)",
|
|
p->name);
|
|
return SQLITE_ERROR;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
if( fire_this ){
|
|
int endTrigger;
|
|
Expr * whenExpr;
|
|
AuthContext sContext;
|
|
NameContext sNC;
|
|
|
|
#ifndef SQLITE_OMIT_TRACE
|
|
sqlite3VdbeAddOp4(pParse->pVdbe, OP_Trace, 0, 0, 0,
|
|
sqlite3MPrintf(db, "-- TRIGGER %s", p->name),
|
|
P4_DYNAMIC);
|
|
#endif
|
|
memset(&sNC, 0, sizeof(sNC));
|
|
sNC.pParse = pParse;
|
|
|
|
/* Push an entry on to the trigger stack */
|
|
trigStackEntry.pTrigger = p;
|
|
trigStackEntry.newIdx = newIdx;
|
|
trigStackEntry.oldIdx = oldIdx;
|
|
trigStackEntry.pTab = pTab;
|
|
trigStackEntry.pNext = pParse->trigStack;
|
|
trigStackEntry.ignoreJump = ignoreJump;
|
|
pParse->trigStack = &trigStackEntry;
|
|
sqlite3AuthContextPush(pParse, &sContext, p->name);
|
|
|
|
/* code the WHEN clause */
|
|
endTrigger = sqlite3VdbeMakeLabel(pParse->pVdbe);
|
|
whenExpr = sqlite3ExprDup(db, p->pWhen);
|
|
if( db->mallocFailed || sqlite3ExprResolveNames(&sNC, whenExpr) ){
|
|
pParse->trigStack = trigStackEntry.pNext;
|
|
sqlite3ExprDelete(whenExpr);
|
|
return 1;
|
|
}
|
|
sqlite3ExprIfFalse(pParse, whenExpr, endTrigger, SQLITE_JUMPIFNULL);
|
|
sqlite3ExprDelete(whenExpr);
|
|
|
|
codeTriggerProgram(pParse, p->step_list, orconf);
|
|
|
|
/* Pop the entry off the trigger stack */
|
|
pParse->trigStack = trigStackEntry.pNext;
|
|
sqlite3AuthContextPop(&sContext);
|
|
|
|
sqlite3VdbeResolveLabel(pParse->pVdbe, endTrigger);
|
|
}
|
|
}
|
|
if( piOldColMask ) *piOldColMask |= trigStackEntry.oldColMask;
|
|
if( piNewColMask ) *piNewColMask |= trigStackEntry.newColMask;
|
|
return 0;
|
|
}
|
|
#endif /* !defined(SQLITE_OMIT_TRIGGER) */
|
|
|
|
/************** End of trigger.c *********************************************/
|
|
/************** Begin file update.c ******************************************/
|
|
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains C code routines that are called by the parser
|
|
** to handle UPDATE statements.
|
|
**
|
|
** $Id: update.c,v 1.170 2008/01/19 03:35:59 drh Exp $
|
|
*/
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Forward declaration */
|
|
static void updateVirtualTable(
|
|
Parse *pParse, /* The parsing context */
|
|
SrcList *pSrc, /* The virtual table to be modified */
|
|
Table *pTab, /* The virtual table */
|
|
ExprList *pChanges, /* The columns to change in the UPDATE statement */
|
|
Expr *pRowidExpr, /* Expression used to recompute the rowid */
|
|
int *aXRef, /* Mapping from columns of pTab to entries in pChanges */
|
|
Expr *pWhere /* WHERE clause of the UPDATE statement */
|
|
);
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
/*
|
|
** The most recently coded instruction was an OP_Column to retrieve the
|
|
** i-th column of table pTab. This routine sets the P4 parameter of the
|
|
** OP_Column to the default value, if any.
|
|
**
|
|
** The default value of a column is specified by a DEFAULT clause in the
|
|
** column definition. This was either supplied by the user when the table
|
|
** was created, or added later to the table definition by an ALTER TABLE
|
|
** command. If the latter, then the row-records in the table btree on disk
|
|
** may not contain a value for the column and the default value, taken
|
|
** from the P4 parameter of the OP_Column instruction, is returned instead.
|
|
** If the former, then all row-records are guaranteed to include a value
|
|
** for the column and the P4 value is not required.
|
|
**
|
|
** Column definitions created by an ALTER TABLE command may only have
|
|
** literal default values specified: a number, null or a string. (If a more
|
|
** complicated default expression value was provided, it is evaluated
|
|
** when the ALTER TABLE is executed and one of the literal values written
|
|
** into the sqlite_master table.)
|
|
**
|
|
** Therefore, the P4 parameter is only required if the default value for
|
|
** the column is a literal number, string or null. The sqlite3ValueFromExpr()
|
|
** function is capable of transforming these types of expressions into
|
|
** sqlite3_value objects.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i){
|
|
if( pTab && !pTab->pSelect ){
|
|
sqlite3_value *pValue;
|
|
u8 enc = ENC(sqlite3VdbeDb(v));
|
|
Column *pCol = &pTab->aCol[i];
|
|
VdbeComment((v, "%s.%s", pTab->zName, pCol->zName));
|
|
assert( i<pTab->nCol );
|
|
sqlite3ValueFromExpr(sqlite3VdbeDb(v), pCol->pDflt, enc,
|
|
pCol->affinity, &pValue);
|
|
if( pValue ){
|
|
sqlite3VdbeChangeP4(v, -1, (const char *)pValue, P4_MEM);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Process an UPDATE statement.
|
|
**
|
|
** UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL;
|
|
** \_______/ \________/ \______/ \________________/
|
|
* onError pTabList pChanges pWhere
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3Update(
|
|
Parse *pParse, /* The parser context */
|
|
SrcList *pTabList, /* The table in which we should change things */
|
|
ExprList *pChanges, /* Things to be changed */
|
|
Expr *pWhere, /* The WHERE clause. May be null */
|
|
int onError /* How to handle constraint errors */
|
|
){
|
|
int i, j; /* Loop counters */
|
|
Table *pTab; /* The table to be updated */
|
|
int addr = 0; /* VDBE instruction address of the start of the loop */
|
|
WhereInfo *pWInfo; /* Information about the WHERE clause */
|
|
Vdbe *v; /* The virtual database engine */
|
|
Index *pIdx; /* For looping over indices */
|
|
int nIdx; /* Number of indices that need updating */
|
|
int iCur; /* VDBE Cursor number of pTab */
|
|
sqlite3 *db; /* The database structure */
|
|
int *aRegIdx = 0; /* One register assigned to each index to be updated */
|
|
int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the
|
|
** an expression for the i-th column of the table.
|
|
** aXRef[i]==-1 if the i-th column is not changed. */
|
|
int chngRowid; /* True if the record number is being changed */
|
|
Expr *pRowidExpr = 0; /* Expression defining the new record number */
|
|
int openAll = 0; /* True if all indices need to be opened */
|
|
AuthContext sContext; /* The authorization context */
|
|
NameContext sNC; /* The name-context to resolve expressions in */
|
|
int iDb; /* Database containing the table being updated */
|
|
int j1; /* Addresses of jump instructions */
|
|
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
int isView; /* Trying to update a view */
|
|
int triggers_exist = 0; /* True if any row triggers exist */
|
|
#endif
|
|
int iBeginAfterTrigger; /* Address of after trigger program */
|
|
int iEndAfterTrigger; /* Exit of after trigger program */
|
|
int iBeginBeforeTrigger; /* Address of before trigger program */
|
|
int iEndBeforeTrigger; /* Exit of before trigger program */
|
|
u32 old_col_mask = 0; /* Mask of OLD.* columns in use */
|
|
u32 new_col_mask = 0; /* Mask of NEW.* columns in use */
|
|
|
|
int newIdx = -1; /* index of trigger "new" temp table */
|
|
int oldIdx = -1; /* index of trigger "old" temp table */
|
|
|
|
/* Register Allocations */
|
|
int regRowCount = 0; /* A count of rows changed */
|
|
int regOldRowid; /* The old rowid */
|
|
int regNewRowid; /* The new rowid */
|
|
int regData; /* New data for the row */
|
|
|
|
sContext.pParse = 0;
|
|
db = pParse->db;
|
|
if( pParse->nErr || db->mallocFailed ){
|
|
goto update_cleanup;
|
|
}
|
|
assert( pTabList->nSrc==1 );
|
|
|
|
/* Locate the table which we want to update.
|
|
*/
|
|
pTab = sqlite3SrcListLookup(pParse, pTabList);
|
|
if( pTab==0 ) goto update_cleanup;
|
|
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
|
|
/* Figure out if we have any triggers and if the table being
|
|
** updated is a view
|
|
*/
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges);
|
|
isView = pTab->pSelect!=0;
|
|
#else
|
|
# define triggers_exist 0
|
|
# define isView 0
|
|
#endif
|
|
#ifdef SQLITE_OMIT_VIEW
|
|
# undef isView
|
|
# define isView 0
|
|
#endif
|
|
|
|
if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
|
|
goto update_cleanup;
|
|
}
|
|
if( sqlite3ViewGetColumnNames(pParse, pTab) ){
|
|
goto update_cleanup;
|
|
}
|
|
aXRef = sqlite3DbMallocRaw(db, sizeof(int) * pTab->nCol );
|
|
if( aXRef==0 ) goto update_cleanup;
|
|
for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;
|
|
|
|
/* If there are FOR EACH ROW triggers, allocate cursors for the
|
|
** special OLD and NEW tables
|
|
*/
|
|
if( triggers_exist ){
|
|
newIdx = pParse->nTab++;
|
|
oldIdx = pParse->nTab++;
|
|
}
|
|
|
|
/* Allocate a cursors for the main database table and for all indices.
|
|
** The index cursors might not be used, but if they are used they
|
|
** need to occur right after the database cursor. So go ahead and
|
|
** allocate enough space, just in case.
|
|
*/
|
|
pTabList->a[0].iCursor = iCur = pParse->nTab++;
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
pParse->nTab++;
|
|
}
|
|
|
|
/* Initialize the name-context */
|
|
memset(&sNC, 0, sizeof(sNC));
|
|
sNC.pParse = pParse;
|
|
sNC.pSrcList = pTabList;
|
|
|
|
/* Resolve the column names in all the expressions of the
|
|
** of the UPDATE statement. Also find the column index
|
|
** for each column to be updated in the pChanges array. For each
|
|
** column to be updated, make sure we have authorization to change
|
|
** that column.
|
|
*/
|
|
chngRowid = 0;
|
|
for(i=0; i<pChanges->nExpr; i++){
|
|
if( sqlite3ExprResolveNames(&sNC, pChanges->a[i].pExpr) ){
|
|
goto update_cleanup;
|
|
}
|
|
for(j=0; j<pTab->nCol; j++){
|
|
if( sqlite3StrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){
|
|
if( j==pTab->iPKey ){
|
|
chngRowid = 1;
|
|
pRowidExpr = pChanges->a[i].pExpr;
|
|
}
|
|
aXRef[j] = i;
|
|
break;
|
|
}
|
|
}
|
|
if( j>=pTab->nCol ){
|
|
if( sqlite3IsRowid(pChanges->a[i].zName) ){
|
|
chngRowid = 1;
|
|
pRowidExpr = pChanges->a[i].pExpr;
|
|
}else{
|
|
sqlite3ErrorMsg(pParse, "no such column: %s", pChanges->a[i].zName);
|
|
goto update_cleanup;
|
|
}
|
|
}
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
{
|
|
int rc;
|
|
rc = sqlite3AuthCheck(pParse, SQLITE_UPDATE, pTab->zName,
|
|
pTab->aCol[j].zName, db->aDb[iDb].zName);
|
|
if( rc==SQLITE_DENY ){
|
|
goto update_cleanup;
|
|
}else if( rc==SQLITE_IGNORE ){
|
|
aXRef[j] = -1;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Allocate memory for the array aRegIdx[]. There is one entry in the
|
|
** array for each index associated with table being updated. Fill in
|
|
** the value with a register number for indices that are to be used
|
|
** and with zero for unused indices.
|
|
*/
|
|
for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
|
|
if( nIdx>0 ){
|
|
aRegIdx = sqlite3DbMallocRaw(db, sizeof(Index*) * nIdx );
|
|
if( aRegIdx==0 ) goto update_cleanup;
|
|
}
|
|
for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
|
|
int reg;
|
|
if( chngRowid ){
|
|
reg = ++pParse->nMem;
|
|
}else{
|
|
reg = 0;
|
|
for(i=0; i<pIdx->nColumn; i++){
|
|
if( aXRef[pIdx->aiColumn[i]]>=0 ){
|
|
reg = ++pParse->nMem;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
aRegIdx[j] = reg;
|
|
}
|
|
|
|
/* Allocate a block of register used to store the change record
|
|
** sent to sqlite3GenerateConstraintChecks(). There are either
|
|
** one or two registers for holding the rowid. One rowid register
|
|
** is used if chngRowid is false and two are used if chngRowid is
|
|
** true. Following these are pTab->nCol register holding column
|
|
** data.
|
|
*/
|
|
regOldRowid = regNewRowid = pParse->nMem + 1;
|
|
pParse->nMem += pTab->nCol + 1;
|
|
if( chngRowid ){
|
|
regNewRowid++;
|
|
pParse->nMem++;
|
|
}
|
|
regData = regNewRowid+1;
|
|
|
|
|
|
/* Begin generating code.
|
|
*/
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) goto update_cleanup;
|
|
if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
|
|
sqlite3BeginWriteOperation(pParse, 1, iDb);
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Virtual tables must be handled separately */
|
|
if( IsVirtual(pTab) ){
|
|
updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef,
|
|
pWhere);
|
|
pWhere = 0;
|
|
pTabList = 0;
|
|
goto update_cleanup;
|
|
}
|
|
#endif
|
|
|
|
/* Resolve the column names in all the expressions in the
|
|
** WHERE clause.
|
|
*/
|
|
if( sqlite3ExprResolveNames(&sNC, pWhere) ){
|
|
goto update_cleanup;
|
|
}
|
|
|
|
/* Start the view context
|
|
*/
|
|
if( isView ){
|
|
sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
|
|
}
|
|
|
|
/* Generate the code for triggers.
|
|
*/
|
|
if( triggers_exist ){
|
|
int iGoto;
|
|
|
|
/* Create pseudo-tables for NEW and OLD
|
|
*/
|
|
sqlite3VdbeAddOp2(v, OP_OpenPseudo, oldIdx, 0);
|
|
sqlite3VdbeAddOp2(v, OP_SetNumColumns, oldIdx, pTab->nCol);
|
|
sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0);
|
|
sqlite3VdbeAddOp2(v, OP_SetNumColumns, newIdx, pTab->nCol);
|
|
|
|
iGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
|
|
addr = sqlite3VdbeMakeLabel(v);
|
|
iBeginBeforeTrigger = sqlite3VdbeCurrentAddr(v);
|
|
if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_BEFORE, pTab,
|
|
newIdx, oldIdx, onError, addr, &old_col_mask, &new_col_mask) ){
|
|
goto update_cleanup;
|
|
}
|
|
iEndBeforeTrigger = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
|
|
iBeginAfterTrigger = sqlite3VdbeCurrentAddr(v);
|
|
if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_AFTER, pTab,
|
|
newIdx, oldIdx, onError, addr, &old_col_mask, &new_col_mask) ){
|
|
goto update_cleanup;
|
|
}
|
|
iEndAfterTrigger = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
|
|
sqlite3VdbeJumpHere(v, iGoto);
|
|
}
|
|
|
|
/* If we are trying to update a view, realize that view into
|
|
** a ephemeral table.
|
|
*/
|
|
if( isView ){
|
|
Select *pView;
|
|
SelectDest dest;
|
|
|
|
pView = sqlite3SelectDup(db, pTab->pSelect);
|
|
sqlite3SelectMask(pParse, pView, old_col_mask|new_col_mask);
|
|
sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur);
|
|
sqlite3Select(pParse, pView, &dest, 0, 0, 0, 0);
|
|
sqlite3SelectDelete(pView);
|
|
}
|
|
|
|
/* Begin the database scan
|
|
*/
|
|
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0);
|
|
if( pWInfo==0 ) goto update_cleanup;
|
|
|
|
/* Remember the rowid of every item to be updated.
|
|
*/
|
|
sqlite3VdbeAddOp2(v, IsVirtual(pTab) ? OP_VRowid : OP_Rowid,iCur,regOldRowid);
|
|
sqlite3VdbeAddOp2(v, OP_FifoWrite, regOldRowid, 0);
|
|
|
|
/* End the database scan loop.
|
|
*/
|
|
sqlite3WhereEnd(pWInfo);
|
|
|
|
/* Initialize the count of updated rows
|
|
*/
|
|
if( db->flags & SQLITE_CountRows && !pParse->trigStack ){
|
|
regRowCount = ++pParse->nMem;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
|
|
}
|
|
|
|
if( !isView && !IsVirtual(pTab) ){
|
|
/*
|
|
** Open every index that needs updating. Note that if any
|
|
** index could potentially invoke a REPLACE conflict resolution
|
|
** action, then we need to open all indices because we might need
|
|
** to be deleting some records.
|
|
*/
|
|
sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenWrite);
|
|
if( onError==OE_Replace ){
|
|
openAll = 1;
|
|
}else{
|
|
openAll = 0;
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
if( pIdx->onError==OE_Replace ){
|
|
openAll = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
|
|
if( openAll || aRegIdx[i]>0 ){
|
|
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
|
|
sqlite3VdbeAddOp4(v, OP_OpenWrite, iCur+i+1, pIdx->tnum, iDb,
|
|
(char*)pKey, P4_KEYINFO_HANDOFF);
|
|
assert( pParse->nTab>iCur+i+1 );
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Jump back to this point if a trigger encounters an IGNORE constraint. */
|
|
if( triggers_exist ){
|
|
sqlite3VdbeResolveLabel(v, addr);
|
|
}
|
|
|
|
/* Top of the update loop */
|
|
addr = sqlite3VdbeAddOp2(v, OP_FifoRead, regOldRowid, 0);
|
|
|
|
if( triggers_exist ){
|
|
int regRowid;
|
|
int regRow;
|
|
int regCols;
|
|
|
|
/* Make cursor iCur point to the record that is being updated.
|
|
*/
|
|
sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid);
|
|
|
|
/* Generate the OLD table
|
|
*/
|
|
regRowid = sqlite3GetTempReg(pParse);
|
|
regRow = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regRowid);
|
|
if( !old_col_mask ){
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, regRow);
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_RowData, iCur, regRow);
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_Insert, oldIdx, regRow, regRowid);
|
|
|
|
/* Generate the NEW table
|
|
*/
|
|
if( chngRowid ){
|
|
sqlite3ExprCodeAndCache(pParse, pRowidExpr, regRowid);
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regRowid);
|
|
}
|
|
regCols = sqlite3GetTempRange(pParse, pTab->nCol);
|
|
for(i=0; i<pTab->nCol; i++){
|
|
if( i==pTab->iPKey ){
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, regCols+i);
|
|
continue;
|
|
}
|
|
j = aXRef[i];
|
|
if( new_col_mask&((u32)1<<i) || new_col_mask==0xffffffff ){
|
|
if( j<0 ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regCols+i);
|
|
sqlite3ColumnDefault(v, pTab, i);
|
|
}else{
|
|
sqlite3ExprCodeAndCache(pParse, pChanges->a[j].pExpr, regCols+i);
|
|
}
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, regCols+i);
|
|
}
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRow);
|
|
if( !isView ){
|
|
sqlite3TableAffinityStr(v, pTab);
|
|
}
|
|
sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
|
|
if( pParse->nErr ) goto update_cleanup;
|
|
sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRow, regRowid);
|
|
sqlite3ReleaseTempReg(pParse, regRowid);
|
|
sqlite3ReleaseTempReg(pParse, regRow);
|
|
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginBeforeTrigger);
|
|
sqlite3VdbeJumpHere(v, iEndBeforeTrigger);
|
|
}
|
|
|
|
if( !isView && !IsVirtual(pTab) ){
|
|
/* Loop over every record that needs updating. We have to load
|
|
** the old data for each record to be updated because some columns
|
|
** might not change and we will need to copy the old value.
|
|
** Also, the old data is needed to delete the old index entries.
|
|
** So make the cursor point at the old record.
|
|
*/
|
|
sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid);
|
|
|
|
/* If the record number will change, push the record number as it
|
|
** will be after the update. (The old record number is currently
|
|
** on top of the stack.)
|
|
*/
|
|
if( chngRowid ){
|
|
sqlite3ExprCode(pParse, pRowidExpr, regNewRowid);
|
|
sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid);
|
|
}
|
|
|
|
/* Compute new data for this record.
|
|
*/
|
|
for(i=0; i<pTab->nCol; i++){
|
|
if( i==pTab->iPKey ){
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, regData+i);
|
|
continue;
|
|
}
|
|
j = aXRef[i];
|
|
if( j<0 ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regData+i);
|
|
sqlite3ColumnDefault(v, pTab, i);
|
|
}else{
|
|
sqlite3ExprCode(pParse, pChanges->a[j].pExpr, regData+i);
|
|
}
|
|
}
|
|
|
|
/* Do constraint checks
|
|
*/
|
|
sqlite3GenerateConstraintChecks(pParse, pTab, iCur, regNewRowid,
|
|
aRegIdx, chngRowid, 1,
|
|
onError, addr);
|
|
|
|
/* Delete the old indices for the current record.
|
|
*/
|
|
j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regOldRowid);
|
|
sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, aRegIdx);
|
|
|
|
/* If changing the record number, delete the old record.
|
|
*/
|
|
if( chngRowid ){
|
|
sqlite3VdbeAddOp2(v, OP_Delete, iCur, 0);
|
|
}
|
|
sqlite3VdbeJumpHere(v, j1);
|
|
|
|
/* Create the new index entries and the new record.
|
|
*/
|
|
sqlite3CompleteInsertion(pParse, pTab, iCur, regNewRowid,
|
|
aRegIdx, chngRowid, 1, -1, 0);
|
|
}
|
|
|
|
/* Increment the row counter
|
|
*/
|
|
if( db->flags & SQLITE_CountRows && !pParse->trigStack){
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
|
|
}
|
|
|
|
/* If there are triggers, close all the cursors after each iteration
|
|
** through the loop. The fire the after triggers.
|
|
*/
|
|
if( triggers_exist ){
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginAfterTrigger);
|
|
sqlite3VdbeJumpHere(v, iEndAfterTrigger);
|
|
}
|
|
|
|
/* Repeat the above with the next record to be updated, until
|
|
** all record selected by the WHERE clause have been updated.
|
|
*/
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
|
|
/* Close all tables */
|
|
for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
|
|
if( openAll || aRegIdx[i]>0 ){
|
|
sqlite3VdbeAddOp2(v, OP_Close, iCur+i+1, 0);
|
|
}
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
|
|
if( triggers_exist ){
|
|
sqlite3VdbeAddOp2(v, OP_Close, newIdx, 0);
|
|
sqlite3VdbeAddOp2(v, OP_Close, oldIdx, 0);
|
|
}
|
|
|
|
/*
|
|
** Return the number of rows that were changed. If this routine is
|
|
** generating code because of a call to sqlite3NestedParse(), do not
|
|
** invoke the callback function.
|
|
*/
|
|
if( db->flags & SQLITE_CountRows && !pParse->trigStack && pParse->nested==0 ){
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
|
|
sqlite3VdbeSetNumCols(v, 1);
|
|
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", P4_STATIC);
|
|
}
|
|
|
|
update_cleanup:
|
|
sqlite3AuthContextPop(&sContext);
|
|
sqlite3_free(aRegIdx);
|
|
sqlite3_free(aXRef);
|
|
sqlite3SrcListDelete(pTabList);
|
|
sqlite3ExprListDelete(pChanges);
|
|
sqlite3ExprDelete(pWhere);
|
|
return;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/*
|
|
** Generate code for an UPDATE of a virtual table.
|
|
**
|
|
** The strategy is that we create an ephemerial table that contains
|
|
** for each row to be changed:
|
|
**
|
|
** (A) The original rowid of that row.
|
|
** (B) The revised rowid for the row. (note1)
|
|
** (C) The content of every column in the row.
|
|
**
|
|
** Then we loop over this ephemeral table and for each row in
|
|
** the ephermeral table call VUpdate.
|
|
**
|
|
** When finished, drop the ephemeral table.
|
|
**
|
|
** (note1) Actually, if we know in advance that (A) is always the same
|
|
** as (B) we only store (A), then duplicate (A) when pulling
|
|
** it out of the ephemeral table before calling VUpdate.
|
|
*/
|
|
static void updateVirtualTable(
|
|
Parse *pParse, /* The parsing context */
|
|
SrcList *pSrc, /* The virtual table to be modified */
|
|
Table *pTab, /* The virtual table */
|
|
ExprList *pChanges, /* The columns to change in the UPDATE statement */
|
|
Expr *pRowid, /* Expression used to recompute the rowid */
|
|
int *aXRef, /* Mapping from columns of pTab to entries in pChanges */
|
|
Expr *pWhere /* WHERE clause of the UPDATE statement */
|
|
){
|
|
Vdbe *v = pParse->pVdbe; /* Virtual machine under construction */
|
|
ExprList *pEList = 0; /* The result set of the SELECT statement */
|
|
Select *pSelect = 0; /* The SELECT statement */
|
|
Expr *pExpr; /* Temporary expression */
|
|
int ephemTab; /* Table holding the result of the SELECT */
|
|
int i; /* Loop counter */
|
|
int addr; /* Address of top of loop */
|
|
int iReg; /* First register in set passed to OP_VUpdate */
|
|
sqlite3 *db = pParse->db; /* Database connection */
|
|
const char *pVtab = (const char*)pTab->pVtab;
|
|
SelectDest dest;
|
|
|
|
/* Construct the SELECT statement that will find the new values for
|
|
** all updated rows.
|
|
*/
|
|
pEList = sqlite3ExprListAppend(pParse, 0,
|
|
sqlite3CreateIdExpr(pParse, "_rowid_"), 0);
|
|
if( pRowid ){
|
|
pEList = sqlite3ExprListAppend(pParse, pEList,
|
|
sqlite3ExprDup(db, pRowid), 0);
|
|
}
|
|
assert( pTab->iPKey<0 );
|
|
for(i=0; i<pTab->nCol; i++){
|
|
if( aXRef[i]>=0 ){
|
|
pExpr = sqlite3ExprDup(db, pChanges->a[aXRef[i]].pExpr);
|
|
}else{
|
|
pExpr = sqlite3CreateIdExpr(pParse, pTab->aCol[i].zName);
|
|
}
|
|
pEList = sqlite3ExprListAppend(pParse, pEList, pExpr, 0);
|
|
}
|
|
pSelect = sqlite3SelectNew(pParse, pEList, pSrc, pWhere, 0, 0, 0, 0, 0, 0);
|
|
|
|
/* Create the ephemeral table into which the update results will
|
|
** be stored.
|
|
*/
|
|
assert( v );
|
|
ephemTab = pParse->nTab++;
|
|
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, pTab->nCol+1+(pRowid!=0));
|
|
|
|
/* fill the ephemeral table
|
|
*/
|
|
sqlite3SelectDestInit(&dest, SRT_Table, ephemTab);
|
|
sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
|
|
|
|
/* Generate code to scan the ephemeral table and call VUpdate. */
|
|
iReg = ++pParse->nMem;
|
|
pParse->nMem += pTab->nCol+1;
|
|
sqlite3VdbeAddOp2(v, OP_Rewind, ephemTab, 0);
|
|
addr = sqlite3VdbeCurrentAddr(v);
|
|
sqlite3VdbeAddOp3(v, OP_Column, ephemTab, 0, iReg);
|
|
sqlite3VdbeAddOp3(v, OP_Column, ephemTab, (pRowid?1:0), iReg+1);
|
|
for(i=0; i<pTab->nCol; i++){
|
|
sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i+1+(pRowid!=0), iReg+2+i);
|
|
}
|
|
pParse->pVirtualLock = pTab;
|
|
sqlite3VdbeAddOp4(v, OP_VUpdate, 0, pTab->nCol+2, iReg, pVtab, P4_VTAB);
|
|
sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr);
|
|
sqlite3VdbeJumpHere(v, addr-1);
|
|
sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0);
|
|
|
|
/* Cleanup */
|
|
sqlite3SelectDelete(pSelect);
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
/************** End of update.c **********************************************/
|
|
/************** Begin file vacuum.c ******************************************/
|
|
/*
|
|
** 2003 April 6
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains code used to implement the VACUUM command.
|
|
**
|
|
** Most of the code in this file may be omitted by defining the
|
|
** SQLITE_OMIT_VACUUM macro.
|
|
**
|
|
** $Id: vacuum.c,v 1.76 2008/01/03 00:01:25 drh Exp $
|
|
*/
|
|
|
|
#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
|
|
/*
|
|
** Execute zSql on database db. Return an error code.
|
|
*/
|
|
static int execSql(sqlite3 *db, const char *zSql){
|
|
sqlite3_stmt *pStmt;
|
|
if( !zSql ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
if( SQLITE_OK!=sqlite3_prepare(db, zSql, -1, &pStmt, 0) ){
|
|
return sqlite3_errcode(db);
|
|
}
|
|
while( SQLITE_ROW==sqlite3_step(pStmt) ){}
|
|
return sqlite3_finalize(pStmt);
|
|
}
|
|
|
|
/*
|
|
** Execute zSql on database db. The statement returns exactly
|
|
** one column. Execute this as SQL on the same database.
|
|
*/
|
|
static int execExecSql(sqlite3 *db, const char *zSql){
|
|
sqlite3_stmt *pStmt;
|
|
int rc;
|
|
|
|
rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
while( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
rc = execSql(db, (char*)sqlite3_column_text(pStmt, 0));
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3_finalize(pStmt);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return sqlite3_finalize(pStmt);
|
|
}
|
|
|
|
/*
|
|
** The non-standard VACUUM command is used to clean up the database,
|
|
** collapse free space, etc. It is modelled after the VACUUM command
|
|
** in PostgreSQL.
|
|
**
|
|
** In version 1.0.x of SQLite, the VACUUM command would call
|
|
** gdbm_reorganize() on all the database tables. But beginning
|
|
** with 2.0.0, SQLite no longer uses GDBM so this command has
|
|
** become a no-op.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3Vacuum(Parse *pParse){
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
sqlite3VdbeAddOp2(v, OP_Vacuum, 0, 0);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** This routine implements the OP_Vacuum opcode of the VDBE.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
|
|
int rc = SQLITE_OK; /* Return code from service routines */
|
|
Btree *pMain; /* The database being vacuumed */
|
|
Btree *pTemp; /* The temporary database we vacuum into */
|
|
char *zSql = 0; /* SQL statements */
|
|
int saved_flags; /* Saved value of the db->flags */
|
|
Db *pDb = 0; /* Database to detach at end of vacuum */
|
|
|
|
/* Save the current value of the write-schema flag before setting it. */
|
|
saved_flags = db->flags;
|
|
db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks;
|
|
|
|
if( !db->autoCommit ){
|
|
sqlite3SetString(pzErrMsg, "cannot VACUUM from within a transaction",
|
|
(char*)0);
|
|
rc = SQLITE_ERROR;
|
|
goto end_of_vacuum;
|
|
}
|
|
pMain = db->aDb[0].pBt;
|
|
|
|
/* Attach the temporary database as 'vacuum_db'. The synchronous pragma
|
|
** can be set to 'off' for this file, as it is not recovered if a crash
|
|
** occurs anyway. The integrity of the database is maintained by a
|
|
** (possibly synchronous) transaction opened on the main database before
|
|
** sqlite3BtreeCopyFile() is called.
|
|
**
|
|
** An optimisation would be to use a non-journaled pager.
|
|
*/
|
|
zSql = "ATTACH '' AS vacuum_db;";
|
|
rc = execSql(db, zSql);
|
|
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
|
pDb = &db->aDb[db->nDb-1];
|
|
assert( strcmp(db->aDb[db->nDb-1].zName,"vacuum_db")==0 );
|
|
pTemp = db->aDb[db->nDb-1].pBt;
|
|
sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain),
|
|
sqlite3BtreeGetReserve(pMain));
|
|
if( db->mallocFailed ){
|
|
rc = SQLITE_NOMEM;
|
|
goto end_of_vacuum;
|
|
}
|
|
assert( sqlite3BtreeGetPageSize(pTemp)==sqlite3BtreeGetPageSize(pMain) );
|
|
rc = execSql(db, "PRAGMA vacuum_db.synchronous=OFF");
|
|
if( rc!=SQLITE_OK ){
|
|
goto end_of_vacuum;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac>=0 ? db->nextAutovac :
|
|
sqlite3BtreeGetAutoVacuum(pMain));
|
|
#endif
|
|
|
|
/* Begin a transaction */
|
|
rc = execSql(db, "BEGIN EXCLUSIVE;");
|
|
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
|
|
|
/* Query the schema of the main database. Create a mirror schema
|
|
** in the temporary database.
|
|
*/
|
|
rc = execExecSql(db,
|
|
"SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14) "
|
|
" FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'"
|
|
" AND rootpage>0"
|
|
);
|
|
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
|
rc = execExecSql(db,
|
|
"SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14)"
|
|
" FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' ");
|
|
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
|
rc = execExecSql(db,
|
|
"SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21) "
|
|
" FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'");
|
|
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
|
|
|
/* Loop through the tables in the main database. For each, do
|
|
** an "INSERT INTO vacuum_db.xxx SELECT * FROM xxx;" to copy
|
|
** the contents to the temporary database.
|
|
*/
|
|
rc = execExecSql(db,
|
|
"SELECT 'INSERT INTO vacuum_db.' || quote(name) "
|
|
"|| ' SELECT * FROM ' || quote(name) || ';'"
|
|
"FROM sqlite_master "
|
|
"WHERE type = 'table' AND name!='sqlite_sequence' "
|
|
" AND rootpage>0"
|
|
|
|
);
|
|
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
|
|
|
/* Copy over the sequence table
|
|
*/
|
|
rc = execExecSql(db,
|
|
"SELECT 'DELETE FROM vacuum_db.' || quote(name) || ';' "
|
|
"FROM vacuum_db.sqlite_master WHERE name='sqlite_sequence' "
|
|
);
|
|
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
|
rc = execExecSql(db,
|
|
"SELECT 'INSERT INTO vacuum_db.' || quote(name) "
|
|
"|| ' SELECT * FROM ' || quote(name) || ';' "
|
|
"FROM vacuum_db.sqlite_master WHERE name=='sqlite_sequence';"
|
|
);
|
|
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
|
|
|
|
|
/* Copy the triggers, views, and virtual tables from the main database
|
|
** over to the temporary database. None of these objects has any
|
|
** associated storage, so all we have to do is copy their entries
|
|
** from the SQLITE_MASTER table.
|
|
*/
|
|
rc = execSql(db,
|
|
"INSERT INTO vacuum_db.sqlite_master "
|
|
" SELECT type, name, tbl_name, rootpage, sql"
|
|
" FROM sqlite_master"
|
|
" WHERE type='view' OR type='trigger'"
|
|
" OR (type='table' AND rootpage=0)"
|
|
);
|
|
if( rc ) goto end_of_vacuum;
|
|
|
|
/* At this point, unless the main db was completely empty, there is now a
|
|
** transaction open on the vacuum database, but not on the main database.
|
|
** Open a btree level transaction on the main database. This allows a
|
|
** call to sqlite3BtreeCopyFile(). The main database btree level
|
|
** transaction is then committed, so the SQL level never knows it was
|
|
** opened for writing. This way, the SQL transaction used to create the
|
|
** temporary database never needs to be committed.
|
|
*/
|
|
if( rc==SQLITE_OK ){
|
|
u32 meta;
|
|
int i;
|
|
|
|
/* This array determines which meta meta values are preserved in the
|
|
** vacuum. Even entries are the meta value number and odd entries
|
|
** are an increment to apply to the meta value after the vacuum.
|
|
** The increment is used to increase the schema cookie so that other
|
|
** connections to the same database will know to reread the schema.
|
|
*/
|
|
static const unsigned char aCopy[] = {
|
|
1, 1, /* Add one to the old schema cookie */
|
|
3, 0, /* Preserve the default page cache size */
|
|
5, 0, /* Preserve the default text encoding */
|
|
6, 0, /* Preserve the user version */
|
|
};
|
|
|
|
assert( 1==sqlite3BtreeIsInTrans(pTemp) );
|
|
assert( 1==sqlite3BtreeIsInTrans(pMain) );
|
|
|
|
/* Copy Btree meta values */
|
|
for(i=0; i<sizeof(aCopy)/sizeof(aCopy[0]); i+=2){
|
|
rc = sqlite3BtreeGetMeta(pMain, aCopy[i], &meta);
|
|
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
|
rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta+aCopy[i+1]);
|
|
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
|
}
|
|
|
|
rc = sqlite3BtreeCopyFile(pMain, pTemp);
|
|
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
|
rc = sqlite3BtreeCommit(pTemp);
|
|
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
|
rc = sqlite3BtreeCommit(pMain);
|
|
}
|
|
|
|
end_of_vacuum:
|
|
/* Restore the original value of db->flags */
|
|
db->flags = saved_flags;
|
|
|
|
/* Currently there is an SQL level transaction open on the vacuum
|
|
** database. No locks are held on any other files (since the main file
|
|
** was committed at the btree level). So it safe to end the transaction
|
|
** by manually setting the autoCommit flag to true and detaching the
|
|
** vacuum database. The vacuum_db journal file is deleted when the pager
|
|
** is closed by the DETACH.
|
|
*/
|
|
db->autoCommit = 1;
|
|
|
|
if( pDb ){
|
|
sqlite3BtreeClose(pDb->pBt);
|
|
pDb->pBt = 0;
|
|
pDb->pSchema = 0;
|
|
}
|
|
|
|
sqlite3ResetInternalSchema(db, 0);
|
|
|
|
return rc;
|
|
}
|
|
#endif /* SQLITE_OMIT_VACUUM && SQLITE_OMIT_ATTACH */
|
|
|
|
/************** End of vacuum.c **********************************************/
|
|
/************** Begin file vtab.c ********************************************/
|
|
/*
|
|
** 2006 June 10
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains code used to help implement virtual tables.
|
|
**
|
|
** $Id: vtab.c,v 1.63 2008/01/23 03:03:05 drh Exp $
|
|
*/
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
static int createModule(
|
|
sqlite3 *db, /* Database in which module is registered */
|
|
const char *zName, /* Name assigned to this module */
|
|
const sqlite3_module *pModule, /* The definition of the module */
|
|
void *pAux, /* Context pointer for xCreate/xConnect */
|
|
void (*xDestroy)(void *) /* Module destructor function */
|
|
) {
|
|
int rc, nName;
|
|
Module *pMod;
|
|
|
|
sqlite3_mutex_enter(db->mutex);
|
|
nName = strlen(zName);
|
|
pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1);
|
|
if( pMod ){
|
|
char *zCopy = (char *)(&pMod[1]);
|
|
memcpy(zCopy, zName, nName+1);
|
|
pMod->zName = zCopy;
|
|
pMod->pModule = pModule;
|
|
pMod->pAux = pAux;
|
|
pMod->xDestroy = xDestroy;
|
|
pMod = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod);
|
|
if( pMod && pMod->xDestroy ){
|
|
pMod->xDestroy(pMod->pAux);
|
|
}
|
|
sqlite3_free(pMod);
|
|
sqlite3ResetInternalSchema(db, 0);
|
|
}
|
|
rc = sqlite3ApiExit(db, SQLITE_OK);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** External API function used to create a new virtual-table module.
|
|
*/
|
|
SQLITE_API int sqlite3_create_module(
|
|
sqlite3 *db, /* Database in which module is registered */
|
|
const char *zName, /* Name assigned to this module */
|
|
const sqlite3_module *pModule, /* The definition of the module */
|
|
void *pAux /* Context pointer for xCreate/xConnect */
|
|
){
|
|
return createModule(db, zName, pModule, pAux, 0);
|
|
}
|
|
|
|
/*
|
|
** External API function used to create a new virtual-table module.
|
|
*/
|
|
SQLITE_API int sqlite3_create_module_v2(
|
|
sqlite3 *db, /* Database in which module is registered */
|
|
const char *zName, /* Name assigned to this module */
|
|
const sqlite3_module *pModule, /* The definition of the module */
|
|
void *pAux, /* Context pointer for xCreate/xConnect */
|
|
void (*xDestroy)(void *) /* Module destructor function */
|
|
){
|
|
return createModule(db, zName, pModule, pAux, xDestroy);
|
|
}
|
|
|
|
/*
|
|
** Lock the virtual table so that it cannot be disconnected.
|
|
** Locks nest. Every lock should have a corresponding unlock.
|
|
** If an unlock is omitted, resources leaks will occur.
|
|
**
|
|
** If a disconnect is attempted while a virtual table is locked,
|
|
** the disconnect is deferred until all locks have been removed.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VtabLock(sqlite3_vtab *pVtab){
|
|
pVtab->nRef++;
|
|
}
|
|
|
|
/*
|
|
** Unlock a virtual table. When the last lock is removed,
|
|
** disconnect the virtual table.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VtabUnlock(sqlite3 *db, sqlite3_vtab *pVtab){
|
|
pVtab->nRef--;
|
|
assert(db);
|
|
assert( sqlite3SafetyCheckOk(db) );
|
|
if( pVtab->nRef==0 ){
|
|
if( db->magic==SQLITE_MAGIC_BUSY ){
|
|
(void)sqlite3SafetyOff(db);
|
|
pVtab->pModule->xDisconnect(pVtab);
|
|
(void)sqlite3SafetyOn(db);
|
|
} else {
|
|
pVtab->pModule->xDisconnect(pVtab);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Clear any and all virtual-table information from the Table record.
|
|
** This routine is called, for example, just before deleting the Table
|
|
** record.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VtabClear(Table *p){
|
|
sqlite3_vtab *pVtab = p->pVtab;
|
|
if( pVtab ){
|
|
assert( p->pMod && p->pMod->pModule );
|
|
sqlite3VtabUnlock(p->pSchema->db, pVtab);
|
|
p->pVtab = 0;
|
|
}
|
|
if( p->azModuleArg ){
|
|
int i;
|
|
for(i=0; i<p->nModuleArg; i++){
|
|
sqlite3_free(p->azModuleArg[i]);
|
|
}
|
|
sqlite3_free(p->azModuleArg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Add a new module argument to pTable->azModuleArg[].
|
|
** The string is not copied - the pointer is stored. The
|
|
** string will be freed automatically when the table is
|
|
** deleted.
|
|
*/
|
|
static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){
|
|
int i = pTable->nModuleArg++;
|
|
int nBytes = sizeof(char *)*(1+pTable->nModuleArg);
|
|
char **azModuleArg;
|
|
azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes);
|
|
if( azModuleArg==0 ){
|
|
int j;
|
|
for(j=0; j<i; j++){
|
|
sqlite3_free(pTable->azModuleArg[j]);
|
|
}
|
|
sqlite3_free(zArg);
|
|
sqlite3_free(pTable->azModuleArg);
|
|
pTable->nModuleArg = 0;
|
|
}else{
|
|
azModuleArg[i] = zArg;
|
|
azModuleArg[i+1] = 0;
|
|
}
|
|
pTable->azModuleArg = azModuleArg;
|
|
}
|
|
|
|
/*
|
|
** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
|
|
** statement. The module name has been parsed, but the optional list
|
|
** of parameters that follow the module name are still pending.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VtabBeginParse(
|
|
Parse *pParse, /* Parsing context */
|
|
Token *pName1, /* Name of new table, or database name */
|
|
Token *pName2, /* Name of new table or NULL */
|
|
Token *pModuleName /* Name of the module for the virtual table */
|
|
){
|
|
int iDb; /* The database the table is being created in */
|
|
Table *pTable; /* The new virtual table */
|
|
sqlite3 *db; /* Database connection */
|
|
|
|
if( pParse->db->flags & SQLITE_SharedCache ){
|
|
sqlite3ErrorMsg(pParse, "Cannot use virtual tables in shared-cache mode");
|
|
return;
|
|
}
|
|
|
|
sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, 0);
|
|
pTable = pParse->pNewTable;
|
|
if( pTable==0 || pParse->nErr ) return;
|
|
assert( 0==pTable->pIndex );
|
|
|
|
db = pParse->db;
|
|
iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
|
|
assert( iDb>=0 );
|
|
|
|
pTable->isVirtual = 1;
|
|
pTable->nModuleArg = 0;
|
|
addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
|
|
addModuleArgument(db, pTable, sqlite3DbStrDup(db, db->aDb[iDb].zName));
|
|
addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
|
|
pParse->sNameToken.n = pModuleName->z + pModuleName->n - pName1->z;
|
|
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
/* Creating a virtual table invokes the authorization callback twice.
|
|
** The first invocation, to obtain permission to INSERT a row into the
|
|
** sqlite_master table, has already been made by sqlite3StartTable().
|
|
** The second call, to obtain permission to create the table, is made now.
|
|
*/
|
|
if( pTable->azModuleArg ){
|
|
sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName,
|
|
pTable->azModuleArg[0], pParse->db->aDb[iDb].zName);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** This routine takes the module argument that has been accumulating
|
|
** in pParse->zArg[] and appends it to the list of arguments on the
|
|
** virtual table currently under construction in pParse->pTable.
|
|
*/
|
|
static void addArgumentToVtab(Parse *pParse){
|
|
if( pParse->sArg.z && pParse->pNewTable ){
|
|
const char *z = (const char*)pParse->sArg.z;
|
|
int n = pParse->sArg.n;
|
|
sqlite3 *db = pParse->db;
|
|
addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The parser calls this routine after the CREATE VIRTUAL TABLE statement
|
|
** has been completely parsed.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
|
|
Table *pTab; /* The table being constructed */
|
|
sqlite3 *db; /* The database connection */
|
|
char *zModule; /* The module name of the table: USING modulename */
|
|
Module *pMod = 0;
|
|
|
|
addArgumentToVtab(pParse);
|
|
pParse->sArg.z = 0;
|
|
|
|
/* Lookup the module name. */
|
|
pTab = pParse->pNewTable;
|
|
if( pTab==0 ) return;
|
|
db = pParse->db;
|
|
if( pTab->nModuleArg<1 ) return;
|
|
zModule = pTab->azModuleArg[0];
|
|
pMod = (Module *)sqlite3HashFind(&db->aModule, zModule, strlen(zModule));
|
|
pTab->pMod = pMod;
|
|
|
|
/* If the CREATE VIRTUAL TABLE statement is being entered for the
|
|
** first time (in other words if the virtual table is actually being
|
|
** created now instead of just being read out of sqlite_master) then
|
|
** do additional initialization work and store the statement text
|
|
** in the sqlite_master table.
|
|
*/
|
|
if( !db->init.busy ){
|
|
char *zStmt;
|
|
char *zWhere;
|
|
int iDb;
|
|
Vdbe *v;
|
|
|
|
/* Compute the complete text of the CREATE VIRTUAL TABLE statement */
|
|
if( pEnd ){
|
|
pParse->sNameToken.n = pEnd->z - pParse->sNameToken.z + pEnd->n;
|
|
}
|
|
zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
|
|
|
|
/* A slot for the record has already been allocated in the
|
|
** SQLITE_MASTER table. We just need to update that slot with all
|
|
** the information we've collected.
|
|
**
|
|
** The VM register number pParse->regRowid holds the rowid of an
|
|
** entry in the sqlite_master table tht was created for this vtab
|
|
** by sqlite3StartTable().
|
|
*/
|
|
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
sqlite3NestedParse(pParse,
|
|
"UPDATE %Q.%s "
|
|
"SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
|
|
"WHERE rowid=#%d",
|
|
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
|
|
pTab->zName,
|
|
pTab->zName,
|
|
zStmt,
|
|
pParse->regRowid
|
|
);
|
|
sqlite3_free(zStmt);
|
|
v = sqlite3GetVdbe(pParse);
|
|
sqlite3ChangeCookie(pParse, iDb);
|
|
|
|
sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
|
|
zWhere = sqlite3MPrintf(db, "name='%q'", pTab->zName);
|
|
sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 1, 0, zWhere, P4_DYNAMIC);
|
|
sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0,
|
|
pTab->zName, strlen(pTab->zName) + 1);
|
|
}
|
|
|
|
/* If we are rereading the sqlite_master table create the in-memory
|
|
** record of the table. If the module has already been registered,
|
|
** also call the xConnect method here.
|
|
*/
|
|
else {
|
|
Table *pOld;
|
|
Schema *pSchema = pTab->pSchema;
|
|
const char *zName = pTab->zName;
|
|
int nName = strlen(zName) + 1;
|
|
pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab);
|
|
if( pOld ){
|
|
db->mallocFailed = 1;
|
|
assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */
|
|
return;
|
|
}
|
|
pSchema->db = pParse->db;
|
|
pParse->pNewTable = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The parser calls this routine when it sees the first token
|
|
** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VtabArgInit(Parse *pParse){
|
|
addArgumentToVtab(pParse);
|
|
pParse->sArg.z = 0;
|
|
pParse->sArg.n = 0;
|
|
}
|
|
|
|
/*
|
|
** The parser calls this routine for each token after the first token
|
|
** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse *pParse, Token *p){
|
|
Token *pArg = &pParse->sArg;
|
|
if( pArg->z==0 ){
|
|
pArg->z = p->z;
|
|
pArg->n = p->n;
|
|
}else{
|
|
assert(pArg->z < p->z);
|
|
pArg->n = (p->z + p->n - pArg->z);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Invoke a virtual table constructor (either xCreate or xConnect). The
|
|
** pointer to the function to invoke is passed as the fourth parameter
|
|
** to this procedure.
|
|
*/
|
|
static int vtabCallConstructor(
|
|
sqlite3 *db,
|
|
Table *pTab,
|
|
Module *pMod,
|
|
int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
|
|
char **pzErr
|
|
){
|
|
int rc;
|
|
int rc2;
|
|
sqlite3_vtab *pVtab = 0;
|
|
const char *const*azArg = (const char *const*)pTab->azModuleArg;
|
|
int nArg = pTab->nModuleArg;
|
|
char *zErr = 0;
|
|
char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName);
|
|
|
|
if( !zModuleName ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
|
|
assert( !db->pVTab );
|
|
assert( xConstruct );
|
|
|
|
db->pVTab = pTab;
|
|
rc = sqlite3SafetyOff(db);
|
|
assert( rc==SQLITE_OK );
|
|
rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVtab, &zErr);
|
|
rc2 = sqlite3SafetyOn(db);
|
|
if( rc==SQLITE_OK && pVtab ){
|
|
pVtab->pModule = pMod->pModule;
|
|
pVtab->nRef = 1;
|
|
pTab->pVtab = pVtab;
|
|
}
|
|
|
|
if( SQLITE_OK!=rc ){
|
|
if( zErr==0 ){
|
|
*pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
|
|
}else {
|
|
*pzErr = sqlite3MPrintf(db, "%s", zErr);
|
|
sqlite3_free(zErr);
|
|
}
|
|
}else if( db->pVTab ){
|
|
const char *zFormat = "vtable constructor did not declare schema: %s";
|
|
*pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
rc = rc2;
|
|
}
|
|
db->pVTab = 0;
|
|
sqlite3_free(zModuleName);
|
|
|
|
/* If everything went according to plan, loop through the columns
|
|
** of the table to see if any of them contain the token "hidden".
|
|
** If so, set the Column.isHidden flag and remove the token from
|
|
** the type string.
|
|
*/
|
|
if( rc==SQLITE_OK ){
|
|
int iCol;
|
|
for(iCol=0; iCol<pTab->nCol; iCol++){
|
|
char *zType = pTab->aCol[iCol].zType;
|
|
int nType;
|
|
int i = 0;
|
|
if( !zType ) continue;
|
|
nType = strlen(zType);
|
|
if( sqlite3StrNICmp("hidden", zType, 6) || (zType[6] && zType[6]!=' ') ){
|
|
for(i=0; i<nType; i++){
|
|
if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7))
|
|
&& (zType[i+7]=='\0' || zType[i+7]==' ')
|
|
){
|
|
i++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if( i<nType ){
|
|
int j;
|
|
int nDel = 6 + (zType[i+6] ? 1 : 0);
|
|
for(j=i; (j+nDel)<=nType; j++){
|
|
zType[j] = zType[j+nDel];
|
|
}
|
|
if( zType[i]=='\0' && i>0 ){
|
|
assert(zType[i-1]==' ');
|
|
zType[i-1] = '\0';
|
|
}
|
|
pTab->aCol[iCol].isHidden = 1;
|
|
}
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This function is invoked by the parser to call the xConnect() method
|
|
** of the virtual table pTab. If an error occurs, an error code is returned
|
|
** and an error left in pParse.
|
|
**
|
|
** This call is a no-op if table pTab is not a virtual table.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
|
|
Module *pMod;
|
|
int rc = SQLITE_OK;
|
|
|
|
if( !pTab || !pTab->isVirtual || pTab->pVtab ){
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
pMod = pTab->pMod;
|
|
if( !pMod ){
|
|
const char *zModule = pTab->azModuleArg[0];
|
|
sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
|
|
rc = SQLITE_ERROR;
|
|
} else {
|
|
char *zErr = 0;
|
|
sqlite3 *db = pParse->db;
|
|
rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3ErrorMsg(pParse, "%s", zErr);
|
|
}
|
|
sqlite3_free(zErr);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Add the virtual table pVtab to the array sqlite3.aVTrans[].
|
|
*/
|
|
static int addToVTrans(sqlite3 *db, sqlite3_vtab *pVtab){
|
|
const int ARRAY_INCR = 5;
|
|
|
|
/* Grow the sqlite3.aVTrans array if required */
|
|
if( (db->nVTrans%ARRAY_INCR)==0 ){
|
|
sqlite3_vtab **aVTrans;
|
|
int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR);
|
|
aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
|
|
if( !aVTrans ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR);
|
|
db->aVTrans = aVTrans;
|
|
}
|
|
|
|
/* Add pVtab to the end of sqlite3.aVTrans */
|
|
db->aVTrans[db->nVTrans++] = pVtab;
|
|
sqlite3VtabLock(pVtab);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** This function is invoked by the vdbe to call the xCreate method
|
|
** of the virtual table named zTab in database iDb.
|
|
**
|
|
** If an error occurs, *pzErr is set to point an an English language
|
|
** description of the error and an SQLITE_XXX error code is returned.
|
|
** In this case the caller must call sqlite3_free() on *pzErr.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
|
|
int rc = SQLITE_OK;
|
|
Table *pTab;
|
|
Module *pMod;
|
|
const char *zModule;
|
|
|
|
pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
|
|
assert(pTab && pTab->isVirtual && !pTab->pVtab);
|
|
pMod = pTab->pMod;
|
|
zModule = pTab->azModuleArg[0];
|
|
|
|
/* If the module has been registered and includes a Create method,
|
|
** invoke it now. If the module has not been registered, return an
|
|
** error. Otherwise, do nothing.
|
|
*/
|
|
if( !pMod ){
|
|
*pzErr = sqlite3MPrintf(db, "no such module: %s", zModule);
|
|
rc = SQLITE_ERROR;
|
|
}else{
|
|
rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
|
|
}
|
|
|
|
if( rc==SQLITE_OK && pTab->pVtab ){
|
|
rc = addToVTrans(db, pTab->pVtab);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This function is used to set the schema of a virtual table. It is only
|
|
** valid to call this function from within the xCreate() or xConnect() of a
|
|
** virtual table module.
|
|
*/
|
|
SQLITE_API int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
|
|
Parse sParse;
|
|
|
|
int rc = SQLITE_OK;
|
|
Table *pTab;
|
|
char *zErr = 0;
|
|
|
|
sqlite3_mutex_enter(db->mutex);
|
|
pTab = db->pVTab;
|
|
if( !pTab ){
|
|
sqlite3Error(db, SQLITE_MISUSE, 0);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return SQLITE_MISUSE;
|
|
}
|
|
assert(pTab->isVirtual && pTab->nCol==0 && pTab->aCol==0);
|
|
|
|
memset(&sParse, 0, sizeof(Parse));
|
|
sParse.declareVtab = 1;
|
|
sParse.db = db;
|
|
|
|
if(
|
|
SQLITE_OK == sqlite3RunParser(&sParse, zCreateTable, &zErr) &&
|
|
sParse.pNewTable &&
|
|
!sParse.pNewTable->pSelect &&
|
|
!sParse.pNewTable->isVirtual
|
|
){
|
|
pTab->aCol = sParse.pNewTable->aCol;
|
|
pTab->nCol = sParse.pNewTable->nCol;
|
|
sParse.pNewTable->nCol = 0;
|
|
sParse.pNewTable->aCol = 0;
|
|
db->pVTab = 0;
|
|
} else {
|
|
sqlite3Error(db, SQLITE_ERROR, zErr);
|
|
sqlite3_free(zErr);
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
sParse.declareVtab = 0;
|
|
|
|
sqlite3_finalize((sqlite3_stmt*)sParse.pVdbe);
|
|
sqlite3DeleteTable(sParse.pNewTable);
|
|
sParse.pNewTable = 0;
|
|
|
|
assert( (rc&0xff)==rc );
|
|
rc = sqlite3ApiExit(db, rc);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This function is invoked by the vdbe to call the xDestroy method
|
|
** of the virtual table named zTab in database iDb. This occurs
|
|
** when a DROP TABLE is mentioned.
|
|
**
|
|
** This call is a no-op if zTab is not a virtual table.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab)
|
|
{
|
|
int rc = SQLITE_OK;
|
|
Table *pTab;
|
|
|
|
pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
|
|
assert(pTab);
|
|
if( pTab->pVtab ){
|
|
int (*xDestroy)(sqlite3_vtab *pVTab) = pTab->pMod->pModule->xDestroy;
|
|
rc = sqlite3SafetyOff(db);
|
|
assert( rc==SQLITE_OK );
|
|
if( xDestroy ){
|
|
rc = xDestroy(pTab->pVtab);
|
|
}
|
|
(void)sqlite3SafetyOn(db);
|
|
if( rc==SQLITE_OK ){
|
|
pTab->pVtab = 0;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This function invokes either the xRollback or xCommit method
|
|
** of each of the virtual tables in the sqlite3.aVTrans array. The method
|
|
** called is identified by the second argument, "offset", which is
|
|
** the offset of the method to call in the sqlite3_module structure.
|
|
**
|
|
** The array is cleared after invoking the callbacks.
|
|
*/
|
|
static void callFinaliser(sqlite3 *db, int offset){
|
|
int i;
|
|
if( db->aVTrans ){
|
|
for(i=0; i<db->nVTrans && db->aVTrans[i]; i++){
|
|
sqlite3_vtab *pVtab = db->aVTrans[i];
|
|
int (*x)(sqlite3_vtab *);
|
|
x = *(int (**)(sqlite3_vtab *))((char *)pVtab->pModule + offset);
|
|
if( x ) x(pVtab);
|
|
sqlite3VtabUnlock(db, pVtab);
|
|
}
|
|
sqlite3_free(db->aVTrans);
|
|
db->nVTrans = 0;
|
|
db->aVTrans = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** If argument rc2 is not SQLITE_OK, then return it and do nothing.
|
|
** Otherwise, invoke the xSync method of all virtual tables in the
|
|
** sqlite3.aVTrans array. Return the error code for the first error
|
|
** that occurs, or SQLITE_OK if all xSync operations are successful.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, int rc2){
|
|
int i;
|
|
int rc = SQLITE_OK;
|
|
int rcsafety;
|
|
sqlite3_vtab **aVTrans = db->aVTrans;
|
|
if( rc2!=SQLITE_OK ) return rc2;
|
|
|
|
rc = sqlite3SafetyOff(db);
|
|
db->aVTrans = 0;
|
|
for(i=0; rc==SQLITE_OK && i<db->nVTrans && aVTrans[i]; i++){
|
|
sqlite3_vtab *pVtab = aVTrans[i];
|
|
int (*x)(sqlite3_vtab *);
|
|
x = pVtab->pModule->xSync;
|
|
if( x ){
|
|
rc = x(pVtab);
|
|
}
|
|
}
|
|
db->aVTrans = aVTrans;
|
|
rcsafety = sqlite3SafetyOn(db);
|
|
|
|
if( rc==SQLITE_OK ){
|
|
rc = rcsafety;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Invoke the xRollback method of all virtual tables in the
|
|
** sqlite3.aVTrans array. Then clear the array itself.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db){
|
|
callFinaliser(db, (int)(&((sqlite3_module *)0)->xRollback));
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Invoke the xCommit method of all virtual tables in the
|
|
** sqlite3.aVTrans array. Then clear the array itself.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db){
|
|
callFinaliser(db, (int)(&((sqlite3_module *)0)->xCommit));
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** If the virtual table pVtab supports the transaction interface
|
|
** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
|
|
** not currently open, invoke the xBegin method now.
|
|
**
|
|
** If the xBegin call is successful, place the sqlite3_vtab pointer
|
|
** in the sqlite3.aVTrans array.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *db, sqlite3_vtab *pVtab){
|
|
int rc = SQLITE_OK;
|
|
const sqlite3_module *pModule;
|
|
|
|
/* Special case: If db->aVTrans is NULL and db->nVTrans is greater
|
|
** than zero, then this function is being called from within a
|
|
** virtual module xSync() callback. It is illegal to write to
|
|
** virtual module tables in this case, so return SQLITE_LOCKED.
|
|
*/
|
|
if( 0==db->aVTrans && db->nVTrans>0 ){
|
|
return SQLITE_LOCKED;
|
|
}
|
|
if( !pVtab ){
|
|
return SQLITE_OK;
|
|
}
|
|
pModule = pVtab->pModule;
|
|
|
|
if( pModule->xBegin ){
|
|
int i;
|
|
|
|
|
|
/* If pVtab is already in the aVTrans array, return early */
|
|
for(i=0; (i<db->nVTrans) && 0!=db->aVTrans[i]; i++){
|
|
if( db->aVTrans[i]==pVtab ){
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
|
|
/* Invoke the xBegin method */
|
|
rc = pModule->xBegin(pVtab);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
rc = addToVTrans(db, pVtab);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** The first parameter (pDef) is a function implementation. The
|
|
** second parameter (pExpr) is the first argument to this function.
|
|
** If pExpr is a column in a virtual table, then let the virtual
|
|
** table implementation have an opportunity to overload the function.
|
|
**
|
|
** This routine is used to allow virtual table implementations to
|
|
** overload MATCH, LIKE, GLOB, and REGEXP operators.
|
|
**
|
|
** Return either the pDef argument (indicating no change) or a
|
|
** new FuncDef structure that is marked as ephemeral using the
|
|
** SQLITE_FUNC_EPHEM flag.
|
|
*/
|
|
SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(
|
|
sqlite3 *db, /* Database connection for reporting malloc problems */
|
|
FuncDef *pDef, /* Function to possibly overload */
|
|
int nArg, /* Number of arguments to the function */
|
|
Expr *pExpr /* First argument to the function */
|
|
){
|
|
Table *pTab;
|
|
sqlite3_vtab *pVtab;
|
|
sqlite3_module *pMod;
|
|
void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
|
|
void *pArg;
|
|
FuncDef *pNew;
|
|
int rc = 0;
|
|
char *zLowerName;
|
|
unsigned char *z;
|
|
|
|
|
|
/* Check to see the left operand is a column in a virtual table */
|
|
if( pExpr==0 ) return pDef;
|
|
if( pExpr->op!=TK_COLUMN ) return pDef;
|
|
pTab = pExpr->pTab;
|
|
if( pTab==0 ) return pDef;
|
|
if( !pTab->isVirtual ) return pDef;
|
|
pVtab = pTab->pVtab;
|
|
assert( pVtab!=0 );
|
|
assert( pVtab->pModule!=0 );
|
|
pMod = (sqlite3_module *)pVtab->pModule;
|
|
if( pMod->xFindFunction==0 ) return pDef;
|
|
|
|
/* Call the xFindFunction method on the virtual table implementation
|
|
** to see if the implementation wants to overload this function
|
|
*/
|
|
zLowerName = sqlite3DbStrDup(db, pDef->zName);
|
|
if( zLowerName ){
|
|
for(z=(unsigned char*)zLowerName; *z; z++){
|
|
*z = sqlite3UpperToLower[*z];
|
|
}
|
|
rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg);
|
|
sqlite3_free(zLowerName);
|
|
}
|
|
if( rc==0 ){
|
|
return pDef;
|
|
}
|
|
|
|
/* Create a new ephemeral function definition for the overloaded
|
|
** function */
|
|
pNew = sqlite3DbMallocZero(db, sizeof(*pNew) + strlen(pDef->zName) );
|
|
if( pNew==0 ){
|
|
return pDef;
|
|
}
|
|
*pNew = *pDef;
|
|
memcpy(pNew->zName, pDef->zName, strlen(pDef->zName)+1);
|
|
pNew->xFunc = xFunc;
|
|
pNew->pUserData = pArg;
|
|
pNew->flags |= SQLITE_FUNC_EPHEM;
|
|
return pNew;
|
|
}
|
|
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
/************** End of vtab.c ************************************************/
|
|
/************** Begin file where.c *******************************************/
|
|
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This module contains C code that generates VDBE code used to process
|
|
** the WHERE clause of SQL statements. This module is reponsible for
|
|
** generating the code that loops through a table looking for applicable
|
|
** rows. Indices are selected and used to speed the search when doing
|
|
** so is applicable. Because this module is responsible for selecting
|
|
** indices, you might also think of this module as the "query optimizer".
|
|
**
|
|
** $Id: where.c,v 1.286 2008/01/23 12:52:41 drh Exp $
|
|
*/
|
|
|
|
/*
|
|
** The number of bits in a Bitmask. "BMS" means "BitMask Size".
|
|
*/
|
|
#define BMS (sizeof(Bitmask)*8)
|
|
|
|
/*
|
|
** Trace output macros
|
|
*/
|
|
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
|
|
SQLITE_API int sqlite3_where_trace = 0;
|
|
# define WHERETRACE(X) if(sqlite3_where_trace) sqlite3DebugPrintf X
|
|
#else
|
|
# define WHERETRACE(X)
|
|
#endif
|
|
|
|
/* Forward reference
|
|
*/
|
|
typedef struct WhereClause WhereClause;
|
|
typedef struct ExprMaskSet ExprMaskSet;
|
|
|
|
/*
|
|
** The query generator uses an array of instances of this structure to
|
|
** help it analyze the subexpressions of the WHERE clause. Each WHERE
|
|
** clause subexpression is separated from the others by an AND operator.
|
|
**
|
|
** All WhereTerms are collected into a single WhereClause structure.
|
|
** The following identity holds:
|
|
**
|
|
** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
|
|
**
|
|
** When a term is of the form:
|
|
**
|
|
** X <op> <expr>
|
|
**
|
|
** where X is a column name and <op> is one of certain operators,
|
|
** then WhereTerm.leftCursor and WhereTerm.leftColumn record the
|
|
** cursor number and column number for X. WhereTerm.operator records
|
|
** the <op> using a bitmask encoding defined by WO_xxx below. The
|
|
** use of a bitmask encoding for the operator allows us to search
|
|
** quickly for terms that match any of several different operators.
|
|
**
|
|
** prereqRight and prereqAll record sets of cursor numbers,
|
|
** but they do so indirectly. A single ExprMaskSet structure translates
|
|
** cursor number into bits and the translated bit is stored in the prereq
|
|
** fields. The translation is used in order to maximize the number of
|
|
** bits that will fit in a Bitmask. The VDBE cursor numbers might be
|
|
** spread out over the non-negative integers. For example, the cursor
|
|
** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet
|
|
** translates these sparse cursor numbers into consecutive integers
|
|
** beginning with 0 in order to make the best possible use of the available
|
|
** bits in the Bitmask. So, in the example above, the cursor numbers
|
|
** would be mapped into integers 0 through 7.
|
|
*/
|
|
typedef struct WhereTerm WhereTerm;
|
|
struct WhereTerm {
|
|
Expr *pExpr; /* Pointer to the subexpression */
|
|
i16 iParent; /* Disable pWC->a[iParent] when this term disabled */
|
|
i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */
|
|
i16 leftColumn; /* Column number of X in "X <op> <expr>" */
|
|
u16 eOperator; /* A WO_xx value describing <op> */
|
|
u8 flags; /* Bit flags. See below */
|
|
u8 nChild; /* Number of children that must disable us */
|
|
WhereClause *pWC; /* The clause this term is part of */
|
|
Bitmask prereqRight; /* Bitmask of tables used by pRight */
|
|
Bitmask prereqAll; /* Bitmask of tables referenced by p */
|
|
};
|
|
|
|
/*
|
|
** Allowed values of WhereTerm.flags
|
|
*/
|
|
#define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(pExpr) */
|
|
#define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */
|
|
#define TERM_CODED 0x04 /* This term is already coded */
|
|
#define TERM_COPIED 0x08 /* Has a child */
|
|
#define TERM_OR_OK 0x10 /* Used during OR-clause processing */
|
|
|
|
/*
|
|
** An instance of the following structure holds all information about a
|
|
** WHERE clause. Mostly this is a container for one or more WhereTerms.
|
|
*/
|
|
struct WhereClause {
|
|
Parse *pParse; /* The parser context */
|
|
ExprMaskSet *pMaskSet; /* Mapping of table indices to bitmasks */
|
|
int nTerm; /* Number of terms */
|
|
int nSlot; /* Number of entries in a[] */
|
|
WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */
|
|
WhereTerm aStatic[10]; /* Initial static space for a[] */
|
|
};
|
|
|
|
/*
|
|
** An instance of the following structure keeps track of a mapping
|
|
** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
|
|
**
|
|
** The VDBE cursor numbers are small integers contained in
|
|
** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
|
|
** clause, the cursor numbers might not begin with 0 and they might
|
|
** contain gaps in the numbering sequence. But we want to make maximum
|
|
** use of the bits in our bitmasks. This structure provides a mapping
|
|
** from the sparse cursor numbers into consecutive integers beginning
|
|
** with 0.
|
|
**
|
|
** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
|
|
** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
|
|
**
|
|
** For example, if the WHERE clause expression used these VDBE
|
|
** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure
|
|
** would map those cursor numbers into bits 0 through 5.
|
|
**
|
|
** Note that the mapping is not necessarily ordered. In the example
|
|
** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
|
|
** 57->5, 73->4. Or one of 719 other combinations might be used. It
|
|
** does not really matter. What is important is that sparse cursor
|
|
** numbers all get mapped into bit numbers that begin with 0 and contain
|
|
** no gaps.
|
|
*/
|
|
struct ExprMaskSet {
|
|
int n; /* Number of assigned cursor values */
|
|
int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */
|
|
};
|
|
|
|
|
|
/*
|
|
** Bitmasks for the operators that indices are able to exploit. An
|
|
** OR-ed combination of these values can be used when searching for
|
|
** terms in the where clause.
|
|
*/
|
|
#define WO_IN 1
|
|
#define WO_EQ 2
|
|
#define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
|
|
#define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
|
|
#define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
|
|
#define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
|
|
#define WO_MATCH 64
|
|
#define WO_ISNULL 128
|
|
|
|
/*
|
|
** Value for flags returned by bestIndex().
|
|
**
|
|
** The least significant byte is reserved as a mask for WO_ values above.
|
|
** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
|
|
** But if the table is the right table of a left join, WhereLevel.flags
|
|
** is set to WO_IN|WO_EQ. The WhereLevel.flags field can then be used as
|
|
** the "op" parameter to findTerm when we are resolving equality constraints.
|
|
** ISNULL constraints will then not be used on the right table of a left
|
|
** join. Tickets #2177 and #2189.
|
|
*/
|
|
#define WHERE_ROWID_EQ 0x000100 /* rowid=EXPR or rowid IN (...) */
|
|
#define WHERE_ROWID_RANGE 0x000200 /* rowid<EXPR and/or rowid>EXPR */
|
|
#define WHERE_COLUMN_EQ 0x001000 /* x=EXPR or x IN (...) */
|
|
#define WHERE_COLUMN_RANGE 0x002000 /* x<EXPR and/or x>EXPR */
|
|
#define WHERE_COLUMN_IN 0x004000 /* x IN (...) */
|
|
#define WHERE_TOP_LIMIT 0x010000 /* x<EXPR or x<=EXPR constraint */
|
|
#define WHERE_BTM_LIMIT 0x020000 /* x>EXPR or x>=EXPR constraint */
|
|
#define WHERE_IDX_ONLY 0x080000 /* Use index only - omit table */
|
|
#define WHERE_ORDERBY 0x100000 /* Output will appear in correct order */
|
|
#define WHERE_REVERSE 0x200000 /* Scan in reverse order */
|
|
#define WHERE_UNIQUE 0x400000 /* Selects no more than one row */
|
|
#define WHERE_VIRTUALTABLE 0x800000 /* Use virtual-table processing */
|
|
|
|
/*
|
|
** Initialize a preallocated WhereClause structure.
|
|
*/
|
|
static void whereClauseInit(
|
|
WhereClause *pWC, /* The WhereClause to be initialized */
|
|
Parse *pParse, /* The parsing context */
|
|
ExprMaskSet *pMaskSet /* Mapping from table indices to bitmasks */
|
|
){
|
|
pWC->pParse = pParse;
|
|
pWC->pMaskSet = pMaskSet;
|
|
pWC->nTerm = 0;
|
|
pWC->nSlot = ArraySize(pWC->aStatic);
|
|
pWC->a = pWC->aStatic;
|
|
}
|
|
|
|
/*
|
|
** Deallocate a WhereClause structure. The WhereClause structure
|
|
** itself is not freed. This routine is the inverse of whereClauseInit().
|
|
*/
|
|
static void whereClauseClear(WhereClause *pWC){
|
|
int i;
|
|
WhereTerm *a;
|
|
for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
|
|
if( a->flags & TERM_DYNAMIC ){
|
|
sqlite3ExprDelete(a->pExpr);
|
|
}
|
|
}
|
|
if( pWC->a!=pWC->aStatic ){
|
|
sqlite3_free(pWC->a);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Add a new entries to the WhereClause structure. Increase the allocated
|
|
** space as necessary.
|
|
**
|
|
** If the flags argument includes TERM_DYNAMIC, then responsibility
|
|
** for freeing the expression p is assumed by the WhereClause object.
|
|
**
|
|
** WARNING: This routine might reallocate the space used to store
|
|
** WhereTerms. All pointers to WhereTerms should be invalided after
|
|
** calling this routine. Such pointers may be reinitialized by referencing
|
|
** the pWC->a[] array.
|
|
*/
|
|
static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
|
|
WhereTerm *pTerm;
|
|
int idx;
|
|
if( pWC->nTerm>=pWC->nSlot ){
|
|
WhereTerm *pOld = pWC->a;
|
|
pWC->a = sqlite3_malloc( sizeof(pWC->a[0])*pWC->nSlot*2 );
|
|
if( pWC->a==0 ){
|
|
pWC->pParse->db->mallocFailed = 1;
|
|
if( flags & TERM_DYNAMIC ){
|
|
sqlite3ExprDelete(p);
|
|
}
|
|
pWC->a = pOld;
|
|
return 0;
|
|
}
|
|
memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
|
|
if( pOld!=pWC->aStatic ){
|
|
sqlite3_free(pOld);
|
|
}
|
|
pWC->nSlot *= 2;
|
|
}
|
|
pTerm = &pWC->a[idx = pWC->nTerm];
|
|
pWC->nTerm++;
|
|
pTerm->pExpr = p;
|
|
pTerm->flags = flags;
|
|
pTerm->pWC = pWC;
|
|
pTerm->iParent = -1;
|
|
return idx;
|
|
}
|
|
|
|
/*
|
|
** This routine identifies subexpressions in the WHERE clause where
|
|
** each subexpression is separated by the AND operator or some other
|
|
** operator specified in the op parameter. The WhereClause structure
|
|
** is filled with pointers to subexpressions. For example:
|
|
**
|
|
** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
|
|
** \________/ \_______________/ \________________/
|
|
** slot[0] slot[1] slot[2]
|
|
**
|
|
** The original WHERE clause in pExpr is unaltered. All this routine
|
|
** does is make slot[] entries point to substructure within pExpr.
|
|
**
|
|
** In the previous sentence and in the diagram, "slot[]" refers to
|
|
** the WhereClause.a[] array. This array grows as needed to contain
|
|
** all terms of the WHERE clause.
|
|
*/
|
|
static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
|
|
if( pExpr==0 ) return;
|
|
if( pExpr->op!=op ){
|
|
whereClauseInsert(pWC, pExpr, 0);
|
|
}else{
|
|
whereSplit(pWC, pExpr->pLeft, op);
|
|
whereSplit(pWC, pExpr->pRight, op);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Initialize an expression mask set
|
|
*/
|
|
#define initMaskSet(P) memset(P, 0, sizeof(*P))
|
|
|
|
/*
|
|
** Return the bitmask for the given cursor number. Return 0 if
|
|
** iCursor is not in the set.
|
|
*/
|
|
static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
|
|
int i;
|
|
for(i=0; i<pMaskSet->n; i++){
|
|
if( pMaskSet->ix[i]==iCursor ){
|
|
return ((Bitmask)1)<<i;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Create a new mask for cursor iCursor.
|
|
**
|
|
** There is one cursor per table in the FROM clause. The number of
|
|
** tables in the FROM clause is limited by a test early in the
|
|
** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
|
|
** array will never overflow.
|
|
*/
|
|
static void createMask(ExprMaskSet *pMaskSet, int iCursor){
|
|
assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
|
|
pMaskSet->ix[pMaskSet->n++] = iCursor;
|
|
}
|
|
|
|
/*
|
|
** This routine walks (recursively) an expression tree and generates
|
|
** a bitmask indicating which tables are used in that expression
|
|
** tree.
|
|
**
|
|
** In order for this routine to work, the calling function must have
|
|
** previously invoked sqlite3ExprResolveNames() on the expression. See
|
|
** the header comment on that routine for additional information.
|
|
** The sqlite3ExprResolveNames() routines looks for column names and
|
|
** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
|
|
** the VDBE cursor number of the table. This routine just has to
|
|
** translate the cursor numbers into bitmask values and OR all
|
|
** the bitmasks together.
|
|
*/
|
|
static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*);
|
|
static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*);
|
|
static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
|
|
Bitmask mask = 0;
|
|
if( p==0 ) return 0;
|
|
if( p->op==TK_COLUMN ){
|
|
mask = getMask(pMaskSet, p->iTable);
|
|
return mask;
|
|
}
|
|
mask = exprTableUsage(pMaskSet, p->pRight);
|
|
mask |= exprTableUsage(pMaskSet, p->pLeft);
|
|
mask |= exprListTableUsage(pMaskSet, p->pList);
|
|
mask |= exprSelectTableUsage(pMaskSet, p->pSelect);
|
|
return mask;
|
|
}
|
|
static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
|
|
int i;
|
|
Bitmask mask = 0;
|
|
if( pList ){
|
|
for(i=0; i<pList->nExpr; i++){
|
|
mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
|
|
}
|
|
}
|
|
return mask;
|
|
}
|
|
static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){
|
|
Bitmask mask = 0;
|
|
while( pS ){
|
|
mask |= exprListTableUsage(pMaskSet, pS->pEList);
|
|
mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
|
|
mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
|
|
mask |= exprTableUsage(pMaskSet, pS->pWhere);
|
|
mask |= exprTableUsage(pMaskSet, pS->pHaving);
|
|
pS = pS->pPrior;
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if the given operator is one of the operators that is
|
|
** allowed for an indexable WHERE clause term. The allowed operators are
|
|
** "=", "<", ">", "<=", ">=", and "IN".
|
|
*/
|
|
static int allowedOp(int op){
|
|
assert( TK_GT>TK_EQ && TK_GT<TK_GE );
|
|
assert( TK_LT>TK_EQ && TK_LT<TK_GE );
|
|
assert( TK_LE>TK_EQ && TK_LE<TK_GE );
|
|
assert( TK_GE==TK_EQ+4 );
|
|
return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
|
|
}
|
|
|
|
/*
|
|
** Swap two objects of type T.
|
|
*/
|
|
#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
|
|
|
|
/*
|
|
** Commute a comparision operator. Expressions of the form "X op Y"
|
|
** are converted into "Y op X".
|
|
**
|
|
** If a collation sequence is associated with either the left or right
|
|
** side of the comparison, it remains associated with the same side after
|
|
** the commutation. So "Y collate NOCASE op X" becomes
|
|
** "X collate NOCASE op Y". This is because any collation sequence on
|
|
** the left hand side of a comparison overrides any collation sequence
|
|
** attached to the right. For the same reason the EP_ExpCollate flag
|
|
** is not commuted.
|
|
*/
|
|
static void exprCommute(Expr *pExpr){
|
|
u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
|
|
u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
|
|
assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
|
|
SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
|
|
pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
|
|
pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
|
|
SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
|
|
if( pExpr->op>=TK_GT ){
|
|
assert( TK_LT==TK_GT+2 );
|
|
assert( TK_GE==TK_LE+2 );
|
|
assert( TK_GT>TK_EQ );
|
|
assert( TK_GT<TK_LE );
|
|
assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
|
|
pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Translate from TK_xx operator to WO_xx bitmask.
|
|
*/
|
|
static int operatorMask(int op){
|
|
int c;
|
|
assert( allowedOp(op) );
|
|
if( op==TK_IN ){
|
|
c = WO_IN;
|
|
}else if( op==TK_ISNULL ){
|
|
c = WO_ISNULL;
|
|
}else{
|
|
c = WO_EQ<<(op-TK_EQ);
|
|
}
|
|
assert( op!=TK_ISNULL || c==WO_ISNULL );
|
|
assert( op!=TK_IN || c==WO_IN );
|
|
assert( op!=TK_EQ || c==WO_EQ );
|
|
assert( op!=TK_LT || c==WO_LT );
|
|
assert( op!=TK_LE || c==WO_LE );
|
|
assert( op!=TK_GT || c==WO_GT );
|
|
assert( op!=TK_GE || c==WO_GE );
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
|
|
** where X is a reference to the iColumn of table iCur and <op> is one of
|
|
** the WO_xx operator codes specified by the op parameter.
|
|
** Return a pointer to the term. Return 0 if not found.
|
|
*/
|
|
static WhereTerm *findTerm(
|
|
WhereClause *pWC, /* The WHERE clause to be searched */
|
|
int iCur, /* Cursor number of LHS */
|
|
int iColumn, /* Column number of LHS */
|
|
Bitmask notReady, /* RHS must not overlap with this mask */
|
|
u16 op, /* Mask of WO_xx values describing operator */
|
|
Index *pIdx /* Must be compatible with this index, if not NULL */
|
|
){
|
|
WhereTerm *pTerm;
|
|
int k;
|
|
for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
|
|
if( pTerm->leftCursor==iCur
|
|
&& (pTerm->prereqRight & notReady)==0
|
|
&& pTerm->leftColumn==iColumn
|
|
&& (pTerm->eOperator & op)!=0
|
|
){
|
|
if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){
|
|
Expr *pX = pTerm->pExpr;
|
|
CollSeq *pColl;
|
|
char idxaff;
|
|
int j;
|
|
Parse *pParse = pWC->pParse;
|
|
|
|
idxaff = pIdx->pTable->aCol[iColumn].affinity;
|
|
if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
|
|
|
|
/* Figure out the collation sequence required from an index for
|
|
** it to be useful for optimising expression pX. Store this
|
|
** value in variable pColl.
|
|
*/
|
|
assert(pX->pLeft);
|
|
pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
|
|
if( !pColl ){
|
|
pColl = pParse->db->pDfltColl;
|
|
}
|
|
|
|
for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){}
|
|
assert( j<pIdx->nColumn );
|
|
if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
|
|
}
|
|
return pTerm;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Forward reference */
|
|
static void exprAnalyze(SrcList*, WhereClause*, int);
|
|
|
|
/*
|
|
** Call exprAnalyze on all terms in a WHERE clause.
|
|
**
|
|
**
|
|
*/
|
|
static void exprAnalyzeAll(
|
|
SrcList *pTabList, /* the FROM clause */
|
|
WhereClause *pWC /* the WHERE clause to be analyzed */
|
|
){
|
|
int i;
|
|
for(i=pWC->nTerm-1; i>=0; i--){
|
|
exprAnalyze(pTabList, pWC, i);
|
|
}
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
|
|
/*
|
|
** Check to see if the given expression is a LIKE or GLOB operator that
|
|
** can be optimized using inequality constraints. Return TRUE if it is
|
|
** so and false if not.
|
|
**
|
|
** In order for the operator to be optimizible, the RHS must be a string
|
|
** literal that does not begin with a wildcard.
|
|
*/
|
|
static int isLikeOrGlob(
|
|
sqlite3 *db, /* The database */
|
|
Expr *pExpr, /* Test this expression */
|
|
int *pnPattern, /* Number of non-wildcard prefix characters */
|
|
int *pisComplete /* True if the only wildcard is % in the last character */
|
|
){
|
|
const char *z;
|
|
Expr *pRight, *pLeft;
|
|
ExprList *pList;
|
|
int c, cnt;
|
|
int noCase;
|
|
char wc[3];
|
|
CollSeq *pColl;
|
|
|
|
if( !sqlite3IsLikeFunction(db, pExpr, &noCase, wc) ){
|
|
return 0;
|
|
}
|
|
pList = pExpr->pList;
|
|
pRight = pList->a[0].pExpr;
|
|
if( pRight->op!=TK_STRING ){
|
|
return 0;
|
|
}
|
|
pLeft = pList->a[1].pExpr;
|
|
if( pLeft->op!=TK_COLUMN ){
|
|
return 0;
|
|
}
|
|
pColl = pLeft->pColl;
|
|
assert( pColl!=0 || pLeft->iColumn==-1 );
|
|
if( pColl==0 ){
|
|
/* No collation is defined for the ROWID. Use the default. */
|
|
pColl = db->pDfltColl;
|
|
}
|
|
if( (pColl->type!=SQLITE_COLL_BINARY || noCase) &&
|
|
(pColl->type!=SQLITE_COLL_NOCASE || !noCase) ){
|
|
return 0;
|
|
}
|
|
sqlite3DequoteExpr(db, pRight);
|
|
z = (char *)pRight->token.z;
|
|
cnt = 0;
|
|
if( z ){
|
|
while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; }
|
|
}
|
|
if( cnt==0 || 255==(u8)z[cnt] ){
|
|
return 0;
|
|
}
|
|
*pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
|
|
*pnPattern = cnt;
|
|
return 1;
|
|
}
|
|
#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
|
|
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/*
|
|
** Check to see if the given expression is of the form
|
|
**
|
|
** column MATCH expr
|
|
**
|
|
** If it is then return TRUE. If not, return FALSE.
|
|
*/
|
|
static int isMatchOfColumn(
|
|
Expr *pExpr /* Test this expression */
|
|
){
|
|
ExprList *pList;
|
|
|
|
if( pExpr->op!=TK_FUNCTION ){
|
|
return 0;
|
|
}
|
|
if( pExpr->token.n!=5 ||
|
|
sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){
|
|
return 0;
|
|
}
|
|
pList = pExpr->pList;
|
|
if( pList->nExpr!=2 ){
|
|
return 0;
|
|
}
|
|
if( pList->a[1].pExpr->op != TK_COLUMN ){
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
/*
|
|
** If the pBase expression originated in the ON or USING clause of
|
|
** a join, then transfer the appropriate markings over to derived.
|
|
*/
|
|
static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
|
|
pDerived->flags |= pBase->flags & EP_FromJoin;
|
|
pDerived->iRightJoinTable = pBase->iRightJoinTable;
|
|
}
|
|
|
|
#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
|
|
/*
|
|
** Return TRUE if the given term of an OR clause can be converted
|
|
** into an IN clause. The iCursor and iColumn define the left-hand
|
|
** side of the IN clause.
|
|
**
|
|
** The context is that we have multiple OR-connected equality terms
|
|
** like this:
|
|
**
|
|
** a=<expr1> OR a=<expr2> OR b=<expr3> OR ...
|
|
**
|
|
** The pOrTerm input to this routine corresponds to a single term of
|
|
** this OR clause. In order for the term to be a condidate for
|
|
** conversion to an IN operator, the following must be true:
|
|
**
|
|
** * The left-hand side of the term must be the column which
|
|
** is identified by iCursor and iColumn.
|
|
**
|
|
** * If the right-hand side is also a column, then the affinities
|
|
** of both right and left sides must be such that no type
|
|
** conversions are required on the right. (Ticket #2249)
|
|
**
|
|
** If both of these conditions are true, then return true. Otherwise
|
|
** return false.
|
|
*/
|
|
static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){
|
|
int affLeft, affRight;
|
|
assert( pOrTerm->eOperator==WO_EQ );
|
|
if( pOrTerm->leftCursor!=iCursor ){
|
|
return 0;
|
|
}
|
|
if( pOrTerm->leftColumn!=iColumn ){
|
|
return 0;
|
|
}
|
|
affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
|
|
if( affRight==0 ){
|
|
return 1;
|
|
}
|
|
affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
|
|
if( affRight!=affLeft ){
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Return true if the given term of an OR clause can be ignored during
|
|
** a check to make sure all OR terms are candidates for optimization.
|
|
** In other words, return true if a call to the orTermIsOptCandidate()
|
|
** above returned false but it is not necessary to disqualify the
|
|
** optimization.
|
|
**
|
|
** Suppose the original OR phrase was this:
|
|
**
|
|
** a=4 OR a=11 OR a=b
|
|
**
|
|
** During analysis, the third term gets flipped around and duplicate
|
|
** so that we are left with this:
|
|
**
|
|
** a=4 OR a=11 OR a=b OR b=a
|
|
**
|
|
** Since the last two terms are duplicates, only one of them
|
|
** has to qualify in order for the whole phrase to qualify. When
|
|
** this routine is called, we know that pOrTerm did not qualify.
|
|
** This routine merely checks to see if pOrTerm has a duplicate that
|
|
** might qualify. If there is a duplicate that has not yet been
|
|
** disqualified, then return true. If there are no duplicates, or
|
|
** the duplicate has also been disqualifed, return false.
|
|
*/
|
|
static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){
|
|
if( pOrTerm->flags & TERM_COPIED ){
|
|
/* This is the original term. The duplicate is to the left had
|
|
** has not yet been analyzed and thus has not yet been disqualified. */
|
|
return 1;
|
|
}
|
|
if( (pOrTerm->flags & TERM_VIRTUAL)!=0
|
|
&& (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){
|
|
/* This is a duplicate term. The original qualified so this one
|
|
** does not have to. */
|
|
return 1;
|
|
}
|
|
/* This is either a singleton term or else it is a duplicate for
|
|
** which the original did not qualify. Either way we are done for. */
|
|
return 0;
|
|
}
|
|
#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
|
|
|
|
/*
|
|
** The input to this routine is an WhereTerm structure with only the
|
|
** "pExpr" field filled in. The job of this routine is to analyze the
|
|
** subexpression and populate all the other fields of the WhereTerm
|
|
** structure.
|
|
**
|
|
** If the expression is of the form "<expr> <op> X" it gets commuted
|
|
** to the standard form of "X <op> <expr>". If the expression is of
|
|
** the form "X <op> Y" where both X and Y are columns, then the original
|
|
** expression is unchanged and a new virtual expression of the form
|
|
** "Y <op> X" is added to the WHERE clause and analyzed separately.
|
|
*/
|
|
static void exprAnalyze(
|
|
SrcList *pSrc, /* the FROM clause */
|
|
WhereClause *pWC, /* the WHERE clause */
|
|
int idxTerm /* Index of the term to be analyzed */
|
|
){
|
|
WhereTerm *pTerm;
|
|
ExprMaskSet *pMaskSet;
|
|
Expr *pExpr;
|
|
Bitmask prereqLeft;
|
|
Bitmask prereqAll;
|
|
int nPattern;
|
|
int isComplete;
|
|
int op;
|
|
Parse *pParse = pWC->pParse;
|
|
sqlite3 *db = pParse->db;
|
|
|
|
if( db->mallocFailed ){
|
|
return;
|
|
}
|
|
pTerm = &pWC->a[idxTerm];
|
|
pMaskSet = pWC->pMaskSet;
|
|
pExpr = pTerm->pExpr;
|
|
prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
|
|
op = pExpr->op;
|
|
if( op==TK_IN ){
|
|
assert( pExpr->pRight==0 );
|
|
pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList)
|
|
| exprSelectTableUsage(pMaskSet, pExpr->pSelect);
|
|
}else if( op==TK_ISNULL ){
|
|
pTerm->prereqRight = 0;
|
|
}else{
|
|
pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
|
|
}
|
|
prereqAll = exprTableUsage(pMaskSet, pExpr);
|
|
if( ExprHasProperty(pExpr, EP_FromJoin) ){
|
|
prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable);
|
|
}
|
|
pTerm->prereqAll = prereqAll;
|
|
pTerm->leftCursor = -1;
|
|
pTerm->iParent = -1;
|
|
pTerm->eOperator = 0;
|
|
if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
|
|
Expr *pLeft = pExpr->pLeft;
|
|
Expr *pRight = pExpr->pRight;
|
|
if( pLeft->op==TK_COLUMN ){
|
|
pTerm->leftCursor = pLeft->iTable;
|
|
pTerm->leftColumn = pLeft->iColumn;
|
|
pTerm->eOperator = operatorMask(op);
|
|
}
|
|
if( pRight && pRight->op==TK_COLUMN ){
|
|
WhereTerm *pNew;
|
|
Expr *pDup;
|
|
if( pTerm->leftCursor>=0 ){
|
|
int idxNew;
|
|
pDup = sqlite3ExprDup(db, pExpr);
|
|
if( db->mallocFailed ){
|
|
sqlite3ExprDelete(pDup);
|
|
return;
|
|
}
|
|
idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
|
|
if( idxNew==0 ) return;
|
|
pNew = &pWC->a[idxNew];
|
|
pNew->iParent = idxTerm;
|
|
pTerm = &pWC->a[idxTerm];
|
|
pTerm->nChild = 1;
|
|
pTerm->flags |= TERM_COPIED;
|
|
}else{
|
|
pDup = pExpr;
|
|
pNew = pTerm;
|
|
}
|
|
exprCommute(pDup);
|
|
pLeft = pDup->pLeft;
|
|
pNew->leftCursor = pLeft->iTable;
|
|
pNew->leftColumn = pLeft->iColumn;
|
|
pNew->prereqRight = prereqLeft;
|
|
pNew->prereqAll = prereqAll;
|
|
pNew->eOperator = operatorMask(pDup->op);
|
|
}
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
|
|
/* If a term is the BETWEEN operator, create two new virtual terms
|
|
** that define the range that the BETWEEN implements.
|
|
*/
|
|
else if( pExpr->op==TK_BETWEEN ){
|
|
ExprList *pList = pExpr->pList;
|
|
int i;
|
|
static const u8 ops[] = {TK_GE, TK_LE};
|
|
assert( pList!=0 );
|
|
assert( pList->nExpr==2 );
|
|
for(i=0; i<2; i++){
|
|
Expr *pNewExpr;
|
|
int idxNew;
|
|
pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft),
|
|
sqlite3ExprDup(db, pList->a[i].pExpr), 0);
|
|
idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
|
|
exprAnalyze(pSrc, pWC, idxNew);
|
|
pTerm = &pWC->a[idxTerm];
|
|
pWC->a[idxNew].iParent = idxTerm;
|
|
}
|
|
pTerm->nChild = 2;
|
|
}
|
|
#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
|
|
|
|
#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
|
|
/* Attempt to convert OR-connected terms into an IN operator so that
|
|
** they can make use of indices. Example:
|
|
**
|
|
** x = expr1 OR expr2 = x OR x = expr3
|
|
**
|
|
** is converted into
|
|
**
|
|
** x IN (expr1,expr2,expr3)
|
|
**
|
|
** This optimization must be omitted if OMIT_SUBQUERY is defined because
|
|
** the compiler for the the IN operator is part of sub-queries.
|
|
*/
|
|
else if( pExpr->op==TK_OR ){
|
|
int ok;
|
|
int i, j;
|
|
int iColumn, iCursor;
|
|
WhereClause sOr;
|
|
WhereTerm *pOrTerm;
|
|
|
|
assert( (pTerm->flags & TERM_DYNAMIC)==0 );
|
|
whereClauseInit(&sOr, pWC->pParse, pMaskSet);
|
|
whereSplit(&sOr, pExpr, TK_OR);
|
|
exprAnalyzeAll(pSrc, &sOr);
|
|
assert( sOr.nTerm>=2 );
|
|
j = 0;
|
|
do{
|
|
assert( j<sOr.nTerm );
|
|
iColumn = sOr.a[j].leftColumn;
|
|
iCursor = sOr.a[j].leftCursor;
|
|
ok = iCursor>=0;
|
|
for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
|
|
if( pOrTerm->eOperator!=WO_EQ ){
|
|
goto or_not_possible;
|
|
}
|
|
if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){
|
|
pOrTerm->flags |= TERM_OR_OK;
|
|
}else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){
|
|
pOrTerm->flags &= ~TERM_OR_OK;
|
|
}else{
|
|
ok = 0;
|
|
}
|
|
}
|
|
}while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 );
|
|
if( ok ){
|
|
ExprList *pList = 0;
|
|
Expr *pNew, *pDup;
|
|
Expr *pLeft = 0;
|
|
for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
|
|
if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue;
|
|
pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight);
|
|
pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0);
|
|
pLeft = pOrTerm->pExpr->pLeft;
|
|
}
|
|
assert( pLeft!=0 );
|
|
pDup = sqlite3ExprDup(db, pLeft);
|
|
pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0);
|
|
if( pNew ){
|
|
int idxNew;
|
|
transferJoinMarkings(pNew, pExpr);
|
|
pNew->pList = pList;
|
|
idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
|
|
exprAnalyze(pSrc, pWC, idxNew);
|
|
pTerm = &pWC->a[idxTerm];
|
|
pWC->a[idxNew].iParent = idxTerm;
|
|
pTerm->nChild = 1;
|
|
}else{
|
|
sqlite3ExprListDelete(pList);
|
|
}
|
|
}
|
|
or_not_possible:
|
|
whereClauseClear(&sOr);
|
|
}
|
|
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
|
|
|
|
#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
|
|
/* Add constraints to reduce the search space on a LIKE or GLOB
|
|
** operator.
|
|
*/
|
|
if( isLikeOrGlob(db, pExpr, &nPattern, &isComplete) ){
|
|
Expr *pLeft, *pRight;
|
|
Expr *pStr1, *pStr2;
|
|
Expr *pNewExpr1, *pNewExpr2;
|
|
int idxNew1, idxNew2;
|
|
|
|
pLeft = pExpr->pList->a[1].pExpr;
|
|
pRight = pExpr->pList->a[0].pExpr;
|
|
pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0);
|
|
if( pStr1 ){
|
|
sqlite3TokenCopy(db, &pStr1->token, &pRight->token);
|
|
pStr1->token.n = nPattern;
|
|
pStr1->flags = EP_Dequoted;
|
|
}
|
|
pStr2 = sqlite3ExprDup(db, pStr1);
|
|
if( !db->mallocFailed ){
|
|
assert( pStr2->token.dyn );
|
|
++*(u8*)&pStr2->token.z[nPattern-1];
|
|
}
|
|
pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft), pStr1, 0);
|
|
idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
|
|
exprAnalyze(pSrc, pWC, idxNew1);
|
|
pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft), pStr2, 0);
|
|
idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
|
|
exprAnalyze(pSrc, pWC, idxNew2);
|
|
pTerm = &pWC->a[idxTerm];
|
|
if( isComplete ){
|
|
pWC->a[idxNew1].iParent = idxTerm;
|
|
pWC->a[idxNew2].iParent = idxTerm;
|
|
pTerm->nChild = 2;
|
|
}
|
|
}
|
|
#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Add a WO_MATCH auxiliary term to the constraint set if the
|
|
** current expression is of the form: column MATCH expr.
|
|
** This information is used by the xBestIndex methods of
|
|
** virtual tables. The native query optimizer does not attempt
|
|
** to do anything with MATCH functions.
|
|
*/
|
|
if( isMatchOfColumn(pExpr) ){
|
|
int idxNew;
|
|
Expr *pRight, *pLeft;
|
|
WhereTerm *pNewTerm;
|
|
Bitmask prereqColumn, prereqExpr;
|
|
|
|
pRight = pExpr->pList->a[0].pExpr;
|
|
pLeft = pExpr->pList->a[1].pExpr;
|
|
prereqExpr = exprTableUsage(pMaskSet, pRight);
|
|
prereqColumn = exprTableUsage(pMaskSet, pLeft);
|
|
if( (prereqExpr & prereqColumn)==0 ){
|
|
Expr *pNewExpr;
|
|
pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight), 0);
|
|
idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
|
|
pNewTerm = &pWC->a[idxNew];
|
|
pNewTerm->prereqRight = prereqExpr;
|
|
pNewTerm->leftCursor = pLeft->iTable;
|
|
pNewTerm->leftColumn = pLeft->iColumn;
|
|
pNewTerm->eOperator = WO_MATCH;
|
|
pNewTerm->iParent = idxTerm;
|
|
pTerm = &pWC->a[idxTerm];
|
|
pTerm->nChild = 1;
|
|
pTerm->flags |= TERM_COPIED;
|
|
pNewTerm->prereqAll = pTerm->prereqAll;
|
|
}
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if any of the expressions in pList->a[iFirst...] contain
|
|
** a reference to any table other than the iBase table.
|
|
*/
|
|
static int referencesOtherTables(
|
|
ExprList *pList, /* Search expressions in ths list */
|
|
ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
|
|
int iFirst, /* Be searching with the iFirst-th expression */
|
|
int iBase /* Ignore references to this table */
|
|
){
|
|
Bitmask allowed = ~getMask(pMaskSet, iBase);
|
|
while( iFirst<pList->nExpr ){
|
|
if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
** This routine decides if pIdx can be used to satisfy the ORDER BY
|
|
** clause. If it can, it returns 1. If pIdx cannot satisfy the
|
|
** ORDER BY clause, this routine returns 0.
|
|
**
|
|
** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
|
|
** left-most table in the FROM clause of that same SELECT statement and
|
|
** the table has a cursor number of "base". pIdx is an index on pTab.
|
|
**
|
|
** nEqCol is the number of columns of pIdx that are used as equality
|
|
** constraints. Any of these columns may be missing from the ORDER BY
|
|
** clause and the match can still be a success.
|
|
**
|
|
** All terms of the ORDER BY that match against the index must be either
|
|
** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
|
|
** index do not need to satisfy this constraint.) The *pbRev value is
|
|
** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
|
|
** the ORDER BY clause is all ASC.
|
|
*/
|
|
static int isSortingIndex(
|
|
Parse *pParse, /* Parsing context */
|
|
ExprMaskSet *pMaskSet, /* Mapping from table indices to bitmaps */
|
|
Index *pIdx, /* The index we are testing */
|
|
int base, /* Cursor number for the table to be sorted */
|
|
ExprList *pOrderBy, /* The ORDER BY clause */
|
|
int nEqCol, /* Number of index columns with == constraints */
|
|
int *pbRev /* Set to 1 if ORDER BY is DESC */
|
|
){
|
|
int i, j; /* Loop counters */
|
|
int sortOrder = 0; /* XOR of index and ORDER BY sort direction */
|
|
int nTerm; /* Number of ORDER BY terms */
|
|
struct ExprList_item *pTerm; /* A term of the ORDER BY clause */
|
|
sqlite3 *db = pParse->db;
|
|
|
|
assert( pOrderBy!=0 );
|
|
nTerm = pOrderBy->nExpr;
|
|
assert( nTerm>0 );
|
|
|
|
/* Match terms of the ORDER BY clause against columns of
|
|
** the index.
|
|
**
|
|
** Note that indices have pIdx->nColumn regular columns plus
|
|
** one additional column containing the rowid. The rowid column
|
|
** of the index is also allowed to match against the ORDER BY
|
|
** clause.
|
|
*/
|
|
for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
|
|
Expr *pExpr; /* The expression of the ORDER BY pTerm */
|
|
CollSeq *pColl; /* The collating sequence of pExpr */
|
|
int termSortOrder; /* Sort order for this term */
|
|
int iColumn; /* The i-th column of the index. -1 for rowid */
|
|
int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */
|
|
const char *zColl; /* Name of the collating sequence for i-th index term */
|
|
|
|
pExpr = pTerm->pExpr;
|
|
if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
|
|
/* Can not use an index sort on anything that is not a column in the
|
|
** left-most table of the FROM clause */
|
|
break;
|
|
}
|
|
pColl = sqlite3ExprCollSeq(pParse, pExpr);
|
|
if( !pColl ){
|
|
pColl = db->pDfltColl;
|
|
}
|
|
if( i<pIdx->nColumn ){
|
|
iColumn = pIdx->aiColumn[i];
|
|
if( iColumn==pIdx->pTable->iPKey ){
|
|
iColumn = -1;
|
|
}
|
|
iSortOrder = pIdx->aSortOrder[i];
|
|
zColl = pIdx->azColl[i];
|
|
}else{
|
|
iColumn = -1;
|
|
iSortOrder = 0;
|
|
zColl = pColl->zName;
|
|
}
|
|
if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
|
|
/* Term j of the ORDER BY clause does not match column i of the index */
|
|
if( i<nEqCol ){
|
|
/* If an index column that is constrained by == fails to match an
|
|
** ORDER BY term, that is OK. Just ignore that column of the index
|
|
*/
|
|
continue;
|
|
}else{
|
|
/* If an index column fails to match and is not constrained by ==
|
|
** then the index cannot satisfy the ORDER BY constraint.
|
|
*/
|
|
return 0;
|
|
}
|
|
}
|
|
assert( pIdx->aSortOrder!=0 );
|
|
assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
|
|
assert( iSortOrder==0 || iSortOrder==1 );
|
|
termSortOrder = iSortOrder ^ pTerm->sortOrder;
|
|
if( i>nEqCol ){
|
|
if( termSortOrder!=sortOrder ){
|
|
/* Indices can only be used if all ORDER BY terms past the
|
|
** equality constraints are all either DESC or ASC. */
|
|
return 0;
|
|
}
|
|
}else{
|
|
sortOrder = termSortOrder;
|
|
}
|
|
j++;
|
|
pTerm++;
|
|
if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
|
|
/* If the indexed column is the primary key and everything matches
|
|
** so far and none of the ORDER BY terms to the right reference other
|
|
** tables in the join, then we are assured that the index can be used
|
|
** to sort because the primary key is unique and so none of the other
|
|
** columns will make any difference
|
|
*/
|
|
j = nTerm;
|
|
}
|
|
}
|
|
|
|
*pbRev = sortOrder!=0;
|
|
if( j>=nTerm ){
|
|
/* All terms of the ORDER BY clause are covered by this index so
|
|
** this index can be used for sorting. */
|
|
return 1;
|
|
}
|
|
if( pIdx->onError!=OE_None && i==pIdx->nColumn
|
|
&& !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
|
|
/* All terms of this index match some prefix of the ORDER BY clause
|
|
** and the index is UNIQUE and no terms on the tail of the ORDER BY
|
|
** clause reference other tables in a join. If this is all true then
|
|
** the order by clause is superfluous. */
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
|
|
** by sorting in order of ROWID. Return true if so and set *pbRev to be
|
|
** true for reverse ROWID and false for forward ROWID order.
|
|
*/
|
|
static int sortableByRowid(
|
|
int base, /* Cursor number for table to be sorted */
|
|
ExprList *pOrderBy, /* The ORDER BY clause */
|
|
ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
|
|
int *pbRev /* Set to 1 if ORDER BY is DESC */
|
|
){
|
|
Expr *p;
|
|
|
|
assert( pOrderBy!=0 );
|
|
assert( pOrderBy->nExpr>0 );
|
|
p = pOrderBy->a[0].pExpr;
|
|
if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1
|
|
&& !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){
|
|
*pbRev = pOrderBy->a[0].sortOrder;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Prepare a crude estimate of the logarithm of the input value.
|
|
** The results need not be exact. This is only used for estimating
|
|
** the total cost of performing operatings with O(logN) or O(NlogN)
|
|
** complexity. Because N is just a guess, it is no great tragedy if
|
|
** logN is a little off.
|
|
*/
|
|
static double estLog(double N){
|
|
double logN = 1;
|
|
double x = 10;
|
|
while( N>x ){
|
|
logN += 1;
|
|
x *= 10;
|
|
}
|
|
return logN;
|
|
}
|
|
|
|
/*
|
|
** Two routines for printing the content of an sqlite3_index_info
|
|
** structure. Used for testing and debugging only. If neither
|
|
** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
|
|
** are no-ops.
|
|
*/
|
|
#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
|
|
static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
|
|
int i;
|
|
if( !sqlite3_where_trace ) return;
|
|
for(i=0; i<p->nConstraint; i++){
|
|
sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
|
|
i,
|
|
p->aConstraint[i].iColumn,
|
|
p->aConstraint[i].iTermOffset,
|
|
p->aConstraint[i].op,
|
|
p->aConstraint[i].usable);
|
|
}
|
|
for(i=0; i<p->nOrderBy; i++){
|
|
sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
|
|
i,
|
|
p->aOrderBy[i].iColumn,
|
|
p->aOrderBy[i].desc);
|
|
}
|
|
}
|
|
static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
|
|
int i;
|
|
if( !sqlite3_where_trace ) return;
|
|
for(i=0; i<p->nConstraint; i++){
|
|
sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
|
|
i,
|
|
p->aConstraintUsage[i].argvIndex,
|
|
p->aConstraintUsage[i].omit);
|
|
}
|
|
sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
|
|
sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
|
|
sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
|
|
sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
|
|
}
|
|
#else
|
|
#define TRACE_IDX_INPUTS(A)
|
|
#define TRACE_IDX_OUTPUTS(A)
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/*
|
|
** Compute the best index for a virtual table.
|
|
**
|
|
** The best index is computed by the xBestIndex method of the virtual
|
|
** table module. This routine is really just a wrapper that sets up
|
|
** the sqlite3_index_info structure that is used to communicate with
|
|
** xBestIndex.
|
|
**
|
|
** In a join, this routine might be called multiple times for the
|
|
** same virtual table. The sqlite3_index_info structure is created
|
|
** and initialized on the first invocation and reused on all subsequent
|
|
** invocations. The sqlite3_index_info structure is also used when
|
|
** code is generated to access the virtual table. The whereInfoDelete()
|
|
** routine takes care of freeing the sqlite3_index_info structure after
|
|
** everybody has finished with it.
|
|
*/
|
|
static double bestVirtualIndex(
|
|
Parse *pParse, /* The parsing context */
|
|
WhereClause *pWC, /* The WHERE clause */
|
|
struct SrcList_item *pSrc, /* The FROM clause term to search */
|
|
Bitmask notReady, /* Mask of cursors that are not available */
|
|
ExprList *pOrderBy, /* The order by clause */
|
|
int orderByUsable, /* True if we can potential sort */
|
|
sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
|
|
){
|
|
Table *pTab = pSrc->pTab;
|
|
sqlite3_index_info *pIdxInfo;
|
|
struct sqlite3_index_constraint *pIdxCons;
|
|
struct sqlite3_index_orderby *pIdxOrderBy;
|
|
struct sqlite3_index_constraint_usage *pUsage;
|
|
WhereTerm *pTerm;
|
|
int i, j;
|
|
int nOrderBy;
|
|
int rc;
|
|
|
|
/* If the sqlite3_index_info structure has not been previously
|
|
** allocated and initialized for this virtual table, then allocate
|
|
** and initialize it now
|
|
*/
|
|
pIdxInfo = *ppIdxInfo;
|
|
if( pIdxInfo==0 ){
|
|
WhereTerm *pTerm;
|
|
int nTerm;
|
|
WHERETRACE(("Recomputing index info for %s...\n", pTab->zName));
|
|
|
|
/* Count the number of possible WHERE clause constraints referring
|
|
** to this virtual table */
|
|
for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
|
|
if( pTerm->leftCursor != pSrc->iCursor ) continue;
|
|
if( pTerm->eOperator==WO_IN ) continue;
|
|
if( pTerm->eOperator==WO_ISNULL ) continue;
|
|
nTerm++;
|
|
}
|
|
|
|
/* If the ORDER BY clause contains only columns in the current
|
|
** virtual table then allocate space for the aOrderBy part of
|
|
** the sqlite3_index_info structure.
|
|
*/
|
|
nOrderBy = 0;
|
|
if( pOrderBy ){
|
|
for(i=0; i<pOrderBy->nExpr; i++){
|
|
Expr *pExpr = pOrderBy->a[i].pExpr;
|
|
if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
|
|
}
|
|
if( i==pOrderBy->nExpr ){
|
|
nOrderBy = pOrderBy->nExpr;
|
|
}
|
|
}
|
|
|
|
/* Allocate the sqlite3_index_info structure
|
|
*/
|
|
pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
|
|
+ (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
|
|
+ sizeof(*pIdxOrderBy)*nOrderBy );
|
|
if( pIdxInfo==0 ){
|
|
sqlite3ErrorMsg(pParse, "out of memory");
|
|
return 0.0;
|
|
}
|
|
*ppIdxInfo = pIdxInfo;
|
|
|
|
/* Initialize the structure. The sqlite3_index_info structure contains
|
|
** many fields that are declared "const" to prevent xBestIndex from
|
|
** changing them. We have to do some funky casting in order to
|
|
** initialize those fields.
|
|
*/
|
|
pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
|
|
pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
|
|
pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
|
|
*(int*)&pIdxInfo->nConstraint = nTerm;
|
|
*(int*)&pIdxInfo->nOrderBy = nOrderBy;
|
|
*(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
|
|
*(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
|
|
*(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
|
|
pUsage;
|
|
|
|
for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
|
|
if( pTerm->leftCursor != pSrc->iCursor ) continue;
|
|
if( pTerm->eOperator==WO_IN ) continue;
|
|
if( pTerm->eOperator==WO_ISNULL ) continue;
|
|
pIdxCons[j].iColumn = pTerm->leftColumn;
|
|
pIdxCons[j].iTermOffset = i;
|
|
pIdxCons[j].op = pTerm->eOperator;
|
|
/* The direct assignment in the previous line is possible only because
|
|
** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
|
|
** following asserts verify this fact. */
|
|
assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
|
|
assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
|
|
assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
|
|
assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
|
|
assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
|
|
assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
|
|
assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
|
|
j++;
|
|
}
|
|
for(i=0; i<nOrderBy; i++){
|
|
Expr *pExpr = pOrderBy->a[i].pExpr;
|
|
pIdxOrderBy[i].iColumn = pExpr->iColumn;
|
|
pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
|
|
}
|
|
}
|
|
|
|
/* At this point, the sqlite3_index_info structure that pIdxInfo points
|
|
** to will have been initialized, either during the current invocation or
|
|
** during some prior invocation. Now we just have to customize the
|
|
** details of pIdxInfo for the current invocation and pass it to
|
|
** xBestIndex.
|
|
*/
|
|
|
|
/* The module name must be defined. Also, by this point there must
|
|
** be a pointer to an sqlite3_vtab structure. Otherwise
|
|
** sqlite3ViewGetColumnNames() would have picked up the error.
|
|
*/
|
|
assert( pTab->azModuleArg && pTab->azModuleArg[0] );
|
|
assert( pTab->pVtab );
|
|
#if 0
|
|
if( pTab->pVtab==0 ){
|
|
sqlite3ErrorMsg(pParse, "undefined module %s for table %s",
|
|
pTab->azModuleArg[0], pTab->zName);
|
|
return 0.0;
|
|
}
|
|
#endif
|
|
|
|
/* Set the aConstraint[].usable fields and initialize all
|
|
** output variables to zero.
|
|
**
|
|
** aConstraint[].usable is true for constraints where the right-hand
|
|
** side contains only references to tables to the left of the current
|
|
** table. In other words, if the constraint is of the form:
|
|
**
|
|
** column = expr
|
|
**
|
|
** and we are evaluating a join, then the constraint on column is
|
|
** only valid if all tables referenced in expr occur to the left
|
|
** of the table containing column.
|
|
**
|
|
** The aConstraints[] array contains entries for all constraints
|
|
** on the current table. That way we only have to compute it once
|
|
** even though we might try to pick the best index multiple times.
|
|
** For each attempt at picking an index, the order of tables in the
|
|
** join might be different so we have to recompute the usable flag
|
|
** each time.
|
|
*/
|
|
pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
|
|
pUsage = pIdxInfo->aConstraintUsage;
|
|
for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
|
|
j = pIdxCons->iTermOffset;
|
|
pTerm = &pWC->a[j];
|
|
pIdxCons->usable = (pTerm->prereqRight & notReady)==0;
|
|
}
|
|
memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
|
|
if( pIdxInfo->needToFreeIdxStr ){
|
|
sqlite3_free(pIdxInfo->idxStr);
|
|
}
|
|
pIdxInfo->idxStr = 0;
|
|
pIdxInfo->idxNum = 0;
|
|
pIdxInfo->needToFreeIdxStr = 0;
|
|
pIdxInfo->orderByConsumed = 0;
|
|
pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0;
|
|
nOrderBy = pIdxInfo->nOrderBy;
|
|
if( pIdxInfo->nOrderBy && !orderByUsable ){
|
|
*(int*)&pIdxInfo->nOrderBy = 0;
|
|
}
|
|
|
|
(void)sqlite3SafetyOff(pParse->db);
|
|
WHERETRACE(("xBestIndex for %s\n", pTab->zName));
|
|
TRACE_IDX_INPUTS(pIdxInfo);
|
|
rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo);
|
|
TRACE_IDX_OUTPUTS(pIdxInfo);
|
|
if( rc!=SQLITE_OK ){
|
|
if( rc==SQLITE_NOMEM ){
|
|
pParse->db->mallocFailed = 1;
|
|
}else {
|
|
sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
|
|
}
|
|
}
|
|
(void)sqlite3SafetyOn(pParse->db);
|
|
*(int*)&pIdxInfo->nOrderBy = nOrderBy;
|
|
|
|
return pIdxInfo->estimatedCost;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
/*
|
|
** Find the best index for accessing a particular table. Return a pointer
|
|
** to the index, flags that describe how the index should be used, the
|
|
** number of equality constraints, and the "cost" for this index.
|
|
**
|
|
** The lowest cost index wins. The cost is an estimate of the amount of
|
|
** CPU and disk I/O need to process the request using the selected index.
|
|
** Factors that influence cost include:
|
|
**
|
|
** * The estimated number of rows that will be retrieved. (The
|
|
** fewer the better.)
|
|
**
|
|
** * Whether or not sorting must occur.
|
|
**
|
|
** * Whether or not there must be separate lookups in the
|
|
** index and in the main table.
|
|
**
|
|
*/
|
|
static double bestIndex(
|
|
Parse *pParse, /* The parsing context */
|
|
WhereClause *pWC, /* The WHERE clause */
|
|
struct SrcList_item *pSrc, /* The FROM clause term to search */
|
|
Bitmask notReady, /* Mask of cursors that are not available */
|
|
ExprList *pOrderBy, /* The order by clause */
|
|
Index **ppIndex, /* Make *ppIndex point to the best index */
|
|
int *pFlags, /* Put flags describing this choice in *pFlags */
|
|
int *pnEq /* Put the number of == or IN constraints here */
|
|
){
|
|
WhereTerm *pTerm;
|
|
Index *bestIdx = 0; /* Index that gives the lowest cost */
|
|
double lowestCost; /* The cost of using bestIdx */
|
|
int bestFlags = 0; /* Flags associated with bestIdx */
|
|
int bestNEq = 0; /* Best value for nEq */
|
|
int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
|
|
Index *pProbe; /* An index we are evaluating */
|
|
int rev; /* True to scan in reverse order */
|
|
int flags; /* Flags associated with pProbe */
|
|
int nEq; /* Number of == or IN constraints */
|
|
int eqTermMask; /* Mask of valid equality operators */
|
|
double cost; /* Cost of using pProbe */
|
|
|
|
WHERETRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady));
|
|
lowestCost = SQLITE_BIG_DBL;
|
|
pProbe = pSrc->pTab->pIndex;
|
|
|
|
/* If the table has no indices and there are no terms in the where
|
|
** clause that refer to the ROWID, then we will never be able to do
|
|
** anything other than a full table scan on this table. We might as
|
|
** well put it first in the join order. That way, perhaps it can be
|
|
** referenced by other tables in the join.
|
|
*/
|
|
if( pProbe==0 &&
|
|
findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 &&
|
|
(pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){
|
|
*pFlags = 0;
|
|
*ppIndex = 0;
|
|
*pnEq = 0;
|
|
return 0.0;
|
|
}
|
|
|
|
/* Check for a rowid=EXPR or rowid IN (...) constraints
|
|
*/
|
|
pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
|
|
if( pTerm ){
|
|
Expr *pExpr;
|
|
*ppIndex = 0;
|
|
bestFlags = WHERE_ROWID_EQ;
|
|
if( pTerm->eOperator & WO_EQ ){
|
|
/* Rowid== is always the best pick. Look no further. Because only
|
|
** a single row is generated, output is always in sorted order */
|
|
*pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
|
|
*pnEq = 1;
|
|
WHERETRACE(("... best is rowid\n"));
|
|
return 0.0;
|
|
}else if( (pExpr = pTerm->pExpr)->pList!=0 ){
|
|
/* Rowid IN (LIST): cost is NlogN where N is the number of list
|
|
** elements. */
|
|
lowestCost = pExpr->pList->nExpr;
|
|
lowestCost *= estLog(lowestCost);
|
|
}else{
|
|
/* Rowid IN (SELECT): cost is NlogN where N is the number of rows
|
|
** in the result of the inner select. We have no way to estimate
|
|
** that value so make a wild guess. */
|
|
lowestCost = 200;
|
|
}
|
|
WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost));
|
|
}
|
|
|
|
/* Estimate the cost of a table scan. If we do not know how many
|
|
** entries are in the table, use 1 million as a guess.
|
|
*/
|
|
cost = pProbe ? pProbe->aiRowEst[0] : 1000000;
|
|
WHERETRACE(("... table scan base cost: %.9g\n", cost));
|
|
flags = WHERE_ROWID_RANGE;
|
|
|
|
/* Check for constraints on a range of rowids in a table scan.
|
|
*/
|
|
pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
|
|
if( pTerm ){
|
|
if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
|
|
flags |= WHERE_TOP_LIMIT;
|
|
cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds or rows */
|
|
}
|
|
if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
|
|
flags |= WHERE_BTM_LIMIT;
|
|
cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */
|
|
}
|
|
WHERETRACE(("... rowid range reduces cost to %.9g\n", cost));
|
|
}else{
|
|
flags = 0;
|
|
}
|
|
|
|
/* If the table scan does not satisfy the ORDER BY clause, increase
|
|
** the cost by NlogN to cover the expense of sorting. */
|
|
if( pOrderBy ){
|
|
if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){
|
|
flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
|
|
if( rev ){
|
|
flags |= WHERE_REVERSE;
|
|
}
|
|
}else{
|
|
cost += cost*estLog(cost);
|
|
WHERETRACE(("... sorting increases cost to %.9g\n", cost));
|
|
}
|
|
}
|
|
if( cost<lowestCost ){
|
|
lowestCost = cost;
|
|
bestFlags = flags;
|
|
}
|
|
|
|
/* If the pSrc table is the right table of a LEFT JOIN then we may not
|
|
** use an index to satisfy IS NULL constraints on that table. This is
|
|
** because columns might end up being NULL if the table does not match -
|
|
** a circumstance which the index cannot help us discover. Ticket #2177.
|
|
*/
|
|
if( (pSrc->jointype & JT_LEFT)!=0 ){
|
|
eqTermMask = WO_EQ|WO_IN;
|
|
}else{
|
|
eqTermMask = WO_EQ|WO_IN|WO_ISNULL;
|
|
}
|
|
|
|
/* Look at each index.
|
|
*/
|
|
for(; pProbe; pProbe=pProbe->pNext){
|
|
int i; /* Loop counter */
|
|
double inMultiplier = 1;
|
|
|
|
WHERETRACE(("... index %s:\n", pProbe->zName));
|
|
|
|
/* Count the number of columns in the index that are satisfied
|
|
** by x=EXPR constraints or x IN (...) constraints.
|
|
*/
|
|
flags = 0;
|
|
for(i=0; i<pProbe->nColumn; i++){
|
|
int j = pProbe->aiColumn[i];
|
|
pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe);
|
|
if( pTerm==0 ) break;
|
|
flags |= WHERE_COLUMN_EQ;
|
|
if( pTerm->eOperator & WO_IN ){
|
|
Expr *pExpr = pTerm->pExpr;
|
|
flags |= WHERE_COLUMN_IN;
|
|
if( pExpr->pSelect!=0 ){
|
|
inMultiplier *= 25;
|
|
}else if( pExpr->pList!=0 ){
|
|
inMultiplier *= pExpr->pList->nExpr + 1;
|
|
}
|
|
}
|
|
}
|
|
cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
|
|
nEq = i;
|
|
if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0
|
|
&& nEq==pProbe->nColumn ){
|
|
flags |= WHERE_UNIQUE;
|
|
}
|
|
WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n",nEq,inMultiplier,cost));
|
|
|
|
/* Look for range constraints
|
|
*/
|
|
if( nEq<pProbe->nColumn ){
|
|
int j = pProbe->aiColumn[nEq];
|
|
pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
|
|
if( pTerm ){
|
|
flags |= WHERE_COLUMN_RANGE;
|
|
if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
|
|
flags |= WHERE_TOP_LIMIT;
|
|
cost /= 3;
|
|
}
|
|
if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
|
|
flags |= WHERE_BTM_LIMIT;
|
|
cost /= 3;
|
|
}
|
|
WHERETRACE(("...... range reduces cost to %.9g\n", cost));
|
|
}
|
|
}
|
|
|
|
/* Add the additional cost of sorting if that is a factor.
|
|
*/
|
|
if( pOrderBy ){
|
|
if( (flags & WHERE_COLUMN_IN)==0 &&
|
|
isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){
|
|
if( flags==0 ){
|
|
flags = WHERE_COLUMN_RANGE;
|
|
}
|
|
flags |= WHERE_ORDERBY;
|
|
if( rev ){
|
|
flags |= WHERE_REVERSE;
|
|
}
|
|
}else{
|
|
cost += cost*estLog(cost);
|
|
WHERETRACE(("...... orderby increases cost to %.9g\n", cost));
|
|
}
|
|
}
|
|
|
|
/* Check to see if we can get away with using just the index without
|
|
** ever reading the table. If that is the case, then halve the
|
|
** cost of this index.
|
|
*/
|
|
if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
|
|
Bitmask m = pSrc->colUsed;
|
|
int j;
|
|
for(j=0; j<pProbe->nColumn; j++){
|
|
int x = pProbe->aiColumn[j];
|
|
if( x<BMS-1 ){
|
|
m &= ~(((Bitmask)1)<<x);
|
|
}
|
|
}
|
|
if( m==0 ){
|
|
flags |= WHERE_IDX_ONLY;
|
|
cost /= 2;
|
|
WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost));
|
|
}
|
|
}
|
|
|
|
/* If this index has achieved the lowest cost so far, then use it.
|
|
*/
|
|
if( flags && cost < lowestCost ){
|
|
bestIdx = pProbe;
|
|
lowestCost = cost;
|
|
bestFlags = flags;
|
|
bestNEq = nEq;
|
|
}
|
|
}
|
|
|
|
/* Report the best result
|
|
*/
|
|
*ppIndex = bestIdx;
|
|
WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n",
|
|
bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq));
|
|
*pFlags = bestFlags | eqTermMask;
|
|
*pnEq = bestNEq;
|
|
return lowestCost;
|
|
}
|
|
|
|
|
|
/*
|
|
** Disable a term in the WHERE clause. Except, do not disable the term
|
|
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
|
|
** or USING clause of that join.
|
|
**
|
|
** Consider the term t2.z='ok' in the following queries:
|
|
**
|
|
** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
|
|
** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
|
|
** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
|
|
**
|
|
** The t2.z='ok' is disabled in the in (2) because it originates
|
|
** in the ON clause. The term is disabled in (3) because it is not part
|
|
** of a LEFT OUTER JOIN. In (1), the term is not disabled.
|
|
**
|
|
** Disabling a term causes that term to not be tested in the inner loop
|
|
** of the join. Disabling is an optimization. When terms are satisfied
|
|
** by indices, we disable them to prevent redundant tests in the inner
|
|
** loop. We would get the correct results if nothing were ever disabled,
|
|
** but joins might run a little slower. The trick is to disable as much
|
|
** as we can without disabling too much. If we disabled in (1), we'd get
|
|
** the wrong answer. See ticket #813.
|
|
*/
|
|
static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
|
|
if( pTerm
|
|
&& (pTerm->flags & TERM_CODED)==0
|
|
&& (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
|
|
){
|
|
pTerm->flags |= TERM_CODED;
|
|
if( pTerm->iParent>=0 ){
|
|
WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
|
|
if( (--pOther->nChild)==0 ){
|
|
disableTerm(pLevel, pOther);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate code that builds a probe for an index.
|
|
**
|
|
** There should be nColumn values on the stack. The index
|
|
** to be probed is pIdx. Pop the values from the stack and
|
|
** replace them all with a single record that is the index
|
|
** problem.
|
|
*/
|
|
static void buildIndexProbe(
|
|
Vdbe *v, /* Generate code into this VM */
|
|
int nColumn, /* The number of columns to check for NULL */
|
|
Index *pIdx, /* Index that we will be searching */
|
|
int regSrc, /* Take values from this register */
|
|
int regDest /* Write the result into this register */
|
|
){
|
|
assert( regSrc>0 );
|
|
assert( regDest>0 );
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regSrc, nColumn, regDest);
|
|
sqlite3IndexAffinityStr(v, pIdx);
|
|
}
|
|
|
|
|
|
/*
|
|
** Generate code for a single equality term of the WHERE clause. An equality
|
|
** term can be either X=expr or X IN (...). pTerm is the term to be
|
|
** coded.
|
|
**
|
|
** The current value for the constraint is left in register iReg.
|
|
**
|
|
** For a constraint of the form X=expr, the expression is evaluated and its
|
|
** result is left on the stack. For constraints of the form X IN (...)
|
|
** this routine sets up a loop that will iterate over all values of X.
|
|
*/
|
|
static void codeEqualityTerm(
|
|
Parse *pParse, /* The parsing context */
|
|
WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
|
|
WhereLevel *pLevel, /* When level of the FROM clause we are working on */
|
|
int iReg /* Leave results in this register */
|
|
){
|
|
Expr *pX = pTerm->pExpr;
|
|
Vdbe *v = pParse->pVdbe;
|
|
|
|
assert( iReg>0 && iReg<=pParse->nMem );
|
|
if( pX->op==TK_EQ ){
|
|
sqlite3ExprCode(pParse, pX->pRight, iReg);
|
|
}else if( pX->op==TK_ISNULL ){
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
|
|
#ifndef SQLITE_OMIT_SUBQUERY
|
|
}else{
|
|
int eType;
|
|
int iTab;
|
|
struct InLoop *pIn;
|
|
|
|
assert( pX->op==TK_IN );
|
|
eType = sqlite3FindInIndex(pParse, pX, 1);
|
|
iTab = pX->iTable;
|
|
sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
|
|
VdbeComment((v, "%.*s", pX->span.n, pX->span.z));
|
|
if( pLevel->nIn==0 ){
|
|
pLevel->nxt = sqlite3VdbeMakeLabel(v);
|
|
}
|
|
pLevel->nIn++;
|
|
pLevel->aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->aInLoop,
|
|
sizeof(pLevel->aInLoop[0])*pLevel->nIn);
|
|
pIn = pLevel->aInLoop;
|
|
if( pIn ){
|
|
pIn += pLevel->nIn - 1;
|
|
pIn->iCur = iTab;
|
|
if( eType==IN_INDEX_ROWID ){
|
|
pIn->topAddr = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
|
|
}else{
|
|
pIn->topAddr = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
|
|
}
|
|
sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
|
|
}else{
|
|
pLevel->nIn = 0;
|
|
}
|
|
#endif
|
|
}
|
|
disableTerm(pLevel, pTerm);
|
|
}
|
|
|
|
/*
|
|
** Generate code that will evaluate all == and IN constraints for an
|
|
** index. The values for all constraints are left on the stack.
|
|
**
|
|
** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
|
|
** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
|
|
** The index has as many as three equality constraints, but in this
|
|
** example, the third "c" value is an inequality. So only two
|
|
** constraints are coded. This routine will generate code to evaluate
|
|
** a==5 and b IN (1,2,3). The current values for a and b will be left
|
|
** on the stack - a is the deepest and b the shallowest.
|
|
**
|
|
** In the example above nEq==2. But this subroutine works for any value
|
|
** of nEq including 0. If nEq==0, this routine is nearly a no-op.
|
|
** The only thing it does is allocate the pLevel->iMem memory cell.
|
|
**
|
|
** This routine always allocates at least one memory cell and puts
|
|
** the address of that memory cell in pLevel->iMem. The code that
|
|
** calls this routine will use pLevel->iMem to store the termination
|
|
** key value of the loop. If one or more IN operators appear, then
|
|
** this routine allocates an additional nEq memory cells for internal
|
|
** use.
|
|
*/
|
|
static int codeAllEqualityTerms(
|
|
Parse *pParse, /* Parsing context */
|
|
WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
|
|
WhereClause *pWC, /* The WHERE clause */
|
|
Bitmask notReady, /* Which parts of FROM have not yet been coded */
|
|
int nExtraReg /* Number of extra registers to allocate */
|
|
){
|
|
int nEq = pLevel->nEq; /* The number of == or IN constraints to code */
|
|
Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */
|
|
Index *pIdx = pLevel->pIdx; /* The index being used for this loop */
|
|
int iCur = pLevel->iTabCur; /* The cursor of the table */
|
|
WhereTerm *pTerm; /* A single constraint term */
|
|
int j; /* Loop counter */
|
|
int regBase; /* Base register */
|
|
|
|
/* Figure out how many memory cells we will need then allocate them.
|
|
** We always need at least one used to store the loop terminator
|
|
** value. If there are IN operators we'll need one for each == or
|
|
** IN constraint.
|
|
*/
|
|
pLevel->iMem = pParse->nMem + 1;
|
|
regBase = pParse->nMem + 2;
|
|
pParse->nMem += pLevel->nEq + 2 + nExtraReg;
|
|
|
|
/* Evaluate the equality constraints
|
|
*/
|
|
assert( pIdx->nColumn>=nEq );
|
|
for(j=0; j<nEq; j++){
|
|
int k = pIdx->aiColumn[j];
|
|
pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx);
|
|
if( pTerm==0 ) break;
|
|
assert( (pTerm->flags & TERM_CODED)==0 );
|
|
codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
|
|
if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
|
|
sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->brk);
|
|
}
|
|
}
|
|
return regBase;
|
|
}
|
|
|
|
#if defined(SQLITE_TEST)
|
|
/*
|
|
** The following variable holds a text description of query plan generated
|
|
** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin
|
|
** overwrites the previous. This information is used for testing and
|
|
** analysis only.
|
|
*/
|
|
SQLITE_API char sqlite3_query_plan[BMS*2*40]; /* Text of the join */
|
|
static int nQPlan = 0; /* Next free slow in _query_plan[] */
|
|
|
|
#endif /* SQLITE_TEST */
|
|
|
|
|
|
/*
|
|
** Free a WhereInfo structure
|
|
*/
|
|
static void whereInfoFree(WhereInfo *pWInfo){
|
|
if( pWInfo ){
|
|
int i;
|
|
for(i=0; i<pWInfo->nLevel; i++){
|
|
sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
|
|
if( pInfo ){
|
|
assert( pInfo->needToFreeIdxStr==0 );
|
|
sqlite3_free(pInfo);
|
|
}
|
|
}
|
|
sqlite3_free(pWInfo);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Generate the beginning of the loop used for WHERE clause processing.
|
|
** The return value is a pointer to an opaque structure that contains
|
|
** information needed to terminate the loop. Later, the calling routine
|
|
** should invoke sqlite3WhereEnd() with the return value of this function
|
|
** in order to complete the WHERE clause processing.
|
|
**
|
|
** If an error occurs, this routine returns NULL.
|
|
**
|
|
** The basic idea is to do a nested loop, one loop for each table in
|
|
** the FROM clause of a select. (INSERT and UPDATE statements are the
|
|
** same as a SELECT with only a single table in the FROM clause.) For
|
|
** example, if the SQL is this:
|
|
**
|
|
** SELECT * FROM t1, t2, t3 WHERE ...;
|
|
**
|
|
** Then the code generated is conceptually like the following:
|
|
**
|
|
** foreach row1 in t1 do \ Code generated
|
|
** foreach row2 in t2 do |-- by sqlite3WhereBegin()
|
|
** foreach row3 in t3 do /
|
|
** ...
|
|
** end \ Code generated
|
|
** end |-- by sqlite3WhereEnd()
|
|
** end /
|
|
**
|
|
** Note that the loops might not be nested in the order in which they
|
|
** appear in the FROM clause if a different order is better able to make
|
|
** use of indices. Note also that when the IN operator appears in
|
|
** the WHERE clause, it might result in additional nested loops for
|
|
** scanning through all values on the right-hand side of the IN.
|
|
**
|
|
** There are Btree cursors associated with each table. t1 uses cursor
|
|
** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
|
|
** And so forth. This routine generates code to open those VDBE cursors
|
|
** and sqlite3WhereEnd() generates the code to close them.
|
|
**
|
|
** The code that sqlite3WhereBegin() generates leaves the cursors named
|
|
** in pTabList pointing at their appropriate entries. The [...] code
|
|
** can use OP_Column and OP_Rowid opcodes on these cursors to extract
|
|
** data from the various tables of the loop.
|
|
**
|
|
** If the WHERE clause is empty, the foreach loops must each scan their
|
|
** entire tables. Thus a three-way join is an O(N^3) operation. But if
|
|
** the tables have indices and there are terms in the WHERE clause that
|
|
** refer to those indices, a complete table scan can be avoided and the
|
|
** code will run much faster. Most of the work of this routine is checking
|
|
** to see if there are indices that can be used to speed up the loop.
|
|
**
|
|
** Terms of the WHERE clause are also used to limit which rows actually
|
|
** make it to the "..." in the middle of the loop. After each "foreach",
|
|
** terms of the WHERE clause that use only terms in that loop and outer
|
|
** loops are evaluated and if false a jump is made around all subsequent
|
|
** inner loops (or around the "..." if the test occurs within the inner-
|
|
** most loop)
|
|
**
|
|
** OUTER JOINS
|
|
**
|
|
** An outer join of tables t1 and t2 is conceptally coded as follows:
|
|
**
|
|
** foreach row1 in t1 do
|
|
** flag = 0
|
|
** foreach row2 in t2 do
|
|
** start:
|
|
** ...
|
|
** flag = 1
|
|
** end
|
|
** if flag==0 then
|
|
** move the row2 cursor to a null row
|
|
** goto start
|
|
** fi
|
|
** end
|
|
**
|
|
** ORDER BY CLAUSE PROCESSING
|
|
**
|
|
** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
|
|
** if there is one. If there is no ORDER BY clause or if this routine
|
|
** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
|
|
**
|
|
** If an index can be used so that the natural output order of the table
|
|
** scan is correct for the ORDER BY clause, then that index is used and
|
|
** *ppOrderBy is set to NULL. This is an optimization that prevents an
|
|
** unnecessary sort of the result set if an index appropriate for the
|
|
** ORDER BY clause already exists.
|
|
**
|
|
** If the where clause loops cannot be arranged to provide the correct
|
|
** output order, then the *ppOrderBy is unchanged.
|
|
*/
|
|
SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(
|
|
Parse *pParse, /* The parser context */
|
|
SrcList *pTabList, /* A list of all tables to be scanned */
|
|
Expr *pWhere, /* The WHERE clause */
|
|
ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
|
|
u8 obflag /* One of ORDERBY_MIN, ORDERBY_MAX or ORDERBY_NORMAL */
|
|
){
|
|
int i; /* Loop counter */
|
|
WhereInfo *pWInfo; /* Will become the return value of this function */
|
|
Vdbe *v = pParse->pVdbe; /* The virtual database engine */
|
|
int brk, cont = 0; /* Addresses used during code generation */
|
|
Bitmask notReady; /* Cursors that are not yet positioned */
|
|
WhereTerm *pTerm; /* A single term in the WHERE clause */
|
|
ExprMaskSet maskSet; /* The expression mask set */
|
|
WhereClause wc; /* The WHERE clause is divided into these terms */
|
|
struct SrcList_item *pTabItem; /* A single entry from pTabList */
|
|
WhereLevel *pLevel; /* A single level in the pWInfo list */
|
|
int iFrom; /* First unused FROM clause element */
|
|
int andFlags; /* AND-ed combination of all wc.a[].flags */
|
|
sqlite3 *db; /* Database connection */
|
|
ExprList *pOrderBy = 0;
|
|
|
|
/* The number of tables in the FROM clause is limited by the number of
|
|
** bits in a Bitmask
|
|
*/
|
|
if( pTabList->nSrc>BMS ){
|
|
sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
|
|
return 0;
|
|
}
|
|
|
|
if( ppOrderBy ){
|
|
pOrderBy = *ppOrderBy;
|
|
}
|
|
|
|
/* Split the WHERE clause into separate subexpressions where each
|
|
** subexpression is separated by an AND operator.
|
|
*/
|
|
initMaskSet(&maskSet);
|
|
whereClauseInit(&wc, pParse, &maskSet);
|
|
whereSplit(&wc, pWhere, TK_AND);
|
|
|
|
/* Allocate and initialize the WhereInfo structure that will become the
|
|
** return value.
|
|
*/
|
|
db = pParse->db;
|
|
pWInfo = sqlite3DbMallocZero(db,
|
|
sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
|
|
if( db->mallocFailed ){
|
|
goto whereBeginNoMem;
|
|
}
|
|
pWInfo->nLevel = pTabList->nSrc;
|
|
pWInfo->pParse = pParse;
|
|
pWInfo->pTabList = pTabList;
|
|
pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
|
|
|
|
/* Special case: a WHERE clause that is constant. Evaluate the
|
|
** expression and either jump over all of the code or fall thru.
|
|
*/
|
|
if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
|
|
sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
|
|
pWhere = 0;
|
|
}
|
|
|
|
/* Analyze all of the subexpressions. Note that exprAnalyze() might
|
|
** add new virtual terms onto the end of the WHERE clause. We do not
|
|
** want to analyze these virtual terms, so start analyzing at the end
|
|
** and work forward so that the added virtual terms are never processed.
|
|
*/
|
|
for(i=0; i<pTabList->nSrc; i++){
|
|
createMask(&maskSet, pTabList->a[i].iCursor);
|
|
}
|
|
exprAnalyzeAll(pTabList, &wc);
|
|
if( db->mallocFailed ){
|
|
goto whereBeginNoMem;
|
|
}
|
|
|
|
/* Chose the best index to use for each table in the FROM clause.
|
|
**
|
|
** This loop fills in the following fields:
|
|
**
|
|
** pWInfo->a[].pIdx The index to use for this level of the loop.
|
|
** pWInfo->a[].flags WHERE_xxx flags associated with pIdx
|
|
** pWInfo->a[].nEq The number of == and IN constraints
|
|
** pWInfo->a[].iFrom When term of the FROM clause is being coded
|
|
** pWInfo->a[].iTabCur The VDBE cursor for the database table
|
|
** pWInfo->a[].iIdxCur The VDBE cursor for the index
|
|
**
|
|
** This loop also figures out the nesting order of tables in the FROM
|
|
** clause.
|
|
*/
|
|
notReady = ~(Bitmask)0;
|
|
pTabItem = pTabList->a;
|
|
pLevel = pWInfo->a;
|
|
andFlags = ~0;
|
|
WHERETRACE(("*** Optimizer Start ***\n"));
|
|
for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
|
|
Index *pIdx; /* Index for FROM table at pTabItem */
|
|
int flags; /* Flags asssociated with pIdx */
|
|
int nEq; /* Number of == or IN constraints */
|
|
double cost; /* The cost for pIdx */
|
|
int j; /* For looping over FROM tables */
|
|
Index *pBest = 0; /* The best index seen so far */
|
|
int bestFlags = 0; /* Flags associated with pBest */
|
|
int bestNEq = 0; /* nEq associated with pBest */
|
|
double lowestCost; /* Cost of the pBest */
|
|
int bestJ = 0; /* The value of j */
|
|
Bitmask m; /* Bitmask value for j or bestJ */
|
|
int once = 0; /* True when first table is seen */
|
|
sqlite3_index_info *pIndex; /* Current virtual index */
|
|
|
|
lowestCost = SQLITE_BIG_DBL;
|
|
for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
|
|
int doNotReorder; /* True if this table should not be reordered */
|
|
|
|
doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
|
|
if( once && doNotReorder ) break;
|
|
m = getMask(&maskSet, pTabItem->iCursor);
|
|
if( (m & notReady)==0 ){
|
|
if( j==iFrom ) iFrom++;
|
|
continue;
|
|
}
|
|
assert( pTabItem->pTab );
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( IsVirtual(pTabItem->pTab) ){
|
|
sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo;
|
|
cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady,
|
|
ppOrderBy ? *ppOrderBy : 0, i==0,
|
|
ppIdxInfo);
|
|
flags = WHERE_VIRTUALTABLE;
|
|
pIndex = *ppIdxInfo;
|
|
if( pIndex && pIndex->orderByConsumed ){
|
|
flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY;
|
|
}
|
|
pIdx = 0;
|
|
nEq = 0;
|
|
if( (SQLITE_BIG_DBL/2.0)<cost ){
|
|
/* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
|
|
** inital value of lowestCost in this loop. If it is, then
|
|
** the (cost<lowestCost) test below will never be true and
|
|
** pLevel->pBestIdx never set.
|
|
*/
|
|
cost = (SQLITE_BIG_DBL/2.0);
|
|
}
|
|
}else
|
|
#endif
|
|
{
|
|
cost = bestIndex(pParse, &wc, pTabItem, notReady,
|
|
(i==0 && ppOrderBy) ? *ppOrderBy : 0,
|
|
&pIdx, &flags, &nEq);
|
|
pIndex = 0;
|
|
}
|
|
if( cost<lowestCost ){
|
|
once = 1;
|
|
lowestCost = cost;
|
|
pBest = pIdx;
|
|
bestFlags = flags;
|
|
bestNEq = nEq;
|
|
bestJ = j;
|
|
pLevel->pBestIdx = pIndex;
|
|
}
|
|
if( doNotReorder ) break;
|
|
}
|
|
WHERETRACE(("*** Optimizer choose table %d for loop %d\n", bestJ,
|
|
pLevel-pWInfo->a));
|
|
if( (bestFlags & WHERE_ORDERBY)!=0 ){
|
|
*ppOrderBy = 0;
|
|
}
|
|
andFlags &= bestFlags;
|
|
pLevel->flags = bestFlags;
|
|
pLevel->pIdx = pBest;
|
|
pLevel->nEq = bestNEq;
|
|
pLevel->aInLoop = 0;
|
|
pLevel->nIn = 0;
|
|
if( pBest ){
|
|
pLevel->iIdxCur = pParse->nTab++;
|
|
}else{
|
|
pLevel->iIdxCur = -1;
|
|
}
|
|
notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor);
|
|
pLevel->iFrom = bestJ;
|
|
}
|
|
WHERETRACE(("*** Optimizer Finished ***\n"));
|
|
|
|
/* If the total query only selects a single row, then the ORDER BY
|
|
** clause is irrelevant.
|
|
*/
|
|
if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
|
|
*ppOrderBy = 0;
|
|
}
|
|
|
|
/* Open all tables in the pTabList and any indices selected for
|
|
** searching those tables.
|
|
*/
|
|
sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
|
|
for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
|
|
Table *pTab; /* Table to open */
|
|
Index *pIx; /* Index used to access pTab (if any) */
|
|
int iDb; /* Index of database containing table/index */
|
|
int iIdxCur = pLevel->iIdxCur;
|
|
|
|
#ifndef SQLITE_OMIT_EXPLAIN
|
|
if( pParse->explain==2 ){
|
|
char *zMsg;
|
|
struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
|
|
zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName);
|
|
if( pItem->zAlias ){
|
|
zMsg = sqlite3MPrintf(db, "%z AS %s", zMsg, pItem->zAlias);
|
|
}
|
|
if( (pIx = pLevel->pIdx)!=0 ){
|
|
zMsg = sqlite3MPrintf(db, "%z WITH INDEX %s", zMsg, pIx->zName);
|
|
}else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
|
|
zMsg = sqlite3MPrintf(db, "%z USING PRIMARY KEY", zMsg);
|
|
}
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
else if( pLevel->pBestIdx ){
|
|
sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
|
|
zMsg = sqlite3MPrintf(db, "%z VIRTUAL TABLE INDEX %d:%s", zMsg,
|
|
pBestIdx->idxNum, pBestIdx->idxStr);
|
|
}
|
|
#endif
|
|
if( pLevel->flags & WHERE_ORDERBY ){
|
|
zMsg = sqlite3MPrintf(db, "%z ORDER BY", zMsg);
|
|
}
|
|
sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC);
|
|
}
|
|
#endif /* SQLITE_OMIT_EXPLAIN */
|
|
pTabItem = &pTabList->a[pLevel->iFrom];
|
|
pTab = pTabItem->pTab;
|
|
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
if( pTab->isEphem || pTab->pSelect ) continue;
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( pLevel->pBestIdx ){
|
|
int iCur = pTabItem->iCursor;
|
|
sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0,
|
|
(const char*)pTab->pVtab, P4_VTAB);
|
|
}else
|
|
#endif
|
|
if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
|
|
sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead);
|
|
if( pTab->nCol<(sizeof(Bitmask)*8) ){
|
|
Bitmask b = pTabItem->colUsed;
|
|
int n = 0;
|
|
for(; b; b=b>>1, n++){}
|
|
sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n);
|
|
assert( n<=pTab->nCol );
|
|
}
|
|
}else{
|
|
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
|
|
}
|
|
pLevel->iTabCur = pTabItem->iCursor;
|
|
if( (pIx = pLevel->pIdx)!=0 ){
|
|
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
|
|
assert( pIx->pSchema==pTab->pSchema );
|
|
sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
|
|
(char*)pKey, P4_KEYINFO_HANDOFF);
|
|
VdbeComment((v, "%s", pIx->zName));
|
|
sqlite3VdbeAddOp2(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
|
|
}
|
|
sqlite3CodeVerifySchema(pParse, iDb);
|
|
}
|
|
pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
|
|
|
|
/* Generate the code to do the search. Each iteration of the for
|
|
** loop below generates code for a single nested loop of the VM
|
|
** program.
|
|
*/
|
|
notReady = ~(Bitmask)0;
|
|
for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
|
|
int j;
|
|
int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */
|
|
Index *pIdx; /* The index we will be using */
|
|
int nxt; /* Where to jump to continue with the next IN case */
|
|
int iIdxCur; /* The VDBE cursor for the index */
|
|
int omitTable; /* True if we use the index only */
|
|
int bRev; /* True if we need to scan in reverse order */
|
|
|
|
pTabItem = &pTabList->a[pLevel->iFrom];
|
|
iCur = pTabItem->iCursor;
|
|
pIdx = pLevel->pIdx;
|
|
iIdxCur = pLevel->iIdxCur;
|
|
bRev = (pLevel->flags & WHERE_REVERSE)!=0;
|
|
omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0;
|
|
|
|
/* Create labels for the "break" and "continue" instructions
|
|
** for the current loop. Jump to brk to break out of a loop.
|
|
** Jump to cont to go immediately to the next iteration of the
|
|
** loop.
|
|
**
|
|
** When there is an IN operator, we also have a "nxt" label that
|
|
** means to continue with the next IN value combination. When
|
|
** there are no IN operators in the constraints, the "nxt" label
|
|
** is the same as "brk".
|
|
*/
|
|
brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v);
|
|
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
|
|
|
|
/* If this is the right table of a LEFT OUTER JOIN, allocate and
|
|
** initialize a memory cell that records if this table matches any
|
|
** row of the left table of the join.
|
|
*/
|
|
if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
|
|
pLevel->iLeftJoin = ++pParse->nMem;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
|
|
VdbeComment((v, "init LEFT JOIN no-match flag"));
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( pLevel->pBestIdx ){
|
|
/* Case 0: The table is a virtual-table. Use the VFilter and VNext
|
|
** to access the data.
|
|
*/
|
|
int j;
|
|
int iReg; /* P3 Value for OP_VFilter */
|
|
sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
|
|
int nConstraint = pBestIdx->nConstraint;
|
|
struct sqlite3_index_constraint_usage *aUsage =
|
|
pBestIdx->aConstraintUsage;
|
|
const struct sqlite3_index_constraint *aConstraint =
|
|
pBestIdx->aConstraint;
|
|
|
|
iReg = sqlite3GetTempRange(pParse, nConstraint+2);
|
|
for(j=1; j<=nConstraint; j++){
|
|
int k;
|
|
for(k=0; k<nConstraint; k++){
|
|
if( aUsage[k].argvIndex==j ){
|
|
int iTerm = aConstraint[k].iTermOffset;
|
|
sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight, iReg+j+1);
|
|
break;
|
|
}
|
|
}
|
|
if( k==nConstraint ) break;
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Integer, pBestIdx->idxNum, iReg);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
|
|
sqlite3VdbeAddOp4(v, OP_VFilter, iCur, brk, iReg, pBestIdx->idxStr,
|
|
pBestIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
|
|
sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
|
|
pBestIdx->needToFreeIdxStr = 0;
|
|
for(j=0; j<pBestIdx->nConstraint; j++){
|
|
if( aUsage[j].omit ){
|
|
int iTerm = aConstraint[j].iTermOffset;
|
|
disableTerm(pLevel, &wc.a[iTerm]);
|
|
}
|
|
}
|
|
pLevel->op = OP_VNext;
|
|
pLevel->p1 = iCur;
|
|
pLevel->p2 = sqlite3VdbeCurrentAddr(v);
|
|
}else
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
if( pLevel->flags & WHERE_ROWID_EQ ){
|
|
/* Case 1: We can directly reference a single row using an
|
|
** equality comparison against the ROWID field. Or
|
|
** we reference multiple rows using a "rowid IN (...)"
|
|
** construct.
|
|
*/
|
|
int r1;
|
|
pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
|
|
assert( pTerm!=0 );
|
|
assert( pTerm->pExpr!=0 );
|
|
assert( pTerm->leftCursor==iCur );
|
|
assert( omitTable==0 );
|
|
r1 = sqlite3GetTempReg(pParse);
|
|
codeEqualityTerm(pParse, pTerm, pLevel, r1);
|
|
nxt = pLevel->nxt;
|
|
sqlite3VdbeAddOp3(v, OP_MustBeInt, r1, nxt, 1);
|
|
sqlite3VdbeAddOp3(v, OP_NotExists, iCur, nxt, r1);
|
|
VdbeComment((v, "pk"));
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
pLevel->op = OP_Noop;
|
|
}else if( pLevel->flags & WHERE_ROWID_RANGE ){
|
|
/* Case 2: We have an inequality comparison against the ROWID field.
|
|
*/
|
|
int testOp = OP_Noop;
|
|
int start;
|
|
WhereTerm *pStart, *pEnd;
|
|
|
|
assert( omitTable==0 );
|
|
pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);
|
|
pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);
|
|
if( bRev ){
|
|
pTerm = pStart;
|
|
pStart = pEnd;
|
|
pEnd = pTerm;
|
|
}
|
|
if( pStart ){
|
|
Expr *pX;
|
|
int r1, regFree1;
|
|
pX = pStart->pExpr;
|
|
assert( pX!=0 );
|
|
assert( pStart->leftCursor==iCur );
|
|
r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, ®Free1);
|
|
sqlite3VdbeAddOp3(v, OP_ForceInt, r1, brk,
|
|
pX->op==TK_LE || pX->op==TK_GT);
|
|
sqlite3VdbeAddOp3(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk, r1);
|
|
VdbeComment((v, "pk"));
|
|
sqlite3ReleaseTempReg(pParse, regFree1);
|
|
disableTerm(pLevel, pStart);
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
|
|
}
|
|
if( pEnd ){
|
|
Expr *pX;
|
|
pX = pEnd->pExpr;
|
|
assert( pX!=0 );
|
|
assert( pEnd->leftCursor==iCur );
|
|
pLevel->iMem = ++pParse->nMem;
|
|
sqlite3ExprCode(pParse, pX->pRight, pLevel->iMem);
|
|
if( pX->op==TK_LT || pX->op==TK_GT ){
|
|
testOp = bRev ? OP_Le : OP_Ge;
|
|
}else{
|
|
testOp = bRev ? OP_Lt : OP_Gt;
|
|
}
|
|
disableTerm(pLevel, pEnd);
|
|
}
|
|
start = sqlite3VdbeCurrentAddr(v);
|
|
pLevel->op = bRev ? OP_Prev : OP_Next;
|
|
pLevel->p1 = iCur;
|
|
pLevel->p2 = start;
|
|
if( testOp!=OP_Noop ){
|
|
int r1 = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1);
|
|
/* sqlite3VdbeAddOp2(v, OP_SCopy, pLevel->iMem, 0); */
|
|
sqlite3VdbeAddOp3(v, testOp, pLevel->iMem, brk, r1);
|
|
sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
}
|
|
}else if( pLevel->flags & WHERE_COLUMN_RANGE ){
|
|
/* Case 3: The WHERE clause term that refers to the right-most
|
|
** column of the index is an inequality. For example, if
|
|
** the index is on (x,y,z) and the WHERE clause is of the
|
|
** form "x=5 AND y<10" then this case is used. Only the
|
|
** right-most column can be an inequality - the rest must
|
|
** use the "==" and "IN" operators.
|
|
**
|
|
** This case is also used when there are no WHERE clause
|
|
** constraints but an index is selected anyway, in order
|
|
** to force the output order to conform to an ORDER BY.
|
|
*/
|
|
int start;
|
|
int nEq = pLevel->nEq;
|
|
int topEq=0; /* True if top limit uses ==. False is strictly < */
|
|
int btmEq=0; /* True if btm limit uses ==. False if strictly > */
|
|
int topOp, btmOp; /* Operators for the top and bottom search bounds */
|
|
int testOp;
|
|
int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0;
|
|
int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0;
|
|
int isMinQuery = 0; /* If this is an optimized SELECT min(x) ... */
|
|
int regBase; /* Base register holding constraint values */
|
|
int r1; /* Temp register */
|
|
|
|
/* Generate code to evaluate all constraint terms using == or IN
|
|
** and level the values of those terms on the stack.
|
|
*/
|
|
regBase = codeAllEqualityTerms(pParse, pLevel, &wc, notReady, 2);
|
|
|
|
/* Figure out what comparison operators to use for top and bottom
|
|
** search bounds. For an ascending index, the bottom bound is a > or >=
|
|
** operator and the top bound is a < or <= operator. For a descending
|
|
** index the operators are reversed.
|
|
*/
|
|
if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){
|
|
topOp = WO_LT|WO_LE;
|
|
btmOp = WO_GT|WO_GE;
|
|
}else{
|
|
topOp = WO_GT|WO_GE;
|
|
btmOp = WO_LT|WO_LE;
|
|
SWAP(int, topLimit, btmLimit);
|
|
}
|
|
|
|
/* If this loop satisfies a sort order (pOrderBy) request that
|
|
** was passed to this function to implement a "SELECT min(x) ..."
|
|
** query, then the caller will only allow the loop to run for
|
|
** a single iteration. This means that the first row returned
|
|
** should not have a NULL value stored in 'x'. If column 'x' is
|
|
** the first one after the nEq equality constraints in the index,
|
|
** this requires some special handling.
|
|
*/
|
|
if( (obflag==ORDERBY_MIN)
|
|
&& (pLevel->flags&WHERE_ORDERBY)
|
|
&& (pIdx->nColumn>nEq)
|
|
&& (pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq])
|
|
){
|
|
isMinQuery = 1;
|
|
}
|
|
|
|
/* Generate the termination key. This is the key value that
|
|
** will end the search. There is no termination key if there
|
|
** are no equality terms and no "X<..." term.
|
|
**
|
|
** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
|
|
** key computed here really ends up being the start key.
|
|
*/
|
|
nxt = pLevel->nxt;
|
|
if( topLimit ){
|
|
Expr *pX;
|
|
int k = pIdx->aiColumn[nEq];
|
|
pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx);
|
|
assert( pTerm!=0 );
|
|
pX = pTerm->pExpr;
|
|
assert( (pTerm->flags & TERM_CODED)==0 );
|
|
sqlite3ExprCode(pParse, pX->pRight, regBase+nEq);
|
|
sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt);
|
|
topEq = pTerm->eOperator & (WO_LE|WO_GE);
|
|
disableTerm(pLevel, pTerm);
|
|
testOp = OP_IdxGE;
|
|
}else{
|
|
testOp = nEq>0 ? OP_IdxGE : OP_Noop;
|
|
topEq = 1;
|
|
}
|
|
if( testOp!=OP_Noop || (isMinQuery&&bRev) ){
|
|
int nCol = nEq + topLimit;
|
|
if( isMinQuery && !topLimit ){
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nCol);
|
|
nCol++;
|
|
topEq = 0;
|
|
}
|
|
buildIndexProbe(v, nCol, pIdx, regBase, pLevel->iMem);
|
|
if( bRev ){
|
|
int op = topEq ? OP_MoveLe : OP_MoveLt;
|
|
sqlite3VdbeAddOp3(v, op, iIdxCur, nxt, pLevel->iMem);
|
|
}
|
|
}else if( bRev ){
|
|
sqlite3VdbeAddOp2(v, OP_Last, iIdxCur, brk);
|
|
}
|
|
|
|
/* Generate the start key. This is the key that defines the lower
|
|
** bound on the search. There is no start key if there are no
|
|
** equality terms and if there is no "X>..." term. In
|
|
** that case, generate a "Rewind" instruction in place of the
|
|
** start key search.
|
|
**
|
|
** 2002-Dec-04: In the case of a reverse-order search, the so-called
|
|
** "start" key really ends up being used as the termination key.
|
|
*/
|
|
if( btmLimit ){
|
|
Expr *pX;
|
|
int k = pIdx->aiColumn[nEq];
|
|
pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx);
|
|
assert( pTerm!=0 );
|
|
pX = pTerm->pExpr;
|
|
assert( (pTerm->flags & TERM_CODED)==0 );
|
|
sqlite3ExprCode(pParse, pX->pRight, regBase+nEq);
|
|
sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt);
|
|
btmEq = pTerm->eOperator & (WO_LE|WO_GE);
|
|
disableTerm(pLevel, pTerm);
|
|
}else{
|
|
btmEq = 1;
|
|
}
|
|
if( nEq>0 || btmLimit || (isMinQuery&&!bRev) ){
|
|
int nCol = nEq + btmLimit;
|
|
if( isMinQuery && !btmLimit ){
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nCol);
|
|
nCol++;
|
|
btmEq = 0;
|
|
}
|
|
if( bRev ){
|
|
r1 = pLevel->iMem;
|
|
testOp = OP_IdxLT;
|
|
}else{
|
|
r1 = sqlite3GetTempReg(pParse);
|
|
}
|
|
buildIndexProbe(v, nCol, pIdx, regBase, r1);
|
|
if( !bRev ){
|
|
int op = btmEq ? OP_MoveGe : OP_MoveGt;
|
|
sqlite3VdbeAddOp3(v, op, iIdxCur, nxt, r1);
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
}
|
|
}else if( bRev ){
|
|
testOp = OP_Noop;
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, brk);
|
|
}
|
|
|
|
/* Generate the the top of the loop. If there is a termination
|
|
** key we have to test for that key and abort at the top of the
|
|
** loop.
|
|
*/
|
|
start = sqlite3VdbeCurrentAddr(v);
|
|
if( testOp!=OP_Noop ){
|
|
sqlite3VdbeAddOp3(v, testOp, iIdxCur, nxt, pLevel->iMem);
|
|
if( (topEq && !bRev) || (!btmEq && bRev) ){
|
|
sqlite3VdbeChangeP5(v, 1);
|
|
}
|
|
}
|
|
r1 = sqlite3GetTempReg(pParse);
|
|
if( topLimit | btmLimit ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
|
|
sqlite3VdbeAddOp2(v, OP_IsNull, r1, cont);
|
|
}
|
|
if( !omitTable ){
|
|
sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, r1);
|
|
sqlite3VdbeAddOp3(v, OP_MoveGe, iCur, 0, r1); /* Deferred seek */
|
|
}
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
|
|
/* Record the instruction used to terminate the loop.
|
|
*/
|
|
pLevel->op = bRev ? OP_Prev : OP_Next;
|
|
pLevel->p1 = iIdxCur;
|
|
pLevel->p2 = start;
|
|
}else if( pLevel->flags & WHERE_COLUMN_EQ ){
|
|
/* Case 4: There is an index and all terms of the WHERE clause that
|
|
** refer to the index using the "==" or "IN" operators.
|
|
*/
|
|
int start;
|
|
int nEq = pLevel->nEq;
|
|
int isMinQuery = 0; /* If this is an optimized SELECT min(x) ... */
|
|
int regBase; /* Base register of array holding constraints */
|
|
int r1;
|
|
|
|
/* Generate code to evaluate all constraint terms using == or IN
|
|
** and leave the values of those terms on the stack.
|
|
*/
|
|
regBase = codeAllEqualityTerms(pParse, pLevel, &wc, notReady, 1);
|
|
nxt = pLevel->nxt;
|
|
|
|
if( (obflag==ORDERBY_MIN)
|
|
&& (pLevel->flags&WHERE_ORDERBY)
|
|
&& (pIdx->nColumn>nEq)
|
|
&& (pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq])
|
|
){
|
|
isMinQuery = 1;
|
|
buildIndexProbe(v, nEq, pIdx, regBase, pLevel->iMem);
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
|
|
r1 = ++pParse->nMem;
|
|
buildIndexProbe(v, nEq+1, pIdx, regBase, r1);
|
|
}else{
|
|
/* Generate a single key that will be used to both start and
|
|
** terminate the search
|
|
*/
|
|
r1 = pLevel->iMem;
|
|
buildIndexProbe(v, nEq, pIdx, regBase, r1);
|
|
}
|
|
|
|
/* Generate code (1) to move to the first matching element of the table.
|
|
** Then generate code (2) that jumps to "nxt" after the cursor is past
|
|
** the last matching element of the table. The code (1) is executed
|
|
** once to initialize the search, the code (2) is executed before each
|
|
** iteration of the scan to see if the scan has finished. */
|
|
if( bRev ){
|
|
/* Scan in reverse order */
|
|
int op;
|
|
if( isMinQuery ){
|
|
op = OP_MoveLt;
|
|
}else{
|
|
op = OP_MoveLe;
|
|
}
|
|
sqlite3VdbeAddOp3(v, op, iIdxCur, nxt, r1);
|
|
start = sqlite3VdbeAddOp3(v, OP_IdxLT, iIdxCur, nxt, pLevel->iMem);
|
|
pLevel->op = OP_Prev;
|
|
}else{
|
|
/* Scan in the forward order */
|
|
int op;
|
|
if( isMinQuery ){
|
|
op = OP_MoveGt;
|
|
}else{
|
|
op = OP_MoveGe;
|
|
}
|
|
sqlite3VdbeAddOp3(v, op, iIdxCur, nxt, r1);
|
|
start = sqlite3VdbeAddOp3(v, OP_IdxGE, iIdxCur, nxt, pLevel->iMem);
|
|
sqlite3VdbeChangeP5(v, 1);
|
|
pLevel->op = OP_Next;
|
|
}
|
|
if( !omitTable ){
|
|
r1 = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, r1);
|
|
sqlite3VdbeAddOp3(v, OP_MoveGe, iCur, 0, r1); /* Deferred seek */
|
|
sqlite3ReleaseTempReg(pParse, r1);
|
|
}
|
|
pLevel->p1 = iIdxCur;
|
|
pLevel->p2 = start;
|
|
}else{
|
|
/* Case 5: There is no usable index. We must do a complete
|
|
** scan of the entire table.
|
|
*/
|
|
assert( omitTable==0 );
|
|
assert( bRev==0 );
|
|
pLevel->op = OP_Next;
|
|
pLevel->p1 = iCur;
|
|
pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, OP_Rewind, iCur, brk);
|
|
}
|
|
notReady &= ~getMask(&maskSet, iCur);
|
|
|
|
/* Insert code to test every subexpression that can be completely
|
|
** computed using the current set of tables.
|
|
*/
|
|
for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
|
|
Expr *pE;
|
|
if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
|
|
if( (pTerm->prereqAll & notReady)!=0 ) continue;
|
|
pE = pTerm->pExpr;
|
|
assert( pE!=0 );
|
|
if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
|
|
continue;
|
|
}
|
|
sqlite3ExprIfFalse(pParse, pE, cont, SQLITE_JUMPIFNULL);
|
|
pTerm->flags |= TERM_CODED;
|
|
}
|
|
|
|
/* For a LEFT OUTER JOIN, generate code that will record the fact that
|
|
** at least one row of the right table has matched the left table.
|
|
*/
|
|
if( pLevel->iLeftJoin ){
|
|
pLevel->top = sqlite3VdbeCurrentAddr(v);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
|
|
VdbeComment((v, "record LEFT JOIN hit"));
|
|
for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
|
|
if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
|
|
if( (pTerm->prereqAll & notReady)!=0 ) continue;
|
|
assert( pTerm->pExpr );
|
|
sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, SQLITE_JUMPIFNULL);
|
|
pTerm->flags |= TERM_CODED;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef SQLITE_TEST /* For testing and debugging use only */
|
|
/* Record in the query plan information about the current table
|
|
** and the index used to access it (if any). If the table itself
|
|
** is not used, its name is just '{}'. If no index is used
|
|
** the index is listed as "{}". If the primary key is used the
|
|
** index name is '*'.
|
|
*/
|
|
for(i=0; i<pTabList->nSrc; i++){
|
|
char *z;
|
|
int n;
|
|
pLevel = &pWInfo->a[i];
|
|
pTabItem = &pTabList->a[pLevel->iFrom];
|
|
z = pTabItem->zAlias;
|
|
if( z==0 ) z = pTabItem->pTab->zName;
|
|
n = strlen(z);
|
|
if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
|
|
if( pLevel->flags & WHERE_IDX_ONLY ){
|
|
memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
|
|
nQPlan += 2;
|
|
}else{
|
|
memcpy(&sqlite3_query_plan[nQPlan], z, n);
|
|
nQPlan += n;
|
|
}
|
|
sqlite3_query_plan[nQPlan++] = ' ';
|
|
}
|
|
if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
|
|
memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
|
|
nQPlan += 2;
|
|
}else if( pLevel->pIdx==0 ){
|
|
memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
|
|
nQPlan += 3;
|
|
}else{
|
|
n = strlen(pLevel->pIdx->zName);
|
|
if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
|
|
memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n);
|
|
nQPlan += n;
|
|
sqlite3_query_plan[nQPlan++] = ' ';
|
|
}
|
|
}
|
|
}
|
|
while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
|
|
sqlite3_query_plan[--nQPlan] = 0;
|
|
}
|
|
sqlite3_query_plan[nQPlan] = 0;
|
|
nQPlan = 0;
|
|
#endif /* SQLITE_TEST // Testing and debugging use only */
|
|
|
|
/* Record the continuation address in the WhereInfo structure. Then
|
|
** clean up and return.
|
|
*/
|
|
pWInfo->iContinue = cont;
|
|
whereClauseClear(&wc);
|
|
return pWInfo;
|
|
|
|
/* Jump here if malloc fails */
|
|
whereBeginNoMem:
|
|
whereClauseClear(&wc);
|
|
whereInfoFree(pWInfo);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Generate the end of the WHERE loop. See comments on
|
|
** sqlite3WhereBegin() for additional information.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo *pWInfo){
|
|
Vdbe *v = pWInfo->pParse->pVdbe;
|
|
int i;
|
|
WhereLevel *pLevel;
|
|
SrcList *pTabList = pWInfo->pTabList;
|
|
|
|
/* Generate loop termination code.
|
|
*/
|
|
for(i=pTabList->nSrc-1; i>=0; i--){
|
|
pLevel = &pWInfo->a[i];
|
|
sqlite3VdbeResolveLabel(v, pLevel->cont);
|
|
if( pLevel->op!=OP_Noop ){
|
|
sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
|
|
}
|
|
if( pLevel->nIn ){
|
|
struct InLoop *pIn;
|
|
int j;
|
|
sqlite3VdbeResolveLabel(v, pLevel->nxt);
|
|
for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){
|
|
sqlite3VdbeJumpHere(v, pIn->topAddr+1);
|
|
sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->topAddr);
|
|
sqlite3VdbeJumpHere(v, pIn->topAddr-1);
|
|
}
|
|
sqlite3_free(pLevel->aInLoop);
|
|
}
|
|
sqlite3VdbeResolveLabel(v, pLevel->brk);
|
|
if( pLevel->iLeftJoin ){
|
|
int addr;
|
|
addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
|
|
sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
|
|
if( pLevel->iIdxCur>=0 ){
|
|
sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->top);
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
}
|
|
}
|
|
|
|
/* The "break" point is here, just past the end of the outer loop.
|
|
** Set it.
|
|
*/
|
|
sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
|
|
|
|
/* Close all of the cursors that were opened by sqlite3WhereBegin.
|
|
*/
|
|
for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
|
|
struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
|
|
Table *pTab = pTabItem->pTab;
|
|
assert( pTab!=0 );
|
|
if( pTab->isEphem || pTab->pSelect ) continue;
|
|
if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
|
|
sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
|
|
}
|
|
if( pLevel->pIdx!=0 ){
|
|
sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
|
|
}
|
|
|
|
/* If this scan uses an index, make code substitutions to read data
|
|
** from the index in preference to the table. Sometimes, this means
|
|
** the table need never be read from. This is a performance boost,
|
|
** as the vdbe level waits until the table is read before actually
|
|
** seeking the table cursor to the record corresponding to the current
|
|
** position in the index.
|
|
**
|
|
** Calls to the code generator in between sqlite3WhereBegin and
|
|
** sqlite3WhereEnd will have created code that references the table
|
|
** directly. This loop scans all that code looking for opcodes
|
|
** that reference the table and converts them into opcodes that
|
|
** reference the index.
|
|
*/
|
|
if( pLevel->pIdx ){
|
|
int k, j, last;
|
|
VdbeOp *pOp;
|
|
Index *pIdx = pLevel->pIdx;
|
|
int useIndexOnly = pLevel->flags & WHERE_IDX_ONLY;
|
|
|
|
assert( pIdx!=0 );
|
|
pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
|
|
last = sqlite3VdbeCurrentAddr(v);
|
|
for(k=pWInfo->iTop; k<last; k++, pOp++){
|
|
if( pOp->p1!=pLevel->iTabCur ) continue;
|
|
if( pOp->opcode==OP_Column ){
|
|
for(j=0; j<pIdx->nColumn; j++){
|
|
if( pOp->p2==pIdx->aiColumn[j] ){
|
|
pOp->p2 = j;
|
|
pOp->p1 = pLevel->iIdxCur;
|
|
break;
|
|
}
|
|
}
|
|
assert(!useIndexOnly || j<pIdx->nColumn);
|
|
}else if( pOp->opcode==OP_Rowid ){
|
|
pOp->p1 = pLevel->iIdxCur;
|
|
pOp->opcode = OP_IdxRowid;
|
|
}else if( pOp->opcode==OP_NullRow && useIndexOnly ){
|
|
pOp->opcode = OP_Noop;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Final cleanup
|
|
*/
|
|
whereInfoFree(pWInfo);
|
|
return;
|
|
}
|
|
|
|
/************** End of where.c ***********************************************/
|
|
/************** Begin file parse.c *******************************************/
|
|
/* Driver template for the LEMON parser generator.
|
|
** The author disclaims copyright to this source code.
|
|
*/
|
|
/* First off, code is include which follows the "include" declaration
|
|
** in the input file. */
|
|
|
|
|
|
/*
|
|
** An instance of this structure holds information about the
|
|
** LIMIT clause of a SELECT statement.
|
|
*/
|
|
struct LimitVal {
|
|
Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */
|
|
Expr *pOffset; /* The OFFSET expression. NULL if there is none */
|
|
};
|
|
|
|
/*
|
|
** An instance of this structure is used to store the LIKE,
|
|
** GLOB, NOT LIKE, and NOT GLOB operators.
|
|
*/
|
|
struct LikeOp {
|
|
Token eOperator; /* "like" or "glob" or "regexp" */
|
|
int not; /* True if the NOT keyword is present */
|
|
};
|
|
|
|
/*
|
|
** An instance of the following structure describes the event of a
|
|
** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT,
|
|
** TK_DELETE, or TK_INSTEAD. If the event is of the form
|
|
**
|
|
** UPDATE ON (a,b,c)
|
|
**
|
|
** Then the "b" IdList records the list "a,b,c".
|
|
*/
|
|
struct TrigEvent { int a; IdList * b; };
|
|
|
|
/*
|
|
** An instance of this structure holds the ATTACH key and the key type.
|
|
*/
|
|
struct AttachKey { int type; Token key; };
|
|
|
|
/* Next is all token values, in a form suitable for use by makeheaders.
|
|
** This section will be null unless lemon is run with the -m switch.
|
|
*/
|
|
/*
|
|
** These constants (all generated automatically by the parser generator)
|
|
** specify the various kinds of tokens (terminals) that the parser
|
|
** understands.
|
|
**
|
|
** Each symbol here is a terminal symbol in the grammar.
|
|
*/
|
|
/* Make sure the INTERFACE macro is defined.
|
|
*/
|
|
#ifndef INTERFACE
|
|
# define INTERFACE 1
|
|
#endif
|
|
/* The next thing included is series of defines which control
|
|
** various aspects of the generated parser.
|
|
** YYCODETYPE is the data type used for storing terminal
|
|
** and nonterminal numbers. "unsigned char" is
|
|
** used if there are fewer than 250 terminals
|
|
** and nonterminals. "int" is used otherwise.
|
|
** YYNOCODE is a number of type YYCODETYPE which corresponds
|
|
** to no legal terminal or nonterminal number. This
|
|
** number is used to fill in empty slots of the hash
|
|
** table.
|
|
** YYFALLBACK If defined, this indicates that one or more tokens
|
|
** have fall-back values which should be used if the
|
|
** original value of the token will not parse.
|
|
** YYACTIONTYPE is the data type used for storing terminal
|
|
** and nonterminal numbers. "unsigned char" is
|
|
** used if there are fewer than 250 rules and
|
|
** states combined. "int" is used otherwise.
|
|
** sqlite3ParserTOKENTYPE is the data type used for minor tokens given
|
|
** directly to the parser from the tokenizer.
|
|
** YYMINORTYPE is the data type used for all minor tokens.
|
|
** This is typically a union of many types, one of
|
|
** which is sqlite3ParserTOKENTYPE. The entry in the union
|
|
** for base tokens is called "yy0".
|
|
** YYSTACKDEPTH is the maximum depth of the parser's stack. If
|
|
** zero the stack is dynamically sized using realloc()
|
|
** sqlite3ParserARG_SDECL A static variable declaration for the %extra_argument
|
|
** sqlite3ParserARG_PDECL A parameter declaration for the %extra_argument
|
|
** sqlite3ParserARG_STORE Code to store %extra_argument into yypParser
|
|
** sqlite3ParserARG_FETCH Code to extract %extra_argument from yypParser
|
|
** YYNSTATE the combined number of states.
|
|
** YYNRULE the number of rules in the grammar
|
|
** YYERRORSYMBOL is the code number of the error symbol. If not
|
|
** defined, then do no error processing.
|
|
*/
|
|
#define YYCODETYPE unsigned char
|
|
#define YYNOCODE 248
|
|
#define YYACTIONTYPE unsigned short int
|
|
#define YYWILDCARD 59
|
|
#define sqlite3ParserTOKENTYPE Token
|
|
typedef union {
|
|
sqlite3ParserTOKENTYPE yy0;
|
|
int yy46;
|
|
struct LikeOp yy72;
|
|
Expr* yy172;
|
|
ExprList* yy174;
|
|
Select* yy219;
|
|
struct LimitVal yy234;
|
|
TriggerStep* yy243;
|
|
struct TrigEvent yy370;
|
|
SrcList* yy373;
|
|
struct {int value; int mask;} yy405;
|
|
Token yy410;
|
|
IdList* yy432;
|
|
} YYMINORTYPE;
|
|
#ifndef YYSTACKDEPTH
|
|
#define YYSTACKDEPTH 100
|
|
#endif
|
|
#define sqlite3ParserARG_SDECL Parse *pParse;
|
|
#define sqlite3ParserARG_PDECL ,Parse *pParse
|
|
#define sqlite3ParserARG_FETCH Parse *pParse = yypParser->pParse
|
|
#define sqlite3ParserARG_STORE yypParser->pParse = pParse
|
|
#define YYNSTATE 588
|
|
#define YYNRULE 312
|
|
#define YYFALLBACK 1
|
|
#define YY_NO_ACTION (YYNSTATE+YYNRULE+2)
|
|
#define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1)
|
|
#define YY_ERROR_ACTION (YYNSTATE+YYNRULE)
|
|
|
|
/* Next are that tables used to determine what action to take based on the
|
|
** current state and lookahead token. These tables are used to implement
|
|
** functions that take a state number and lookahead value and return an
|
|
** action integer.
|
|
**
|
|
** Suppose the action integer is N. Then the action is determined as
|
|
** follows
|
|
**
|
|
** 0 <= N < YYNSTATE Shift N. That is, push the lookahead
|
|
** token onto the stack and goto state N.
|
|
**
|
|
** YYNSTATE <= N < YYNSTATE+YYNRULE Reduce by rule N-YYNSTATE.
|
|
**
|
|
** N == YYNSTATE+YYNRULE A syntax error has occurred.
|
|
**
|
|
** N == YYNSTATE+YYNRULE+1 The parser accepts its input.
|
|
**
|
|
** N == YYNSTATE+YYNRULE+2 No such action. Denotes unused
|
|
** slots in the yy_action[] table.
|
|
**
|
|
** The action table is constructed as a single large table named yy_action[].
|
|
** Given state S and lookahead X, the action is computed as
|
|
**
|
|
** yy_action[ yy_shift_ofst[S] + X ]
|
|
**
|
|
** If the index value yy_shift_ofst[S]+X is out of range or if the value
|
|
** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S]
|
|
** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table
|
|
** and that yy_default[S] should be used instead.
|
|
**
|
|
** The formula above is for computing the action when the lookahead is
|
|
** a terminal symbol. If the lookahead is a non-terminal (as occurs after
|
|
** a reduce action) then the yy_reduce_ofst[] array is used in place of
|
|
** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of
|
|
** YY_SHIFT_USE_DFLT.
|
|
**
|
|
** The following are the tables generated in this section:
|
|
**
|
|
** yy_action[] A single table containing all actions.
|
|
** yy_lookahead[] A table containing the lookahead for each entry in
|
|
** yy_action. Used to detect hash collisions.
|
|
** yy_shift_ofst[] For each state, the offset into yy_action for
|
|
** shifting terminals.
|
|
** yy_reduce_ofst[] For each state, the offset into yy_action for
|
|
** shifting non-terminals after a reduce.
|
|
** yy_default[] Default action for each state.
|
|
*/
|
|
static const YYACTIONTYPE yy_action[] = {
|
|
/* 0 */ 292, 901, 124, 587, 409, 172, 2, 418, 61, 61,
|
|
/* 10 */ 61, 61, 519, 63, 63, 63, 63, 64, 64, 65,
|
|
/* 20 */ 65, 65, 66, 210, 447, 212, 425, 431, 68, 63,
|
|
/* 30 */ 63, 63, 63, 64, 64, 65, 65, 65, 66, 210,
|
|
/* 40 */ 391, 388, 396, 451, 60, 59, 297, 435, 436, 432,
|
|
/* 50 */ 432, 62, 62, 61, 61, 61, 61, 263, 63, 63,
|
|
/* 60 */ 63, 63, 64, 64, 65, 65, 65, 66, 210, 292,
|
|
/* 70 */ 493, 494, 418, 489, 208, 82, 67, 420, 69, 154,
|
|
/* 80 */ 63, 63, 63, 63, 64, 64, 65, 65, 65, 66,
|
|
/* 90 */ 210, 67, 462, 69, 154, 425, 431, 573, 264, 58,
|
|
/* 100 */ 64, 64, 65, 65, 65, 66, 210, 397, 398, 422,
|
|
/* 110 */ 422, 422, 292, 60, 59, 297, 435, 436, 432, 432,
|
|
/* 120 */ 62, 62, 61, 61, 61, 61, 317, 63, 63, 63,
|
|
/* 130 */ 63, 64, 64, 65, 65, 65, 66, 210, 425, 431,
|
|
/* 140 */ 94, 65, 65, 65, 66, 210, 396, 210, 414, 34,
|
|
/* 150 */ 56, 298, 442, 443, 410, 488, 60, 59, 297, 435,
|
|
/* 160 */ 436, 432, 432, 62, 62, 61, 61, 61, 61, 490,
|
|
/* 170 */ 63, 63, 63, 63, 64, 64, 65, 65, 65, 66,
|
|
/* 180 */ 210, 292, 257, 524, 295, 571, 113, 408, 522, 451,
|
|
/* 190 */ 331, 317, 407, 20, 418, 340, 519, 396, 532, 531,
|
|
/* 200 */ 505, 447, 212, 570, 569, 208, 530, 425, 431, 149,
|
|
/* 210 */ 150, 397, 398, 414, 41, 211, 151, 533, 372, 489,
|
|
/* 220 */ 261, 568, 259, 420, 292, 60, 59, 297, 435, 436,
|
|
/* 230 */ 432, 432, 62, 62, 61, 61, 61, 61, 317, 63,
|
|
/* 240 */ 63, 63, 63, 64, 64, 65, 65, 65, 66, 210,
|
|
/* 250 */ 425, 431, 447, 333, 215, 422, 422, 422, 363, 418,
|
|
/* 260 */ 414, 41, 397, 398, 366, 567, 211, 292, 60, 59,
|
|
/* 270 */ 297, 435, 436, 432, 432, 62, 62, 61, 61, 61,
|
|
/* 280 */ 61, 396, 63, 63, 63, 63, 64, 64, 65, 65,
|
|
/* 290 */ 65, 66, 210, 425, 431, 491, 300, 524, 474, 66,
|
|
/* 300 */ 210, 214, 474, 229, 411, 286, 534, 20, 449, 523,
|
|
/* 310 */ 168, 60, 59, 297, 435, 436, 432, 432, 62, 62,
|
|
/* 320 */ 61, 61, 61, 61, 474, 63, 63, 63, 63, 64,
|
|
/* 330 */ 64, 65, 65, 65, 66, 210, 209, 480, 317, 77,
|
|
/* 340 */ 292, 239, 300, 55, 484, 230, 397, 398, 181, 547,
|
|
/* 350 */ 494, 345, 348, 349, 67, 152, 69, 154, 339, 524,
|
|
/* 360 */ 414, 35, 350, 241, 221, 370, 425, 431, 578, 20,
|
|
/* 370 */ 164, 118, 243, 343, 248, 344, 176, 322, 442, 443,
|
|
/* 380 */ 414, 3, 80, 252, 60, 59, 297, 435, 436, 432,
|
|
/* 390 */ 432, 62, 62, 61, 61, 61, 61, 174, 63, 63,
|
|
/* 400 */ 63, 63, 64, 64, 65, 65, 65, 66, 210, 292,
|
|
/* 410 */ 221, 550, 236, 487, 510, 353, 317, 118, 243, 343,
|
|
/* 420 */ 248, 344, 176, 181, 317, 525, 345, 348, 349, 252,
|
|
/* 430 */ 223, 415, 155, 464, 511, 425, 431, 350, 414, 34,
|
|
/* 440 */ 465, 211, 177, 175, 160, 237, 414, 34, 338, 549,
|
|
/* 450 */ 449, 323, 168, 60, 59, 297, 435, 436, 432, 432,
|
|
/* 460 */ 62, 62, 61, 61, 61, 61, 415, 63, 63, 63,
|
|
/* 470 */ 63, 64, 64, 65, 65, 65, 66, 210, 292, 542,
|
|
/* 480 */ 335, 517, 504, 541, 456, 571, 302, 19, 331, 144,
|
|
/* 490 */ 317, 390, 317, 330, 2, 362, 457, 294, 483, 373,
|
|
/* 500 */ 269, 268, 252, 570, 425, 431, 588, 391, 388, 458,
|
|
/* 510 */ 208, 495, 414, 49, 414, 49, 303, 585, 892, 159,
|
|
/* 520 */ 892, 496, 60, 59, 297, 435, 436, 432, 432, 62,
|
|
/* 530 */ 62, 61, 61, 61, 61, 201, 63, 63, 63, 63,
|
|
/* 540 */ 64, 64, 65, 65, 65, 66, 210, 292, 317, 181,
|
|
/* 550 */ 439, 255, 345, 348, 349, 370, 153, 582, 308, 251,
|
|
/* 560 */ 309, 452, 76, 350, 78, 382, 211, 426, 427, 415,
|
|
/* 570 */ 414, 27, 319, 425, 431, 440, 1, 22, 585, 891,
|
|
/* 580 */ 396, 891, 544, 478, 320, 263, 438, 438, 429, 430,
|
|
/* 590 */ 415, 60, 59, 297, 435, 436, 432, 432, 62, 62,
|
|
/* 600 */ 61, 61, 61, 61, 328, 63, 63, 63, 63, 64,
|
|
/* 610 */ 64, 65, 65, 65, 66, 210, 292, 428, 582, 374,
|
|
/* 620 */ 224, 93, 517, 9, 336, 396, 557, 396, 456, 67,
|
|
/* 630 */ 396, 69, 154, 399, 400, 401, 320, 238, 438, 438,
|
|
/* 640 */ 457, 318, 425, 431, 299, 397, 398, 320, 433, 438,
|
|
/* 650 */ 438, 581, 291, 458, 225, 327, 5, 222, 546, 292,
|
|
/* 660 */ 60, 59, 297, 435, 436, 432, 432, 62, 62, 61,
|
|
/* 670 */ 61, 61, 61, 395, 63, 63, 63, 63, 64, 64,
|
|
/* 680 */ 65, 65, 65, 66, 210, 425, 431, 482, 313, 392,
|
|
/* 690 */ 397, 398, 397, 398, 207, 397, 398, 824, 273, 517,
|
|
/* 700 */ 251, 200, 292, 60, 59, 297, 435, 436, 432, 432,
|
|
/* 710 */ 62, 62, 61, 61, 61, 61, 470, 63, 63, 63,
|
|
/* 720 */ 63, 64, 64, 65, 65, 65, 66, 210, 425, 431,
|
|
/* 730 */ 171, 160, 263, 263, 304, 415, 276, 119, 274, 263,
|
|
/* 740 */ 517, 517, 263, 517, 192, 292, 60, 70, 297, 435,
|
|
/* 750 */ 436, 432, 432, 62, 62, 61, 61, 61, 61, 379,
|
|
/* 760 */ 63, 63, 63, 63, 64, 64, 65, 65, 65, 66,
|
|
/* 770 */ 210, 425, 431, 384, 559, 305, 306, 251, 415, 320,
|
|
/* 780 */ 560, 438, 438, 561, 540, 360, 540, 387, 292, 196,
|
|
/* 790 */ 59, 297, 435, 436, 432, 432, 62, 62, 61, 61,
|
|
/* 800 */ 61, 61, 371, 63, 63, 63, 63, 64, 64, 65,
|
|
/* 810 */ 65, 65, 66, 210, 425, 431, 396, 275, 251, 251,
|
|
/* 820 */ 172, 250, 418, 415, 386, 367, 178, 179, 180, 469,
|
|
/* 830 */ 311, 123, 156, 128, 297, 435, 436, 432, 432, 62,
|
|
/* 840 */ 62, 61, 61, 61, 61, 317, 63, 63, 63, 63,
|
|
/* 850 */ 64, 64, 65, 65, 65, 66, 210, 72, 324, 177,
|
|
/* 860 */ 4, 317, 263, 317, 296, 263, 415, 414, 28, 317,
|
|
/* 870 */ 263, 317, 321, 72, 324, 317, 4, 421, 445, 445,
|
|
/* 880 */ 296, 397, 398, 414, 23, 414, 32, 418, 321, 326,
|
|
/* 890 */ 329, 414, 53, 414, 52, 317, 158, 414, 98, 451,
|
|
/* 900 */ 317, 194, 317, 277, 317, 326, 378, 471, 502, 317,
|
|
/* 910 */ 478, 279, 478, 165, 294, 451, 317, 414, 96, 75,
|
|
/* 920 */ 74, 469, 414, 101, 414, 102, 414, 112, 73, 315,
|
|
/* 930 */ 316, 414, 114, 420, 448, 75, 74, 481, 414, 16,
|
|
/* 940 */ 381, 317, 183, 467, 73, 315, 316, 72, 324, 420,
|
|
/* 950 */ 4, 208, 317, 186, 296, 317, 499, 500, 476, 208,
|
|
/* 960 */ 173, 341, 321, 414, 99, 422, 422, 422, 423, 424,
|
|
/* 970 */ 11, 361, 380, 307, 414, 33, 415, 414, 97, 326,
|
|
/* 980 */ 460, 422, 422, 422, 423, 424, 11, 415, 413, 451,
|
|
/* 990 */ 413, 162, 412, 317, 412, 468, 226, 227, 228, 104,
|
|
/* 1000 */ 84, 473, 317, 509, 508, 317, 622, 477, 317, 75,
|
|
/* 1010 */ 74, 249, 205, 21, 281, 414, 24, 418, 73, 315,
|
|
/* 1020 */ 316, 282, 317, 420, 414, 54, 507, 414, 115, 317,
|
|
/* 1030 */ 414, 116, 506, 203, 147, 549, 244, 512, 526, 202,
|
|
/* 1040 */ 317, 513, 204, 317, 414, 117, 317, 245, 317, 18,
|
|
/* 1050 */ 317, 414, 25, 317, 256, 422, 422, 422, 423, 424,
|
|
/* 1060 */ 11, 258, 414, 36, 260, 414, 37, 317, 414, 26,
|
|
/* 1070 */ 414, 38, 414, 39, 262, 414, 40, 317, 514, 317,
|
|
/* 1080 */ 128, 317, 418, 317, 189, 377, 278, 268, 267, 414,
|
|
/* 1090 */ 42, 293, 317, 254, 317, 128, 208, 365, 8, 414,
|
|
/* 1100 */ 43, 414, 44, 414, 29, 414, 30, 352, 368, 128,
|
|
/* 1110 */ 317, 545, 317, 128, 414, 45, 414, 46, 317, 583,
|
|
/* 1120 */ 383, 553, 317, 173, 554, 317, 91, 317, 564, 369,
|
|
/* 1130 */ 91, 357, 414, 47, 414, 48, 580, 270, 290, 271,
|
|
/* 1140 */ 414, 31, 272, 556, 414, 10, 566, 414, 50, 414,
|
|
/* 1150 */ 51, 280, 283, 284, 577, 146, 463, 405, 584, 231,
|
|
/* 1160 */ 325, 419, 444, 466, 446, 246, 505, 552, 563, 515,
|
|
/* 1170 */ 516, 520, 163, 518, 394, 347, 7, 402, 403, 404,
|
|
/* 1180 */ 314, 84, 232, 334, 332, 83, 79, 416, 170, 57,
|
|
/* 1190 */ 213, 461, 125, 85, 337, 342, 492, 301, 233, 498,
|
|
/* 1200 */ 497, 105, 502, 219, 354, 247, 521, 234, 501, 235,
|
|
/* 1210 */ 287, 417, 503, 218, 527, 528, 529, 358, 240, 535,
|
|
/* 1220 */ 475, 242, 288, 479, 356, 184, 185, 121, 187, 132,
|
|
/* 1230 */ 188, 548, 537, 88, 190, 193, 364, 142, 375, 376,
|
|
/* 1240 */ 555, 133, 220, 562, 134, 310, 135, 138, 136, 574,
|
|
/* 1250 */ 575, 141, 576, 265, 579, 100, 538, 217, 393, 92,
|
|
/* 1260 */ 103, 95, 406, 623, 624, 166, 434, 167, 437, 71,
|
|
/* 1270 */ 453, 441, 450, 17, 143, 157, 169, 6, 111, 13,
|
|
/* 1280 */ 454, 455, 459, 472, 126, 81, 12, 127, 161, 485,
|
|
/* 1290 */ 486, 216, 86, 122, 106, 182, 253, 346, 312, 107,
|
|
/* 1300 */ 120, 87, 351, 108, 245, 355, 145, 536, 359, 129,
|
|
/* 1310 */ 173, 266, 191, 109, 289, 551, 130, 539, 195, 543,
|
|
/* 1320 */ 131, 14, 197, 199, 198, 558, 137, 139, 140, 110,
|
|
/* 1330 */ 15, 285, 572, 206, 389, 565, 385, 148, 586, 902,
|
|
/* 1340 */ 902, 902, 902, 902, 902, 89, 90,
|
|
};
|
|
static const YYCODETYPE yy_lookahead[] = {
|
|
/* 0 */ 16, 139, 140, 141, 168, 21, 144, 23, 69, 70,
|
|
/* 10 */ 71, 72, 176, 74, 75, 76, 77, 78, 79, 80,
|
|
/* 20 */ 81, 82, 83, 84, 78, 79, 42, 43, 73, 74,
|
|
/* 30 */ 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
|
|
/* 40 */ 1, 2, 23, 58, 60, 61, 62, 63, 64, 65,
|
|
/* 50 */ 66, 67, 68, 69, 70, 71, 72, 147, 74, 75,
|
|
/* 60 */ 76, 77, 78, 79, 80, 81, 82, 83, 84, 16,
|
|
/* 70 */ 185, 186, 88, 88, 110, 22, 217, 92, 219, 220,
|
|
/* 80 */ 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
|
|
/* 90 */ 84, 217, 218, 219, 220, 42, 43, 238, 188, 46,
|
|
/* 100 */ 78, 79, 80, 81, 82, 83, 84, 88, 89, 124,
|
|
/* 110 */ 125, 126, 16, 60, 61, 62, 63, 64, 65, 66,
|
|
/* 120 */ 67, 68, 69, 70, 71, 72, 147, 74, 75, 76,
|
|
/* 130 */ 77, 78, 79, 80, 81, 82, 83, 84, 42, 43,
|
|
/* 140 */ 44, 80, 81, 82, 83, 84, 23, 84, 169, 170,
|
|
/* 150 */ 19, 164, 165, 166, 23, 169, 60, 61, 62, 63,
|
|
/* 160 */ 64, 65, 66, 67, 68, 69, 70, 71, 72, 169,
|
|
/* 170 */ 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
|
|
/* 180 */ 84, 16, 14, 147, 150, 147, 21, 167, 168, 58,
|
|
/* 190 */ 211, 147, 156, 157, 23, 216, 176, 23, 181, 176,
|
|
/* 200 */ 177, 78, 79, 165, 166, 110, 183, 42, 43, 78,
|
|
/* 210 */ 79, 88, 89, 169, 170, 228, 180, 181, 123, 88,
|
|
/* 220 */ 52, 98, 54, 92, 16, 60, 61, 62, 63, 64,
|
|
/* 230 */ 65, 66, 67, 68, 69, 70, 71, 72, 147, 74,
|
|
/* 240 */ 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
|
|
/* 250 */ 42, 43, 78, 209, 210, 124, 125, 126, 224, 88,
|
|
/* 260 */ 169, 170, 88, 89, 230, 227, 228, 16, 60, 61,
|
|
/* 270 */ 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
|
|
/* 280 */ 72, 23, 74, 75, 76, 77, 78, 79, 80, 81,
|
|
/* 290 */ 82, 83, 84, 42, 43, 160, 16, 147, 161, 83,
|
|
/* 300 */ 84, 210, 161, 153, 169, 158, 156, 157, 161, 162,
|
|
/* 310 */ 163, 60, 61, 62, 63, 64, 65, 66, 67, 68,
|
|
/* 320 */ 69, 70, 71, 72, 161, 74, 75, 76, 77, 78,
|
|
/* 330 */ 79, 80, 81, 82, 83, 84, 192, 200, 147, 131,
|
|
/* 340 */ 16, 200, 16, 199, 20, 190, 88, 89, 90, 185,
|
|
/* 350 */ 186, 93, 94, 95, 217, 22, 219, 220, 147, 147,
|
|
/* 360 */ 169, 170, 104, 200, 84, 147, 42, 43, 156, 157,
|
|
/* 370 */ 90, 91, 92, 93, 94, 95, 96, 164, 165, 166,
|
|
/* 380 */ 169, 170, 131, 103, 60, 61, 62, 63, 64, 65,
|
|
/* 390 */ 66, 67, 68, 69, 70, 71, 72, 155, 74, 75,
|
|
/* 400 */ 76, 77, 78, 79, 80, 81, 82, 83, 84, 16,
|
|
/* 410 */ 84, 11, 221, 20, 30, 16, 147, 91, 92, 93,
|
|
/* 420 */ 94, 95, 96, 90, 147, 181, 93, 94, 95, 103,
|
|
/* 430 */ 212, 189, 155, 27, 50, 42, 43, 104, 169, 170,
|
|
/* 440 */ 34, 228, 43, 201, 202, 147, 169, 170, 206, 49,
|
|
/* 450 */ 161, 162, 163, 60, 61, 62, 63, 64, 65, 66,
|
|
/* 460 */ 67, 68, 69, 70, 71, 72, 189, 74, 75, 76,
|
|
/* 470 */ 77, 78, 79, 80, 81, 82, 83, 84, 16, 25,
|
|
/* 480 */ 211, 147, 20, 29, 12, 147, 102, 19, 211, 21,
|
|
/* 490 */ 147, 141, 147, 216, 144, 41, 24, 98, 20, 99,
|
|
/* 500 */ 100, 101, 103, 165, 42, 43, 0, 1, 2, 37,
|
|
/* 510 */ 110, 39, 169, 170, 169, 170, 182, 19, 20, 147,
|
|
/* 520 */ 22, 49, 60, 61, 62, 63, 64, 65, 66, 67,
|
|
/* 530 */ 68, 69, 70, 71, 72, 155, 74, 75, 76, 77,
|
|
/* 540 */ 78, 79, 80, 81, 82, 83, 84, 16, 147, 90,
|
|
/* 550 */ 20, 20, 93, 94, 95, 147, 155, 59, 215, 225,
|
|
/* 560 */ 215, 20, 130, 104, 132, 227, 228, 42, 43, 189,
|
|
/* 570 */ 169, 170, 16, 42, 43, 20, 19, 22, 19, 20,
|
|
/* 580 */ 23, 22, 18, 147, 106, 147, 108, 109, 63, 64,
|
|
/* 590 */ 189, 60, 61, 62, 63, 64, 65, 66, 67, 68,
|
|
/* 600 */ 69, 70, 71, 72, 186, 74, 75, 76, 77, 78,
|
|
/* 610 */ 79, 80, 81, 82, 83, 84, 16, 92, 59, 55,
|
|
/* 620 */ 212, 21, 147, 19, 147, 23, 188, 23, 12, 217,
|
|
/* 630 */ 23, 219, 220, 7, 8, 9, 106, 147, 108, 109,
|
|
/* 640 */ 24, 147, 42, 43, 208, 88, 89, 106, 92, 108,
|
|
/* 650 */ 109, 244, 245, 37, 145, 39, 191, 182, 94, 16,
|
|
/* 660 */ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
|
|
/* 670 */ 70, 71, 72, 147, 74, 75, 76, 77, 78, 79,
|
|
/* 680 */ 80, 81, 82, 83, 84, 42, 43, 80, 142, 143,
|
|
/* 690 */ 88, 89, 88, 89, 148, 88, 89, 133, 14, 147,
|
|
/* 700 */ 225, 155, 16, 60, 61, 62, 63, 64, 65, 66,
|
|
/* 710 */ 67, 68, 69, 70, 71, 72, 114, 74, 75, 76,
|
|
/* 720 */ 77, 78, 79, 80, 81, 82, 83, 84, 42, 43,
|
|
/* 730 */ 201, 202, 147, 147, 182, 189, 52, 147, 54, 147,
|
|
/* 740 */ 147, 147, 147, 147, 155, 16, 60, 61, 62, 63,
|
|
/* 750 */ 64, 65, 66, 67, 68, 69, 70, 71, 72, 213,
|
|
/* 760 */ 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
|
|
/* 770 */ 84, 42, 43, 188, 188, 182, 182, 225, 189, 106,
|
|
/* 780 */ 188, 108, 109, 188, 99, 100, 101, 241, 16, 155,
|
|
/* 790 */ 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
|
|
/* 800 */ 71, 72, 213, 74, 75, 76, 77, 78, 79, 80,
|
|
/* 810 */ 81, 82, 83, 84, 42, 43, 23, 133, 225, 225,
|
|
/* 820 */ 21, 225, 23, 189, 239, 236, 99, 100, 101, 22,
|
|
/* 830 */ 242, 243, 155, 22, 62, 63, 64, 65, 66, 67,
|
|
/* 840 */ 68, 69, 70, 71, 72, 147, 74, 75, 76, 77,
|
|
/* 850 */ 78, 79, 80, 81, 82, 83, 84, 16, 17, 43,
|
|
/* 860 */ 19, 147, 147, 147, 23, 147, 189, 169, 170, 147,
|
|
/* 870 */ 147, 147, 31, 16, 17, 147, 19, 147, 124, 125,
|
|
/* 880 */ 23, 88, 89, 169, 170, 169, 170, 88, 31, 48,
|
|
/* 890 */ 147, 169, 170, 169, 170, 147, 89, 169, 170, 58,
|
|
/* 900 */ 147, 22, 147, 188, 147, 48, 188, 114, 97, 147,
|
|
/* 910 */ 147, 188, 147, 19, 98, 58, 147, 169, 170, 78,
|
|
/* 920 */ 79, 114, 169, 170, 169, 170, 169, 170, 87, 88,
|
|
/* 930 */ 89, 169, 170, 92, 161, 78, 79, 80, 169, 170,
|
|
/* 940 */ 91, 147, 155, 22, 87, 88, 89, 16, 17, 92,
|
|
/* 950 */ 19, 110, 147, 155, 23, 147, 7, 8, 20, 110,
|
|
/* 960 */ 22, 80, 31, 169, 170, 124, 125, 126, 127, 128,
|
|
/* 970 */ 129, 208, 123, 208, 169, 170, 189, 169, 170, 48,
|
|
/* 980 */ 147, 124, 125, 126, 127, 128, 129, 189, 107, 58,
|
|
/* 990 */ 107, 5, 111, 147, 111, 203, 10, 11, 12, 13,
|
|
/* 1000 */ 121, 147, 147, 91, 92, 147, 112, 147, 147, 78,
|
|
/* 1010 */ 79, 147, 26, 19, 28, 169, 170, 23, 87, 88,
|
|
/* 1020 */ 89, 35, 147, 92, 169, 170, 178, 169, 170, 147,
|
|
/* 1030 */ 169, 170, 147, 47, 113, 49, 92, 178, 147, 53,
|
|
/* 1040 */ 147, 178, 56, 147, 169, 170, 147, 103, 147, 19,
|
|
/* 1050 */ 147, 169, 170, 147, 147, 124, 125, 126, 127, 128,
|
|
/* 1060 */ 129, 147, 169, 170, 147, 169, 170, 147, 169, 170,
|
|
/* 1070 */ 169, 170, 169, 170, 147, 169, 170, 147, 20, 147,
|
|
/* 1080 */ 22, 147, 88, 147, 232, 99, 100, 101, 147, 169,
|
|
/* 1090 */ 170, 105, 147, 20, 147, 22, 110, 147, 68, 169,
|
|
/* 1100 */ 170, 169, 170, 169, 170, 169, 170, 20, 147, 22,
|
|
/* 1110 */ 147, 20, 147, 22, 169, 170, 169, 170, 147, 20,
|
|
/* 1120 */ 134, 20, 147, 22, 20, 147, 22, 147, 20, 147,
|
|
/* 1130 */ 22, 233, 169, 170, 169, 170, 20, 147, 22, 147,
|
|
/* 1140 */ 169, 170, 147, 147, 169, 170, 147, 169, 170, 169,
|
|
/* 1150 */ 170, 147, 147, 147, 147, 191, 172, 149, 59, 193,
|
|
/* 1160 */ 223, 161, 229, 172, 229, 172, 177, 194, 194, 172,
|
|
/* 1170 */ 161, 161, 6, 172, 146, 173, 22, 146, 146, 146,
|
|
/* 1180 */ 154, 121, 194, 118, 116, 119, 130, 189, 112, 120,
|
|
/* 1190 */ 222, 152, 152, 98, 115, 98, 171, 40, 195, 179,
|
|
/* 1200 */ 171, 19, 97, 84, 15, 171, 179, 196, 173, 197,
|
|
/* 1210 */ 174, 198, 171, 226, 171, 171, 171, 38, 204, 152,
|
|
/* 1220 */ 205, 204, 174, 205, 152, 151, 151, 60, 151, 19,
|
|
/* 1230 */ 152, 184, 152, 130, 151, 184, 152, 214, 152, 15,
|
|
/* 1240 */ 194, 187, 226, 194, 187, 152, 187, 184, 187, 33,
|
|
/* 1250 */ 152, 214, 152, 234, 137, 159, 235, 175, 1, 237,
|
|
/* 1260 */ 175, 237, 20, 112, 112, 112, 92, 112, 107, 19,
|
|
/* 1270 */ 11, 20, 20, 231, 19, 19, 22, 117, 240, 117,
|
|
/* 1280 */ 20, 20, 20, 114, 19, 22, 22, 20, 112, 20,
|
|
/* 1290 */ 20, 44, 19, 243, 19, 96, 20, 44, 246, 19,
|
|
/* 1300 */ 32, 19, 44, 19, 103, 16, 21, 17, 36, 98,
|
|
/* 1310 */ 22, 133, 98, 19, 5, 1, 45, 51, 122, 45,
|
|
/* 1320 */ 102, 19, 113, 115, 14, 17, 113, 102, 122, 14,
|
|
/* 1330 */ 19, 136, 20, 135, 3, 123, 57, 19, 4, 247,
|
|
/* 1340 */ 247, 247, 247, 247, 247, 68, 68,
|
|
};
|
|
#define YY_SHIFT_USE_DFLT (-62)
|
|
#define YY_SHIFT_MAX 389
|
|
static const short yy_shift_ofst[] = {
|
|
/* 0 */ 39, 841, 986, -16, 841, 931, 931, 258, 123, -36,
|
|
/* 10 */ 96, 931, 931, 931, 931, 931, -45, 400, 174, 19,
|
|
/* 20 */ 171, -54, -54, 53, 165, 208, 251, 324, 393, 462,
|
|
/* 30 */ 531, 600, 643, 686, 643, 643, 643, 643, 643, 643,
|
|
/* 40 */ 643, 643, 643, 643, 643, 643, 643, 643, 643, 643,
|
|
/* 50 */ 643, 643, 729, 772, 772, 857, 931, 931, 931, 931,
|
|
/* 60 */ 931, 931, 931, 931, 931, 931, 931, 931, 931, 931,
|
|
/* 70 */ 931, 931, 931, 931, 931, 931, 931, 931, 931, 931,
|
|
/* 80 */ 931, 931, 931, 931, 931, 931, 931, 931, 931, 931,
|
|
/* 90 */ 931, 931, 931, 931, 931, 931, -61, -61, 6, 6,
|
|
/* 100 */ 280, 22, 61, 399, 564, 19, 19, 19, 19, 19,
|
|
/* 110 */ 19, 19, 216, 171, 63, -62, -62, -62, 131, 326,
|
|
/* 120 */ 472, 472, 498, 559, 506, 799, 19, 799, 19, 19,
|
|
/* 130 */ 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
|
|
/* 140 */ 19, 849, 95, -36, -36, -36, -62, -62, -62, -15,
|
|
/* 150 */ -15, 333, 459, 478, 557, 530, 541, 616, 602, 793,
|
|
/* 160 */ 604, 607, 626, 19, 19, 881, 19, 19, 994, 19,
|
|
/* 170 */ 19, 807, 19, 19, 673, 807, 19, 19, 384, 384,
|
|
/* 180 */ 384, 19, 19, 673, 19, 19, 673, 19, 454, 685,
|
|
/* 190 */ 19, 19, 673, 19, 19, 19, 673, 19, 19, 19,
|
|
/* 200 */ 673, 673, 19, 19, 19, 19, 19, 468, 883, 921,
|
|
/* 210 */ 171, 754, 754, 432, 406, 406, 406, 816, 406, 171,
|
|
/* 220 */ 406, 171, 811, 879, 879, 1166, 1166, 1166, 1166, 1154,
|
|
/* 230 */ -36, 1060, 1065, 1066, 1068, 1069, 1056, 1076, 1076, 1095,
|
|
/* 240 */ 1079, 1095, 1079, 1097, 1097, 1157, 1097, 1105, 1097, 1182,
|
|
/* 250 */ 1119, 1119, 1157, 1097, 1097, 1097, 1182, 1189, 1076, 1189,
|
|
/* 260 */ 1076, 1189, 1076, 1076, 1179, 1103, 1189, 1076, 1167, 1167,
|
|
/* 270 */ 1210, 1060, 1076, 1224, 1224, 1224, 1224, 1060, 1167, 1210,
|
|
/* 280 */ 1076, 1216, 1216, 1076, 1076, 1117, -62, -62, -62, -62,
|
|
/* 290 */ -62, -62, 525, 684, 727, 168, 894, 556, 555, 938,
|
|
/* 300 */ 944, 949, 912, 1058, 1073, 1087, 1091, 1101, 1104, 1108,
|
|
/* 310 */ 1030, 1116, 1099, 1257, 1242, 1151, 1152, 1153, 1155, 1174,
|
|
/* 320 */ 1161, 1250, 1251, 1252, 1255, 1259, 1256, 1260, 1254, 1261,
|
|
/* 330 */ 1262, 1263, 1160, 1264, 1162, 1263, 1169, 1265, 1267, 1176,
|
|
/* 340 */ 1269, 1270, 1268, 1247, 1273, 1253, 1275, 1276, 1280, 1282,
|
|
/* 350 */ 1258, 1284, 1199, 1201, 1289, 1290, 1285, 1211, 1272, 1266,
|
|
/* 360 */ 1271, 1288, 1274, 1178, 1214, 1294, 1309, 1314, 1218, 1277,
|
|
/* 370 */ 1278, 1196, 1302, 1209, 1310, 1208, 1308, 1213, 1225, 1206,
|
|
/* 380 */ 1311, 1212, 1312, 1315, 1279, 1198, 1195, 1318, 1331, 1334,
|
|
};
|
|
#define YY_REDUCE_USE_DFLT (-165)
|
|
#define YY_REDUCE_MAX 291
|
|
static const short yy_reduce_ofst[] = {
|
|
/* 0 */ -138, 277, 546, 137, 401, -21, 44, 36, 38, 242,
|
|
/* 10 */ -141, 191, 91, 269, 343, 345, -126, 589, 338, 150,
|
|
/* 20 */ 147, -13, 213, 412, 412, 412, 412, 412, 412, 412,
|
|
/* 30 */ 412, 412, 412, 412, 412, 412, 412, 412, 412, 412,
|
|
/* 40 */ 412, 412, 412, 412, 412, 412, 412, 412, 412, 412,
|
|
/* 50 */ 412, 412, 412, 412, 412, 211, 698, 714, 716, 722,
|
|
/* 60 */ 724, 728, 748, 753, 755, 757, 762, 769, 794, 805,
|
|
/* 70 */ 808, 846, 855, 858, 861, 875, 882, 893, 896, 899,
|
|
/* 80 */ 901, 903, 906, 920, 930, 932, 934, 936, 945, 947,
|
|
/* 90 */ 963, 965, 971, 975, 978, 980, 412, 412, 412, 412,
|
|
/* 100 */ 20, 412, 412, 23, 34, 334, 475, 552, 593, 594,
|
|
/* 110 */ 585, 212, 412, 289, 412, 412, 412, 412, 135, -164,
|
|
/* 120 */ -115, 164, 407, 407, 350, 141, 436, 163, 596, -90,
|
|
/* 130 */ 763, 218, 765, 438, 586, 592, 595, 715, 718, 408,
|
|
/* 140 */ 723, 380, 634, 677, 787, 798, 144, 529, 588, -14,
|
|
/* 150 */ 0, 17, 244, 155, 298, 155, 155, 418, 372, 477,
|
|
/* 160 */ 490, 494, 509, 526, 590, 465, 494, 730, 773, 743,
|
|
/* 170 */ 833, 792, 854, 860, 155, 792, 864, 885, 848, 859,
|
|
/* 180 */ 863, 891, 907, 155, 914, 917, 155, 927, 852, 898,
|
|
/* 190 */ 941, 950, 155, 961, 982, 990, 155, 992, 995, 996,
|
|
/* 200 */ 155, 155, 999, 1004, 1005, 1006, 1007, 1008, 964, 966,
|
|
/* 210 */ 1000, 933, 935, 937, 984, 991, 993, 989, 997, 1009,
|
|
/* 220 */ 1001, 1010, 1002, 973, 974, 1028, 1031, 1032, 1033, 1026,
|
|
/* 230 */ 998, 988, 1003, 1011, 1012, 1013, 968, 1039, 1040, 1014,
|
|
/* 240 */ 1015, 1017, 1018, 1025, 1029, 1020, 1034, 1035, 1041, 1036,
|
|
/* 250 */ 987, 1016, 1027, 1043, 1044, 1045, 1048, 1074, 1067, 1075,
|
|
/* 260 */ 1072, 1077, 1078, 1080, 1019, 1021, 1083, 1084, 1047, 1051,
|
|
/* 270 */ 1023, 1046, 1086, 1054, 1057, 1059, 1061, 1049, 1063, 1037,
|
|
/* 280 */ 1093, 1022, 1024, 1098, 1100, 1038, 1096, 1082, 1085, 1042,
|
|
/* 290 */ 1050, 1052,
|
|
};
|
|
static const YYACTIONTYPE yy_default[] = {
|
|
/* 0 */ 594, 819, 900, 709, 900, 819, 900, 900, 846, 713,
|
|
/* 10 */ 875, 817, 900, 900, 900, 900, 791, 900, 846, 900,
|
|
/* 20 */ 625, 846, 846, 742, 900, 900, 900, 900, 900, 900,
|
|
/* 30 */ 900, 900, 743, 900, 821, 816, 812, 814, 813, 820,
|
|
/* 40 */ 744, 733, 740, 747, 725, 859, 749, 750, 756, 757,
|
|
/* 50 */ 876, 874, 779, 778, 797, 900, 900, 900, 900, 900,
|
|
/* 60 */ 900, 900, 900, 900, 900, 900, 900, 900, 900, 900,
|
|
/* 70 */ 900, 900, 900, 900, 900, 900, 900, 900, 900, 900,
|
|
/* 80 */ 900, 900, 900, 900, 900, 900, 900, 900, 900, 900,
|
|
/* 90 */ 900, 900, 900, 900, 900, 900, 781, 803, 780, 790,
|
|
/* 100 */ 618, 782, 783, 678, 613, 900, 900, 900, 900, 900,
|
|
/* 110 */ 900, 900, 784, 900, 785, 798, 799, 800, 900, 900,
|
|
/* 120 */ 900, 900, 900, 900, 594, 709, 900, 709, 900, 900,
|
|
/* 130 */ 900, 900, 900, 900, 900, 900, 900, 900, 900, 900,
|
|
/* 140 */ 900, 900, 900, 900, 900, 900, 703, 713, 893, 900,
|
|
/* 150 */ 900, 669, 900, 900, 900, 900, 900, 900, 900, 900,
|
|
/* 160 */ 900, 900, 601, 599, 900, 701, 900, 900, 627, 900,
|
|
/* 170 */ 900, 711, 900, 900, 716, 717, 900, 900, 900, 900,
|
|
/* 180 */ 900, 900, 900, 615, 900, 900, 690, 900, 852, 900,
|
|
/* 190 */ 900, 900, 866, 900, 900, 900, 864, 900, 900, 900,
|
|
/* 200 */ 692, 752, 833, 900, 879, 881, 900, 900, 701, 710,
|
|
/* 210 */ 900, 900, 900, 815, 736, 736, 736, 648, 736, 900,
|
|
/* 220 */ 736, 900, 651, 746, 746, 598, 598, 598, 598, 668,
|
|
/* 230 */ 900, 746, 737, 739, 729, 741, 900, 718, 718, 726,
|
|
/* 240 */ 728, 726, 728, 680, 680, 665, 680, 651, 680, 825,
|
|
/* 250 */ 830, 830, 665, 680, 680, 680, 825, 610, 718, 610,
|
|
/* 260 */ 718, 610, 718, 718, 856, 858, 610, 718, 682, 682,
|
|
/* 270 */ 758, 746, 718, 689, 689, 689, 689, 746, 682, 758,
|
|
/* 280 */ 718, 878, 878, 718, 718, 886, 635, 653, 653, 861,
|
|
/* 290 */ 893, 898, 900, 900, 900, 900, 765, 900, 900, 900,
|
|
/* 300 */ 900, 900, 900, 900, 900, 900, 900, 900, 900, 900,
|
|
/* 310 */ 839, 900, 900, 900, 900, 770, 766, 900, 767, 900,
|
|
/* 320 */ 695, 900, 900, 900, 900, 900, 900, 900, 900, 900,
|
|
/* 330 */ 900, 818, 900, 730, 900, 738, 900, 900, 900, 900,
|
|
/* 340 */ 900, 900, 900, 900, 900, 900, 900, 900, 900, 900,
|
|
/* 350 */ 900, 900, 900, 900, 900, 900, 900, 900, 900, 900,
|
|
/* 360 */ 854, 855, 900, 900, 900, 900, 900, 900, 900, 900,
|
|
/* 370 */ 900, 900, 900, 900, 900, 900, 900, 900, 900, 900,
|
|
/* 380 */ 900, 900, 900, 900, 885, 900, 900, 888, 595, 900,
|
|
/* 390 */ 589, 592, 591, 593, 597, 600, 622, 623, 624, 602,
|
|
/* 400 */ 603, 604, 605, 606, 607, 608, 614, 616, 634, 636,
|
|
/* 410 */ 620, 638, 699, 700, 762, 693, 694, 698, 621, 773,
|
|
/* 420 */ 764, 768, 769, 771, 772, 786, 787, 789, 795, 802,
|
|
/* 430 */ 805, 788, 793, 794, 796, 801, 804, 696, 697, 808,
|
|
/* 440 */ 628, 629, 632, 633, 842, 844, 843, 845, 631, 630,
|
|
/* 450 */ 774, 777, 810, 811, 867, 868, 869, 870, 871, 806,
|
|
/* 460 */ 719, 809, 792, 731, 734, 735, 732, 702, 712, 721,
|
|
/* 470 */ 722, 723, 724, 707, 708, 714, 727, 760, 761, 715,
|
|
/* 480 */ 704, 705, 706, 807, 763, 775, 776, 639, 640, 770,
|
|
/* 490 */ 641, 642, 643, 681, 684, 685, 686, 644, 663, 666,
|
|
/* 500 */ 667, 645, 652, 646, 647, 654, 655, 656, 659, 660,
|
|
/* 510 */ 661, 662, 657, 658, 826, 827, 831, 829, 828, 649,
|
|
/* 520 */ 650, 664, 637, 626, 619, 670, 673, 674, 675, 676,
|
|
/* 530 */ 677, 679, 671, 672, 617, 609, 611, 720, 848, 857,
|
|
/* 540 */ 853, 849, 850, 851, 612, 822, 823, 683, 754, 755,
|
|
/* 550 */ 847, 860, 862, 759, 863, 865, 890, 687, 688, 691,
|
|
/* 560 */ 832, 872, 745, 748, 751, 753, 834, 835, 836, 837,
|
|
/* 570 */ 840, 841, 838, 873, 877, 880, 882, 883, 884, 887,
|
|
/* 580 */ 889, 894, 895, 896, 899, 897, 596, 590,
|
|
};
|
|
#define YY_SZ_ACTTAB (int)(sizeof(yy_action)/sizeof(yy_action[0]))
|
|
|
|
/* The next table maps tokens into fallback tokens. If a construct
|
|
** like the following:
|
|
**
|
|
** %fallback ID X Y Z.
|
|
**
|
|
** appears in the grammer, then ID becomes a fallback token for X, Y,
|
|
** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
|
|
** but it does not parse, the type of the token is changed to ID and
|
|
** the parse is retried before an error is thrown.
|
|
*/
|
|
#ifdef YYFALLBACK
|
|
static const YYCODETYPE yyFallback[] = {
|
|
0, /* $ => nothing */
|
|
0, /* SEMI => nothing */
|
|
23, /* EXPLAIN => ID */
|
|
23, /* QUERY => ID */
|
|
23, /* PLAN => ID */
|
|
23, /* BEGIN => ID */
|
|
0, /* TRANSACTION => nothing */
|
|
23, /* DEFERRED => ID */
|
|
23, /* IMMEDIATE => ID */
|
|
23, /* EXCLUSIVE => ID */
|
|
0, /* COMMIT => nothing */
|
|
23, /* END => ID */
|
|
0, /* ROLLBACK => nothing */
|
|
0, /* CREATE => nothing */
|
|
0, /* TABLE => nothing */
|
|
23, /* IF => ID */
|
|
0, /* NOT => nothing */
|
|
0, /* EXISTS => nothing */
|
|
23, /* TEMP => ID */
|
|
0, /* LP => nothing */
|
|
0, /* RP => nothing */
|
|
0, /* AS => nothing */
|
|
0, /* COMMA => nothing */
|
|
0, /* ID => nothing */
|
|
23, /* ABORT => ID */
|
|
23, /* AFTER => ID */
|
|
23, /* ANALYZE => ID */
|
|
23, /* ASC => ID */
|
|
23, /* ATTACH => ID */
|
|
23, /* BEFORE => ID */
|
|
23, /* CASCADE => ID */
|
|
23, /* CAST => ID */
|
|
23, /* CONFLICT => ID */
|
|
23, /* DATABASE => ID */
|
|
23, /* DESC => ID */
|
|
23, /* DETACH => ID */
|
|
23, /* EACH => ID */
|
|
23, /* FAIL => ID */
|
|
23, /* FOR => ID */
|
|
23, /* IGNORE => ID */
|
|
23, /* INITIALLY => ID */
|
|
23, /* INSTEAD => ID */
|
|
23, /* LIKE_KW => ID */
|
|
23, /* MATCH => ID */
|
|
23, /* KEY => ID */
|
|
23, /* OF => ID */
|
|
23, /* OFFSET => ID */
|
|
23, /* PRAGMA => ID */
|
|
23, /* RAISE => ID */
|
|
23, /* REPLACE => ID */
|
|
23, /* RESTRICT => ID */
|
|
23, /* ROW => ID */
|
|
23, /* TRIGGER => ID */
|
|
23, /* VACUUM => ID */
|
|
23, /* VIEW => ID */
|
|
23, /* VIRTUAL => ID */
|
|
23, /* REINDEX => ID */
|
|
23, /* RENAME => ID */
|
|
23, /* CTIME_KW => ID */
|
|
0, /* ANY => nothing */
|
|
0, /* OR => nothing */
|
|
0, /* AND => nothing */
|
|
0, /* IS => nothing */
|
|
0, /* BETWEEN => nothing */
|
|
0, /* IN => nothing */
|
|
0, /* ISNULL => nothing */
|
|
0, /* NOTNULL => nothing */
|
|
0, /* NE => nothing */
|
|
0, /* EQ => nothing */
|
|
0, /* GT => nothing */
|
|
0, /* LE => nothing */
|
|
0, /* LT => nothing */
|
|
0, /* GE => nothing */
|
|
0, /* ESCAPE => nothing */
|
|
0, /* BITAND => nothing */
|
|
0, /* BITOR => nothing */
|
|
0, /* LSHIFT => nothing */
|
|
0, /* RSHIFT => nothing */
|
|
0, /* PLUS => nothing */
|
|
0, /* MINUS => nothing */
|
|
0, /* STAR => nothing */
|
|
0, /* SLASH => nothing */
|
|
0, /* REM => nothing */
|
|
0, /* CONCAT => nothing */
|
|
0, /* COLLATE => nothing */
|
|
0, /* UMINUS => nothing */
|
|
0, /* UPLUS => nothing */
|
|
0, /* BITNOT => nothing */
|
|
0, /* STRING => nothing */
|
|
0, /* JOIN_KW => nothing */
|
|
0, /* CONSTRAINT => nothing */
|
|
0, /* DEFAULT => nothing */
|
|
0, /* NULL => nothing */
|
|
0, /* PRIMARY => nothing */
|
|
0, /* UNIQUE => nothing */
|
|
0, /* CHECK => nothing */
|
|
0, /* REFERENCES => nothing */
|
|
0, /* AUTOINCR => nothing */
|
|
0, /* ON => nothing */
|
|
0, /* DELETE => nothing */
|
|
0, /* UPDATE => nothing */
|
|
0, /* INSERT => nothing */
|
|
0, /* SET => nothing */
|
|
0, /* DEFERRABLE => nothing */
|
|
0, /* FOREIGN => nothing */
|
|
0, /* DROP => nothing */
|
|
0, /* UNION => nothing */
|
|
0, /* ALL => nothing */
|
|
0, /* EXCEPT => nothing */
|
|
0, /* INTERSECT => nothing */
|
|
0, /* SELECT => nothing */
|
|
0, /* DISTINCT => nothing */
|
|
0, /* DOT => nothing */
|
|
0, /* FROM => nothing */
|
|
0, /* JOIN => nothing */
|
|
0, /* USING => nothing */
|
|
0, /* ORDER => nothing */
|
|
0, /* BY => nothing */
|
|
0, /* GROUP => nothing */
|
|
0, /* HAVING => nothing */
|
|
0, /* LIMIT => nothing */
|
|
0, /* WHERE => nothing */
|
|
0, /* INTO => nothing */
|
|
0, /* VALUES => nothing */
|
|
0, /* INTEGER => nothing */
|
|
0, /* FLOAT => nothing */
|
|
0, /* BLOB => nothing */
|
|
0, /* REGISTER => nothing */
|
|
0, /* VARIABLE => nothing */
|
|
0, /* CASE => nothing */
|
|
0, /* WHEN => nothing */
|
|
0, /* THEN => nothing */
|
|
0, /* ELSE => nothing */
|
|
0, /* INDEX => nothing */
|
|
0, /* ALTER => nothing */
|
|
0, /* TO => nothing */
|
|
0, /* ADD => nothing */
|
|
0, /* COLUMNKW => nothing */
|
|
};
|
|
#endif /* YYFALLBACK */
|
|
|
|
/* The following structure represents a single element of the
|
|
** parser's stack. Information stored includes:
|
|
**
|
|
** + The state number for the parser at this level of the stack.
|
|
**
|
|
** + The value of the token stored at this level of the stack.
|
|
** (In other words, the "major" token.)
|
|
**
|
|
** + The semantic value stored at this level of the stack. This is
|
|
** the information used by the action routines in the grammar.
|
|
** It is sometimes called the "minor" token.
|
|
*/
|
|
struct yyStackEntry {
|
|
int stateno; /* The state-number */
|
|
int major; /* The major token value. This is the code
|
|
** number for the token at this stack level */
|
|
YYMINORTYPE minor; /* The user-supplied minor token value. This
|
|
** is the value of the token */
|
|
};
|
|
typedef struct yyStackEntry yyStackEntry;
|
|
|
|
/* The state of the parser is completely contained in an instance of
|
|
** the following structure */
|
|
struct yyParser {
|
|
int yyidx; /* Index of top element in stack */
|
|
int yyerrcnt; /* Shifts left before out of the error */
|
|
sqlite3ParserARG_SDECL /* A place to hold %extra_argument */
|
|
#if YYSTACKDEPTH<=0
|
|
int yystksz; /* Current side of the stack */
|
|
yyStackEntry *yystack; /* The parser's stack */
|
|
#else
|
|
yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */
|
|
#endif
|
|
};
|
|
typedef struct yyParser yyParser;
|
|
|
|
#ifndef NDEBUG
|
|
static FILE *yyTraceFILE = 0;
|
|
static char *yyTracePrompt = 0;
|
|
#endif /* NDEBUG */
|
|
|
|
#ifndef NDEBUG
|
|
/*
|
|
** Turn parser tracing on by giving a stream to which to write the trace
|
|
** and a prompt to preface each trace message. Tracing is turned off
|
|
** by making either argument NULL
|
|
**
|
|
** Inputs:
|
|
** <ul>
|
|
** <li> A FILE* to which trace output should be written.
|
|
** If NULL, then tracing is turned off.
|
|
** <li> A prefix string written at the beginning of every
|
|
** line of trace output. If NULL, then tracing is
|
|
** turned off.
|
|
** </ul>
|
|
**
|
|
** Outputs:
|
|
** None.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3ParserTrace(FILE *TraceFILE, char *zTracePrompt){
|
|
yyTraceFILE = TraceFILE;
|
|
yyTracePrompt = zTracePrompt;
|
|
if( yyTraceFILE==0 ) yyTracePrompt = 0;
|
|
else if( yyTracePrompt==0 ) yyTraceFILE = 0;
|
|
}
|
|
#endif /* NDEBUG */
|
|
|
|
#ifndef NDEBUG
|
|
/* For tracing shifts, the names of all terminals and nonterminals
|
|
** are required. The following table supplies these names */
|
|
static const char *const yyTokenName[] = {
|
|
"$", "SEMI", "EXPLAIN", "QUERY",
|
|
"PLAN", "BEGIN", "TRANSACTION", "DEFERRED",
|
|
"IMMEDIATE", "EXCLUSIVE", "COMMIT", "END",
|
|
"ROLLBACK", "CREATE", "TABLE", "IF",
|
|
"NOT", "EXISTS", "TEMP", "LP",
|
|
"RP", "AS", "COMMA", "ID",
|
|
"ABORT", "AFTER", "ANALYZE", "ASC",
|
|
"ATTACH", "BEFORE", "CASCADE", "CAST",
|
|
"CONFLICT", "DATABASE", "DESC", "DETACH",
|
|
"EACH", "FAIL", "FOR", "IGNORE",
|
|
"INITIALLY", "INSTEAD", "LIKE_KW", "MATCH",
|
|
"KEY", "OF", "OFFSET", "PRAGMA",
|
|
"RAISE", "REPLACE", "RESTRICT", "ROW",
|
|
"TRIGGER", "VACUUM", "VIEW", "VIRTUAL",
|
|
"REINDEX", "RENAME", "CTIME_KW", "ANY",
|
|
"OR", "AND", "IS", "BETWEEN",
|
|
"IN", "ISNULL", "NOTNULL", "NE",
|
|
"EQ", "GT", "LE", "LT",
|
|
"GE", "ESCAPE", "BITAND", "BITOR",
|
|
"LSHIFT", "RSHIFT", "PLUS", "MINUS",
|
|
"STAR", "SLASH", "REM", "CONCAT",
|
|
"COLLATE", "UMINUS", "UPLUS", "BITNOT",
|
|
"STRING", "JOIN_KW", "CONSTRAINT", "DEFAULT",
|
|
"NULL", "PRIMARY", "UNIQUE", "CHECK",
|
|
"REFERENCES", "AUTOINCR", "ON", "DELETE",
|
|
"UPDATE", "INSERT", "SET", "DEFERRABLE",
|
|
"FOREIGN", "DROP", "UNION", "ALL",
|
|
"EXCEPT", "INTERSECT", "SELECT", "DISTINCT",
|
|
"DOT", "FROM", "JOIN", "USING",
|
|
"ORDER", "BY", "GROUP", "HAVING",
|
|
"LIMIT", "WHERE", "INTO", "VALUES",
|
|
"INTEGER", "FLOAT", "BLOB", "REGISTER",
|
|
"VARIABLE", "CASE", "WHEN", "THEN",
|
|
"ELSE", "INDEX", "ALTER", "TO",
|
|
"ADD", "COLUMNKW", "error", "input",
|
|
"cmdlist", "ecmd", "cmdx", "cmd",
|
|
"explain", "transtype", "trans_opt", "nm",
|
|
"create_table", "create_table_args", "temp", "ifnotexists",
|
|
"dbnm", "columnlist", "conslist_opt", "select",
|
|
"column", "columnid", "type", "carglist",
|
|
"id", "ids", "typetoken", "typename",
|
|
"signed", "plus_num", "minus_num", "carg",
|
|
"ccons", "term", "expr", "onconf",
|
|
"sortorder", "autoinc", "idxlist_opt", "refargs",
|
|
"defer_subclause", "refarg", "refact", "init_deferred_pred_opt",
|
|
"conslist", "tcons", "idxlist", "defer_subclause_opt",
|
|
"orconf", "resolvetype", "raisetype", "ifexists",
|
|
"fullname", "oneselect", "multiselect_op", "distinct",
|
|
"selcollist", "from", "where_opt", "groupby_opt",
|
|
"having_opt", "orderby_opt", "limit_opt", "sclp",
|
|
"as", "seltablist", "stl_prefix", "joinop",
|
|
"on_opt", "using_opt", "seltablist_paren", "joinop2",
|
|
"inscollist", "sortlist", "sortitem", "nexprlist",
|
|
"setlist", "insert_cmd", "inscollist_opt", "itemlist",
|
|
"exprlist", "likeop", "escape", "between_op",
|
|
"in_op", "case_operand", "case_exprlist", "case_else",
|
|
"uniqueflag", "idxitem", "collate", "nmnum",
|
|
"plus_opt", "number", "trigger_decl", "trigger_cmd_list",
|
|
"trigger_time", "trigger_event", "foreach_clause", "when_clause",
|
|
"trigger_cmd", "database_kw_opt", "key_opt", "add_column_fullname",
|
|
"kwcolumn_opt", "create_vtab", "vtabarglist", "vtabarg",
|
|
"vtabargtoken", "lp", "anylist",
|
|
};
|
|
#endif /* NDEBUG */
|
|
|
|
#ifndef NDEBUG
|
|
/* For tracing reduce actions, the names of all rules are required.
|
|
*/
|
|
static const char *const yyRuleName[] = {
|
|
/* 0 */ "input ::= cmdlist",
|
|
/* 1 */ "cmdlist ::= cmdlist ecmd",
|
|
/* 2 */ "cmdlist ::= ecmd",
|
|
/* 3 */ "cmdx ::= cmd",
|
|
/* 4 */ "ecmd ::= SEMI",
|
|
/* 5 */ "ecmd ::= explain cmdx SEMI",
|
|
/* 6 */ "explain ::=",
|
|
/* 7 */ "explain ::= EXPLAIN",
|
|
/* 8 */ "explain ::= EXPLAIN QUERY PLAN",
|
|
/* 9 */ "cmd ::= BEGIN transtype trans_opt",
|
|
/* 10 */ "trans_opt ::=",
|
|
/* 11 */ "trans_opt ::= TRANSACTION",
|
|
/* 12 */ "trans_opt ::= TRANSACTION nm",
|
|
/* 13 */ "transtype ::=",
|
|
/* 14 */ "transtype ::= DEFERRED",
|
|
/* 15 */ "transtype ::= IMMEDIATE",
|
|
/* 16 */ "transtype ::= EXCLUSIVE",
|
|
/* 17 */ "cmd ::= COMMIT trans_opt",
|
|
/* 18 */ "cmd ::= END trans_opt",
|
|
/* 19 */ "cmd ::= ROLLBACK trans_opt",
|
|
/* 20 */ "cmd ::= create_table create_table_args",
|
|
/* 21 */ "create_table ::= CREATE temp TABLE ifnotexists nm dbnm",
|
|
/* 22 */ "ifnotexists ::=",
|
|
/* 23 */ "ifnotexists ::= IF NOT EXISTS",
|
|
/* 24 */ "temp ::= TEMP",
|
|
/* 25 */ "temp ::=",
|
|
/* 26 */ "create_table_args ::= LP columnlist conslist_opt RP",
|
|
/* 27 */ "create_table_args ::= AS select",
|
|
/* 28 */ "columnlist ::= columnlist COMMA column",
|
|
/* 29 */ "columnlist ::= column",
|
|
/* 30 */ "column ::= columnid type carglist",
|
|
/* 31 */ "columnid ::= nm",
|
|
/* 32 */ "id ::= ID",
|
|
/* 33 */ "ids ::= ID|STRING",
|
|
/* 34 */ "nm ::= ID",
|
|
/* 35 */ "nm ::= STRING",
|
|
/* 36 */ "nm ::= JOIN_KW",
|
|
/* 37 */ "type ::=",
|
|
/* 38 */ "type ::= typetoken",
|
|
/* 39 */ "typetoken ::= typename",
|
|
/* 40 */ "typetoken ::= typename LP signed RP",
|
|
/* 41 */ "typetoken ::= typename LP signed COMMA signed RP",
|
|
/* 42 */ "typename ::= ids",
|
|
/* 43 */ "typename ::= typename ids",
|
|
/* 44 */ "signed ::= plus_num",
|
|
/* 45 */ "signed ::= minus_num",
|
|
/* 46 */ "carglist ::= carglist carg",
|
|
/* 47 */ "carglist ::=",
|
|
/* 48 */ "carg ::= CONSTRAINT nm ccons",
|
|
/* 49 */ "carg ::= ccons",
|
|
/* 50 */ "ccons ::= DEFAULT term",
|
|
/* 51 */ "ccons ::= DEFAULT LP expr RP",
|
|
/* 52 */ "ccons ::= DEFAULT PLUS term",
|
|
/* 53 */ "ccons ::= DEFAULT MINUS term",
|
|
/* 54 */ "ccons ::= DEFAULT id",
|
|
/* 55 */ "ccons ::= NULL onconf",
|
|
/* 56 */ "ccons ::= NOT NULL onconf",
|
|
/* 57 */ "ccons ::= PRIMARY KEY sortorder onconf autoinc",
|
|
/* 58 */ "ccons ::= UNIQUE onconf",
|
|
/* 59 */ "ccons ::= CHECK LP expr RP",
|
|
/* 60 */ "ccons ::= REFERENCES nm idxlist_opt refargs",
|
|
/* 61 */ "ccons ::= defer_subclause",
|
|
/* 62 */ "ccons ::= COLLATE ids",
|
|
/* 63 */ "autoinc ::=",
|
|
/* 64 */ "autoinc ::= AUTOINCR",
|
|
/* 65 */ "refargs ::=",
|
|
/* 66 */ "refargs ::= refargs refarg",
|
|
/* 67 */ "refarg ::= MATCH nm",
|
|
/* 68 */ "refarg ::= ON DELETE refact",
|
|
/* 69 */ "refarg ::= ON UPDATE refact",
|
|
/* 70 */ "refarg ::= ON INSERT refact",
|
|
/* 71 */ "refact ::= SET NULL",
|
|
/* 72 */ "refact ::= SET DEFAULT",
|
|
/* 73 */ "refact ::= CASCADE",
|
|
/* 74 */ "refact ::= RESTRICT",
|
|
/* 75 */ "defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt",
|
|
/* 76 */ "defer_subclause ::= DEFERRABLE init_deferred_pred_opt",
|
|
/* 77 */ "init_deferred_pred_opt ::=",
|
|
/* 78 */ "init_deferred_pred_opt ::= INITIALLY DEFERRED",
|
|
/* 79 */ "init_deferred_pred_opt ::= INITIALLY IMMEDIATE",
|
|
/* 80 */ "conslist_opt ::=",
|
|
/* 81 */ "conslist_opt ::= COMMA conslist",
|
|
/* 82 */ "conslist ::= conslist COMMA tcons",
|
|
/* 83 */ "conslist ::= conslist tcons",
|
|
/* 84 */ "conslist ::= tcons",
|
|
/* 85 */ "tcons ::= CONSTRAINT nm",
|
|
/* 86 */ "tcons ::= PRIMARY KEY LP idxlist autoinc RP onconf",
|
|
/* 87 */ "tcons ::= UNIQUE LP idxlist RP onconf",
|
|
/* 88 */ "tcons ::= CHECK LP expr RP onconf",
|
|
/* 89 */ "tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt",
|
|
/* 90 */ "defer_subclause_opt ::=",
|
|
/* 91 */ "defer_subclause_opt ::= defer_subclause",
|
|
/* 92 */ "onconf ::=",
|
|
/* 93 */ "onconf ::= ON CONFLICT resolvetype",
|
|
/* 94 */ "orconf ::=",
|
|
/* 95 */ "orconf ::= OR resolvetype",
|
|
/* 96 */ "resolvetype ::= raisetype",
|
|
/* 97 */ "resolvetype ::= IGNORE",
|
|
/* 98 */ "resolvetype ::= REPLACE",
|
|
/* 99 */ "cmd ::= DROP TABLE ifexists fullname",
|
|
/* 100 */ "ifexists ::= IF EXISTS",
|
|
/* 101 */ "ifexists ::=",
|
|
/* 102 */ "cmd ::= CREATE temp VIEW ifnotexists nm dbnm AS select",
|
|
/* 103 */ "cmd ::= DROP VIEW ifexists fullname",
|
|
/* 104 */ "cmd ::= select",
|
|
/* 105 */ "select ::= oneselect",
|
|
/* 106 */ "select ::= select multiselect_op oneselect",
|
|
/* 107 */ "multiselect_op ::= UNION",
|
|
/* 108 */ "multiselect_op ::= UNION ALL",
|
|
/* 109 */ "multiselect_op ::= EXCEPT|INTERSECT",
|
|
/* 110 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt",
|
|
/* 111 */ "distinct ::= DISTINCT",
|
|
/* 112 */ "distinct ::= ALL",
|
|
/* 113 */ "distinct ::=",
|
|
/* 114 */ "sclp ::= selcollist COMMA",
|
|
/* 115 */ "sclp ::=",
|
|
/* 116 */ "selcollist ::= sclp expr as",
|
|
/* 117 */ "selcollist ::= sclp STAR",
|
|
/* 118 */ "selcollist ::= sclp nm DOT STAR",
|
|
/* 119 */ "as ::= AS nm",
|
|
/* 120 */ "as ::= ids",
|
|
/* 121 */ "as ::=",
|
|
/* 122 */ "from ::=",
|
|
/* 123 */ "from ::= FROM seltablist",
|
|
/* 124 */ "stl_prefix ::= seltablist joinop",
|
|
/* 125 */ "stl_prefix ::=",
|
|
/* 126 */ "seltablist ::= stl_prefix nm dbnm as on_opt using_opt",
|
|
/* 127 */ "seltablist ::= stl_prefix LP seltablist_paren RP as on_opt using_opt",
|
|
/* 128 */ "seltablist_paren ::= select",
|
|
/* 129 */ "seltablist_paren ::= seltablist",
|
|
/* 130 */ "dbnm ::=",
|
|
/* 131 */ "dbnm ::= DOT nm",
|
|
/* 132 */ "fullname ::= nm dbnm",
|
|
/* 133 */ "joinop ::= COMMA|JOIN",
|
|
/* 134 */ "joinop ::= JOIN_KW JOIN",
|
|
/* 135 */ "joinop ::= JOIN_KW nm JOIN",
|
|
/* 136 */ "joinop ::= JOIN_KW nm nm JOIN",
|
|
/* 137 */ "on_opt ::= ON expr",
|
|
/* 138 */ "on_opt ::=",
|
|
/* 139 */ "using_opt ::= USING LP inscollist RP",
|
|
/* 140 */ "using_opt ::=",
|
|
/* 141 */ "orderby_opt ::=",
|
|
/* 142 */ "orderby_opt ::= ORDER BY sortlist",
|
|
/* 143 */ "sortlist ::= sortlist COMMA sortitem sortorder",
|
|
/* 144 */ "sortlist ::= sortitem sortorder",
|
|
/* 145 */ "sortitem ::= expr",
|
|
/* 146 */ "sortorder ::= ASC",
|
|
/* 147 */ "sortorder ::= DESC",
|
|
/* 148 */ "sortorder ::=",
|
|
/* 149 */ "groupby_opt ::=",
|
|
/* 150 */ "groupby_opt ::= GROUP BY nexprlist",
|
|
/* 151 */ "having_opt ::=",
|
|
/* 152 */ "having_opt ::= HAVING expr",
|
|
/* 153 */ "limit_opt ::=",
|
|
/* 154 */ "limit_opt ::= LIMIT expr",
|
|
/* 155 */ "limit_opt ::= LIMIT expr OFFSET expr",
|
|
/* 156 */ "limit_opt ::= LIMIT expr COMMA expr",
|
|
/* 157 */ "cmd ::= DELETE FROM fullname where_opt",
|
|
/* 158 */ "where_opt ::=",
|
|
/* 159 */ "where_opt ::= WHERE expr",
|
|
/* 160 */ "cmd ::= UPDATE orconf fullname SET setlist where_opt",
|
|
/* 161 */ "setlist ::= setlist COMMA nm EQ expr",
|
|
/* 162 */ "setlist ::= nm EQ expr",
|
|
/* 163 */ "cmd ::= insert_cmd INTO fullname inscollist_opt VALUES LP itemlist RP",
|
|
/* 164 */ "cmd ::= insert_cmd INTO fullname inscollist_opt select",
|
|
/* 165 */ "cmd ::= insert_cmd INTO fullname inscollist_opt DEFAULT VALUES",
|
|
/* 166 */ "insert_cmd ::= INSERT orconf",
|
|
/* 167 */ "insert_cmd ::= REPLACE",
|
|
/* 168 */ "itemlist ::= itemlist COMMA expr",
|
|
/* 169 */ "itemlist ::= expr",
|
|
/* 170 */ "inscollist_opt ::=",
|
|
/* 171 */ "inscollist_opt ::= LP inscollist RP",
|
|
/* 172 */ "inscollist ::= inscollist COMMA nm",
|
|
/* 173 */ "inscollist ::= nm",
|
|
/* 174 */ "expr ::= term",
|
|
/* 175 */ "expr ::= LP expr RP",
|
|
/* 176 */ "term ::= NULL",
|
|
/* 177 */ "expr ::= ID",
|
|
/* 178 */ "expr ::= JOIN_KW",
|
|
/* 179 */ "expr ::= nm DOT nm",
|
|
/* 180 */ "expr ::= nm DOT nm DOT nm",
|
|
/* 181 */ "term ::= INTEGER|FLOAT|BLOB",
|
|
/* 182 */ "term ::= STRING",
|
|
/* 183 */ "expr ::= REGISTER",
|
|
/* 184 */ "expr ::= VARIABLE",
|
|
/* 185 */ "expr ::= expr COLLATE ids",
|
|
/* 186 */ "expr ::= CAST LP expr AS typetoken RP",
|
|
/* 187 */ "expr ::= ID LP distinct exprlist RP",
|
|
/* 188 */ "expr ::= ID LP STAR RP",
|
|
/* 189 */ "term ::= CTIME_KW",
|
|
/* 190 */ "expr ::= expr AND expr",
|
|
/* 191 */ "expr ::= expr OR expr",
|
|
/* 192 */ "expr ::= expr LT|GT|GE|LE expr",
|
|
/* 193 */ "expr ::= expr EQ|NE expr",
|
|
/* 194 */ "expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr",
|
|
/* 195 */ "expr ::= expr PLUS|MINUS expr",
|
|
/* 196 */ "expr ::= expr STAR|SLASH|REM expr",
|
|
/* 197 */ "expr ::= expr CONCAT expr",
|
|
/* 198 */ "likeop ::= LIKE_KW",
|
|
/* 199 */ "likeop ::= NOT LIKE_KW",
|
|
/* 200 */ "likeop ::= MATCH",
|
|
/* 201 */ "likeop ::= NOT MATCH",
|
|
/* 202 */ "escape ::= ESCAPE expr",
|
|
/* 203 */ "escape ::=",
|
|
/* 204 */ "expr ::= expr likeop expr escape",
|
|
/* 205 */ "expr ::= expr ISNULL|NOTNULL",
|
|
/* 206 */ "expr ::= expr IS NULL",
|
|
/* 207 */ "expr ::= expr NOT NULL",
|
|
/* 208 */ "expr ::= expr IS NOT NULL",
|
|
/* 209 */ "expr ::= NOT expr",
|
|
/* 210 */ "expr ::= BITNOT expr",
|
|
/* 211 */ "expr ::= MINUS expr",
|
|
/* 212 */ "expr ::= PLUS expr",
|
|
/* 213 */ "between_op ::= BETWEEN",
|
|
/* 214 */ "between_op ::= NOT BETWEEN",
|
|
/* 215 */ "expr ::= expr between_op expr AND expr",
|
|
/* 216 */ "in_op ::= IN",
|
|
/* 217 */ "in_op ::= NOT IN",
|
|
/* 218 */ "expr ::= expr in_op LP exprlist RP",
|
|
/* 219 */ "expr ::= LP select RP",
|
|
/* 220 */ "expr ::= expr in_op LP select RP",
|
|
/* 221 */ "expr ::= expr in_op nm dbnm",
|
|
/* 222 */ "expr ::= EXISTS LP select RP",
|
|
/* 223 */ "expr ::= CASE case_operand case_exprlist case_else END",
|
|
/* 224 */ "case_exprlist ::= case_exprlist WHEN expr THEN expr",
|
|
/* 225 */ "case_exprlist ::= WHEN expr THEN expr",
|
|
/* 226 */ "case_else ::= ELSE expr",
|
|
/* 227 */ "case_else ::=",
|
|
/* 228 */ "case_operand ::= expr",
|
|
/* 229 */ "case_operand ::=",
|
|
/* 230 */ "exprlist ::= nexprlist",
|
|
/* 231 */ "exprlist ::=",
|
|
/* 232 */ "nexprlist ::= nexprlist COMMA expr",
|
|
/* 233 */ "nexprlist ::= expr",
|
|
/* 234 */ "cmd ::= CREATE uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP",
|
|
/* 235 */ "uniqueflag ::= UNIQUE",
|
|
/* 236 */ "uniqueflag ::=",
|
|
/* 237 */ "idxlist_opt ::=",
|
|
/* 238 */ "idxlist_opt ::= LP idxlist RP",
|
|
/* 239 */ "idxlist ::= idxlist COMMA idxitem collate sortorder",
|
|
/* 240 */ "idxlist ::= idxitem collate sortorder",
|
|
/* 241 */ "idxitem ::= nm",
|
|
/* 242 */ "collate ::=",
|
|
/* 243 */ "collate ::= COLLATE ids",
|
|
/* 244 */ "cmd ::= DROP INDEX ifexists fullname",
|
|
/* 245 */ "cmd ::= VACUUM",
|
|
/* 246 */ "cmd ::= VACUUM nm",
|
|
/* 247 */ "cmd ::= PRAGMA nm dbnm EQ nmnum",
|
|
/* 248 */ "cmd ::= PRAGMA nm dbnm EQ ON",
|
|
/* 249 */ "cmd ::= PRAGMA nm dbnm EQ minus_num",
|
|
/* 250 */ "cmd ::= PRAGMA nm dbnm LP nmnum RP",
|
|
/* 251 */ "cmd ::= PRAGMA nm dbnm",
|
|
/* 252 */ "nmnum ::= plus_num",
|
|
/* 253 */ "nmnum ::= nm",
|
|
/* 254 */ "plus_num ::= plus_opt number",
|
|
/* 255 */ "minus_num ::= MINUS number",
|
|
/* 256 */ "number ::= INTEGER|FLOAT",
|
|
/* 257 */ "plus_opt ::= PLUS",
|
|
/* 258 */ "plus_opt ::=",
|
|
/* 259 */ "cmd ::= CREATE trigger_decl BEGIN trigger_cmd_list END",
|
|
/* 260 */ "trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause",
|
|
/* 261 */ "trigger_time ::= BEFORE",
|
|
/* 262 */ "trigger_time ::= AFTER",
|
|
/* 263 */ "trigger_time ::= INSTEAD OF",
|
|
/* 264 */ "trigger_time ::=",
|
|
/* 265 */ "trigger_event ::= DELETE|INSERT",
|
|
/* 266 */ "trigger_event ::= UPDATE",
|
|
/* 267 */ "trigger_event ::= UPDATE OF inscollist",
|
|
/* 268 */ "foreach_clause ::=",
|
|
/* 269 */ "foreach_clause ::= FOR EACH ROW",
|
|
/* 270 */ "when_clause ::=",
|
|
/* 271 */ "when_clause ::= WHEN expr",
|
|
/* 272 */ "trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI",
|
|
/* 273 */ "trigger_cmd_list ::=",
|
|
/* 274 */ "trigger_cmd ::= UPDATE orconf nm SET setlist where_opt",
|
|
/* 275 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt VALUES LP itemlist RP",
|
|
/* 276 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt select",
|
|
/* 277 */ "trigger_cmd ::= DELETE FROM nm where_opt",
|
|
/* 278 */ "trigger_cmd ::= select",
|
|
/* 279 */ "expr ::= RAISE LP IGNORE RP",
|
|
/* 280 */ "expr ::= RAISE LP raisetype COMMA nm RP",
|
|
/* 281 */ "raisetype ::= ROLLBACK",
|
|
/* 282 */ "raisetype ::= ABORT",
|
|
/* 283 */ "raisetype ::= FAIL",
|
|
/* 284 */ "cmd ::= DROP TRIGGER ifexists fullname",
|
|
/* 285 */ "cmd ::= ATTACH database_kw_opt expr AS expr key_opt",
|
|
/* 286 */ "cmd ::= DETACH database_kw_opt expr",
|
|
/* 287 */ "key_opt ::=",
|
|
/* 288 */ "key_opt ::= KEY expr",
|
|
/* 289 */ "database_kw_opt ::= DATABASE",
|
|
/* 290 */ "database_kw_opt ::=",
|
|
/* 291 */ "cmd ::= REINDEX",
|
|
/* 292 */ "cmd ::= REINDEX nm dbnm",
|
|
/* 293 */ "cmd ::= ANALYZE",
|
|
/* 294 */ "cmd ::= ANALYZE nm dbnm",
|
|
/* 295 */ "cmd ::= ALTER TABLE fullname RENAME TO nm",
|
|
/* 296 */ "cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column",
|
|
/* 297 */ "add_column_fullname ::= fullname",
|
|
/* 298 */ "kwcolumn_opt ::=",
|
|
/* 299 */ "kwcolumn_opt ::= COLUMNKW",
|
|
/* 300 */ "cmd ::= create_vtab",
|
|
/* 301 */ "cmd ::= create_vtab LP vtabarglist RP",
|
|
/* 302 */ "create_vtab ::= CREATE VIRTUAL TABLE nm dbnm USING nm",
|
|
/* 303 */ "vtabarglist ::= vtabarg",
|
|
/* 304 */ "vtabarglist ::= vtabarglist COMMA vtabarg",
|
|
/* 305 */ "vtabarg ::=",
|
|
/* 306 */ "vtabarg ::= vtabarg vtabargtoken",
|
|
/* 307 */ "vtabargtoken ::= ANY",
|
|
/* 308 */ "vtabargtoken ::= lp anylist RP",
|
|
/* 309 */ "lp ::= LP",
|
|
/* 310 */ "anylist ::=",
|
|
/* 311 */ "anylist ::= anylist ANY",
|
|
};
|
|
#endif /* NDEBUG */
|
|
|
|
|
|
#if YYSTACKDEPTH<=0
|
|
/*
|
|
** Try to increase the size of the parser stack.
|
|
*/
|
|
static void yyGrowStack(yyParser *p){
|
|
int newSize;
|
|
yyStackEntry *pNew;
|
|
|
|
newSize = p->yystksz*2 + 100;
|
|
pNew = realloc(p->yystack, newSize*sizeof(pNew[0]));
|
|
if( pNew ){
|
|
p->yystack = pNew;
|
|
p->yystksz = newSize;
|
|
#ifndef NDEBUG
|
|
if( yyTraceFILE ){
|
|
fprintf(yyTraceFILE,"%sStack grows to %d entries!\n",
|
|
yyTracePrompt, p->yystksz);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** This function allocates a new parser.
|
|
** The only argument is a pointer to a function which works like
|
|
** malloc.
|
|
**
|
|
** Inputs:
|
|
** A pointer to the function used to allocate memory.
|
|
**
|
|
** Outputs:
|
|
** A pointer to a parser. This pointer is used in subsequent calls
|
|
** to sqlite3Parser and sqlite3ParserFree.
|
|
*/
|
|
SQLITE_PRIVATE void *sqlite3ParserAlloc(void *(*mallocProc)(size_t)){
|
|
yyParser *pParser;
|
|
pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) );
|
|
if( pParser ){
|
|
pParser->yyidx = -1;
|
|
#if YYSTACKDEPTH<=0
|
|
yyGrowStack(pParser);
|
|
#endif
|
|
}
|
|
return pParser;
|
|
}
|
|
|
|
/* The following function deletes the value associated with a
|
|
** symbol. The symbol can be either a terminal or nonterminal.
|
|
** "yymajor" is the symbol code, and "yypminor" is a pointer to
|
|
** the value.
|
|
*/
|
|
static void yy_destructor(YYCODETYPE yymajor, YYMINORTYPE *yypminor){
|
|
switch( yymajor ){
|
|
/* Here is inserted the actions which take place when a
|
|
** terminal or non-terminal is destroyed. This can happen
|
|
** when the symbol is popped from the stack during a
|
|
** reduce or during error processing or when a parser is
|
|
** being destroyed before it is finished parsing.
|
|
**
|
|
** Note: during a reduce, the only symbols destroyed are those
|
|
** which appear on the RHS of the rule, but which are not used
|
|
** inside the C code.
|
|
*/
|
|
case 155: /* select */
|
|
case 189: /* oneselect */
|
|
case 206: /* seltablist_paren */
|
|
{sqlite3SelectDelete((yypminor->yy219));}
|
|
break;
|
|
case 169: /* term */
|
|
case 170: /* expr */
|
|
case 194: /* where_opt */
|
|
case 196: /* having_opt */
|
|
case 204: /* on_opt */
|
|
case 210: /* sortitem */
|
|
case 218: /* escape */
|
|
case 221: /* case_operand */
|
|
case 223: /* case_else */
|
|
case 235: /* when_clause */
|
|
case 238: /* key_opt */
|
|
{sqlite3ExprDelete((yypminor->yy172));}
|
|
break;
|
|
case 174: /* idxlist_opt */
|
|
case 182: /* idxlist */
|
|
case 192: /* selcollist */
|
|
case 195: /* groupby_opt */
|
|
case 197: /* orderby_opt */
|
|
case 199: /* sclp */
|
|
case 209: /* sortlist */
|
|
case 211: /* nexprlist */
|
|
case 212: /* setlist */
|
|
case 215: /* itemlist */
|
|
case 216: /* exprlist */
|
|
case 222: /* case_exprlist */
|
|
{sqlite3ExprListDelete((yypminor->yy174));}
|
|
break;
|
|
case 188: /* fullname */
|
|
case 193: /* from */
|
|
case 201: /* seltablist */
|
|
case 202: /* stl_prefix */
|
|
{sqlite3SrcListDelete((yypminor->yy373));}
|
|
break;
|
|
case 205: /* using_opt */
|
|
case 208: /* inscollist */
|
|
case 214: /* inscollist_opt */
|
|
{sqlite3IdListDelete((yypminor->yy432));}
|
|
break;
|
|
case 231: /* trigger_cmd_list */
|
|
case 236: /* trigger_cmd */
|
|
{sqlite3DeleteTriggerStep((yypminor->yy243));}
|
|
break;
|
|
case 233: /* trigger_event */
|
|
{sqlite3IdListDelete((yypminor->yy370).b);}
|
|
break;
|
|
default: break; /* If no destructor action specified: do nothing */
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Pop the parser's stack once.
|
|
**
|
|
** If there is a destructor routine associated with the token which
|
|
** is popped from the stack, then call it.
|
|
**
|
|
** Return the major token number for the symbol popped.
|
|
*/
|
|
static int yy_pop_parser_stack(yyParser *pParser){
|
|
YYCODETYPE yymajor;
|
|
yyStackEntry *yytos = &pParser->yystack[pParser->yyidx];
|
|
|
|
if( pParser->yyidx<0 ) return 0;
|
|
#ifndef NDEBUG
|
|
if( yyTraceFILE && pParser->yyidx>=0 ){
|
|
fprintf(yyTraceFILE,"%sPopping %s\n",
|
|
yyTracePrompt,
|
|
yyTokenName[yytos->major]);
|
|
}
|
|
#endif
|
|
yymajor = yytos->major;
|
|
yy_destructor( yymajor, &yytos->minor);
|
|
pParser->yyidx--;
|
|
return yymajor;
|
|
}
|
|
|
|
/*
|
|
** Deallocate and destroy a parser. Destructors are all called for
|
|
** all stack elements before shutting the parser down.
|
|
**
|
|
** Inputs:
|
|
** <ul>
|
|
** <li> A pointer to the parser. This should be a pointer
|
|
** obtained from sqlite3ParserAlloc.
|
|
** <li> A pointer to a function used to reclaim memory obtained
|
|
** from malloc.
|
|
** </ul>
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3ParserFree(
|
|
void *p, /* The parser to be deleted */
|
|
void (*freeProc)(void*) /* Function used to reclaim memory */
|
|
){
|
|
yyParser *pParser = (yyParser*)p;
|
|
if( pParser==0 ) return;
|
|
while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser);
|
|
#if YYSTACKDEPTH<=0
|
|
free(pParser->yystack);
|
|
#endif
|
|
(*freeProc)((void*)pParser);
|
|
}
|
|
|
|
/*
|
|
** Find the appropriate action for a parser given the terminal
|
|
** look-ahead token iLookAhead.
|
|
**
|
|
** If the look-ahead token is YYNOCODE, then check to see if the action is
|
|
** independent of the look-ahead. If it is, return the action, otherwise
|
|
** return YY_NO_ACTION.
|
|
*/
|
|
static int yy_find_shift_action(
|
|
yyParser *pParser, /* The parser */
|
|
YYCODETYPE iLookAhead /* The look-ahead token */
|
|
){
|
|
int i;
|
|
int stateno = pParser->yystack[pParser->yyidx].stateno;
|
|
|
|
if( stateno>YY_SHIFT_MAX || (i = yy_shift_ofst[stateno])==YY_SHIFT_USE_DFLT ){
|
|
return yy_default[stateno];
|
|
}
|
|
assert( iLookAhead!=YYNOCODE );
|
|
i += iLookAhead;
|
|
if( i<0 || i>=YY_SZ_ACTTAB || yy_lookahead[i]!=iLookAhead ){
|
|
if( iLookAhead>0 ){
|
|
#ifdef YYFALLBACK
|
|
int iFallback; /* Fallback token */
|
|
if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
|
|
&& (iFallback = yyFallback[iLookAhead])!=0 ){
|
|
#ifndef NDEBUG
|
|
if( yyTraceFILE ){
|
|
fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",
|
|
yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]);
|
|
}
|
|
#endif
|
|
return yy_find_shift_action(pParser, iFallback);
|
|
}
|
|
#endif
|
|
#ifdef YYWILDCARD
|
|
{
|
|
int j = i - iLookAhead + YYWILDCARD;
|
|
if( j>=0 && j<YY_SZ_ACTTAB && yy_lookahead[j]==YYWILDCARD ){
|
|
#ifndef NDEBUG
|
|
if( yyTraceFILE ){
|
|
fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n",
|
|
yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[YYWILDCARD]);
|
|
}
|
|
#endif /* NDEBUG */
|
|
return yy_action[j];
|
|
}
|
|
}
|
|
#endif /* YYWILDCARD */
|
|
}
|
|
return yy_default[stateno];
|
|
}else{
|
|
return yy_action[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Find the appropriate action for a parser given the non-terminal
|
|
** look-ahead token iLookAhead.
|
|
**
|
|
** If the look-ahead token is YYNOCODE, then check to see if the action is
|
|
** independent of the look-ahead. If it is, return the action, otherwise
|
|
** return YY_NO_ACTION.
|
|
*/
|
|
static int yy_find_reduce_action(
|
|
int stateno, /* Current state number */
|
|
YYCODETYPE iLookAhead /* The look-ahead token */
|
|
){
|
|
int i;
|
|
assert( stateno<=YY_REDUCE_MAX );
|
|
i = yy_reduce_ofst[stateno];
|
|
assert( i!=YY_REDUCE_USE_DFLT );
|
|
assert( iLookAhead!=YYNOCODE );
|
|
i += iLookAhead;
|
|
assert( i>=0 && i<YY_SZ_ACTTAB );
|
|
assert( yy_lookahead[i]==iLookAhead );
|
|
return yy_action[i];
|
|
}
|
|
|
|
/*
|
|
** The following routine is called if the stack overflows.
|
|
*/
|
|
static void yyStackOverflow(yyParser *yypParser, YYMINORTYPE *yypMinor){
|
|
sqlite3ParserARG_FETCH;
|
|
yypParser->yyidx--;
|
|
#ifndef NDEBUG
|
|
if( yyTraceFILE ){
|
|
fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
|
|
}
|
|
#endif
|
|
while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
|
|
/* Here code is inserted which will execute if the parser
|
|
** stack every overflows */
|
|
|
|
sqlite3ErrorMsg(pParse, "parser stack overflow");
|
|
pParse->parseError = 1;
|
|
sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument var */
|
|
}
|
|
|
|
/*
|
|
** Perform a shift action.
|
|
*/
|
|
static void yy_shift(
|
|
yyParser *yypParser, /* The parser to be shifted */
|
|
int yyNewState, /* The new state to shift in */
|
|
int yyMajor, /* The major token to shift in */
|
|
YYMINORTYPE *yypMinor /* Pointer ot the minor token to shift in */
|
|
){
|
|
yyStackEntry *yytos;
|
|
yypParser->yyidx++;
|
|
#if YYSTACKDEPTH>0
|
|
if( yypParser->yyidx>=YYSTACKDEPTH ){
|
|
yyStackOverflow(yypParser, yypMinor);
|
|
return;
|
|
}
|
|
#else
|
|
if( yypParser->yyidx>=yypParser->yystksz ){
|
|
yyGrowStack(yypParser);
|
|
if( yypParser->yyidx>=yypParser->yystksz ){
|
|
yyStackOverflow(yypParser, yypMinor);
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
yytos = &yypParser->yystack[yypParser->yyidx];
|
|
yytos->stateno = yyNewState;
|
|
yytos->major = yyMajor;
|
|
yytos->minor = *yypMinor;
|
|
#ifndef NDEBUG
|
|
if( yyTraceFILE && yypParser->yyidx>0 ){
|
|
int i;
|
|
fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState);
|
|
fprintf(yyTraceFILE,"%sStack:",yyTracePrompt);
|
|
for(i=1; i<=yypParser->yyidx; i++)
|
|
fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]);
|
|
fprintf(yyTraceFILE,"\n");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* The following table contains information about every rule that
|
|
** is used during the reduce.
|
|
*/
|
|
static const struct {
|
|
YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */
|
|
unsigned char nrhs; /* Number of right-hand side symbols in the rule */
|
|
} yyRuleInfo[] = {
|
|
{ 139, 1 },
|
|
{ 140, 2 },
|
|
{ 140, 1 },
|
|
{ 142, 1 },
|
|
{ 141, 1 },
|
|
{ 141, 3 },
|
|
{ 144, 0 },
|
|
{ 144, 1 },
|
|
{ 144, 3 },
|
|
{ 143, 3 },
|
|
{ 146, 0 },
|
|
{ 146, 1 },
|
|
{ 146, 2 },
|
|
{ 145, 0 },
|
|
{ 145, 1 },
|
|
{ 145, 1 },
|
|
{ 145, 1 },
|
|
{ 143, 2 },
|
|
{ 143, 2 },
|
|
{ 143, 2 },
|
|
{ 143, 2 },
|
|
{ 148, 6 },
|
|
{ 151, 0 },
|
|
{ 151, 3 },
|
|
{ 150, 1 },
|
|
{ 150, 0 },
|
|
{ 149, 4 },
|
|
{ 149, 2 },
|
|
{ 153, 3 },
|
|
{ 153, 1 },
|
|
{ 156, 3 },
|
|
{ 157, 1 },
|
|
{ 160, 1 },
|
|
{ 161, 1 },
|
|
{ 147, 1 },
|
|
{ 147, 1 },
|
|
{ 147, 1 },
|
|
{ 158, 0 },
|
|
{ 158, 1 },
|
|
{ 162, 1 },
|
|
{ 162, 4 },
|
|
{ 162, 6 },
|
|
{ 163, 1 },
|
|
{ 163, 2 },
|
|
{ 164, 1 },
|
|
{ 164, 1 },
|
|
{ 159, 2 },
|
|
{ 159, 0 },
|
|
{ 167, 3 },
|
|
{ 167, 1 },
|
|
{ 168, 2 },
|
|
{ 168, 4 },
|
|
{ 168, 3 },
|
|
{ 168, 3 },
|
|
{ 168, 2 },
|
|
{ 168, 2 },
|
|
{ 168, 3 },
|
|
{ 168, 5 },
|
|
{ 168, 2 },
|
|
{ 168, 4 },
|
|
{ 168, 4 },
|
|
{ 168, 1 },
|
|
{ 168, 2 },
|
|
{ 173, 0 },
|
|
{ 173, 1 },
|
|
{ 175, 0 },
|
|
{ 175, 2 },
|
|
{ 177, 2 },
|
|
{ 177, 3 },
|
|
{ 177, 3 },
|
|
{ 177, 3 },
|
|
{ 178, 2 },
|
|
{ 178, 2 },
|
|
{ 178, 1 },
|
|
{ 178, 1 },
|
|
{ 176, 3 },
|
|
{ 176, 2 },
|
|
{ 179, 0 },
|
|
{ 179, 2 },
|
|
{ 179, 2 },
|
|
{ 154, 0 },
|
|
{ 154, 2 },
|
|
{ 180, 3 },
|
|
{ 180, 2 },
|
|
{ 180, 1 },
|
|
{ 181, 2 },
|
|
{ 181, 7 },
|
|
{ 181, 5 },
|
|
{ 181, 5 },
|
|
{ 181, 10 },
|
|
{ 183, 0 },
|
|
{ 183, 1 },
|
|
{ 171, 0 },
|
|
{ 171, 3 },
|
|
{ 184, 0 },
|
|
{ 184, 2 },
|
|
{ 185, 1 },
|
|
{ 185, 1 },
|
|
{ 185, 1 },
|
|
{ 143, 4 },
|
|
{ 187, 2 },
|
|
{ 187, 0 },
|
|
{ 143, 8 },
|
|
{ 143, 4 },
|
|
{ 143, 1 },
|
|
{ 155, 1 },
|
|
{ 155, 3 },
|
|
{ 190, 1 },
|
|
{ 190, 2 },
|
|
{ 190, 1 },
|
|
{ 189, 9 },
|
|
{ 191, 1 },
|
|
{ 191, 1 },
|
|
{ 191, 0 },
|
|
{ 199, 2 },
|
|
{ 199, 0 },
|
|
{ 192, 3 },
|
|
{ 192, 2 },
|
|
{ 192, 4 },
|
|
{ 200, 2 },
|
|
{ 200, 1 },
|
|
{ 200, 0 },
|
|
{ 193, 0 },
|
|
{ 193, 2 },
|
|
{ 202, 2 },
|
|
{ 202, 0 },
|
|
{ 201, 6 },
|
|
{ 201, 7 },
|
|
{ 206, 1 },
|
|
{ 206, 1 },
|
|
{ 152, 0 },
|
|
{ 152, 2 },
|
|
{ 188, 2 },
|
|
{ 203, 1 },
|
|
{ 203, 2 },
|
|
{ 203, 3 },
|
|
{ 203, 4 },
|
|
{ 204, 2 },
|
|
{ 204, 0 },
|
|
{ 205, 4 },
|
|
{ 205, 0 },
|
|
{ 197, 0 },
|
|
{ 197, 3 },
|
|
{ 209, 4 },
|
|
{ 209, 2 },
|
|
{ 210, 1 },
|
|
{ 172, 1 },
|
|
{ 172, 1 },
|
|
{ 172, 0 },
|
|
{ 195, 0 },
|
|
{ 195, 3 },
|
|
{ 196, 0 },
|
|
{ 196, 2 },
|
|
{ 198, 0 },
|
|
{ 198, 2 },
|
|
{ 198, 4 },
|
|
{ 198, 4 },
|
|
{ 143, 4 },
|
|
{ 194, 0 },
|
|
{ 194, 2 },
|
|
{ 143, 6 },
|
|
{ 212, 5 },
|
|
{ 212, 3 },
|
|
{ 143, 8 },
|
|
{ 143, 5 },
|
|
{ 143, 6 },
|
|
{ 213, 2 },
|
|
{ 213, 1 },
|
|
{ 215, 3 },
|
|
{ 215, 1 },
|
|
{ 214, 0 },
|
|
{ 214, 3 },
|
|
{ 208, 3 },
|
|
{ 208, 1 },
|
|
{ 170, 1 },
|
|
{ 170, 3 },
|
|
{ 169, 1 },
|
|
{ 170, 1 },
|
|
{ 170, 1 },
|
|
{ 170, 3 },
|
|
{ 170, 5 },
|
|
{ 169, 1 },
|
|
{ 169, 1 },
|
|
{ 170, 1 },
|
|
{ 170, 1 },
|
|
{ 170, 3 },
|
|
{ 170, 6 },
|
|
{ 170, 5 },
|
|
{ 170, 4 },
|
|
{ 169, 1 },
|
|
{ 170, 3 },
|
|
{ 170, 3 },
|
|
{ 170, 3 },
|
|
{ 170, 3 },
|
|
{ 170, 3 },
|
|
{ 170, 3 },
|
|
{ 170, 3 },
|
|
{ 170, 3 },
|
|
{ 217, 1 },
|
|
{ 217, 2 },
|
|
{ 217, 1 },
|
|
{ 217, 2 },
|
|
{ 218, 2 },
|
|
{ 218, 0 },
|
|
{ 170, 4 },
|
|
{ 170, 2 },
|
|
{ 170, 3 },
|
|
{ 170, 3 },
|
|
{ 170, 4 },
|
|
{ 170, 2 },
|
|
{ 170, 2 },
|
|
{ 170, 2 },
|
|
{ 170, 2 },
|
|
{ 219, 1 },
|
|
{ 219, 2 },
|
|
{ 170, 5 },
|
|
{ 220, 1 },
|
|
{ 220, 2 },
|
|
{ 170, 5 },
|
|
{ 170, 3 },
|
|
{ 170, 5 },
|
|
{ 170, 4 },
|
|
{ 170, 4 },
|
|
{ 170, 5 },
|
|
{ 222, 5 },
|
|
{ 222, 4 },
|
|
{ 223, 2 },
|
|
{ 223, 0 },
|
|
{ 221, 1 },
|
|
{ 221, 0 },
|
|
{ 216, 1 },
|
|
{ 216, 0 },
|
|
{ 211, 3 },
|
|
{ 211, 1 },
|
|
{ 143, 11 },
|
|
{ 224, 1 },
|
|
{ 224, 0 },
|
|
{ 174, 0 },
|
|
{ 174, 3 },
|
|
{ 182, 5 },
|
|
{ 182, 3 },
|
|
{ 225, 1 },
|
|
{ 226, 0 },
|
|
{ 226, 2 },
|
|
{ 143, 4 },
|
|
{ 143, 1 },
|
|
{ 143, 2 },
|
|
{ 143, 5 },
|
|
{ 143, 5 },
|
|
{ 143, 5 },
|
|
{ 143, 6 },
|
|
{ 143, 3 },
|
|
{ 227, 1 },
|
|
{ 227, 1 },
|
|
{ 165, 2 },
|
|
{ 166, 2 },
|
|
{ 229, 1 },
|
|
{ 228, 1 },
|
|
{ 228, 0 },
|
|
{ 143, 5 },
|
|
{ 230, 11 },
|
|
{ 232, 1 },
|
|
{ 232, 1 },
|
|
{ 232, 2 },
|
|
{ 232, 0 },
|
|
{ 233, 1 },
|
|
{ 233, 1 },
|
|
{ 233, 3 },
|
|
{ 234, 0 },
|
|
{ 234, 3 },
|
|
{ 235, 0 },
|
|
{ 235, 2 },
|
|
{ 231, 3 },
|
|
{ 231, 0 },
|
|
{ 236, 6 },
|
|
{ 236, 8 },
|
|
{ 236, 5 },
|
|
{ 236, 4 },
|
|
{ 236, 1 },
|
|
{ 170, 4 },
|
|
{ 170, 6 },
|
|
{ 186, 1 },
|
|
{ 186, 1 },
|
|
{ 186, 1 },
|
|
{ 143, 4 },
|
|
{ 143, 6 },
|
|
{ 143, 3 },
|
|
{ 238, 0 },
|
|
{ 238, 2 },
|
|
{ 237, 1 },
|
|
{ 237, 0 },
|
|
{ 143, 1 },
|
|
{ 143, 3 },
|
|
{ 143, 1 },
|
|
{ 143, 3 },
|
|
{ 143, 6 },
|
|
{ 143, 6 },
|
|
{ 239, 1 },
|
|
{ 240, 0 },
|
|
{ 240, 1 },
|
|
{ 143, 1 },
|
|
{ 143, 4 },
|
|
{ 241, 7 },
|
|
{ 242, 1 },
|
|
{ 242, 3 },
|
|
{ 243, 0 },
|
|
{ 243, 2 },
|
|
{ 244, 1 },
|
|
{ 244, 3 },
|
|
{ 245, 1 },
|
|
{ 246, 0 },
|
|
{ 246, 2 },
|
|
};
|
|
|
|
static void yy_accept(yyParser*); /* Forward Declaration */
|
|
|
|
/*
|
|
** Perform a reduce action and the shift that must immediately
|
|
** follow the reduce.
|
|
*/
|
|
static void yy_reduce(
|
|
yyParser *yypParser, /* The parser */
|
|
int yyruleno /* Number of the rule by which to reduce */
|
|
){
|
|
int yygoto; /* The next state */
|
|
int yyact; /* The next action */
|
|
YYMINORTYPE yygotominor; /* The LHS of the rule reduced */
|
|
yyStackEntry *yymsp; /* The top of the parser's stack */
|
|
int yysize; /* Amount to pop the stack */
|
|
sqlite3ParserARG_FETCH;
|
|
yymsp = &yypParser->yystack[yypParser->yyidx];
|
|
#ifndef NDEBUG
|
|
if( yyTraceFILE && yyruleno>=0
|
|
&& yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){
|
|
fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt,
|
|
yyRuleName[yyruleno]);
|
|
}
|
|
#endif /* NDEBUG */
|
|
|
|
/* Silence complaints from purify about yygotominor being uninitialized
|
|
** in some cases when it is copied into the stack after the following
|
|
** switch. yygotominor is uninitialized when a rule reduces that does
|
|
** not set the value of its left-hand side nonterminal. Leaving the
|
|
** value of the nonterminal uninitialized is utterly harmless as long
|
|
** as the value is never used. So really the only thing this code
|
|
** accomplishes is to quieten purify.
|
|
**
|
|
** 2007-01-16: The wireshark project (www.wireshark.org) reports that
|
|
** without this code, their parser segfaults. I'm not sure what there
|
|
** parser is doing to make this happen. This is the second bug report
|
|
** from wireshark this week. Clearly they are stressing Lemon in ways
|
|
** that it has not been previously stressed... (SQLite ticket #2172)
|
|
*/
|
|
memset(&yygotominor, 0, sizeof(yygotominor));
|
|
|
|
|
|
switch( yyruleno ){
|
|
/* Beginning here are the reduction cases. A typical example
|
|
** follows:
|
|
** case 0:
|
|
** #line <lineno> <grammarfile>
|
|
** { ... } // User supplied code
|
|
** #line <lineno> <thisfile>
|
|
** break;
|
|
*/
|
|
case 0: /* input ::= cmdlist */
|
|
case 1: /* cmdlist ::= cmdlist ecmd */
|
|
case 2: /* cmdlist ::= ecmd */
|
|
case 4: /* ecmd ::= SEMI */
|
|
case 5: /* ecmd ::= explain cmdx SEMI */
|
|
case 10: /* trans_opt ::= */
|
|
case 11: /* trans_opt ::= TRANSACTION */
|
|
case 12: /* trans_opt ::= TRANSACTION nm */
|
|
case 20: /* cmd ::= create_table create_table_args */
|
|
case 28: /* columnlist ::= columnlist COMMA column */
|
|
case 29: /* columnlist ::= column */
|
|
case 37: /* type ::= */
|
|
case 44: /* signed ::= plus_num */
|
|
case 45: /* signed ::= minus_num */
|
|
case 46: /* carglist ::= carglist carg */
|
|
case 47: /* carglist ::= */
|
|
case 48: /* carg ::= CONSTRAINT nm ccons */
|
|
case 49: /* carg ::= ccons */
|
|
case 55: /* ccons ::= NULL onconf */
|
|
case 82: /* conslist ::= conslist COMMA tcons */
|
|
case 83: /* conslist ::= conslist tcons */
|
|
case 84: /* conslist ::= tcons */
|
|
case 85: /* tcons ::= CONSTRAINT nm */
|
|
case 257: /* plus_opt ::= PLUS */
|
|
case 258: /* plus_opt ::= */
|
|
case 268: /* foreach_clause ::= */
|
|
case 269: /* foreach_clause ::= FOR EACH ROW */
|
|
case 289: /* database_kw_opt ::= DATABASE */
|
|
case 290: /* database_kw_opt ::= */
|
|
case 298: /* kwcolumn_opt ::= */
|
|
case 299: /* kwcolumn_opt ::= COLUMNKW */
|
|
case 303: /* vtabarglist ::= vtabarg */
|
|
case 304: /* vtabarglist ::= vtabarglist COMMA vtabarg */
|
|
case 306: /* vtabarg ::= vtabarg vtabargtoken */
|
|
case 310: /* anylist ::= */
|
|
{
|
|
}
|
|
break;
|
|
case 3: /* cmdx ::= cmd */
|
|
{ sqlite3FinishCoding(pParse); }
|
|
break;
|
|
case 6: /* explain ::= */
|
|
{ sqlite3BeginParse(pParse, 0); }
|
|
break;
|
|
case 7: /* explain ::= EXPLAIN */
|
|
{ sqlite3BeginParse(pParse, 1); }
|
|
break;
|
|
case 8: /* explain ::= EXPLAIN QUERY PLAN */
|
|
{ sqlite3BeginParse(pParse, 2); }
|
|
break;
|
|
case 9: /* cmd ::= BEGIN transtype trans_opt */
|
|
{sqlite3BeginTransaction(pParse, yymsp[-1].minor.yy46);}
|
|
break;
|
|
case 13: /* transtype ::= */
|
|
{yygotominor.yy46 = TK_DEFERRED;}
|
|
break;
|
|
case 14: /* transtype ::= DEFERRED */
|
|
case 15: /* transtype ::= IMMEDIATE */
|
|
case 16: /* transtype ::= EXCLUSIVE */
|
|
case 107: /* multiselect_op ::= UNION */
|
|
case 109: /* multiselect_op ::= EXCEPT|INTERSECT */
|
|
{yygotominor.yy46 = yymsp[0].major;}
|
|
break;
|
|
case 17: /* cmd ::= COMMIT trans_opt */
|
|
case 18: /* cmd ::= END trans_opt */
|
|
{sqlite3CommitTransaction(pParse);}
|
|
break;
|
|
case 19: /* cmd ::= ROLLBACK trans_opt */
|
|
{sqlite3RollbackTransaction(pParse);}
|
|
break;
|
|
case 21: /* create_table ::= CREATE temp TABLE ifnotexists nm dbnm */
|
|
{
|
|
sqlite3StartTable(pParse,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410,yymsp[-4].minor.yy46,0,0,yymsp[-2].minor.yy46);
|
|
}
|
|
break;
|
|
case 22: /* ifnotexists ::= */
|
|
case 25: /* temp ::= */
|
|
case 63: /* autoinc ::= */
|
|
case 77: /* init_deferred_pred_opt ::= */
|
|
case 79: /* init_deferred_pred_opt ::= INITIALLY IMMEDIATE */
|
|
case 90: /* defer_subclause_opt ::= */
|
|
case 101: /* ifexists ::= */
|
|
case 112: /* distinct ::= ALL */
|
|
case 113: /* distinct ::= */
|
|
case 213: /* between_op ::= BETWEEN */
|
|
case 216: /* in_op ::= IN */
|
|
{yygotominor.yy46 = 0;}
|
|
break;
|
|
case 23: /* ifnotexists ::= IF NOT EXISTS */
|
|
case 24: /* temp ::= TEMP */
|
|
case 64: /* autoinc ::= AUTOINCR */
|
|
case 78: /* init_deferred_pred_opt ::= INITIALLY DEFERRED */
|
|
case 100: /* ifexists ::= IF EXISTS */
|
|
case 111: /* distinct ::= DISTINCT */
|
|
case 214: /* between_op ::= NOT BETWEEN */
|
|
case 217: /* in_op ::= NOT IN */
|
|
{yygotominor.yy46 = 1;}
|
|
break;
|
|
case 26: /* create_table_args ::= LP columnlist conslist_opt RP */
|
|
{
|
|
sqlite3EndTable(pParse,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy0,0);
|
|
}
|
|
break;
|
|
case 27: /* create_table_args ::= AS select */
|
|
{
|
|
sqlite3EndTable(pParse,0,0,yymsp[0].minor.yy219);
|
|
sqlite3SelectDelete(yymsp[0].minor.yy219);
|
|
}
|
|
break;
|
|
case 30: /* column ::= columnid type carglist */
|
|
{
|
|
yygotominor.yy410.z = yymsp[-2].minor.yy410.z;
|
|
yygotominor.yy410.n = (pParse->sLastToken.z-yymsp[-2].minor.yy410.z) + pParse->sLastToken.n;
|
|
}
|
|
break;
|
|
case 31: /* columnid ::= nm */
|
|
{
|
|
sqlite3AddColumn(pParse,&yymsp[0].minor.yy410);
|
|
yygotominor.yy410 = yymsp[0].minor.yy410;
|
|
}
|
|
break;
|
|
case 32: /* id ::= ID */
|
|
case 33: /* ids ::= ID|STRING */
|
|
case 34: /* nm ::= ID */
|
|
case 35: /* nm ::= STRING */
|
|
case 36: /* nm ::= JOIN_KW */
|
|
case 256: /* number ::= INTEGER|FLOAT */
|
|
{yygotominor.yy410 = yymsp[0].minor.yy0;}
|
|
break;
|
|
case 38: /* type ::= typetoken */
|
|
{sqlite3AddColumnType(pParse,&yymsp[0].minor.yy410);}
|
|
break;
|
|
case 39: /* typetoken ::= typename */
|
|
case 42: /* typename ::= ids */
|
|
case 119: /* as ::= AS nm */
|
|
case 120: /* as ::= ids */
|
|
case 131: /* dbnm ::= DOT nm */
|
|
case 241: /* idxitem ::= nm */
|
|
case 243: /* collate ::= COLLATE ids */
|
|
case 252: /* nmnum ::= plus_num */
|
|
case 253: /* nmnum ::= nm */
|
|
case 254: /* plus_num ::= plus_opt number */
|
|
case 255: /* minus_num ::= MINUS number */
|
|
{yygotominor.yy410 = yymsp[0].minor.yy410;}
|
|
break;
|
|
case 40: /* typetoken ::= typename LP signed RP */
|
|
{
|
|
yygotominor.yy410.z = yymsp[-3].minor.yy410.z;
|
|
yygotominor.yy410.n = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-3].minor.yy410.z;
|
|
}
|
|
break;
|
|
case 41: /* typetoken ::= typename LP signed COMMA signed RP */
|
|
{
|
|
yygotominor.yy410.z = yymsp[-5].minor.yy410.z;
|
|
yygotominor.yy410.n = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-5].minor.yy410.z;
|
|
}
|
|
break;
|
|
case 43: /* typename ::= typename ids */
|
|
{yygotominor.yy410.z=yymsp[-1].minor.yy410.z; yygotominor.yy410.n=yymsp[0].minor.yy410.n+(yymsp[0].minor.yy410.z-yymsp[-1].minor.yy410.z);}
|
|
break;
|
|
case 50: /* ccons ::= DEFAULT term */
|
|
case 52: /* ccons ::= DEFAULT PLUS term */
|
|
{sqlite3AddDefaultValue(pParse,yymsp[0].minor.yy172);}
|
|
break;
|
|
case 51: /* ccons ::= DEFAULT LP expr RP */
|
|
{sqlite3AddDefaultValue(pParse,yymsp[-1].minor.yy172);}
|
|
break;
|
|
case 53: /* ccons ::= DEFAULT MINUS term */
|
|
{
|
|
Expr *p = sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy172, 0, 0);
|
|
sqlite3AddDefaultValue(pParse,p);
|
|
}
|
|
break;
|
|
case 54: /* ccons ::= DEFAULT id */
|
|
{
|
|
Expr *p = sqlite3PExpr(pParse, TK_STRING, 0, 0, &yymsp[0].minor.yy410);
|
|
sqlite3AddDefaultValue(pParse,p);
|
|
}
|
|
break;
|
|
case 56: /* ccons ::= NOT NULL onconf */
|
|
{sqlite3AddNotNull(pParse, yymsp[0].minor.yy46);}
|
|
break;
|
|
case 57: /* ccons ::= PRIMARY KEY sortorder onconf autoinc */
|
|
{sqlite3AddPrimaryKey(pParse,0,yymsp[-1].minor.yy46,yymsp[0].minor.yy46,yymsp[-2].minor.yy46);}
|
|
break;
|
|
case 58: /* ccons ::= UNIQUE onconf */
|
|
{sqlite3CreateIndex(pParse,0,0,0,0,yymsp[0].minor.yy46,0,0,0,0);}
|
|
break;
|
|
case 59: /* ccons ::= CHECK LP expr RP */
|
|
{sqlite3AddCheckConstraint(pParse,yymsp[-1].minor.yy172);}
|
|
break;
|
|
case 60: /* ccons ::= REFERENCES nm idxlist_opt refargs */
|
|
{sqlite3CreateForeignKey(pParse,0,&yymsp[-2].minor.yy410,yymsp[-1].minor.yy174,yymsp[0].minor.yy46);}
|
|
break;
|
|
case 61: /* ccons ::= defer_subclause */
|
|
{sqlite3DeferForeignKey(pParse,yymsp[0].minor.yy46);}
|
|
break;
|
|
case 62: /* ccons ::= COLLATE ids */
|
|
{sqlite3AddCollateType(pParse, &yymsp[0].minor.yy410);}
|
|
break;
|
|
case 65: /* refargs ::= */
|
|
{ yygotominor.yy46 = OE_Restrict * 0x010101; }
|
|
break;
|
|
case 66: /* refargs ::= refargs refarg */
|
|
{ yygotominor.yy46 = (yymsp[-1].minor.yy46 & yymsp[0].minor.yy405.mask) | yymsp[0].minor.yy405.value; }
|
|
break;
|
|
case 67: /* refarg ::= MATCH nm */
|
|
{ yygotominor.yy405.value = 0; yygotominor.yy405.mask = 0x000000; }
|
|
break;
|
|
case 68: /* refarg ::= ON DELETE refact */
|
|
{ yygotominor.yy405.value = yymsp[0].minor.yy46; yygotominor.yy405.mask = 0x0000ff; }
|
|
break;
|
|
case 69: /* refarg ::= ON UPDATE refact */
|
|
{ yygotominor.yy405.value = yymsp[0].minor.yy46<<8; yygotominor.yy405.mask = 0x00ff00; }
|
|
break;
|
|
case 70: /* refarg ::= ON INSERT refact */
|
|
{ yygotominor.yy405.value = yymsp[0].minor.yy46<<16; yygotominor.yy405.mask = 0xff0000; }
|
|
break;
|
|
case 71: /* refact ::= SET NULL */
|
|
{ yygotominor.yy46 = OE_SetNull; }
|
|
break;
|
|
case 72: /* refact ::= SET DEFAULT */
|
|
{ yygotominor.yy46 = OE_SetDflt; }
|
|
break;
|
|
case 73: /* refact ::= CASCADE */
|
|
{ yygotominor.yy46 = OE_Cascade; }
|
|
break;
|
|
case 74: /* refact ::= RESTRICT */
|
|
{ yygotominor.yy46 = OE_Restrict; }
|
|
break;
|
|
case 75: /* defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */
|
|
case 76: /* defer_subclause ::= DEFERRABLE init_deferred_pred_opt */
|
|
case 91: /* defer_subclause_opt ::= defer_subclause */
|
|
case 93: /* onconf ::= ON CONFLICT resolvetype */
|
|
case 95: /* orconf ::= OR resolvetype */
|
|
case 96: /* resolvetype ::= raisetype */
|
|
case 166: /* insert_cmd ::= INSERT orconf */
|
|
{yygotominor.yy46 = yymsp[0].minor.yy46;}
|
|
break;
|
|
case 80: /* conslist_opt ::= */
|
|
{yygotominor.yy410.n = 0; yygotominor.yy410.z = 0;}
|
|
break;
|
|
case 81: /* conslist_opt ::= COMMA conslist */
|
|
{yygotominor.yy410 = yymsp[-1].minor.yy0;}
|
|
break;
|
|
case 86: /* tcons ::= PRIMARY KEY LP idxlist autoinc RP onconf */
|
|
{sqlite3AddPrimaryKey(pParse,yymsp[-3].minor.yy174,yymsp[0].minor.yy46,yymsp[-2].minor.yy46,0);}
|
|
break;
|
|
case 87: /* tcons ::= UNIQUE LP idxlist RP onconf */
|
|
{sqlite3CreateIndex(pParse,0,0,0,yymsp[-2].minor.yy174,yymsp[0].minor.yy46,0,0,0,0);}
|
|
break;
|
|
case 88: /* tcons ::= CHECK LP expr RP onconf */
|
|
{sqlite3AddCheckConstraint(pParse,yymsp[-2].minor.yy172);}
|
|
break;
|
|
case 89: /* tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt */
|
|
{
|
|
sqlite3CreateForeignKey(pParse, yymsp[-6].minor.yy174, &yymsp[-3].minor.yy410, yymsp[-2].minor.yy174, yymsp[-1].minor.yy46);
|
|
sqlite3DeferForeignKey(pParse, yymsp[0].minor.yy46);
|
|
}
|
|
break;
|
|
case 92: /* onconf ::= */
|
|
case 94: /* orconf ::= */
|
|
{yygotominor.yy46 = OE_Default;}
|
|
break;
|
|
case 97: /* resolvetype ::= IGNORE */
|
|
{yygotominor.yy46 = OE_Ignore;}
|
|
break;
|
|
case 98: /* resolvetype ::= REPLACE */
|
|
case 167: /* insert_cmd ::= REPLACE */
|
|
{yygotominor.yy46 = OE_Replace;}
|
|
break;
|
|
case 99: /* cmd ::= DROP TABLE ifexists fullname */
|
|
{
|
|
sqlite3DropTable(pParse, yymsp[0].minor.yy373, 0, yymsp[-1].minor.yy46);
|
|
}
|
|
break;
|
|
case 102: /* cmd ::= CREATE temp VIEW ifnotexists nm dbnm AS select */
|
|
{
|
|
sqlite3CreateView(pParse, &yymsp[-7].minor.yy0, &yymsp[-3].minor.yy410, &yymsp[-2].minor.yy410, yymsp[0].minor.yy219, yymsp[-6].minor.yy46, yymsp[-4].minor.yy46);
|
|
}
|
|
break;
|
|
case 103: /* cmd ::= DROP VIEW ifexists fullname */
|
|
{
|
|
sqlite3DropTable(pParse, yymsp[0].minor.yy373, 1, yymsp[-1].minor.yy46);
|
|
}
|
|
break;
|
|
case 104: /* cmd ::= select */
|
|
{
|
|
SelectDest dest = {SRT_Callback, 0, 0};
|
|
sqlite3Select(pParse, yymsp[0].minor.yy219, &dest, 0, 0, 0, 0);
|
|
sqlite3SelectDelete(yymsp[0].minor.yy219);
|
|
}
|
|
break;
|
|
case 105: /* select ::= oneselect */
|
|
case 128: /* seltablist_paren ::= select */
|
|
{yygotominor.yy219 = yymsp[0].minor.yy219;}
|
|
break;
|
|
case 106: /* select ::= select multiselect_op oneselect */
|
|
{
|
|
if( yymsp[0].minor.yy219 ){
|
|
yymsp[0].minor.yy219->op = yymsp[-1].minor.yy46;
|
|
yymsp[0].minor.yy219->pPrior = yymsp[-2].minor.yy219;
|
|
}else{
|
|
sqlite3SelectDelete(yymsp[-2].minor.yy219);
|
|
}
|
|
yygotominor.yy219 = yymsp[0].minor.yy219;
|
|
}
|
|
break;
|
|
case 108: /* multiselect_op ::= UNION ALL */
|
|
{yygotominor.yy46 = TK_ALL;}
|
|
break;
|
|
case 110: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */
|
|
{
|
|
yygotominor.yy219 = sqlite3SelectNew(pParse,yymsp[-6].minor.yy174,yymsp[-5].minor.yy373,yymsp[-4].minor.yy172,yymsp[-3].minor.yy174,yymsp[-2].minor.yy172,yymsp[-1].minor.yy174,yymsp[-7].minor.yy46,yymsp[0].minor.yy234.pLimit,yymsp[0].minor.yy234.pOffset);
|
|
}
|
|
break;
|
|
case 114: /* sclp ::= selcollist COMMA */
|
|
case 238: /* idxlist_opt ::= LP idxlist RP */
|
|
{yygotominor.yy174 = yymsp[-1].minor.yy174;}
|
|
break;
|
|
case 115: /* sclp ::= */
|
|
case 141: /* orderby_opt ::= */
|
|
case 149: /* groupby_opt ::= */
|
|
case 231: /* exprlist ::= */
|
|
case 237: /* idxlist_opt ::= */
|
|
{yygotominor.yy174 = 0;}
|
|
break;
|
|
case 116: /* selcollist ::= sclp expr as */
|
|
{
|
|
yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy174,yymsp[-1].minor.yy172,yymsp[0].minor.yy410.n?&yymsp[0].minor.yy410:0);
|
|
}
|
|
break;
|
|
case 117: /* selcollist ::= sclp STAR */
|
|
{
|
|
Expr *p = sqlite3PExpr(pParse, TK_ALL, 0, 0, 0);
|
|
yygotominor.yy174 = sqlite3ExprListAppend(pParse, yymsp[-1].minor.yy174, p, 0);
|
|
}
|
|
break;
|
|
case 118: /* selcollist ::= sclp nm DOT STAR */
|
|
{
|
|
Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, 0);
|
|
Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy410);
|
|
Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
|
|
yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy174, pDot, 0);
|
|
}
|
|
break;
|
|
case 121: /* as ::= */
|
|
{yygotominor.yy410.n = 0;}
|
|
break;
|
|
case 122: /* from ::= */
|
|
{yygotominor.yy373 = sqlite3DbMallocZero(pParse->db, sizeof(*yygotominor.yy373));}
|
|
break;
|
|
case 123: /* from ::= FROM seltablist */
|
|
{
|
|
yygotominor.yy373 = yymsp[0].minor.yy373;
|
|
sqlite3SrcListShiftJoinType(yygotominor.yy373);
|
|
}
|
|
break;
|
|
case 124: /* stl_prefix ::= seltablist joinop */
|
|
{
|
|
yygotominor.yy373 = yymsp[-1].minor.yy373;
|
|
if( yygotominor.yy373 && yygotominor.yy373->nSrc>0 ) yygotominor.yy373->a[yygotominor.yy373->nSrc-1].jointype = yymsp[0].minor.yy46;
|
|
}
|
|
break;
|
|
case 125: /* stl_prefix ::= */
|
|
{yygotominor.yy373 = 0;}
|
|
break;
|
|
case 126: /* seltablist ::= stl_prefix nm dbnm as on_opt using_opt */
|
|
{
|
|
yygotominor.yy373 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy373,&yymsp[-4].minor.yy410,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,0,yymsp[-1].minor.yy172,yymsp[0].minor.yy432);
|
|
}
|
|
break;
|
|
case 127: /* seltablist ::= stl_prefix LP seltablist_paren RP as on_opt using_opt */
|
|
{
|
|
yygotominor.yy373 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy373,0,0,&yymsp[-2].minor.yy410,yymsp[-4].minor.yy219,yymsp[-1].minor.yy172,yymsp[0].minor.yy432);
|
|
}
|
|
break;
|
|
case 129: /* seltablist_paren ::= seltablist */
|
|
{
|
|
sqlite3SrcListShiftJoinType(yymsp[0].minor.yy373);
|
|
yygotominor.yy219 = sqlite3SelectNew(pParse,0,yymsp[0].minor.yy373,0,0,0,0,0,0,0);
|
|
}
|
|
break;
|
|
case 130: /* dbnm ::= */
|
|
{yygotominor.yy410.z=0; yygotominor.yy410.n=0;}
|
|
break;
|
|
case 132: /* fullname ::= nm dbnm */
|
|
{yygotominor.yy373 = sqlite3SrcListAppend(pParse->db,0,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410);}
|
|
break;
|
|
case 133: /* joinop ::= COMMA|JOIN */
|
|
{ yygotominor.yy46 = JT_INNER; }
|
|
break;
|
|
case 134: /* joinop ::= JOIN_KW JOIN */
|
|
{ yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-1].minor.yy0,0,0); }
|
|
break;
|
|
case 135: /* joinop ::= JOIN_KW nm JOIN */
|
|
{ yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy410,0); }
|
|
break;
|
|
case 136: /* joinop ::= JOIN_KW nm nm JOIN */
|
|
{ yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy410,&yymsp[-1].minor.yy410); }
|
|
break;
|
|
case 137: /* on_opt ::= ON expr */
|
|
case 145: /* sortitem ::= expr */
|
|
case 152: /* having_opt ::= HAVING expr */
|
|
case 159: /* where_opt ::= WHERE expr */
|
|
case 174: /* expr ::= term */
|
|
case 202: /* escape ::= ESCAPE expr */
|
|
case 226: /* case_else ::= ELSE expr */
|
|
case 228: /* case_operand ::= expr */
|
|
{yygotominor.yy172 = yymsp[0].minor.yy172;}
|
|
break;
|
|
case 138: /* on_opt ::= */
|
|
case 151: /* having_opt ::= */
|
|
case 158: /* where_opt ::= */
|
|
case 203: /* escape ::= */
|
|
case 227: /* case_else ::= */
|
|
case 229: /* case_operand ::= */
|
|
{yygotominor.yy172 = 0;}
|
|
break;
|
|
case 139: /* using_opt ::= USING LP inscollist RP */
|
|
case 171: /* inscollist_opt ::= LP inscollist RP */
|
|
{yygotominor.yy432 = yymsp[-1].minor.yy432;}
|
|
break;
|
|
case 140: /* using_opt ::= */
|
|
case 170: /* inscollist_opt ::= */
|
|
{yygotominor.yy432 = 0;}
|
|
break;
|
|
case 142: /* orderby_opt ::= ORDER BY sortlist */
|
|
case 150: /* groupby_opt ::= GROUP BY nexprlist */
|
|
case 230: /* exprlist ::= nexprlist */
|
|
{yygotominor.yy174 = yymsp[0].minor.yy174;}
|
|
break;
|
|
case 143: /* sortlist ::= sortlist COMMA sortitem sortorder */
|
|
{
|
|
yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy174,yymsp[-1].minor.yy172,0);
|
|
if( yygotominor.yy174 ) yygotominor.yy174->a[yygotominor.yy174->nExpr-1].sortOrder = yymsp[0].minor.yy46;
|
|
}
|
|
break;
|
|
case 144: /* sortlist ::= sortitem sortorder */
|
|
{
|
|
yygotominor.yy174 = sqlite3ExprListAppend(pParse,0,yymsp[-1].minor.yy172,0);
|
|
if( yygotominor.yy174 && yygotominor.yy174->a ) yygotominor.yy174->a[0].sortOrder = yymsp[0].minor.yy46;
|
|
}
|
|
break;
|
|
case 146: /* sortorder ::= ASC */
|
|
case 148: /* sortorder ::= */
|
|
{yygotominor.yy46 = SQLITE_SO_ASC;}
|
|
break;
|
|
case 147: /* sortorder ::= DESC */
|
|
{yygotominor.yy46 = SQLITE_SO_DESC;}
|
|
break;
|
|
case 153: /* limit_opt ::= */
|
|
{yygotominor.yy234.pLimit = 0; yygotominor.yy234.pOffset = 0;}
|
|
break;
|
|
case 154: /* limit_opt ::= LIMIT expr */
|
|
{yygotominor.yy234.pLimit = yymsp[0].minor.yy172; yygotominor.yy234.pOffset = 0;}
|
|
break;
|
|
case 155: /* limit_opt ::= LIMIT expr OFFSET expr */
|
|
{yygotominor.yy234.pLimit = yymsp[-2].minor.yy172; yygotominor.yy234.pOffset = yymsp[0].minor.yy172;}
|
|
break;
|
|
case 156: /* limit_opt ::= LIMIT expr COMMA expr */
|
|
{yygotominor.yy234.pOffset = yymsp[-2].minor.yy172; yygotominor.yy234.pLimit = yymsp[0].minor.yy172;}
|
|
break;
|
|
case 157: /* cmd ::= DELETE FROM fullname where_opt */
|
|
{sqlite3DeleteFrom(pParse,yymsp[-1].minor.yy373,yymsp[0].minor.yy172);}
|
|
break;
|
|
case 160: /* cmd ::= UPDATE orconf fullname SET setlist where_opt */
|
|
{
|
|
sqlite3ExprListCheckLength(pParse,yymsp[-1].minor.yy174,SQLITE_MAX_COLUMN,"set list");
|
|
sqlite3Update(pParse,yymsp[-3].minor.yy373,yymsp[-1].minor.yy174,yymsp[0].minor.yy172,yymsp[-4].minor.yy46);
|
|
}
|
|
break;
|
|
case 161: /* setlist ::= setlist COMMA nm EQ expr */
|
|
{yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy174,yymsp[0].minor.yy172,&yymsp[-2].minor.yy410);}
|
|
break;
|
|
case 162: /* setlist ::= nm EQ expr */
|
|
{yygotominor.yy174 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy172,&yymsp[-2].minor.yy410);}
|
|
break;
|
|
case 163: /* cmd ::= insert_cmd INTO fullname inscollist_opt VALUES LP itemlist RP */
|
|
{sqlite3Insert(pParse, yymsp[-5].minor.yy373, yymsp[-1].minor.yy174, 0, yymsp[-4].minor.yy432, yymsp[-7].minor.yy46);}
|
|
break;
|
|
case 164: /* cmd ::= insert_cmd INTO fullname inscollist_opt select */
|
|
{sqlite3Insert(pParse, yymsp[-2].minor.yy373, 0, yymsp[0].minor.yy219, yymsp[-1].minor.yy432, yymsp[-4].minor.yy46);}
|
|
break;
|
|
case 165: /* cmd ::= insert_cmd INTO fullname inscollist_opt DEFAULT VALUES */
|
|
{sqlite3Insert(pParse, yymsp[-3].minor.yy373, 0, 0, yymsp[-2].minor.yy432, yymsp[-5].minor.yy46);}
|
|
break;
|
|
case 168: /* itemlist ::= itemlist COMMA expr */
|
|
case 232: /* nexprlist ::= nexprlist COMMA expr */
|
|
{yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy174,yymsp[0].minor.yy172,0);}
|
|
break;
|
|
case 169: /* itemlist ::= expr */
|
|
case 233: /* nexprlist ::= expr */
|
|
{yygotominor.yy174 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy172,0);}
|
|
break;
|
|
case 172: /* inscollist ::= inscollist COMMA nm */
|
|
{yygotominor.yy432 = sqlite3IdListAppend(pParse->db,yymsp[-2].minor.yy432,&yymsp[0].minor.yy410);}
|
|
break;
|
|
case 173: /* inscollist ::= nm */
|
|
{yygotominor.yy432 = sqlite3IdListAppend(pParse->db,0,&yymsp[0].minor.yy410);}
|
|
break;
|
|
case 175: /* expr ::= LP expr RP */
|
|
{yygotominor.yy172 = yymsp[-1].minor.yy172; sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); }
|
|
break;
|
|
case 176: /* term ::= NULL */
|
|
case 181: /* term ::= INTEGER|FLOAT|BLOB */
|
|
case 182: /* term ::= STRING */
|
|
{yygotominor.yy172 = sqlite3PExpr(pParse, yymsp[0].major, 0, 0, &yymsp[0].minor.yy0);}
|
|
break;
|
|
case 177: /* expr ::= ID */
|
|
case 178: /* expr ::= JOIN_KW */
|
|
{yygotominor.yy172 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy0);}
|
|
break;
|
|
case 179: /* expr ::= nm DOT nm */
|
|
{
|
|
Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy410);
|
|
Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy410);
|
|
yygotominor.yy172 = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0);
|
|
}
|
|
break;
|
|
case 180: /* expr ::= nm DOT nm DOT nm */
|
|
{
|
|
Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-4].minor.yy410);
|
|
Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy410);
|
|
Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy410);
|
|
Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0);
|
|
yygotominor.yy172 = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0);
|
|
}
|
|
break;
|
|
case 183: /* expr ::= REGISTER */
|
|
{yygotominor.yy172 = sqlite3RegisterExpr(pParse, &yymsp[0].minor.yy0);}
|
|
break;
|
|
case 184: /* expr ::= VARIABLE */
|
|
{
|
|
Token *pToken = &yymsp[0].minor.yy0;
|
|
Expr *pExpr = yygotominor.yy172 = sqlite3PExpr(pParse, TK_VARIABLE, 0, 0, pToken);
|
|
sqlite3ExprAssignVarNumber(pParse, pExpr);
|
|
}
|
|
break;
|
|
case 185: /* expr ::= expr COLLATE ids */
|
|
{
|
|
yygotominor.yy172 = sqlite3ExprSetColl(pParse, yymsp[-2].minor.yy172, &yymsp[0].minor.yy410);
|
|
}
|
|
break;
|
|
case 186: /* expr ::= CAST LP expr AS typetoken RP */
|
|
{
|
|
yygotominor.yy172 = sqlite3PExpr(pParse, TK_CAST, yymsp[-3].minor.yy172, 0, &yymsp[-1].minor.yy410);
|
|
sqlite3ExprSpan(yygotominor.yy172,&yymsp[-5].minor.yy0,&yymsp[0].minor.yy0);
|
|
}
|
|
break;
|
|
case 187: /* expr ::= ID LP distinct exprlist RP */
|
|
{
|
|
if( yymsp[-1].minor.yy174 && yymsp[-1].minor.yy174->nExpr>SQLITE_MAX_FUNCTION_ARG ){
|
|
sqlite3ErrorMsg(pParse, "too many arguments on function %T", &yymsp[-4].minor.yy0);
|
|
}
|
|
yygotominor.yy172 = sqlite3ExprFunction(pParse, yymsp[-1].minor.yy174, &yymsp[-4].minor.yy0);
|
|
sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy0,&yymsp[0].minor.yy0);
|
|
if( yymsp[-2].minor.yy46 && yygotominor.yy172 ){
|
|
yygotominor.yy172->flags |= EP_Distinct;
|
|
}
|
|
}
|
|
break;
|
|
case 188: /* expr ::= ID LP STAR RP */
|
|
{
|
|
yygotominor.yy172 = sqlite3ExprFunction(pParse, 0, &yymsp[-3].minor.yy0);
|
|
sqlite3ExprSpan(yygotominor.yy172,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
|
|
}
|
|
break;
|
|
case 189: /* term ::= CTIME_KW */
|
|
{
|
|
/* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are
|
|
** treated as functions that return constants */
|
|
yygotominor.yy172 = sqlite3ExprFunction(pParse, 0,&yymsp[0].minor.yy0);
|
|
if( yygotominor.yy172 ){
|
|
yygotominor.yy172->op = TK_CONST_FUNC;
|
|
yygotominor.yy172->span = yymsp[0].minor.yy0;
|
|
}
|
|
}
|
|
break;
|
|
case 190: /* expr ::= expr AND expr */
|
|
case 191: /* expr ::= expr OR expr */
|
|
case 192: /* expr ::= expr LT|GT|GE|LE expr */
|
|
case 193: /* expr ::= expr EQ|NE expr */
|
|
case 194: /* expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */
|
|
case 195: /* expr ::= expr PLUS|MINUS expr */
|
|
case 196: /* expr ::= expr STAR|SLASH|REM expr */
|
|
case 197: /* expr ::= expr CONCAT expr */
|
|
{yygotominor.yy172 = sqlite3PExpr(pParse,yymsp[-1].major,yymsp[-2].minor.yy172,yymsp[0].minor.yy172,0);}
|
|
break;
|
|
case 198: /* likeop ::= LIKE_KW */
|
|
case 200: /* likeop ::= MATCH */
|
|
{yygotominor.yy72.eOperator = yymsp[0].minor.yy0; yygotominor.yy72.not = 0;}
|
|
break;
|
|
case 199: /* likeop ::= NOT LIKE_KW */
|
|
case 201: /* likeop ::= NOT MATCH */
|
|
{yygotominor.yy72.eOperator = yymsp[0].minor.yy0; yygotominor.yy72.not = 1;}
|
|
break;
|
|
case 204: /* expr ::= expr likeop expr escape */
|
|
{
|
|
ExprList *pList;
|
|
pList = sqlite3ExprListAppend(pParse,0, yymsp[-1].minor.yy172, 0);
|
|
pList = sqlite3ExprListAppend(pParse,pList, yymsp[-3].minor.yy172, 0);
|
|
if( yymsp[0].minor.yy172 ){
|
|
pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy172, 0);
|
|
}
|
|
yygotominor.yy172 = sqlite3ExprFunction(pParse, pList, &yymsp[-2].minor.yy72.eOperator);
|
|
if( yymsp[-2].minor.yy72.not ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
|
|
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-3].minor.yy172->span, &yymsp[-1].minor.yy172->span);
|
|
if( yygotominor.yy172 ) yygotominor.yy172->flags |= EP_InfixFunc;
|
|
}
|
|
break;
|
|
case 205: /* expr ::= expr ISNULL|NOTNULL */
|
|
{
|
|
yygotominor.yy172 = sqlite3PExpr(pParse, yymsp[0].major, yymsp[-1].minor.yy172, 0, 0);
|
|
sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy172->span,&yymsp[0].minor.yy0);
|
|
}
|
|
break;
|
|
case 206: /* expr ::= expr IS NULL */
|
|
{
|
|
yygotominor.yy172 = sqlite3PExpr(pParse, TK_ISNULL, yymsp[-2].minor.yy172, 0, 0);
|
|
sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy172->span,&yymsp[0].minor.yy0);
|
|
}
|
|
break;
|
|
case 207: /* expr ::= expr NOT NULL */
|
|
{
|
|
yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOTNULL, yymsp[-2].minor.yy172, 0, 0);
|
|
sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy172->span,&yymsp[0].minor.yy0);
|
|
}
|
|
break;
|
|
case 208: /* expr ::= expr IS NOT NULL */
|
|
{
|
|
yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOTNULL, yymsp[-3].minor.yy172, 0, 0);
|
|
sqlite3ExprSpan(yygotominor.yy172,&yymsp[-3].minor.yy172->span,&yymsp[0].minor.yy0);
|
|
}
|
|
break;
|
|
case 209: /* expr ::= NOT expr */
|
|
case 210: /* expr ::= BITNOT expr */
|
|
{
|
|
yygotominor.yy172 = sqlite3PExpr(pParse, yymsp[-1].major, yymsp[0].minor.yy172, 0, 0);
|
|
sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy172->span);
|
|
}
|
|
break;
|
|
case 211: /* expr ::= MINUS expr */
|
|
{
|
|
yygotominor.yy172 = sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy172, 0, 0);
|
|
sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy172->span);
|
|
}
|
|
break;
|
|
case 212: /* expr ::= PLUS expr */
|
|
{
|
|
yygotominor.yy172 = sqlite3PExpr(pParse, TK_UPLUS, yymsp[0].minor.yy172, 0, 0);
|
|
sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy172->span);
|
|
}
|
|
break;
|
|
case 215: /* expr ::= expr between_op expr AND expr */
|
|
{
|
|
ExprList *pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy172, 0);
|
|
pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy172, 0);
|
|
yygotominor.yy172 = sqlite3PExpr(pParse, TK_BETWEEN, yymsp[-4].minor.yy172, 0, 0);
|
|
if( yygotominor.yy172 ){
|
|
yygotominor.yy172->pList = pList;
|
|
}else{
|
|
sqlite3ExprListDelete(pList);
|
|
}
|
|
if( yymsp[-3].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
|
|
sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy172->span,&yymsp[0].minor.yy172->span);
|
|
}
|
|
break;
|
|
case 218: /* expr ::= expr in_op LP exprlist RP */
|
|
{
|
|
yygotominor.yy172 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy172, 0, 0);
|
|
if( yygotominor.yy172 ){
|
|
yygotominor.yy172->pList = yymsp[-1].minor.yy174;
|
|
sqlite3ExprSetHeight(yygotominor.yy172);
|
|
}else{
|
|
sqlite3ExprListDelete(yymsp[-1].minor.yy174);
|
|
}
|
|
if( yymsp[-3].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
|
|
sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy172->span,&yymsp[0].minor.yy0);
|
|
}
|
|
break;
|
|
case 219: /* expr ::= LP select RP */
|
|
{
|
|
yygotominor.yy172 = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
|
|
if( yygotominor.yy172 ){
|
|
yygotominor.yy172->pSelect = yymsp[-1].minor.yy219;
|
|
sqlite3ExprSetHeight(yygotominor.yy172);
|
|
}else{
|
|
sqlite3SelectDelete(yymsp[-1].minor.yy219);
|
|
}
|
|
sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);
|
|
}
|
|
break;
|
|
case 220: /* expr ::= expr in_op LP select RP */
|
|
{
|
|
yygotominor.yy172 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy172, 0, 0);
|
|
if( yygotominor.yy172 ){
|
|
yygotominor.yy172->pSelect = yymsp[-1].minor.yy219;
|
|
sqlite3ExprSetHeight(yygotominor.yy172);
|
|
}else{
|
|
sqlite3SelectDelete(yymsp[-1].minor.yy219);
|
|
}
|
|
if( yymsp[-3].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
|
|
sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy172->span,&yymsp[0].minor.yy0);
|
|
}
|
|
break;
|
|
case 221: /* expr ::= expr in_op nm dbnm */
|
|
{
|
|
SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410);
|
|
yygotominor.yy172 = sqlite3PExpr(pParse, TK_IN, yymsp[-3].minor.yy172, 0, 0);
|
|
if( yygotominor.yy172 ){
|
|
yygotominor.yy172->pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
|
|
sqlite3ExprSetHeight(yygotominor.yy172);
|
|
}else{
|
|
sqlite3SrcListDelete(pSrc);
|
|
}
|
|
if( yymsp[-2].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
|
|
sqlite3ExprSpan(yygotominor.yy172,&yymsp[-3].minor.yy172->span,yymsp[0].minor.yy410.z?&yymsp[0].minor.yy410:&yymsp[-1].minor.yy410);
|
|
}
|
|
break;
|
|
case 222: /* expr ::= EXISTS LP select RP */
|
|
{
|
|
Expr *p = yygotominor.yy172 = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
|
|
if( p ){
|
|
p->pSelect = yymsp[-1].minor.yy219;
|
|
sqlite3ExprSpan(p,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
|
|
sqlite3ExprSetHeight(yygotominor.yy172);
|
|
}else{
|
|
sqlite3SelectDelete(yymsp[-1].minor.yy219);
|
|
}
|
|
}
|
|
break;
|
|
case 223: /* expr ::= CASE case_operand case_exprlist case_else END */
|
|
{
|
|
yygotominor.yy172 = sqlite3PExpr(pParse, TK_CASE, yymsp[-3].minor.yy172, yymsp[-1].minor.yy172, 0);
|
|
if( yygotominor.yy172 ){
|
|
yygotominor.yy172->pList = yymsp[-2].minor.yy174;
|
|
sqlite3ExprSetHeight(yygotominor.yy172);
|
|
}else{
|
|
sqlite3ExprListDelete(yymsp[-2].minor.yy174);
|
|
}
|
|
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-4].minor.yy0, &yymsp[0].minor.yy0);
|
|
}
|
|
break;
|
|
case 224: /* case_exprlist ::= case_exprlist WHEN expr THEN expr */
|
|
{
|
|
yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy174, yymsp[-2].minor.yy172, 0);
|
|
yygotominor.yy174 = sqlite3ExprListAppend(pParse,yygotominor.yy174, yymsp[0].minor.yy172, 0);
|
|
}
|
|
break;
|
|
case 225: /* case_exprlist ::= WHEN expr THEN expr */
|
|
{
|
|
yygotominor.yy174 = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy172, 0);
|
|
yygotominor.yy174 = sqlite3ExprListAppend(pParse,yygotominor.yy174, yymsp[0].minor.yy172, 0);
|
|
}
|
|
break;
|
|
case 234: /* cmd ::= CREATE uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP */
|
|
{
|
|
sqlite3CreateIndex(pParse, &yymsp[-6].minor.yy410, &yymsp[-5].minor.yy410,
|
|
sqlite3SrcListAppend(pParse->db,0,&yymsp[-3].minor.yy410,0), yymsp[-1].minor.yy174, yymsp[-9].minor.yy46,
|
|
&yymsp[-10].minor.yy0, &yymsp[0].minor.yy0, SQLITE_SO_ASC, yymsp[-7].minor.yy46);
|
|
}
|
|
break;
|
|
case 235: /* uniqueflag ::= UNIQUE */
|
|
case 282: /* raisetype ::= ABORT */
|
|
{yygotominor.yy46 = OE_Abort;}
|
|
break;
|
|
case 236: /* uniqueflag ::= */
|
|
{yygotominor.yy46 = OE_None;}
|
|
break;
|
|
case 239: /* idxlist ::= idxlist COMMA idxitem collate sortorder */
|
|
{
|
|
Expr *p = 0;
|
|
if( yymsp[-1].minor.yy410.n>0 ){
|
|
p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
|
|
sqlite3ExprSetColl(pParse, p, &yymsp[-1].minor.yy410);
|
|
}
|
|
yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy174, p, &yymsp[-2].minor.yy410);
|
|
sqlite3ExprListCheckLength(pParse, yygotominor.yy174, SQLITE_MAX_COLUMN, "index");
|
|
if( yygotominor.yy174 ) yygotominor.yy174->a[yygotominor.yy174->nExpr-1].sortOrder = yymsp[0].minor.yy46;
|
|
}
|
|
break;
|
|
case 240: /* idxlist ::= idxitem collate sortorder */
|
|
{
|
|
Expr *p = 0;
|
|
if( yymsp[-1].minor.yy410.n>0 ){
|
|
p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
|
|
sqlite3ExprSetColl(pParse, p, &yymsp[-1].minor.yy410);
|
|
}
|
|
yygotominor.yy174 = sqlite3ExprListAppend(pParse,0, p, &yymsp[-2].minor.yy410);
|
|
sqlite3ExprListCheckLength(pParse, yygotominor.yy174, SQLITE_MAX_COLUMN, "index");
|
|
if( yygotominor.yy174 ) yygotominor.yy174->a[yygotominor.yy174->nExpr-1].sortOrder = yymsp[0].minor.yy46;
|
|
}
|
|
break;
|
|
case 242: /* collate ::= */
|
|
{yygotominor.yy410.z = 0; yygotominor.yy410.n = 0;}
|
|
break;
|
|
case 244: /* cmd ::= DROP INDEX ifexists fullname */
|
|
{sqlite3DropIndex(pParse, yymsp[0].minor.yy373, yymsp[-1].minor.yy46);}
|
|
break;
|
|
case 245: /* cmd ::= VACUUM */
|
|
case 246: /* cmd ::= VACUUM nm */
|
|
{sqlite3Vacuum(pParse);}
|
|
break;
|
|
case 247: /* cmd ::= PRAGMA nm dbnm EQ nmnum */
|
|
{sqlite3Pragma(pParse,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,&yymsp[0].minor.yy410,0);}
|
|
break;
|
|
case 248: /* cmd ::= PRAGMA nm dbnm EQ ON */
|
|
{sqlite3Pragma(pParse,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,&yymsp[0].minor.yy0,0);}
|
|
break;
|
|
case 249: /* cmd ::= PRAGMA nm dbnm EQ minus_num */
|
|
{
|
|
sqlite3Pragma(pParse,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,&yymsp[0].minor.yy410,1);
|
|
}
|
|
break;
|
|
case 250: /* cmd ::= PRAGMA nm dbnm LP nmnum RP */
|
|
{sqlite3Pragma(pParse,&yymsp[-4].minor.yy410,&yymsp[-3].minor.yy410,&yymsp[-1].minor.yy410,0);}
|
|
break;
|
|
case 251: /* cmd ::= PRAGMA nm dbnm */
|
|
{sqlite3Pragma(pParse,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410,0,0);}
|
|
break;
|
|
case 259: /* cmd ::= CREATE trigger_decl BEGIN trigger_cmd_list END */
|
|
{
|
|
Token all;
|
|
all.z = yymsp[-3].minor.yy410.z;
|
|
all.n = (yymsp[0].minor.yy0.z - yymsp[-3].minor.yy410.z) + yymsp[0].minor.yy0.n;
|
|
sqlite3FinishTrigger(pParse, yymsp[-1].minor.yy243, &all);
|
|
}
|
|
break;
|
|
case 260: /* trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */
|
|
{
|
|
sqlite3BeginTrigger(pParse, &yymsp[-7].minor.yy410, &yymsp[-6].minor.yy410, yymsp[-5].minor.yy46, yymsp[-4].minor.yy370.a, yymsp[-4].minor.yy370.b, yymsp[-2].minor.yy373, yymsp[0].minor.yy172, yymsp[-10].minor.yy46, yymsp[-8].minor.yy46);
|
|
yygotominor.yy410 = (yymsp[-6].minor.yy410.n==0?yymsp[-7].minor.yy410:yymsp[-6].minor.yy410);
|
|
}
|
|
break;
|
|
case 261: /* trigger_time ::= BEFORE */
|
|
case 264: /* trigger_time ::= */
|
|
{ yygotominor.yy46 = TK_BEFORE; }
|
|
break;
|
|
case 262: /* trigger_time ::= AFTER */
|
|
{ yygotominor.yy46 = TK_AFTER; }
|
|
break;
|
|
case 263: /* trigger_time ::= INSTEAD OF */
|
|
{ yygotominor.yy46 = TK_INSTEAD;}
|
|
break;
|
|
case 265: /* trigger_event ::= DELETE|INSERT */
|
|
case 266: /* trigger_event ::= UPDATE */
|
|
{yygotominor.yy370.a = yymsp[0].major; yygotominor.yy370.b = 0;}
|
|
break;
|
|
case 267: /* trigger_event ::= UPDATE OF inscollist */
|
|
{yygotominor.yy370.a = TK_UPDATE; yygotominor.yy370.b = yymsp[0].minor.yy432;}
|
|
break;
|
|
case 270: /* when_clause ::= */
|
|
case 287: /* key_opt ::= */
|
|
{ yygotominor.yy172 = 0; }
|
|
break;
|
|
case 271: /* when_clause ::= WHEN expr */
|
|
case 288: /* key_opt ::= KEY expr */
|
|
{ yygotominor.yy172 = yymsp[0].minor.yy172; }
|
|
break;
|
|
case 272: /* trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */
|
|
{
|
|
if( yymsp[-2].minor.yy243 ){
|
|
yymsp[-2].minor.yy243->pLast->pNext = yymsp[-1].minor.yy243;
|
|
}else{
|
|
yymsp[-2].minor.yy243 = yymsp[-1].minor.yy243;
|
|
}
|
|
yymsp[-2].minor.yy243->pLast = yymsp[-1].minor.yy243;
|
|
yygotominor.yy243 = yymsp[-2].minor.yy243;
|
|
}
|
|
break;
|
|
case 273: /* trigger_cmd_list ::= */
|
|
{ yygotominor.yy243 = 0; }
|
|
break;
|
|
case 274: /* trigger_cmd ::= UPDATE orconf nm SET setlist where_opt */
|
|
{ yygotominor.yy243 = sqlite3TriggerUpdateStep(pParse->db, &yymsp[-3].minor.yy410, yymsp[-1].minor.yy174, yymsp[0].minor.yy172, yymsp[-4].minor.yy46); }
|
|
break;
|
|
case 275: /* trigger_cmd ::= insert_cmd INTO nm inscollist_opt VALUES LP itemlist RP */
|
|
{yygotominor.yy243 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-5].minor.yy410, yymsp[-4].minor.yy432, yymsp[-1].minor.yy174, 0, yymsp[-7].minor.yy46);}
|
|
break;
|
|
case 276: /* trigger_cmd ::= insert_cmd INTO nm inscollist_opt select */
|
|
{yygotominor.yy243 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-2].minor.yy410, yymsp[-1].minor.yy432, 0, yymsp[0].minor.yy219, yymsp[-4].minor.yy46);}
|
|
break;
|
|
case 277: /* trigger_cmd ::= DELETE FROM nm where_opt */
|
|
{yygotominor.yy243 = sqlite3TriggerDeleteStep(pParse->db, &yymsp[-1].minor.yy410, yymsp[0].minor.yy172);}
|
|
break;
|
|
case 278: /* trigger_cmd ::= select */
|
|
{yygotominor.yy243 = sqlite3TriggerSelectStep(pParse->db, yymsp[0].minor.yy219); }
|
|
break;
|
|
case 279: /* expr ::= RAISE LP IGNORE RP */
|
|
{
|
|
yygotominor.yy172 = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0);
|
|
if( yygotominor.yy172 ){
|
|
yygotominor.yy172->iColumn = OE_Ignore;
|
|
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-3].minor.yy0, &yymsp[0].minor.yy0);
|
|
}
|
|
}
|
|
break;
|
|
case 280: /* expr ::= RAISE LP raisetype COMMA nm RP */
|
|
{
|
|
yygotominor.yy172 = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &yymsp[-1].minor.yy410);
|
|
if( yygotominor.yy172 ) {
|
|
yygotominor.yy172->iColumn = yymsp[-3].minor.yy46;
|
|
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0);
|
|
}
|
|
}
|
|
break;
|
|
case 281: /* raisetype ::= ROLLBACK */
|
|
{yygotominor.yy46 = OE_Rollback;}
|
|
break;
|
|
case 283: /* raisetype ::= FAIL */
|
|
{yygotominor.yy46 = OE_Fail;}
|
|
break;
|
|
case 284: /* cmd ::= DROP TRIGGER ifexists fullname */
|
|
{
|
|
sqlite3DropTrigger(pParse,yymsp[0].minor.yy373,yymsp[-1].minor.yy46);
|
|
}
|
|
break;
|
|
case 285: /* cmd ::= ATTACH database_kw_opt expr AS expr key_opt */
|
|
{
|
|
sqlite3Attach(pParse, yymsp[-3].minor.yy172, yymsp[-1].minor.yy172, yymsp[0].minor.yy172);
|
|
}
|
|
break;
|
|
case 286: /* cmd ::= DETACH database_kw_opt expr */
|
|
{
|
|
sqlite3Detach(pParse, yymsp[0].minor.yy172);
|
|
}
|
|
break;
|
|
case 291: /* cmd ::= REINDEX */
|
|
{sqlite3Reindex(pParse, 0, 0);}
|
|
break;
|
|
case 292: /* cmd ::= REINDEX nm dbnm */
|
|
{sqlite3Reindex(pParse, &yymsp[-1].minor.yy410, &yymsp[0].minor.yy410);}
|
|
break;
|
|
case 293: /* cmd ::= ANALYZE */
|
|
{sqlite3Analyze(pParse, 0, 0);}
|
|
break;
|
|
case 294: /* cmd ::= ANALYZE nm dbnm */
|
|
{sqlite3Analyze(pParse, &yymsp[-1].minor.yy410, &yymsp[0].minor.yy410);}
|
|
break;
|
|
case 295: /* cmd ::= ALTER TABLE fullname RENAME TO nm */
|
|
{
|
|
sqlite3AlterRenameTable(pParse,yymsp[-3].minor.yy373,&yymsp[0].minor.yy410);
|
|
}
|
|
break;
|
|
case 296: /* cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column */
|
|
{
|
|
sqlite3AlterFinishAddColumn(pParse, &yymsp[0].minor.yy410);
|
|
}
|
|
break;
|
|
case 297: /* add_column_fullname ::= fullname */
|
|
{
|
|
sqlite3AlterBeginAddColumn(pParse, yymsp[0].minor.yy373);
|
|
}
|
|
break;
|
|
case 300: /* cmd ::= create_vtab */
|
|
{sqlite3VtabFinishParse(pParse,0);}
|
|
break;
|
|
case 301: /* cmd ::= create_vtab LP vtabarglist RP */
|
|
{sqlite3VtabFinishParse(pParse,&yymsp[0].minor.yy0);}
|
|
break;
|
|
case 302: /* create_vtab ::= CREATE VIRTUAL TABLE nm dbnm USING nm */
|
|
{
|
|
sqlite3VtabBeginParse(pParse, &yymsp[-3].minor.yy410, &yymsp[-2].minor.yy410, &yymsp[0].minor.yy410);
|
|
}
|
|
break;
|
|
case 305: /* vtabarg ::= */
|
|
{sqlite3VtabArgInit(pParse);}
|
|
break;
|
|
case 307: /* vtabargtoken ::= ANY */
|
|
case 308: /* vtabargtoken ::= lp anylist RP */
|
|
case 309: /* lp ::= LP */
|
|
case 311: /* anylist ::= anylist ANY */
|
|
{sqlite3VtabArgExtend(pParse,&yymsp[0].minor.yy0);}
|
|
break;
|
|
};
|
|
yygoto = yyRuleInfo[yyruleno].lhs;
|
|
yysize = yyRuleInfo[yyruleno].nrhs;
|
|
yypParser->yyidx -= yysize;
|
|
yyact = yy_find_reduce_action(yymsp[-yysize].stateno,yygoto);
|
|
if( yyact < YYNSTATE ){
|
|
#ifdef NDEBUG
|
|
/* If we are not debugging and the reduce action popped at least
|
|
** one element off the stack, then we can push the new element back
|
|
** onto the stack here, and skip the stack overflow test in yy_shift().
|
|
** That gives a significant speed improvement. */
|
|
if( yysize ){
|
|
yypParser->yyidx++;
|
|
yymsp -= yysize-1;
|
|
yymsp->stateno = yyact;
|
|
yymsp->major = yygoto;
|
|
yymsp->minor = yygotominor;
|
|
}else
|
|
#endif
|
|
{
|
|
yy_shift(yypParser,yyact,yygoto,&yygotominor);
|
|
}
|
|
}else{
|
|
assert( yyact == YYNSTATE + YYNRULE + 1 );
|
|
yy_accept(yypParser);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The following code executes when the parse fails
|
|
*/
|
|
static void yy_parse_failed(
|
|
yyParser *yypParser /* The parser */
|
|
){
|
|
sqlite3ParserARG_FETCH;
|
|
#ifndef NDEBUG
|
|
if( yyTraceFILE ){
|
|
fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
|
|
}
|
|
#endif
|
|
while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
|
|
/* Here code is inserted which will be executed whenever the
|
|
** parser fails */
|
|
sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
|
|
}
|
|
|
|
/*
|
|
** The following code executes when a syntax error first occurs.
|
|
*/
|
|
static void yy_syntax_error(
|
|
yyParser *yypParser, /* The parser */
|
|
int yymajor, /* The major type of the error token */
|
|
YYMINORTYPE yyminor /* The minor type of the error token */
|
|
){
|
|
sqlite3ParserARG_FETCH;
|
|
#define TOKEN (yyminor.yy0)
|
|
|
|
assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */
|
|
sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
|
|
pParse->parseError = 1;
|
|
sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
|
|
}
|
|
|
|
/*
|
|
** The following is executed when the parser accepts
|
|
*/
|
|
static void yy_accept(
|
|
yyParser *yypParser /* The parser */
|
|
){
|
|
sqlite3ParserARG_FETCH;
|
|
#ifndef NDEBUG
|
|
if( yyTraceFILE ){
|
|
fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
|
|
}
|
|
#endif
|
|
while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
|
|
/* Here code is inserted which will be executed whenever the
|
|
** parser accepts */
|
|
sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
|
|
}
|
|
|
|
/* The main parser program.
|
|
** The first argument is a pointer to a structure obtained from
|
|
** "sqlite3ParserAlloc" which describes the current state of the parser.
|
|
** The second argument is the major token number. The third is
|
|
** the minor token. The fourth optional argument is whatever the
|
|
** user wants (and specified in the grammar) and is available for
|
|
** use by the action routines.
|
|
**
|
|
** Inputs:
|
|
** <ul>
|
|
** <li> A pointer to the parser (an opaque structure.)
|
|
** <li> The major token number.
|
|
** <li> The minor token number.
|
|
** <li> An option argument of a grammar-specified type.
|
|
** </ul>
|
|
**
|
|
** Outputs:
|
|
** None.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3Parser(
|
|
void *yyp, /* The parser */
|
|
int yymajor, /* The major token code number */
|
|
sqlite3ParserTOKENTYPE yyminor /* The value for the token */
|
|
sqlite3ParserARG_PDECL /* Optional %extra_argument parameter */
|
|
){
|
|
YYMINORTYPE yyminorunion;
|
|
int yyact; /* The parser action. */
|
|
int yyendofinput; /* True if we are at the end of input */
|
|
#ifdef YYERRORSYMBOL
|
|
int yyerrorhit = 0; /* True if yymajor has invoked an error */
|
|
#endif
|
|
yyParser *yypParser; /* The parser */
|
|
|
|
/* (re)initialize the parser, if necessary */
|
|
yypParser = (yyParser*)yyp;
|
|
if( yypParser->yyidx<0 ){
|
|
#if YYSTACKDEPTH<=0
|
|
if( yypParser->yystksz <=0 ){
|
|
memset(&yyminorunion, 0, sizeof(yyminorunion));
|
|
yyStackOverflow(yypParser, &yyminorunion);
|
|
return;
|
|
}
|
|
#endif
|
|
yypParser->yyidx = 0;
|
|
yypParser->yyerrcnt = -1;
|
|
yypParser->yystack[0].stateno = 0;
|
|
yypParser->yystack[0].major = 0;
|
|
}
|
|
yyminorunion.yy0 = yyminor;
|
|
yyendofinput = (yymajor==0);
|
|
sqlite3ParserARG_STORE;
|
|
|
|
#ifndef NDEBUG
|
|
if( yyTraceFILE ){
|
|
fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]);
|
|
}
|
|
#endif
|
|
|
|
do{
|
|
yyact = yy_find_shift_action(yypParser,yymajor);
|
|
if( yyact<YYNSTATE ){
|
|
assert( !yyendofinput ); /* Impossible to shift the $ token */
|
|
yy_shift(yypParser,yyact,yymajor,&yyminorunion);
|
|
yypParser->yyerrcnt--;
|
|
yymajor = YYNOCODE;
|
|
}else if( yyact < YYNSTATE + YYNRULE ){
|
|
yy_reduce(yypParser,yyact-YYNSTATE);
|
|
}else{
|
|
assert( yyact == YY_ERROR_ACTION );
|
|
#ifdef YYERRORSYMBOL
|
|
int yymx;
|
|
#endif
|
|
#ifndef NDEBUG
|
|
if( yyTraceFILE ){
|
|
fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt);
|
|
}
|
|
#endif
|
|
#ifdef YYERRORSYMBOL
|
|
/* A syntax error has occurred.
|
|
** The response to an error depends upon whether or not the
|
|
** grammar defines an error token "ERROR".
|
|
**
|
|
** This is what we do if the grammar does define ERROR:
|
|
**
|
|
** * Call the %syntax_error function.
|
|
**
|
|
** * Begin popping the stack until we enter a state where
|
|
** it is legal to shift the error symbol, then shift
|
|
** the error symbol.
|
|
**
|
|
** * Set the error count to three.
|
|
**
|
|
** * Begin accepting and shifting new tokens. No new error
|
|
** processing will occur until three tokens have been
|
|
** shifted successfully.
|
|
**
|
|
*/
|
|
if( yypParser->yyerrcnt<0 ){
|
|
yy_syntax_error(yypParser,yymajor,yyminorunion);
|
|
}
|
|
yymx = yypParser->yystack[yypParser->yyidx].major;
|
|
if( yymx==YYERRORSYMBOL || yyerrorhit ){
|
|
#ifndef NDEBUG
|
|
if( yyTraceFILE ){
|
|
fprintf(yyTraceFILE,"%sDiscard input token %s\n",
|
|
yyTracePrompt,yyTokenName[yymajor]);
|
|
}
|
|
#endif
|
|
yy_destructor(yymajor,&yyminorunion);
|
|
yymajor = YYNOCODE;
|
|
}else{
|
|
while(
|
|
yypParser->yyidx >= 0 &&
|
|
yymx != YYERRORSYMBOL &&
|
|
(yyact = yy_find_reduce_action(
|
|
yypParser->yystack[yypParser->yyidx].stateno,
|
|
YYERRORSYMBOL)) >= YYNSTATE
|
|
){
|
|
yy_pop_parser_stack(yypParser);
|
|
}
|
|
if( yypParser->yyidx < 0 || yymajor==0 ){
|
|
yy_destructor(yymajor,&yyminorunion);
|
|
yy_parse_failed(yypParser);
|
|
yymajor = YYNOCODE;
|
|
}else if( yymx!=YYERRORSYMBOL ){
|
|
YYMINORTYPE u2;
|
|
u2.YYERRSYMDT = 0;
|
|
yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2);
|
|
}
|
|
}
|
|
yypParser->yyerrcnt = 3;
|
|
yyerrorhit = 1;
|
|
#else /* YYERRORSYMBOL is not defined */
|
|
/* This is what we do if the grammar does not define ERROR:
|
|
**
|
|
** * Report an error message, and throw away the input token.
|
|
**
|
|
** * If the input token is $, then fail the parse.
|
|
**
|
|
** As before, subsequent error messages are suppressed until
|
|
** three input tokens have been successfully shifted.
|
|
*/
|
|
if( yypParser->yyerrcnt<=0 ){
|
|
yy_syntax_error(yypParser,yymajor,yyminorunion);
|
|
}
|
|
yypParser->yyerrcnt = 3;
|
|
yy_destructor(yymajor,&yyminorunion);
|
|
if( yyendofinput ){
|
|
yy_parse_failed(yypParser);
|
|
}
|
|
yymajor = YYNOCODE;
|
|
#endif
|
|
}
|
|
}while( yymajor!=YYNOCODE && yypParser->yyidx>=0 );
|
|
return;
|
|
}
|
|
|
|
/************** End of parse.c ***********************************************/
|
|
/************** Begin file tokenize.c ****************************************/
|
|
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** An tokenizer for SQL
|
|
**
|
|
** This file contains C code that splits an SQL input string up into
|
|
** individual tokens and sends those tokens one-by-one over to the
|
|
** parser for analysis.
|
|
**
|
|
** $Id: tokenize.c,v 1.138 2008/01/22 23:37:10 drh Exp $
|
|
*/
|
|
|
|
/*
|
|
** The charMap() macro maps alphabetic characters into their
|
|
** lower-case ASCII equivalent. On ASCII machines, this is just
|
|
** an upper-to-lower case map. On EBCDIC machines we also need
|
|
** to adjust the encoding. Only alphabetic characters and underscores
|
|
** need to be translated.
|
|
*/
|
|
#ifdef SQLITE_ASCII
|
|
# define charMap(X) sqlite3UpperToLower[(unsigned char)X]
|
|
#endif
|
|
#ifdef SQLITE_EBCDIC
|
|
# define charMap(X) ebcdicToAscii[(unsigned char)X]
|
|
const unsigned char ebcdicToAscii[] = {
|
|
/* 0 1 2 3 4 5 6 7 8 9 A B C D E F */
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 3x */
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 4x */
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 5x */
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 95, 0, 0, /* 6x */
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 7x */
|
|
0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* 8x */
|
|
0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* 9x */
|
|
0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ax */
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */
|
|
0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* Cx */
|
|
0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* Dx */
|
|
0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ex */
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Fx */
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
** The sqlite3KeywordCode function looks up an identifier to determine if
|
|
** it is a keyword. If it is a keyword, the token code of that keyword is
|
|
** returned. If the input is not a keyword, TK_ID is returned.
|
|
**
|
|
** The implementation of this routine was generated by a program,
|
|
** mkkeywordhash.h, located in the tool subdirectory of the distribution.
|
|
** The output of the mkkeywordhash.c program is written into a file
|
|
** named keywordhash.h and then included into this source file by
|
|
** the #include below.
|
|
*/
|
|
/************** Include keywordhash.h in the middle of tokenize.c ************/
|
|
/************** Begin file keywordhash.h *************************************/
|
|
/***** This file contains automatically generated code ******
|
|
**
|
|
** The code in this file has been automatically generated by
|
|
**
|
|
** $Header: /sqlite/sqlite/tool/mkkeywordhash.c,v 1.31 2007/07/30 18:26:20 rse Exp $
|
|
**
|
|
** The code in this file implements a function that determines whether
|
|
** or not a given identifier is really an SQL keyword. The same thing
|
|
** might be implemented more directly using a hand-written hash table.
|
|
** But by using this automatically generated code, the size of the code
|
|
** is substantially reduced. This is important for embedded applications
|
|
** on platforms with limited memory.
|
|
*/
|
|
/* Hash score: 165 */
|
|
static int keywordCode(const char *z, int n){
|
|
/* zText[] encodes 775 bytes of keywords in 526 bytes */
|
|
static const char zText[526] =
|
|
"BEFOREIGNOREGEXPLAINSTEADDESCAPEACHECKEYCONSTRAINTERSECTABLEFT"
|
|
"HENDATABASELECTRANSACTIONATURALTERAISELSEXCEPTRIGGEREFERENCES"
|
|
"UNIQUERYATTACHAVINGROUPDATEMPORARYBEGINNEREINDEXCLUSIVEXISTSBETWEEN"
|
|
"OTNULLIKECASCADEFERRABLECASECOLLATECREATECURRENT_DATEDELETEDETACH"
|
|
"IMMEDIATEJOINSERTMATCHPLANALYZEPRAGMABORTVALUESVIRTUALIMITWHEN"
|
|
"WHERENAMEAFTEREPLACEANDEFAULTAUTOINCREMENTCASTCOLUMNCOMMITCONFLICT"
|
|
"CROSSCURRENT_TIMESTAMPRIMARYDEFERREDISTINCTDROPFAILFROMFULLGLOB"
|
|
"YIFINTOFFSETISNULLORDERESTRICTOUTERIGHTROLLBACKROWUNIONUSINGVACUUM"
|
|
"VIEWINITIALLY";
|
|
static const unsigned char aHash[127] = {
|
|
63, 92, 109, 61, 0, 38, 0, 0, 69, 0, 64, 0, 0,
|
|
102, 4, 65, 7, 0, 108, 72, 103, 99, 0, 22, 0, 0,
|
|
113, 0, 111, 106, 0, 18, 80, 0, 1, 0, 0, 56, 57,
|
|
0, 55, 11, 0, 33, 77, 89, 0, 110, 88, 0, 0, 45,
|
|
0, 90, 54, 0, 20, 0, 114, 34, 19, 0, 10, 97, 28,
|
|
83, 0, 0, 116, 93, 47, 115, 41, 12, 44, 0, 78, 0,
|
|
87, 29, 0, 86, 0, 0, 0, 82, 79, 84, 75, 96, 6,
|
|
14, 95, 0, 68, 0, 21, 76, 98, 27, 0, 112, 67, 104,
|
|
49, 40, 71, 0, 0, 81, 100, 0, 107, 0, 15, 0, 0,
|
|
24, 0, 73, 42, 50, 0, 16, 48, 0, 37,
|
|
};
|
|
static const unsigned char aNext[116] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0,
|
|
0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0,
|
|
17, 0, 0, 0, 36, 39, 0, 0, 25, 0, 0, 31, 0,
|
|
0, 0, 43, 52, 0, 0, 0, 53, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 51, 0, 0, 0, 0, 26, 0, 8, 46,
|
|
2, 0, 0, 0, 0, 0, 0, 0, 3, 58, 66, 0, 13,
|
|
0, 91, 85, 0, 94, 0, 74, 0, 0, 62, 0, 35, 101,
|
|
0, 0, 105, 23, 30, 60, 70, 0, 0, 59, 0, 0,
|
|
};
|
|
static const unsigned char aLen[116] = {
|
|
6, 7, 3, 6, 6, 7, 7, 3, 4, 6, 4, 5, 3,
|
|
10, 9, 5, 4, 4, 3, 8, 2, 6, 11, 2, 7, 5,
|
|
5, 4, 6, 7, 10, 6, 5, 6, 6, 5, 6, 4, 9,
|
|
2, 5, 5, 7, 5, 9, 6, 7, 7, 3, 4, 4, 7,
|
|
3, 10, 4, 7, 6, 12, 6, 6, 9, 4, 6, 5, 4,
|
|
7, 6, 5, 6, 7, 5, 4, 5, 6, 5, 7, 3, 7,
|
|
13, 2, 2, 4, 6, 6, 8, 5, 17, 12, 7, 8, 8,
|
|
2, 4, 4, 4, 4, 4, 2, 2, 4, 6, 2, 3, 6,
|
|
5, 8, 5, 5, 8, 3, 5, 5, 6, 4, 9, 3,
|
|
};
|
|
static const unsigned short int aOffset[116] = {
|
|
0, 2, 2, 6, 10, 13, 18, 23, 25, 26, 31, 33, 37,
|
|
40, 47, 55, 58, 61, 63, 65, 70, 71, 76, 85, 86, 91,
|
|
95, 99, 102, 107, 113, 123, 126, 131, 136, 141, 144, 148, 148,
|
|
152, 157, 160, 164, 166, 169, 177, 183, 189, 189, 192, 195, 199,
|
|
200, 204, 214, 218, 225, 231, 243, 249, 255, 264, 266, 272, 277,
|
|
279, 286, 291, 296, 302, 308, 313, 317, 320, 326, 330, 337, 339,
|
|
346, 348, 350, 359, 363, 369, 375, 383, 388, 388, 404, 411, 418,
|
|
419, 426, 430, 434, 438, 442, 445, 447, 449, 452, 452, 455, 458,
|
|
464, 468, 476, 480, 485, 493, 496, 501, 506, 512, 516, 521,
|
|
};
|
|
static const unsigned char aCode[116] = {
|
|
TK_BEFORE, TK_FOREIGN, TK_FOR, TK_IGNORE, TK_LIKE_KW,
|
|
TK_EXPLAIN, TK_INSTEAD, TK_ADD, TK_DESC, TK_ESCAPE,
|
|
TK_EACH, TK_CHECK, TK_KEY, TK_CONSTRAINT, TK_INTERSECT,
|
|
TK_TABLE, TK_JOIN_KW, TK_THEN, TK_END, TK_DATABASE,
|
|
TK_AS, TK_SELECT, TK_TRANSACTION,TK_ON, TK_JOIN_KW,
|
|
TK_ALTER, TK_RAISE, TK_ELSE, TK_EXCEPT, TK_TRIGGER,
|
|
TK_REFERENCES, TK_UNIQUE, TK_QUERY, TK_ATTACH, TK_HAVING,
|
|
TK_GROUP, TK_UPDATE, TK_TEMP, TK_TEMP, TK_OR,
|
|
TK_BEGIN, TK_JOIN_KW, TK_REINDEX, TK_INDEX, TK_EXCLUSIVE,
|
|
TK_EXISTS, TK_BETWEEN, TK_NOTNULL, TK_NOT, TK_NULL,
|
|
TK_LIKE_KW, TK_CASCADE, TK_ASC, TK_DEFERRABLE, TK_CASE,
|
|
TK_COLLATE, TK_CREATE, TK_CTIME_KW, TK_DELETE, TK_DETACH,
|
|
TK_IMMEDIATE, TK_JOIN, TK_INSERT, TK_MATCH, TK_PLAN,
|
|
TK_ANALYZE, TK_PRAGMA, TK_ABORT, TK_VALUES, TK_VIRTUAL,
|
|
TK_LIMIT, TK_WHEN, TK_WHERE, TK_RENAME, TK_AFTER,
|
|
TK_REPLACE, TK_AND, TK_DEFAULT, TK_AUTOINCR, TK_TO,
|
|
TK_IN, TK_CAST, TK_COLUMNKW, TK_COMMIT, TK_CONFLICT,
|
|
TK_JOIN_KW, TK_CTIME_KW, TK_CTIME_KW, TK_PRIMARY, TK_DEFERRED,
|
|
TK_DISTINCT, TK_IS, TK_DROP, TK_FAIL, TK_FROM,
|
|
TK_JOIN_KW, TK_LIKE_KW, TK_BY, TK_IF, TK_INTO,
|
|
TK_OFFSET, TK_OF, TK_SET, TK_ISNULL, TK_ORDER,
|
|
TK_RESTRICT, TK_JOIN_KW, TK_JOIN_KW, TK_ROLLBACK, TK_ROW,
|
|
TK_UNION, TK_USING, TK_VACUUM, TK_VIEW, TK_INITIALLY,
|
|
TK_ALL,
|
|
};
|
|
int h, i;
|
|
if( n<2 ) return TK_ID;
|
|
h = ((charMap(z[0])*4) ^
|
|
(charMap(z[n-1])*3) ^
|
|
n) % 127;
|
|
for(i=((int)aHash[h])-1; i>=0; i=((int)aNext[i])-1){
|
|
if( aLen[i]==n && sqlite3StrNICmp(&zText[aOffset[i]],z,n)==0 ){
|
|
return aCode[i];
|
|
}
|
|
}
|
|
return TK_ID;
|
|
}
|
|
SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char *z, int n){
|
|
return keywordCode((char*)z, n);
|
|
}
|
|
|
|
/************** End of keywordhash.h *****************************************/
|
|
/************** Continuing where we left off in tokenize.c *******************/
|
|
|
|
|
|
/*
|
|
** If X is a character that can be used in an identifier then
|
|
** IdChar(X) will be true. Otherwise it is false.
|
|
**
|
|
** For ASCII, any character with the high-order bit set is
|
|
** allowed in an identifier. For 7-bit characters,
|
|
** sqlite3IsIdChar[X] must be 1.
|
|
**
|
|
** For EBCDIC, the rules are more complex but have the same
|
|
** end result.
|
|
**
|
|
** Ticket #1066. the SQL standard does not allow '$' in the
|
|
** middle of identfiers. But many SQL implementations do.
|
|
** SQLite will allow '$' in identifiers for compatibility.
|
|
** But the feature is undocumented.
|
|
*/
|
|
#ifdef SQLITE_ASCII
|
|
SQLITE_PRIVATE const char sqlite3IsAsciiIdChar[] = {
|
|
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
|
|
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
|
|
};
|
|
#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsAsciiIdChar[c-0x20]))
|
|
#endif
|
|
#ifdef SQLITE_EBCDIC
|
|
SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[] = {
|
|
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
|
|
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 4x */
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, /* 5x */
|
|
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, /* 6x */
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, /* 7x */
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, /* 8x */
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, /* 9x */
|
|
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, /* Ax */
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Cx */
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Dx */
|
|
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Ex */
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, /* Fx */
|
|
};
|
|
#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Return the length of the token that begins at z[0].
|
|
** Store the token type in *tokenType before returning.
|
|
*/
|
|
static int getToken(const unsigned char *z, int *tokenType){
|
|
int i, c;
|
|
switch( *z ){
|
|
case ' ': case '\t': case '\n': case '\f': case '\r': {
|
|
for(i=1; isspace(z[i]); i++){}
|
|
*tokenType = TK_SPACE;
|
|
return i;
|
|
}
|
|
case '-': {
|
|
if( z[1]=='-' ){
|
|
for(i=2; (c=z[i])!=0 && c!='\n'; i++){}
|
|
*tokenType = TK_COMMENT;
|
|
return i;
|
|
}
|
|
*tokenType = TK_MINUS;
|
|
return 1;
|
|
}
|
|
case '(': {
|
|
*tokenType = TK_LP;
|
|
return 1;
|
|
}
|
|
case ')': {
|
|
*tokenType = TK_RP;
|
|
return 1;
|
|
}
|
|
case ';': {
|
|
*tokenType = TK_SEMI;
|
|
return 1;
|
|
}
|
|
case '+': {
|
|
*tokenType = TK_PLUS;
|
|
return 1;
|
|
}
|
|
case '*': {
|
|
*tokenType = TK_STAR;
|
|
return 1;
|
|
}
|
|
case '/': {
|
|
if( z[1]!='*' || z[2]==0 ){
|
|
*tokenType = TK_SLASH;
|
|
return 1;
|
|
}
|
|
for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){}
|
|
if( c ) i++;
|
|
*tokenType = TK_COMMENT;
|
|
return i;
|
|
}
|
|
case '%': {
|
|
*tokenType = TK_REM;
|
|
return 1;
|
|
}
|
|
case '=': {
|
|
*tokenType = TK_EQ;
|
|
return 1 + (z[1]=='=');
|
|
}
|
|
case '<': {
|
|
if( (c=z[1])=='=' ){
|
|
*tokenType = TK_LE;
|
|
return 2;
|
|
}else if( c=='>' ){
|
|
*tokenType = TK_NE;
|
|
return 2;
|
|
}else if( c=='<' ){
|
|
*tokenType = TK_LSHIFT;
|
|
return 2;
|
|
}else{
|
|
*tokenType = TK_LT;
|
|
return 1;
|
|
}
|
|
}
|
|
case '>': {
|
|
if( (c=z[1])=='=' ){
|
|
*tokenType = TK_GE;
|
|
return 2;
|
|
}else if( c=='>' ){
|
|
*tokenType = TK_RSHIFT;
|
|
return 2;
|
|
}else{
|
|
*tokenType = TK_GT;
|
|
return 1;
|
|
}
|
|
}
|
|
case '!': {
|
|
if( z[1]!='=' ){
|
|
*tokenType = TK_ILLEGAL;
|
|
return 2;
|
|
}else{
|
|
*tokenType = TK_NE;
|
|
return 2;
|
|
}
|
|
}
|
|
case '|': {
|
|
if( z[1]!='|' ){
|
|
*tokenType = TK_BITOR;
|
|
return 1;
|
|
}else{
|
|
*tokenType = TK_CONCAT;
|
|
return 2;
|
|
}
|
|
}
|
|
case ',': {
|
|
*tokenType = TK_COMMA;
|
|
return 1;
|
|
}
|
|
case '&': {
|
|
*tokenType = TK_BITAND;
|
|
return 1;
|
|
}
|
|
case '~': {
|
|
*tokenType = TK_BITNOT;
|
|
return 1;
|
|
}
|
|
case '`':
|
|
case '\'':
|
|
case '"': {
|
|
int delim = z[0];
|
|
for(i=1; (c=z[i])!=0; i++){
|
|
if( c==delim ){
|
|
if( z[i+1]==delim ){
|
|
i++;
|
|
}else{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if( c ){
|
|
*tokenType = TK_STRING;
|
|
return i+1;
|
|
}else{
|
|
*tokenType = TK_ILLEGAL;
|
|
return i;
|
|
}
|
|
}
|
|
case '.': {
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
if( !isdigit(z[1]) )
|
|
#endif
|
|
{
|
|
*tokenType = TK_DOT;
|
|
return 1;
|
|
}
|
|
/* If the next character is a digit, this is a floating point
|
|
** number that begins with ".". Fall thru into the next case */
|
|
}
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9': {
|
|
*tokenType = TK_INTEGER;
|
|
for(i=0; isdigit(z[i]); i++){}
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
if( z[i]=='.' ){
|
|
i++;
|
|
while( isdigit(z[i]) ){ i++; }
|
|
*tokenType = TK_FLOAT;
|
|
}
|
|
if( (z[i]=='e' || z[i]=='E') &&
|
|
( isdigit(z[i+1])
|
|
|| ((z[i+1]=='+' || z[i+1]=='-') && isdigit(z[i+2]))
|
|
)
|
|
){
|
|
i += 2;
|
|
while( isdigit(z[i]) ){ i++; }
|
|
*tokenType = TK_FLOAT;
|
|
}
|
|
#endif
|
|
while( IdChar(z[i]) ){
|
|
*tokenType = TK_ILLEGAL;
|
|
i++;
|
|
}
|
|
return i;
|
|
}
|
|
case '[': {
|
|
for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
|
|
*tokenType = c==']' ? TK_ID : TK_ILLEGAL;
|
|
return i;
|
|
}
|
|
case '?': {
|
|
*tokenType = TK_VARIABLE;
|
|
for(i=1; isdigit(z[i]); i++){}
|
|
return i;
|
|
}
|
|
case '#': {
|
|
for(i=1; isdigit(z[i]); i++){}
|
|
if( i>1 ){
|
|
/* Parameters of the form #NNN (where NNN is a number) are used
|
|
** internally by sqlite3NestedParse. */
|
|
*tokenType = TK_REGISTER;
|
|
return i;
|
|
}
|
|
/* Fall through into the next case if the '#' is not followed by
|
|
** a digit. Try to match #AAAA where AAAA is a parameter name. */
|
|
}
|
|
#ifndef SQLITE_OMIT_TCL_VARIABLE
|
|
case '$':
|
|
#endif
|
|
case '@': /* For compatibility with MS SQL Server */
|
|
case ':': {
|
|
int n = 0;
|
|
*tokenType = TK_VARIABLE;
|
|
for(i=1; (c=z[i])!=0; i++){
|
|
if( IdChar(c) ){
|
|
n++;
|
|
#ifndef SQLITE_OMIT_TCL_VARIABLE
|
|
}else if( c=='(' && n>0 ){
|
|
do{
|
|
i++;
|
|
}while( (c=z[i])!=0 && !isspace(c) && c!=')' );
|
|
if( c==')' ){
|
|
i++;
|
|
}else{
|
|
*tokenType = TK_ILLEGAL;
|
|
}
|
|
break;
|
|
}else if( c==':' && z[i+1]==':' ){
|
|
i++;
|
|
#endif
|
|
}else{
|
|
break;
|
|
}
|
|
}
|
|
if( n==0 ) *tokenType = TK_ILLEGAL;
|
|
return i;
|
|
}
|
|
#ifndef SQLITE_OMIT_BLOB_LITERAL
|
|
case 'x': case 'X': {
|
|
if( z[1]=='\'' ){
|
|
*tokenType = TK_BLOB;
|
|
for(i=2; (c=z[i])!=0 && c!='\''; i++){
|
|
if( !isxdigit(c) ){
|
|
*tokenType = TK_ILLEGAL;
|
|
}
|
|
}
|
|
if( i%2 || !c ) *tokenType = TK_ILLEGAL;
|
|
if( c ) i++;
|
|
return i;
|
|
}
|
|
/* Otherwise fall through to the next case */
|
|
}
|
|
#endif
|
|
default: {
|
|
if( !IdChar(*z) ){
|
|
break;
|
|
}
|
|
for(i=1; IdChar(z[i]); i++){}
|
|
*tokenType = keywordCode((char*)z, i);
|
|
return i;
|
|
}
|
|
}
|
|
*tokenType = TK_ILLEGAL;
|
|
return 1;
|
|
}
|
|
SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *z, int *tokenType){
|
|
return getToken(z, tokenType);
|
|
}
|
|
|
|
/*
|
|
** Run the parser on the given SQL string. The parser structure is
|
|
** passed in. An SQLITE_ status code is returned. If an error occurs
|
|
** and pzErrMsg!=NULL then an error message might be written into
|
|
** memory obtained from sqlite3_malloc() and *pzErrMsg made to point to that
|
|
** error message. Or maybe not.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
|
|
int nErr = 0;
|
|
int i;
|
|
void *pEngine;
|
|
int tokenType;
|
|
int lastTokenParsed = -1;
|
|
sqlite3 *db = pParse->db;
|
|
|
|
if( db->activeVdbeCnt==0 ){
|
|
db->u1.isInterrupted = 0;
|
|
}
|
|
pParse->rc = SQLITE_OK;
|
|
i = 0;
|
|
pEngine = sqlite3ParserAlloc((void*(*)(size_t))sqlite3_malloc);
|
|
if( pEngine==0 ){
|
|
db->mallocFailed = 1;
|
|
return SQLITE_NOMEM;
|
|
}
|
|
assert( pParse->sLastToken.dyn==0 );
|
|
assert( pParse->pNewTable==0 );
|
|
assert( pParse->pNewTrigger==0 );
|
|
assert( pParse->nVar==0 );
|
|
assert( pParse->nVarExpr==0 );
|
|
assert( pParse->nVarExprAlloc==0 );
|
|
assert( pParse->apVarExpr==0 );
|
|
pParse->zTail = pParse->zSql = zSql;
|
|
while( !db->mallocFailed && zSql[i]!=0 ){
|
|
assert( i>=0 );
|
|
pParse->sLastToken.z = (u8*)&zSql[i];
|
|
assert( pParse->sLastToken.dyn==0 );
|
|
pParse->sLastToken.n = getToken((unsigned char*)&zSql[i],&tokenType);
|
|
i += pParse->sLastToken.n;
|
|
if( SQLITE_MAX_SQL_LENGTH>0 && i>SQLITE_MAX_SQL_LENGTH ){
|
|
pParse->rc = SQLITE_TOOBIG;
|
|
break;
|
|
}
|
|
switch( tokenType ){
|
|
case TK_SPACE:
|
|
case TK_COMMENT: {
|
|
if( db->u1.isInterrupted ){
|
|
pParse->rc = SQLITE_INTERRUPT;
|
|
sqlite3SetString(pzErrMsg, "interrupt", (char*)0);
|
|
goto abort_parse;
|
|
}
|
|
break;
|
|
}
|
|
case TK_ILLEGAL: {
|
|
if( pzErrMsg ){
|
|
sqlite3_free(*pzErrMsg);
|
|
*pzErrMsg = sqlite3MPrintf(db, "unrecognized token: \"%T\"",
|
|
&pParse->sLastToken);
|
|
}
|
|
nErr++;
|
|
goto abort_parse;
|
|
}
|
|
case TK_SEMI: {
|
|
pParse->zTail = &zSql[i];
|
|
/* Fall thru into the default case */
|
|
}
|
|
default: {
|
|
sqlite3Parser(pEngine, tokenType, pParse->sLastToken, pParse);
|
|
lastTokenParsed = tokenType;
|
|
if( pParse->rc!=SQLITE_OK ){
|
|
goto abort_parse;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
abort_parse:
|
|
if( zSql[i]==0 && nErr==0 && pParse->rc==SQLITE_OK ){
|
|
if( lastTokenParsed!=TK_SEMI ){
|
|
sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
|
|
pParse->zTail = &zSql[i];
|
|
}
|
|
sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
|
|
}
|
|
sqlite3ParserFree(pEngine, sqlite3_free);
|
|
if( db->mallocFailed ){
|
|
pParse->rc = SQLITE_NOMEM;
|
|
}
|
|
if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
|
|
sqlite3SetString(&pParse->zErrMsg, sqlite3ErrStr(pParse->rc), (char*)0);
|
|
}
|
|
if( pParse->zErrMsg ){
|
|
if( pzErrMsg && *pzErrMsg==0 ){
|
|
*pzErrMsg = pParse->zErrMsg;
|
|
}else{
|
|
sqlite3_free(pParse->zErrMsg);
|
|
}
|
|
pParse->zErrMsg = 0;
|
|
nErr++;
|
|
}
|
|
if( pParse->pVdbe && pParse->nErr>0 && pParse->nested==0 ){
|
|
sqlite3VdbeDelete(pParse->pVdbe);
|
|
pParse->pVdbe = 0;
|
|
}
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
if( pParse->nested==0 ){
|
|
sqlite3_free(pParse->aTableLock);
|
|
pParse->aTableLock = 0;
|
|
pParse->nTableLock = 0;
|
|
}
|
|
#endif
|
|
|
|
if( !IN_DECLARE_VTAB ){
|
|
/* If the pParse->declareVtab flag is set, do not delete any table
|
|
** structure built up in pParse->pNewTable. The calling code (see vtab.c)
|
|
** will take responsibility for freeing the Table structure.
|
|
*/
|
|
sqlite3DeleteTable(pParse->pNewTable);
|
|
}
|
|
|
|
sqlite3DeleteTrigger(pParse->pNewTrigger);
|
|
sqlite3_free(pParse->apVarExpr);
|
|
if( nErr>0 && (pParse->rc==SQLITE_OK || pParse->rc==SQLITE_DONE) ){
|
|
pParse->rc = SQLITE_ERROR;
|
|
}
|
|
return nErr;
|
|
}
|
|
|
|
/************** End of tokenize.c ********************************************/
|
|
/************** Begin file complete.c ****************************************/
|
|
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** An tokenizer for SQL
|
|
**
|
|
** This file contains C code that implements the sqlite3_complete() API.
|
|
** This code used to be part of the tokenizer.c source file. But by
|
|
** separating it out, the code will be automatically omitted from
|
|
** static links that do not use it.
|
|
**
|
|
** $Id: complete.c,v 1.6 2007/08/27 23:26:59 drh Exp $
|
|
*/
|
|
#ifndef SQLITE_OMIT_COMPLETE
|
|
|
|
/*
|
|
** This is defined in tokenize.c. We just have to import the definition.
|
|
*/
|
|
#ifndef SQLITE_AMALGAMATION
|
|
#ifdef SQLITE_ASCII
|
|
SQLITE_PRIVATE const char sqlite3IsAsciiIdChar[];
|
|
#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsAsciiIdChar[c-0x20]))
|
|
#endif
|
|
#ifdef SQLITE_EBCDIC
|
|
SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[];
|
|
#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
|
|
#endif
|
|
#endif /* SQLITE_AMALGAMATION */
|
|
|
|
|
|
/*
|
|
** Token types used by the sqlite3_complete() routine. See the header
|
|
** comments on that procedure for additional information.
|
|
*/
|
|
#define tkSEMI 0
|
|
#define tkWS 1
|
|
#define tkOTHER 2
|
|
#define tkEXPLAIN 3
|
|
#define tkCREATE 4
|
|
#define tkTEMP 5
|
|
#define tkTRIGGER 6
|
|
#define tkEND 7
|
|
|
|
/*
|
|
** Return TRUE if the given SQL string ends in a semicolon.
|
|
**
|
|
** Special handling is require for CREATE TRIGGER statements.
|
|
** Whenever the CREATE TRIGGER keywords are seen, the statement
|
|
** must end with ";END;".
|
|
**
|
|
** This implementation uses a state machine with 7 states:
|
|
**
|
|
** (0) START At the beginning or end of an SQL statement. This routine
|
|
** returns 1 if it ends in the START state and 0 if it ends
|
|
** in any other state.
|
|
**
|
|
** (1) NORMAL We are in the middle of statement which ends with a single
|
|
** semicolon.
|
|
**
|
|
** (2) EXPLAIN The keyword EXPLAIN has been seen at the beginning of
|
|
** a statement.
|
|
**
|
|
** (3) CREATE The keyword CREATE has been seen at the beginning of a
|
|
** statement, possibly preceeded by EXPLAIN and/or followed by
|
|
** TEMP or TEMPORARY
|
|
**
|
|
** (4) TRIGGER We are in the middle of a trigger definition that must be
|
|
** ended by a semicolon, the keyword END, and another semicolon.
|
|
**
|
|
** (5) SEMI We've seen the first semicolon in the ";END;" that occurs at
|
|
** the end of a trigger definition.
|
|
**
|
|
** (6) END We've seen the ";END" of the ";END;" that occurs at the end
|
|
** of a trigger difinition.
|
|
**
|
|
** Transitions between states above are determined by tokens extracted
|
|
** from the input. The following tokens are significant:
|
|
**
|
|
** (0) tkSEMI A semicolon.
|
|
** (1) tkWS Whitespace
|
|
** (2) tkOTHER Any other SQL token.
|
|
** (3) tkEXPLAIN The "explain" keyword.
|
|
** (4) tkCREATE The "create" keyword.
|
|
** (5) tkTEMP The "temp" or "temporary" keyword.
|
|
** (6) tkTRIGGER The "trigger" keyword.
|
|
** (7) tkEND The "end" keyword.
|
|
**
|
|
** Whitespace never causes a state transition and is always ignored.
|
|
**
|
|
** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed
|
|
** to recognize the end of a trigger can be omitted. All we have to do
|
|
** is look for a semicolon that is not part of an string or comment.
|
|
*/
|
|
SQLITE_API int sqlite3_complete(const char *zSql){
|
|
u8 state = 0; /* Current state, using numbers defined in header comment */
|
|
u8 token; /* Value of the next token */
|
|
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
/* A complex statement machine used to detect the end of a CREATE TRIGGER
|
|
** statement. This is the normal case.
|
|
*/
|
|
static const u8 trans[7][8] = {
|
|
/* Token: */
|
|
/* State: ** SEMI WS OTHER EXPLAIN CREATE TEMP TRIGGER END */
|
|
/* 0 START: */ { 0, 0, 1, 2, 3, 1, 1, 1, },
|
|
/* 1 NORMAL: */ { 0, 1, 1, 1, 1, 1, 1, 1, },
|
|
/* 2 EXPLAIN: */ { 0, 2, 1, 1, 3, 1, 1, 1, },
|
|
/* 3 CREATE: */ { 0, 3, 1, 1, 1, 3, 4, 1, },
|
|
/* 4 TRIGGER: */ { 5, 4, 4, 4, 4, 4, 4, 4, },
|
|
/* 5 SEMI: */ { 5, 5, 4, 4, 4, 4, 4, 6, },
|
|
/* 6 END: */ { 0, 6, 4, 4, 4, 4, 4, 4, },
|
|
};
|
|
#else
|
|
/* If triggers are not suppored by this compile then the statement machine
|
|
** used to detect the end of a statement is much simplier
|
|
*/
|
|
static const u8 trans[2][3] = {
|
|
/* Token: */
|
|
/* State: ** SEMI WS OTHER */
|
|
/* 0 START: */ { 0, 0, 1, },
|
|
/* 1 NORMAL: */ { 0, 1, 1, },
|
|
};
|
|
#endif /* SQLITE_OMIT_TRIGGER */
|
|
|
|
while( *zSql ){
|
|
switch( *zSql ){
|
|
case ';': { /* A semicolon */
|
|
token = tkSEMI;
|
|
break;
|
|
}
|
|
case ' ':
|
|
case '\r':
|
|
case '\t':
|
|
case '\n':
|
|
case '\f': { /* White space is ignored */
|
|
token = tkWS;
|
|
break;
|
|
}
|
|
case '/': { /* C-style comments */
|
|
if( zSql[1]!='*' ){
|
|
token = tkOTHER;
|
|
break;
|
|
}
|
|
zSql += 2;
|
|
while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; }
|
|
if( zSql[0]==0 ) return 0;
|
|
zSql++;
|
|
token = tkWS;
|
|
break;
|
|
}
|
|
case '-': { /* SQL-style comments from "--" to end of line */
|
|
if( zSql[1]!='-' ){
|
|
token = tkOTHER;
|
|
break;
|
|
}
|
|
while( *zSql && *zSql!='\n' ){ zSql++; }
|
|
if( *zSql==0 ) return state==0;
|
|
token = tkWS;
|
|
break;
|
|
}
|
|
case '[': { /* Microsoft-style identifiers in [...] */
|
|
zSql++;
|
|
while( *zSql && *zSql!=']' ){ zSql++; }
|
|
if( *zSql==0 ) return 0;
|
|
token = tkOTHER;
|
|
break;
|
|
}
|
|
case '`': /* Grave-accent quoted symbols used by MySQL */
|
|
case '"': /* single- and double-quoted strings */
|
|
case '\'': {
|
|
int c = *zSql;
|
|
zSql++;
|
|
while( *zSql && *zSql!=c ){ zSql++; }
|
|
if( *zSql==0 ) return 0;
|
|
token = tkOTHER;
|
|
break;
|
|
}
|
|
default: {
|
|
int c;
|
|
if( IdChar((u8)*zSql) ){
|
|
/* Keywords and unquoted identifiers */
|
|
int nId;
|
|
for(nId=1; IdChar(zSql[nId]); nId++){}
|
|
#ifdef SQLITE_OMIT_TRIGGER
|
|
token = tkOTHER;
|
|
#else
|
|
switch( *zSql ){
|
|
case 'c': case 'C': {
|
|
if( nId==6 && sqlite3StrNICmp(zSql, "create", 6)==0 ){
|
|
token = tkCREATE;
|
|
}else{
|
|
token = tkOTHER;
|
|
}
|
|
break;
|
|
}
|
|
case 't': case 'T': {
|
|
if( nId==7 && sqlite3StrNICmp(zSql, "trigger", 7)==0 ){
|
|
token = tkTRIGGER;
|
|
}else if( nId==4 && sqlite3StrNICmp(zSql, "temp", 4)==0 ){
|
|
token = tkTEMP;
|
|
}else if( nId==9 && sqlite3StrNICmp(zSql, "temporary", 9)==0 ){
|
|
token = tkTEMP;
|
|
}else{
|
|
token = tkOTHER;
|
|
}
|
|
break;
|
|
}
|
|
case 'e': case 'E': {
|
|
if( nId==3 && sqlite3StrNICmp(zSql, "end", 3)==0 ){
|
|
token = tkEND;
|
|
}else
|
|
#ifndef SQLITE_OMIT_EXPLAIN
|
|
if( nId==7 && sqlite3StrNICmp(zSql, "explain", 7)==0 ){
|
|
token = tkEXPLAIN;
|
|
}else
|
|
#endif
|
|
{
|
|
token = tkOTHER;
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
token = tkOTHER;
|
|
break;
|
|
}
|
|
}
|
|
#endif /* SQLITE_OMIT_TRIGGER */
|
|
zSql += nId-1;
|
|
}else{
|
|
/* Operators and special symbols */
|
|
token = tkOTHER;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
state = trans[state][token];
|
|
zSql++;
|
|
}
|
|
return state==0;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
/*
|
|
** This routine is the same as the sqlite3_complete() routine described
|
|
** above, except that the parameter is required to be UTF-16 encoded, not
|
|
** UTF-8.
|
|
*/
|
|
SQLITE_API int sqlite3_complete16(const void *zSql){
|
|
sqlite3_value *pVal;
|
|
char const *zSql8;
|
|
int rc = SQLITE_NOMEM;
|
|
|
|
pVal = sqlite3ValueNew(0);
|
|
sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC);
|
|
zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8);
|
|
if( zSql8 ){
|
|
rc = sqlite3_complete(zSql8);
|
|
}
|
|
sqlite3ValueFree(pVal);
|
|
return sqlite3ApiExit(0, rc);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
#endif /* SQLITE_OMIT_COMPLETE */
|
|
|
|
/************** End of complete.c ********************************************/
|
|
/************** Begin file main.c ********************************************/
|
|
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** Main file for the SQLite library. The routines in this file
|
|
** implement the programmer interface to the library. Routines in
|
|
** other files are for internal use by SQLite and should not be
|
|
** accessed by users of the library.
|
|
**
|
|
** $Id: main.c,v 1.417 2008/01/31 15:31:02 danielk1977 Exp $
|
|
*/
|
|
#ifdef SQLITE_ENABLE_FTS3
|
|
/************** Include fts3.h in the middle of main.c ***********************/
|
|
/************** Begin file fts3.h ********************************************/
|
|
/*
|
|
** 2006 Oct 10
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
******************************************************************************
|
|
**
|
|
** This header file is used by programs that want to link against the
|
|
** FTS3 library. All it does is declare the sqlite3Fts3Init() interface.
|
|
*/
|
|
|
|
#if 0
|
|
extern "C" {
|
|
#endif /* __cplusplus */
|
|
|
|
SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db);
|
|
|
|
#if 0
|
|
} /* extern "C" */
|
|
#endif /* __cplusplus */
|
|
|
|
/************** End of fts3.h ************************************************/
|
|
/************** Continuing where we left off in main.c ***********************/
|
|
#endif
|
|
|
|
/*
|
|
** The version of the library
|
|
*/
|
|
SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
|
|
SQLITE_API const char *sqlite3_libversion(void){ return sqlite3_version; }
|
|
SQLITE_API int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; }
|
|
SQLITE_API int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; }
|
|
|
|
/*
|
|
** If the following function pointer is not NULL and if
|
|
** SQLITE_ENABLE_IOTRACE is enabled, then messages describing
|
|
** I/O active are written using this function. These messages
|
|
** are intended for debugging activity only.
|
|
*/
|
|
SQLITE_API void (*sqlite3_io_trace)(const char*, ...) = 0;
|
|
|
|
/*
|
|
** If the following global variable points to a string which is the
|
|
** name of a directory, then that directory will be used to store
|
|
** temporary files.
|
|
**
|
|
** See also the "PRAGMA temp_store_directory" SQL command.
|
|
*/
|
|
SQLITE_API char *sqlite3_temp_directory = 0;
|
|
|
|
|
|
/*
|
|
** Return true if the buffer z[0..n-1] contains all spaces.
|
|
*/
|
|
static int allSpaces(const char *z, int n){
|
|
while( n>0 && z[--n]==' ' ){}
|
|
return n==0;
|
|
}
|
|
|
|
/*
|
|
** This is the default collating function named "BINARY" which is always
|
|
** available.
|
|
**
|
|
** If the padFlag argument is not NULL then space padding at the end
|
|
** of strings is ignored. This implements the RTRIM collation.
|
|
*/
|
|
static int binCollFunc(
|
|
void *padFlag,
|
|
int nKey1, const void *pKey1,
|
|
int nKey2, const void *pKey2
|
|
){
|
|
int rc, n;
|
|
n = nKey1<nKey2 ? nKey1 : nKey2;
|
|
rc = memcmp(pKey1, pKey2, n);
|
|
if( rc==0 ){
|
|
if( padFlag
|
|
&& allSpaces(((char*)pKey1)+n, nKey1-n)
|
|
&& allSpaces(((char*)pKey2)+n, nKey2-n)
|
|
){
|
|
/* Leave rc unchanged at 0 */
|
|
}else{
|
|
rc = nKey1 - nKey2;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Another built-in collating sequence: NOCASE.
|
|
**
|
|
** This collating sequence is intended to be used for "case independant
|
|
** comparison". SQLite's knowledge of upper and lower case equivalents
|
|
** extends only to the 26 characters used in the English language.
|
|
**
|
|
** At the moment there is only a UTF-8 implementation.
|
|
*/
|
|
static int nocaseCollatingFunc(
|
|
void *NotUsed,
|
|
int nKey1, const void *pKey1,
|
|
int nKey2, const void *pKey2
|
|
){
|
|
int r = sqlite3StrNICmp(
|
|
(const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2);
|
|
if( 0==r ){
|
|
r = nKey1-nKey2;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
** Return the ROWID of the most recent insert
|
|
*/
|
|
SQLITE_API sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){
|
|
return db->lastRowid;
|
|
}
|
|
|
|
/*
|
|
** Return the number of changes in the most recent call to sqlite3_exec().
|
|
*/
|
|
SQLITE_API int sqlite3_changes(sqlite3 *db){
|
|
return db->nChange;
|
|
}
|
|
|
|
/*
|
|
** Return the number of changes since the database handle was opened.
|
|
*/
|
|
SQLITE_API int sqlite3_total_changes(sqlite3 *db){
|
|
return db->nTotalChange;
|
|
}
|
|
|
|
/*
|
|
** Close an existing SQLite database
|
|
*/
|
|
SQLITE_API int sqlite3_close(sqlite3 *db){
|
|
HashElem *i;
|
|
int j;
|
|
|
|
if( !db ){
|
|
return SQLITE_OK;
|
|
}
|
|
if( !sqlite3SafetyCheckSickOrOk(db) ){
|
|
return SQLITE_MISUSE;
|
|
}
|
|
sqlite3_mutex_enter(db->mutex);
|
|
|
|
#ifdef SQLITE_SSE
|
|
{
|
|
extern void sqlite3SseCleanup(sqlite3*);
|
|
sqlite3SseCleanup(db);
|
|
}
|
|
#endif
|
|
|
|
sqlite3ResetInternalSchema(db, 0);
|
|
|
|
/* If a transaction is open, the ResetInternalSchema() call above
|
|
** will not have called the xDisconnect() method on any virtual
|
|
** tables in the db->aVTrans[] array. The following sqlite3VtabRollback()
|
|
** call will do so. We need to do this before the check for active
|
|
** SQL statements below, as the v-table implementation may be storing
|
|
** some prepared statements internally.
|
|
*/
|
|
sqlite3VtabRollback(db);
|
|
|
|
/* If there are any outstanding VMs, return SQLITE_BUSY. */
|
|
if( db->pVdbe ){
|
|
sqlite3Error(db, SQLITE_BUSY,
|
|
"Unable to close due to unfinalised statements");
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return SQLITE_BUSY;
|
|
}
|
|
assert( sqlite3SafetyCheckSickOrOk(db) );
|
|
|
|
for(j=0; j<db->nDb; j++){
|
|
struct Db *pDb = &db->aDb[j];
|
|
if( pDb->pBt ){
|
|
sqlite3BtreeClose(pDb->pBt);
|
|
pDb->pBt = 0;
|
|
if( j!=1 ){
|
|
pDb->pSchema = 0;
|
|
}
|
|
}
|
|
}
|
|
sqlite3ResetInternalSchema(db, 0);
|
|
assert( db->nDb<=2 );
|
|
assert( db->aDb==db->aDbStatic );
|
|
for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){
|
|
FuncDef *pFunc, *pNext;
|
|
for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){
|
|
pNext = pFunc->pNext;
|
|
sqlite3_free(pFunc);
|
|
}
|
|
}
|
|
|
|
for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){
|
|
CollSeq *pColl = (CollSeq *)sqliteHashData(i);
|
|
/* Invoke any destructors registered for collation sequence user data. */
|
|
for(j=0; j<3; j++){
|
|
if( pColl[j].xDel ){
|
|
pColl[j].xDel(pColl[j].pUser);
|
|
}
|
|
}
|
|
sqlite3_free(pColl);
|
|
}
|
|
sqlite3HashClear(&db->aCollSeq);
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){
|
|
Module *pMod = (Module *)sqliteHashData(i);
|
|
if( pMod->xDestroy ){
|
|
pMod->xDestroy(pMod->pAux);
|
|
}
|
|
sqlite3_free(pMod);
|
|
}
|
|
sqlite3HashClear(&db->aModule);
|
|
#endif
|
|
|
|
sqlite3HashClear(&db->aFunc);
|
|
sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */
|
|
if( db->pErr ){
|
|
sqlite3ValueFree(db->pErr);
|
|
}
|
|
sqlite3CloseExtensions(db);
|
|
|
|
db->magic = SQLITE_MAGIC_ERROR;
|
|
|
|
/* The temp-database schema is allocated differently from the other schema
|
|
** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()).
|
|
** So it needs to be freed here. Todo: Why not roll the temp schema into
|
|
** the same sqliteMalloc() as the one that allocates the database
|
|
** structure?
|
|
*/
|
|
sqlite3_free(db->aDb[1].pSchema);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
db->magic = SQLITE_MAGIC_CLOSED;
|
|
sqlite3_mutex_free(db->mutex);
|
|
sqlite3_free(db);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Rollback all database files.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3 *db){
|
|
int i;
|
|
int inTrans = 0;
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 1);
|
|
for(i=0; i<db->nDb; i++){
|
|
if( db->aDb[i].pBt ){
|
|
if( sqlite3BtreeIsInTrans(db->aDb[i].pBt) ){
|
|
inTrans = 1;
|
|
}
|
|
sqlite3BtreeRollback(db->aDb[i].pBt);
|
|
db->aDb[i].inTrans = 0;
|
|
}
|
|
}
|
|
sqlite3VtabRollback(db);
|
|
sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 0);
|
|
|
|
if( db->flags&SQLITE_InternChanges ){
|
|
sqlite3ExpirePreparedStatements(db);
|
|
sqlite3ResetInternalSchema(db, 0);
|
|
}
|
|
|
|
/* If one has been configured, invoke the rollback-hook callback */
|
|
if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){
|
|
db->xRollbackCallback(db->pRollbackArg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return a static string that describes the kind of error specified in the
|
|
** argument.
|
|
*/
|
|
SQLITE_PRIVATE const char *sqlite3ErrStr(int rc){
|
|
const char *z;
|
|
switch( rc & 0xff ){
|
|
case SQLITE_ROW:
|
|
case SQLITE_DONE:
|
|
case SQLITE_OK: z = "not an error"; break;
|
|
case SQLITE_ERROR: z = "SQL logic error or missing database"; break;
|
|
case SQLITE_PERM: z = "access permission denied"; break;
|
|
case SQLITE_ABORT: z = "callback requested query abort"; break;
|
|
case SQLITE_BUSY: z = "database is locked"; break;
|
|
case SQLITE_LOCKED: z = "database table is locked"; break;
|
|
case SQLITE_NOMEM: z = "out of memory"; break;
|
|
case SQLITE_READONLY: z = "attempt to write a readonly database"; break;
|
|
case SQLITE_INTERRUPT: z = "interrupted"; break;
|
|
case SQLITE_IOERR: z = "disk I/O error"; break;
|
|
case SQLITE_CORRUPT: z = "database disk image is malformed"; break;
|
|
case SQLITE_FULL: z = "database or disk is full"; break;
|
|
case SQLITE_CANTOPEN: z = "unable to open database file"; break;
|
|
case SQLITE_EMPTY: z = "table contains no data"; break;
|
|
case SQLITE_SCHEMA: z = "database schema has changed"; break;
|
|
case SQLITE_TOOBIG: z = "String or BLOB exceeded size limit"; break;
|
|
case SQLITE_CONSTRAINT: z = "constraint failed"; break;
|
|
case SQLITE_MISMATCH: z = "datatype mismatch"; break;
|
|
case SQLITE_MISUSE: z = "library routine called out of sequence";break;
|
|
case SQLITE_NOLFS: z = "kernel lacks large file support"; break;
|
|
case SQLITE_AUTH: z = "authorization denied"; break;
|
|
case SQLITE_FORMAT: z = "auxiliary database format error"; break;
|
|
case SQLITE_RANGE: z = "bind or column index out of range"; break;
|
|
case SQLITE_NOTADB: z = "file is encrypted or is not a database";break;
|
|
default: z = "unknown error"; break;
|
|
}
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
** This routine implements a busy callback that sleeps and tries
|
|
** again until a timeout value is reached. The timeout value is
|
|
** an integer number of milliseconds passed in as the first
|
|
** argument.
|
|
*/
|
|
static int sqliteDefaultBusyCallback(
|
|
void *ptr, /* Database connection */
|
|
int count /* Number of times table has been busy */
|
|
){
|
|
#if OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP)
|
|
static const u8 delays[] =
|
|
{ 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 };
|
|
static const u8 totals[] =
|
|
{ 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 };
|
|
# define NDELAY (sizeof(delays)/sizeof(delays[0]))
|
|
sqlite3 *db = (sqlite3 *)ptr;
|
|
int timeout = db->busyTimeout;
|
|
int delay, prior;
|
|
|
|
assert( count>=0 );
|
|
if( count < NDELAY ){
|
|
delay = delays[count];
|
|
prior = totals[count];
|
|
}else{
|
|
delay = delays[NDELAY-1];
|
|
prior = totals[NDELAY-1] + delay*(count-(NDELAY-1));
|
|
}
|
|
if( prior + delay > timeout ){
|
|
delay = timeout - prior;
|
|
if( delay<=0 ) return 0;
|
|
}
|
|
sqlite3OsSleep(db->pVfs, delay*1000);
|
|
return 1;
|
|
#else
|
|
sqlite3 *db = (sqlite3 *)ptr;
|
|
int timeout = ((sqlite3 *)ptr)->busyTimeout;
|
|
if( (count+1)*1000 > timeout ){
|
|
return 0;
|
|
}
|
|
sqlite3OsSleep(db->pVfs, 1000000);
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Invoke the given busy handler.
|
|
**
|
|
** This routine is called when an operation failed with a lock.
|
|
** If this routine returns non-zero, the lock is retried. If it
|
|
** returns 0, the operation aborts with an SQLITE_BUSY error.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler *p){
|
|
int rc;
|
|
if( p==0 || p->xFunc==0 || p->nBusy<0 ) return 0;
|
|
rc = p->xFunc(p->pArg, p->nBusy);
|
|
if( rc==0 ){
|
|
p->nBusy = -1;
|
|
}else{
|
|
p->nBusy++;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This routine sets the busy callback for an Sqlite database to the
|
|
** given callback function with the given argument.
|
|
*/
|
|
SQLITE_API int sqlite3_busy_handler(
|
|
sqlite3 *db,
|
|
int (*xBusy)(void*,int),
|
|
void *pArg
|
|
){
|
|
sqlite3_mutex_enter(db->mutex);
|
|
db->busyHandler.xFunc = xBusy;
|
|
db->busyHandler.pArg = pArg;
|
|
db->busyHandler.nBusy = 0;
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
/*
|
|
** This routine sets the progress callback for an Sqlite database to the
|
|
** given callback function with the given argument. The progress callback will
|
|
** be invoked every nOps opcodes.
|
|
*/
|
|
SQLITE_API void sqlite3_progress_handler(
|
|
sqlite3 *db,
|
|
int nOps,
|
|
int (*xProgress)(void*),
|
|
void *pArg
|
|
){
|
|
if( sqlite3SafetyCheckOk(db) ){
|
|
sqlite3_mutex_enter(db->mutex);
|
|
if( nOps>0 ){
|
|
db->xProgress = xProgress;
|
|
db->nProgressOps = nOps;
|
|
db->pProgressArg = pArg;
|
|
}else{
|
|
db->xProgress = 0;
|
|
db->nProgressOps = 0;
|
|
db->pProgressArg = 0;
|
|
}
|
|
sqlite3_mutex_leave(db->mutex);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
** This routine installs a default busy handler that waits for the
|
|
** specified number of milliseconds before returning 0.
|
|
*/
|
|
SQLITE_API int sqlite3_busy_timeout(sqlite3 *db, int ms){
|
|
if( ms>0 ){
|
|
db->busyTimeout = ms;
|
|
sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db);
|
|
}else{
|
|
sqlite3_busy_handler(db, 0, 0);
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Cause any pending operation to stop at its earliest opportunity.
|
|
*/
|
|
SQLITE_API void sqlite3_interrupt(sqlite3 *db){
|
|
if( sqlite3SafetyCheckOk(db) ){
|
|
db->u1.isInterrupted = 1;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** This function is exactly the same as sqlite3_create_function(), except
|
|
** that it is designed to be called by internal code. The difference is
|
|
** that if a malloc() fails in sqlite3_create_function(), an error code
|
|
** is returned and the mallocFailed flag cleared.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3CreateFunc(
|
|
sqlite3 *db,
|
|
const char *zFunctionName,
|
|
int nArg,
|
|
int enc,
|
|
void *pUserData,
|
|
void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
|
|
void (*xStep)(sqlite3_context*,int,sqlite3_value **),
|
|
void (*xFinal)(sqlite3_context*)
|
|
){
|
|
FuncDef *p;
|
|
int nName;
|
|
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
if( zFunctionName==0 ||
|
|
(xFunc && (xFinal || xStep)) ||
|
|
(!xFunc && (xFinal && !xStep)) ||
|
|
(!xFunc && (!xFinal && xStep)) ||
|
|
(nArg<-1 || nArg>127) ||
|
|
(255<(nName = strlen(zFunctionName))) ){
|
|
sqlite3Error(db, SQLITE_ERROR, "bad parameters");
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
/* If SQLITE_UTF16 is specified as the encoding type, transform this
|
|
** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
|
|
** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
|
|
**
|
|
** If SQLITE_ANY is specified, add three versions of the function
|
|
** to the hash table.
|
|
*/
|
|
if( enc==SQLITE_UTF16 ){
|
|
enc = SQLITE_UTF16NATIVE;
|
|
}else if( enc==SQLITE_ANY ){
|
|
int rc;
|
|
rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8,
|
|
pUserData, xFunc, xStep, xFinal);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE,
|
|
pUserData, xFunc, xStep, xFinal);
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
enc = SQLITE_UTF16BE;
|
|
}
|
|
#else
|
|
enc = SQLITE_UTF8;
|
|
#endif
|
|
|
|
/* Check if an existing function is being overridden or deleted. If so,
|
|
** and there are active VMs, then return SQLITE_BUSY. If a function
|
|
** is being overridden/deleted but there are no active VMs, allow the
|
|
** operation to continue but invalidate all precompiled statements.
|
|
*/
|
|
p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 0);
|
|
if( p && p->iPrefEnc==enc && p->nArg==nArg ){
|
|
if( db->activeVdbeCnt ){
|
|
sqlite3Error(db, SQLITE_BUSY,
|
|
"Unable to delete/modify user-function due to active statements");
|
|
assert( !db->mallocFailed );
|
|
return SQLITE_BUSY;
|
|
}else{
|
|
sqlite3ExpirePreparedStatements(db);
|
|
}
|
|
}
|
|
|
|
p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 1);
|
|
assert(p || db->mallocFailed);
|
|
if( !p ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
p->flags = 0;
|
|
p->xFunc = xFunc;
|
|
p->xStep = xStep;
|
|
p->xFinalize = xFinal;
|
|
p->pUserData = pUserData;
|
|
p->nArg = nArg;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Create new user functions.
|
|
*/
|
|
SQLITE_API int sqlite3_create_function(
|
|
sqlite3 *db,
|
|
const char *zFunctionName,
|
|
int nArg,
|
|
int enc,
|
|
void *p,
|
|
void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
|
|
void (*xStep)(sqlite3_context*,int,sqlite3_value **),
|
|
void (*xFinal)(sqlite3_context*)
|
|
){
|
|
int rc;
|
|
sqlite3_mutex_enter(db->mutex);
|
|
assert( !db->mallocFailed );
|
|
rc = sqlite3CreateFunc(db, zFunctionName, nArg, enc, p, xFunc, xStep, xFinal);
|
|
rc = sqlite3ApiExit(db, rc);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
SQLITE_API int sqlite3_create_function16(
|
|
sqlite3 *db,
|
|
const void *zFunctionName,
|
|
int nArg,
|
|
int eTextRep,
|
|
void *p,
|
|
void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
|
|
void (*xStep)(sqlite3_context*,int,sqlite3_value**),
|
|
void (*xFinal)(sqlite3_context*)
|
|
){
|
|
int rc;
|
|
char *zFunc8;
|
|
sqlite3_mutex_enter(db->mutex);
|
|
assert( !db->mallocFailed );
|
|
zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1);
|
|
rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal);
|
|
sqlite3_free(zFunc8);
|
|
rc = sqlite3ApiExit(db, rc);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Declare that a function has been overloaded by a virtual table.
|
|
**
|
|
** If the function already exists as a regular global function, then
|
|
** this routine is a no-op. If the function does not exist, then create
|
|
** a new one that always throws a run-time error.
|
|
**
|
|
** When virtual tables intend to provide an overloaded function, they
|
|
** should call this routine to make sure the global function exists.
|
|
** A global function must exist in order for name resolution to work
|
|
** properly.
|
|
*/
|
|
SQLITE_API int sqlite3_overload_function(
|
|
sqlite3 *db,
|
|
const char *zName,
|
|
int nArg
|
|
){
|
|
int nName = strlen(zName);
|
|
int rc;
|
|
sqlite3_mutex_enter(db->mutex);
|
|
if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){
|
|
sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8,
|
|
0, sqlite3InvalidFunction, 0, 0);
|
|
}
|
|
rc = sqlite3ApiExit(db, SQLITE_OK);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_TRACE
|
|
/*
|
|
** Register a trace function. The pArg from the previously registered trace
|
|
** is returned.
|
|
**
|
|
** A NULL trace function means that no tracing is executes. A non-NULL
|
|
** trace is a pointer to a function that is invoked at the start of each
|
|
** SQL statement.
|
|
*/
|
|
SQLITE_API void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){
|
|
void *pOld;
|
|
sqlite3_mutex_enter(db->mutex);
|
|
pOld = db->pTraceArg;
|
|
db->xTrace = xTrace;
|
|
db->pTraceArg = pArg;
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return pOld;
|
|
}
|
|
/*
|
|
** Register a profile function. The pArg from the previously registered
|
|
** profile function is returned.
|
|
**
|
|
** A NULL profile function means that no profiling is executes. A non-NULL
|
|
** profile is a pointer to a function that is invoked at the conclusion of
|
|
** each SQL statement that is run.
|
|
*/
|
|
SQLITE_API void *sqlite3_profile(
|
|
sqlite3 *db,
|
|
void (*xProfile)(void*,const char*,sqlite_uint64),
|
|
void *pArg
|
|
){
|
|
void *pOld;
|
|
sqlite3_mutex_enter(db->mutex);
|
|
pOld = db->pProfileArg;
|
|
db->xProfile = xProfile;
|
|
db->pProfileArg = pArg;
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return pOld;
|
|
}
|
|
#endif /* SQLITE_OMIT_TRACE */
|
|
|
|
/*** EXPERIMENTAL ***
|
|
**
|
|
** Register a function to be invoked when a transaction comments.
|
|
** If the invoked function returns non-zero, then the commit becomes a
|
|
** rollback.
|
|
*/
|
|
SQLITE_API void *sqlite3_commit_hook(
|
|
sqlite3 *db, /* Attach the hook to this database */
|
|
int (*xCallback)(void*), /* Function to invoke on each commit */
|
|
void *pArg /* Argument to the function */
|
|
){
|
|
void *pOld;
|
|
sqlite3_mutex_enter(db->mutex);
|
|
pOld = db->pCommitArg;
|
|
db->xCommitCallback = xCallback;
|
|
db->pCommitArg = pArg;
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return pOld;
|
|
}
|
|
|
|
/*
|
|
** Register a callback to be invoked each time a row is updated,
|
|
** inserted or deleted using this database connection.
|
|
*/
|
|
SQLITE_API void *sqlite3_update_hook(
|
|
sqlite3 *db, /* Attach the hook to this database */
|
|
void (*xCallback)(void*,int,char const *,char const *,sqlite_int64),
|
|
void *pArg /* Argument to the function */
|
|
){
|
|
void *pRet;
|
|
sqlite3_mutex_enter(db->mutex);
|
|
pRet = db->pUpdateArg;
|
|
db->xUpdateCallback = xCallback;
|
|
db->pUpdateArg = pArg;
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return pRet;
|
|
}
|
|
|
|
/*
|
|
** Register a callback to be invoked each time a transaction is rolled
|
|
** back by this database connection.
|
|
*/
|
|
SQLITE_API void *sqlite3_rollback_hook(
|
|
sqlite3 *db, /* Attach the hook to this database */
|
|
void (*xCallback)(void*), /* Callback function */
|
|
void *pArg /* Argument to the function */
|
|
){
|
|
void *pRet;
|
|
sqlite3_mutex_enter(db->mutex);
|
|
pRet = db->pRollbackArg;
|
|
db->xRollbackCallback = xCallback;
|
|
db->pRollbackArg = pArg;
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return pRet;
|
|
}
|
|
|
|
/*
|
|
** This routine is called to create a connection to a database BTree
|
|
** driver. If zFilename is the name of a file, then that file is
|
|
** opened and used. If zFilename is the magic name ":memory:" then
|
|
** the database is stored in memory (and is thus forgotten as soon as
|
|
** the connection is closed.) If zFilename is NULL then the database
|
|
** is a "virtual" database for transient use only and is deleted as
|
|
** soon as the connection is closed.
|
|
**
|
|
** A virtual database can be either a disk file (that is automatically
|
|
** deleted when the file is closed) or it an be held entirely in memory,
|
|
** depending on the values of the TEMP_STORE compile-time macro and the
|
|
** db->temp_store variable, according to the following chart:
|
|
**
|
|
** TEMP_STORE db->temp_store Location of temporary database
|
|
** ---------- -------------- ------------------------------
|
|
** 0 any file
|
|
** 1 1 file
|
|
** 1 2 memory
|
|
** 1 0 file
|
|
** 2 1 file
|
|
** 2 2 memory
|
|
** 2 0 memory
|
|
** 3 any memory
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3BtreeFactory(
|
|
const sqlite3 *db, /* Main database when opening aux otherwise 0 */
|
|
const char *zFilename, /* Name of the file containing the BTree database */
|
|
int omitJournal, /* if TRUE then do not journal this file */
|
|
int nCache, /* How many pages in the page cache */
|
|
int vfsFlags, /* Flags passed through to vfsOpen */
|
|
Btree **ppBtree /* Pointer to new Btree object written here */
|
|
){
|
|
int btFlags = 0;
|
|
int rc;
|
|
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
assert( ppBtree != 0);
|
|
if( omitJournal ){
|
|
btFlags |= BTREE_OMIT_JOURNAL;
|
|
}
|
|
if( db->flags & SQLITE_NoReadlock ){
|
|
btFlags |= BTREE_NO_READLOCK;
|
|
}
|
|
if( zFilename==0 ){
|
|
#if TEMP_STORE==0
|
|
/* Do nothing */
|
|
#endif
|
|
#ifndef SQLITE_OMIT_MEMORYDB
|
|
#if TEMP_STORE==1
|
|
if( db->temp_store==2 ) zFilename = ":memory:";
|
|
#endif
|
|
#if TEMP_STORE==2
|
|
if( db->temp_store!=1 ) zFilename = ":memory:";
|
|
#endif
|
|
#if TEMP_STORE==3
|
|
zFilename = ":memory:";
|
|
#endif
|
|
#endif /* SQLITE_OMIT_MEMORYDB */
|
|
}
|
|
|
|
if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (zFilename==0 || *zFilename==0) ){
|
|
vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
|
|
}
|
|
rc = sqlite3BtreeOpen(zFilename, (sqlite3 *)db, ppBtree, btFlags, vfsFlags);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3BtreeSetCacheSize(*ppBtree, nCache);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return UTF-8 encoded English language explanation of the most recent
|
|
** error.
|
|
*/
|
|
SQLITE_API const char *sqlite3_errmsg(sqlite3 *db){
|
|
const char *z;
|
|
if( !db ){
|
|
return sqlite3ErrStr(SQLITE_NOMEM);
|
|
}
|
|
if( !sqlite3SafetyCheckSickOrOk(db) || db->errCode==SQLITE_MISUSE ){
|
|
return sqlite3ErrStr(SQLITE_MISUSE);
|
|
}
|
|
sqlite3_mutex_enter(db->mutex);
|
|
assert( !db->mallocFailed );
|
|
z = (char*)sqlite3_value_text(db->pErr);
|
|
if( z==0 ){
|
|
z = sqlite3ErrStr(db->errCode);
|
|
}
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return z;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
/*
|
|
** Return UTF-16 encoded English language explanation of the most recent
|
|
** error.
|
|
*/
|
|
SQLITE_API const void *sqlite3_errmsg16(sqlite3 *db){
|
|
/* Because all the characters in the string are in the unicode
|
|
** range 0x00-0xFF, if we pad the big-endian string with a
|
|
** zero byte, we can obtain the little-endian string with
|
|
** &big_endian[1].
|
|
*/
|
|
static const char outOfMemBe[] = {
|
|
0, 'o', 0, 'u', 0, 't', 0, ' ',
|
|
0, 'o', 0, 'f', 0, ' ',
|
|
0, 'm', 0, 'e', 0, 'm', 0, 'o', 0, 'r', 0, 'y', 0, 0, 0
|
|
};
|
|
static const char misuseBe [] = {
|
|
0, 'l', 0, 'i', 0, 'b', 0, 'r', 0, 'a', 0, 'r', 0, 'y', 0, ' ',
|
|
0, 'r', 0, 'o', 0, 'u', 0, 't', 0, 'i', 0, 'n', 0, 'e', 0, ' ',
|
|
0, 'c', 0, 'a', 0, 'l', 0, 'l', 0, 'e', 0, 'd', 0, ' ',
|
|
0, 'o', 0, 'u', 0, 't', 0, ' ',
|
|
0, 'o', 0, 'f', 0, ' ',
|
|
0, 's', 0, 'e', 0, 'q', 0, 'u', 0, 'e', 0, 'n', 0, 'c', 0, 'e', 0, 0, 0
|
|
};
|
|
|
|
const void *z;
|
|
if( !db ){
|
|
return (void *)(&outOfMemBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]);
|
|
}
|
|
if( !sqlite3SafetyCheckSickOrOk(db) || db->errCode==SQLITE_MISUSE ){
|
|
return (void *)(&misuseBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]);
|
|
}
|
|
sqlite3_mutex_enter(db->mutex);
|
|
assert( !db->mallocFailed );
|
|
z = sqlite3_value_text16(db->pErr);
|
|
if( z==0 ){
|
|
sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode),
|
|
SQLITE_UTF8, SQLITE_STATIC);
|
|
z = sqlite3_value_text16(db->pErr);
|
|
}
|
|
sqlite3ApiExit(0, 0);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return z;
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
|
|
/*
|
|
** Return the most recent error code generated by an SQLite routine. If NULL is
|
|
** passed to this function, we assume a malloc() failed during sqlite3_open().
|
|
*/
|
|
SQLITE_API int sqlite3_errcode(sqlite3 *db){
|
|
if( db && !sqlite3SafetyCheckSickOrOk(db) ){
|
|
return SQLITE_MISUSE;
|
|
}
|
|
if( !db || db->mallocFailed ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
return db->errCode & db->errMask;
|
|
}
|
|
|
|
/*
|
|
** Create a new collating function for database "db". The name is zName
|
|
** and the encoding is enc.
|
|
*/
|
|
static int createCollation(
|
|
sqlite3* db,
|
|
const char *zName,
|
|
int enc,
|
|
void* pCtx,
|
|
int(*xCompare)(void*,int,const void*,int,const void*),
|
|
void(*xDel)(void*)
|
|
){
|
|
CollSeq *pColl;
|
|
int enc2;
|
|
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
|
|
/* If SQLITE_UTF16 is specified as the encoding type, transform this
|
|
** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
|
|
** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
|
|
*/
|
|
enc2 = enc & ~SQLITE_UTF16_ALIGNED;
|
|
if( enc2==SQLITE_UTF16 ){
|
|
enc2 = SQLITE_UTF16NATIVE;
|
|
}
|
|
|
|
if( (enc2&~3)!=0 ){
|
|
sqlite3Error(db, SQLITE_ERROR, "unknown encoding");
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
/* Check if this call is removing or replacing an existing collation
|
|
** sequence. If so, and there are active VMs, return busy. If there
|
|
** are no active VMs, invalidate any pre-compiled statements.
|
|
*/
|
|
pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, strlen(zName), 0);
|
|
if( pColl && pColl->xCmp ){
|
|
if( db->activeVdbeCnt ){
|
|
sqlite3Error(db, SQLITE_BUSY,
|
|
"Unable to delete/modify collation sequence due to active statements");
|
|
return SQLITE_BUSY;
|
|
}
|
|
sqlite3ExpirePreparedStatements(db);
|
|
|
|
/* If collation sequence pColl was created directly by a call to
|
|
** sqlite3_create_collation, and not generated by synthCollSeq(),
|
|
** then any copies made by synthCollSeq() need to be invalidated.
|
|
** Also, collation destructor - CollSeq.xDel() - function may need
|
|
** to be called.
|
|
*/
|
|
if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){
|
|
CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, strlen(zName));
|
|
int j;
|
|
for(j=0; j<3; j++){
|
|
CollSeq *p = &aColl[j];
|
|
if( p->enc==pColl->enc ){
|
|
if( p->xDel ){
|
|
p->xDel(p->pUser);
|
|
}
|
|
p->xCmp = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, strlen(zName), 1);
|
|
if( pColl ){
|
|
pColl->xCmp = xCompare;
|
|
pColl->pUser = pCtx;
|
|
pColl->xDel = xDel;
|
|
pColl->enc = enc2 | (enc & SQLITE_UTF16_ALIGNED);
|
|
}
|
|
sqlite3Error(db, SQLITE_OK, 0);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
|
|
/*
|
|
** This routine does the work of opening a database on behalf of
|
|
** sqlite3_open() and sqlite3_open16(). The database filename "zFilename"
|
|
** is UTF-8 encoded.
|
|
*/
|
|
static int openDatabase(
|
|
const char *zFilename, /* Database filename UTF-8 encoded */
|
|
sqlite3 **ppDb, /* OUT: Returned database handle */
|
|
unsigned flags, /* Operational flags */
|
|
const char *zVfs /* Name of the VFS to use */
|
|
){
|
|
sqlite3 *db;
|
|
int rc;
|
|
CollSeq *pColl;
|
|
|
|
/* Allocate the sqlite data structure */
|
|
db = sqlite3MallocZero( sizeof(sqlite3) );
|
|
if( db==0 ) goto opendb_out;
|
|
db->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_RECURSIVE);
|
|
if( db->mutex==0 ){
|
|
sqlite3_free(db);
|
|
db = 0;
|
|
goto opendb_out;
|
|
}
|
|
sqlite3_mutex_enter(db->mutex);
|
|
db->errMask = 0xff;
|
|
db->priorNewRowid = 0;
|
|
db->nDb = 2;
|
|
db->magic = SQLITE_MAGIC_BUSY;
|
|
db->aDb = db->aDbStatic;
|
|
db->autoCommit = 1;
|
|
db->nextAutovac = -1;
|
|
db->flags |= SQLITE_ShortColNames
|
|
#if SQLITE_DEFAULT_FILE_FORMAT<4
|
|
| SQLITE_LegacyFileFmt
|
|
#endif
|
|
#ifdef SQLITE_ENABLE_LOAD_EXTENSION
|
|
| SQLITE_LoadExtension
|
|
#endif
|
|
;
|
|
sqlite3HashInit(&db->aFunc, SQLITE_HASH_STRING, 0);
|
|
sqlite3HashInit(&db->aCollSeq, SQLITE_HASH_STRING, 0);
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
sqlite3HashInit(&db->aModule, SQLITE_HASH_STRING, 0);
|
|
#endif
|
|
|
|
db->pVfs = sqlite3_vfs_find(zVfs);
|
|
if( !db->pVfs ){
|
|
rc = SQLITE_ERROR;
|
|
db->magic = SQLITE_MAGIC_SICK;
|
|
sqlite3Error(db, rc, "no such vfs: %s", (zVfs?zVfs:"(null)"));
|
|
goto opendb_out;
|
|
}
|
|
|
|
/* Add the default collation sequence BINARY. BINARY works for both UTF-8
|
|
** and UTF-16, so add a version for each to avoid any unnecessary
|
|
** conversions. The only error that can occur here is a malloc() failure.
|
|
*/
|
|
if( createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0) ||
|
|
createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0) ||
|
|
createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0) ||
|
|
createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0) ||
|
|
(db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0))==0
|
|
){
|
|
assert( db->mallocFailed );
|
|
db->magic = SQLITE_MAGIC_SICK;
|
|
goto opendb_out;
|
|
}
|
|
|
|
/* Also add a UTF-8 case-insensitive collation sequence. */
|
|
createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0);
|
|
|
|
/* Set flags on the built-in collating sequences */
|
|
db->pDfltColl->type = SQLITE_COLL_BINARY;
|
|
pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "NOCASE", 6, 0);
|
|
if( pColl ){
|
|
pColl->type = SQLITE_COLL_NOCASE;
|
|
}
|
|
|
|
/* Open the backend database driver */
|
|
db->openFlags = flags;
|
|
rc = sqlite3BtreeFactory(db, zFilename, 0, SQLITE_DEFAULT_CACHE_SIZE,
|
|
flags | SQLITE_OPEN_MAIN_DB,
|
|
&db->aDb[0].pBt);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3Error(db, rc, 0);
|
|
db->magic = SQLITE_MAGIC_SICK;
|
|
goto opendb_out;
|
|
}
|
|
db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt);
|
|
db->aDb[1].pSchema = sqlite3SchemaGet(db, 0);
|
|
|
|
|
|
/* The default safety_level for the main database is 'full'; for the temp
|
|
** database it is 'NONE'. This matches the pager layer defaults.
|
|
*/
|
|
db->aDb[0].zName = "main";
|
|
db->aDb[0].safety_level = 3;
|
|
#ifndef SQLITE_OMIT_TEMPDB
|
|
db->aDb[1].zName = "temp";
|
|
db->aDb[1].safety_level = 1;
|
|
#endif
|
|
|
|
db->magic = SQLITE_MAGIC_OPEN;
|
|
if( db->mallocFailed ){
|
|
goto opendb_out;
|
|
}
|
|
|
|
/* Register all built-in functions, but do not attempt to read the
|
|
** database schema yet. This is delayed until the first time the database
|
|
** is accessed.
|
|
*/
|
|
sqlite3Error(db, SQLITE_OK, 0);
|
|
sqlite3RegisterBuiltinFunctions(db);
|
|
|
|
/* Load automatic extensions - extensions that have been registered
|
|
** using the sqlite3_automatic_extension() API.
|
|
*/
|
|
(void)sqlite3AutoLoadExtensions(db);
|
|
if( sqlite3_errcode(db)!=SQLITE_OK ){
|
|
goto opendb_out;
|
|
}
|
|
|
|
#ifdef SQLITE_ENABLE_FTS1
|
|
if( !db->mallocFailed ){
|
|
extern int sqlite3Fts1Init(sqlite3*);
|
|
rc = sqlite3Fts1Init(db);
|
|
}
|
|
#endif
|
|
|
|
#ifdef SQLITE_ENABLE_FTS2
|
|
if( !db->mallocFailed && rc==SQLITE_OK ){
|
|
extern int sqlite3Fts2Init(sqlite3*);
|
|
rc = sqlite3Fts2Init(db);
|
|
}
|
|
#endif
|
|
|
|
#ifdef SQLITE_ENABLE_FTS3
|
|
if( !db->mallocFailed && rc==SQLITE_OK ){
|
|
rc = sqlite3Fts3Init(db);
|
|
}
|
|
#endif
|
|
|
|
#ifdef SQLITE_ENABLE_ICU
|
|
if( !db->mallocFailed && rc==SQLITE_OK ){
|
|
extern int sqlite3IcuInit(sqlite3*);
|
|
rc = sqlite3IcuInit(db);
|
|
}
|
|
#endif
|
|
sqlite3Error(db, rc, 0);
|
|
|
|
/* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking
|
|
** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking
|
|
** mode. Doing nothing at all also makes NORMAL the default.
|
|
*/
|
|
#ifdef SQLITE_DEFAULT_LOCKING_MODE
|
|
db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE;
|
|
sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt),
|
|
SQLITE_DEFAULT_LOCKING_MODE);
|
|
#endif
|
|
|
|
opendb_out:
|
|
if( db && db->mutex ){
|
|
sqlite3_mutex_leave(db->mutex);
|
|
}
|
|
if( SQLITE_NOMEM==(rc = sqlite3_errcode(db)) ){
|
|
sqlite3_close(db);
|
|
db = 0;
|
|
}
|
|
*ppDb = db;
|
|
return sqlite3ApiExit(0, rc);
|
|
}
|
|
|
|
/*
|
|
** Open a new database handle.
|
|
*/
|
|
SQLITE_API int sqlite3_open(
|
|
const char *zFilename,
|
|
sqlite3 **ppDb
|
|
){
|
|
return openDatabase(zFilename, ppDb,
|
|
SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
|
|
}
|
|
SQLITE_API int sqlite3_open_v2(
|
|
const char *filename, /* Database filename (UTF-8) */
|
|
sqlite3 **ppDb, /* OUT: SQLite db handle */
|
|
int flags, /* Flags */
|
|
const char *zVfs /* Name of VFS module to use */
|
|
){
|
|
return openDatabase(filename, ppDb, flags, zVfs);
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
/*
|
|
** Open a new database handle.
|
|
*/
|
|
SQLITE_API int sqlite3_open16(
|
|
const void *zFilename,
|
|
sqlite3 **ppDb
|
|
){
|
|
char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */
|
|
sqlite3_value *pVal;
|
|
int rc = SQLITE_NOMEM;
|
|
|
|
assert( zFilename );
|
|
assert( ppDb );
|
|
*ppDb = 0;
|
|
pVal = sqlite3ValueNew(0);
|
|
sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC);
|
|
zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8);
|
|
if( zFilename8 ){
|
|
rc = openDatabase(zFilename8, ppDb,
|
|
SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
|
|
if( rc==SQLITE_OK && *ppDb ){
|
|
rc = sqlite3_exec(*ppDb, "PRAGMA encoding = 'UTF-16'", 0, 0, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3_close(*ppDb);
|
|
*ppDb = 0;
|
|
}
|
|
}
|
|
}
|
|
sqlite3ValueFree(pVal);
|
|
|
|
return sqlite3ApiExit(0, rc);
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
|
|
/*
|
|
** Register a new collation sequence with the database handle db.
|
|
*/
|
|
SQLITE_API int sqlite3_create_collation(
|
|
sqlite3* db,
|
|
const char *zName,
|
|
int enc,
|
|
void* pCtx,
|
|
int(*xCompare)(void*,int,const void*,int,const void*)
|
|
){
|
|
int rc;
|
|
sqlite3_mutex_enter(db->mutex);
|
|
assert( !db->mallocFailed );
|
|
rc = createCollation(db, zName, enc, pCtx, xCompare, 0);
|
|
rc = sqlite3ApiExit(db, rc);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Register a new collation sequence with the database handle db.
|
|
*/
|
|
SQLITE_API int sqlite3_create_collation_v2(
|
|
sqlite3* db,
|
|
const char *zName,
|
|
int enc,
|
|
void* pCtx,
|
|
int(*xCompare)(void*,int,const void*,int,const void*),
|
|
void(*xDel)(void*)
|
|
){
|
|
int rc;
|
|
sqlite3_mutex_enter(db->mutex);
|
|
assert( !db->mallocFailed );
|
|
rc = createCollation(db, zName, enc, pCtx, xCompare, xDel);
|
|
rc = sqlite3ApiExit(db, rc);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
/*
|
|
** Register a new collation sequence with the database handle db.
|
|
*/
|
|
SQLITE_API int sqlite3_create_collation16(
|
|
sqlite3* db,
|
|
const char *zName,
|
|
int enc,
|
|
void* pCtx,
|
|
int(*xCompare)(void*,int,const void*,int,const void*)
|
|
){
|
|
int rc = SQLITE_OK;
|
|
char *zName8;
|
|
sqlite3_mutex_enter(db->mutex);
|
|
assert( !db->mallocFailed );
|
|
zName8 = sqlite3Utf16to8(db, zName, -1);
|
|
if( zName8 ){
|
|
rc = createCollation(db, zName8, enc, pCtx, xCompare, 0);
|
|
sqlite3_free(zName8);
|
|
}
|
|
rc = sqlite3ApiExit(db, rc);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
|
|
/*
|
|
** Register a collation sequence factory callback with the database handle
|
|
** db. Replace any previously installed collation sequence factory.
|
|
*/
|
|
SQLITE_API int sqlite3_collation_needed(
|
|
sqlite3 *db,
|
|
void *pCollNeededArg,
|
|
void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*)
|
|
){
|
|
sqlite3_mutex_enter(db->mutex);
|
|
db->xCollNeeded = xCollNeeded;
|
|
db->xCollNeeded16 = 0;
|
|
db->pCollNeededArg = pCollNeededArg;
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
/*
|
|
** Register a collation sequence factory callback with the database handle
|
|
** db. Replace any previously installed collation sequence factory.
|
|
*/
|
|
SQLITE_API int sqlite3_collation_needed16(
|
|
sqlite3 *db,
|
|
void *pCollNeededArg,
|
|
void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*)
|
|
){
|
|
sqlite3_mutex_enter(db->mutex);
|
|
db->xCollNeeded = 0;
|
|
db->xCollNeeded16 = xCollNeeded16;
|
|
db->pCollNeededArg = pCollNeededArg;
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return SQLITE_OK;
|
|
}
|
|
#endif /* SQLITE_OMIT_UTF16 */
|
|
|
|
#ifndef SQLITE_OMIT_GLOBALRECOVER
|
|
/*
|
|
** This function is now an anachronism. It used to be used to recover from a
|
|
** malloc() failure, but SQLite now does this automatically.
|
|
*/
|
|
SQLITE_API int sqlite3_global_recover(void){
|
|
return SQLITE_OK;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Test to see whether or not the database connection is in autocommit
|
|
** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on
|
|
** by default. Autocommit is disabled by a BEGIN statement and reenabled
|
|
** by the next COMMIT or ROLLBACK.
|
|
**
|
|
******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
|
|
*/
|
|
SQLITE_API int sqlite3_get_autocommit(sqlite3 *db){
|
|
return db->autoCommit;
|
|
}
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
** The following routine is subtituted for constant SQLITE_CORRUPT in
|
|
** debugging builds. This provides a way to set a breakpoint for when
|
|
** corruption is first detected.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3Corrupt(void){
|
|
return SQLITE_CORRUPT;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** This is a convenience routine that makes sure that all thread-specific
|
|
** data for this thread has been deallocated.
|
|
**
|
|
** SQLite no longer uses thread-specific data so this routine is now a
|
|
** no-op. It is retained for historical compatibility.
|
|
*/
|
|
SQLITE_API void sqlite3_thread_cleanup(void){
|
|
}
|
|
|
|
/*
|
|
** Return meta information about a specific column of a database table.
|
|
** See comment in sqlite3.h (sqlite.h.in) for details.
|
|
*/
|
|
#ifdef SQLITE_ENABLE_COLUMN_METADATA
|
|
SQLITE_API int sqlite3_table_column_metadata(
|
|
sqlite3 *db, /* Connection handle */
|
|
const char *zDbName, /* Database name or NULL */
|
|
const char *zTableName, /* Table name */
|
|
const char *zColumnName, /* Column name */
|
|
char const **pzDataType, /* OUTPUT: Declared data type */
|
|
char const **pzCollSeq, /* OUTPUT: Collation sequence name */
|
|
int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
|
|
int *pPrimaryKey, /* OUTPUT: True if column part of PK */
|
|
int *pAutoinc /* OUTPUT: True if colums is auto-increment */
|
|
){
|
|
int rc;
|
|
char *zErrMsg = 0;
|
|
Table *pTab = 0;
|
|
Column *pCol = 0;
|
|
int iCol;
|
|
|
|
char const *zDataType = 0;
|
|
char const *zCollSeq = 0;
|
|
int notnull = 0;
|
|
int primarykey = 0;
|
|
int autoinc = 0;
|
|
|
|
/* Ensure the database schema has been loaded */
|
|
(void)sqlite3SafetyOn(db);
|
|
sqlite3_mutex_enter(db->mutex);
|
|
rc = sqlite3Init(db, &zErrMsg);
|
|
if( SQLITE_OK!=rc ){
|
|
goto error_out;
|
|
}
|
|
|
|
/* Locate the table in question */
|
|
pTab = sqlite3FindTable(db, zTableName, zDbName);
|
|
if( !pTab || pTab->pSelect ){
|
|
pTab = 0;
|
|
goto error_out;
|
|
}
|
|
|
|
/* Find the column for which info is requested */
|
|
if( sqlite3IsRowid(zColumnName) ){
|
|
iCol = pTab->iPKey;
|
|
if( iCol>=0 ){
|
|
pCol = &pTab->aCol[iCol];
|
|
}
|
|
}else{
|
|
for(iCol=0; iCol<pTab->nCol; iCol++){
|
|
pCol = &pTab->aCol[iCol];
|
|
if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){
|
|
break;
|
|
}
|
|
}
|
|
if( iCol==pTab->nCol ){
|
|
pTab = 0;
|
|
goto error_out;
|
|
}
|
|
}
|
|
|
|
/* The following block stores the meta information that will be returned
|
|
** to the caller in local variables zDataType, zCollSeq, notnull, primarykey
|
|
** and autoinc. At this point there are two possibilities:
|
|
**
|
|
** 1. The specified column name was rowid", "oid" or "_rowid_"
|
|
** and there is no explicitly declared IPK column.
|
|
**
|
|
** 2. The table is not a view and the column name identified an
|
|
** explicitly declared column. Copy meta information from *pCol.
|
|
*/
|
|
if( pCol ){
|
|
zDataType = pCol->zType;
|
|
zCollSeq = pCol->zColl;
|
|
notnull = (pCol->notNull?1:0);
|
|
primarykey = (pCol->isPrimKey?1:0);
|
|
autoinc = ((pTab->iPKey==iCol && pTab->autoInc)?1:0);
|
|
}else{
|
|
zDataType = "INTEGER";
|
|
primarykey = 1;
|
|
}
|
|
if( !zCollSeq ){
|
|
zCollSeq = "BINARY";
|
|
}
|
|
|
|
error_out:
|
|
(void)sqlite3SafetyOff(db);
|
|
|
|
/* Whether the function call succeeded or failed, set the output parameters
|
|
** to whatever their local counterparts contain. If an error did occur,
|
|
** this has the effect of zeroing all output parameters.
|
|
*/
|
|
if( pzDataType ) *pzDataType = zDataType;
|
|
if( pzCollSeq ) *pzCollSeq = zCollSeq;
|
|
if( pNotNull ) *pNotNull = notnull;
|
|
if( pPrimaryKey ) *pPrimaryKey = primarykey;
|
|
if( pAutoinc ) *pAutoinc = autoinc;
|
|
|
|
if( SQLITE_OK==rc && !pTab ){
|
|
sqlite3SetString(&zErrMsg, "no such table column: ", zTableName, ".",
|
|
zColumnName, 0);
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg);
|
|
sqlite3_free(zErrMsg);
|
|
rc = sqlite3ApiExit(db, rc);
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Sleep for a little while. Return the amount of time slept.
|
|
*/
|
|
SQLITE_API int sqlite3_sleep(int ms){
|
|
sqlite3_vfs *pVfs;
|
|
int rc;
|
|
pVfs = sqlite3_vfs_find(0);
|
|
|
|
/* This function works in milliseconds, but the underlying OsSleep()
|
|
** API uses microseconds. Hence the 1000's.
|
|
*/
|
|
rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Enable or disable the extended result codes.
|
|
*/
|
|
SQLITE_API int sqlite3_extended_result_codes(sqlite3 *db, int onoff){
|
|
sqlite3_mutex_enter(db->mutex);
|
|
db->errMask = onoff ? 0xffffffff : 0xff;
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Invoke the xFileControl method on a particular database.
|
|
*/
|
|
SQLITE_API int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){
|
|
int rc = SQLITE_ERROR;
|
|
int iDb;
|
|
sqlite3_mutex_enter(db->mutex);
|
|
if( zDbName==0 ){
|
|
iDb = 0;
|
|
}else{
|
|
for(iDb=0; iDb<db->nDb; iDb++){
|
|
if( strcmp(db->aDb[iDb].zName, zDbName)==0 ) break;
|
|
}
|
|
}
|
|
if( iDb<db->nDb ){
|
|
Btree *pBtree = db->aDb[iDb].pBt;
|
|
if( pBtree ){
|
|
Pager *pPager;
|
|
sqlite3_file *fd;
|
|
sqlite3BtreeEnter(pBtree);
|
|
pPager = sqlite3BtreePager(pBtree);
|
|
assert( pPager!=0 );
|
|
fd = sqlite3PagerFile(pPager);
|
|
assert( fd!=0 );
|
|
if( fd->pMethods ){
|
|
rc = sqlite3OsFileControl(fd, op, pArg);
|
|
}
|
|
sqlite3BtreeLeave(pBtree);
|
|
}
|
|
}
|
|
sqlite3_mutex_leave(db->mutex);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Interface to the testing logic.
|
|
*/
|
|
SQLITE_API int sqlite3_test_control(int op, ...){
|
|
va_list ap;
|
|
int rc = 0;
|
|
va_start(ap, op);
|
|
switch( op ){
|
|
#ifndef SQLITE_OMIT_FAULTINJECTOR
|
|
case SQLITE_TESTCTRL_FAULT_CONFIG: {
|
|
int id = va_arg(ap, int);
|
|
int nDelay = va_arg(ap, int);
|
|
int nRepeat = va_arg(ap, int);
|
|
sqlite3FaultConfig(id, nDelay, nRepeat);
|
|
break;
|
|
}
|
|
case SQLITE_TESTCTRL_FAULT_FAILURES: {
|
|
int id = va_arg(ap, int);
|
|
rc = sqlite3FaultFailures(id);
|
|
break;
|
|
}
|
|
case SQLITE_TESTCTRL_FAULT_BENIGN_FAILURES: {
|
|
int id = va_arg(ap, int);
|
|
rc = sqlite3FaultBenignFailures(id);
|
|
break;
|
|
}
|
|
case SQLITE_TESTCTRL_FAULT_PENDING: {
|
|
int id = va_arg(ap, int);
|
|
rc = sqlite3FaultPending(id);
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_FAULTINJECTOR */
|
|
}
|
|
va_end(ap);
|
|
return rc;
|
|
}
|
|
|
|
/************** End of main.c ************************************************/
|
|
/************** Begin file fts3.c ********************************************/
|
|
/*
|
|
** 2006 Oct 10
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
******************************************************************************
|
|
**
|
|
** This is an SQLite module implementing full-text search.
|
|
*/
|
|
|
|
/*
|
|
** The code in this file is only compiled if:
|
|
**
|
|
** * The FTS3 module is being built as an extension
|
|
** (in which case SQLITE_CORE is not defined), or
|
|
**
|
|
** * The FTS3 module is being built into the core of
|
|
** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
|
|
*/
|
|
|
|
/* TODO(shess) Consider exporting this comment to an HTML file or the
|
|
** wiki.
|
|
*/
|
|
/* The full-text index is stored in a series of b+tree (-like)
|
|
** structures called segments which map terms to doclists. The
|
|
** structures are like b+trees in layout, but are constructed from the
|
|
** bottom up in optimal fashion and are not updatable. Since trees
|
|
** are built from the bottom up, things will be described from the
|
|
** bottom up.
|
|
**
|
|
**
|
|
**** Varints ****
|
|
** The basic unit of encoding is a variable-length integer called a
|
|
** varint. We encode variable-length integers in little-endian order
|
|
** using seven bits * per byte as follows:
|
|
**
|
|
** KEY:
|
|
** A = 0xxxxxxx 7 bits of data and one flag bit
|
|
** B = 1xxxxxxx 7 bits of data and one flag bit
|
|
**
|
|
** 7 bits - A
|
|
** 14 bits - BA
|
|
** 21 bits - BBA
|
|
** and so on.
|
|
**
|
|
** This is identical to how sqlite encodes varints (see util.c).
|
|
**
|
|
**
|
|
**** Document lists ****
|
|
** A doclist (document list) holds a docid-sorted list of hits for a
|
|
** given term. Doclists hold docids, and can optionally associate
|
|
** token positions and offsets with docids.
|
|
**
|
|
** A DL_POSITIONS_OFFSETS doclist is stored like this:
|
|
**
|
|
** array {
|
|
** varint docid;
|
|
** array { (position list for column 0)
|
|
** varint position; (delta from previous position plus POS_BASE)
|
|
** varint startOffset; (delta from previous startOffset)
|
|
** varint endOffset; (delta from startOffset)
|
|
** }
|
|
** array {
|
|
** varint POS_COLUMN; (marks start of position list for new column)
|
|
** varint column; (index of new column)
|
|
** array {
|
|
** varint position; (delta from previous position plus POS_BASE)
|
|
** varint startOffset;(delta from previous startOffset)
|
|
** varint endOffset; (delta from startOffset)
|
|
** }
|
|
** }
|
|
** varint POS_END; (marks end of positions for this document.
|
|
** }
|
|
**
|
|
** Here, array { X } means zero or more occurrences of X, adjacent in
|
|
** memory. A "position" is an index of a token in the token stream
|
|
** generated by the tokenizer, while an "offset" is a byte offset,
|
|
** both based at 0. Note that POS_END and POS_COLUMN occur in the
|
|
** same logical place as the position element, and act as sentinals
|
|
** ending a position list array.
|
|
**
|
|
** A DL_POSITIONS doclist omits the startOffset and endOffset
|
|
** information. A DL_DOCIDS doclist omits both the position and
|
|
** offset information, becoming an array of varint-encoded docids.
|
|
**
|
|
** On-disk data is stored as type DL_DEFAULT, so we don't serialize
|
|
** the type. Due to how deletion is implemented in the segmentation
|
|
** system, on-disk doclists MUST store at least positions.
|
|
**
|
|
**
|
|
**** Segment leaf nodes ****
|
|
** Segment leaf nodes store terms and doclists, ordered by term. Leaf
|
|
** nodes are written using LeafWriter, and read using LeafReader (to
|
|
** iterate through a single leaf node's data) and LeavesReader (to
|
|
** iterate through a segment's entire leaf layer). Leaf nodes have
|
|
** the format:
|
|
**
|
|
** varint iHeight; (height from leaf level, always 0)
|
|
** varint nTerm; (length of first term)
|
|
** char pTerm[nTerm]; (content of first term)
|
|
** varint nDoclist; (length of term's associated doclist)
|
|
** char pDoclist[nDoclist]; (content of doclist)
|
|
** array {
|
|
** (further terms are delta-encoded)
|
|
** varint nPrefix; (length of prefix shared with previous term)
|
|
** varint nSuffix; (length of unshared suffix)
|
|
** char pTermSuffix[nSuffix];(unshared suffix of next term)
|
|
** varint nDoclist; (length of term's associated doclist)
|
|
** char pDoclist[nDoclist]; (content of doclist)
|
|
** }
|
|
**
|
|
** Here, array { X } means zero or more occurrences of X, adjacent in
|
|
** memory.
|
|
**
|
|
** Leaf nodes are broken into blocks which are stored contiguously in
|
|
** the %_segments table in sorted order. This means that when the end
|
|
** of a node is reached, the next term is in the node with the next
|
|
** greater node id.
|
|
**
|
|
** New data is spilled to a new leaf node when the current node
|
|
** exceeds LEAF_MAX bytes (default 2048). New data which itself is
|
|
** larger than STANDALONE_MIN (default 1024) is placed in a standalone
|
|
** node (a leaf node with a single term and doclist). The goal of
|
|
** these settings is to pack together groups of small doclists while
|
|
** making it efficient to directly access large doclists. The
|
|
** assumption is that large doclists represent terms which are more
|
|
** likely to be query targets.
|
|
**
|
|
** TODO(shess) It may be useful for blocking decisions to be more
|
|
** dynamic. For instance, it may make more sense to have a 2.5k leaf
|
|
** node rather than splitting into 2k and .5k nodes. My intuition is
|
|
** that this might extend through 2x or 4x the pagesize.
|
|
**
|
|
**
|
|
**** Segment interior nodes ****
|
|
** Segment interior nodes store blockids for subtree nodes and terms
|
|
** to describe what data is stored by the each subtree. Interior
|
|
** nodes are written using InteriorWriter, and read using
|
|
** InteriorReader. InteriorWriters are created as needed when
|
|
** SegmentWriter creates new leaf nodes, or when an interior node
|
|
** itself grows too big and must be split. The format of interior
|
|
** nodes:
|
|
**
|
|
** varint iHeight; (height from leaf level, always >0)
|
|
** varint iBlockid; (block id of node's leftmost subtree)
|
|
** optional {
|
|
** varint nTerm; (length of first term)
|
|
** char pTerm[nTerm]; (content of first term)
|
|
** array {
|
|
** (further terms are delta-encoded)
|
|
** varint nPrefix; (length of shared prefix with previous term)
|
|
** varint nSuffix; (length of unshared suffix)
|
|
** char pTermSuffix[nSuffix]; (unshared suffix of next term)
|
|
** }
|
|
** }
|
|
**
|
|
** Here, optional { X } means an optional element, while array { X }
|
|
** means zero or more occurrences of X, adjacent in memory.
|
|
**
|
|
** An interior node encodes n terms separating n+1 subtrees. The
|
|
** subtree blocks are contiguous, so only the first subtree's blockid
|
|
** is encoded. The subtree at iBlockid will contain all terms less
|
|
** than the first term encoded (or all terms if no term is encoded).
|
|
** Otherwise, for terms greater than or equal to pTerm[i] but less
|
|
** than pTerm[i+1], the subtree for that term will be rooted at
|
|
** iBlockid+i. Interior nodes only store enough term data to
|
|
** distinguish adjacent children (if the rightmost term of the left
|
|
** child is "something", and the leftmost term of the right child is
|
|
** "wicked", only "w" is stored).
|
|
**
|
|
** New data is spilled to a new interior node at the same height when
|
|
** the current node exceeds INTERIOR_MAX bytes (default 2048).
|
|
** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
|
|
** interior nodes and making the tree too skinny. The interior nodes
|
|
** at a given height are naturally tracked by interior nodes at
|
|
** height+1, and so on.
|
|
**
|
|
**
|
|
**** Segment directory ****
|
|
** The segment directory in table %_segdir stores meta-information for
|
|
** merging and deleting segments, and also the root node of the
|
|
** segment's tree.
|
|
**
|
|
** The root node is the top node of the segment's tree after encoding
|
|
** the entire segment, restricted to ROOT_MAX bytes (default 1024).
|
|
** This could be either a leaf node or an interior node. If the top
|
|
** node requires more than ROOT_MAX bytes, it is flushed to %_segments
|
|
** and a new root interior node is generated (which should always fit
|
|
** within ROOT_MAX because it only needs space for 2 varints, the
|
|
** height and the blockid of the previous root).
|
|
**
|
|
** The meta-information in the segment directory is:
|
|
** level - segment level (see below)
|
|
** idx - index within level
|
|
** - (level,idx uniquely identify a segment)
|
|
** start_block - first leaf node
|
|
** leaves_end_block - last leaf node
|
|
** end_block - last block (including interior nodes)
|
|
** root - contents of root node
|
|
**
|
|
** If the root node is a leaf node, then start_block,
|
|
** leaves_end_block, and end_block are all 0.
|
|
**
|
|
**
|
|
**** Segment merging ****
|
|
** To amortize update costs, segments are groups into levels and
|
|
** merged in matches. Each increase in level represents exponentially
|
|
** more documents.
|
|
**
|
|
** New documents (actually, document updates) are tokenized and
|
|
** written individually (using LeafWriter) to a level 0 segment, with
|
|
** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
|
|
** level 0 segments are merged into a single level 1 segment. Level 1
|
|
** is populated like level 0, and eventually MERGE_COUNT level 1
|
|
** segments are merged to a single level 2 segment (representing
|
|
** MERGE_COUNT^2 updates), and so on.
|
|
**
|
|
** A segment merge traverses all segments at a given level in
|
|
** parallel, performing a straightforward sorted merge. Since segment
|
|
** leaf nodes are written in to the %_segments table in order, this
|
|
** merge traverses the underlying sqlite disk structures efficiently.
|
|
** After the merge, all segment blocks from the merged level are
|
|
** deleted.
|
|
**
|
|
** MERGE_COUNT controls how often we merge segments. 16 seems to be
|
|
** somewhat of a sweet spot for insertion performance. 32 and 64 show
|
|
** very similar performance numbers to 16 on insertion, though they're
|
|
** a tiny bit slower (perhaps due to more overhead in merge-time
|
|
** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
|
|
** 16, 2 about 66% slower than 16.
|
|
**
|
|
** At query time, high MERGE_COUNT increases the number of segments
|
|
** which need to be scanned and merged. For instance, with 100k docs
|
|
** inserted:
|
|
**
|
|
** MERGE_COUNT segments
|
|
** 16 25
|
|
** 8 12
|
|
** 4 10
|
|
** 2 6
|
|
**
|
|
** This appears to have only a moderate impact on queries for very
|
|
** frequent terms (which are somewhat dominated by segment merge
|
|
** costs), and infrequent and non-existent terms still seem to be fast
|
|
** even with many segments.
|
|
**
|
|
** TODO(shess) That said, it would be nice to have a better query-side
|
|
** argument for MERGE_COUNT of 16. Also, it is possible/likely that
|
|
** optimizations to things like doclist merging will swing the sweet
|
|
** spot around.
|
|
**
|
|
**
|
|
**
|
|
**** Handling of deletions and updates ****
|
|
** Since we're using a segmented structure, with no docid-oriented
|
|
** index into the term index, we clearly cannot simply update the term
|
|
** index when a document is deleted or updated. For deletions, we
|
|
** write an empty doclist (varint(docid) varint(POS_END)), for updates
|
|
** we simply write the new doclist. Segment merges overwrite older
|
|
** data for a particular docid with newer data, so deletes or updates
|
|
** will eventually overtake the earlier data and knock it out. The
|
|
** query logic likewise merges doclists so that newer data knocks out
|
|
** older data.
|
|
**
|
|
** TODO(shess) Provide a VACUUM type operation to clear out all
|
|
** deletions and duplications. This would basically be a forced merge
|
|
** into a single segment.
|
|
*/
|
|
|
|
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
|
|
|
|
#if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
|
|
# define SQLITE_CORE 1
|
|
#endif
|
|
|
|
|
|
/************** Include fts3_hash.h in the middle of fts3.c ******************/
|
|
/************** Begin file fts3_hash.h ***************************************/
|
|
/*
|
|
** 2001 September 22
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This is the header file for the generic hash-table implemenation
|
|
** used in SQLite. We've modified it slightly to serve as a standalone
|
|
** hash table implementation for the full-text indexing module.
|
|
**
|
|
*/
|
|
#ifndef _FTS3_HASH_H_
|
|
#define _FTS3_HASH_H_
|
|
|
|
/* Forward declarations of structures. */
|
|
typedef struct fts3Hash fts3Hash;
|
|
typedef struct fts3HashElem fts3HashElem;
|
|
|
|
/* A complete hash table is an instance of the following structure.
|
|
** The internals of this structure are intended to be opaque -- client
|
|
** code should not attempt to access or modify the fields of this structure
|
|
** directly. Change this structure only by using the routines below.
|
|
** However, many of the "procedures" and "functions" for modifying and
|
|
** accessing this structure are really macros, so we can't really make
|
|
** this structure opaque.
|
|
*/
|
|
struct fts3Hash {
|
|
char keyClass; /* HASH_INT, _POINTER, _STRING, _BINARY */
|
|
char copyKey; /* True if copy of key made on insert */
|
|
int count; /* Number of entries in this table */
|
|
fts3HashElem *first; /* The first element of the array */
|
|
int htsize; /* Number of buckets in the hash table */
|
|
struct _fts3ht { /* the hash table */
|
|
int count; /* Number of entries with this hash */
|
|
fts3HashElem *chain; /* Pointer to first entry with this hash */
|
|
} *ht;
|
|
};
|
|
|
|
/* Each element in the hash table is an instance of the following
|
|
** structure. All elements are stored on a single doubly-linked list.
|
|
**
|
|
** Again, this structure is intended to be opaque, but it can't really
|
|
** be opaque because it is used by macros.
|
|
*/
|
|
struct fts3HashElem {
|
|
fts3HashElem *next, *prev; /* Next and previous elements in the table */
|
|
void *data; /* Data associated with this element */
|
|
void *pKey; int nKey; /* Key associated with this element */
|
|
};
|
|
|
|
/*
|
|
** There are 2 different modes of operation for a hash table:
|
|
**
|
|
** FTS3_HASH_STRING pKey points to a string that is nKey bytes long
|
|
** (including the null-terminator, if any). Case
|
|
** is respected in comparisons.
|
|
**
|
|
** FTS3_HASH_BINARY pKey points to binary data nKey bytes long.
|
|
** memcmp() is used to compare keys.
|
|
**
|
|
** A copy of the key is made if the copyKey parameter to fts3HashInit is 1.
|
|
*/
|
|
#define FTS3_HASH_STRING 1
|
|
#define FTS3_HASH_BINARY 2
|
|
|
|
/*
|
|
** Access routines. To delete, insert a NULL pointer.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3Fts3HashInit(fts3Hash*, int keytype, int copyKey);
|
|
SQLITE_PRIVATE void *sqlite3Fts3HashInsert(fts3Hash*, const void *pKey, int nKey, void *pData);
|
|
SQLITE_PRIVATE void *sqlite3Fts3HashFind(const fts3Hash*, const void *pKey, int nKey);
|
|
SQLITE_PRIVATE void sqlite3Fts3HashClear(fts3Hash*);
|
|
|
|
/*
|
|
** Shorthand for the functions above
|
|
*/
|
|
#define fts3HashInit sqlite3Fts3HashInit
|
|
#define fts3HashInsert sqlite3Fts3HashInsert
|
|
#define fts3HashFind sqlite3Fts3HashFind
|
|
#define fts3HashClear sqlite3Fts3HashClear
|
|
|
|
/*
|
|
** Macros for looping over all elements of a hash table. The idiom is
|
|
** like this:
|
|
**
|
|
** fts3Hash h;
|
|
** fts3HashElem *p;
|
|
** ...
|
|
** for(p=fts3HashFirst(&h); p; p=fts3HashNext(p)){
|
|
** SomeStructure *pData = fts3HashData(p);
|
|
** // do something with pData
|
|
** }
|
|
*/
|
|
#define fts3HashFirst(H) ((H)->first)
|
|
#define fts3HashNext(E) ((E)->next)
|
|
#define fts3HashData(E) ((E)->data)
|
|
#define fts3HashKey(E) ((E)->pKey)
|
|
#define fts3HashKeysize(E) ((E)->nKey)
|
|
|
|
/*
|
|
** Number of entries in a hash table
|
|
*/
|
|
#define fts3HashCount(H) ((H)->count)
|
|
|
|
#endif /* _FTS3_HASH_H_ */
|
|
|
|
/************** End of fts3_hash.h *******************************************/
|
|
/************** Continuing where we left off in fts3.c ***********************/
|
|
/************** Include fts3_tokenizer.h in the middle of fts3.c *************/
|
|
/************** Begin file fts3_tokenizer.h **********************************/
|
|
/*
|
|
** 2006 July 10
|
|
**
|
|
** The author disclaims copyright to this source code.
|
|
**
|
|
*************************************************************************
|
|
** Defines the interface to tokenizers used by fulltext-search. There
|
|
** are three basic components:
|
|
**
|
|
** sqlite3_tokenizer_module is a singleton defining the tokenizer
|
|
** interface functions. This is essentially the class structure for
|
|
** tokenizers.
|
|
**
|
|
** sqlite3_tokenizer is used to define a particular tokenizer, perhaps
|
|
** including customization information defined at creation time.
|
|
**
|
|
** sqlite3_tokenizer_cursor is generated by a tokenizer to generate
|
|
** tokens from a particular input.
|
|
*/
|
|
#ifndef _FTS3_TOKENIZER_H_
|
|
#define _FTS3_TOKENIZER_H_
|
|
|
|
/* TODO(shess) Only used for SQLITE_OK and SQLITE_DONE at this time.
|
|
** If tokenizers are to be allowed to call sqlite3_*() functions, then
|
|
** we will need a way to register the API consistently.
|
|
*/
|
|
|
|
/*
|
|
** Structures used by the tokenizer interface. When a new tokenizer
|
|
** implementation is registered, the caller provides a pointer to
|
|
** an sqlite3_tokenizer_module containing pointers to the callback
|
|
** functions that make up an implementation.
|
|
**
|
|
** When an fts3 table is created, it passes any arguments passed to
|
|
** the tokenizer clause of the CREATE VIRTUAL TABLE statement to the
|
|
** sqlite3_tokenizer_module.xCreate() function of the requested tokenizer
|
|
** implementation. The xCreate() function in turn returns an
|
|
** sqlite3_tokenizer structure representing the specific tokenizer to
|
|
** be used for the fts3 table (customized by the tokenizer clause arguments).
|
|
**
|
|
** To tokenize an input buffer, the sqlite3_tokenizer_module.xOpen()
|
|
** method is called. It returns an sqlite3_tokenizer_cursor object
|
|
** that may be used to tokenize a specific input buffer based on
|
|
** the tokenization rules supplied by a specific sqlite3_tokenizer
|
|
** object.
|
|
*/
|
|
typedef struct sqlite3_tokenizer_module sqlite3_tokenizer_module;
|
|
typedef struct sqlite3_tokenizer sqlite3_tokenizer;
|
|
typedef struct sqlite3_tokenizer_cursor sqlite3_tokenizer_cursor;
|
|
|
|
struct sqlite3_tokenizer_module {
|
|
|
|
/*
|
|
** Structure version. Should always be set to 0.
|
|
*/
|
|
int iVersion;
|
|
|
|
/*
|
|
** Create a new tokenizer. The values in the argv[] array are the
|
|
** arguments passed to the "tokenizer" clause of the CREATE VIRTUAL
|
|
** TABLE statement that created the fts3 table. For example, if
|
|
** the following SQL is executed:
|
|
**
|
|
** CREATE .. USING fts3( ... , tokenizer <tokenizer-name> arg1 arg2)
|
|
**
|
|
** then argc is set to 2, and the argv[] array contains pointers
|
|
** to the strings "arg1" and "arg2".
|
|
**
|
|
** This method should return either SQLITE_OK (0), or an SQLite error
|
|
** code. If SQLITE_OK is returned, then *ppTokenizer should be set
|
|
** to point at the newly created tokenizer structure. The generic
|
|
** sqlite3_tokenizer.pModule variable should not be initialised by
|
|
** this callback. The caller will do so.
|
|
*/
|
|
int (*xCreate)(
|
|
int argc, /* Size of argv array */
|
|
const char *const*argv, /* Tokenizer argument strings */
|
|
sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */
|
|
);
|
|
|
|
/*
|
|
** Destroy an existing tokenizer. The fts3 module calls this method
|
|
** exactly once for each successful call to xCreate().
|
|
*/
|
|
int (*xDestroy)(sqlite3_tokenizer *pTokenizer);
|
|
|
|
/*
|
|
** Create a tokenizer cursor to tokenize an input buffer. The caller
|
|
** is responsible for ensuring that the input buffer remains valid
|
|
** until the cursor is closed (using the xClose() method).
|
|
*/
|
|
int (*xOpen)(
|
|
sqlite3_tokenizer *pTokenizer, /* Tokenizer object */
|
|
const char *pInput, int nBytes, /* Input buffer */
|
|
sqlite3_tokenizer_cursor **ppCursor /* OUT: Created tokenizer cursor */
|
|
);
|
|
|
|
/*
|
|
** Destroy an existing tokenizer cursor. The fts3 module calls this
|
|
** method exactly once for each successful call to xOpen().
|
|
*/
|
|
int (*xClose)(sqlite3_tokenizer_cursor *pCursor);
|
|
|
|
/*
|
|
** Retrieve the next token from the tokenizer cursor pCursor. This
|
|
** method should either return SQLITE_OK and set the values of the
|
|
** "OUT" variables identified below, or SQLITE_DONE to indicate that
|
|
** the end of the buffer has been reached, or an SQLite error code.
|
|
**
|
|
** *ppToken should be set to point at a buffer containing the
|
|
** normalized version of the token (i.e. after any case-folding and/or
|
|
** stemming has been performed). *pnBytes should be set to the length
|
|
** of this buffer in bytes. The input text that generated the token is
|
|
** identified by the byte offsets returned in *piStartOffset and
|
|
** *piEndOffset.
|
|
**
|
|
** The buffer *ppToken is set to point at is managed by the tokenizer
|
|
** implementation. It is only required to be valid until the next call
|
|
** to xNext() or xClose().
|
|
*/
|
|
/* TODO(shess) current implementation requires pInput to be
|
|
** nul-terminated. This should either be fixed, or pInput/nBytes
|
|
** should be converted to zInput.
|
|
*/
|
|
int (*xNext)(
|
|
sqlite3_tokenizer_cursor *pCursor, /* Tokenizer cursor */
|
|
const char **ppToken, int *pnBytes, /* OUT: Normalized text for token */
|
|
int *piStartOffset, /* OUT: Byte offset of token in input buffer */
|
|
int *piEndOffset, /* OUT: Byte offset of end of token in input buffer */
|
|
int *piPosition /* OUT: Number of tokens returned before this one */
|
|
);
|
|
};
|
|
|
|
struct sqlite3_tokenizer {
|
|
const sqlite3_tokenizer_module *pModule; /* The module for this tokenizer */
|
|
/* Tokenizer implementations will typically add additional fields */
|
|
};
|
|
|
|
struct sqlite3_tokenizer_cursor {
|
|
sqlite3_tokenizer *pTokenizer; /* Tokenizer for this cursor. */
|
|
/* Tokenizer implementations will typically add additional fields */
|
|
};
|
|
|
|
#endif /* _FTS3_TOKENIZER_H_ */
|
|
|
|
/************** End of fts3_tokenizer.h **************************************/
|
|
/************** Continuing where we left off in fts3.c ***********************/
|
|
#ifndef SQLITE_CORE
|
|
#include "sqlite3ext.h"
|
|
SQLITE_EXTENSION_INIT1
|
|
#endif
|
|
|
|
|
|
/* TODO(shess) MAN, this thing needs some refactoring. At minimum, it
|
|
** would be nice to order the file better, perhaps something along the
|
|
** lines of:
|
|
**
|
|
** - utility functions
|
|
** - table setup functions
|
|
** - table update functions
|
|
** - table query functions
|
|
**
|
|
** Put the query functions last because they're likely to reference
|
|
** typedefs or functions from the table update section.
|
|
*/
|
|
|
|
#if 0
|
|
# define FTSTRACE(A) printf A; fflush(stdout)
|
|
#else
|
|
# define FTSTRACE(A)
|
|
#endif
|
|
|
|
/*
|
|
** Default span for NEAR operators.
|
|
*/
|
|
#define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10
|
|
|
|
/* It is not safe to call isspace(), tolower(), or isalnum() on
|
|
** hi-bit-set characters. This is the same solution used in the
|
|
** tokenizer.
|
|
*/
|
|
/* TODO(shess) The snippet-generation code should be using the
|
|
** tokenizer-generated tokens rather than doing its own local
|
|
** tokenization.
|
|
*/
|
|
/* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */
|
|
static int safe_isspace(char c){
|
|
return (c&0x80)==0 ? isspace(c) : 0;
|
|
}
|
|
static int safe_tolower(char c){
|
|
return (c&0x80)==0 ? tolower(c) : c;
|
|
}
|
|
static int safe_isalnum(char c){
|
|
return (c&0x80)==0 ? isalnum(c) : 0;
|
|
}
|
|
|
|
typedef enum DocListType {
|
|
DL_DOCIDS, /* docids only */
|
|
DL_POSITIONS, /* docids + positions */
|
|
DL_POSITIONS_OFFSETS /* docids + positions + offsets */
|
|
} DocListType;
|
|
|
|
/*
|
|
** By default, only positions and not offsets are stored in the doclists.
|
|
** To change this so that offsets are stored too, compile with
|
|
**
|
|
** -DDL_DEFAULT=DL_POSITIONS_OFFSETS
|
|
**
|
|
** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted
|
|
** into (no deletes or updates).
|
|
*/
|
|
#ifndef DL_DEFAULT
|
|
# define DL_DEFAULT DL_POSITIONS
|
|
#endif
|
|
|
|
enum {
|
|
POS_END = 0, /* end of this position list */
|
|
POS_COLUMN, /* followed by new column number */
|
|
POS_BASE
|
|
};
|
|
|
|
/* MERGE_COUNT controls how often we merge segments (see comment at
|
|
** top of file).
|
|
*/
|
|
#define MERGE_COUNT 16
|
|
|
|
/* utility functions */
|
|
|
|
/* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single
|
|
** record to prevent errors of the form:
|
|
**
|
|
** my_function(SomeType *b){
|
|
** memset(b, '\0', sizeof(b)); // sizeof(b)!=sizeof(*b)
|
|
** }
|
|
*/
|
|
/* TODO(shess) Obvious candidates for a header file. */
|
|
#define CLEAR(b) memset(b, '\0', sizeof(*(b)))
|
|
|
|
#ifndef NDEBUG
|
|
# define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b)))
|
|
#else
|
|
# define SCRAMBLE(b)
|
|
#endif
|
|
|
|
/* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */
|
|
#define VARINT_MAX 10
|
|
|
|
/* Write a 64-bit variable-length integer to memory starting at p[0].
|
|
* The length of data written will be between 1 and VARINT_MAX bytes.
|
|
* The number of bytes written is returned. */
|
|
static int fts3PutVarint(char *p, sqlite_int64 v){
|
|
unsigned char *q = (unsigned char *) p;
|
|
sqlite_uint64 vu = v;
|
|
do{
|
|
*q++ = (unsigned char) ((vu & 0x7f) | 0x80);
|
|
vu >>= 7;
|
|
}while( vu!=0 );
|
|
q[-1] &= 0x7f; /* turn off high bit in final byte */
|
|
assert( q - (unsigned char *)p <= VARINT_MAX );
|
|
return (int) (q - (unsigned char *)p);
|
|
}
|
|
|
|
/* Read a 64-bit variable-length integer from memory starting at p[0].
|
|
* Return the number of bytes read, or 0 on error.
|
|
* The value is stored in *v. */
|
|
static int fts3GetVarint(const char *p, sqlite_int64 *v){
|
|
const unsigned char *q = (const unsigned char *) p;
|
|
sqlite_uint64 x = 0, y = 1;
|
|
while( (*q & 0x80) == 0x80 ){
|
|
x += y * (*q++ & 0x7f);
|
|
y <<= 7;
|
|
if( q - (unsigned char *)p >= VARINT_MAX ){ /* bad data */
|
|
assert( 0 );
|
|
return 0;
|
|
}
|
|
}
|
|
x += y * (*q++);
|
|
*v = (sqlite_int64) x;
|
|
return (int) (q - (unsigned char *)p);
|
|
}
|
|
|
|
static int fts3GetVarint32(const char *p, int *pi){
|
|
sqlite_int64 i;
|
|
int ret = fts3GetVarint(p, &i);
|
|
*pi = (int) i;
|
|
assert( *pi==i );
|
|
return ret;
|
|
}
|
|
|
|
/*******************************************************************/
|
|
/* DataBuffer is used to collect data into a buffer in piecemeal
|
|
** fashion. It implements the usual distinction between amount of
|
|
** data currently stored (nData) and buffer capacity (nCapacity).
|
|
**
|
|
** dataBufferInit - create a buffer with given initial capacity.
|
|
** dataBufferReset - forget buffer's data, retaining capacity.
|
|
** dataBufferDestroy - free buffer's data.
|
|
** dataBufferSwap - swap contents of two buffers.
|
|
** dataBufferExpand - expand capacity without adding data.
|
|
** dataBufferAppend - append data.
|
|
** dataBufferAppend2 - append two pieces of data at once.
|
|
** dataBufferReplace - replace buffer's data.
|
|
*/
|
|
typedef struct DataBuffer {
|
|
char *pData; /* Pointer to malloc'ed buffer. */
|
|
int nCapacity; /* Size of pData buffer. */
|
|
int nData; /* End of data loaded into pData. */
|
|
} DataBuffer;
|
|
|
|
static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){
|
|
assert( nCapacity>=0 );
|
|
pBuffer->nData = 0;
|
|
pBuffer->nCapacity = nCapacity;
|
|
pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity);
|
|
}
|
|
static void dataBufferReset(DataBuffer *pBuffer){
|
|
pBuffer->nData = 0;
|
|
}
|
|
static void dataBufferDestroy(DataBuffer *pBuffer){
|
|
if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData);
|
|
SCRAMBLE(pBuffer);
|
|
}
|
|
static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){
|
|
DataBuffer tmp = *pBuffer1;
|
|
*pBuffer1 = *pBuffer2;
|
|
*pBuffer2 = tmp;
|
|
}
|
|
static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){
|
|
assert( nAddCapacity>0 );
|
|
/* TODO(shess) Consider expanding more aggressively. Note that the
|
|
** underlying malloc implementation may take care of such things for
|
|
** us already.
|
|
*/
|
|
if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){
|
|
pBuffer->nCapacity = pBuffer->nData+nAddCapacity;
|
|
pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity);
|
|
}
|
|
}
|
|
static void dataBufferAppend(DataBuffer *pBuffer,
|
|
const char *pSource, int nSource){
|
|
assert( nSource>0 && pSource!=NULL );
|
|
dataBufferExpand(pBuffer, nSource);
|
|
memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource);
|
|
pBuffer->nData += nSource;
|
|
}
|
|
static void dataBufferAppend2(DataBuffer *pBuffer,
|
|
const char *pSource1, int nSource1,
|
|
const char *pSource2, int nSource2){
|
|
assert( nSource1>0 && pSource1!=NULL );
|
|
assert( nSource2>0 && pSource2!=NULL );
|
|
dataBufferExpand(pBuffer, nSource1+nSource2);
|
|
memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1);
|
|
memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2);
|
|
pBuffer->nData += nSource1+nSource2;
|
|
}
|
|
static void dataBufferReplace(DataBuffer *pBuffer,
|
|
const char *pSource, int nSource){
|
|
dataBufferReset(pBuffer);
|
|
dataBufferAppend(pBuffer, pSource, nSource);
|
|
}
|
|
|
|
/* StringBuffer is a null-terminated version of DataBuffer. */
|
|
typedef struct StringBuffer {
|
|
DataBuffer b; /* Includes null terminator. */
|
|
} StringBuffer;
|
|
|
|
static void initStringBuffer(StringBuffer *sb){
|
|
dataBufferInit(&sb->b, 100);
|
|
dataBufferReplace(&sb->b, "", 1);
|
|
}
|
|
static int stringBufferLength(StringBuffer *sb){
|
|
return sb->b.nData-1;
|
|
}
|
|
static char *stringBufferData(StringBuffer *sb){
|
|
return sb->b.pData;
|
|
}
|
|
static void stringBufferDestroy(StringBuffer *sb){
|
|
dataBufferDestroy(&sb->b);
|
|
}
|
|
|
|
static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){
|
|
assert( sb->b.nData>0 );
|
|
if( nFrom>0 ){
|
|
sb->b.nData--;
|
|
dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1);
|
|
}
|
|
}
|
|
static void append(StringBuffer *sb, const char *zFrom){
|
|
nappend(sb, zFrom, strlen(zFrom));
|
|
}
|
|
|
|
/* Append a list of strings separated by commas. */
|
|
static void appendList(StringBuffer *sb, int nString, char **azString){
|
|
int i;
|
|
for(i=0; i<nString; ++i){
|
|
if( i>0 ) append(sb, ", ");
|
|
append(sb, azString[i]);
|
|
}
|
|
}
|
|
|
|
static int endsInWhiteSpace(StringBuffer *p){
|
|
return stringBufferLength(p)>0 &&
|
|
safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]);
|
|
}
|
|
|
|
/* If the StringBuffer ends in something other than white space, add a
|
|
** single space character to the end.
|
|
*/
|
|
static void appendWhiteSpace(StringBuffer *p){
|
|
if( stringBufferLength(p)==0 ) return;
|
|
if( !endsInWhiteSpace(p) ) append(p, " ");
|
|
}
|
|
|
|
/* Remove white space from the end of the StringBuffer */
|
|
static void trimWhiteSpace(StringBuffer *p){
|
|
while( endsInWhiteSpace(p) ){
|
|
p->b.pData[--p->b.nData-1] = '\0';
|
|
}
|
|
}
|
|
|
|
/*******************************************************************/
|
|
/* DLReader is used to read document elements from a doclist. The
|
|
** current docid is cached, so dlrDocid() is fast. DLReader does not
|
|
** own the doclist buffer.
|
|
**
|
|
** dlrAtEnd - true if there's no more data to read.
|
|
** dlrDocid - docid of current document.
|
|
** dlrDocData - doclist data for current document (including docid).
|
|
** dlrDocDataBytes - length of same.
|
|
** dlrAllDataBytes - length of all remaining data.
|
|
** dlrPosData - position data for current document.
|
|
** dlrPosDataLen - length of pos data for current document (incl POS_END).
|
|
** dlrStep - step to current document.
|
|
** dlrInit - initial for doclist of given type against given data.
|
|
** dlrDestroy - clean up.
|
|
**
|
|
** Expected usage is something like:
|
|
**
|
|
** DLReader reader;
|
|
** dlrInit(&reader, pData, nData);
|
|
** while( !dlrAtEnd(&reader) ){
|
|
** // calls to dlrDocid() and kin.
|
|
** dlrStep(&reader);
|
|
** }
|
|
** dlrDestroy(&reader);
|
|
*/
|
|
typedef struct DLReader {
|
|
DocListType iType;
|
|
const char *pData;
|
|
int nData;
|
|
|
|
sqlite_int64 iDocid;
|
|
int nElement;
|
|
} DLReader;
|
|
|
|
static int dlrAtEnd(DLReader *pReader){
|
|
assert( pReader->nData>=0 );
|
|
return pReader->nData==0;
|
|
}
|
|
static sqlite_int64 dlrDocid(DLReader *pReader){
|
|
assert( !dlrAtEnd(pReader) );
|
|
return pReader->iDocid;
|
|
}
|
|
static const char *dlrDocData(DLReader *pReader){
|
|
assert( !dlrAtEnd(pReader) );
|
|
return pReader->pData;
|
|
}
|
|
static int dlrDocDataBytes(DLReader *pReader){
|
|
assert( !dlrAtEnd(pReader) );
|
|
return pReader->nElement;
|
|
}
|
|
static int dlrAllDataBytes(DLReader *pReader){
|
|
assert( !dlrAtEnd(pReader) );
|
|
return pReader->nData;
|
|
}
|
|
/* TODO(shess) Consider adding a field to track iDocid varint length
|
|
** to make these two functions faster. This might matter (a tiny bit)
|
|
** for queries.
|
|
*/
|
|
static const char *dlrPosData(DLReader *pReader){
|
|
sqlite_int64 iDummy;
|
|
int n = fts3GetVarint(pReader->pData, &iDummy);
|
|
assert( !dlrAtEnd(pReader) );
|
|
return pReader->pData+n;
|
|
}
|
|
static int dlrPosDataLen(DLReader *pReader){
|
|
sqlite_int64 iDummy;
|
|
int n = fts3GetVarint(pReader->pData, &iDummy);
|
|
assert( !dlrAtEnd(pReader) );
|
|
return pReader->nElement-n;
|
|
}
|
|
static void dlrStep(DLReader *pReader){
|
|
assert( !dlrAtEnd(pReader) );
|
|
|
|
/* Skip past current doclist element. */
|
|
assert( pReader->nElement<=pReader->nData );
|
|
pReader->pData += pReader->nElement;
|
|
pReader->nData -= pReader->nElement;
|
|
|
|
/* If there is more data, read the next doclist element. */
|
|
if( pReader->nData!=0 ){
|
|
sqlite_int64 iDocidDelta;
|
|
int iDummy, n = fts3GetVarint(pReader->pData, &iDocidDelta);
|
|
pReader->iDocid += iDocidDelta;
|
|
if( pReader->iType>=DL_POSITIONS ){
|
|
assert( n<pReader->nData );
|
|
while( 1 ){
|
|
n += fts3GetVarint32(pReader->pData+n, &iDummy);
|
|
assert( n<=pReader->nData );
|
|
if( iDummy==POS_END ) break;
|
|
if( iDummy==POS_COLUMN ){
|
|
n += fts3GetVarint32(pReader->pData+n, &iDummy);
|
|
assert( n<pReader->nData );
|
|
}else if( pReader->iType==DL_POSITIONS_OFFSETS ){
|
|
n += fts3GetVarint32(pReader->pData+n, &iDummy);
|
|
n += fts3GetVarint32(pReader->pData+n, &iDummy);
|
|
assert( n<pReader->nData );
|
|
}
|
|
}
|
|
}
|
|
pReader->nElement = n;
|
|
assert( pReader->nElement<=pReader->nData );
|
|
}
|
|
}
|
|
static void dlrInit(DLReader *pReader, DocListType iType,
|
|
const char *pData, int nData){
|
|
assert( pData!=NULL && nData!=0 );
|
|
pReader->iType = iType;
|
|
pReader->pData = pData;
|
|
pReader->nData = nData;
|
|
pReader->nElement = 0;
|
|
pReader->iDocid = 0;
|
|
|
|
/* Load the first element's data. There must be a first element. */
|
|
dlrStep(pReader);
|
|
}
|
|
static void dlrDestroy(DLReader *pReader){
|
|
SCRAMBLE(pReader);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/* Verify that the doclist can be validly decoded. Also returns the
|
|
** last docid found because it is convenient in other assertions for
|
|
** DLWriter.
|
|
*/
|
|
static void docListValidate(DocListType iType, const char *pData, int nData,
|
|
sqlite_int64 *pLastDocid){
|
|
sqlite_int64 iPrevDocid = 0;
|
|
assert( nData>0 );
|
|
assert( pData!=0 );
|
|
assert( pData+nData>pData );
|
|
while( nData!=0 ){
|
|
sqlite_int64 iDocidDelta;
|
|
int n = fts3GetVarint(pData, &iDocidDelta);
|
|
iPrevDocid += iDocidDelta;
|
|
if( iType>DL_DOCIDS ){
|
|
int iDummy;
|
|
while( 1 ){
|
|
n += fts3GetVarint32(pData+n, &iDummy);
|
|
if( iDummy==POS_END ) break;
|
|
if( iDummy==POS_COLUMN ){
|
|
n += fts3GetVarint32(pData+n, &iDummy);
|
|
}else if( iType>DL_POSITIONS ){
|
|
n += fts3GetVarint32(pData+n, &iDummy);
|
|
n += fts3GetVarint32(pData+n, &iDummy);
|
|
}
|
|
assert( n<=nData );
|
|
}
|
|
}
|
|
assert( n<=nData );
|
|
pData += n;
|
|
nData -= n;
|
|
}
|
|
if( pLastDocid ) *pLastDocid = iPrevDocid;
|
|
}
|
|
#define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o)
|
|
#else
|
|
#define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 )
|
|
#endif
|
|
|
|
/*******************************************************************/
|
|
/* DLWriter is used to write doclist data to a DataBuffer. DLWriter
|
|
** always appends to the buffer and does not own it.
|
|
**
|
|
** dlwInit - initialize to write a given type doclistto a buffer.
|
|
** dlwDestroy - clear the writer's memory. Does not free buffer.
|
|
** dlwAppend - append raw doclist data to buffer.
|
|
** dlwCopy - copy next doclist from reader to writer.
|
|
** dlwAdd - construct doclist element and append to buffer.
|
|
** Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter).
|
|
*/
|
|
typedef struct DLWriter {
|
|
DocListType iType;
|
|
DataBuffer *b;
|
|
sqlite_int64 iPrevDocid;
|
|
#ifndef NDEBUG
|
|
int has_iPrevDocid;
|
|
#endif
|
|
} DLWriter;
|
|
|
|
static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){
|
|
pWriter->b = b;
|
|
pWriter->iType = iType;
|
|
pWriter->iPrevDocid = 0;
|
|
#ifndef NDEBUG
|
|
pWriter->has_iPrevDocid = 0;
|
|
#endif
|
|
}
|
|
static void dlwDestroy(DLWriter *pWriter){
|
|
SCRAMBLE(pWriter);
|
|
}
|
|
/* iFirstDocid is the first docid in the doclist in pData. It is
|
|
** needed because pData may point within a larger doclist, in which
|
|
** case the first item would be delta-encoded.
|
|
**
|
|
** iLastDocid is the final docid in the doclist in pData. It is
|
|
** needed to create the new iPrevDocid for future delta-encoding. The
|
|
** code could decode the passed doclist to recreate iLastDocid, but
|
|
** the only current user (docListMerge) already has decoded this
|
|
** information.
|
|
*/
|
|
/* TODO(shess) This has become just a helper for docListMerge.
|
|
** Consider a refactor to make this cleaner.
|
|
*/
|
|
static void dlwAppend(DLWriter *pWriter,
|
|
const char *pData, int nData,
|
|
sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){
|
|
sqlite_int64 iDocid = 0;
|
|
char c[VARINT_MAX];
|
|
int nFirstOld, nFirstNew; /* Old and new varint len of first docid. */
|
|
#ifndef NDEBUG
|
|
sqlite_int64 iLastDocidDelta;
|
|
#endif
|
|
|
|
/* Recode the initial docid as delta from iPrevDocid. */
|
|
nFirstOld = fts3GetVarint(pData, &iDocid);
|
|
assert( nFirstOld<nData || (nFirstOld==nData && pWriter->iType==DL_DOCIDS) );
|
|
nFirstNew = fts3PutVarint(c, iFirstDocid-pWriter->iPrevDocid);
|
|
|
|
/* Verify that the incoming doclist is valid AND that it ends with
|
|
** the expected docid. This is essential because we'll trust this
|
|
** docid in future delta-encoding.
|
|
*/
|
|
ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta);
|
|
assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta );
|
|
|
|
/* Append recoded initial docid and everything else. Rest of docids
|
|
** should have been delta-encoded from previous initial docid.
|
|
*/
|
|
if( nFirstOld<nData ){
|
|
dataBufferAppend2(pWriter->b, c, nFirstNew,
|
|
pData+nFirstOld, nData-nFirstOld);
|
|
}else{
|
|
dataBufferAppend(pWriter->b, c, nFirstNew);
|
|
}
|
|
pWriter->iPrevDocid = iLastDocid;
|
|
}
|
|
static void dlwCopy(DLWriter *pWriter, DLReader *pReader){
|
|
dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader),
|
|
dlrDocid(pReader), dlrDocid(pReader));
|
|
}
|
|
static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){
|
|
char c[VARINT_MAX];
|
|
int n = fts3PutVarint(c, iDocid-pWriter->iPrevDocid);
|
|
|
|
/* Docids must ascend. */
|
|
assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid );
|
|
assert( pWriter->iType==DL_DOCIDS );
|
|
|
|
dataBufferAppend(pWriter->b, c, n);
|
|
pWriter->iPrevDocid = iDocid;
|
|
#ifndef NDEBUG
|
|
pWriter->has_iPrevDocid = 1;
|
|
#endif
|
|
}
|
|
|
|
/*******************************************************************/
|
|
/* PLReader is used to read data from a document's position list. As
|
|
** the caller steps through the list, data is cached so that varints
|
|
** only need to be decoded once.
|
|
**
|
|
** plrInit, plrDestroy - create/destroy a reader.
|
|
** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors
|
|
** plrAtEnd - at end of stream, only call plrDestroy once true.
|
|
** plrStep - step to the next element.
|
|
*/
|
|
typedef struct PLReader {
|
|
/* These refer to the next position's data. nData will reach 0 when
|
|
** reading the last position, so plrStep() signals EOF by setting
|
|
** pData to NULL.
|
|
*/
|
|
const char *pData;
|
|
int nData;
|
|
|
|
DocListType iType;
|
|
int iColumn; /* the last column read */
|
|
int iPosition; /* the last position read */
|
|
int iStartOffset; /* the last start offset read */
|
|
int iEndOffset; /* the last end offset read */
|
|
} PLReader;
|
|
|
|
static int plrAtEnd(PLReader *pReader){
|
|
return pReader->pData==NULL;
|
|
}
|
|
static int plrColumn(PLReader *pReader){
|
|
assert( !plrAtEnd(pReader) );
|
|
return pReader->iColumn;
|
|
}
|
|
static int plrPosition(PLReader *pReader){
|
|
assert( !plrAtEnd(pReader) );
|
|
return pReader->iPosition;
|
|
}
|
|
static int plrStartOffset(PLReader *pReader){
|
|
assert( !plrAtEnd(pReader) );
|
|
return pReader->iStartOffset;
|
|
}
|
|
static int plrEndOffset(PLReader *pReader){
|
|
assert( !plrAtEnd(pReader) );
|
|
return pReader->iEndOffset;
|
|
}
|
|
static void plrStep(PLReader *pReader){
|
|
int i, n;
|
|
|
|
assert( !plrAtEnd(pReader) );
|
|
|
|
if( pReader->nData==0 ){
|
|
pReader->pData = NULL;
|
|
return;
|
|
}
|
|
|
|
n = fts3GetVarint32(pReader->pData, &i);
|
|
if( i==POS_COLUMN ){
|
|
n += fts3GetVarint32(pReader->pData+n, &pReader->iColumn);
|
|
pReader->iPosition = 0;
|
|
pReader->iStartOffset = 0;
|
|
n += fts3GetVarint32(pReader->pData+n, &i);
|
|
}
|
|
/* Should never see adjacent column changes. */
|
|
assert( i!=POS_COLUMN );
|
|
|
|
if( i==POS_END ){
|
|
pReader->nData = 0;
|
|
pReader->pData = NULL;
|
|
return;
|
|
}
|
|
|
|
pReader->iPosition += i-POS_BASE;
|
|
if( pReader->iType==DL_POSITIONS_OFFSETS ){
|
|
n += fts3GetVarint32(pReader->pData+n, &i);
|
|
pReader->iStartOffset += i;
|
|
n += fts3GetVarint32(pReader->pData+n, &i);
|
|
pReader->iEndOffset = pReader->iStartOffset+i;
|
|
}
|
|
assert( n<=pReader->nData );
|
|
pReader->pData += n;
|
|
pReader->nData -= n;
|
|
}
|
|
|
|
static void plrInit(PLReader *pReader, DLReader *pDLReader){
|
|
pReader->pData = dlrPosData(pDLReader);
|
|
pReader->nData = dlrPosDataLen(pDLReader);
|
|
pReader->iType = pDLReader->iType;
|
|
pReader->iColumn = 0;
|
|
pReader->iPosition = 0;
|
|
pReader->iStartOffset = 0;
|
|
pReader->iEndOffset = 0;
|
|
plrStep(pReader);
|
|
}
|
|
static void plrDestroy(PLReader *pReader){
|
|
SCRAMBLE(pReader);
|
|
}
|
|
|
|
/*******************************************************************/
|
|
/* PLWriter is used in constructing a document's position list. As a
|
|
** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op.
|
|
** PLWriter writes to the associated DLWriter's buffer.
|
|
**
|
|
** plwInit - init for writing a document's poslist.
|
|
** plwDestroy - clear a writer.
|
|
** plwAdd - append position and offset information.
|
|
** plwCopy - copy next position's data from reader to writer.
|
|
** plwTerminate - add any necessary doclist terminator.
|
|
**
|
|
** Calling plwAdd() after plwTerminate() may result in a corrupt
|
|
** doclist.
|
|
*/
|
|
/* TODO(shess) Until we've written the second item, we can cache the
|
|
** first item's information. Then we'd have three states:
|
|
**
|
|
** - initialized with docid, no positions.
|
|
** - docid and one position.
|
|
** - docid and multiple positions.
|
|
**
|
|
** Only the last state needs to actually write to dlw->b, which would
|
|
** be an improvement in the DLCollector case.
|
|
*/
|
|
typedef struct PLWriter {
|
|
DLWriter *dlw;
|
|
|
|
int iColumn; /* the last column written */
|
|
int iPos; /* the last position written */
|
|
int iOffset; /* the last start offset written */
|
|
} PLWriter;
|
|
|
|
/* TODO(shess) In the case where the parent is reading these values
|
|
** from a PLReader, we could optimize to a copy if that PLReader has
|
|
** the same type as pWriter.
|
|
*/
|
|
static void plwAdd(PLWriter *pWriter, int iColumn, int iPos,
|
|
int iStartOffset, int iEndOffset){
|
|
/* Worst-case space for POS_COLUMN, iColumn, iPosDelta,
|
|
** iStartOffsetDelta, and iEndOffsetDelta.
|
|
*/
|
|
char c[5*VARINT_MAX];
|
|
int n = 0;
|
|
|
|
/* Ban plwAdd() after plwTerminate(). */
|
|
assert( pWriter->iPos!=-1 );
|
|
|
|
if( pWriter->dlw->iType==DL_DOCIDS ) return;
|
|
|
|
if( iColumn!=pWriter->iColumn ){
|
|
n += fts3PutVarint(c+n, POS_COLUMN);
|
|
n += fts3PutVarint(c+n, iColumn);
|
|
pWriter->iColumn = iColumn;
|
|
pWriter->iPos = 0;
|
|
pWriter->iOffset = 0;
|
|
}
|
|
assert( iPos>=pWriter->iPos );
|
|
n += fts3PutVarint(c+n, POS_BASE+(iPos-pWriter->iPos));
|
|
pWriter->iPos = iPos;
|
|
if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){
|
|
assert( iStartOffset>=pWriter->iOffset );
|
|
n += fts3PutVarint(c+n, iStartOffset-pWriter->iOffset);
|
|
pWriter->iOffset = iStartOffset;
|
|
assert( iEndOffset>=iStartOffset );
|
|
n += fts3PutVarint(c+n, iEndOffset-iStartOffset);
|
|
}
|
|
dataBufferAppend(pWriter->dlw->b, c, n);
|
|
}
|
|
static void plwCopy(PLWriter *pWriter, PLReader *pReader){
|
|
plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader),
|
|
plrStartOffset(pReader), plrEndOffset(pReader));
|
|
}
|
|
static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){
|
|
char c[VARINT_MAX];
|
|
int n;
|
|
|
|
pWriter->dlw = dlw;
|
|
|
|
/* Docids must ascend. */
|
|
assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid );
|
|
n = fts3PutVarint(c, iDocid-pWriter->dlw->iPrevDocid);
|
|
dataBufferAppend(pWriter->dlw->b, c, n);
|
|
pWriter->dlw->iPrevDocid = iDocid;
|
|
#ifndef NDEBUG
|
|
pWriter->dlw->has_iPrevDocid = 1;
|
|
#endif
|
|
|
|
pWriter->iColumn = 0;
|
|
pWriter->iPos = 0;
|
|
pWriter->iOffset = 0;
|
|
}
|
|
/* TODO(shess) Should plwDestroy() also terminate the doclist? But
|
|
** then plwDestroy() would no longer be just a destructor, it would
|
|
** also be doing work, which isn't consistent with the overall idiom.
|
|
** Another option would be for plwAdd() to always append any necessary
|
|
** terminator, so that the output is always correct. But that would
|
|
** add incremental work to the common case with the only benefit being
|
|
** API elegance. Punt for now.
|
|
*/
|
|
static void plwTerminate(PLWriter *pWriter){
|
|
if( pWriter->dlw->iType>DL_DOCIDS ){
|
|
char c[VARINT_MAX];
|
|
int n = fts3PutVarint(c, POS_END);
|
|
dataBufferAppend(pWriter->dlw->b, c, n);
|
|
}
|
|
#ifndef NDEBUG
|
|
/* Mark as terminated for assert in plwAdd(). */
|
|
pWriter->iPos = -1;
|
|
#endif
|
|
}
|
|
static void plwDestroy(PLWriter *pWriter){
|
|
SCRAMBLE(pWriter);
|
|
}
|
|
|
|
/*******************************************************************/
|
|
/* DLCollector wraps PLWriter and DLWriter to provide a
|
|
** dynamically-allocated doclist area to use during tokenization.
|
|
**
|
|
** dlcNew - malloc up and initialize a collector.
|
|
** dlcDelete - destroy a collector and all contained items.
|
|
** dlcAddPos - append position and offset information.
|
|
** dlcAddDoclist - add the collected doclist to the given buffer.
|
|
** dlcNext - terminate the current document and open another.
|
|
*/
|
|
typedef struct DLCollector {
|
|
DataBuffer b;
|
|
DLWriter dlw;
|
|
PLWriter plw;
|
|
} DLCollector;
|
|
|
|
/* TODO(shess) This could also be done by calling plwTerminate() and
|
|
** dataBufferAppend(). I tried that, expecting nominal performance
|
|
** differences, but it seemed to pretty reliably be worth 1% to code
|
|
** it this way. I suspect it is the incremental malloc overhead (some
|
|
** percentage of the plwTerminate() calls will cause a realloc), so
|
|
** this might be worth revisiting if the DataBuffer implementation
|
|
** changes.
|
|
*/
|
|
static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){
|
|
if( pCollector->dlw.iType>DL_DOCIDS ){
|
|
char c[VARINT_MAX];
|
|
int n = fts3PutVarint(c, POS_END);
|
|
dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n);
|
|
}else{
|
|
dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData);
|
|
}
|
|
}
|
|
static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){
|
|
plwTerminate(&pCollector->plw);
|
|
plwDestroy(&pCollector->plw);
|
|
plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
|
|
}
|
|
static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos,
|
|
int iStartOffset, int iEndOffset){
|
|
plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset);
|
|
}
|
|
|
|
static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){
|
|
DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector));
|
|
dataBufferInit(&pCollector->b, 0);
|
|
dlwInit(&pCollector->dlw, iType, &pCollector->b);
|
|
plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
|
|
return pCollector;
|
|
}
|
|
static void dlcDelete(DLCollector *pCollector){
|
|
plwDestroy(&pCollector->plw);
|
|
dlwDestroy(&pCollector->dlw);
|
|
dataBufferDestroy(&pCollector->b);
|
|
SCRAMBLE(pCollector);
|
|
sqlite3_free(pCollector);
|
|
}
|
|
|
|
|
|
/* Copy the doclist data of iType in pData/nData into *out, trimming
|
|
** unnecessary data as we go. Only columns matching iColumn are
|
|
** copied, all columns copied if iColumn is -1. Elements with no
|
|
** matching columns are dropped. The output is an iOutType doclist.
|
|
*/
|
|
/* NOTE(shess) This code is only valid after all doclists are merged.
|
|
** If this is run before merges, then doclist items which represent
|
|
** deletion will be trimmed, and will thus not effect a deletion
|
|
** during the merge.
|
|
*/
|
|
static void docListTrim(DocListType iType, const char *pData, int nData,
|
|
int iColumn, DocListType iOutType, DataBuffer *out){
|
|
DLReader dlReader;
|
|
DLWriter dlWriter;
|
|
|
|
assert( iOutType<=iType );
|
|
|
|
dlrInit(&dlReader, iType, pData, nData);
|
|
dlwInit(&dlWriter, iOutType, out);
|
|
|
|
while( !dlrAtEnd(&dlReader) ){
|
|
PLReader plReader;
|
|
PLWriter plWriter;
|
|
int match = 0;
|
|
|
|
plrInit(&plReader, &dlReader);
|
|
|
|
while( !plrAtEnd(&plReader) ){
|
|
if( iColumn==-1 || plrColumn(&plReader)==iColumn ){
|
|
if( !match ){
|
|
plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader));
|
|
match = 1;
|
|
}
|
|
plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader),
|
|
plrStartOffset(&plReader), plrEndOffset(&plReader));
|
|
}
|
|
plrStep(&plReader);
|
|
}
|
|
if( match ){
|
|
plwTerminate(&plWriter);
|
|
plwDestroy(&plWriter);
|
|
}
|
|
|
|
plrDestroy(&plReader);
|
|
dlrStep(&dlReader);
|
|
}
|
|
dlwDestroy(&dlWriter);
|
|
dlrDestroy(&dlReader);
|
|
}
|
|
|
|
/* Used by docListMerge() to keep doclists in the ascending order by
|
|
** docid, then ascending order by age (so the newest comes first).
|
|
*/
|
|
typedef struct OrderedDLReader {
|
|
DLReader *pReader;
|
|
|
|
/* TODO(shess) If we assume that docListMerge pReaders is ordered by
|
|
** age (which we do), then we could use pReader comparisons to break
|
|
** ties.
|
|
*/
|
|
int idx;
|
|
} OrderedDLReader;
|
|
|
|
/* Order eof to end, then by docid asc, idx desc. */
|
|
static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){
|
|
if( dlrAtEnd(r1->pReader) ){
|
|
if( dlrAtEnd(r2->pReader) ) return 0; /* Both atEnd(). */
|
|
return 1; /* Only r1 atEnd(). */
|
|
}
|
|
if( dlrAtEnd(r2->pReader) ) return -1; /* Only r2 atEnd(). */
|
|
|
|
if( dlrDocid(r1->pReader)<dlrDocid(r2->pReader) ) return -1;
|
|
if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1;
|
|
|
|
/* Descending on idx. */
|
|
return r2->idx-r1->idx;
|
|
}
|
|
|
|
/* Bubble p[0] to appropriate place in p[1..n-1]. Assumes that
|
|
** p[1..n-1] is already sorted.
|
|
*/
|
|
/* TODO(shess) Is this frequent enough to warrant a binary search?
|
|
** Before implementing that, instrument the code to check. In most
|
|
** current usage, I expect that p[0] will be less than p[1] a very
|
|
** high proportion of the time.
|
|
*/
|
|
static void orderedDLReaderReorder(OrderedDLReader *p, int n){
|
|
while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){
|
|
OrderedDLReader tmp = p[0];
|
|
p[0] = p[1];
|
|
p[1] = tmp;
|
|
n--;
|
|
p++;
|
|
}
|
|
}
|
|
|
|
/* Given an array of doclist readers, merge their doclist elements
|
|
** into out in sorted order (by docid), dropping elements from older
|
|
** readers when there is a duplicate docid. pReaders is assumed to be
|
|
** ordered by age, oldest first.
|
|
*/
|
|
/* TODO(shess) nReaders must be <= MERGE_COUNT. This should probably
|
|
** be fixed.
|
|
*/
|
|
static void docListMerge(DataBuffer *out,
|
|
DLReader *pReaders, int nReaders){
|
|
OrderedDLReader readers[MERGE_COUNT];
|
|
DLWriter writer;
|
|
int i, n;
|
|
const char *pStart = 0;
|
|
int nStart = 0;
|
|
sqlite_int64 iFirstDocid = 0, iLastDocid = 0;
|
|
|
|
assert( nReaders>0 );
|
|
if( nReaders==1 ){
|
|
dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders));
|
|
return;
|
|
}
|
|
|
|
assert( nReaders<=MERGE_COUNT );
|
|
n = 0;
|
|
for(i=0; i<nReaders; i++){
|
|
assert( pReaders[i].iType==pReaders[0].iType );
|
|
readers[i].pReader = pReaders+i;
|
|
readers[i].idx = i;
|
|
n += dlrAllDataBytes(&pReaders[i]);
|
|
}
|
|
/* Conservatively size output to sum of inputs. Output should end
|
|
** up strictly smaller than input.
|
|
*/
|
|
dataBufferExpand(out, n);
|
|
|
|
/* Get the readers into sorted order. */
|
|
while( i-->0 ){
|
|
orderedDLReaderReorder(readers+i, nReaders-i);
|
|
}
|
|
|
|
dlwInit(&writer, pReaders[0].iType, out);
|
|
while( !dlrAtEnd(readers[0].pReader) ){
|
|
sqlite_int64 iDocid = dlrDocid(readers[0].pReader);
|
|
|
|
/* If this is a continuation of the current buffer to copy, extend
|
|
** that buffer. memcpy() seems to be more efficient if it has a
|
|
** lots of data to copy.
|
|
*/
|
|
if( dlrDocData(readers[0].pReader)==pStart+nStart ){
|
|
nStart += dlrDocDataBytes(readers[0].pReader);
|
|
}else{
|
|
if( pStart!=0 ){
|
|
dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
|
|
}
|
|
pStart = dlrDocData(readers[0].pReader);
|
|
nStart = dlrDocDataBytes(readers[0].pReader);
|
|
iFirstDocid = iDocid;
|
|
}
|
|
iLastDocid = iDocid;
|
|
dlrStep(readers[0].pReader);
|
|
|
|
/* Drop all of the older elements with the same docid. */
|
|
for(i=1; i<nReaders &&
|
|
!dlrAtEnd(readers[i].pReader) &&
|
|
dlrDocid(readers[i].pReader)==iDocid; i++){
|
|
dlrStep(readers[i].pReader);
|
|
}
|
|
|
|
/* Get the readers back into order. */
|
|
while( i-->0 ){
|
|
orderedDLReaderReorder(readers+i, nReaders-i);
|
|
}
|
|
}
|
|
|
|
/* Copy over any remaining elements. */
|
|
if( nStart>0 ) dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
|
|
dlwDestroy(&writer);
|
|
}
|
|
|
|
/* Helper function for posListUnion(). Compares the current position
|
|
** between left and right, returning as standard C idiom of <0 if
|
|
** left<right, >0 if left>right, and 0 if left==right. "End" always
|
|
** compares greater.
|
|
*/
|
|
static int posListCmp(PLReader *pLeft, PLReader *pRight){
|
|
assert( pLeft->iType==pRight->iType );
|
|
if( pLeft->iType==DL_DOCIDS ) return 0;
|
|
|
|
if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1;
|
|
if( plrAtEnd(pRight) ) return -1;
|
|
|
|
if( plrColumn(pLeft)<plrColumn(pRight) ) return -1;
|
|
if( plrColumn(pLeft)>plrColumn(pRight) ) return 1;
|
|
|
|
if( plrPosition(pLeft)<plrPosition(pRight) ) return -1;
|
|
if( plrPosition(pLeft)>plrPosition(pRight) ) return 1;
|
|
if( pLeft->iType==DL_POSITIONS ) return 0;
|
|
|
|
if( plrStartOffset(pLeft)<plrStartOffset(pRight) ) return -1;
|
|
if( plrStartOffset(pLeft)>plrStartOffset(pRight) ) return 1;
|
|
|
|
if( plrEndOffset(pLeft)<plrEndOffset(pRight) ) return -1;
|
|
if( plrEndOffset(pLeft)>plrEndOffset(pRight) ) return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Write the union of position lists in pLeft and pRight to pOut.
|
|
** "Union" in this case meaning "All unique position tuples". Should
|
|
** work with any doclist type, though both inputs and the output
|
|
** should be the same type.
|
|
*/
|
|
static void posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){
|
|
PLReader left, right;
|
|
PLWriter writer;
|
|
|
|
assert( dlrDocid(pLeft)==dlrDocid(pRight) );
|
|
assert( pLeft->iType==pRight->iType );
|
|
assert( pLeft->iType==pOut->iType );
|
|
|
|
plrInit(&left, pLeft);
|
|
plrInit(&right, pRight);
|
|
plwInit(&writer, pOut, dlrDocid(pLeft));
|
|
|
|
while( !plrAtEnd(&left) || !plrAtEnd(&right) ){
|
|
int c = posListCmp(&left, &right);
|
|
if( c<0 ){
|
|
plwCopy(&writer, &left);
|
|
plrStep(&left);
|
|
}else if( c>0 ){
|
|
plwCopy(&writer, &right);
|
|
plrStep(&right);
|
|
}else{
|
|
plwCopy(&writer, &left);
|
|
plrStep(&left);
|
|
plrStep(&right);
|
|
}
|
|
}
|
|
|
|
plwTerminate(&writer);
|
|
plwDestroy(&writer);
|
|
plrDestroy(&left);
|
|
plrDestroy(&right);
|
|
}
|
|
|
|
/* Write the union of doclists in pLeft and pRight to pOut. For
|
|
** docids in common between the inputs, the union of the position
|
|
** lists is written. Inputs and outputs are always type DL_DEFAULT.
|
|
*/
|
|
static void docListUnion(
|
|
const char *pLeft, int nLeft,
|
|
const char *pRight, int nRight,
|
|
DataBuffer *pOut /* Write the combined doclist here */
|
|
){
|
|
DLReader left, right;
|
|
DLWriter writer;
|
|
|
|
if( nLeft==0 ){
|
|
if( nRight!=0) dataBufferAppend(pOut, pRight, nRight);
|
|
return;
|
|
}
|
|
if( nRight==0 ){
|
|
dataBufferAppend(pOut, pLeft, nLeft);
|
|
return;
|
|
}
|
|
|
|
dlrInit(&left, DL_DEFAULT, pLeft, nLeft);
|
|
dlrInit(&right, DL_DEFAULT, pRight, nRight);
|
|
dlwInit(&writer, DL_DEFAULT, pOut);
|
|
|
|
while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
|
|
if( dlrAtEnd(&right) ){
|
|
dlwCopy(&writer, &left);
|
|
dlrStep(&left);
|
|
}else if( dlrAtEnd(&left) ){
|
|
dlwCopy(&writer, &right);
|
|
dlrStep(&right);
|
|
}else if( dlrDocid(&left)<dlrDocid(&right) ){
|
|
dlwCopy(&writer, &left);
|
|
dlrStep(&left);
|
|
}else if( dlrDocid(&left)>dlrDocid(&right) ){
|
|
dlwCopy(&writer, &right);
|
|
dlrStep(&right);
|
|
}else{
|
|
posListUnion(&left, &right, &writer);
|
|
dlrStep(&left);
|
|
dlrStep(&right);
|
|
}
|
|
}
|
|
|
|
dlrDestroy(&left);
|
|
dlrDestroy(&right);
|
|
dlwDestroy(&writer);
|
|
}
|
|
|
|
/*
|
|
** This function is used as part of the implementation of phrase and
|
|
** NEAR matching.
|
|
**
|
|
** pLeft and pRight are DLReaders positioned to the same docid in
|
|
** lists of type DL_POSITION. This function writes an entry to the
|
|
** DLWriter pOut for each position in pRight that is less than
|
|
** (nNear+1) greater (but not equal to or smaller) than a position
|
|
** in pLeft. For example, if nNear is 0, and the positions contained
|
|
** by pLeft and pRight are:
|
|
**
|
|
** pLeft: 5 10 15 20
|
|
** pRight: 6 9 17 21
|
|
**
|
|
** then the docid is added to pOut. If pOut is of type DL_POSITIONS,
|
|
** then a positionids "6" and "21" are also added to pOut.
|
|
**
|
|
** If boolean argument isSaveLeft is true, then positionids are copied
|
|
** from pLeft instead of pRight. In the example above, the positions "5"
|
|
** and "20" would be added instead of "6" and "21".
|
|
*/
|
|
static void posListPhraseMerge(
|
|
DLReader *pLeft,
|
|
DLReader *pRight,
|
|
int nNear,
|
|
int isSaveLeft,
|
|
DLWriter *pOut
|
|
){
|
|
PLReader left, right;
|
|
PLWriter writer;
|
|
int match = 0;
|
|
|
|
assert( dlrDocid(pLeft)==dlrDocid(pRight) );
|
|
assert( pOut->iType!=DL_POSITIONS_OFFSETS );
|
|
|
|
plrInit(&left, pLeft);
|
|
plrInit(&right, pRight);
|
|
|
|
while( !plrAtEnd(&left) && !plrAtEnd(&right) ){
|
|
if( plrColumn(&left)<plrColumn(&right) ){
|
|
plrStep(&left);
|
|
}else if( plrColumn(&left)>plrColumn(&right) ){
|
|
plrStep(&right);
|
|
}else if( plrPosition(&left)>=plrPosition(&right) ){
|
|
plrStep(&right);
|
|
}else{
|
|
if( (plrPosition(&right)-plrPosition(&left))<=(nNear+1) ){
|
|
if( !match ){
|
|
plwInit(&writer, pOut, dlrDocid(pLeft));
|
|
match = 1;
|
|
}
|
|
if( !isSaveLeft ){
|
|
plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0);
|
|
}else{
|
|
plwAdd(&writer, plrColumn(&left), plrPosition(&left), 0, 0);
|
|
}
|
|
plrStep(&right);
|
|
}else{
|
|
plrStep(&left);
|
|
}
|
|
}
|
|
}
|
|
|
|
if( match ){
|
|
plwTerminate(&writer);
|
|
plwDestroy(&writer);
|
|
}
|
|
|
|
plrDestroy(&left);
|
|
plrDestroy(&right);
|
|
}
|
|
|
|
/*
|
|
** Compare the values pointed to by the PLReaders passed as arguments.
|
|
** Return -1 if the value pointed to by pLeft is considered less than
|
|
** the value pointed to by pRight, +1 if it is considered greater
|
|
** than it, or 0 if it is equal. i.e.
|
|
**
|
|
** (*pLeft - *pRight)
|
|
**
|
|
** A PLReader that is in the EOF condition is considered greater than
|
|
** any other. If neither argument is in EOF state, the return value of
|
|
** plrColumn() is used. If the plrColumn() values are equal, the
|
|
** comparison is on the basis of plrPosition().
|
|
*/
|
|
static int plrCompare(PLReader *pLeft, PLReader *pRight){
|
|
assert(!plrAtEnd(pLeft) || !plrAtEnd(pRight));
|
|
|
|
if( plrAtEnd(pRight) || plrAtEnd(pLeft) ){
|
|
return (plrAtEnd(pRight) ? -1 : 1);
|
|
}
|
|
if( plrColumn(pLeft)!=plrColumn(pRight) ){
|
|
return ((plrColumn(pLeft)<plrColumn(pRight)) ? -1 : 1);
|
|
}
|
|
if( plrPosition(pLeft)!=plrPosition(pRight) ){
|
|
return ((plrPosition(pLeft)<plrPosition(pRight)) ? -1 : 1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* We have two doclists with positions: pLeft and pRight. Depending
|
|
** on the value of the nNear parameter, perform either a phrase
|
|
** intersection (if nNear==0) or a NEAR intersection (if nNear>0)
|
|
** and write the results into pOut.
|
|
**
|
|
** A phrase intersection means that two documents only match
|
|
** if pLeft.iPos+1==pRight.iPos.
|
|
**
|
|
** A NEAR intersection means that two documents only match if
|
|
** (abs(pLeft.iPos-pRight.iPos)<nNear).
|
|
**
|
|
** If a NEAR intersection is requested, then the nPhrase argument should
|
|
** be passed the number of tokens in the two operands to the NEAR operator
|
|
** combined. For example:
|
|
**
|
|
** Query syntax nPhrase
|
|
** ------------------------------------
|
|
** "A B C" NEAR "D E" 5
|
|
** A NEAR B 2
|
|
**
|
|
** iType controls the type of data written to pOut. If iType is
|
|
** DL_POSITIONS, the positions are those from pRight.
|
|
*/
|
|
static void docListPhraseMerge(
|
|
const char *pLeft, int nLeft,
|
|
const char *pRight, int nRight,
|
|
int nNear, /* 0 for a phrase merge, non-zero for a NEAR merge */
|
|
int nPhrase, /* Number of tokens in left+right operands to NEAR */
|
|
DocListType iType, /* Type of doclist to write to pOut */
|
|
DataBuffer *pOut /* Write the combined doclist here */
|
|
){
|
|
DLReader left, right;
|
|
DLWriter writer;
|
|
|
|
if( nLeft==0 || nRight==0 ) return;
|
|
|
|
assert( iType!=DL_POSITIONS_OFFSETS );
|
|
|
|
dlrInit(&left, DL_POSITIONS, pLeft, nLeft);
|
|
dlrInit(&right, DL_POSITIONS, pRight, nRight);
|
|
dlwInit(&writer, iType, pOut);
|
|
|
|
while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
|
|
if( dlrDocid(&left)<dlrDocid(&right) ){
|
|
dlrStep(&left);
|
|
}else if( dlrDocid(&right)<dlrDocid(&left) ){
|
|
dlrStep(&right);
|
|
}else{
|
|
if( nNear==0 ){
|
|
posListPhraseMerge(&left, &right, 0, 0, &writer);
|
|
}else{
|
|
/* This case occurs when two terms (simple terms or phrases) are
|
|
* connected by a NEAR operator, span (nNear+1). i.e.
|
|
*
|
|
* '"terrible company" NEAR widget'
|
|
*/
|
|
DataBuffer one = {0, 0, 0};
|
|
DataBuffer two = {0, 0, 0};
|
|
|
|
DLWriter dlwriter2;
|
|
DLReader dr1 = {0, 0, 0, 0, 0};
|
|
DLReader dr2 = {0, 0, 0, 0, 0};
|
|
|
|
dlwInit(&dlwriter2, iType, &one);
|
|
posListPhraseMerge(&right, &left, nNear-3+nPhrase, 1, &dlwriter2);
|
|
dlwInit(&dlwriter2, iType, &two);
|
|
posListPhraseMerge(&left, &right, nNear-1, 0, &dlwriter2);
|
|
|
|
if( one.nData) dlrInit(&dr1, iType, one.pData, one.nData);
|
|
if( two.nData) dlrInit(&dr2, iType, two.pData, two.nData);
|
|
|
|
if( !dlrAtEnd(&dr1) || !dlrAtEnd(&dr2) ){
|
|
PLReader pr1 = {0};
|
|
PLReader pr2 = {0};
|
|
|
|
PLWriter plwriter;
|
|
plwInit(&plwriter, &writer, dlrDocid(dlrAtEnd(&dr1)?&dr2:&dr1));
|
|
|
|
if( one.nData ) plrInit(&pr1, &dr1);
|
|
if( two.nData ) plrInit(&pr2, &dr2);
|
|
while( !plrAtEnd(&pr1) || !plrAtEnd(&pr2) ){
|
|
int iCompare = plrCompare(&pr1, &pr2);
|
|
switch( iCompare ){
|
|
case -1:
|
|
plwCopy(&plwriter, &pr1);
|
|
plrStep(&pr1);
|
|
break;
|
|
case 1:
|
|
plwCopy(&plwriter, &pr2);
|
|
plrStep(&pr2);
|
|
break;
|
|
case 0:
|
|
plwCopy(&plwriter, &pr1);
|
|
plrStep(&pr1);
|
|
plrStep(&pr2);
|
|
break;
|
|
}
|
|
}
|
|
plwTerminate(&plwriter);
|
|
}
|
|
dataBufferDestroy(&one);
|
|
dataBufferDestroy(&two);
|
|
}
|
|
dlrStep(&left);
|
|
dlrStep(&right);
|
|
}
|
|
}
|
|
|
|
dlrDestroy(&left);
|
|
dlrDestroy(&right);
|
|
dlwDestroy(&writer);
|
|
}
|
|
|
|
/* We have two DL_DOCIDS doclists: pLeft and pRight.
|
|
** Write the intersection of these two doclists into pOut as a
|
|
** DL_DOCIDS doclist.
|
|
*/
|
|
static void docListAndMerge(
|
|
const char *pLeft, int nLeft,
|
|
const char *pRight, int nRight,
|
|
DataBuffer *pOut /* Write the combined doclist here */
|
|
){
|
|
DLReader left, right;
|
|
DLWriter writer;
|
|
|
|
if( nLeft==0 || nRight==0 ) return;
|
|
|
|
dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
|
|
dlrInit(&right, DL_DOCIDS, pRight, nRight);
|
|
dlwInit(&writer, DL_DOCIDS, pOut);
|
|
|
|
while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
|
|
if( dlrDocid(&left)<dlrDocid(&right) ){
|
|
dlrStep(&left);
|
|
}else if( dlrDocid(&right)<dlrDocid(&left) ){
|
|
dlrStep(&right);
|
|
}else{
|
|
dlwAdd(&writer, dlrDocid(&left));
|
|
dlrStep(&left);
|
|
dlrStep(&right);
|
|
}
|
|
}
|
|
|
|
dlrDestroy(&left);
|
|
dlrDestroy(&right);
|
|
dlwDestroy(&writer);
|
|
}
|
|
|
|
/* We have two DL_DOCIDS doclists: pLeft and pRight.
|
|
** Write the union of these two doclists into pOut as a
|
|
** DL_DOCIDS doclist.
|
|
*/
|
|
static void docListOrMerge(
|
|
const char *pLeft, int nLeft,
|
|
const char *pRight, int nRight,
|
|
DataBuffer *pOut /* Write the combined doclist here */
|
|
){
|
|
DLReader left, right;
|
|
DLWriter writer;
|
|
|
|
if( nLeft==0 ){
|
|
if( nRight!=0 ) dataBufferAppend(pOut, pRight, nRight);
|
|
return;
|
|
}
|
|
if( nRight==0 ){
|
|
dataBufferAppend(pOut, pLeft, nLeft);
|
|
return;
|
|
}
|
|
|
|
dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
|
|
dlrInit(&right, DL_DOCIDS, pRight, nRight);
|
|
dlwInit(&writer, DL_DOCIDS, pOut);
|
|
|
|
while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
|
|
if( dlrAtEnd(&right) ){
|
|
dlwAdd(&writer, dlrDocid(&left));
|
|
dlrStep(&left);
|
|
}else if( dlrAtEnd(&left) ){
|
|
dlwAdd(&writer, dlrDocid(&right));
|
|
dlrStep(&right);
|
|
}else if( dlrDocid(&left)<dlrDocid(&right) ){
|
|
dlwAdd(&writer, dlrDocid(&left));
|
|
dlrStep(&left);
|
|
}else if( dlrDocid(&right)<dlrDocid(&left) ){
|
|
dlwAdd(&writer, dlrDocid(&right));
|
|
dlrStep(&right);
|
|
}else{
|
|
dlwAdd(&writer, dlrDocid(&left));
|
|
dlrStep(&left);
|
|
dlrStep(&right);
|
|
}
|
|
}
|
|
|
|
dlrDestroy(&left);
|
|
dlrDestroy(&right);
|
|
dlwDestroy(&writer);
|
|
}
|
|
|
|
/* We have two DL_DOCIDS doclists: pLeft and pRight.
|
|
** Write into pOut as DL_DOCIDS doclist containing all documents that
|
|
** occur in pLeft but not in pRight.
|
|
*/
|
|
static void docListExceptMerge(
|
|
const char *pLeft, int nLeft,
|
|
const char *pRight, int nRight,
|
|
DataBuffer *pOut /* Write the combined doclist here */
|
|
){
|
|
DLReader left, right;
|
|
DLWriter writer;
|
|
|
|
if( nLeft==0 ) return;
|
|
if( nRight==0 ){
|
|
dataBufferAppend(pOut, pLeft, nLeft);
|
|
return;
|
|
}
|
|
|
|
dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
|
|
dlrInit(&right, DL_DOCIDS, pRight, nRight);
|
|
dlwInit(&writer, DL_DOCIDS, pOut);
|
|
|
|
while( !dlrAtEnd(&left) ){
|
|
while( !dlrAtEnd(&right) && dlrDocid(&right)<dlrDocid(&left) ){
|
|
dlrStep(&right);
|
|
}
|
|
if( dlrAtEnd(&right) || dlrDocid(&left)<dlrDocid(&right) ){
|
|
dlwAdd(&writer, dlrDocid(&left));
|
|
}
|
|
dlrStep(&left);
|
|
}
|
|
|
|
dlrDestroy(&left);
|
|
dlrDestroy(&right);
|
|
dlwDestroy(&writer);
|
|
}
|
|
|
|
static char *string_dup_n(const char *s, int n){
|
|
char *str = sqlite3_malloc(n + 1);
|
|
memcpy(str, s, n);
|
|
str[n] = '\0';
|
|
return str;
|
|
}
|
|
|
|
/* Duplicate a string; the caller must free() the returned string.
|
|
* (We don't use strdup() since it is not part of the standard C library and
|
|
* may not be available everywhere.) */
|
|
static char *string_dup(const char *s){
|
|
return string_dup_n(s, strlen(s));
|
|
}
|
|
|
|
/* Format a string, replacing each occurrence of the % character with
|
|
* zDb.zName. This may be more convenient than sqlite_mprintf()
|
|
* when one string is used repeatedly in a format string.
|
|
* The caller must free() the returned string. */
|
|
static char *string_format(const char *zFormat,
|
|
const char *zDb, const char *zName){
|
|
const char *p;
|
|
size_t len = 0;
|
|
size_t nDb = strlen(zDb);
|
|
size_t nName = strlen(zName);
|
|
size_t nFullTableName = nDb+1+nName;
|
|
char *result;
|
|
char *r;
|
|
|
|
/* first compute length needed */
|
|
for(p = zFormat ; *p ; ++p){
|
|
len += (*p=='%' ? nFullTableName : 1);
|
|
}
|
|
len += 1; /* for null terminator */
|
|
|
|
r = result = sqlite3_malloc(len);
|
|
for(p = zFormat; *p; ++p){
|
|
if( *p=='%' ){
|
|
memcpy(r, zDb, nDb);
|
|
r += nDb;
|
|
*r++ = '.';
|
|
memcpy(r, zName, nName);
|
|
r += nName;
|
|
} else {
|
|
*r++ = *p;
|
|
}
|
|
}
|
|
*r++ = '\0';
|
|
assert( r == result + len );
|
|
return result;
|
|
}
|
|
|
|
static int sql_exec(sqlite3 *db, const char *zDb, const char *zName,
|
|
const char *zFormat){
|
|
char *zCommand = string_format(zFormat, zDb, zName);
|
|
int rc;
|
|
FTSTRACE(("FTS3 sql: %s\n", zCommand));
|
|
rc = sqlite3_exec(db, zCommand, NULL, 0, NULL);
|
|
sqlite3_free(zCommand);
|
|
return rc;
|
|
}
|
|
|
|
static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName,
|
|
sqlite3_stmt **ppStmt, const char *zFormat){
|
|
char *zCommand = string_format(zFormat, zDb, zName);
|
|
int rc;
|
|
FTSTRACE(("FTS3 prepare: %s\n", zCommand));
|
|
rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL);
|
|
sqlite3_free(zCommand);
|
|
return rc;
|
|
}
|
|
|
|
/* end utility functions */
|
|
|
|
/* Forward reference */
|
|
typedef struct fulltext_vtab fulltext_vtab;
|
|
|
|
/* A single term in a query is represented by an instances of
|
|
** the following structure. Each word which may match against
|
|
** document content is a term. Operators, like NEAR or OR, are
|
|
** not terms. Query terms are organized as a flat list stored
|
|
** in the Query.pTerms array.
|
|
**
|
|
** If the QueryTerm.nPhrase variable is non-zero, then the QueryTerm
|
|
** is the first in a contiguous string of terms that are either part
|
|
** of the same phrase, or connected by the NEAR operator.
|
|
**
|
|
** If the QueryTerm.nNear variable is non-zero, then the token is followed
|
|
** by a NEAR operator with span set to (nNear-1). For example, the
|
|
** following query:
|
|
**
|
|
** The QueryTerm.iPhrase variable stores the index of the token within
|
|
** its phrase, indexed starting at 1, or 1 if the token is not part
|
|
** of any phrase.
|
|
**
|
|
** For example, the data structure used to represent the following query:
|
|
**
|
|
** ... MATCH 'sqlite NEAR/5 google NEAR/2 "search engine"'
|
|
**
|
|
** is:
|
|
**
|
|
** {nPhrase=4, iPhrase=1, nNear=6, pTerm="sqlite"},
|
|
** {nPhrase=0, iPhrase=1, nNear=3, pTerm="google"},
|
|
** {nPhrase=0, iPhrase=1, nNear=0, pTerm="search"},
|
|
** {nPhrase=0, iPhrase=2, nNear=0, pTerm="engine"},
|
|
**
|
|
** compiling the FTS3 syntax to Query structures is done by the parseQuery()
|
|
** function.
|
|
*/
|
|
typedef struct QueryTerm {
|
|
short int nPhrase; /* How many following terms are part of the same phrase */
|
|
short int iPhrase; /* This is the i-th term of a phrase. */
|
|
short int iColumn; /* Column of the index that must match this term */
|
|
signed char nNear; /* term followed by a NEAR operator with span=(nNear-1) */
|
|
signed char isOr; /* this term is preceded by "OR" */
|
|
signed char isNot; /* this term is preceded by "-" */
|
|
signed char isPrefix; /* this term is followed by "*" */
|
|
char *pTerm; /* text of the term. '\000' terminated. malloced */
|
|
int nTerm; /* Number of bytes in pTerm[] */
|
|
} QueryTerm;
|
|
|
|
|
|
/* A query string is parsed into a Query structure.
|
|
*
|
|
* We could, in theory, allow query strings to be complicated
|
|
* nested expressions with precedence determined by parentheses.
|
|
* But none of the major search engines do this. (Perhaps the
|
|
* feeling is that an parenthesized expression is two complex of
|
|
* an idea for the average user to grasp.) Taking our lead from
|
|
* the major search engines, we will allow queries to be a list
|
|
* of terms (with an implied AND operator) or phrases in double-quotes,
|
|
* with a single optional "-" before each non-phrase term to designate
|
|
* negation and an optional OR connector.
|
|
*
|
|
* OR binds more tightly than the implied AND, which is what the
|
|
* major search engines seem to do. So, for example:
|
|
*
|
|
* [one two OR three] ==> one AND (two OR three)
|
|
* [one OR two three] ==> (one OR two) AND three
|
|
*
|
|
* A "-" before a term matches all entries that lack that term.
|
|
* The "-" must occur immediately before the term with in intervening
|
|
* space. This is how the search engines do it.
|
|
*
|
|
* A NOT term cannot be the right-hand operand of an OR. If this
|
|
* occurs in the query string, the NOT is ignored:
|
|
*
|
|
* [one OR -two] ==> one OR two
|
|
*
|
|
*/
|
|
typedef struct Query {
|
|
fulltext_vtab *pFts; /* The full text index */
|
|
int nTerms; /* Number of terms in the query */
|
|
QueryTerm *pTerms; /* Array of terms. Space obtained from malloc() */
|
|
int nextIsOr; /* Set the isOr flag on the next inserted term */
|
|
int nextIsNear; /* Set the isOr flag on the next inserted term */
|
|
int nextColumn; /* Next word parsed must be in this column */
|
|
int dfltColumn; /* The default column */
|
|
} Query;
|
|
|
|
|
|
/*
|
|
** An instance of the following structure keeps track of generated
|
|
** matching-word offset information and snippets.
|
|
*/
|
|
typedef struct Snippet {
|
|
int nMatch; /* Total number of matches */
|
|
int nAlloc; /* Space allocated for aMatch[] */
|
|
struct snippetMatch { /* One entry for each matching term */
|
|
char snStatus; /* Status flag for use while constructing snippets */
|
|
short int iCol; /* The column that contains the match */
|
|
short int iTerm; /* The index in Query.pTerms[] of the matching term */
|
|
int iToken; /* The index of the matching document token */
|
|
short int nByte; /* Number of bytes in the term */
|
|
int iStart; /* The offset to the first character of the term */
|
|
} *aMatch; /* Points to space obtained from malloc */
|
|
char *zOffset; /* Text rendering of aMatch[] */
|
|
int nOffset; /* strlen(zOffset) */
|
|
char *zSnippet; /* Snippet text */
|
|
int nSnippet; /* strlen(zSnippet) */
|
|
} Snippet;
|
|
|
|
|
|
typedef enum QueryType {
|
|
QUERY_GENERIC, /* table scan */
|
|
QUERY_DOCID, /* lookup by docid */
|
|
QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/
|
|
} QueryType;
|
|
|
|
typedef enum fulltext_statement {
|
|
CONTENT_INSERT_STMT,
|
|
CONTENT_SELECT_STMT,
|
|
CONTENT_UPDATE_STMT,
|
|
CONTENT_DELETE_STMT,
|
|
|
|
BLOCK_INSERT_STMT,
|
|
BLOCK_SELECT_STMT,
|
|
BLOCK_DELETE_STMT,
|
|
|
|
SEGDIR_MAX_INDEX_STMT,
|
|
SEGDIR_SET_STMT,
|
|
SEGDIR_SELECT_STMT,
|
|
SEGDIR_SPAN_STMT,
|
|
SEGDIR_DELETE_STMT,
|
|
SEGDIR_SELECT_ALL_STMT,
|
|
|
|
MAX_STMT /* Always at end! */
|
|
} fulltext_statement;
|
|
|
|
/* These must exactly match the enum above. */
|
|
/* TODO(shess): Is there some risk that a statement will be used in two
|
|
** cursors at once, e.g. if a query joins a virtual table to itself?
|
|
** If so perhaps we should move some of these to the cursor object.
|
|
*/
|
|
static const char *const fulltext_zStatement[MAX_STMT] = {
|
|
/* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */
|
|
/* CONTENT_SELECT */ NULL, /* generated in contentSelectStatement() */
|
|
/* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */
|
|
/* CONTENT_DELETE */ "delete from %_content where docid = ?",
|
|
|
|
/* BLOCK_INSERT */
|
|
"insert into %_segments (blockid, block) values (null, ?)",
|
|
/* BLOCK_SELECT */ "select block from %_segments where blockid = ?",
|
|
/* BLOCK_DELETE */ "delete from %_segments where blockid between ? and ?",
|
|
|
|
/* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?",
|
|
/* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)",
|
|
/* SEGDIR_SELECT */
|
|
"select start_block, leaves_end_block, root from %_segdir "
|
|
" where level = ? order by idx",
|
|
/* SEGDIR_SPAN */
|
|
"select min(start_block), max(end_block) from %_segdir "
|
|
" where level = ? and start_block <> 0",
|
|
/* SEGDIR_DELETE */ "delete from %_segdir where level = ?",
|
|
/* SEGDIR_SELECT_ALL */
|
|
"select root, leaves_end_block from %_segdir order by level desc, idx",
|
|
};
|
|
|
|
/*
|
|
** A connection to a fulltext index is an instance of the following
|
|
** structure. The xCreate and xConnect methods create an instance
|
|
** of this structure and xDestroy and xDisconnect free that instance.
|
|
** All other methods receive a pointer to the structure as one of their
|
|
** arguments.
|
|
*/
|
|
struct fulltext_vtab {
|
|
sqlite3_vtab base; /* Base class used by SQLite core */
|
|
sqlite3 *db; /* The database connection */
|
|
const char *zDb; /* logical database name */
|
|
const char *zName; /* virtual table name */
|
|
int nColumn; /* number of columns in virtual table */
|
|
char **azColumn; /* column names. malloced */
|
|
char **azContentColumn; /* column names in content table; malloced */
|
|
sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */
|
|
|
|
/* Precompiled statements which we keep as long as the table is
|
|
** open.
|
|
*/
|
|
sqlite3_stmt *pFulltextStatements[MAX_STMT];
|
|
|
|
/* Precompiled statements used for segment merges. We run a
|
|
** separate select across the leaf level of each tree being merged.
|
|
*/
|
|
sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT];
|
|
/* The statement used to prepare pLeafSelectStmts. */
|
|
#define LEAF_SELECT \
|
|
"select block from %_segments where blockid between ? and ? order by blockid"
|
|
|
|
/* These buffer pending index updates during transactions.
|
|
** nPendingData estimates the memory size of the pending data. It
|
|
** doesn't include the hash-bucket overhead, nor any malloc
|
|
** overhead. When nPendingData exceeds kPendingThreshold, the
|
|
** buffer is flushed even before the transaction closes.
|
|
** pendingTerms stores the data, and is only valid when nPendingData
|
|
** is >=0 (nPendingData<0 means pendingTerms has not been
|
|
** initialized). iPrevDocid is the last docid written, used to make
|
|
** certain we're inserting in sorted order.
|
|
*/
|
|
int nPendingData;
|
|
#define kPendingThreshold (1*1024*1024)
|
|
sqlite_int64 iPrevDocid;
|
|
fts3Hash pendingTerms;
|
|
};
|
|
|
|
/*
|
|
** When the core wants to do a query, it create a cursor using a
|
|
** call to xOpen. This structure is an instance of a cursor. It
|
|
** is destroyed by xClose.
|
|
*/
|
|
typedef struct fulltext_cursor {
|
|
sqlite3_vtab_cursor base; /* Base class used by SQLite core */
|
|
QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */
|
|
sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */
|
|
int eof; /* True if at End Of Results */
|
|
Query q; /* Parsed query string */
|
|
Snippet snippet; /* Cached snippet for the current row */
|
|
int iColumn; /* Column being searched */
|
|
DataBuffer result; /* Doclist results from fulltextQuery */
|
|
DLReader reader; /* Result reader if result not empty */
|
|
} fulltext_cursor;
|
|
|
|
static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){
|
|
return (fulltext_vtab *) c->base.pVtab;
|
|
}
|
|
|
|
static const sqlite3_module fts3Module; /* forward declaration */
|
|
|
|
/* Return a dynamically generated statement of the form
|
|
* insert into %_content (docid, ...) values (?, ...)
|
|
*/
|
|
static const char *contentInsertStatement(fulltext_vtab *v){
|
|
StringBuffer sb;
|
|
int i;
|
|
|
|
initStringBuffer(&sb);
|
|
append(&sb, "insert into %_content (docid, ");
|
|
appendList(&sb, v->nColumn, v->azContentColumn);
|
|
append(&sb, ") values (?");
|
|
for(i=0; i<v->nColumn; ++i)
|
|
append(&sb, ", ?");
|
|
append(&sb, ")");
|
|
return stringBufferData(&sb);
|
|
}
|
|
|
|
/* Return a dynamically generated statement of the form
|
|
* select <content columns> from %_content where docid = ?
|
|
*/
|
|
static const char *contentSelectStatement(fulltext_vtab *v){
|
|
StringBuffer sb;
|
|
initStringBuffer(&sb);
|
|
append(&sb, "SELECT ");
|
|
appendList(&sb, v->nColumn, v->azContentColumn);
|
|
append(&sb, " FROM %_content WHERE docid = ?");
|
|
return stringBufferData(&sb);
|
|
}
|
|
|
|
/* Return a dynamically generated statement of the form
|
|
* update %_content set [col_0] = ?, [col_1] = ?, ...
|
|
* where docid = ?
|
|
*/
|
|
static const char *contentUpdateStatement(fulltext_vtab *v){
|
|
StringBuffer sb;
|
|
int i;
|
|
|
|
initStringBuffer(&sb);
|
|
append(&sb, "update %_content set ");
|
|
for(i=0; i<v->nColumn; ++i) {
|
|
if( i>0 ){
|
|
append(&sb, ", ");
|
|
}
|
|
append(&sb, v->azContentColumn[i]);
|
|
append(&sb, " = ?");
|
|
}
|
|
append(&sb, " where docid = ?");
|
|
return stringBufferData(&sb);
|
|
}
|
|
|
|
/* Puts a freshly-prepared statement determined by iStmt in *ppStmt.
|
|
** If the indicated statement has never been prepared, it is prepared
|
|
** and cached, otherwise the cached version is reset.
|
|
*/
|
|
static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt,
|
|
sqlite3_stmt **ppStmt){
|
|
assert( iStmt<MAX_STMT );
|
|
if( v->pFulltextStatements[iStmt]==NULL ){
|
|
const char *zStmt;
|
|
int rc;
|
|
switch( iStmt ){
|
|
case CONTENT_INSERT_STMT:
|
|
zStmt = contentInsertStatement(v); break;
|
|
case CONTENT_SELECT_STMT:
|
|
zStmt = contentSelectStatement(v); break;
|
|
case CONTENT_UPDATE_STMT:
|
|
zStmt = contentUpdateStatement(v); break;
|
|
default:
|
|
zStmt = fulltext_zStatement[iStmt];
|
|
}
|
|
rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt],
|
|
zStmt);
|
|
if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
} else {
|
|
int rc = sqlite3_reset(v->pFulltextStatements[iStmt]);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}
|
|
|
|
*ppStmt = v->pFulltextStatements[iStmt];
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and
|
|
** SQLITE_ROW to SQLITE_ERROR. Useful for statements like UPDATE,
|
|
** where we expect no results.
|
|
*/
|
|
static int sql_single_step(sqlite3_stmt *s){
|
|
int rc = sqlite3_step(s);
|
|
return (rc==SQLITE_DONE) ? SQLITE_OK : rc;
|
|
}
|
|
|
|
/* Like sql_get_statement(), but for special replicated LEAF_SELECT
|
|
** statements.
|
|
*/
|
|
/* TODO(shess) Write version for generic statements and then share
|
|
** that between the cached-statement functions.
|
|
*/
|
|
static int sql_get_leaf_statement(fulltext_vtab *v, int idx,
|
|
sqlite3_stmt **ppStmt){
|
|
assert( idx>=0 && idx<MERGE_COUNT );
|
|
if( v->pLeafSelectStmts[idx]==NULL ){
|
|
int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx],
|
|
LEAF_SELECT);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}else{
|
|
int rc = sqlite3_reset(v->pLeafSelectStmts[idx]);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}
|
|
|
|
*ppStmt = v->pLeafSelectStmts[idx];
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* insert into %_content (docid, ...) values ([docid], [pValues])
|
|
** If the docid contains SQL NULL, then a unique docid will be
|
|
** generated.
|
|
*/
|
|
static int content_insert(fulltext_vtab *v, sqlite3_value *docid,
|
|
sqlite3_value **pValues){
|
|
sqlite3_stmt *s;
|
|
int i;
|
|
int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_bind_value(s, 1, docid);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
for(i=0; i<v->nColumn; ++i){
|
|
rc = sqlite3_bind_value(s, 2+i, pValues[i]);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}
|
|
|
|
return sql_single_step(s);
|
|
}
|
|
|
|
/* update %_content set col0 = pValues[0], col1 = pValues[1], ...
|
|
* where docid = [iDocid] */
|
|
static int content_update(fulltext_vtab *v, sqlite3_value **pValues,
|
|
sqlite_int64 iDocid){
|
|
sqlite3_stmt *s;
|
|
int i;
|
|
int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
for(i=0; i<v->nColumn; ++i){
|
|
rc = sqlite3_bind_value(s, 1+i, pValues[i]);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}
|
|
|
|
rc = sqlite3_bind_int64(s, 1+v->nColumn, iDocid);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
return sql_single_step(s);
|
|
}
|
|
|
|
static void freeStringArray(int nString, const char **pString){
|
|
int i;
|
|
|
|
for (i=0 ; i < nString ; ++i) {
|
|
if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]);
|
|
}
|
|
sqlite3_free((void *) pString);
|
|
}
|
|
|
|
/* select * from %_content where docid = [iDocid]
|
|
* The caller must delete the returned array and all strings in it.
|
|
* null fields will be NULL in the returned array.
|
|
*
|
|
* TODO: Perhaps we should return pointer/length strings here for consistency
|
|
* with other code which uses pointer/length. */
|
|
static int content_select(fulltext_vtab *v, sqlite_int64 iDocid,
|
|
const char ***pValues){
|
|
sqlite3_stmt *s;
|
|
const char **values;
|
|
int i;
|
|
int rc;
|
|
|
|
*pValues = NULL;
|
|
|
|
rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_bind_int64(s, 1, iDocid);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_step(s);
|
|
if( rc!=SQLITE_ROW ) return rc;
|
|
|
|
values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *));
|
|
for(i=0; i<v->nColumn; ++i){
|
|
if( sqlite3_column_type(s, i)==SQLITE_NULL ){
|
|
values[i] = NULL;
|
|
}else{
|
|
values[i] = string_dup((char*)sqlite3_column_text(s, i));
|
|
}
|
|
}
|
|
|
|
/* We expect only one row. We must execute another sqlite3_step()
|
|
* to complete the iteration; otherwise the table will remain locked. */
|
|
rc = sqlite3_step(s);
|
|
if( rc==SQLITE_DONE ){
|
|
*pValues = values;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
freeStringArray(v->nColumn, values);
|
|
return rc;
|
|
}
|
|
|
|
/* delete from %_content where docid = [iDocid ] */
|
|
static int content_delete(fulltext_vtab *v, sqlite_int64 iDocid){
|
|
sqlite3_stmt *s;
|
|
int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_bind_int64(s, 1, iDocid);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
return sql_single_step(s);
|
|
}
|
|
|
|
/* insert into %_segments values ([pData])
|
|
** returns assigned blockid in *piBlockid
|
|
*/
|
|
static int block_insert(fulltext_vtab *v, const char *pData, int nData,
|
|
sqlite_int64 *piBlockid){
|
|
sqlite3_stmt *s;
|
|
int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_step(s);
|
|
if( rc==SQLITE_ROW ) return SQLITE_ERROR;
|
|
if( rc!=SQLITE_DONE ) return rc;
|
|
|
|
/* blockid column is an alias for rowid. */
|
|
*piBlockid = sqlite3_last_insert_rowid(v->db);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* delete from %_segments
|
|
** where blockid between [iStartBlockid] and [iEndBlockid]
|
|
**
|
|
** Deletes the range of blocks, inclusive, used to delete the blocks
|
|
** which form a segment.
|
|
*/
|
|
static int block_delete(fulltext_vtab *v,
|
|
sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){
|
|
sqlite3_stmt *s;
|
|
int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_bind_int64(s, 1, iStartBlockid);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_bind_int64(s, 2, iEndBlockid);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
return sql_single_step(s);
|
|
}
|
|
|
|
/* Returns SQLITE_ROW with *pidx set to the maximum segment idx found
|
|
** at iLevel. Returns SQLITE_DONE if there are no segments at
|
|
** iLevel. Otherwise returns an error.
|
|
*/
|
|
static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){
|
|
sqlite3_stmt *s;
|
|
int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_bind_int(s, 1, iLevel);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_step(s);
|
|
/* Should always get at least one row due to how max() works. */
|
|
if( rc==SQLITE_DONE ) return SQLITE_DONE;
|
|
if( rc!=SQLITE_ROW ) return rc;
|
|
|
|
/* NULL means that there were no inputs to max(). */
|
|
if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
|
|
rc = sqlite3_step(s);
|
|
if( rc==SQLITE_ROW ) return SQLITE_ERROR;
|
|
return rc;
|
|
}
|
|
|
|
*pidx = sqlite3_column_int(s, 0);
|
|
|
|
/* We expect only one row. We must execute another sqlite3_step()
|
|
* to complete the iteration; otherwise the table will remain locked. */
|
|
rc = sqlite3_step(s);
|
|
if( rc==SQLITE_ROW ) return SQLITE_ERROR;
|
|
if( rc!=SQLITE_DONE ) return rc;
|
|
return SQLITE_ROW;
|
|
}
|
|
|
|
/* insert into %_segdir values (
|
|
** [iLevel], [idx],
|
|
** [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid],
|
|
** [pRootData]
|
|
** )
|
|
*/
|
|
static int segdir_set(fulltext_vtab *v, int iLevel, int idx,
|
|
sqlite_int64 iStartBlockid,
|
|
sqlite_int64 iLeavesEndBlockid,
|
|
sqlite_int64 iEndBlockid,
|
|
const char *pRootData, int nRootData){
|
|
sqlite3_stmt *s;
|
|
int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_bind_int(s, 1, iLevel);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_bind_int(s, 2, idx);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_bind_int64(s, 3, iStartBlockid);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_bind_int64(s, 5, iEndBlockid);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
return sql_single_step(s);
|
|
}
|
|
|
|
/* Queries %_segdir for the block span of the segments in level
|
|
** iLevel. Returns SQLITE_DONE if there are no blocks for iLevel,
|
|
** SQLITE_ROW if there are blocks, else an error.
|
|
*/
|
|
static int segdir_span(fulltext_vtab *v, int iLevel,
|
|
sqlite_int64 *piStartBlockid,
|
|
sqlite_int64 *piEndBlockid){
|
|
sqlite3_stmt *s;
|
|
int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_bind_int(s, 1, iLevel);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_step(s);
|
|
if( rc==SQLITE_DONE ) return SQLITE_DONE; /* Should never happen */
|
|
if( rc!=SQLITE_ROW ) return rc;
|
|
|
|
/* This happens if all segments at this level are entirely inline. */
|
|
if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
|
|
/* We expect only one row. We must execute another sqlite3_step()
|
|
* to complete the iteration; otherwise the table will remain locked. */
|
|
int rc2 = sqlite3_step(s);
|
|
if( rc2==SQLITE_ROW ) return SQLITE_ERROR;
|
|
return rc2;
|
|
}
|
|
|
|
*piStartBlockid = sqlite3_column_int64(s, 0);
|
|
*piEndBlockid = sqlite3_column_int64(s, 1);
|
|
|
|
/* We expect only one row. We must execute another sqlite3_step()
|
|
* to complete the iteration; otherwise the table will remain locked. */
|
|
rc = sqlite3_step(s);
|
|
if( rc==SQLITE_ROW ) return SQLITE_ERROR;
|
|
if( rc!=SQLITE_DONE ) return rc;
|
|
return SQLITE_ROW;
|
|
}
|
|
|
|
/* Delete the segment blocks and segment directory records for all
|
|
** segments at iLevel.
|
|
*/
|
|
static int segdir_delete(fulltext_vtab *v, int iLevel){
|
|
sqlite3_stmt *s;
|
|
sqlite_int64 iStartBlockid, iEndBlockid;
|
|
int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid);
|
|
if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc;
|
|
|
|
if( rc==SQLITE_ROW ){
|
|
rc = block_delete(v, iStartBlockid, iEndBlockid);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}
|
|
|
|
/* Delete the segment directory itself. */
|
|
rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_bind_int64(s, 1, iLevel);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
return sql_single_step(s);
|
|
}
|
|
|
|
/* TODO(shess) clearPendingTerms() is far down the file because
|
|
** writeZeroSegment() is far down the file because LeafWriter is far
|
|
** down the file. Consider refactoring the code to move the non-vtab
|
|
** code above the vtab code so that we don't need this forward
|
|
** reference.
|
|
*/
|
|
static int clearPendingTerms(fulltext_vtab *v);
|
|
|
|
/*
|
|
** Free the memory used to contain a fulltext_vtab structure.
|
|
*/
|
|
static void fulltext_vtab_destroy(fulltext_vtab *v){
|
|
int iStmt, i;
|
|
|
|
FTSTRACE(("FTS3 Destroy %p\n", v));
|
|
for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){
|
|
if( v->pFulltextStatements[iStmt]!=NULL ){
|
|
sqlite3_finalize(v->pFulltextStatements[iStmt]);
|
|
v->pFulltextStatements[iStmt] = NULL;
|
|
}
|
|
}
|
|
|
|
for( i=0; i<MERGE_COUNT; i++ ){
|
|
if( v->pLeafSelectStmts[i]!=NULL ){
|
|
sqlite3_finalize(v->pLeafSelectStmts[i]);
|
|
v->pLeafSelectStmts[i] = NULL;
|
|
}
|
|
}
|
|
|
|
if( v->pTokenizer!=NULL ){
|
|
v->pTokenizer->pModule->xDestroy(v->pTokenizer);
|
|
v->pTokenizer = NULL;
|
|
}
|
|
|
|
clearPendingTerms(v);
|
|
|
|
sqlite3_free(v->azColumn);
|
|
for(i = 0; i < v->nColumn; ++i) {
|
|
sqlite3_free(v->azContentColumn[i]);
|
|
}
|
|
sqlite3_free(v->azContentColumn);
|
|
sqlite3_free(v);
|
|
}
|
|
|
|
/*
|
|
** Token types for parsing the arguments to xConnect or xCreate.
|
|
*/
|
|
#define TOKEN_EOF 0 /* End of file */
|
|
#define TOKEN_SPACE 1 /* Any kind of whitespace */
|
|
#define TOKEN_ID 2 /* An identifier */
|
|
#define TOKEN_STRING 3 /* A string literal */
|
|
#define TOKEN_PUNCT 4 /* A single punctuation character */
|
|
|
|
/*
|
|
** If X is a character that can be used in an identifier then
|
|
** ftsIdChar(X) will be true. Otherwise it is false.
|
|
**
|
|
** For ASCII, any character with the high-order bit set is
|
|
** allowed in an identifier. For 7-bit characters,
|
|
** isFtsIdChar[X] must be 1.
|
|
**
|
|
** Ticket #1066. the SQL standard does not allow '$' in the
|
|
** middle of identfiers. But many SQL implementations do.
|
|
** SQLite will allow '$' in identifiers for compatibility.
|
|
** But the feature is undocumented.
|
|
*/
|
|
static const char isFtsIdChar[] = {
|
|
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
|
|
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
|
|
};
|
|
#define ftsIdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isFtsIdChar[c-0x20]))
|
|
|
|
|
|
/*
|
|
** Return the length of the token that begins at z[0].
|
|
** Store the token type in *tokenType before returning.
|
|
*/
|
|
static int ftsGetToken(const char *z, int *tokenType){
|
|
int i, c;
|
|
switch( *z ){
|
|
case 0: {
|
|
*tokenType = TOKEN_EOF;
|
|
return 0;
|
|
}
|
|
case ' ': case '\t': case '\n': case '\f': case '\r': {
|
|
for(i=1; safe_isspace(z[i]); i++){}
|
|
*tokenType = TOKEN_SPACE;
|
|
return i;
|
|
}
|
|
case '`':
|
|
case '\'':
|
|
case '"': {
|
|
int delim = z[0];
|
|
for(i=1; (c=z[i])!=0; i++){
|
|
if( c==delim ){
|
|
if( z[i+1]==delim ){
|
|
i++;
|
|
}else{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
*tokenType = TOKEN_STRING;
|
|
return i + (c!=0);
|
|
}
|
|
case '[': {
|
|
for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
|
|
*tokenType = TOKEN_ID;
|
|
return i;
|
|
}
|
|
default: {
|
|
if( !ftsIdChar(*z) ){
|
|
break;
|
|
}
|
|
for(i=1; ftsIdChar(z[i]); i++){}
|
|
*tokenType = TOKEN_ID;
|
|
return i;
|
|
}
|
|
}
|
|
*tokenType = TOKEN_PUNCT;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** A token extracted from a string is an instance of the following
|
|
** structure.
|
|
*/
|
|
typedef struct FtsToken {
|
|
const char *z; /* Pointer to token text. Not '\000' terminated */
|
|
short int n; /* Length of the token text in bytes. */
|
|
} FtsToken;
|
|
|
|
/*
|
|
** Given a input string (which is really one of the argv[] parameters
|
|
** passed into xConnect or xCreate) split the string up into tokens.
|
|
** Return an array of pointers to '\000' terminated strings, one string
|
|
** for each non-whitespace token.
|
|
**
|
|
** The returned array is terminated by a single NULL pointer.
|
|
**
|
|
** Space to hold the returned array is obtained from a single
|
|
** malloc and should be freed by passing the return value to free().
|
|
** The individual strings within the token list are all a part of
|
|
** the single memory allocation and will all be freed at once.
|
|
*/
|
|
static char **tokenizeString(const char *z, int *pnToken){
|
|
int nToken = 0;
|
|
FtsToken *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) );
|
|
int n = 1;
|
|
int e, i;
|
|
int totalSize = 0;
|
|
char **azToken;
|
|
char *zCopy;
|
|
while( n>0 ){
|
|
n = ftsGetToken(z, &e);
|
|
if( e!=TOKEN_SPACE ){
|
|
aToken[nToken].z = z;
|
|
aToken[nToken].n = n;
|
|
nToken++;
|
|
totalSize += n+1;
|
|
}
|
|
z += n;
|
|
}
|
|
azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize );
|
|
zCopy = (char*)&azToken[nToken];
|
|
nToken--;
|
|
for(i=0; i<nToken; i++){
|
|
azToken[i] = zCopy;
|
|
n = aToken[i].n;
|
|
memcpy(zCopy, aToken[i].z, n);
|
|
zCopy[n] = 0;
|
|
zCopy += n+1;
|
|
}
|
|
azToken[nToken] = 0;
|
|
sqlite3_free(aToken);
|
|
*pnToken = nToken;
|
|
return azToken;
|
|
}
|
|
|
|
/*
|
|
** Convert an SQL-style quoted string into a normal string by removing
|
|
** the quote characters. The conversion is done in-place. If the
|
|
** input does not begin with a quote character, then this routine
|
|
** is a no-op.
|
|
**
|
|
** Examples:
|
|
**
|
|
** "abc" becomes abc
|
|
** 'xyz' becomes xyz
|
|
** [pqr] becomes pqr
|
|
** `mno` becomes mno
|
|
*/
|
|
static void dequoteString(char *z){
|
|
int quote;
|
|
int i, j;
|
|
if( z==0 ) return;
|
|
quote = z[0];
|
|
switch( quote ){
|
|
case '\'': break;
|
|
case '"': break;
|
|
case '`': break; /* For MySQL compatibility */
|
|
case '[': quote = ']'; break; /* For MS SqlServer compatibility */
|
|
default: return;
|
|
}
|
|
for(i=1, j=0; z[i]; i++){
|
|
if( z[i]==quote ){
|
|
if( z[i+1]==quote ){
|
|
z[j++] = quote;
|
|
i++;
|
|
}else{
|
|
z[j++] = 0;
|
|
break;
|
|
}
|
|
}else{
|
|
z[j++] = z[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The input azIn is a NULL-terminated list of tokens. Remove the first
|
|
** token and all punctuation tokens. Remove the quotes from
|
|
** around string literal tokens.
|
|
**
|
|
** Example:
|
|
**
|
|
** input: tokenize chinese ( 'simplifed' , 'mixed' )
|
|
** output: chinese simplifed mixed
|
|
**
|
|
** Another example:
|
|
**
|
|
** input: delimiters ( '[' , ']' , '...' )
|
|
** output: [ ] ...
|
|
*/
|
|
static void tokenListToIdList(char **azIn){
|
|
int i, j;
|
|
if( azIn ){
|
|
for(i=0, j=-1; azIn[i]; i++){
|
|
if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){
|
|
dequoteString(azIn[i]);
|
|
if( j>=0 ){
|
|
azIn[j] = azIn[i];
|
|
}
|
|
j++;
|
|
}
|
|
}
|
|
azIn[j] = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Find the first alphanumeric token in the string zIn. Null-terminate
|
|
** this token. Remove any quotation marks. And return a pointer to
|
|
** the result.
|
|
*/
|
|
static char *firstToken(char *zIn, char **pzTail){
|
|
int n, ttype;
|
|
while(1){
|
|
n = ftsGetToken(zIn, &ttype);
|
|
if( ttype==TOKEN_SPACE ){
|
|
zIn += n;
|
|
}else if( ttype==TOKEN_EOF ){
|
|
*pzTail = zIn;
|
|
return 0;
|
|
}else{
|
|
zIn[n] = 0;
|
|
*pzTail = &zIn[1];
|
|
dequoteString(zIn);
|
|
return zIn;
|
|
}
|
|
}
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
/* Return true if...
|
|
**
|
|
** * s begins with the string t, ignoring case
|
|
** * s is longer than t
|
|
** * The first character of s beyond t is not a alphanumeric
|
|
**
|
|
** Ignore leading space in *s.
|
|
**
|
|
** To put it another way, return true if the first token of
|
|
** s[] is t[].
|
|
*/
|
|
static int startsWith(const char *s, const char *t){
|
|
while( safe_isspace(*s) ){ s++; }
|
|
while( *t ){
|
|
if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0;
|
|
}
|
|
return *s!='_' && !safe_isalnum(*s);
|
|
}
|
|
|
|
/*
|
|
** An instance of this structure defines the "spec" of a
|
|
** full text index. This structure is populated by parseSpec
|
|
** and use by fulltextConnect and fulltextCreate.
|
|
*/
|
|
typedef struct TableSpec {
|
|
const char *zDb; /* Logical database name */
|
|
const char *zName; /* Name of the full-text index */
|
|
int nColumn; /* Number of columns to be indexed */
|
|
char **azColumn; /* Original names of columns to be indexed */
|
|
char **azContentColumn; /* Column names for %_content */
|
|
char **azTokenizer; /* Name of tokenizer and its arguments */
|
|
} TableSpec;
|
|
|
|
/*
|
|
** Reclaim all of the memory used by a TableSpec
|
|
*/
|
|
static void clearTableSpec(TableSpec *p) {
|
|
sqlite3_free(p->azColumn);
|
|
sqlite3_free(p->azContentColumn);
|
|
sqlite3_free(p->azTokenizer);
|
|
}
|
|
|
|
/* Parse a CREATE VIRTUAL TABLE statement, which looks like this:
|
|
*
|
|
* CREATE VIRTUAL TABLE email
|
|
* USING fts3(subject, body, tokenize mytokenizer(myarg))
|
|
*
|
|
* We return parsed information in a TableSpec structure.
|
|
*
|
|
*/
|
|
static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv,
|
|
char**pzErr){
|
|
int i, n;
|
|
char *z, *zDummy;
|
|
char **azArg;
|
|
const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */
|
|
|
|
assert( argc>=3 );
|
|
/* Current interface:
|
|
** argv[0] - module name
|
|
** argv[1] - database name
|
|
** argv[2] - table name
|
|
** argv[3..] - columns, optionally followed by tokenizer specification
|
|
** and snippet delimiters specification.
|
|
*/
|
|
|
|
/* Make a copy of the complete argv[][] array in a single allocation.
|
|
** The argv[][] array is read-only and transient. We can write to the
|
|
** copy in order to modify things and the copy is persistent.
|
|
*/
|
|
CLEAR(pSpec);
|
|
for(i=n=0; i<argc; i++){
|
|
n += strlen(argv[i]) + 1;
|
|
}
|
|
azArg = sqlite3_malloc( sizeof(char*)*argc + n );
|
|
if( azArg==0 ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
z = (char*)&azArg[argc];
|
|
for(i=0; i<argc; i++){
|
|
azArg[i] = z;
|
|
strcpy(z, argv[i]);
|
|
z += strlen(z)+1;
|
|
}
|
|
|
|
/* Identify the column names and the tokenizer and delimiter arguments
|
|
** in the argv[][] array.
|
|
*/
|
|
pSpec->zDb = azArg[1];
|
|
pSpec->zName = azArg[2];
|
|
pSpec->nColumn = 0;
|
|
pSpec->azColumn = azArg;
|
|
zTokenizer = "tokenize simple";
|
|
for(i=3; i<argc; ++i){
|
|
if( startsWith(azArg[i],"tokenize") ){
|
|
zTokenizer = azArg[i];
|
|
}else{
|
|
z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy);
|
|
pSpec->nColumn++;
|
|
}
|
|
}
|
|
if( pSpec->nColumn==0 ){
|
|
azArg[0] = "content";
|
|
pSpec->nColumn = 1;
|
|
}
|
|
|
|
/*
|
|
** Construct the list of content column names.
|
|
**
|
|
** Each content column name will be of the form cNNAAAA
|
|
** where NN is the column number and AAAA is the sanitized
|
|
** column name. "sanitized" means that special characters are
|
|
** converted to "_". The cNN prefix guarantees that all column
|
|
** names are unique.
|
|
**
|
|
** The AAAA suffix is not strictly necessary. It is included
|
|
** for the convenience of people who might examine the generated
|
|
** %_content table and wonder what the columns are used for.
|
|
*/
|
|
pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) );
|
|
if( pSpec->azContentColumn==0 ){
|
|
clearTableSpec(pSpec);
|
|
return SQLITE_NOMEM;
|
|
}
|
|
for(i=0; i<pSpec->nColumn; i++){
|
|
char *p;
|
|
pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]);
|
|
for (p = pSpec->azContentColumn[i]; *p ; ++p) {
|
|
if( !safe_isalnum(*p) ) *p = '_';
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Parse the tokenizer specification string.
|
|
*/
|
|
pSpec->azTokenizer = tokenizeString(zTokenizer, &n);
|
|
tokenListToIdList(pSpec->azTokenizer);
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Generate a CREATE TABLE statement that describes the schema of
|
|
** the virtual table. Return a pointer to this schema string.
|
|
**
|
|
** Space is obtained from sqlite3_mprintf() and should be freed
|
|
** using sqlite3_free().
|
|
*/
|
|
static char *fulltextSchema(
|
|
int nColumn, /* Number of columns */
|
|
const char *const* azColumn, /* List of columns */
|
|
const char *zTableName /* Name of the table */
|
|
){
|
|
int i;
|
|
char *zSchema, *zNext;
|
|
const char *zSep = "(";
|
|
zSchema = sqlite3_mprintf("CREATE TABLE x");
|
|
for(i=0; i<nColumn; i++){
|
|
zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]);
|
|
sqlite3_free(zSchema);
|
|
zSchema = zNext;
|
|
zSep = ",";
|
|
}
|
|
zNext = sqlite3_mprintf("%s,%Q HIDDEN", zSchema, zTableName);
|
|
sqlite3_free(zSchema);
|
|
zSchema = zNext;
|
|
zNext = sqlite3_mprintf("%s,docid HIDDEN)", zSchema);
|
|
sqlite3_free(zSchema);
|
|
return zNext;
|
|
}
|
|
|
|
/*
|
|
** Build a new sqlite3_vtab structure that will describe the
|
|
** fulltext index defined by spec.
|
|
*/
|
|
static int constructVtab(
|
|
sqlite3 *db, /* The SQLite database connection */
|
|
fts3Hash *pHash, /* Hash table containing tokenizers */
|
|
TableSpec *spec, /* Parsed spec information from parseSpec() */
|
|
sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
|
|
char **pzErr /* Write any error message here */
|
|
){
|
|
int rc;
|
|
int n;
|
|
fulltext_vtab *v = 0;
|
|
const sqlite3_tokenizer_module *m = NULL;
|
|
char *schema;
|
|
|
|
char const *zTok; /* Name of tokenizer to use for this fts table */
|
|
int nTok; /* Length of zTok, including nul terminator */
|
|
|
|
v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab));
|
|
if( v==0 ) return SQLITE_NOMEM;
|
|
CLEAR(v);
|
|
/* sqlite will initialize v->base */
|
|
v->db = db;
|
|
v->zDb = spec->zDb; /* Freed when azColumn is freed */
|
|
v->zName = spec->zName; /* Freed when azColumn is freed */
|
|
v->nColumn = spec->nColumn;
|
|
v->azContentColumn = spec->azContentColumn;
|
|
spec->azContentColumn = 0;
|
|
v->azColumn = spec->azColumn;
|
|
spec->azColumn = 0;
|
|
|
|
if( spec->azTokenizer==0 ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
|
|
zTok = spec->azTokenizer[0];
|
|
if( !zTok ){
|
|
zTok = "simple";
|
|
}
|
|
nTok = strlen(zTok)+1;
|
|
|
|
m = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zTok, nTok);
|
|
if( !m ){
|
|
*pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]);
|
|
rc = SQLITE_ERROR;
|
|
goto err;
|
|
}
|
|
|
|
for(n=0; spec->azTokenizer[n]; n++){}
|
|
if( n ){
|
|
rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1],
|
|
&v->pTokenizer);
|
|
}else{
|
|
rc = m->xCreate(0, 0, &v->pTokenizer);
|
|
}
|
|
if( rc!=SQLITE_OK ) goto err;
|
|
v->pTokenizer->pModule = m;
|
|
|
|
/* TODO: verify the existence of backing tables foo_content, foo_term */
|
|
|
|
schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn,
|
|
spec->zName);
|
|
rc = sqlite3_declare_vtab(db, schema);
|
|
sqlite3_free(schema);
|
|
if( rc!=SQLITE_OK ) goto err;
|
|
|
|
memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements));
|
|
|
|
/* Indicate that the buffer is not live. */
|
|
v->nPendingData = -1;
|
|
|
|
*ppVTab = &v->base;
|
|
FTSTRACE(("FTS3 Connect %p\n", v));
|
|
|
|
return rc;
|
|
|
|
err:
|
|
fulltext_vtab_destroy(v);
|
|
return rc;
|
|
}
|
|
|
|
static int fulltextConnect(
|
|
sqlite3 *db,
|
|
void *pAux,
|
|
int argc, const char *const*argv,
|
|
sqlite3_vtab **ppVTab,
|
|
char **pzErr
|
|
){
|
|
TableSpec spec;
|
|
int rc = parseSpec(&spec, argc, argv, pzErr);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr);
|
|
clearTableSpec(&spec);
|
|
return rc;
|
|
}
|
|
|
|
/* The %_content table holds the text of each document, with
|
|
** the docid column exposed as the SQLite rowid for the table.
|
|
*/
|
|
/* TODO(shess) This comment needs elaboration to match the updated
|
|
** code. Work it into the top-of-file comment at that time.
|
|
*/
|
|
static int fulltextCreate(sqlite3 *db, void *pAux,
|
|
int argc, const char * const *argv,
|
|
sqlite3_vtab **ppVTab, char **pzErr){
|
|
int rc;
|
|
TableSpec spec;
|
|
StringBuffer schema;
|
|
FTSTRACE(("FTS3 Create\n"));
|
|
|
|
rc = parseSpec(&spec, argc, argv, pzErr);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
initStringBuffer(&schema);
|
|
append(&schema, "CREATE TABLE %_content(");
|
|
append(&schema, " docid INTEGER PRIMARY KEY,");
|
|
appendList(&schema, spec.nColumn, spec.azContentColumn);
|
|
append(&schema, ")");
|
|
rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema));
|
|
stringBufferDestroy(&schema);
|
|
if( rc!=SQLITE_OK ) goto out;
|
|
|
|
rc = sql_exec(db, spec.zDb, spec.zName,
|
|
"create table %_segments("
|
|
" blockid INTEGER PRIMARY KEY,"
|
|
" block blob"
|
|
");"
|
|
);
|
|
if( rc!=SQLITE_OK ) goto out;
|
|
|
|
rc = sql_exec(db, spec.zDb, spec.zName,
|
|
"create table %_segdir("
|
|
" level integer,"
|
|
" idx integer,"
|
|
" start_block integer,"
|
|
" leaves_end_block integer,"
|
|
" end_block integer,"
|
|
" root blob,"
|
|
" primary key(level, idx)"
|
|
");");
|
|
if( rc!=SQLITE_OK ) goto out;
|
|
|
|
rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr);
|
|
|
|
out:
|
|
clearTableSpec(&spec);
|
|
return rc;
|
|
}
|
|
|
|
/* Decide how to handle an SQL query. */
|
|
static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
|
|
fulltext_vtab *v = (fulltext_vtab *)pVTab;
|
|
int i;
|
|
FTSTRACE(("FTS3 BestIndex\n"));
|
|
|
|
for(i=0; i<pInfo->nConstraint; ++i){
|
|
const struct sqlite3_index_constraint *pConstraint;
|
|
pConstraint = &pInfo->aConstraint[i];
|
|
if( pConstraint->usable ) {
|
|
if( (pConstraint->iColumn==-1 || pConstraint->iColumn==v->nColumn+1) &&
|
|
pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
|
|
pInfo->idxNum = QUERY_DOCID; /* lookup by docid */
|
|
FTSTRACE(("FTS3 QUERY_DOCID\n"));
|
|
} else if( pConstraint->iColumn>=0 && pConstraint->iColumn<=v->nColumn &&
|
|
pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
|
|
/* full-text search */
|
|
pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn;
|
|
FTSTRACE(("FTS3 QUERY_FULLTEXT %d\n", pConstraint->iColumn));
|
|
} else continue;
|
|
|
|
pInfo->aConstraintUsage[i].argvIndex = 1;
|
|
pInfo->aConstraintUsage[i].omit = 1;
|
|
|
|
/* An arbitrary value for now.
|
|
* TODO: Perhaps docid matches should be considered cheaper than
|
|
* full-text searches. */
|
|
pInfo->estimatedCost = 1.0;
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
pInfo->idxNum = QUERY_GENERIC;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
static int fulltextDisconnect(sqlite3_vtab *pVTab){
|
|
FTSTRACE(("FTS3 Disconnect %p\n", pVTab));
|
|
fulltext_vtab_destroy((fulltext_vtab *)pVTab);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
static int fulltextDestroy(sqlite3_vtab *pVTab){
|
|
fulltext_vtab *v = (fulltext_vtab *)pVTab;
|
|
int rc;
|
|
|
|
FTSTRACE(("FTS3 Destroy %p\n", pVTab));
|
|
rc = sql_exec(v->db, v->zDb, v->zName,
|
|
"drop table if exists %_content;"
|
|
"drop table if exists %_segments;"
|
|
"drop table if exists %_segdir;"
|
|
);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
fulltext_vtab_destroy((fulltext_vtab *)pVTab);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
|
|
fulltext_cursor *c;
|
|
|
|
c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor));
|
|
if( c ){
|
|
memset(c, 0, sizeof(fulltext_cursor));
|
|
/* sqlite will initialize c->base */
|
|
*ppCursor = &c->base;
|
|
FTSTRACE(("FTS3 Open %p: %p\n", pVTab, c));
|
|
return SQLITE_OK;
|
|
}else{
|
|
return SQLITE_NOMEM;
|
|
}
|
|
}
|
|
|
|
|
|
/* Free all of the dynamically allocated memory held by *q
|
|
*/
|
|
static void queryClear(Query *q){
|
|
int i;
|
|
for(i = 0; i < q->nTerms; ++i){
|
|
sqlite3_free(q->pTerms[i].pTerm);
|
|
}
|
|
sqlite3_free(q->pTerms);
|
|
CLEAR(q);
|
|
}
|
|
|
|
/* Free all of the dynamically allocated memory held by the
|
|
** Snippet
|
|
*/
|
|
static void snippetClear(Snippet *p){
|
|
sqlite3_free(p->aMatch);
|
|
sqlite3_free(p->zOffset);
|
|
sqlite3_free(p->zSnippet);
|
|
CLEAR(p);
|
|
}
|
|
/*
|
|
** Append a single entry to the p->aMatch[] log.
|
|
*/
|
|
static void snippetAppendMatch(
|
|
Snippet *p, /* Append the entry to this snippet */
|
|
int iCol, int iTerm, /* The column and query term */
|
|
int iToken, /* Matching token in document */
|
|
int iStart, int nByte /* Offset and size of the match */
|
|
){
|
|
int i;
|
|
struct snippetMatch *pMatch;
|
|
if( p->nMatch+1>=p->nAlloc ){
|
|
p->nAlloc = p->nAlloc*2 + 10;
|
|
p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) );
|
|
if( p->aMatch==0 ){
|
|
p->nMatch = 0;
|
|
p->nAlloc = 0;
|
|
return;
|
|
}
|
|
}
|
|
i = p->nMatch++;
|
|
pMatch = &p->aMatch[i];
|
|
pMatch->iCol = iCol;
|
|
pMatch->iTerm = iTerm;
|
|
pMatch->iToken = iToken;
|
|
pMatch->iStart = iStart;
|
|
pMatch->nByte = nByte;
|
|
}
|
|
|
|
/*
|
|
** Sizing information for the circular buffer used in snippetOffsetsOfColumn()
|
|
*/
|
|
#define FTS3_ROTOR_SZ (32)
|
|
#define FTS3_ROTOR_MASK (FTS3_ROTOR_SZ-1)
|
|
|
|
/*
|
|
** Add entries to pSnippet->aMatch[] for every match that occurs against
|
|
** document zDoc[0..nDoc-1] which is stored in column iColumn.
|
|
*/
|
|
static void snippetOffsetsOfColumn(
|
|
Query *pQuery,
|
|
Snippet *pSnippet,
|
|
int iColumn,
|
|
const char *zDoc,
|
|
int nDoc
|
|
){
|
|
const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */
|
|
sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */
|
|
sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */
|
|
fulltext_vtab *pVtab; /* The full text index */
|
|
int nColumn; /* Number of columns in the index */
|
|
const QueryTerm *aTerm; /* Query string terms */
|
|
int nTerm; /* Number of query string terms */
|
|
int i, j; /* Loop counters */
|
|
int rc; /* Return code */
|
|
unsigned int match, prevMatch; /* Phrase search bitmasks */
|
|
const char *zToken; /* Next token from the tokenizer */
|
|
int nToken; /* Size of zToken */
|
|
int iBegin, iEnd, iPos; /* Offsets of beginning and end */
|
|
|
|
/* The following variables keep a circular buffer of the last
|
|
** few tokens */
|
|
unsigned int iRotor = 0; /* Index of current token */
|
|
int iRotorBegin[FTS3_ROTOR_SZ]; /* Beginning offset of token */
|
|
int iRotorLen[FTS3_ROTOR_SZ]; /* Length of token */
|
|
|
|
pVtab = pQuery->pFts;
|
|
nColumn = pVtab->nColumn;
|
|
pTokenizer = pVtab->pTokenizer;
|
|
pTModule = pTokenizer->pModule;
|
|
rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor);
|
|
if( rc ) return;
|
|
pTCursor->pTokenizer = pTokenizer;
|
|
aTerm = pQuery->pTerms;
|
|
nTerm = pQuery->nTerms;
|
|
if( nTerm>=FTS3_ROTOR_SZ ){
|
|
nTerm = FTS3_ROTOR_SZ - 1;
|
|
}
|
|
prevMatch = 0;
|
|
while(1){
|
|
rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos);
|
|
if( rc ) break;
|
|
iRotorBegin[iRotor&FTS3_ROTOR_MASK] = iBegin;
|
|
iRotorLen[iRotor&FTS3_ROTOR_MASK] = iEnd-iBegin;
|
|
match = 0;
|
|
for(i=0; i<nTerm; i++){
|
|
int iCol;
|
|
iCol = aTerm[i].iColumn;
|
|
if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue;
|
|
if( aTerm[i].nTerm>nToken ) continue;
|
|
if( !aTerm[i].isPrefix && aTerm[i].nTerm<nToken ) continue;
|
|
assert( aTerm[i].nTerm<=nToken );
|
|
if( memcmp(aTerm[i].pTerm, zToken, aTerm[i].nTerm) ) continue;
|
|
if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue;
|
|
match |= 1<<i;
|
|
if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){
|
|
for(j=aTerm[i].iPhrase-1; j>=0; j--){
|
|
int k = (iRotor-j) & FTS3_ROTOR_MASK;
|
|
snippetAppendMatch(pSnippet, iColumn, i-j, iPos-j,
|
|
iRotorBegin[k], iRotorLen[k]);
|
|
}
|
|
}
|
|
}
|
|
prevMatch = match<<1;
|
|
iRotor++;
|
|
}
|
|
pTModule->xClose(pTCursor);
|
|
}
|
|
|
|
/*
|
|
** Remove entries from the pSnippet structure to account for the NEAR
|
|
** operator. When this is called, pSnippet contains the list of token
|
|
** offsets produced by treating all NEAR operators as AND operators.
|
|
** This function removes any entries that should not be present after
|
|
** accounting for the NEAR restriction. For example, if the queried
|
|
** document is:
|
|
**
|
|
** "A B C D E A"
|
|
**
|
|
** and the query is:
|
|
**
|
|
** A NEAR/0 E
|
|
**
|
|
** then when this function is called the Snippet contains token offsets
|
|
** 0, 4 and 5. This function removes the "0" entry (because the first A
|
|
** is not near enough to an E).
|
|
*/
|
|
static void trimSnippetOffsetsForNear(Query *pQuery, Snippet *pSnippet){
|
|
int ii;
|
|
int iDir = 1;
|
|
|
|
while(iDir>-2) {
|
|
assert( iDir==1 || iDir==-1 );
|
|
for(ii=0; ii<pSnippet->nMatch; ii++){
|
|
int jj;
|
|
int nNear;
|
|
struct snippetMatch *pMatch = &pSnippet->aMatch[ii];
|
|
QueryTerm *pQueryTerm = &pQuery->pTerms[pMatch->iTerm];
|
|
|
|
if( (pMatch->iTerm+iDir)<0
|
|
|| (pMatch->iTerm+iDir)>=pQuery->nTerms
|
|
){
|
|
continue;
|
|
}
|
|
|
|
nNear = pQueryTerm->nNear;
|
|
if( iDir<0 ){
|
|
nNear = pQueryTerm[-1].nNear;
|
|
}
|
|
|
|
if( pMatch->iTerm>=0 && nNear ){
|
|
int isOk = 0;
|
|
int iNextTerm = pMatch->iTerm+iDir;
|
|
int iPrevTerm = iNextTerm;
|
|
|
|
int iEndToken;
|
|
int iStartToken;
|
|
|
|
if( iDir<0 ){
|
|
int nPhrase = 1;
|
|
iStartToken = pMatch->iToken;
|
|
while( (pMatch->iTerm+nPhrase)<pQuery->nTerms
|
|
&& pQuery->pTerms[pMatch->iTerm+nPhrase].iPhrase>1
|
|
){
|
|
nPhrase++;
|
|
}
|
|
iEndToken = iStartToken + nPhrase - 1;
|
|
}else{
|
|
iEndToken = pMatch->iToken;
|
|
iStartToken = pMatch->iToken+1-pQueryTerm->iPhrase;
|
|
}
|
|
|
|
while( pQuery->pTerms[iNextTerm].iPhrase>1 ){
|
|
iNextTerm--;
|
|
}
|
|
while( (iPrevTerm+1)<pQuery->nTerms &&
|
|
pQuery->pTerms[iPrevTerm+1].iPhrase>1
|
|
){
|
|
iPrevTerm++;
|
|
}
|
|
|
|
for(jj=0; isOk==0 && jj<pSnippet->nMatch; jj++){
|
|
struct snippetMatch *p = &pSnippet->aMatch[jj];
|
|
if( p->iCol==pMatch->iCol && ((
|
|
p->iTerm==iNextTerm &&
|
|
p->iToken>iEndToken &&
|
|
p->iToken<=iEndToken+nNear
|
|
) || (
|
|
p->iTerm==iPrevTerm &&
|
|
p->iToken<iStartToken &&
|
|
p->iToken>=iStartToken-nNear
|
|
))){
|
|
isOk = 1;
|
|
}
|
|
}
|
|
if( !isOk ){
|
|
for(jj=1-pQueryTerm->iPhrase; jj<=0; jj++){
|
|
pMatch[jj].iTerm = -1;
|
|
}
|
|
ii = -1;
|
|
iDir = 1;
|
|
}
|
|
}
|
|
}
|
|
iDir -= 2;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Compute all offsets for the current row of the query.
|
|
** If the offsets have already been computed, this routine is a no-op.
|
|
*/
|
|
static void snippetAllOffsets(fulltext_cursor *p){
|
|
int nColumn;
|
|
int iColumn, i;
|
|
int iFirst, iLast;
|
|
fulltext_vtab *pFts;
|
|
|
|
if( p->snippet.nMatch ) return;
|
|
if( p->q.nTerms==0 ) return;
|
|
pFts = p->q.pFts;
|
|
nColumn = pFts->nColumn;
|
|
iColumn = (p->iCursorType - QUERY_FULLTEXT);
|
|
if( iColumn<0 || iColumn>=nColumn ){
|
|
iFirst = 0;
|
|
iLast = nColumn-1;
|
|
}else{
|
|
iFirst = iColumn;
|
|
iLast = iColumn;
|
|
}
|
|
for(i=iFirst; i<=iLast; i++){
|
|
const char *zDoc;
|
|
int nDoc;
|
|
zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1);
|
|
nDoc = sqlite3_column_bytes(p->pStmt, i+1);
|
|
snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc);
|
|
}
|
|
|
|
trimSnippetOffsetsForNear(&p->q, &p->snippet);
|
|
}
|
|
|
|
/*
|
|
** Convert the information in the aMatch[] array of the snippet
|
|
** into the string zOffset[0..nOffset-1].
|
|
*/
|
|
static void snippetOffsetText(Snippet *p){
|
|
int i;
|
|
int cnt = 0;
|
|
StringBuffer sb;
|
|
char zBuf[200];
|
|
if( p->zOffset ) return;
|
|
initStringBuffer(&sb);
|
|
for(i=0; i<p->nMatch; i++){
|
|
struct snippetMatch *pMatch = &p->aMatch[i];
|
|
if( pMatch->iTerm>=0 ){
|
|
/* If snippetMatch.iTerm is less than 0, then the match was
|
|
** discarded as part of processing the NEAR operator (see the
|
|
** trimSnippetOffsetsForNear() function for details). Ignore
|
|
** it in this case
|
|
*/
|
|
zBuf[0] = ' ';
|
|
sprintf(&zBuf[cnt>0], "%d %d %d %d", pMatch->iCol,
|
|
pMatch->iTerm, pMatch->iStart, pMatch->nByte);
|
|
append(&sb, zBuf);
|
|
cnt++;
|
|
}
|
|
}
|
|
p->zOffset = stringBufferData(&sb);
|
|
p->nOffset = stringBufferLength(&sb);
|
|
}
|
|
|
|
/*
|
|
** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set
|
|
** of matching words some of which might be in zDoc. zDoc is column
|
|
** number iCol.
|
|
**
|
|
** iBreak is suggested spot in zDoc where we could begin or end an
|
|
** excerpt. Return a value similar to iBreak but possibly adjusted
|
|
** to be a little left or right so that the break point is better.
|
|
*/
|
|
static int wordBoundary(
|
|
int iBreak, /* The suggested break point */
|
|
const char *zDoc, /* Document text */
|
|
int nDoc, /* Number of bytes in zDoc[] */
|
|
struct snippetMatch *aMatch, /* Matching words */
|
|
int nMatch, /* Number of entries in aMatch[] */
|
|
int iCol /* The column number for zDoc[] */
|
|
){
|
|
int i;
|
|
if( iBreak<=10 ){
|
|
return 0;
|
|
}
|
|
if( iBreak>=nDoc-10 ){
|
|
return nDoc;
|
|
}
|
|
for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){}
|
|
while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; }
|
|
if( i<nMatch ){
|
|
if( aMatch[i].iStart<iBreak+10 ){
|
|
return aMatch[i].iStart;
|
|
}
|
|
if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){
|
|
return aMatch[i-1].iStart;
|
|
}
|
|
}
|
|
for(i=1; i<=10; i++){
|
|
if( safe_isspace(zDoc[iBreak-i]) ){
|
|
return iBreak - i + 1;
|
|
}
|
|
if( safe_isspace(zDoc[iBreak+i]) ){
|
|
return iBreak + i + 1;
|
|
}
|
|
}
|
|
return iBreak;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
** Allowed values for Snippet.aMatch[].snStatus
|
|
*/
|
|
#define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */
|
|
#define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */
|
|
|
|
/*
|
|
** Generate the text of a snippet.
|
|
*/
|
|
static void snippetText(
|
|
fulltext_cursor *pCursor, /* The cursor we need the snippet for */
|
|
const char *zStartMark, /* Markup to appear before each match */
|
|
const char *zEndMark, /* Markup to appear after each match */
|
|
const char *zEllipsis /* Ellipsis mark */
|
|
){
|
|
int i, j;
|
|
struct snippetMatch *aMatch;
|
|
int nMatch;
|
|
int nDesired;
|
|
StringBuffer sb;
|
|
int tailCol;
|
|
int tailOffset;
|
|
int iCol;
|
|
int nDoc;
|
|
const char *zDoc;
|
|
int iStart, iEnd;
|
|
int tailEllipsis = 0;
|
|
int iMatch;
|
|
|
|
|
|
sqlite3_free(pCursor->snippet.zSnippet);
|
|
pCursor->snippet.zSnippet = 0;
|
|
aMatch = pCursor->snippet.aMatch;
|
|
nMatch = pCursor->snippet.nMatch;
|
|
initStringBuffer(&sb);
|
|
|
|
for(i=0; i<nMatch; i++){
|
|
aMatch[i].snStatus = SNIPPET_IGNORE;
|
|
}
|
|
nDesired = 0;
|
|
for(i=0; i<pCursor->q.nTerms; i++){
|
|
for(j=0; j<nMatch; j++){
|
|
if( aMatch[j].iTerm==i ){
|
|
aMatch[j].snStatus = SNIPPET_DESIRED;
|
|
nDesired++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
iMatch = 0;
|
|
tailCol = -1;
|
|
tailOffset = 0;
|
|
for(i=0; i<nMatch && nDesired>0; i++){
|
|
if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue;
|
|
nDesired--;
|
|
iCol = aMatch[i].iCol;
|
|
zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1);
|
|
nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1);
|
|
iStart = aMatch[i].iStart - 40;
|
|
iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol);
|
|
if( iStart<=10 ){
|
|
iStart = 0;
|
|
}
|
|
if( iCol==tailCol && iStart<=tailOffset+20 ){
|
|
iStart = tailOffset;
|
|
}
|
|
if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){
|
|
trimWhiteSpace(&sb);
|
|
appendWhiteSpace(&sb);
|
|
append(&sb, zEllipsis);
|
|
appendWhiteSpace(&sb);
|
|
}
|
|
iEnd = aMatch[i].iStart + aMatch[i].nByte + 40;
|
|
iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol);
|
|
if( iEnd>=nDoc-10 ){
|
|
iEnd = nDoc;
|
|
tailEllipsis = 0;
|
|
}else{
|
|
tailEllipsis = 1;
|
|
}
|
|
while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; }
|
|
while( iStart<iEnd ){
|
|
while( iMatch<nMatch && aMatch[iMatch].iStart<iStart
|
|
&& aMatch[iMatch].iCol<=iCol ){
|
|
iMatch++;
|
|
}
|
|
if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd
|
|
&& aMatch[iMatch].iCol==iCol ){
|
|
nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart);
|
|
iStart = aMatch[iMatch].iStart;
|
|
append(&sb, zStartMark);
|
|
nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte);
|
|
append(&sb, zEndMark);
|
|
iStart += aMatch[iMatch].nByte;
|
|
for(j=iMatch+1; j<nMatch; j++){
|
|
if( aMatch[j].iTerm==aMatch[iMatch].iTerm
|
|
&& aMatch[j].snStatus==SNIPPET_DESIRED ){
|
|
nDesired--;
|
|
aMatch[j].snStatus = SNIPPET_IGNORE;
|
|
}
|
|
}
|
|
}else{
|
|
nappend(&sb, &zDoc[iStart], iEnd - iStart);
|
|
iStart = iEnd;
|
|
}
|
|
}
|
|
tailCol = iCol;
|
|
tailOffset = iEnd;
|
|
}
|
|
trimWhiteSpace(&sb);
|
|
if( tailEllipsis ){
|
|
appendWhiteSpace(&sb);
|
|
append(&sb, zEllipsis);
|
|
}
|
|
pCursor->snippet.zSnippet = stringBufferData(&sb);
|
|
pCursor->snippet.nSnippet = stringBufferLength(&sb);
|
|
}
|
|
|
|
|
|
/*
|
|
** Close the cursor. For additional information see the documentation
|
|
** on the xClose method of the virtual table interface.
|
|
*/
|
|
static int fulltextClose(sqlite3_vtab_cursor *pCursor){
|
|
fulltext_cursor *c = (fulltext_cursor *) pCursor;
|
|
FTSTRACE(("FTS3 Close %p\n", c));
|
|
sqlite3_finalize(c->pStmt);
|
|
queryClear(&c->q);
|
|
snippetClear(&c->snippet);
|
|
if( c->result.nData!=0 ) dlrDestroy(&c->reader);
|
|
dataBufferDestroy(&c->result);
|
|
sqlite3_free(c);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
static int fulltextNext(sqlite3_vtab_cursor *pCursor){
|
|
fulltext_cursor *c = (fulltext_cursor *) pCursor;
|
|
int rc;
|
|
|
|
FTSTRACE(("FTS3 Next %p\n", pCursor));
|
|
snippetClear(&c->snippet);
|
|
if( c->iCursorType < QUERY_FULLTEXT ){
|
|
/* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
|
|
rc = sqlite3_step(c->pStmt);
|
|
switch( rc ){
|
|
case SQLITE_ROW:
|
|
c->eof = 0;
|
|
return SQLITE_OK;
|
|
case SQLITE_DONE:
|
|
c->eof = 1;
|
|
return SQLITE_OK;
|
|
default:
|
|
c->eof = 1;
|
|
return rc;
|
|
}
|
|
} else { /* full-text query */
|
|
rc = sqlite3_reset(c->pStmt);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
if( c->result.nData==0 || dlrAtEnd(&c->reader) ){
|
|
c->eof = 1;
|
|
return SQLITE_OK;
|
|
}
|
|
rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader));
|
|
dlrStep(&c->reader);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
/* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
|
|
rc = sqlite3_step(c->pStmt);
|
|
if( rc==SQLITE_ROW ){ /* the case we expect */
|
|
c->eof = 0;
|
|
return SQLITE_OK;
|
|
}
|
|
/* an error occurred; abort */
|
|
return rc==SQLITE_DONE ? SQLITE_ERROR : rc;
|
|
}
|
|
}
|
|
|
|
|
|
/* TODO(shess) If we pushed LeafReader to the top of the file, or to
|
|
** another file, term_select() could be pushed above
|
|
** docListOfTerm().
|
|
*/
|
|
static int termSelect(fulltext_vtab *v, int iColumn,
|
|
const char *pTerm, int nTerm, int isPrefix,
|
|
DocListType iType, DataBuffer *out);
|
|
|
|
/* Return a DocList corresponding to the query term *pTerm. If *pTerm
|
|
** is the first term of a phrase query, go ahead and evaluate the phrase
|
|
** query and return the doclist for the entire phrase query.
|
|
**
|
|
** The resulting DL_DOCIDS doclist is stored in pResult, which is
|
|
** overwritten.
|
|
*/
|
|
static int docListOfTerm(
|
|
fulltext_vtab *v, /* The full text index */
|
|
int iColumn, /* column to restrict to. No restriction if >=nColumn */
|
|
QueryTerm *pQTerm, /* Term we are looking for, or 1st term of a phrase */
|
|
DataBuffer *pResult /* Write the result here */
|
|
){
|
|
DataBuffer left, right, new;
|
|
int i, rc;
|
|
|
|
/* No phrase search if no position info. */
|
|
assert( pQTerm->nPhrase==0 || DL_DEFAULT!=DL_DOCIDS );
|
|
|
|
/* This code should never be called with buffered updates. */
|
|
assert( v->nPendingData<0 );
|
|
|
|
dataBufferInit(&left, 0);
|
|
rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix,
|
|
(0<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS), &left);
|
|
if( rc ) return rc;
|
|
for(i=1; i<=pQTerm->nPhrase && left.nData>0; i++){
|
|
/* If this token is connected to the next by a NEAR operator, and
|
|
** the next token is the start of a phrase, then set nPhraseRight
|
|
** to the number of tokens in the phrase. Otherwise leave it at 1.
|
|
*/
|
|
int nPhraseRight = 1;
|
|
while( (i+nPhraseRight)<=pQTerm->nPhrase
|
|
&& pQTerm[i+nPhraseRight].nNear==0
|
|
){
|
|
nPhraseRight++;
|
|
}
|
|
|
|
dataBufferInit(&right, 0);
|
|
rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm,
|
|
pQTerm[i].isPrefix, DL_POSITIONS, &right);
|
|
if( rc ){
|
|
dataBufferDestroy(&left);
|
|
return rc;
|
|
}
|
|
dataBufferInit(&new, 0);
|
|
docListPhraseMerge(left.pData, left.nData, right.pData, right.nData,
|
|
pQTerm[i-1].nNear, pQTerm[i-1].iPhrase + nPhraseRight,
|
|
((i<pQTerm->nPhrase) ? DL_POSITIONS : DL_DOCIDS),
|
|
&new);
|
|
dataBufferDestroy(&left);
|
|
dataBufferDestroy(&right);
|
|
left = new;
|
|
}
|
|
*pResult = left;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Add a new term pTerm[0..nTerm-1] to the query *q.
|
|
*/
|
|
static void queryAdd(Query *q, const char *pTerm, int nTerm){
|
|
QueryTerm *t;
|
|
++q->nTerms;
|
|
q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0]));
|
|
if( q->pTerms==0 ){
|
|
q->nTerms = 0;
|
|
return;
|
|
}
|
|
t = &q->pTerms[q->nTerms - 1];
|
|
CLEAR(t);
|
|
t->pTerm = sqlite3_malloc(nTerm+1);
|
|
memcpy(t->pTerm, pTerm, nTerm);
|
|
t->pTerm[nTerm] = 0;
|
|
t->nTerm = nTerm;
|
|
t->isOr = q->nextIsOr;
|
|
t->isPrefix = 0;
|
|
q->nextIsOr = 0;
|
|
t->iColumn = q->nextColumn;
|
|
q->nextColumn = q->dfltColumn;
|
|
}
|
|
|
|
/*
|
|
** Check to see if the string zToken[0...nToken-1] matches any
|
|
** column name in the virtual table. If it does,
|
|
** return the zero-indexed column number. If not, return -1.
|
|
*/
|
|
static int checkColumnSpecifier(
|
|
fulltext_vtab *pVtab, /* The virtual table */
|
|
const char *zToken, /* Text of the token */
|
|
int nToken /* Number of characters in the token */
|
|
){
|
|
int i;
|
|
for(i=0; i<pVtab->nColumn; i++){
|
|
if( memcmp(pVtab->azColumn[i], zToken, nToken)==0
|
|
&& pVtab->azColumn[i][nToken]==0 ){
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
** Parse the text at pSegment[0..nSegment-1]. Add additional terms
|
|
** to the query being assemblied in pQuery.
|
|
**
|
|
** inPhrase is true if pSegment[0..nSegement-1] is contained within
|
|
** double-quotes. If inPhrase is true, then the first term
|
|
** is marked with the number of terms in the phrase less one and
|
|
** OR and "-" syntax is ignored. If inPhrase is false, then every
|
|
** term found is marked with nPhrase=0 and OR and "-" syntax is significant.
|
|
*/
|
|
static int tokenizeSegment(
|
|
sqlite3_tokenizer *pTokenizer, /* The tokenizer to use */
|
|
const char *pSegment, int nSegment, /* Query expression being parsed */
|
|
int inPhrase, /* True if within "..." */
|
|
Query *pQuery /* Append results here */
|
|
){
|
|
const sqlite3_tokenizer_module *pModule = pTokenizer->pModule;
|
|
sqlite3_tokenizer_cursor *pCursor;
|
|
int firstIndex = pQuery->nTerms;
|
|
int iCol;
|
|
int nTerm = 1;
|
|
|
|
int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
pCursor->pTokenizer = pTokenizer;
|
|
|
|
while( 1 ){
|
|
const char *pToken;
|
|
int nToken, iBegin, iEnd, iPos;
|
|
|
|
rc = pModule->xNext(pCursor,
|
|
&pToken, &nToken,
|
|
&iBegin, &iEnd, &iPos);
|
|
if( rc!=SQLITE_OK ) break;
|
|
if( !inPhrase &&
|
|
pSegment[iEnd]==':' &&
|
|
(iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){
|
|
pQuery->nextColumn = iCol;
|
|
continue;
|
|
}
|
|
if( !inPhrase && pQuery->nTerms>0 && nToken==2
|
|
&& pSegment[iBegin+0]=='O'
|
|
&& pSegment[iBegin+1]=='R'
|
|
){
|
|
pQuery->nextIsOr = 1;
|
|
continue;
|
|
}
|
|
if( !inPhrase && pQuery->nTerms>0 && !pQuery->nextIsOr && nToken==4
|
|
&& pSegment[iBegin+0]=='N'
|
|
&& pSegment[iBegin+1]=='E'
|
|
&& pSegment[iBegin+2]=='A'
|
|
&& pSegment[iBegin+3]=='R'
|
|
){
|
|
QueryTerm *pTerm = &pQuery->pTerms[pQuery->nTerms-1];
|
|
if( (iBegin+6)<nSegment
|
|
&& pSegment[iBegin+4] == '/'
|
|
&& pSegment[iBegin+5]>='0' && pSegment[iBegin+5]<='9'
|
|
){
|
|
pTerm->nNear = (pSegment[iBegin+5] - '0');
|
|
nToken += 2;
|
|
if( pSegment[iBegin+6]>='0' && pSegment[iBegin+6]<=9 ){
|
|
pTerm->nNear = pTerm->nNear * 10 + (pSegment[iBegin+6] - '0');
|
|
iEnd++;
|
|
}
|
|
pModule->xNext(pCursor, &pToken, &nToken, &iBegin, &iEnd, &iPos);
|
|
} else {
|
|
pTerm->nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM;
|
|
}
|
|
pTerm->nNear++;
|
|
continue;
|
|
}
|
|
|
|
queryAdd(pQuery, pToken, nToken);
|
|
if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){
|
|
pQuery->pTerms[pQuery->nTerms-1].isNot = 1;
|
|
}
|
|
if( iEnd<nSegment && pSegment[iEnd]=='*' ){
|
|
pQuery->pTerms[pQuery->nTerms-1].isPrefix = 1;
|
|
}
|
|
pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm;
|
|
if( inPhrase ){
|
|
nTerm++;
|
|
}
|
|
}
|
|
|
|
if( inPhrase && pQuery->nTerms>firstIndex ){
|
|
pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1;
|
|
}
|
|
|
|
return pModule->xClose(pCursor);
|
|
}
|
|
|
|
/* Parse a query string, yielding a Query object pQuery.
|
|
**
|
|
** The calling function will need to queryClear() to clean up
|
|
** the dynamically allocated memory held by pQuery.
|
|
*/
|
|
static int parseQuery(
|
|
fulltext_vtab *v, /* The fulltext index */
|
|
const char *zInput, /* Input text of the query string */
|
|
int nInput, /* Size of the input text */
|
|
int dfltColumn, /* Default column of the index to match against */
|
|
Query *pQuery /* Write the parse results here. */
|
|
){
|
|
int iInput, inPhrase = 0;
|
|
int ii;
|
|
QueryTerm *aTerm;
|
|
|
|
if( zInput==0 ) nInput = 0;
|
|
if( nInput<0 ) nInput = strlen(zInput);
|
|
pQuery->nTerms = 0;
|
|
pQuery->pTerms = NULL;
|
|
pQuery->nextIsOr = 0;
|
|
pQuery->nextColumn = dfltColumn;
|
|
pQuery->dfltColumn = dfltColumn;
|
|
pQuery->pFts = v;
|
|
|
|
for(iInput=0; iInput<nInput; ++iInput){
|
|
int i;
|
|
for(i=iInput; i<nInput && zInput[i]!='"'; ++i){}
|
|
if( i>iInput ){
|
|
tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase,
|
|
pQuery);
|
|
}
|
|
iInput = i;
|
|
if( i<nInput ){
|
|
assert( zInput[i]=='"' );
|
|
inPhrase = !inPhrase;
|
|
}
|
|
}
|
|
|
|
if( inPhrase ){
|
|
/* unmatched quote */
|
|
queryClear(pQuery);
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
/* Modify the values of the QueryTerm.nPhrase variables to account for
|
|
** the NEAR operator. For the purposes of QueryTerm.nPhrase, phrases
|
|
** and tokens connected by the NEAR operator are handled as a single
|
|
** phrase. See comments above the QueryTerm structure for details.
|
|
*/
|
|
aTerm = pQuery->pTerms;
|
|
for(ii=0; ii<pQuery->nTerms; ii++){
|
|
if( aTerm[ii].nNear || aTerm[ii].nPhrase ){
|
|
while (aTerm[ii+aTerm[ii].nPhrase].nNear) {
|
|
aTerm[ii].nPhrase += (1 + aTerm[ii+aTerm[ii].nPhrase+1].nPhrase);
|
|
}
|
|
}
|
|
}
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* TODO(shess) Refactor the code to remove this forward decl. */
|
|
static int flushPendingTerms(fulltext_vtab *v);
|
|
|
|
/* Perform a full-text query using the search expression in
|
|
** zInput[0..nInput-1]. Return a list of matching documents
|
|
** in pResult.
|
|
**
|
|
** Queries must match column iColumn. Or if iColumn>=nColumn
|
|
** they are allowed to match against any column.
|
|
*/
|
|
static int fulltextQuery(
|
|
fulltext_vtab *v, /* The full text index */
|
|
int iColumn, /* Match against this column by default */
|
|
const char *zInput, /* The query string */
|
|
int nInput, /* Number of bytes in zInput[] */
|
|
DataBuffer *pResult, /* Write the result doclist here */
|
|
Query *pQuery /* Put parsed query string here */
|
|
){
|
|
int i, iNext, rc;
|
|
DataBuffer left, right, or, new;
|
|
int nNot = 0;
|
|
QueryTerm *aTerm;
|
|
|
|
/* TODO(shess) Instead of flushing pendingTerms, we could query for
|
|
** the relevant term and merge the doclist into what we receive from
|
|
** the database. Wait and see if this is a common issue, first.
|
|
**
|
|
** A good reason not to flush is to not generate update-related
|
|
** error codes from here.
|
|
*/
|
|
|
|
/* Flush any buffered updates before executing the query. */
|
|
rc = flushPendingTerms(v);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
/* TODO(shess) I think that the queryClear() calls below are not
|
|
** necessary, because fulltextClose() already clears the query.
|
|
*/
|
|
rc = parseQuery(v, zInput, nInput, iColumn, pQuery);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
/* Empty or NULL queries return no results. */
|
|
if( pQuery->nTerms==0 ){
|
|
dataBufferInit(pResult, 0);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Merge AND terms. */
|
|
/* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */
|
|
aTerm = pQuery->pTerms;
|
|
for(i = 0; i<pQuery->nTerms; i=iNext){
|
|
if( aTerm[i].isNot ){
|
|
/* Handle all NOT terms in a separate pass */
|
|
nNot++;
|
|
iNext = i + aTerm[i].nPhrase+1;
|
|
continue;
|
|
}
|
|
iNext = i + aTerm[i].nPhrase + 1;
|
|
rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
|
|
if( rc ){
|
|
if( i!=nNot ) dataBufferDestroy(&left);
|
|
queryClear(pQuery);
|
|
return rc;
|
|
}
|
|
while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){
|
|
rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or);
|
|
iNext += aTerm[iNext].nPhrase + 1;
|
|
if( rc ){
|
|
if( i!=nNot ) dataBufferDestroy(&left);
|
|
dataBufferDestroy(&right);
|
|
queryClear(pQuery);
|
|
return rc;
|
|
}
|
|
dataBufferInit(&new, 0);
|
|
docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new);
|
|
dataBufferDestroy(&right);
|
|
dataBufferDestroy(&or);
|
|
right = new;
|
|
}
|
|
if( i==nNot ){ /* first term processed. */
|
|
left = right;
|
|
}else{
|
|
dataBufferInit(&new, 0);
|
|
docListAndMerge(left.pData, left.nData, right.pData, right.nData, &new);
|
|
dataBufferDestroy(&right);
|
|
dataBufferDestroy(&left);
|
|
left = new;
|
|
}
|
|
}
|
|
|
|
if( nNot==pQuery->nTerms ){
|
|
/* We do not yet know how to handle a query of only NOT terms */
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
/* Do the EXCEPT terms */
|
|
for(i=0; i<pQuery->nTerms; i += aTerm[i].nPhrase + 1){
|
|
if( !aTerm[i].isNot ) continue;
|
|
rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
|
|
if( rc ){
|
|
queryClear(pQuery);
|
|
dataBufferDestroy(&left);
|
|
return rc;
|
|
}
|
|
dataBufferInit(&new, 0);
|
|
docListExceptMerge(left.pData, left.nData, right.pData, right.nData, &new);
|
|
dataBufferDestroy(&right);
|
|
dataBufferDestroy(&left);
|
|
left = new;
|
|
}
|
|
|
|
*pResult = left;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This is the xFilter interface for the virtual table. See
|
|
** the virtual table xFilter method documentation for additional
|
|
** information.
|
|
**
|
|
** If idxNum==QUERY_GENERIC then do a full table scan against
|
|
** the %_content table.
|
|
**
|
|
** If idxNum==QUERY_DOCID then do a docid lookup for a single entry
|
|
** in the %_content table.
|
|
**
|
|
** If idxNum>=QUERY_FULLTEXT then use the full text index. The
|
|
** column on the left-hand side of the MATCH operator is column
|
|
** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand
|
|
** side of the MATCH operator.
|
|
*/
|
|
/* TODO(shess) Upgrade the cursor initialization and destruction to
|
|
** account for fulltextFilter() being called multiple times on the
|
|
** same cursor. The current solution is very fragile. Apply fix to
|
|
** fts3 as appropriate.
|
|
*/
|
|
static int fulltextFilter(
|
|
sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
|
|
int idxNum, const char *idxStr, /* Which indexing scheme to use */
|
|
int argc, sqlite3_value **argv /* Arguments for the indexing scheme */
|
|
){
|
|
fulltext_cursor *c = (fulltext_cursor *) pCursor;
|
|
fulltext_vtab *v = cursor_vtab(c);
|
|
int rc;
|
|
StringBuffer sb;
|
|
|
|
FTSTRACE(("FTS3 Filter %p\n",pCursor));
|
|
|
|
initStringBuffer(&sb);
|
|
append(&sb, "SELECT docid, ");
|
|
appendList(&sb, v->nColumn, v->azContentColumn);
|
|
append(&sb, " FROM %_content");
|
|
if( idxNum!=QUERY_GENERIC ) append(&sb, " WHERE docid = ?");
|
|
sqlite3_finalize(c->pStmt);
|
|
rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, stringBufferData(&sb));
|
|
stringBufferDestroy(&sb);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
c->iCursorType = idxNum;
|
|
switch( idxNum ){
|
|
case QUERY_GENERIC:
|
|
break;
|
|
|
|
case QUERY_DOCID:
|
|
rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0]));
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
break;
|
|
|
|
default: /* full-text search */
|
|
{
|
|
const char *zQuery = (const char *)sqlite3_value_text(argv[0]);
|
|
assert( idxNum<=QUERY_FULLTEXT+v->nColumn);
|
|
assert( argc==1 );
|
|
queryClear(&c->q);
|
|
if( c->result.nData!=0 ){
|
|
/* This case happens if the same cursor is used repeatedly. */
|
|
dlrDestroy(&c->reader);
|
|
dataBufferReset(&c->result);
|
|
}else{
|
|
dataBufferInit(&c->result, 0);
|
|
}
|
|
rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &c->result, &c->q);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
if( c->result.nData!=0 ){
|
|
dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return fulltextNext(pCursor);
|
|
}
|
|
|
|
/* This is the xEof method of the virtual table. The SQLite core
|
|
** calls this routine to find out if it has reached the end of
|
|
** a query's results set.
|
|
*/
|
|
static int fulltextEof(sqlite3_vtab_cursor *pCursor){
|
|
fulltext_cursor *c = (fulltext_cursor *) pCursor;
|
|
return c->eof;
|
|
}
|
|
|
|
/* This is the xColumn method of the virtual table. The SQLite
|
|
** core calls this method during a query when it needs the value
|
|
** of a column from the virtual table. This method needs to use
|
|
** one of the sqlite3_result_*() routines to store the requested
|
|
** value back in the pContext.
|
|
*/
|
|
static int fulltextColumn(sqlite3_vtab_cursor *pCursor,
|
|
sqlite3_context *pContext, int idxCol){
|
|
fulltext_cursor *c = (fulltext_cursor *) pCursor;
|
|
fulltext_vtab *v = cursor_vtab(c);
|
|
|
|
if( idxCol<v->nColumn ){
|
|
sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1);
|
|
sqlite3_result_value(pContext, pVal);
|
|
}else if( idxCol==v->nColumn ){
|
|
/* The extra column whose name is the same as the table.
|
|
** Return a blob which is a pointer to the cursor
|
|
*/
|
|
sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT);
|
|
}else if( idxCol==v->nColumn+1 ){
|
|
/* The docid column, which is an alias for rowid. */
|
|
sqlite3_value *pVal = sqlite3_column_value(c->pStmt, 0);
|
|
sqlite3_result_value(pContext, pVal);
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* This is the xRowid method. The SQLite core calls this routine to
|
|
** retrieve the rowid for the current row of the result set. fts3
|
|
** exposes %_content.docid as the rowid for the virtual table. The
|
|
** rowid should be written to *pRowid.
|
|
*/
|
|
static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
|
|
fulltext_cursor *c = (fulltext_cursor *) pCursor;
|
|
|
|
*pRowid = sqlite3_column_int64(c->pStmt, 0);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Add all terms in [zText] to pendingTerms table. If [iColumn] > 0,
|
|
** we also store positions and offsets in the hash table using that
|
|
** column number.
|
|
*/
|
|
static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid,
|
|
const char *zText, int iColumn){
|
|
sqlite3_tokenizer *pTokenizer = v->pTokenizer;
|
|
sqlite3_tokenizer_cursor *pCursor;
|
|
const char *pToken;
|
|
int nTokenBytes;
|
|
int iStartOffset, iEndOffset, iPosition;
|
|
int rc;
|
|
|
|
rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
pCursor->pTokenizer = pTokenizer;
|
|
while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor,
|
|
&pToken, &nTokenBytes,
|
|
&iStartOffset, &iEndOffset,
|
|
&iPosition)) ){
|
|
DLCollector *p;
|
|
int nData; /* Size of doclist before our update. */
|
|
|
|
/* Positions can't be negative; we use -1 as a terminator
|
|
* internally. Token can't be NULL or empty. */
|
|
if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){
|
|
rc = SQLITE_ERROR;
|
|
break;
|
|
}
|
|
|
|
p = fts3HashFind(&v->pendingTerms, pToken, nTokenBytes);
|
|
if( p==NULL ){
|
|
nData = 0;
|
|
p = dlcNew(iDocid, DL_DEFAULT);
|
|
fts3HashInsert(&v->pendingTerms, pToken, nTokenBytes, p);
|
|
|
|
/* Overhead for our hash table entry, the key, and the value. */
|
|
v->nPendingData += sizeof(struct fts3HashElem)+sizeof(*p)+nTokenBytes;
|
|
}else{
|
|
nData = p->b.nData;
|
|
if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid);
|
|
}
|
|
if( iColumn>=0 ){
|
|
dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset);
|
|
}
|
|
|
|
/* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */
|
|
v->nPendingData += p->b.nData-nData;
|
|
}
|
|
|
|
/* TODO(shess) Check return? Should this be able to cause errors at
|
|
** this point? Actually, same question about sqlite3_finalize(),
|
|
** though one could argue that failure there means that the data is
|
|
** not durable. *ponder*
|
|
*/
|
|
pTokenizer->pModule->xClose(pCursor);
|
|
if( SQLITE_DONE == rc ) return SQLITE_OK;
|
|
return rc;
|
|
}
|
|
|
|
/* Add doclists for all terms in [pValues] to pendingTerms table. */
|
|
static int insertTerms(fulltext_vtab *v, sqlite_int64 iDocid,
|
|
sqlite3_value **pValues){
|
|
int i;
|
|
for(i = 0; i < v->nColumn ; ++i){
|
|
char *zText = (char*)sqlite3_value_text(pValues[i]);
|
|
int rc = buildTerms(v, iDocid, zText, i);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Add empty doclists for all terms in the given row's content to
|
|
** pendingTerms.
|
|
*/
|
|
static int deleteTerms(fulltext_vtab *v, sqlite_int64 iDocid){
|
|
const char **pValues;
|
|
int i, rc;
|
|
|
|
/* TODO(shess) Should we allow such tables at all? */
|
|
if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR;
|
|
|
|
rc = content_select(v, iDocid, &pValues);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
for(i = 0 ; i < v->nColumn; ++i) {
|
|
rc = buildTerms(v, iDocid, pValues[i], -1);
|
|
if( rc!=SQLITE_OK ) break;
|
|
}
|
|
|
|
freeStringArray(v->nColumn, pValues);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* TODO(shess) Refactor the code to remove this forward decl. */
|
|
static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid);
|
|
|
|
/* Insert a row into the %_content table; set *piDocid to be the ID of the
|
|
** new row. Add doclists for terms to pendingTerms.
|
|
*/
|
|
static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestDocid,
|
|
sqlite3_value **pValues, sqlite_int64 *piDocid){
|
|
int rc;
|
|
|
|
rc = content_insert(v, pRequestDocid, pValues); /* execute an SQL INSERT */
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
/* docid column is an alias for rowid. */
|
|
*piDocid = sqlite3_last_insert_rowid(v->db);
|
|
rc = initPendingTerms(v, *piDocid);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
return insertTerms(v, *piDocid, pValues);
|
|
}
|
|
|
|
/* Delete a row from the %_content table; add empty doclists for terms
|
|
** to pendingTerms.
|
|
*/
|
|
static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){
|
|
int rc = initPendingTerms(v, iRow);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = deleteTerms(v, iRow);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
return content_delete(v, iRow); /* execute an SQL DELETE */
|
|
}
|
|
|
|
/* Update a row in the %_content table; add delete doclists to
|
|
** pendingTerms for old terms not in the new data, add insert doclists
|
|
** to pendingTerms for terms in the new data.
|
|
*/
|
|
static int index_update(fulltext_vtab *v, sqlite_int64 iRow,
|
|
sqlite3_value **pValues){
|
|
int rc = initPendingTerms(v, iRow);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
/* Generate an empty doclist for each term that previously appeared in this
|
|
* row. */
|
|
rc = deleteTerms(v, iRow);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = content_update(v, pValues, iRow); /* execute an SQL UPDATE */
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
/* Now add positions for terms which appear in the updated row. */
|
|
return insertTerms(v, iRow, pValues);
|
|
}
|
|
|
|
/*******************************************************************/
|
|
/* InteriorWriter is used to collect terms and block references into
|
|
** interior nodes in %_segments. See commentary at top of file for
|
|
** format.
|
|
*/
|
|
|
|
/* How large interior nodes can grow. */
|
|
#define INTERIOR_MAX 2048
|
|
|
|
/* Minimum number of terms per interior node (except the root). This
|
|
** prevents large terms from making the tree too skinny - must be >0
|
|
** so that the tree always makes progress. Note that the min tree
|
|
** fanout will be INTERIOR_MIN_TERMS+1.
|
|
*/
|
|
#define INTERIOR_MIN_TERMS 7
|
|
#if INTERIOR_MIN_TERMS<1
|
|
# error INTERIOR_MIN_TERMS must be greater than 0.
|
|
#endif
|
|
|
|
/* ROOT_MAX controls how much data is stored inline in the segment
|
|
** directory.
|
|
*/
|
|
/* TODO(shess) Push ROOT_MAX down to whoever is writing things. It's
|
|
** only here so that interiorWriterRootInfo() and leafWriterRootInfo()
|
|
** can both see it, but if the caller passed it in, we wouldn't even
|
|
** need a define.
|
|
*/
|
|
#define ROOT_MAX 1024
|
|
#if ROOT_MAX<VARINT_MAX*2
|
|
# error ROOT_MAX must have enough space for a header.
|
|
#endif
|
|
|
|
/* InteriorBlock stores a linked-list of interior blocks while a lower
|
|
** layer is being constructed.
|
|
*/
|
|
typedef struct InteriorBlock {
|
|
DataBuffer term; /* Leftmost term in block's subtree. */
|
|
DataBuffer data; /* Accumulated data for the block. */
|
|
struct InteriorBlock *next;
|
|
} InteriorBlock;
|
|
|
|
static InteriorBlock *interiorBlockNew(int iHeight, sqlite_int64 iChildBlock,
|
|
const char *pTerm, int nTerm){
|
|
InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock));
|
|
char c[VARINT_MAX+VARINT_MAX];
|
|
int n;
|
|
|
|
if( block ){
|
|
memset(block, 0, sizeof(*block));
|
|
dataBufferInit(&block->term, 0);
|
|
dataBufferReplace(&block->term, pTerm, nTerm);
|
|
|
|
n = fts3PutVarint(c, iHeight);
|
|
n += fts3PutVarint(c+n, iChildBlock);
|
|
dataBufferInit(&block->data, INTERIOR_MAX);
|
|
dataBufferReplace(&block->data, c, n);
|
|
}
|
|
return block;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/* Verify that the data is readable as an interior node. */
|
|
static void interiorBlockValidate(InteriorBlock *pBlock){
|
|
const char *pData = pBlock->data.pData;
|
|
int nData = pBlock->data.nData;
|
|
int n, iDummy;
|
|
sqlite_int64 iBlockid;
|
|
|
|
assert( nData>0 );
|
|
assert( pData!=0 );
|
|
assert( pData+nData>pData );
|
|
|
|
/* Must lead with height of node as a varint(n), n>0 */
|
|
n = fts3GetVarint32(pData, &iDummy);
|
|
assert( n>0 );
|
|
assert( iDummy>0 );
|
|
assert( n<nData );
|
|
pData += n;
|
|
nData -= n;
|
|
|
|
/* Must contain iBlockid. */
|
|
n = fts3GetVarint(pData, &iBlockid);
|
|
assert( n>0 );
|
|
assert( n<=nData );
|
|
pData += n;
|
|
nData -= n;
|
|
|
|
/* Zero or more terms of positive length */
|
|
if( nData!=0 ){
|
|
/* First term is not delta-encoded. */
|
|
n = fts3GetVarint32(pData, &iDummy);
|
|
assert( n>0 );
|
|
assert( iDummy>0 );
|
|
assert( n+iDummy>0);
|
|
assert( n+iDummy<=nData );
|
|
pData += n+iDummy;
|
|
nData -= n+iDummy;
|
|
|
|
/* Following terms delta-encoded. */
|
|
while( nData!=0 ){
|
|
/* Length of shared prefix. */
|
|
n = fts3GetVarint32(pData, &iDummy);
|
|
assert( n>0 );
|
|
assert( iDummy>=0 );
|
|
assert( n<nData );
|
|
pData += n;
|
|
nData -= n;
|
|
|
|
/* Length and data of distinct suffix. */
|
|
n = fts3GetVarint32(pData, &iDummy);
|
|
assert( n>0 );
|
|
assert( iDummy>0 );
|
|
assert( n+iDummy>0);
|
|
assert( n+iDummy<=nData );
|
|
pData += n+iDummy;
|
|
nData -= n+iDummy;
|
|
}
|
|
}
|
|
}
|
|
#define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x)
|
|
#else
|
|
#define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 )
|
|
#endif
|
|
|
|
typedef struct InteriorWriter {
|
|
int iHeight; /* from 0 at leaves. */
|
|
InteriorBlock *first, *last;
|
|
struct InteriorWriter *parentWriter;
|
|
|
|
DataBuffer term; /* Last term written to block "last". */
|
|
sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */
|
|
#ifndef NDEBUG
|
|
sqlite_int64 iLastChildBlock; /* for consistency checks. */
|
|
#endif
|
|
} InteriorWriter;
|
|
|
|
/* Initialize an interior node where pTerm[nTerm] marks the leftmost
|
|
** term in the tree. iChildBlock is the leftmost child block at the
|
|
** next level down the tree.
|
|
*/
|
|
static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm,
|
|
sqlite_int64 iChildBlock,
|
|
InteriorWriter *pWriter){
|
|
InteriorBlock *block;
|
|
assert( iHeight>0 );
|
|
CLEAR(pWriter);
|
|
|
|
pWriter->iHeight = iHeight;
|
|
pWriter->iOpeningChildBlock = iChildBlock;
|
|
#ifndef NDEBUG
|
|
pWriter->iLastChildBlock = iChildBlock;
|
|
#endif
|
|
block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm);
|
|
pWriter->last = pWriter->first = block;
|
|
ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
|
|
dataBufferInit(&pWriter->term, 0);
|
|
}
|
|
|
|
/* Append the child node rooted at iChildBlock to the interior node,
|
|
** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree.
|
|
*/
|
|
static void interiorWriterAppend(InteriorWriter *pWriter,
|
|
const char *pTerm, int nTerm,
|
|
sqlite_int64 iChildBlock){
|
|
char c[VARINT_MAX+VARINT_MAX];
|
|
int n, nPrefix = 0;
|
|
|
|
ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
|
|
|
|
/* The first term written into an interior node is actually
|
|
** associated with the second child added (the first child was added
|
|
** in interiorWriterInit, or in the if clause at the bottom of this
|
|
** function). That term gets encoded straight up, with nPrefix left
|
|
** at 0.
|
|
*/
|
|
if( pWriter->term.nData==0 ){
|
|
n = fts3PutVarint(c, nTerm);
|
|
}else{
|
|
while( nPrefix<pWriter->term.nData &&
|
|
pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
|
|
nPrefix++;
|
|
}
|
|
|
|
n = fts3PutVarint(c, nPrefix);
|
|
n += fts3PutVarint(c+n, nTerm-nPrefix);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
pWriter->iLastChildBlock++;
|
|
#endif
|
|
assert( pWriter->iLastChildBlock==iChildBlock );
|
|
|
|
/* Overflow to a new block if the new term makes the current block
|
|
** too big, and the current block already has enough terms.
|
|
*/
|
|
if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX &&
|
|
iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){
|
|
pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock,
|
|
pTerm, nTerm);
|
|
pWriter->last = pWriter->last->next;
|
|
pWriter->iOpeningChildBlock = iChildBlock;
|
|
dataBufferReset(&pWriter->term);
|
|
}else{
|
|
dataBufferAppend2(&pWriter->last->data, c, n,
|
|
pTerm+nPrefix, nTerm-nPrefix);
|
|
dataBufferReplace(&pWriter->term, pTerm, nTerm);
|
|
}
|
|
ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
|
|
}
|
|
|
|
/* Free the space used by pWriter, including the linked-list of
|
|
** InteriorBlocks, and parentWriter, if present.
|
|
*/
|
|
static int interiorWriterDestroy(InteriorWriter *pWriter){
|
|
InteriorBlock *block = pWriter->first;
|
|
|
|
while( block!=NULL ){
|
|
InteriorBlock *b = block;
|
|
block = block->next;
|
|
dataBufferDestroy(&b->term);
|
|
dataBufferDestroy(&b->data);
|
|
sqlite3_free(b);
|
|
}
|
|
if( pWriter->parentWriter!=NULL ){
|
|
interiorWriterDestroy(pWriter->parentWriter);
|
|
sqlite3_free(pWriter->parentWriter);
|
|
}
|
|
dataBufferDestroy(&pWriter->term);
|
|
SCRAMBLE(pWriter);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* If pWriter can fit entirely in ROOT_MAX, return it as the root info
|
|
** directly, leaving *piEndBlockid unchanged. Otherwise, flush
|
|
** pWriter to %_segments, building a new layer of interior nodes, and
|
|
** recursively ask for their root into.
|
|
*/
|
|
static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter,
|
|
char **ppRootInfo, int *pnRootInfo,
|
|
sqlite_int64 *piEndBlockid){
|
|
InteriorBlock *block = pWriter->first;
|
|
sqlite_int64 iBlockid = 0;
|
|
int rc;
|
|
|
|
/* If we can fit the segment inline */
|
|
if( block==pWriter->last && block->data.nData<ROOT_MAX ){
|
|
*ppRootInfo = block->data.pData;
|
|
*pnRootInfo = block->data.nData;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Flush the first block to %_segments, and create a new level of
|
|
** interior node.
|
|
*/
|
|
ASSERT_VALID_INTERIOR_BLOCK(block);
|
|
rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
*piEndBlockid = iBlockid;
|
|
|
|
pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter));
|
|
interiorWriterInit(pWriter->iHeight+1,
|
|
block->term.pData, block->term.nData,
|
|
iBlockid, pWriter->parentWriter);
|
|
|
|
/* Flush additional blocks and append to the higher interior
|
|
** node.
|
|
*/
|
|
for(block=block->next; block!=NULL; block=block->next){
|
|
ASSERT_VALID_INTERIOR_BLOCK(block);
|
|
rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
*piEndBlockid = iBlockid;
|
|
|
|
interiorWriterAppend(pWriter->parentWriter,
|
|
block->term.pData, block->term.nData, iBlockid);
|
|
}
|
|
|
|
/* Parent node gets the chance to be the root. */
|
|
return interiorWriterRootInfo(v, pWriter->parentWriter,
|
|
ppRootInfo, pnRootInfo, piEndBlockid);
|
|
}
|
|
|
|
/****************************************************************/
|
|
/* InteriorReader is used to read off the data from an interior node
|
|
** (see comment at top of file for the format).
|
|
*/
|
|
typedef struct InteriorReader {
|
|
const char *pData;
|
|
int nData;
|
|
|
|
DataBuffer term; /* previous term, for decoding term delta. */
|
|
|
|
sqlite_int64 iBlockid;
|
|
} InteriorReader;
|
|
|
|
static void interiorReaderDestroy(InteriorReader *pReader){
|
|
dataBufferDestroy(&pReader->term);
|
|
SCRAMBLE(pReader);
|
|
}
|
|
|
|
/* TODO(shess) The assertions are great, but what if we're in NDEBUG
|
|
** and the blob is empty or otherwise contains suspect data?
|
|
*/
|
|
static void interiorReaderInit(const char *pData, int nData,
|
|
InteriorReader *pReader){
|
|
int n, nTerm;
|
|
|
|
/* Require at least the leading flag byte */
|
|
assert( nData>0 );
|
|
assert( pData[0]!='\0' );
|
|
|
|
CLEAR(pReader);
|
|
|
|
/* Decode the base blockid, and set the cursor to the first term. */
|
|
n = fts3GetVarint(pData+1, &pReader->iBlockid);
|
|
assert( 1+n<=nData );
|
|
pReader->pData = pData+1+n;
|
|
pReader->nData = nData-(1+n);
|
|
|
|
/* A single-child interior node (such as when a leaf node was too
|
|
** large for the segment directory) won't have any terms.
|
|
** Otherwise, decode the first term.
|
|
*/
|
|
if( pReader->nData==0 ){
|
|
dataBufferInit(&pReader->term, 0);
|
|
}else{
|
|
n = fts3GetVarint32(pReader->pData, &nTerm);
|
|
dataBufferInit(&pReader->term, nTerm);
|
|
dataBufferReplace(&pReader->term, pReader->pData+n, nTerm);
|
|
assert( n+nTerm<=pReader->nData );
|
|
pReader->pData += n+nTerm;
|
|
pReader->nData -= n+nTerm;
|
|
}
|
|
}
|
|
|
|
static int interiorReaderAtEnd(InteriorReader *pReader){
|
|
return pReader->term.nData==0;
|
|
}
|
|
|
|
static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){
|
|
return pReader->iBlockid;
|
|
}
|
|
|
|
static int interiorReaderTermBytes(InteriorReader *pReader){
|
|
assert( !interiorReaderAtEnd(pReader) );
|
|
return pReader->term.nData;
|
|
}
|
|
static const char *interiorReaderTerm(InteriorReader *pReader){
|
|
assert( !interiorReaderAtEnd(pReader) );
|
|
return pReader->term.pData;
|
|
}
|
|
|
|
/* Step forward to the next term in the node. */
|
|
static void interiorReaderStep(InteriorReader *pReader){
|
|
assert( !interiorReaderAtEnd(pReader) );
|
|
|
|
/* If the last term has been read, signal eof, else construct the
|
|
** next term.
|
|
*/
|
|
if( pReader->nData==0 ){
|
|
dataBufferReset(&pReader->term);
|
|
}else{
|
|
int n, nPrefix, nSuffix;
|
|
|
|
n = fts3GetVarint32(pReader->pData, &nPrefix);
|
|
n += fts3GetVarint32(pReader->pData+n, &nSuffix);
|
|
|
|
/* Truncate the current term and append suffix data. */
|
|
pReader->term.nData = nPrefix;
|
|
dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
|
|
|
|
assert( n+nSuffix<=pReader->nData );
|
|
pReader->pData += n+nSuffix;
|
|
pReader->nData -= n+nSuffix;
|
|
}
|
|
pReader->iBlockid++;
|
|
}
|
|
|
|
/* Compare the current term to pTerm[nTerm], returning strcmp-style
|
|
** results. If isPrefix, equality means equal through nTerm bytes.
|
|
*/
|
|
static int interiorReaderTermCmp(InteriorReader *pReader,
|
|
const char *pTerm, int nTerm, int isPrefix){
|
|
const char *pReaderTerm = interiorReaderTerm(pReader);
|
|
int nReaderTerm = interiorReaderTermBytes(pReader);
|
|
int c, n = nReaderTerm<nTerm ? nReaderTerm : nTerm;
|
|
|
|
if( n==0 ){
|
|
if( nReaderTerm>0 ) return -1;
|
|
if( nTerm>0 ) return 1;
|
|
return 0;
|
|
}
|
|
|
|
c = memcmp(pReaderTerm, pTerm, n);
|
|
if( c!=0 ) return c;
|
|
if( isPrefix && n==nTerm ) return 0;
|
|
return nReaderTerm - nTerm;
|
|
}
|
|
|
|
/****************************************************************/
|
|
/* LeafWriter is used to collect terms and associated doclist data
|
|
** into leaf blocks in %_segments (see top of file for format info).
|
|
** Expected usage is:
|
|
**
|
|
** LeafWriter writer;
|
|
** leafWriterInit(0, 0, &writer);
|
|
** while( sorted_terms_left_to_process ){
|
|
** // data is doclist data for that term.
|
|
** rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData);
|
|
** if( rc!=SQLITE_OK ) goto err;
|
|
** }
|
|
** rc = leafWriterFinalize(v, &writer);
|
|
**err:
|
|
** leafWriterDestroy(&writer);
|
|
** return rc;
|
|
**
|
|
** leafWriterStep() may write a collected leaf out to %_segments.
|
|
** leafWriterFinalize() finishes writing any buffered data and stores
|
|
** a root node in %_segdir. leafWriterDestroy() frees all buffers and
|
|
** InteriorWriters allocated as part of writing this segment.
|
|
**
|
|
** TODO(shess) Document leafWriterStepMerge().
|
|
*/
|
|
|
|
/* Put terms with data this big in their own block. */
|
|
#define STANDALONE_MIN 1024
|
|
|
|
/* Keep leaf blocks below this size. */
|
|
#define LEAF_MAX 2048
|
|
|
|
typedef struct LeafWriter {
|
|
int iLevel;
|
|
int idx;
|
|
sqlite_int64 iStartBlockid; /* needed to create the root info */
|
|
sqlite_int64 iEndBlockid; /* when we're done writing. */
|
|
|
|
DataBuffer term; /* previous encoded term */
|
|
DataBuffer data; /* encoding buffer */
|
|
|
|
/* bytes of first term in the current node which distinguishes that
|
|
** term from the last term of the previous node.
|
|
*/
|
|
int nTermDistinct;
|
|
|
|
InteriorWriter parentWriter; /* if we overflow */
|
|
int has_parent;
|
|
} LeafWriter;
|
|
|
|
static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){
|
|
CLEAR(pWriter);
|
|
pWriter->iLevel = iLevel;
|
|
pWriter->idx = idx;
|
|
|
|
dataBufferInit(&pWriter->term, 32);
|
|
|
|
/* Start out with a reasonably sized block, though it can grow. */
|
|
dataBufferInit(&pWriter->data, LEAF_MAX);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/* Verify that the data is readable as a leaf node. */
|
|
static void leafNodeValidate(const char *pData, int nData){
|
|
int n, iDummy;
|
|
|
|
if( nData==0 ) return;
|
|
assert( nData>0 );
|
|
assert( pData!=0 );
|
|
assert( pData+nData>pData );
|
|
|
|
/* Must lead with a varint(0) */
|
|
n = fts3GetVarint32(pData, &iDummy);
|
|
assert( iDummy==0 );
|
|
assert( n>0 );
|
|
assert( n<nData );
|
|
pData += n;
|
|
nData -= n;
|
|
|
|
/* Leading term length and data must fit in buffer. */
|
|
n = fts3GetVarint32(pData, &iDummy);
|
|
assert( n>0 );
|
|
assert( iDummy>0 );
|
|
assert( n+iDummy>0 );
|
|
assert( n+iDummy<nData );
|
|
pData += n+iDummy;
|
|
nData -= n+iDummy;
|
|
|
|
/* Leading term's doclist length and data must fit. */
|
|
n = fts3GetVarint32(pData, &iDummy);
|
|
assert( n>0 );
|
|
assert( iDummy>0 );
|
|
assert( n+iDummy>0 );
|
|
assert( n+iDummy<=nData );
|
|
ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
|
|
pData += n+iDummy;
|
|
nData -= n+iDummy;
|
|
|
|
/* Verify that trailing terms and doclists also are readable. */
|
|
while( nData!=0 ){
|
|
n = fts3GetVarint32(pData, &iDummy);
|
|
assert( n>0 );
|
|
assert( iDummy>=0 );
|
|
assert( n<nData );
|
|
pData += n;
|
|
nData -= n;
|
|
n = fts3GetVarint32(pData, &iDummy);
|
|
assert( n>0 );
|
|
assert( iDummy>0 );
|
|
assert( n+iDummy>0 );
|
|
assert( n+iDummy<nData );
|
|
pData += n+iDummy;
|
|
nData -= n+iDummy;
|
|
|
|
n = fts3GetVarint32(pData, &iDummy);
|
|
assert( n>0 );
|
|
assert( iDummy>0 );
|
|
assert( n+iDummy>0 );
|
|
assert( n+iDummy<=nData );
|
|
ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
|
|
pData += n+iDummy;
|
|
nData -= n+iDummy;
|
|
}
|
|
}
|
|
#define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n)
|
|
#else
|
|
#define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 )
|
|
#endif
|
|
|
|
/* Flush the current leaf node to %_segments, and adding the resulting
|
|
** blockid and the starting term to the interior node which will
|
|
** contain it.
|
|
*/
|
|
static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter,
|
|
int iData, int nData){
|
|
sqlite_int64 iBlockid = 0;
|
|
const char *pStartingTerm;
|
|
int nStartingTerm, rc, n;
|
|
|
|
/* Must have the leading varint(0) flag, plus at least some
|
|
** valid-looking data.
|
|
*/
|
|
assert( nData>2 );
|
|
assert( iData>=0 );
|
|
assert( iData+nData<=pWriter->data.nData );
|
|
ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData);
|
|
|
|
rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
assert( iBlockid!=0 );
|
|
|
|
/* Reconstruct the first term in the leaf for purposes of building
|
|
** the interior node.
|
|
*/
|
|
n = fts3GetVarint32(pWriter->data.pData+iData+1, &nStartingTerm);
|
|
pStartingTerm = pWriter->data.pData+iData+1+n;
|
|
assert( pWriter->data.nData>iData+1+n+nStartingTerm );
|
|
assert( pWriter->nTermDistinct>0 );
|
|
assert( pWriter->nTermDistinct<=nStartingTerm );
|
|
nStartingTerm = pWriter->nTermDistinct;
|
|
|
|
if( pWriter->has_parent ){
|
|
interiorWriterAppend(&pWriter->parentWriter,
|
|
pStartingTerm, nStartingTerm, iBlockid);
|
|
}else{
|
|
interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid,
|
|
&pWriter->parentWriter);
|
|
pWriter->has_parent = 1;
|
|
}
|
|
|
|
/* Track the span of this segment's leaf nodes. */
|
|
if( pWriter->iEndBlockid==0 ){
|
|
pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid;
|
|
}else{
|
|
pWriter->iEndBlockid++;
|
|
assert( iBlockid==pWriter->iEndBlockid );
|
|
}
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){
|
|
int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
/* Re-initialize the output buffer. */
|
|
dataBufferReset(&pWriter->data);
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Fetch the root info for the segment. If the entire leaf fits
|
|
** within ROOT_MAX, then it will be returned directly, otherwise it
|
|
** will be flushed and the root info will be returned from the
|
|
** interior node. *piEndBlockid is set to the blockid of the last
|
|
** interior or leaf node written to disk (0 if none are written at
|
|
** all).
|
|
*/
|
|
static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter,
|
|
char **ppRootInfo, int *pnRootInfo,
|
|
sqlite_int64 *piEndBlockid){
|
|
/* we can fit the segment entirely inline */
|
|
if( !pWriter->has_parent && pWriter->data.nData<ROOT_MAX ){
|
|
*ppRootInfo = pWriter->data.pData;
|
|
*pnRootInfo = pWriter->data.nData;
|
|
*piEndBlockid = 0;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Flush remaining leaf data. */
|
|
if( pWriter->data.nData>0 ){
|
|
int rc = leafWriterFlush(v, pWriter);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}
|
|
|
|
/* We must have flushed a leaf at some point. */
|
|
assert( pWriter->has_parent );
|
|
|
|
/* Tenatively set the end leaf blockid as the end blockid. If the
|
|
** interior node can be returned inline, this will be the final
|
|
** blockid, otherwise it will be overwritten by
|
|
** interiorWriterRootInfo().
|
|
*/
|
|
*piEndBlockid = pWriter->iEndBlockid;
|
|
|
|
return interiorWriterRootInfo(v, &pWriter->parentWriter,
|
|
ppRootInfo, pnRootInfo, piEndBlockid);
|
|
}
|
|
|
|
/* Collect the rootInfo data and store it into the segment directory.
|
|
** This has the effect of flushing the segment's leaf data to
|
|
** %_segments, and also flushing any interior nodes to %_segments.
|
|
*/
|
|
static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){
|
|
sqlite_int64 iEndBlockid;
|
|
char *pRootInfo;
|
|
int rc, nRootInfo;
|
|
|
|
rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
/* Don't bother storing an entirely empty segment. */
|
|
if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK;
|
|
|
|
return segdir_set(v, pWriter->iLevel, pWriter->idx,
|
|
pWriter->iStartBlockid, pWriter->iEndBlockid,
|
|
iEndBlockid, pRootInfo, nRootInfo);
|
|
}
|
|
|
|
static void leafWriterDestroy(LeafWriter *pWriter){
|
|
if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter);
|
|
dataBufferDestroy(&pWriter->term);
|
|
dataBufferDestroy(&pWriter->data);
|
|
}
|
|
|
|
/* Encode a term into the leafWriter, delta-encoding as appropriate.
|
|
** Returns the length of the new term which distinguishes it from the
|
|
** previous term, which can be used to set nTermDistinct when a node
|
|
** boundary is crossed.
|
|
*/
|
|
static int leafWriterEncodeTerm(LeafWriter *pWriter,
|
|
const char *pTerm, int nTerm){
|
|
char c[VARINT_MAX+VARINT_MAX];
|
|
int n, nPrefix = 0;
|
|
|
|
assert( nTerm>0 );
|
|
while( nPrefix<pWriter->term.nData &&
|
|
pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
|
|
nPrefix++;
|
|
/* Failing this implies that the terms weren't in order. */
|
|
assert( nPrefix<nTerm );
|
|
}
|
|
|
|
if( pWriter->data.nData==0 ){
|
|
/* Encode the node header and leading term as:
|
|
** varint(0)
|
|
** varint(nTerm)
|
|
** char pTerm[nTerm]
|
|
*/
|
|
n = fts3PutVarint(c, '\0');
|
|
n += fts3PutVarint(c+n, nTerm);
|
|
dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm);
|
|
}else{
|
|
/* Delta-encode the term as:
|
|
** varint(nPrefix)
|
|
** varint(nSuffix)
|
|
** char pTermSuffix[nSuffix]
|
|
*/
|
|
n = fts3PutVarint(c, nPrefix);
|
|
n += fts3PutVarint(c+n, nTerm-nPrefix);
|
|
dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix);
|
|
}
|
|
dataBufferReplace(&pWriter->term, pTerm, nTerm);
|
|
|
|
return nPrefix+1;
|
|
}
|
|
|
|
/* Used to avoid a memmove when a large amount of doclist data is in
|
|
** the buffer. This constructs a node and term header before
|
|
** iDoclistData and flushes the resulting complete node using
|
|
** leafWriterInternalFlush().
|
|
*/
|
|
static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter,
|
|
const char *pTerm, int nTerm,
|
|
int iDoclistData){
|
|
char c[VARINT_MAX+VARINT_MAX];
|
|
int iData, n = fts3PutVarint(c, 0);
|
|
n += fts3PutVarint(c+n, nTerm);
|
|
|
|
/* There should always be room for the header. Even if pTerm shared
|
|
** a substantial prefix with the previous term, the entire prefix
|
|
** could be constructed from earlier data in the doclist, so there
|
|
** should be room.
|
|
*/
|
|
assert( iDoclistData>=n+nTerm );
|
|
|
|
iData = iDoclistData-(n+nTerm);
|
|
memcpy(pWriter->data.pData+iData, c, n);
|
|
memcpy(pWriter->data.pData+iData+n, pTerm, nTerm);
|
|
|
|
return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData);
|
|
}
|
|
|
|
/* Push pTerm[nTerm] along with the doclist data to the leaf layer of
|
|
** %_segments.
|
|
*/
|
|
static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter,
|
|
const char *pTerm, int nTerm,
|
|
DLReader *pReaders, int nReaders){
|
|
char c[VARINT_MAX+VARINT_MAX];
|
|
int iTermData = pWriter->data.nData, iDoclistData;
|
|
int i, nData, n, nActualData, nActual, rc, nTermDistinct;
|
|
|
|
ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
|
|
nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm);
|
|
|
|
/* Remember nTermDistinct if opening a new node. */
|
|
if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct;
|
|
|
|
iDoclistData = pWriter->data.nData;
|
|
|
|
/* Estimate the length of the merged doclist so we can leave space
|
|
** to encode it.
|
|
*/
|
|
for(i=0, nData=0; i<nReaders; i++){
|
|
nData += dlrAllDataBytes(&pReaders[i]);
|
|
}
|
|
n = fts3PutVarint(c, nData);
|
|
dataBufferAppend(&pWriter->data, c, n);
|
|
|
|
docListMerge(&pWriter->data, pReaders, nReaders);
|
|
ASSERT_VALID_DOCLIST(DL_DEFAULT,
|
|
pWriter->data.pData+iDoclistData+n,
|
|
pWriter->data.nData-iDoclistData-n, NULL);
|
|
|
|
/* The actual amount of doclist data at this point could be smaller
|
|
** than the length we encoded. Additionally, the space required to
|
|
** encode this length could be smaller. For small doclists, this is
|
|
** not a big deal, we can just use memmove() to adjust things.
|
|
*/
|
|
nActualData = pWriter->data.nData-(iDoclistData+n);
|
|
nActual = fts3PutVarint(c, nActualData);
|
|
assert( nActualData<=nData );
|
|
assert( nActual<=n );
|
|
|
|
/* If the new doclist is big enough for force a standalone leaf
|
|
** node, we can immediately flush it inline without doing the
|
|
** memmove().
|
|
*/
|
|
/* TODO(shess) This test matches leafWriterStep(), which does this
|
|
** test before it knows the cost to varint-encode the term and
|
|
** doclist lengths. At some point, change to
|
|
** pWriter->data.nData-iTermData>STANDALONE_MIN.
|
|
*/
|
|
if( nTerm+nActualData>STANDALONE_MIN ){
|
|
/* Push leaf node from before this term. */
|
|
if( iTermData>0 ){
|
|
rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
pWriter->nTermDistinct = nTermDistinct;
|
|
}
|
|
|
|
/* Fix the encoded doclist length. */
|
|
iDoclistData += n - nActual;
|
|
memcpy(pWriter->data.pData+iDoclistData, c, nActual);
|
|
|
|
/* Push the standalone leaf node. */
|
|
rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
/* Leave the node empty. */
|
|
dataBufferReset(&pWriter->data);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* At this point, we know that the doclist was small, so do the
|
|
** memmove if indicated.
|
|
*/
|
|
if( nActual<n ){
|
|
memmove(pWriter->data.pData+iDoclistData+nActual,
|
|
pWriter->data.pData+iDoclistData+n,
|
|
pWriter->data.nData-(iDoclistData+n));
|
|
pWriter->data.nData -= n-nActual;
|
|
}
|
|
|
|
/* Replace written length with actual length. */
|
|
memcpy(pWriter->data.pData+iDoclistData, c, nActual);
|
|
|
|
/* If the node is too large, break things up. */
|
|
/* TODO(shess) This test matches leafWriterStep(), which does this
|
|
** test before it knows the cost to varint-encode the term and
|
|
** doclist lengths. At some point, change to
|
|
** pWriter->data.nData>LEAF_MAX.
|
|
*/
|
|
if( iTermData+nTerm+nActualData>LEAF_MAX ){
|
|
/* Flush out the leading data as a node */
|
|
rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
pWriter->nTermDistinct = nTermDistinct;
|
|
|
|
/* Rebuild header using the current term */
|
|
n = fts3PutVarint(pWriter->data.pData, 0);
|
|
n += fts3PutVarint(pWriter->data.pData+n, nTerm);
|
|
memcpy(pWriter->data.pData+n, pTerm, nTerm);
|
|
n += nTerm;
|
|
|
|
/* There should always be room, because the previous encoding
|
|
** included all data necessary to construct the term.
|
|
*/
|
|
assert( n<iDoclistData );
|
|
/* So long as STANDALONE_MIN is half or less of LEAF_MAX, the
|
|
** following memcpy() is safe (as opposed to needing a memmove).
|
|
*/
|
|
assert( 2*STANDALONE_MIN<=LEAF_MAX );
|
|
assert( n+pWriter->data.nData-iDoclistData<iDoclistData );
|
|
memcpy(pWriter->data.pData+n,
|
|
pWriter->data.pData+iDoclistData,
|
|
pWriter->data.nData-iDoclistData);
|
|
pWriter->data.nData -= iDoclistData-n;
|
|
}
|
|
ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Push pTerm[nTerm] along with the doclist data to the leaf layer of
|
|
** %_segments.
|
|
*/
|
|
/* TODO(shess) Revise writeZeroSegment() so that doclists are
|
|
** constructed directly in pWriter->data.
|
|
*/
|
|
static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter,
|
|
const char *pTerm, int nTerm,
|
|
const char *pData, int nData){
|
|
int rc;
|
|
DLReader reader;
|
|
|
|
dlrInit(&reader, DL_DEFAULT, pData, nData);
|
|
rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1);
|
|
dlrDestroy(&reader);
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/****************************************************************/
|
|
/* LeafReader is used to iterate over an individual leaf node. */
|
|
typedef struct LeafReader {
|
|
DataBuffer term; /* copy of current term. */
|
|
|
|
const char *pData; /* data for current term. */
|
|
int nData;
|
|
} LeafReader;
|
|
|
|
static void leafReaderDestroy(LeafReader *pReader){
|
|
dataBufferDestroy(&pReader->term);
|
|
SCRAMBLE(pReader);
|
|
}
|
|
|
|
static int leafReaderAtEnd(LeafReader *pReader){
|
|
return pReader->nData<=0;
|
|
}
|
|
|
|
/* Access the current term. */
|
|
static int leafReaderTermBytes(LeafReader *pReader){
|
|
return pReader->term.nData;
|
|
}
|
|
static const char *leafReaderTerm(LeafReader *pReader){
|
|
assert( pReader->term.nData>0 );
|
|
return pReader->term.pData;
|
|
}
|
|
|
|
/* Access the doclist data for the current term. */
|
|
static int leafReaderDataBytes(LeafReader *pReader){
|
|
int nData;
|
|
assert( pReader->term.nData>0 );
|
|
fts3GetVarint32(pReader->pData, &nData);
|
|
return nData;
|
|
}
|
|
static const char *leafReaderData(LeafReader *pReader){
|
|
int n, nData;
|
|
assert( pReader->term.nData>0 );
|
|
n = fts3GetVarint32(pReader->pData, &nData);
|
|
return pReader->pData+n;
|
|
}
|
|
|
|
static void leafReaderInit(const char *pData, int nData,
|
|
LeafReader *pReader){
|
|
int nTerm, n;
|
|
|
|
assert( nData>0 );
|
|
assert( pData[0]=='\0' );
|
|
|
|
CLEAR(pReader);
|
|
|
|
/* Read the first term, skipping the header byte. */
|
|
n = fts3GetVarint32(pData+1, &nTerm);
|
|
dataBufferInit(&pReader->term, nTerm);
|
|
dataBufferReplace(&pReader->term, pData+1+n, nTerm);
|
|
|
|
/* Position after the first term. */
|
|
assert( 1+n+nTerm<nData );
|
|
pReader->pData = pData+1+n+nTerm;
|
|
pReader->nData = nData-1-n-nTerm;
|
|
}
|
|
|
|
/* Step the reader forward to the next term. */
|
|
static void leafReaderStep(LeafReader *pReader){
|
|
int n, nData, nPrefix, nSuffix;
|
|
assert( !leafReaderAtEnd(pReader) );
|
|
|
|
/* Skip previous entry's data block. */
|
|
n = fts3GetVarint32(pReader->pData, &nData);
|
|
assert( n+nData<=pReader->nData );
|
|
pReader->pData += n+nData;
|
|
pReader->nData -= n+nData;
|
|
|
|
if( !leafReaderAtEnd(pReader) ){
|
|
/* Construct the new term using a prefix from the old term plus a
|
|
** suffix from the leaf data.
|
|
*/
|
|
n = fts3GetVarint32(pReader->pData, &nPrefix);
|
|
n += fts3GetVarint32(pReader->pData+n, &nSuffix);
|
|
assert( n+nSuffix<pReader->nData );
|
|
pReader->term.nData = nPrefix;
|
|
dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
|
|
|
|
pReader->pData += n+nSuffix;
|
|
pReader->nData -= n+nSuffix;
|
|
}
|
|
}
|
|
|
|
/* strcmp-style comparison of pReader's current term against pTerm.
|
|
** If isPrefix, equality means equal through nTerm bytes.
|
|
*/
|
|
static int leafReaderTermCmp(LeafReader *pReader,
|
|
const char *pTerm, int nTerm, int isPrefix){
|
|
int c, n = pReader->term.nData<nTerm ? pReader->term.nData : nTerm;
|
|
if( n==0 ){
|
|
if( pReader->term.nData>0 ) return -1;
|
|
if(nTerm>0 ) return 1;
|
|
return 0;
|
|
}
|
|
|
|
c = memcmp(pReader->term.pData, pTerm, n);
|
|
if( c!=0 ) return c;
|
|
if( isPrefix && n==nTerm ) return 0;
|
|
return pReader->term.nData - nTerm;
|
|
}
|
|
|
|
|
|
/****************************************************************/
|
|
/* LeavesReader wraps LeafReader to allow iterating over the entire
|
|
** leaf layer of the tree.
|
|
*/
|
|
typedef struct LeavesReader {
|
|
int idx; /* Index within the segment. */
|
|
|
|
sqlite3_stmt *pStmt; /* Statement we're streaming leaves from. */
|
|
int eof; /* we've seen SQLITE_DONE from pStmt. */
|
|
|
|
LeafReader leafReader; /* reader for the current leaf. */
|
|
DataBuffer rootData; /* root data for inline. */
|
|
} LeavesReader;
|
|
|
|
/* Access the current term. */
|
|
static int leavesReaderTermBytes(LeavesReader *pReader){
|
|
assert( !pReader->eof );
|
|
return leafReaderTermBytes(&pReader->leafReader);
|
|
}
|
|
static const char *leavesReaderTerm(LeavesReader *pReader){
|
|
assert( !pReader->eof );
|
|
return leafReaderTerm(&pReader->leafReader);
|
|
}
|
|
|
|
/* Access the doclist data for the current term. */
|
|
static int leavesReaderDataBytes(LeavesReader *pReader){
|
|
assert( !pReader->eof );
|
|
return leafReaderDataBytes(&pReader->leafReader);
|
|
}
|
|
static const char *leavesReaderData(LeavesReader *pReader){
|
|
assert( !pReader->eof );
|
|
return leafReaderData(&pReader->leafReader);
|
|
}
|
|
|
|
static int leavesReaderAtEnd(LeavesReader *pReader){
|
|
return pReader->eof;
|
|
}
|
|
|
|
/* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus
|
|
** leaving the statement handle open, which locks the table.
|
|
*/
|
|
/* TODO(shess) This "solution" is not satisfactory. Really, there
|
|
** should be check-in function for all statement handles which
|
|
** arranges to call sqlite3_reset(). This most likely will require
|
|
** modification to control flow all over the place, though, so for now
|
|
** just punt.
|
|
**
|
|
** Note the the current system assumes that segment merges will run to
|
|
** completion, which is why this particular probably hasn't arisen in
|
|
** this case. Probably a brittle assumption.
|
|
*/
|
|
static int leavesReaderReset(LeavesReader *pReader){
|
|
return sqlite3_reset(pReader->pStmt);
|
|
}
|
|
|
|
static void leavesReaderDestroy(LeavesReader *pReader){
|
|
leafReaderDestroy(&pReader->leafReader);
|
|
dataBufferDestroy(&pReader->rootData);
|
|
SCRAMBLE(pReader);
|
|
}
|
|
|
|
/* Initialize pReader with the given root data (if iStartBlockid==0
|
|
** the leaf data was entirely contained in the root), or from the
|
|
** stream of blocks between iStartBlockid and iEndBlockid, inclusive.
|
|
*/
|
|
static int leavesReaderInit(fulltext_vtab *v,
|
|
int idx,
|
|
sqlite_int64 iStartBlockid,
|
|
sqlite_int64 iEndBlockid,
|
|
const char *pRootData, int nRootData,
|
|
LeavesReader *pReader){
|
|
CLEAR(pReader);
|
|
pReader->idx = idx;
|
|
|
|
dataBufferInit(&pReader->rootData, 0);
|
|
if( iStartBlockid==0 ){
|
|
/* Entire leaf level fit in root data. */
|
|
dataBufferReplace(&pReader->rootData, pRootData, nRootData);
|
|
leafReaderInit(pReader->rootData.pData, pReader->rootData.nData,
|
|
&pReader->leafReader);
|
|
}else{
|
|
sqlite3_stmt *s;
|
|
int rc = sql_get_leaf_statement(v, idx, &s);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_bind_int64(s, 1, iStartBlockid);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_bind_int64(s, 2, iEndBlockid);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_step(s);
|
|
if( rc==SQLITE_DONE ){
|
|
pReader->eof = 1;
|
|
return SQLITE_OK;
|
|
}
|
|
if( rc!=SQLITE_ROW ) return rc;
|
|
|
|
pReader->pStmt = s;
|
|
leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
|
|
sqlite3_column_bytes(pReader->pStmt, 0),
|
|
&pReader->leafReader);
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Step the current leaf forward to the next term. If we reach the
|
|
** end of the current leaf, step forward to the next leaf block.
|
|
*/
|
|
static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){
|
|
assert( !leavesReaderAtEnd(pReader) );
|
|
leafReaderStep(&pReader->leafReader);
|
|
|
|
if( leafReaderAtEnd(&pReader->leafReader) ){
|
|
int rc;
|
|
if( pReader->rootData.pData ){
|
|
pReader->eof = 1;
|
|
return SQLITE_OK;
|
|
}
|
|
rc = sqlite3_step(pReader->pStmt);
|
|
if( rc!=SQLITE_ROW ){
|
|
pReader->eof = 1;
|
|
return rc==SQLITE_DONE ? SQLITE_OK : rc;
|
|
}
|
|
leafReaderDestroy(&pReader->leafReader);
|
|
leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
|
|
sqlite3_column_bytes(pReader->pStmt, 0),
|
|
&pReader->leafReader);
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Order LeavesReaders by their term, ignoring idx. Readers at eof
|
|
** always sort to the end.
|
|
*/
|
|
static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){
|
|
if( leavesReaderAtEnd(lr1) ){
|
|
if( leavesReaderAtEnd(lr2) ) return 0;
|
|
return 1;
|
|
}
|
|
if( leavesReaderAtEnd(lr2) ) return -1;
|
|
|
|
return leafReaderTermCmp(&lr1->leafReader,
|
|
leavesReaderTerm(lr2), leavesReaderTermBytes(lr2),
|
|
0);
|
|
}
|
|
|
|
/* Similar to leavesReaderTermCmp(), with additional ordering by idx
|
|
** so that older segments sort before newer segments.
|
|
*/
|
|
static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){
|
|
int c = leavesReaderTermCmp(lr1, lr2);
|
|
if( c!=0 ) return c;
|
|
return lr1->idx-lr2->idx;
|
|
}
|
|
|
|
/* Assume that pLr[1]..pLr[nLr] are sorted. Bubble pLr[0] into its
|
|
** sorted position.
|
|
*/
|
|
static void leavesReaderReorder(LeavesReader *pLr, int nLr){
|
|
while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){
|
|
LeavesReader tmp = pLr[0];
|
|
pLr[0] = pLr[1];
|
|
pLr[1] = tmp;
|
|
nLr--;
|
|
pLr++;
|
|
}
|
|
}
|
|
|
|
/* Initializes pReaders with the segments from level iLevel, returning
|
|
** the number of segments in *piReaders. Leaves pReaders in sorted
|
|
** order.
|
|
*/
|
|
static int leavesReadersInit(fulltext_vtab *v, int iLevel,
|
|
LeavesReader *pReaders, int *piReaders){
|
|
sqlite3_stmt *s;
|
|
int i, rc = sql_get_statement(v, SEGDIR_SELECT_STMT, &s);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_bind_int(s, 1, iLevel);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
i = 0;
|
|
while( (rc = sqlite3_step(s))==SQLITE_ROW ){
|
|
sqlite_int64 iStart = sqlite3_column_int64(s, 0);
|
|
sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
|
|
const char *pRootData = sqlite3_column_blob(s, 2);
|
|
int nRootData = sqlite3_column_bytes(s, 2);
|
|
|
|
assert( i<MERGE_COUNT );
|
|
rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData,
|
|
&pReaders[i]);
|
|
if( rc!=SQLITE_OK ) break;
|
|
|
|
i++;
|
|
}
|
|
if( rc!=SQLITE_DONE ){
|
|
while( i-->0 ){
|
|
leavesReaderDestroy(&pReaders[i]);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
*piReaders = i;
|
|
|
|
/* Leave our results sorted by term, then age. */
|
|
while( i-- ){
|
|
leavesReaderReorder(pReaders+i, *piReaders-i);
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Merge doclists from pReaders[nReaders] into a single doclist, which
|
|
** is written to pWriter. Assumes pReaders is ordered oldest to
|
|
** newest.
|
|
*/
|
|
/* TODO(shess) Consider putting this inline in segmentMerge(). */
|
|
static int leavesReadersMerge(fulltext_vtab *v,
|
|
LeavesReader *pReaders, int nReaders,
|
|
LeafWriter *pWriter){
|
|
DLReader dlReaders[MERGE_COUNT];
|
|
const char *pTerm = leavesReaderTerm(pReaders);
|
|
int i, nTerm = leavesReaderTermBytes(pReaders);
|
|
|
|
assert( nReaders<=MERGE_COUNT );
|
|
|
|
for(i=0; i<nReaders; i++){
|
|
dlrInit(&dlReaders[i], DL_DEFAULT,
|
|
leavesReaderData(pReaders+i),
|
|
leavesReaderDataBytes(pReaders+i));
|
|
}
|
|
|
|
return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders);
|
|
}
|
|
|
|
/* Forward ref due to mutual recursion with segdirNextIndex(). */
|
|
static int segmentMerge(fulltext_vtab *v, int iLevel);
|
|
|
|
/* Put the next available index at iLevel into *pidx. If iLevel
|
|
** already has MERGE_COUNT segments, they are merged to a higher
|
|
** level to make room.
|
|
*/
|
|
static int segdirNextIndex(fulltext_vtab *v, int iLevel, int *pidx){
|
|
int rc = segdir_max_index(v, iLevel, pidx);
|
|
if( rc==SQLITE_DONE ){ /* No segments at iLevel. */
|
|
*pidx = 0;
|
|
}else if( rc==SQLITE_ROW ){
|
|
if( *pidx==(MERGE_COUNT-1) ){
|
|
rc = segmentMerge(v, iLevel);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
*pidx = 0;
|
|
}else{
|
|
(*pidx)++;
|
|
}
|
|
}else{
|
|
return rc;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Merge MERGE_COUNT segments at iLevel into a new segment at
|
|
** iLevel+1. If iLevel+1 is already full of segments, those will be
|
|
** merged to make room.
|
|
*/
|
|
static int segmentMerge(fulltext_vtab *v, int iLevel){
|
|
LeafWriter writer;
|
|
LeavesReader lrs[MERGE_COUNT];
|
|
int i, rc, idx = 0;
|
|
|
|
/* Determine the next available segment index at the next level,
|
|
** merging as necessary.
|
|
*/
|
|
rc = segdirNextIndex(v, iLevel+1, &idx);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
/* TODO(shess) This assumes that we'll always see exactly
|
|
** MERGE_COUNT segments to merge at a given level. That will be
|
|
** broken if we allow the developer to request preemptive or
|
|
** deferred merging.
|
|
*/
|
|
memset(&lrs, '\0', sizeof(lrs));
|
|
rc = leavesReadersInit(v, iLevel, lrs, &i);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
assert( i==MERGE_COUNT );
|
|
|
|
leafWriterInit(iLevel+1, idx, &writer);
|
|
|
|
/* Since leavesReaderReorder() pushes readers at eof to the end,
|
|
** when the first reader is empty, all will be empty.
|
|
*/
|
|
while( !leavesReaderAtEnd(lrs) ){
|
|
/* Figure out how many readers share their next term. */
|
|
for(i=1; i<MERGE_COUNT && !leavesReaderAtEnd(lrs+i); i++){
|
|
if( 0!=leavesReaderTermCmp(lrs, lrs+i) ) break;
|
|
}
|
|
|
|
rc = leavesReadersMerge(v, lrs, i, &writer);
|
|
if( rc!=SQLITE_OK ) goto err;
|
|
|
|
/* Step forward those that were merged. */
|
|
while( i-->0 ){
|
|
rc = leavesReaderStep(v, lrs+i);
|
|
if( rc!=SQLITE_OK ) goto err;
|
|
|
|
/* Reorder by term, then by age. */
|
|
leavesReaderReorder(lrs+i, MERGE_COUNT-i);
|
|
}
|
|
}
|
|
|
|
for(i=0; i<MERGE_COUNT; i++){
|
|
leavesReaderDestroy(&lrs[i]);
|
|
}
|
|
|
|
rc = leafWriterFinalize(v, &writer);
|
|
leafWriterDestroy(&writer);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
/* Delete the merged segment data. */
|
|
return segdir_delete(v, iLevel);
|
|
|
|
err:
|
|
for(i=0; i<MERGE_COUNT; i++){
|
|
leavesReaderDestroy(&lrs[i]);
|
|
}
|
|
leafWriterDestroy(&writer);
|
|
return rc;
|
|
}
|
|
|
|
/* Accumulate the union of *acc and *pData into *acc. */
|
|
static void docListAccumulateUnion(DataBuffer *acc,
|
|
const char *pData, int nData) {
|
|
DataBuffer tmp = *acc;
|
|
dataBufferInit(acc, tmp.nData+nData);
|
|
docListUnion(tmp.pData, tmp.nData, pData, nData, acc);
|
|
dataBufferDestroy(&tmp);
|
|
}
|
|
|
|
/* TODO(shess) It might be interesting to explore different merge
|
|
** strategies, here. For instance, since this is a sorted merge, we
|
|
** could easily merge many doclists in parallel. With some
|
|
** comprehension of the storage format, we could merge all of the
|
|
** doclists within a leaf node directly from the leaf node's storage.
|
|
** It may be worthwhile to merge smaller doclists before larger
|
|
** doclists, since they can be traversed more quickly - but the
|
|
** results may have less overlap, making them more expensive in a
|
|
** different way.
|
|
*/
|
|
|
|
/* Scan pReader for pTerm/nTerm, and merge the term's doclist over
|
|
** *out (any doclists with duplicate docids overwrite those in *out).
|
|
** Internal function for loadSegmentLeaf().
|
|
*/
|
|
static int loadSegmentLeavesInt(fulltext_vtab *v, LeavesReader *pReader,
|
|
const char *pTerm, int nTerm, int isPrefix,
|
|
DataBuffer *out){
|
|
/* doclist data is accumulated into pBuffers similar to how one does
|
|
** increment in binary arithmetic. If index 0 is empty, the data is
|
|
** stored there. If there is data there, it is merged and the
|
|
** results carried into position 1, with further merge-and-carry
|
|
** until an empty position is found.
|
|
*/
|
|
DataBuffer *pBuffers = NULL;
|
|
int nBuffers = 0, nMaxBuffers = 0, rc;
|
|
|
|
assert( nTerm>0 );
|
|
|
|
for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader);
|
|
rc=leavesReaderStep(v, pReader)){
|
|
/* TODO(shess) Really want leavesReaderTermCmp(), but that name is
|
|
** already taken to compare the terms of two LeavesReaders. Think
|
|
** on a better name. [Meanwhile, break encapsulation rather than
|
|
** use a confusing name.]
|
|
*/
|
|
int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix);
|
|
if( c>0 ) break; /* Past any possible matches. */
|
|
if( c==0 ){
|
|
const char *pData = leavesReaderData(pReader);
|
|
int iBuffer, nData = leavesReaderDataBytes(pReader);
|
|
|
|
/* Find the first empty buffer. */
|
|
for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
|
|
if( 0==pBuffers[iBuffer].nData ) break;
|
|
}
|
|
|
|
/* Out of buffers, add an empty one. */
|
|
if( iBuffer==nBuffers ){
|
|
if( nBuffers==nMaxBuffers ){
|
|
DataBuffer *p;
|
|
nMaxBuffers += 20;
|
|
|
|
/* Manual realloc so we can handle NULL appropriately. */
|
|
p = sqlite3_malloc(nMaxBuffers*sizeof(*pBuffers));
|
|
if( p==NULL ){
|
|
rc = SQLITE_NOMEM;
|
|
break;
|
|
}
|
|
|
|
if( nBuffers>0 ){
|
|
assert(pBuffers!=NULL);
|
|
memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers));
|
|
sqlite3_free(pBuffers);
|
|
}
|
|
pBuffers = p;
|
|
}
|
|
dataBufferInit(&(pBuffers[nBuffers]), 0);
|
|
nBuffers++;
|
|
}
|
|
|
|
/* At this point, must have an empty at iBuffer. */
|
|
assert(iBuffer<nBuffers && pBuffers[iBuffer].nData==0);
|
|
|
|
/* If empty was first buffer, no need for merge logic. */
|
|
if( iBuffer==0 ){
|
|
dataBufferReplace(&(pBuffers[0]), pData, nData);
|
|
}else{
|
|
/* pAcc is the empty buffer the merged data will end up in. */
|
|
DataBuffer *pAcc = &(pBuffers[iBuffer]);
|
|
DataBuffer *p = &(pBuffers[0]);
|
|
|
|
/* Handle position 0 specially to avoid need to prime pAcc
|
|
** with pData/nData.
|
|
*/
|
|
dataBufferSwap(p, pAcc);
|
|
docListAccumulateUnion(pAcc, pData, nData);
|
|
|
|
/* Accumulate remaining doclists into pAcc. */
|
|
for(++p; p<pAcc; ++p){
|
|
docListAccumulateUnion(pAcc, p->pData, p->nData);
|
|
|
|
/* dataBufferReset() could allow a large doclist to blow up
|
|
** our memory requirements.
|
|
*/
|
|
if( p->nCapacity<1024 ){
|
|
dataBufferReset(p);
|
|
}else{
|
|
dataBufferDestroy(p);
|
|
dataBufferInit(p, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Union all the doclists together into *out. */
|
|
/* TODO(shess) What if *out is big? Sigh. */
|
|
if( rc==SQLITE_OK && nBuffers>0 ){
|
|
int iBuffer;
|
|
for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
|
|
if( pBuffers[iBuffer].nData>0 ){
|
|
if( out->nData==0 ){
|
|
dataBufferSwap(out, &(pBuffers[iBuffer]));
|
|
}else{
|
|
docListAccumulateUnion(out, pBuffers[iBuffer].pData,
|
|
pBuffers[iBuffer].nData);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
while( nBuffers-- ){
|
|
dataBufferDestroy(&(pBuffers[nBuffers]));
|
|
}
|
|
if( pBuffers!=NULL ) sqlite3_free(pBuffers);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Call loadSegmentLeavesInt() with pData/nData as input. */
|
|
static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData,
|
|
const char *pTerm, int nTerm, int isPrefix,
|
|
DataBuffer *out){
|
|
LeavesReader reader;
|
|
int rc;
|
|
|
|
assert( nData>1 );
|
|
assert( *pData=='\0' );
|
|
rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
|
|
leavesReaderReset(&reader);
|
|
leavesReaderDestroy(&reader);
|
|
return rc;
|
|
}
|
|
|
|
/* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to
|
|
** iEndLeaf (inclusive) as input, and merge the resulting doclist into
|
|
** out.
|
|
*/
|
|
static int loadSegmentLeaves(fulltext_vtab *v,
|
|
sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf,
|
|
const char *pTerm, int nTerm, int isPrefix,
|
|
DataBuffer *out){
|
|
int rc;
|
|
LeavesReader reader;
|
|
|
|
assert( iStartLeaf<=iEndLeaf );
|
|
rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
|
|
leavesReaderReset(&reader);
|
|
leavesReaderDestroy(&reader);
|
|
return rc;
|
|
}
|
|
|
|
/* Taking pData/nData as an interior node, find the sequence of child
|
|
** nodes which could include pTerm/nTerm/isPrefix. Note that the
|
|
** interior node terms logically come between the blocks, so there is
|
|
** one more blockid than there are terms (that block contains terms >=
|
|
** the last interior-node term).
|
|
*/
|
|
/* TODO(shess) The calling code may already know that the end child is
|
|
** not worth calculating, because the end may be in a later sibling
|
|
** node. Consider whether breaking symmetry is worthwhile. I suspect
|
|
** it is not worthwhile.
|
|
*/
|
|
static void getChildrenContaining(const char *pData, int nData,
|
|
const char *pTerm, int nTerm, int isPrefix,
|
|
sqlite_int64 *piStartChild,
|
|
sqlite_int64 *piEndChild){
|
|
InteriorReader reader;
|
|
|
|
assert( nData>1 );
|
|
assert( *pData!='\0' );
|
|
interiorReaderInit(pData, nData, &reader);
|
|
|
|
/* Scan for the first child which could contain pTerm/nTerm. */
|
|
while( !interiorReaderAtEnd(&reader) ){
|
|
if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break;
|
|
interiorReaderStep(&reader);
|
|
}
|
|
*piStartChild = interiorReaderCurrentBlockid(&reader);
|
|
|
|
/* Keep scanning to find a term greater than our term, using prefix
|
|
** comparison if indicated. If isPrefix is false, this will be the
|
|
** same blockid as the starting block.
|
|
*/
|
|
while( !interiorReaderAtEnd(&reader) ){
|
|
if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break;
|
|
interiorReaderStep(&reader);
|
|
}
|
|
*piEndChild = interiorReaderCurrentBlockid(&reader);
|
|
|
|
interiorReaderDestroy(&reader);
|
|
|
|
/* Children must ascend, and if !prefix, both must be the same. */
|
|
assert( *piEndChild>=*piStartChild );
|
|
assert( isPrefix || *piStartChild==*piEndChild );
|
|
}
|
|
|
|
/* Read block at iBlockid and pass it with other params to
|
|
** getChildrenContaining().
|
|
*/
|
|
static int loadAndGetChildrenContaining(
|
|
fulltext_vtab *v,
|
|
sqlite_int64 iBlockid,
|
|
const char *pTerm, int nTerm, int isPrefix,
|
|
sqlite_int64 *piStartChild, sqlite_int64 *piEndChild
|
|
){
|
|
sqlite3_stmt *s = NULL;
|
|
int rc;
|
|
|
|
assert( iBlockid!=0 );
|
|
assert( pTerm!=NULL );
|
|
assert( nTerm!=0 ); /* TODO(shess) Why not allow this? */
|
|
assert( piStartChild!=NULL );
|
|
assert( piEndChild!=NULL );
|
|
|
|
rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_bind_int64(s, 1, iBlockid);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
rc = sqlite3_step(s);
|
|
if( rc==SQLITE_DONE ) return SQLITE_ERROR;
|
|
if( rc!=SQLITE_ROW ) return rc;
|
|
|
|
getChildrenContaining(sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0),
|
|
pTerm, nTerm, isPrefix, piStartChild, piEndChild);
|
|
|
|
/* We expect only one row. We must execute another sqlite3_step()
|
|
* to complete the iteration; otherwise the table will remain
|
|
* locked. */
|
|
rc = sqlite3_step(s);
|
|
if( rc==SQLITE_ROW ) return SQLITE_ERROR;
|
|
if( rc!=SQLITE_DONE ) return rc;
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Traverse the tree represented by pData[nData] looking for
|
|
** pTerm[nTerm], placing its doclist into *out. This is internal to
|
|
** loadSegment() to make error-handling cleaner.
|
|
*/
|
|
static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData,
|
|
sqlite_int64 iLeavesEnd,
|
|
const char *pTerm, int nTerm, int isPrefix,
|
|
DataBuffer *out){
|
|
/* Special case where root is a leaf. */
|
|
if( *pData=='\0' ){
|
|
return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out);
|
|
}else{
|
|
int rc;
|
|
sqlite_int64 iStartChild, iEndChild;
|
|
|
|
/* Process pData as an interior node, then loop down the tree
|
|
** until we find the set of leaf nodes to scan for the term.
|
|
*/
|
|
getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix,
|
|
&iStartChild, &iEndChild);
|
|
while( iStartChild>iLeavesEnd ){
|
|
sqlite_int64 iNextStart, iNextEnd;
|
|
rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix,
|
|
&iNextStart, &iNextEnd);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
/* If we've branched, follow the end branch, too. */
|
|
if( iStartChild!=iEndChild ){
|
|
sqlite_int64 iDummy;
|
|
rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix,
|
|
&iDummy, &iNextEnd);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}
|
|
|
|
assert( iNextStart<=iNextEnd );
|
|
iStartChild = iNextStart;
|
|
iEndChild = iNextEnd;
|
|
}
|
|
assert( iStartChild<=iLeavesEnd );
|
|
assert( iEndChild<=iLeavesEnd );
|
|
|
|
/* Scan through the leaf segments for doclists. */
|
|
return loadSegmentLeaves(v, iStartChild, iEndChild,
|
|
pTerm, nTerm, isPrefix, out);
|
|
}
|
|
}
|
|
|
|
/* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then
|
|
** merge its doclist over *out (any duplicate doclists read from the
|
|
** segment rooted at pData will overwrite those in *out).
|
|
*/
|
|
/* TODO(shess) Consider changing this to determine the depth of the
|
|
** leaves using either the first characters of interior nodes (when
|
|
** ==1, we're one level above the leaves), or the first character of
|
|
** the root (which will describe the height of the tree directly).
|
|
** Either feels somewhat tricky to me.
|
|
*/
|
|
/* TODO(shess) The current merge is likely to be slow for large
|
|
** doclists (though it should process from newest/smallest to
|
|
** oldest/largest, so it may not be that bad). It might be useful to
|
|
** modify things to allow for N-way merging. This could either be
|
|
** within a segment, with pairwise merges across segments, or across
|
|
** all segments at once.
|
|
*/
|
|
static int loadSegment(fulltext_vtab *v, const char *pData, int nData,
|
|
sqlite_int64 iLeavesEnd,
|
|
const char *pTerm, int nTerm, int isPrefix,
|
|
DataBuffer *out){
|
|
DataBuffer result;
|
|
int rc;
|
|
|
|
assert( nData>1 );
|
|
|
|
/* This code should never be called with buffered updates. */
|
|
assert( v->nPendingData<0 );
|
|
|
|
dataBufferInit(&result, 0);
|
|
rc = loadSegmentInt(v, pData, nData, iLeavesEnd,
|
|
pTerm, nTerm, isPrefix, &result);
|
|
if( rc==SQLITE_OK && result.nData>0 ){
|
|
if( out->nData==0 ){
|
|
DataBuffer tmp = *out;
|
|
*out = result;
|
|
result = tmp;
|
|
}else{
|
|
DataBuffer merged;
|
|
DLReader readers[2];
|
|
|
|
dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData);
|
|
dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData);
|
|
dataBufferInit(&merged, out->nData+result.nData);
|
|
docListMerge(&merged, readers, 2);
|
|
dataBufferDestroy(out);
|
|
*out = merged;
|
|
dlrDestroy(&readers[0]);
|
|
dlrDestroy(&readers[1]);
|
|
}
|
|
}
|
|
dataBufferDestroy(&result);
|
|
return rc;
|
|
}
|
|
|
|
/* Scan the database and merge together the posting lists for the term
|
|
** into *out.
|
|
*/
|
|
static int termSelect(fulltext_vtab *v, int iColumn,
|
|
const char *pTerm, int nTerm, int isPrefix,
|
|
DocListType iType, DataBuffer *out){
|
|
DataBuffer doclist;
|
|
sqlite3_stmt *s;
|
|
int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
/* This code should never be called with buffered updates. */
|
|
assert( v->nPendingData<0 );
|
|
|
|
dataBufferInit(&doclist, 0);
|
|
|
|
/* Traverse the segments from oldest to newest so that newer doclist
|
|
** elements for given docids overwrite older elements.
|
|
*/
|
|
while( (rc = sqlite3_step(s))==SQLITE_ROW ){
|
|
const char *pData = sqlite3_column_blob(s, 0);
|
|
const int nData = sqlite3_column_bytes(s, 0);
|
|
const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
|
|
rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix,
|
|
&doclist);
|
|
if( rc!=SQLITE_OK ) goto err;
|
|
}
|
|
if( rc==SQLITE_DONE ){
|
|
if( doclist.nData!=0 ){
|
|
/* TODO(shess) The old term_select_all() code applied the column
|
|
** restrict as we merged segments, leading to smaller buffers.
|
|
** This is probably worthwhile to bring back, once the new storage
|
|
** system is checked in.
|
|
*/
|
|
if( iColumn==v->nColumn) iColumn = -1;
|
|
docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
|
|
iColumn, iType, out);
|
|
}
|
|
rc = SQLITE_OK;
|
|
}
|
|
|
|
err:
|
|
dataBufferDestroy(&doclist);
|
|
return rc;
|
|
}
|
|
|
|
/****************************************************************/
|
|
/* Used to hold hashtable data for sorting. */
|
|
typedef struct TermData {
|
|
const char *pTerm;
|
|
int nTerm;
|
|
DLCollector *pCollector;
|
|
} TermData;
|
|
|
|
/* Orders TermData elements in strcmp fashion ( <0 for less-than, 0
|
|
** for equal, >0 for greater-than).
|
|
*/
|
|
static int termDataCmp(const void *av, const void *bv){
|
|
const TermData *a = (const TermData *)av;
|
|
const TermData *b = (const TermData *)bv;
|
|
int n = a->nTerm<b->nTerm ? a->nTerm : b->nTerm;
|
|
int c = memcmp(a->pTerm, b->pTerm, n);
|
|
if( c!=0 ) return c;
|
|
return a->nTerm-b->nTerm;
|
|
}
|
|
|
|
/* Order pTerms data by term, then write a new level 0 segment using
|
|
** LeafWriter.
|
|
*/
|
|
static int writeZeroSegment(fulltext_vtab *v, fts3Hash *pTerms){
|
|
fts3HashElem *e;
|
|
int idx, rc, i, n;
|
|
TermData *pData;
|
|
LeafWriter writer;
|
|
DataBuffer dl;
|
|
|
|
/* Determine the next index at level 0, merging as necessary. */
|
|
rc = segdirNextIndex(v, 0, &idx);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
n = fts3HashCount(pTerms);
|
|
pData = sqlite3_malloc(n*sizeof(TermData));
|
|
|
|
for(i = 0, e = fts3HashFirst(pTerms); e; i++, e = fts3HashNext(e)){
|
|
assert( i<n );
|
|
pData[i].pTerm = fts3HashKey(e);
|
|
pData[i].nTerm = fts3HashKeysize(e);
|
|
pData[i].pCollector = fts3HashData(e);
|
|
}
|
|
assert( i==n );
|
|
|
|
/* TODO(shess) Should we allow user-defined collation sequences,
|
|
** here? I think we only need that once we support prefix searches.
|
|
*/
|
|
if( n>1 ) qsort(pData, n, sizeof(*pData), termDataCmp);
|
|
|
|
/* TODO(shess) Refactor so that we can write directly to the segment
|
|
** DataBuffer, as happens for segment merges.
|
|
*/
|
|
leafWriterInit(0, idx, &writer);
|
|
dataBufferInit(&dl, 0);
|
|
for(i=0; i<n; i++){
|
|
dataBufferReset(&dl);
|
|
dlcAddDoclist(pData[i].pCollector, &dl);
|
|
rc = leafWriterStep(v, &writer,
|
|
pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData);
|
|
if( rc!=SQLITE_OK ) goto err;
|
|
}
|
|
rc = leafWriterFinalize(v, &writer);
|
|
|
|
err:
|
|
dataBufferDestroy(&dl);
|
|
sqlite3_free(pData);
|
|
leafWriterDestroy(&writer);
|
|
return rc;
|
|
}
|
|
|
|
/* If pendingTerms has data, free it. */
|
|
static int clearPendingTerms(fulltext_vtab *v){
|
|
if( v->nPendingData>=0 ){
|
|
fts3HashElem *e;
|
|
for(e=fts3HashFirst(&v->pendingTerms); e; e=fts3HashNext(e)){
|
|
dlcDelete(fts3HashData(e));
|
|
}
|
|
fts3HashClear(&v->pendingTerms);
|
|
v->nPendingData = -1;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* If pendingTerms has data, flush it to a level-zero segment, and
|
|
** free it.
|
|
*/
|
|
static int flushPendingTerms(fulltext_vtab *v){
|
|
if( v->nPendingData>=0 ){
|
|
int rc = writeZeroSegment(v, &v->pendingTerms);
|
|
if( rc==SQLITE_OK ) clearPendingTerms(v);
|
|
return rc;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* If pendingTerms is "too big", or docid is out of order, flush it.
|
|
** Regardless, be certain that pendingTerms is initialized for use.
|
|
*/
|
|
static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){
|
|
/* TODO(shess) Explore whether partially flushing the buffer on
|
|
** forced-flush would provide better performance. I suspect that if
|
|
** we ordered the doclists by size and flushed the largest until the
|
|
** buffer was half empty, that would let the less frequent terms
|
|
** generate longer doclists.
|
|
*/
|
|
if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){
|
|
int rc = flushPendingTerms(v);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}
|
|
if( v->nPendingData<0 ){
|
|
fts3HashInit(&v->pendingTerms, FTS3_HASH_STRING, 1);
|
|
v->nPendingData = 0;
|
|
}
|
|
v->iPrevDocid = iDocid;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* This function implements the xUpdate callback; it is the top-level entry
|
|
* point for inserting, deleting or updating a row in a full-text table. */
|
|
static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg,
|
|
sqlite_int64 *pRowid){
|
|
fulltext_vtab *v = (fulltext_vtab *) pVtab;
|
|
int rc;
|
|
|
|
FTSTRACE(("FTS3 Update %p\n", pVtab));
|
|
|
|
if( nArg<2 ){
|
|
rc = index_delete(v, sqlite3_value_int64(ppArg[0]));
|
|
} else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){
|
|
/* An update:
|
|
* ppArg[0] = old rowid
|
|
* ppArg[1] = new rowid
|
|
* ppArg[2..2+v->nColumn-1] = values
|
|
* ppArg[2+v->nColumn] = value for magic column (we ignore this)
|
|
* ppArg[2+v->nColumn+1] = value for docid
|
|
*/
|
|
sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]);
|
|
if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER ||
|
|
sqlite3_value_int64(ppArg[1]) != rowid ){
|
|
rc = SQLITE_ERROR; /* we don't allow changing the rowid */
|
|
}else if( sqlite3_value_type(ppArg[2+v->nColumn+1]) != SQLITE_INTEGER ||
|
|
sqlite3_value_int64(ppArg[2+v->nColumn+1]) != rowid ){
|
|
rc = SQLITE_ERROR; /* we don't allow changing the docid */
|
|
}else{
|
|
assert( nArg==2+v->nColumn+2);
|
|
rc = index_update(v, rowid, &ppArg[2]);
|
|
}
|
|
} else {
|
|
/* An insert:
|
|
* ppArg[1] = requested rowid
|
|
* ppArg[2..2+v->nColumn-1] = values
|
|
* ppArg[2+v->nColumn] = value for magic column (we ignore this)
|
|
* ppArg[2+v->nColumn+1] = value for docid
|
|
*/
|
|
sqlite3_value *pRequestDocid = ppArg[2+v->nColumn+1];
|
|
assert( nArg==2+v->nColumn+2);
|
|
if( SQLITE_NULL != sqlite3_value_type(pRequestDocid) &&
|
|
SQLITE_NULL != sqlite3_value_type(ppArg[1]) ){
|
|
/* TODO(shess) Consider allowing this to work if the values are
|
|
** identical. I'm inclined to discourage that usage, though,
|
|
** given that both rowid and docid are special columns. Better
|
|
** would be to define one or the other as the default winner,
|
|
** but should it be fts3-centric (docid) or SQLite-centric
|
|
** (rowid)?
|
|
*/
|
|
rc = SQLITE_ERROR;
|
|
}else{
|
|
if( SQLITE_NULL == sqlite3_value_type(pRequestDocid) ){
|
|
pRequestDocid = ppArg[1];
|
|
}
|
|
rc = index_insert(v, pRequestDocid, &ppArg[2], pRowid);
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int fulltextSync(sqlite3_vtab *pVtab){
|
|
FTSTRACE(("FTS3 xSync()\n"));
|
|
return flushPendingTerms((fulltext_vtab *)pVtab);
|
|
}
|
|
|
|
static int fulltextBegin(sqlite3_vtab *pVtab){
|
|
fulltext_vtab *v = (fulltext_vtab *) pVtab;
|
|
FTSTRACE(("FTS3 xBegin()\n"));
|
|
|
|
/* Any buffered updates should have been cleared by the previous
|
|
** transaction.
|
|
*/
|
|
assert( v->nPendingData<0 );
|
|
return clearPendingTerms(v);
|
|
}
|
|
|
|
static int fulltextCommit(sqlite3_vtab *pVtab){
|
|
fulltext_vtab *v = (fulltext_vtab *) pVtab;
|
|
FTSTRACE(("FTS3 xCommit()\n"));
|
|
|
|
/* Buffered updates should have been cleared by fulltextSync(). */
|
|
assert( v->nPendingData<0 );
|
|
return clearPendingTerms(v);
|
|
}
|
|
|
|
static int fulltextRollback(sqlite3_vtab *pVtab){
|
|
FTSTRACE(("FTS3 xRollback()\n"));
|
|
return clearPendingTerms((fulltext_vtab *)pVtab);
|
|
}
|
|
|
|
/*
|
|
** Implementation of the snippet() function for FTS3
|
|
*/
|
|
static void snippetFunc(
|
|
sqlite3_context *pContext,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
fulltext_cursor *pCursor;
|
|
if( argc<1 ) return;
|
|
if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
|
|
sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
|
|
sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1);
|
|
}else{
|
|
const char *zStart = "<b>";
|
|
const char *zEnd = "</b>";
|
|
const char *zEllipsis = "<b>...</b>";
|
|
memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
|
|
if( argc>=2 ){
|
|
zStart = (const char*)sqlite3_value_text(argv[1]);
|
|
if( argc>=3 ){
|
|
zEnd = (const char*)sqlite3_value_text(argv[2]);
|
|
if( argc>=4 ){
|
|
zEllipsis = (const char*)sqlite3_value_text(argv[3]);
|
|
}
|
|
}
|
|
}
|
|
snippetAllOffsets(pCursor);
|
|
snippetText(pCursor, zStart, zEnd, zEllipsis);
|
|
sqlite3_result_text(pContext, pCursor->snippet.zSnippet,
|
|
pCursor->snippet.nSnippet, SQLITE_STATIC);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the offsets() function for FTS3
|
|
*/
|
|
static void snippetOffsetsFunc(
|
|
sqlite3_context *pContext,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
fulltext_cursor *pCursor;
|
|
if( argc<1 ) return;
|
|
if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
|
|
sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
|
|
sqlite3_result_error(pContext, "illegal first argument to offsets",-1);
|
|
}else{
|
|
memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
|
|
snippetAllOffsets(pCursor);
|
|
snippetOffsetText(&pCursor->snippet);
|
|
sqlite3_result_text(pContext,
|
|
pCursor->snippet.zOffset, pCursor->snippet.nOffset,
|
|
SQLITE_STATIC);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine implements the xFindFunction method for the FTS3
|
|
** virtual table.
|
|
*/
|
|
static int fulltextFindFunction(
|
|
sqlite3_vtab *pVtab,
|
|
int nArg,
|
|
const char *zName,
|
|
void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
|
|
void **ppArg
|
|
){
|
|
if( strcmp(zName,"snippet")==0 ){
|
|
*pxFunc = snippetFunc;
|
|
return 1;
|
|
}else if( strcmp(zName,"offsets")==0 ){
|
|
*pxFunc = snippetOffsetsFunc;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Rename an fts3 table.
|
|
*/
|
|
static int fulltextRename(
|
|
sqlite3_vtab *pVtab,
|
|
const char *zName
|
|
){
|
|
fulltext_vtab *p = (fulltext_vtab *)pVtab;
|
|
int rc = SQLITE_NOMEM;
|
|
char *zSql = sqlite3_mprintf(
|
|
"ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';"
|
|
"ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';"
|
|
"ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';"
|
|
, p->zDb, p->zName, zName
|
|
, p->zDb, p->zName, zName
|
|
, p->zDb, p->zName, zName
|
|
);
|
|
if( zSql ){
|
|
rc = sqlite3_exec(p->db, zSql, 0, 0, 0);
|
|
sqlite3_free(zSql);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static const sqlite3_module fts3Module = {
|
|
/* iVersion */ 0,
|
|
/* xCreate */ fulltextCreate,
|
|
/* xConnect */ fulltextConnect,
|
|
/* xBestIndex */ fulltextBestIndex,
|
|
/* xDisconnect */ fulltextDisconnect,
|
|
/* xDestroy */ fulltextDestroy,
|
|
/* xOpen */ fulltextOpen,
|
|
/* xClose */ fulltextClose,
|
|
/* xFilter */ fulltextFilter,
|
|
/* xNext */ fulltextNext,
|
|
/* xEof */ fulltextEof,
|
|
/* xColumn */ fulltextColumn,
|
|
/* xRowid */ fulltextRowid,
|
|
/* xUpdate */ fulltextUpdate,
|
|
/* xBegin */ fulltextBegin,
|
|
/* xSync */ fulltextSync,
|
|
/* xCommit */ fulltextCommit,
|
|
/* xRollback */ fulltextRollback,
|
|
/* xFindFunction */ fulltextFindFunction,
|
|
/* xRename */ fulltextRename,
|
|
};
|
|
|
|
static void hashDestroy(void *p){
|
|
fts3Hash *pHash = (fts3Hash *)p;
|
|
sqlite3Fts3HashClear(pHash);
|
|
sqlite3_free(pHash);
|
|
}
|
|
|
|
/*
|
|
** The fts3 built-in tokenizers - "simple" and "porter" - are implemented
|
|
** in files fts3_tokenizer1.c and fts3_porter.c respectively. The following
|
|
** two forward declarations are for functions declared in these files
|
|
** used to retrieve the respective implementations.
|
|
**
|
|
** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
|
|
** to by the argument to point a the "simple" tokenizer implementation.
|
|
** Function ...PorterTokenizerModule() sets *pModule to point to the
|
|
** porter tokenizer/stemmer implementation.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
|
|
SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
|
|
SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
|
|
|
|
SQLITE_PRIVATE int sqlite3Fts3InitHashTable(sqlite3 *, fts3Hash *, const char *);
|
|
|
|
/*
|
|
** Initialise the fts3 extension. If this extension is built as part
|
|
** of the sqlite library, then this function is called directly by
|
|
** SQLite. If fts3 is built as a dynamically loadable extension, this
|
|
** function is called by the sqlite3_extension_init() entry point.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db){
|
|
int rc = SQLITE_OK;
|
|
fts3Hash *pHash = 0;
|
|
const sqlite3_tokenizer_module *pSimple = 0;
|
|
const sqlite3_tokenizer_module *pPorter = 0;
|
|
const sqlite3_tokenizer_module *pIcu = 0;
|
|
|
|
sqlite3Fts3SimpleTokenizerModule(&pSimple);
|
|
sqlite3Fts3PorterTokenizerModule(&pPorter);
|
|
#ifdef SQLITE_ENABLE_ICU
|
|
sqlite3Fts3IcuTokenizerModule(&pIcu);
|
|
#endif
|
|
|
|
/* Allocate and initialise the hash-table used to store tokenizers. */
|
|
pHash = sqlite3_malloc(sizeof(fts3Hash));
|
|
if( !pHash ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
|
|
}
|
|
|
|
/* Load the built-in tokenizers into the hash table */
|
|
if( rc==SQLITE_OK ){
|
|
if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple)
|
|
|| sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter)
|
|
|| (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu))
|
|
){
|
|
rc = SQLITE_NOMEM;
|
|
}
|
|
}
|
|
|
|
/* Create the virtual table wrapper around the hash-table and overload
|
|
** the two scalar functions. If this is successful, register the
|
|
** module with sqlite.
|
|
*/
|
|
if( SQLITE_OK==rc
|
|
&& SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
|
|
&& SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
|
|
&& SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1))
|
|
){
|
|
return sqlite3_create_module_v2(
|
|
db, "fts3", &fts3Module, (void *)pHash, hashDestroy
|
|
);
|
|
}
|
|
|
|
/* An error has occured. Delete the hash table and return the error code. */
|
|
assert( rc!=SQLITE_OK );
|
|
if( pHash ){
|
|
sqlite3Fts3HashClear(pHash);
|
|
sqlite3_free(pHash);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
#if !SQLITE_CORE
|
|
SQLITE_API int sqlite3_extension_init(
|
|
sqlite3 *db,
|
|
char **pzErrMsg,
|
|
const sqlite3_api_routines *pApi
|
|
){
|
|
SQLITE_EXTENSION_INIT2(pApi)
|
|
return sqlite3Fts3Init(db);
|
|
}
|
|
#endif
|
|
|
|
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
|
|
|
|
/************** End of fts3.c ************************************************/
|
|
/************** Begin file fts3_hash.c ***************************************/
|
|
/*
|
|
** 2001 September 22
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This is the implementation of generic hash-tables used in SQLite.
|
|
** We've modified it slightly to serve as a standalone hash table
|
|
** implementation for the full-text indexing module.
|
|
*/
|
|
|
|
/*
|
|
** The code in this file is only compiled if:
|
|
**
|
|
** * The FTS3 module is being built as an extension
|
|
** (in which case SQLITE_CORE is not defined), or
|
|
**
|
|
** * The FTS3 module is being built into the core of
|
|
** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
|
|
*/
|
|
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
|
|
|
|
|
|
|
|
/*
|
|
** Malloc and Free functions
|
|
*/
|
|
static void *fts3HashMalloc(int n){
|
|
void *p = sqlite3_malloc(n);
|
|
if( p ){
|
|
memset(p, 0, n);
|
|
}
|
|
return p;
|
|
}
|
|
static void fts3HashFree(void *p){
|
|
sqlite3_free(p);
|
|
}
|
|
|
|
/* Turn bulk memory into a hash table object by initializing the
|
|
** fields of the Hash structure.
|
|
**
|
|
** "pNew" is a pointer to the hash table that is to be initialized.
|
|
** keyClass is one of the constants
|
|
** FTS3_HASH_BINARY or FTS3_HASH_STRING. The value of keyClass
|
|
** determines what kind of key the hash table will use. "copyKey" is
|
|
** true if the hash table should make its own private copy of keys and
|
|
** false if it should just use the supplied pointer.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3Fts3HashInit(fts3Hash *pNew, int keyClass, int copyKey){
|
|
assert( pNew!=0 );
|
|
assert( keyClass>=FTS3_HASH_STRING && keyClass<=FTS3_HASH_BINARY );
|
|
pNew->keyClass = keyClass;
|
|
pNew->copyKey = copyKey;
|
|
pNew->first = 0;
|
|
pNew->count = 0;
|
|
pNew->htsize = 0;
|
|
pNew->ht = 0;
|
|
}
|
|
|
|
/* Remove all entries from a hash table. Reclaim all memory.
|
|
** Call this routine to delete a hash table or to reset a hash table
|
|
** to the empty state.
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3Fts3HashClear(fts3Hash *pH){
|
|
fts3HashElem *elem; /* For looping over all elements of the table */
|
|
|
|
assert( pH!=0 );
|
|
elem = pH->first;
|
|
pH->first = 0;
|
|
fts3HashFree(pH->ht);
|
|
pH->ht = 0;
|
|
pH->htsize = 0;
|
|
while( elem ){
|
|
fts3HashElem *next_elem = elem->next;
|
|
if( pH->copyKey && elem->pKey ){
|
|
fts3HashFree(elem->pKey);
|
|
}
|
|
fts3HashFree(elem);
|
|
elem = next_elem;
|
|
}
|
|
pH->count = 0;
|
|
}
|
|
|
|
/*
|
|
** Hash and comparison functions when the mode is FTS3_HASH_STRING
|
|
*/
|
|
static int fts3StrHash(const void *pKey, int nKey){
|
|
const char *z = (const char *)pKey;
|
|
int h = 0;
|
|
if( nKey<=0 ) nKey = (int) strlen(z);
|
|
while( nKey > 0 ){
|
|
h = (h<<3) ^ h ^ *z++;
|
|
nKey--;
|
|
}
|
|
return h & 0x7fffffff;
|
|
}
|
|
static int fts3StrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
|
if( n1!=n2 ) return 1;
|
|
return strncmp((const char*)pKey1,(const char*)pKey2,n1);
|
|
}
|
|
|
|
/*
|
|
** Hash and comparison functions when the mode is FTS3_HASH_BINARY
|
|
*/
|
|
static int fts3BinHash(const void *pKey, int nKey){
|
|
int h = 0;
|
|
const char *z = (const char *)pKey;
|
|
while( nKey-- > 0 ){
|
|
h = (h<<3) ^ h ^ *(z++);
|
|
}
|
|
return h & 0x7fffffff;
|
|
}
|
|
static int fts3BinCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
|
if( n1!=n2 ) return 1;
|
|
return memcmp(pKey1,pKey2,n1);
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to the appropriate hash function given the key class.
|
|
**
|
|
** The C syntax in this function definition may be unfamilar to some
|
|
** programmers, so we provide the following additional explanation:
|
|
**
|
|
** The name of the function is "ftsHashFunction". The function takes a
|
|
** single parameter "keyClass". The return value of ftsHashFunction()
|
|
** is a pointer to another function. Specifically, the return value
|
|
** of ftsHashFunction() is a pointer to a function that takes two parameters
|
|
** with types "const void*" and "int" and returns an "int".
|
|
*/
|
|
static int (*ftsHashFunction(int keyClass))(const void*,int){
|
|
if( keyClass==FTS3_HASH_STRING ){
|
|
return &fts3StrHash;
|
|
}else{
|
|
assert( keyClass==FTS3_HASH_BINARY );
|
|
return &fts3BinHash;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to the appropriate hash function given the key class.
|
|
**
|
|
** For help in interpreted the obscure C code in the function definition,
|
|
** see the header comment on the previous function.
|
|
*/
|
|
static int (*ftsCompareFunction(int keyClass))(const void*,int,const void*,int){
|
|
if( keyClass==FTS3_HASH_STRING ){
|
|
return &fts3StrCompare;
|
|
}else{
|
|
assert( keyClass==FTS3_HASH_BINARY );
|
|
return &fts3BinCompare;
|
|
}
|
|
}
|
|
|
|
/* Link an element into the hash table
|
|
*/
|
|
static void fts3HashInsertElement(
|
|
fts3Hash *pH, /* The complete hash table */
|
|
struct _fts3ht *pEntry, /* The entry into which pNew is inserted */
|
|
fts3HashElem *pNew /* The element to be inserted */
|
|
){
|
|
fts3HashElem *pHead; /* First element already in pEntry */
|
|
pHead = pEntry->chain;
|
|
if( pHead ){
|
|
pNew->next = pHead;
|
|
pNew->prev = pHead->prev;
|
|
if( pHead->prev ){ pHead->prev->next = pNew; }
|
|
else { pH->first = pNew; }
|
|
pHead->prev = pNew;
|
|
}else{
|
|
pNew->next = pH->first;
|
|
if( pH->first ){ pH->first->prev = pNew; }
|
|
pNew->prev = 0;
|
|
pH->first = pNew;
|
|
}
|
|
pEntry->count++;
|
|
pEntry->chain = pNew;
|
|
}
|
|
|
|
|
|
/* Resize the hash table so that it cantains "new_size" buckets.
|
|
** "new_size" must be a power of 2. The hash table might fail
|
|
** to resize if sqliteMalloc() fails.
|
|
*/
|
|
static void fts3Rehash(fts3Hash *pH, int new_size){
|
|
struct _fts3ht *new_ht; /* The new hash table */
|
|
fts3HashElem *elem, *next_elem; /* For looping over existing elements */
|
|
int (*xHash)(const void*,int); /* The hash function */
|
|
|
|
assert( (new_size & (new_size-1))==0 );
|
|
new_ht = (struct _fts3ht *)fts3HashMalloc( new_size*sizeof(struct _fts3ht) );
|
|
if( new_ht==0 ) return;
|
|
fts3HashFree(pH->ht);
|
|
pH->ht = new_ht;
|
|
pH->htsize = new_size;
|
|
xHash = ftsHashFunction(pH->keyClass);
|
|
for(elem=pH->first, pH->first=0; elem; elem = next_elem){
|
|
int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
|
|
next_elem = elem->next;
|
|
fts3HashInsertElement(pH, &new_ht[h], elem);
|
|
}
|
|
}
|
|
|
|
/* This function (for internal use only) locates an element in an
|
|
** hash table that matches the given key. The hash for this key has
|
|
** already been computed and is passed as the 4th parameter.
|
|
*/
|
|
static fts3HashElem *fts3FindElementByHash(
|
|
const fts3Hash *pH, /* The pH to be searched */
|
|
const void *pKey, /* The key we are searching for */
|
|
int nKey,
|
|
int h /* The hash for this key. */
|
|
){
|
|
fts3HashElem *elem; /* Used to loop thru the element list */
|
|
int count; /* Number of elements left to test */
|
|
int (*xCompare)(const void*,int,const void*,int); /* comparison function */
|
|
|
|
if( pH->ht ){
|
|
struct _fts3ht *pEntry = &pH->ht[h];
|
|
elem = pEntry->chain;
|
|
count = pEntry->count;
|
|
xCompare = ftsCompareFunction(pH->keyClass);
|
|
while( count-- && elem ){
|
|
if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
|
|
return elem;
|
|
}
|
|
elem = elem->next;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Remove a single entry from the hash table given a pointer to that
|
|
** element and a hash on the element's key.
|
|
*/
|
|
static void fts3RemoveElementByHash(
|
|
fts3Hash *pH, /* The pH containing "elem" */
|
|
fts3HashElem* elem, /* The element to be removed from the pH */
|
|
int h /* Hash value for the element */
|
|
){
|
|
struct _fts3ht *pEntry;
|
|
if( elem->prev ){
|
|
elem->prev->next = elem->next;
|
|
}else{
|
|
pH->first = elem->next;
|
|
}
|
|
if( elem->next ){
|
|
elem->next->prev = elem->prev;
|
|
}
|
|
pEntry = &pH->ht[h];
|
|
if( pEntry->chain==elem ){
|
|
pEntry->chain = elem->next;
|
|
}
|
|
pEntry->count--;
|
|
if( pEntry->count<=0 ){
|
|
pEntry->chain = 0;
|
|
}
|
|
if( pH->copyKey && elem->pKey ){
|
|
fts3HashFree(elem->pKey);
|
|
}
|
|
fts3HashFree( elem );
|
|
pH->count--;
|
|
if( pH->count<=0 ){
|
|
assert( pH->first==0 );
|
|
assert( pH->count==0 );
|
|
fts3HashClear(pH);
|
|
}
|
|
}
|
|
|
|
/* Attempt to locate an element of the hash table pH with a key
|
|
** that matches pKey,nKey. Return the data for this element if it is
|
|
** found, or NULL if there is no match.
|
|
*/
|
|
SQLITE_PRIVATE void *sqlite3Fts3HashFind(const fts3Hash *pH, const void *pKey, int nKey){
|
|
int h; /* A hash on key */
|
|
fts3HashElem *elem; /* The element that matches key */
|
|
int (*xHash)(const void*,int); /* The hash function */
|
|
|
|
if( pH==0 || pH->ht==0 ) return 0;
|
|
xHash = ftsHashFunction(pH->keyClass);
|
|
assert( xHash!=0 );
|
|
h = (*xHash)(pKey,nKey);
|
|
assert( (pH->htsize & (pH->htsize-1))==0 );
|
|
elem = fts3FindElementByHash(pH,pKey,nKey, h & (pH->htsize-1));
|
|
return elem ? elem->data : 0;
|
|
}
|
|
|
|
/* Insert an element into the hash table pH. The key is pKey,nKey
|
|
** and the data is "data".
|
|
**
|
|
** If no element exists with a matching key, then a new
|
|
** element is created. A copy of the key is made if the copyKey
|
|
** flag is set. NULL is returned.
|
|
**
|
|
** If another element already exists with the same key, then the
|
|
** new data replaces the old data and the old data is returned.
|
|
** The key is not copied in this instance. If a malloc fails, then
|
|
** the new data is returned and the hash table is unchanged.
|
|
**
|
|
** If the "data" parameter to this function is NULL, then the
|
|
** element corresponding to "key" is removed from the hash table.
|
|
*/
|
|
SQLITE_PRIVATE void *sqlite3Fts3HashInsert(
|
|
fts3Hash *pH, /* The hash table to insert into */
|
|
const void *pKey, /* The key */
|
|
int nKey, /* Number of bytes in the key */
|
|
void *data /* The data */
|
|
){
|
|
int hraw; /* Raw hash value of the key */
|
|
int h; /* the hash of the key modulo hash table size */
|
|
fts3HashElem *elem; /* Used to loop thru the element list */
|
|
fts3HashElem *new_elem; /* New element added to the pH */
|
|
int (*xHash)(const void*,int); /* The hash function */
|
|
|
|
assert( pH!=0 );
|
|
xHash = ftsHashFunction(pH->keyClass);
|
|
assert( xHash!=0 );
|
|
hraw = (*xHash)(pKey, nKey);
|
|
assert( (pH->htsize & (pH->htsize-1))==0 );
|
|
h = hraw & (pH->htsize-1);
|
|
elem = fts3FindElementByHash(pH,pKey,nKey,h);
|
|
if( elem ){
|
|
void *old_data = elem->data;
|
|
if( data==0 ){
|
|
fts3RemoveElementByHash(pH,elem,h);
|
|
}else{
|
|
elem->data = data;
|
|
}
|
|
return old_data;
|
|
}
|
|
if( data==0 ) return 0;
|
|
new_elem = (fts3HashElem*)fts3HashMalloc( sizeof(fts3HashElem) );
|
|
if( new_elem==0 ) return data;
|
|
if( pH->copyKey && pKey!=0 ){
|
|
new_elem->pKey = fts3HashMalloc( nKey );
|
|
if( new_elem->pKey==0 ){
|
|
fts3HashFree(new_elem);
|
|
return data;
|
|
}
|
|
memcpy((void*)new_elem->pKey, pKey, nKey);
|
|
}else{
|
|
new_elem->pKey = (void*)pKey;
|
|
}
|
|
new_elem->nKey = nKey;
|
|
pH->count++;
|
|
if( pH->htsize==0 ){
|
|
fts3Rehash(pH,8);
|
|
if( pH->htsize==0 ){
|
|
pH->count = 0;
|
|
fts3HashFree(new_elem);
|
|
return data;
|
|
}
|
|
}
|
|
if( pH->count > pH->htsize ){
|
|
fts3Rehash(pH,pH->htsize*2);
|
|
}
|
|
assert( pH->htsize>0 );
|
|
assert( (pH->htsize & (pH->htsize-1))==0 );
|
|
h = hraw & (pH->htsize-1);
|
|
fts3HashInsertElement(pH, &pH->ht[h], new_elem);
|
|
new_elem->data = data;
|
|
return 0;
|
|
}
|
|
|
|
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
|
|
|
|
/************** End of fts3_hash.c *******************************************/
|
|
/************** Begin file fts3_porter.c *************************************/
|
|
/*
|
|
** 2006 September 30
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** Implementation of the full-text-search tokenizer that implements
|
|
** a Porter stemmer.
|
|
*/
|
|
|
|
/*
|
|
** The code in this file is only compiled if:
|
|
**
|
|
** * The FTS3 module is being built as an extension
|
|
** (in which case SQLITE_CORE is not defined), or
|
|
**
|
|
** * The FTS3 module is being built into the core of
|
|
** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
|
|
*/
|
|
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
|
|
|
|
|
|
|
|
|
|
/*
|
|
** Class derived from sqlite3_tokenizer
|
|
*/
|
|
typedef struct porter_tokenizer {
|
|
sqlite3_tokenizer base; /* Base class */
|
|
} porter_tokenizer;
|
|
|
|
/*
|
|
** Class derived from sqlit3_tokenizer_cursor
|
|
*/
|
|
typedef struct porter_tokenizer_cursor {
|
|
sqlite3_tokenizer_cursor base;
|
|
const char *zInput; /* input we are tokenizing */
|
|
int nInput; /* size of the input */
|
|
int iOffset; /* current position in zInput */
|
|
int iToken; /* index of next token to be returned */
|
|
char *zToken; /* storage for current token */
|
|
int nAllocated; /* space allocated to zToken buffer */
|
|
} porter_tokenizer_cursor;
|
|
|
|
|
|
/* Forward declaration */
|
|
static const sqlite3_tokenizer_module porterTokenizerModule;
|
|
|
|
|
|
/*
|
|
** Create a new tokenizer instance.
|
|
*/
|
|
static int porterCreate(
|
|
int argc, const char * const *argv,
|
|
sqlite3_tokenizer **ppTokenizer
|
|
){
|
|
porter_tokenizer *t;
|
|
t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t));
|
|
if( t==NULL ) return SQLITE_NOMEM;
|
|
memset(t, 0, sizeof(*t));
|
|
*ppTokenizer = &t->base;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Destroy a tokenizer
|
|
*/
|
|
static int porterDestroy(sqlite3_tokenizer *pTokenizer){
|
|
sqlite3_free(pTokenizer);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Prepare to begin tokenizing a particular string. The input
|
|
** string to be tokenized is zInput[0..nInput-1]. A cursor
|
|
** used to incrementally tokenize this string is returned in
|
|
** *ppCursor.
|
|
*/
|
|
static int porterOpen(
|
|
sqlite3_tokenizer *pTokenizer, /* The tokenizer */
|
|
const char *zInput, int nInput, /* String to be tokenized */
|
|
sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
|
|
){
|
|
porter_tokenizer_cursor *c;
|
|
|
|
c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
|
|
if( c==NULL ) return SQLITE_NOMEM;
|
|
|
|
c->zInput = zInput;
|
|
if( zInput==0 ){
|
|
c->nInput = 0;
|
|
}else if( nInput<0 ){
|
|
c->nInput = (int)strlen(zInput);
|
|
}else{
|
|
c->nInput = nInput;
|
|
}
|
|
c->iOffset = 0; /* start tokenizing at the beginning */
|
|
c->iToken = 0;
|
|
c->zToken = NULL; /* no space allocated, yet. */
|
|
c->nAllocated = 0;
|
|
|
|
*ppCursor = &c->base;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Close a tokenization cursor previously opened by a call to
|
|
** porterOpen() above.
|
|
*/
|
|
static int porterClose(sqlite3_tokenizer_cursor *pCursor){
|
|
porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
|
|
sqlite3_free(c->zToken);
|
|
sqlite3_free(c);
|
|
return SQLITE_OK;
|
|
}
|
|
/*
|
|
** Vowel or consonant
|
|
*/
|
|
static const char cType[] = {
|
|
0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
|
|
1, 1, 1, 2, 1
|
|
};
|
|
|
|
/*
|
|
** isConsonant() and isVowel() determine if their first character in
|
|
** the string they point to is a consonant or a vowel, according
|
|
** to Porter ruls.
|
|
**
|
|
** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
|
|
** 'Y' is a consonant unless it follows another consonant,
|
|
** in which case it is a vowel.
|
|
**
|
|
** In these routine, the letters are in reverse order. So the 'y' rule
|
|
** is that 'y' is a consonant unless it is followed by another
|
|
** consonent.
|
|
*/
|
|
static int isVowel(const char*);
|
|
static int isConsonant(const char *z){
|
|
int j;
|
|
char x = *z;
|
|
if( x==0 ) return 0;
|
|
assert( x>='a' && x<='z' );
|
|
j = cType[x-'a'];
|
|
if( j<2 ) return j;
|
|
return z[1]==0 || isVowel(z + 1);
|
|
}
|
|
static int isVowel(const char *z){
|
|
int j;
|
|
char x = *z;
|
|
if( x==0 ) return 0;
|
|
assert( x>='a' && x<='z' );
|
|
j = cType[x-'a'];
|
|
if( j<2 ) return 1-j;
|
|
return isConsonant(z + 1);
|
|
}
|
|
|
|
/*
|
|
** Let any sequence of one or more vowels be represented by V and let
|
|
** C be sequence of one or more consonants. Then every word can be
|
|
** represented as:
|
|
**
|
|
** [C] (VC){m} [V]
|
|
**
|
|
** In prose: A word is an optional consonant followed by zero or
|
|
** vowel-consonant pairs followed by an optional vowel. "m" is the
|
|
** number of vowel consonant pairs. This routine computes the value
|
|
** of m for the first i bytes of a word.
|
|
**
|
|
** Return true if the m-value for z is 1 or more. In other words,
|
|
** return true if z contains at least one vowel that is followed
|
|
** by a consonant.
|
|
**
|
|
** In this routine z[] is in reverse order. So we are really looking
|
|
** for an instance of of a consonant followed by a vowel.
|
|
*/
|
|
static int m_gt_0(const char *z){
|
|
while( isVowel(z) ){ z++; }
|
|
if( *z==0 ) return 0;
|
|
while( isConsonant(z) ){ z++; }
|
|
return *z!=0;
|
|
}
|
|
|
|
/* Like mgt0 above except we are looking for a value of m which is
|
|
** exactly 1
|
|
*/
|
|
static int m_eq_1(const char *z){
|
|
while( isVowel(z) ){ z++; }
|
|
if( *z==0 ) return 0;
|
|
while( isConsonant(z) ){ z++; }
|
|
if( *z==0 ) return 0;
|
|
while( isVowel(z) ){ z++; }
|
|
if( *z==0 ) return 1;
|
|
while( isConsonant(z) ){ z++; }
|
|
return *z==0;
|
|
}
|
|
|
|
/* Like mgt0 above except we are looking for a value of m>1 instead
|
|
** or m>0
|
|
*/
|
|
static int m_gt_1(const char *z){
|
|
while( isVowel(z) ){ z++; }
|
|
if( *z==0 ) return 0;
|
|
while( isConsonant(z) ){ z++; }
|
|
if( *z==0 ) return 0;
|
|
while( isVowel(z) ){ z++; }
|
|
if( *z==0 ) return 0;
|
|
while( isConsonant(z) ){ z++; }
|
|
return *z!=0;
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if there is a vowel anywhere within z[0..n-1]
|
|
*/
|
|
static int hasVowel(const char *z){
|
|
while( isConsonant(z) ){ z++; }
|
|
return *z!=0;
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if the word ends in a double consonant.
|
|
**
|
|
** The text is reversed here. So we are really looking at
|
|
** the first two characters of z[].
|
|
*/
|
|
static int doubleConsonant(const char *z){
|
|
return isConsonant(z) && z[0]==z[1] && isConsonant(z+1);
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if the word ends with three letters which
|
|
** are consonant-vowel-consonent and where the final consonant
|
|
** is not 'w', 'x', or 'y'.
|
|
**
|
|
** The word is reversed here. So we are really checking the
|
|
** first three letters and the first one cannot be in [wxy].
|
|
*/
|
|
static int star_oh(const char *z){
|
|
return
|
|
z[0]!=0 && isConsonant(z) &&
|
|
z[0]!='w' && z[0]!='x' && z[0]!='y' &&
|
|
z[1]!=0 && isVowel(z+1) &&
|
|
z[2]!=0 && isConsonant(z+2);
|
|
}
|
|
|
|
/*
|
|
** If the word ends with zFrom and xCond() is true for the stem
|
|
** of the word that preceeds the zFrom ending, then change the
|
|
** ending to zTo.
|
|
**
|
|
** The input word *pz and zFrom are both in reverse order. zTo
|
|
** is in normal order.
|
|
**
|
|
** Return TRUE if zFrom matches. Return FALSE if zFrom does not
|
|
** match. Not that TRUE is returned even if xCond() fails and
|
|
** no substitution occurs.
|
|
*/
|
|
static int stem(
|
|
char **pz, /* The word being stemmed (Reversed) */
|
|
const char *zFrom, /* If the ending matches this... (Reversed) */
|
|
const char *zTo, /* ... change the ending to this (not reversed) */
|
|
int (*xCond)(const char*) /* Condition that must be true */
|
|
){
|
|
char *z = *pz;
|
|
while( *zFrom && *zFrom==*z ){ z++; zFrom++; }
|
|
if( *zFrom!=0 ) return 0;
|
|
if( xCond && !xCond(z) ) return 1;
|
|
while( *zTo ){
|
|
*(--z) = *(zTo++);
|
|
}
|
|
*pz = z;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** This is the fallback stemmer used when the porter stemmer is
|
|
** inappropriate. The input word is copied into the output with
|
|
** US-ASCII case folding. If the input word is too long (more
|
|
** than 20 bytes if it contains no digits or more than 6 bytes if
|
|
** it contains digits) then word is truncated to 20 or 6 bytes
|
|
** by taking 10 or 3 bytes from the beginning and end.
|
|
*/
|
|
static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
|
|
int i, mx, j;
|
|
int hasDigit = 0;
|
|
for(i=0; i<nIn; i++){
|
|
int c = zIn[i];
|
|
if( c>='A' && c<='Z' ){
|
|
zOut[i] = c - 'A' + 'a';
|
|
}else{
|
|
if( c>='0' && c<='9' ) hasDigit = 1;
|
|
zOut[i] = c;
|
|
}
|
|
}
|
|
mx = hasDigit ? 3 : 10;
|
|
if( nIn>mx*2 ){
|
|
for(j=mx, i=nIn-mx; i<nIn; i++, j++){
|
|
zOut[j] = zOut[i];
|
|
}
|
|
i = j;
|
|
}
|
|
zOut[i] = 0;
|
|
*pnOut = i;
|
|
}
|
|
|
|
|
|
/*
|
|
** Stem the input word zIn[0..nIn-1]. Store the output in zOut.
|
|
** zOut is at least big enough to hold nIn bytes. Write the actual
|
|
** size of the output word (exclusive of the '\0' terminator) into *pnOut.
|
|
**
|
|
** Any upper-case characters in the US-ASCII character set ([A-Z])
|
|
** are converted to lower case. Upper-case UTF characters are
|
|
** unchanged.
|
|
**
|
|
** Words that are longer than about 20 bytes are stemmed by retaining
|
|
** a few bytes from the beginning and the end of the word. If the
|
|
** word contains digits, 3 bytes are taken from the beginning and
|
|
** 3 bytes from the end. For long words without digits, 10 bytes
|
|
** are taken from each end. US-ASCII case folding still applies.
|
|
**
|
|
** If the input word contains not digits but does characters not
|
|
** in [a-zA-Z] then no stemming is attempted and this routine just
|
|
** copies the input into the input into the output with US-ASCII
|
|
** case folding.
|
|
**
|
|
** Stemming never increases the length of the word. So there is
|
|
** no chance of overflowing the zOut buffer.
|
|
*/
|
|
static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
|
|
int i, j, c;
|
|
char zReverse[28];
|
|
char *z, *z2;
|
|
if( nIn<3 || nIn>=sizeof(zReverse)-7 ){
|
|
/* The word is too big or too small for the porter stemmer.
|
|
** Fallback to the copy stemmer */
|
|
copy_stemmer(zIn, nIn, zOut, pnOut);
|
|
return;
|
|
}
|
|
for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){
|
|
c = zIn[i];
|
|
if( c>='A' && c<='Z' ){
|
|
zReverse[j] = c + 'a' - 'A';
|
|
}else if( c>='a' && c<='z' ){
|
|
zReverse[j] = c;
|
|
}else{
|
|
/* The use of a character not in [a-zA-Z] means that we fallback
|
|
** to the copy stemmer */
|
|
copy_stemmer(zIn, nIn, zOut, pnOut);
|
|
return;
|
|
}
|
|
}
|
|
memset(&zReverse[sizeof(zReverse)-5], 0, 5);
|
|
z = &zReverse[j+1];
|
|
|
|
|
|
/* Step 1a */
|
|
if( z[0]=='s' ){
|
|
if(
|
|
!stem(&z, "sess", "ss", 0) &&
|
|
!stem(&z, "sei", "i", 0) &&
|
|
!stem(&z, "ss", "ss", 0)
|
|
){
|
|
z++;
|
|
}
|
|
}
|
|
|
|
/* Step 1b */
|
|
z2 = z;
|
|
if( stem(&z, "dee", "ee", m_gt_0) ){
|
|
/* Do nothing. The work was all in the test */
|
|
}else if(
|
|
(stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
|
|
&& z!=z2
|
|
){
|
|
if( stem(&z, "ta", "ate", 0) ||
|
|
stem(&z, "lb", "ble", 0) ||
|
|
stem(&z, "zi", "ize", 0) ){
|
|
/* Do nothing. The work was all in the test */
|
|
}else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){
|
|
z++;
|
|
}else if( m_eq_1(z) && star_oh(z) ){
|
|
*(--z) = 'e';
|
|
}
|
|
}
|
|
|
|
/* Step 1c */
|
|
if( z[0]=='y' && hasVowel(z+1) ){
|
|
z[0] = 'i';
|
|
}
|
|
|
|
/* Step 2 */
|
|
switch( z[1] ){
|
|
case 'a':
|
|
stem(&z, "lanoita", "ate", m_gt_0) ||
|
|
stem(&z, "lanoit", "tion", m_gt_0);
|
|
break;
|
|
case 'c':
|
|
stem(&z, "icne", "ence", m_gt_0) ||
|
|
stem(&z, "icna", "ance", m_gt_0);
|
|
break;
|
|
case 'e':
|
|
stem(&z, "rezi", "ize", m_gt_0);
|
|
break;
|
|
case 'g':
|
|
stem(&z, "igol", "log", m_gt_0);
|
|
break;
|
|
case 'l':
|
|
stem(&z, "ilb", "ble", m_gt_0) ||
|
|
stem(&z, "illa", "al", m_gt_0) ||
|
|
stem(&z, "iltne", "ent", m_gt_0) ||
|
|
stem(&z, "ile", "e", m_gt_0) ||
|
|
stem(&z, "ilsuo", "ous", m_gt_0);
|
|
break;
|
|
case 'o':
|
|
stem(&z, "noitazi", "ize", m_gt_0) ||
|
|
stem(&z, "noita", "ate", m_gt_0) ||
|
|
stem(&z, "rota", "ate", m_gt_0);
|
|
break;
|
|
case 's':
|
|
stem(&z, "msila", "al", m_gt_0) ||
|
|
stem(&z, "ssenevi", "ive", m_gt_0) ||
|
|
stem(&z, "ssenluf", "ful", m_gt_0) ||
|
|
stem(&z, "ssensuo", "ous", m_gt_0);
|
|
break;
|
|
case 't':
|
|
stem(&z, "itila", "al", m_gt_0) ||
|
|
stem(&z, "itivi", "ive", m_gt_0) ||
|
|
stem(&z, "itilib", "ble", m_gt_0);
|
|
break;
|
|
}
|
|
|
|
/* Step 3 */
|
|
switch( z[0] ){
|
|
case 'e':
|
|
stem(&z, "etaci", "ic", m_gt_0) ||
|
|
stem(&z, "evita", "", m_gt_0) ||
|
|
stem(&z, "ezila", "al", m_gt_0);
|
|
break;
|
|
case 'i':
|
|
stem(&z, "itici", "ic", m_gt_0);
|
|
break;
|
|
case 'l':
|
|
stem(&z, "laci", "ic", m_gt_0) ||
|
|
stem(&z, "luf", "", m_gt_0);
|
|
break;
|
|
case 's':
|
|
stem(&z, "ssen", "", m_gt_0);
|
|
break;
|
|
}
|
|
|
|
/* Step 4 */
|
|
switch( z[1] ){
|
|
case 'a':
|
|
if( z[0]=='l' && m_gt_1(z+2) ){
|
|
z += 2;
|
|
}
|
|
break;
|
|
case 'c':
|
|
if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e') && m_gt_1(z+4) ){
|
|
z += 4;
|
|
}
|
|
break;
|
|
case 'e':
|
|
if( z[0]=='r' && m_gt_1(z+2) ){
|
|
z += 2;
|
|
}
|
|
break;
|
|
case 'i':
|
|
if( z[0]=='c' && m_gt_1(z+2) ){
|
|
z += 2;
|
|
}
|
|
break;
|
|
case 'l':
|
|
if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){
|
|
z += 4;
|
|
}
|
|
break;
|
|
case 'n':
|
|
if( z[0]=='t' ){
|
|
if( z[2]=='a' ){
|
|
if( m_gt_1(z+3) ){
|
|
z += 3;
|
|
}
|
|
}else if( z[2]=='e' ){
|
|
stem(&z, "tneme", "", m_gt_1) ||
|
|
stem(&z, "tnem", "", m_gt_1) ||
|
|
stem(&z, "tne", "", m_gt_1);
|
|
}
|
|
}
|
|
break;
|
|
case 'o':
|
|
if( z[0]=='u' ){
|
|
if( m_gt_1(z+2) ){
|
|
z += 2;
|
|
}
|
|
}else if( z[3]=='s' || z[3]=='t' ){
|
|
stem(&z, "noi", "", m_gt_1);
|
|
}
|
|
break;
|
|
case 's':
|
|
if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){
|
|
z += 3;
|
|
}
|
|
break;
|
|
case 't':
|
|
stem(&z, "eta", "", m_gt_1) ||
|
|
stem(&z, "iti", "", m_gt_1);
|
|
break;
|
|
case 'u':
|
|
if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){
|
|
z += 3;
|
|
}
|
|
break;
|
|
case 'v':
|
|
case 'z':
|
|
if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){
|
|
z += 3;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Step 5a */
|
|
if( z[0]=='e' ){
|
|
if( m_gt_1(z+1) ){
|
|
z++;
|
|
}else if( m_eq_1(z+1) && !star_oh(z+1) ){
|
|
z++;
|
|
}
|
|
}
|
|
|
|
/* Step 5b */
|
|
if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){
|
|
z++;
|
|
}
|
|
|
|
/* z[] is now the stemmed word in reverse order. Flip it back
|
|
** around into forward order and return.
|
|
*/
|
|
*pnOut = i = strlen(z);
|
|
zOut[i] = 0;
|
|
while( *z ){
|
|
zOut[--i] = *(z++);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Characters that can be part of a token. We assume any character
|
|
** whose value is greater than 0x80 (any UTF character) can be
|
|
** part of a token. In other words, delimiters all must have
|
|
** values of 0x7f or lower.
|
|
*/
|
|
static const char porterIdChar[] = {
|
|
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
|
|
};
|
|
#define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30]))
|
|
|
|
/*
|
|
** Extract the next token from a tokenization cursor. The cursor must
|
|
** have been opened by a prior call to porterOpen().
|
|
*/
|
|
static int porterNext(
|
|
sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by porterOpen */
|
|
const char **pzToken, /* OUT: *pzToken is the token text */
|
|
int *pnBytes, /* OUT: Number of bytes in token */
|
|
int *piStartOffset, /* OUT: Starting offset of token */
|
|
int *piEndOffset, /* OUT: Ending offset of token */
|
|
int *piPosition /* OUT: Position integer of token */
|
|
){
|
|
porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
|
|
const char *z = c->zInput;
|
|
|
|
while( c->iOffset<c->nInput ){
|
|
int iStartOffset, ch;
|
|
|
|
/* Scan past delimiter characters */
|
|
while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){
|
|
c->iOffset++;
|
|
}
|
|
|
|
/* Count non-delimiter characters. */
|
|
iStartOffset = c->iOffset;
|
|
while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){
|
|
c->iOffset++;
|
|
}
|
|
|
|
if( c->iOffset>iStartOffset ){
|
|
int n = c->iOffset-iStartOffset;
|
|
if( n>c->nAllocated ){
|
|
c->nAllocated = n+20;
|
|
c->zToken = sqlite3_realloc(c->zToken, c->nAllocated);
|
|
if( c->zToken==NULL ) return SQLITE_NOMEM;
|
|
}
|
|
porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
|
|
*pzToken = c->zToken;
|
|
*piStartOffset = iStartOffset;
|
|
*piEndOffset = c->iOffset;
|
|
*piPosition = c->iToken++;
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
return SQLITE_DONE;
|
|
}
|
|
|
|
/*
|
|
** The set of routines that implement the porter-stemmer tokenizer
|
|
*/
|
|
static const sqlite3_tokenizer_module porterTokenizerModule = {
|
|
0,
|
|
porterCreate,
|
|
porterDestroy,
|
|
porterOpen,
|
|
porterClose,
|
|
porterNext,
|
|
};
|
|
|
|
/*
|
|
** Allocate a new porter tokenizer. Return a pointer to the new
|
|
** tokenizer in *ppModule
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(
|
|
sqlite3_tokenizer_module const**ppModule
|
|
){
|
|
*ppModule = &porterTokenizerModule;
|
|
}
|
|
|
|
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
|
|
|
|
/************** End of fts3_porter.c *****************************************/
|
|
/************** Begin file fts3_tokenizer.c **********************************/
|
|
/*
|
|
** 2007 June 22
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
******************************************************************************
|
|
**
|
|
** This is part of an SQLite module implementing full-text search.
|
|
** This particular file implements the generic tokenizer interface.
|
|
*/
|
|
|
|
/*
|
|
** The code in this file is only compiled if:
|
|
**
|
|
** * The FTS3 module is being built as an extension
|
|
** (in which case SQLITE_CORE is not defined), or
|
|
**
|
|
** * The FTS3 module is being built into the core of
|
|
** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
|
|
*/
|
|
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
|
|
|
|
SQLITE_EXTENSION_INIT1
|
|
|
|
|
|
/*
|
|
** Implementation of the SQL scalar function for accessing the underlying
|
|
** hash table. This function may be called as follows:
|
|
**
|
|
** SELECT <function-name>(<key-name>);
|
|
** SELECT <function-name>(<key-name>, <pointer>);
|
|
**
|
|
** where <function-name> is the name passed as the second argument
|
|
** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer').
|
|
**
|
|
** If the <pointer> argument is specified, it must be a blob value
|
|
** containing a pointer to be stored as the hash data corresponding
|
|
** to the string <key-name>. If <pointer> is not specified, then
|
|
** the string <key-name> must already exist in the has table. Otherwise,
|
|
** an error is returned.
|
|
**
|
|
** Whether or not the <pointer> argument is specified, the value returned
|
|
** is a blob containing the pointer stored as the hash data corresponding
|
|
** to string <key-name> (after the hash-table is updated, if applicable).
|
|
*/
|
|
static void scalarFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
fts3Hash *pHash;
|
|
void *pPtr = 0;
|
|
const unsigned char *zName;
|
|
int nName;
|
|
|
|
assert( argc==1 || argc==2 );
|
|
|
|
pHash = (fts3Hash *)sqlite3_user_data(context);
|
|
|
|
zName = sqlite3_value_text(argv[0]);
|
|
nName = sqlite3_value_bytes(argv[0])+1;
|
|
|
|
if( argc==2 ){
|
|
void *pOld;
|
|
int n = sqlite3_value_bytes(argv[1]);
|
|
if( n!=sizeof(pPtr) ){
|
|
sqlite3_result_error(context, "argument type mismatch", -1);
|
|
return;
|
|
}
|
|
pPtr = *(void **)sqlite3_value_blob(argv[1]);
|
|
pOld = sqlite3Fts3HashInsert(pHash, (void *)zName, nName, pPtr);
|
|
if( pOld==pPtr ){
|
|
sqlite3_result_error(context, "out of memory", -1);
|
|
return;
|
|
}
|
|
}else{
|
|
pPtr = sqlite3Fts3HashFind(pHash, zName, nName);
|
|
if( !pPtr ){
|
|
char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
|
|
sqlite3_result_error(context, zErr, -1);
|
|
sqlite3_free(zErr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
sqlite3_result_blob(context, (void *)&pPtr, sizeof(pPtr), SQLITE_TRANSIENT);
|
|
}
|
|
|
|
#ifdef SQLITE_TEST
|
|
|
|
|
|
/*
|
|
** Implementation of a special SQL scalar function for testing tokenizers
|
|
** designed to be used in concert with the Tcl testing framework. This
|
|
** function must be called with two arguments:
|
|
**
|
|
** SELECT <function-name>(<key-name>, <input-string>);
|
|
** SELECT <function-name>(<key-name>, <pointer>);
|
|
**
|
|
** where <function-name> is the name passed as the second argument
|
|
** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer')
|
|
** concatenated with the string '_test' (e.g. 'fts3_tokenizer_test').
|
|
**
|
|
** The return value is a string that may be interpreted as a Tcl
|
|
** list. For each token in the <input-string>, three elements are
|
|
** added to the returned list. The first is the token position, the
|
|
** second is the token text (folded, stemmed, etc.) and the third is the
|
|
** substring of <input-string> associated with the token. For example,
|
|
** using the built-in "simple" tokenizer:
|
|
**
|
|
** SELECT fts_tokenizer_test('simple', 'I don't see how');
|
|
**
|
|
** will return the string:
|
|
**
|
|
** "{0 i I 1 dont don't 2 see see 3 how how}"
|
|
**
|
|
*/
|
|
static void testFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
fts3Hash *pHash;
|
|
sqlite3_tokenizer_module *p;
|
|
sqlite3_tokenizer *pTokenizer = 0;
|
|
sqlite3_tokenizer_cursor *pCsr = 0;
|
|
|
|
const char *zErr = 0;
|
|
|
|
const char *zName;
|
|
int nName;
|
|
const char *zInput;
|
|
int nInput;
|
|
|
|
const char *zArg = 0;
|
|
|
|
const char *zToken;
|
|
int nToken;
|
|
int iStart;
|
|
int iEnd;
|
|
int iPos;
|
|
|
|
Tcl_Obj *pRet;
|
|
|
|
assert( argc==2 || argc==3 );
|
|
|
|
nName = sqlite3_value_bytes(argv[0]);
|
|
zName = (const char *)sqlite3_value_text(argv[0]);
|
|
nInput = sqlite3_value_bytes(argv[argc-1]);
|
|
zInput = (const char *)sqlite3_value_text(argv[argc-1]);
|
|
|
|
if( argc==3 ){
|
|
zArg = (const char *)sqlite3_value_text(argv[1]);
|
|
}
|
|
|
|
pHash = (fts3Hash *)sqlite3_user_data(context);
|
|
p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1);
|
|
|
|
if( !p ){
|
|
char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
|
|
sqlite3_result_error(context, zErr, -1);
|
|
sqlite3_free(zErr);
|
|
return;
|
|
}
|
|
|
|
pRet = Tcl_NewObj();
|
|
Tcl_IncrRefCount(pRet);
|
|
|
|
if( SQLITE_OK!=p->xCreate(zArg ? 1 : 0, &zArg, &pTokenizer) ){
|
|
zErr = "error in xCreate()";
|
|
goto finish;
|
|
}
|
|
pTokenizer->pModule = p;
|
|
if( SQLITE_OK!=p->xOpen(pTokenizer, zInput, nInput, &pCsr) ){
|
|
zErr = "error in xOpen()";
|
|
goto finish;
|
|
}
|
|
pCsr->pTokenizer = pTokenizer;
|
|
|
|
while( SQLITE_OK==p->xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos) ){
|
|
Tcl_ListObjAppendElement(0, pRet, Tcl_NewIntObj(iPos));
|
|
Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
|
|
zToken = &zInput[iStart];
|
|
nToken = iEnd-iStart;
|
|
Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
|
|
}
|
|
|
|
if( SQLITE_OK!=p->xClose(pCsr) ){
|
|
zErr = "error in xClose()";
|
|
goto finish;
|
|
}
|
|
if( SQLITE_OK!=p->xDestroy(pTokenizer) ){
|
|
zErr = "error in xDestroy()";
|
|
goto finish;
|
|
}
|
|
|
|
finish:
|
|
if( zErr ){
|
|
sqlite3_result_error(context, zErr, -1);
|
|
}else{
|
|
sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
|
|
}
|
|
Tcl_DecrRefCount(pRet);
|
|
}
|
|
|
|
static
|
|
int registerTokenizer(
|
|
sqlite3 *db,
|
|
char *zName,
|
|
const sqlite3_tokenizer_module *p
|
|
){
|
|
int rc;
|
|
sqlite3_stmt *pStmt;
|
|
const char zSql[] = "SELECT fts3_tokenizer(?, ?)";
|
|
|
|
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
|
|
sqlite3_bind_blob(pStmt, 2, &p, sizeof(p), SQLITE_STATIC);
|
|
sqlite3_step(pStmt);
|
|
|
|
return sqlite3_finalize(pStmt);
|
|
}
|
|
|
|
static
|
|
int queryTokenizer(
|
|
sqlite3 *db,
|
|
char *zName,
|
|
const sqlite3_tokenizer_module **pp
|
|
){
|
|
int rc;
|
|
sqlite3_stmt *pStmt;
|
|
const char zSql[] = "SELECT fts3_tokenizer(?)";
|
|
|
|
*pp = 0;
|
|
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
|
|
if( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){
|
|
memcpy(pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp));
|
|
}
|
|
}
|
|
|
|
return sqlite3_finalize(pStmt);
|
|
}
|
|
|
|
SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
|
|
|
|
/*
|
|
** Implementation of the scalar function fts3_tokenizer_internal_test().
|
|
** This function is used for testing only, it is not included in the
|
|
** build unless SQLITE_TEST is defined.
|
|
**
|
|
** The purpose of this is to test that the fts3_tokenizer() function
|
|
** can be used as designed by the C-code in the queryTokenizer and
|
|
** registerTokenizer() functions above. These two functions are repeated
|
|
** in the README.tokenizer file as an example, so it is important to
|
|
** test them.
|
|
**
|
|
** To run the tests, evaluate the fts3_tokenizer_internal_test() scalar
|
|
** function with no arguments. An assert() will fail if a problem is
|
|
** detected. i.e.:
|
|
**
|
|
** SELECT fts3_tokenizer_internal_test();
|
|
**
|
|
*/
|
|
static void intTestFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int rc;
|
|
const sqlite3_tokenizer_module *p1;
|
|
const sqlite3_tokenizer_module *p2;
|
|
sqlite3 *db = (sqlite3 *)sqlite3_user_data(context);
|
|
|
|
/* Test the query function */
|
|
sqlite3Fts3SimpleTokenizerModule(&p1);
|
|
rc = queryTokenizer(db, "simple", &p2);
|
|
assert( rc==SQLITE_OK );
|
|
assert( p1==p2 );
|
|
rc = queryTokenizer(db, "nosuchtokenizer", &p2);
|
|
assert( rc==SQLITE_ERROR );
|
|
assert( p2==0 );
|
|
assert( 0==strcmp(sqlite3_errmsg(db), "unknown tokenizer: nosuchtokenizer") );
|
|
|
|
/* Test the storage function */
|
|
rc = registerTokenizer(db, "nosuchtokenizer", p1);
|
|
assert( rc==SQLITE_OK );
|
|
rc = queryTokenizer(db, "nosuchtokenizer", &p2);
|
|
assert( rc==SQLITE_OK );
|
|
assert( p2==p1 );
|
|
|
|
sqlite3_result_text(context, "ok", -1, SQLITE_STATIC);
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
** Set up SQL objects in database db used to access the contents of
|
|
** the hash table pointed to by argument pHash. The hash table must
|
|
** been initialised to use string keys, and to take a private copy
|
|
** of the key when a value is inserted. i.e. by a call similar to:
|
|
**
|
|
** sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
|
|
**
|
|
** This function adds a scalar function (see header comment above
|
|
** scalarFunc() in this file for details) and, if ENABLE_TABLE is
|
|
** defined at compilation time, a temporary virtual table (see header
|
|
** comment above struct HashTableVtab) to the database schema. Both
|
|
** provide read/write access to the contents of *pHash.
|
|
**
|
|
** The third argument to this function, zName, is used as the name
|
|
** of both the scalar and, if created, the virtual table.
|
|
*/
|
|
SQLITE_PRIVATE int sqlite3Fts3InitHashTable(
|
|
sqlite3 *db,
|
|
fts3Hash *pHash,
|
|
const char *zName
|
|
){
|
|
int rc = SQLITE_OK;
|
|
void *p = (void *)pHash;
|
|
const int any = SQLITE_ANY;
|
|
char *zTest = 0;
|
|
char *zTest2 = 0;
|
|
|
|
#ifdef SQLITE_TEST
|
|
void *pdb = (void *)db;
|
|
zTest = sqlite3_mprintf("%s_test", zName);
|
|
zTest2 = sqlite3_mprintf("%s_internal_test", zName);
|
|
if( !zTest || !zTest2 ){
|
|
rc = SQLITE_NOMEM;
|
|
}
|
|
#endif
|
|
|
|
if( rc!=SQLITE_OK
|
|
|| (rc = sqlite3_create_function(db, zName, 1, any, p, scalarFunc, 0, 0))
|
|
|| (rc = sqlite3_create_function(db, zName, 2, any, p, scalarFunc, 0, 0))
|
|
#ifdef SQLITE_TEST
|
|
|| (rc = sqlite3_create_function(db, zTest, 2, any, p, testFunc, 0, 0))
|
|
|| (rc = sqlite3_create_function(db, zTest, 3, any, p, testFunc, 0, 0))
|
|
|| (rc = sqlite3_create_function(db, zTest2, 0, any, pdb, intTestFunc, 0, 0))
|
|
#endif
|
|
);
|
|
|
|
sqlite3_free(zTest);
|
|
sqlite3_free(zTest2);
|
|
return rc;
|
|
}
|
|
|
|
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
|
|
|
|
/************** End of fts3_tokenizer.c **************************************/
|
|
/************** Begin file fts3_tokenizer1.c *********************************/
|
|
/*
|
|
** 2006 Oct 10
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
******************************************************************************
|
|
**
|
|
** Implementation of the "simple" full-text-search tokenizer.
|
|
*/
|
|
|
|
/*
|
|
** The code in this file is only compiled if:
|
|
**
|
|
** * The FTS3 module is being built as an extension
|
|
** (in which case SQLITE_CORE is not defined), or
|
|
**
|
|
** * The FTS3 module is being built into the core of
|
|
** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
|
|
*/
|
|
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
|
|
|
|
|
|
|
|
|
|
typedef struct simple_tokenizer {
|
|
sqlite3_tokenizer base;
|
|
char delim[128]; /* flag ASCII delimiters */
|
|
} simple_tokenizer;
|
|
|
|
typedef struct simple_tokenizer_cursor {
|
|
sqlite3_tokenizer_cursor base;
|
|
const char *pInput; /* input we are tokenizing */
|
|
int nBytes; /* size of the input */
|
|
int iOffset; /* current position in pInput */
|
|
int iToken; /* index of next token to be returned */
|
|
char *pToken; /* storage for current token */
|
|
int nTokenAllocated; /* space allocated to zToken buffer */
|
|
} simple_tokenizer_cursor;
|
|
|
|
|
|
/* Forward declaration */
|
|
static const sqlite3_tokenizer_module simpleTokenizerModule;
|
|
|
|
static int simpleDelim(simple_tokenizer *t, unsigned char c){
|
|
return c<0x80 && t->delim[c];
|
|
}
|
|
|
|
/*
|
|
** Create a new tokenizer instance.
|
|
*/
|
|
static int simpleCreate(
|
|
int argc, const char * const *argv,
|
|
sqlite3_tokenizer **ppTokenizer
|
|
){
|
|
simple_tokenizer *t;
|
|
|
|
t = (simple_tokenizer *) sqlite3_malloc(sizeof(*t));
|
|
if( t==NULL ) return SQLITE_NOMEM;
|
|
memset(t, 0, sizeof(*t));
|
|
|
|
/* TODO(shess) Delimiters need to remain the same from run to run,
|
|
** else we need to reindex. One solution would be a meta-table to
|
|
** track such information in the database, then we'd only want this
|
|
** information on the initial create.
|
|
*/
|
|
if( argc>1 ){
|
|
int i, n = strlen(argv[1]);
|
|
for(i=0; i<n; i++){
|
|
unsigned char ch = argv[1][i];
|
|
/* We explicitly don't support UTF-8 delimiters for now. */
|
|
if( ch>=0x80 ){
|
|
sqlite3_free(t);
|
|
return SQLITE_ERROR;
|
|
}
|
|
t->delim[ch] = 1;
|
|
}
|
|
} else {
|
|
/* Mark non-alphanumeric ASCII characters as delimiters */
|
|
int i;
|
|
for(i=1; i<0x80; i++){
|
|
t->delim[i] = !isalnum(i);
|
|
}
|
|
}
|
|
|
|
*ppTokenizer = &t->base;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Destroy a tokenizer
|
|
*/
|
|
static int simpleDestroy(sqlite3_tokenizer *pTokenizer){
|
|
sqlite3_free(pTokenizer);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Prepare to begin tokenizing a particular string. The input
|
|
** string to be tokenized is pInput[0..nBytes-1]. A cursor
|
|
** used to incrementally tokenize this string is returned in
|
|
** *ppCursor.
|
|
*/
|
|
static int simpleOpen(
|
|
sqlite3_tokenizer *pTokenizer, /* The tokenizer */
|
|
const char *pInput, int nBytes, /* String to be tokenized */
|
|
sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
|
|
){
|
|
simple_tokenizer_cursor *c;
|
|
|
|
c = (simple_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
|
|
if( c==NULL ) return SQLITE_NOMEM;
|
|
|
|
c->pInput = pInput;
|
|
if( pInput==0 ){
|
|
c->nBytes = 0;
|
|
}else if( nBytes<0 ){
|
|
c->nBytes = (int)strlen(pInput);
|
|
}else{
|
|
c->nBytes = nBytes;
|
|
}
|
|
c->iOffset = 0; /* start tokenizing at the beginning */
|
|
c->iToken = 0;
|
|
c->pToken = NULL; /* no space allocated, yet. */
|
|
c->nTokenAllocated = 0;
|
|
|
|
*ppCursor = &c->base;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Close a tokenization cursor previously opened by a call to
|
|
** simpleOpen() above.
|
|
*/
|
|
static int simpleClose(sqlite3_tokenizer_cursor *pCursor){
|
|
simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
|
|
sqlite3_free(c->pToken);
|
|
sqlite3_free(c);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Extract the next token from a tokenization cursor. The cursor must
|
|
** have been opened by a prior call to simpleOpen().
|
|
*/
|
|
static int simpleNext(
|
|
sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */
|
|
const char **ppToken, /* OUT: *ppToken is the token text */
|
|
int *pnBytes, /* OUT: Number of bytes in token */
|
|
int *piStartOffset, /* OUT: Starting offset of token */
|
|
int *piEndOffset, /* OUT: Ending offset of token */
|
|
int *piPosition /* OUT: Position integer of token */
|
|
){
|
|
simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
|
|
simple_tokenizer *t = (simple_tokenizer *) pCursor->pTokenizer;
|
|
unsigned char *p = (unsigned char *)c->pInput;
|
|
|
|
while( c->iOffset<c->nBytes ){
|
|
int iStartOffset;
|
|
|
|
/* Scan past delimiter characters */
|
|
while( c->iOffset<c->nBytes && simpleDelim(t, p[c->iOffset]) ){
|
|
c->iOffset++;
|
|
}
|
|
|
|
/* Count non-delimiter characters. */
|
|
iStartOffset = c->iOffset;
|
|
while( c->iOffset<c->nBytes && !simpleDelim(t, p[c->iOffset]) ){
|
|
c->iOffset++;
|
|
}
|
|
|
|
if( c->iOffset>iStartOffset ){
|
|
int i, n = c->iOffset-iStartOffset;
|
|
if( n>c->nTokenAllocated ){
|
|
c->nTokenAllocated = n+20;
|
|
c->pToken = sqlite3_realloc(c->pToken, c->nTokenAllocated);
|
|
if( c->pToken==NULL ) return SQLITE_NOMEM;
|
|
}
|
|
for(i=0; i<n; i++){
|
|
/* TODO(shess) This needs expansion to handle UTF-8
|
|
** case-insensitivity.
|
|
*/
|
|
unsigned char ch = p[iStartOffset+i];
|
|
c->pToken[i] = ch<0x80 ? tolower(ch) : ch;
|
|
}
|
|
*ppToken = c->pToken;
|
|
*pnBytes = n;
|
|
*piStartOffset = iStartOffset;
|
|
*piEndOffset = c->iOffset;
|
|
*piPosition = c->iToken++;
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
return SQLITE_DONE;
|
|
}
|
|
|
|
/*
|
|
** The set of routines that implement the simple tokenizer
|
|
*/
|
|
static const sqlite3_tokenizer_module simpleTokenizerModule = {
|
|
0,
|
|
simpleCreate,
|
|
simpleDestroy,
|
|
simpleOpen,
|
|
simpleClose,
|
|
simpleNext,
|
|
};
|
|
|
|
/*
|
|
** Allocate a new simple tokenizer. Return a pointer to the new
|
|
** tokenizer in *ppModule
|
|
*/
|
|
SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(
|
|
sqlite3_tokenizer_module const**ppModule
|
|
){
|
|
*ppModule = &simpleTokenizerModule;
|
|
}
|
|
|
|
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
|
|
|
|
/************** End of fts3_tokenizer1.c *************************************/
|