2012-04-29 18:52:25 +00:00

252 lines
8.0 KiB
C++

//
// Timer.h
//
// $Id: //poco/1.4/Foundation/include/Poco/Timer.h#1 $
//
// Library: Foundation
// Package: Threading
// Module: Timer
//
// Definition of the Timer and related classes.
//
// Copyright (c) 2004-2006, Applied Informatics Software Engineering GmbH.
// and Contributors.
//
// Permission is hereby granted, free of charge, to any person or organization
// obtaining a copy of the software and accompanying documentation covered by
// this license (the "Software") to use, reproduce, display, distribute,
// execute, and transmit the Software, and to prepare derivative works of the
// Software, and to permit third-parties to whom the Software is furnished to
// do so, all subject to the following:
//
// The copyright notices in the Software and this entire statement, including
// the above license grant, this restriction and the following disclaimer,
// must be included in all copies of the Software, in whole or in part, and
// all derivative works of the Software, unless such copies or derivative
// works are solely in the form of machine-executable object code generated by
// a source language processor.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//
#ifndef Foundation_Timer_INCLUDED
#define Foundation_Timer_INCLUDED
#include "Poco/Foundation.h"
#include "Poco/Runnable.h"
#include "Poco/Mutex.h"
#include "Poco/Event.h"
#include "Poco/Thread.h"
#include "Poco/Timestamp.h"
namespace Poco {
class AbstractTimerCallback;
class ThreadPool;
class Foundation_API Timer: protected Runnable
/// This class implements a thread-based timer.
/// A timer starts a thread that first waits for a given start interval.
/// Once that interval expires, the timer callback is called repeatedly
/// in the given periodic interval. If the interval is 0, the timer is only
/// called once.
/// The timer callback method can stop the timer by setting the
/// timer's periodic interval to 0.
///
/// The timer callback runs in its own thread, so multithreading
/// issues (proper synchronization) have to be considered when writing
/// the callback method.
///
/// The exact interval at which the callback is called depends on many
/// factors like operating system, CPU performance and system load and
/// may differ from the specified interval.
///
/// The time needed to execute the timer callback is not included
/// in the interval between invocations. For example, if the interval
/// is 500 milliseconds, and the callback needs 400 milliseconds to
/// execute, the callback function is nevertheless called every 500
/// milliseconds. If the callback takes longer to execute than the
/// interval, the callback function will not be called until the next
/// proper interval. The number of skipped invocations since the last
/// invocation will be recorded and can be obtained by the callback
/// by calling skipped().
///
/// The timer thread is taken from a thread pool, so
/// there is a limit to the number of available concurrent timers.
{
public:
Timer(long startInterval = 0, long periodicInterval = 0);
/// Creates a new timer object. StartInterval and periodicInterval
/// are given in milliseconds. If a periodicInterval of zero is
/// specified, the callback will only be called once, after the
/// startInterval expires.
/// To start the timer, call the Start() method.
virtual ~Timer();
/// Stops and destroys the timer.
void start(const AbstractTimerCallback& method);
/// Starts the timer.
/// Create the TimerCallback as follows:
/// TimerCallback<MyClass> callback(*this, &MyClass::onTimer);
/// timer.start(callback);
///
/// The timer thread is taken from the global default thread pool.
void start(const AbstractTimerCallback& method, Thread::Priority priority);
/// Starts the timer in a thread with the given priority.
/// Create the TimerCallback as follows:
/// TimerCallback<MyClass> callback(*this, &MyClass::onTimer);
/// timer.start(callback);
///
/// The timer thread is taken from the global default thread pool.
void start(const AbstractTimerCallback& method, ThreadPool& threadPool);
/// Starts the timer.
/// Create the TimerCallback as follows:
/// TimerCallback<MyClass> callback(*this, &MyClass::onTimer);
/// timer.start(callback);
void start(const AbstractTimerCallback& method, Thread::Priority priority, ThreadPool& threadPool);
/// Starts the timer in a thread with the given priority.
/// Create the TimerCallback as follows:
/// TimerCallback<MyClass> callback(*this, &MyClass::onTimer);
/// timer.start(callback);
void stop();
/// Stops the timer. If the callback method is currently running
/// it will be allowed to finish first.
/// WARNING: Never call this method from within the callback method,
/// as a deadlock would result. To stop the timer from within the
/// callback method, call restart(0).
void restart();
/// Restarts the periodic interval. If the callback method is already running,
/// nothing will happen.
void restart(long milliseconds);
/// Sets a new periodic interval and restarts the timer.
/// An interval of 0 will stop the timer.
long getStartInterval() const;
/// Returns the start interval.
void setStartInterval(long milliseconds);
/// Sets the start interval. Will only be
/// effective before start() is called.
long getPeriodicInterval() const;
/// Returns the periodic interval.
void setPeriodicInterval(long milliseconds);
/// Sets the periodic interval. If the timer is already running
/// the new interval will be effective when the current interval
/// expires.
long skipped() const;
/// Returns the number of skipped invocations since the last invocation.
/// Skipped invocations happen if the timer callback function takes
/// longer to execute than the timer interval.
protected:
void run();
private:
volatile long _startInterval;
volatile long _periodicInterval;
Event _wakeUp;
Event _done;
long _skipped;
AbstractTimerCallback* _pCallback;
Timestamp _nextInvocation;
mutable FastMutex _mutex;
Timer(const Timer&);
Timer& operator = (const Timer&);
};
class Foundation_API AbstractTimerCallback
/// This is the base class for all instantiations of
/// the TimerCallback template.
{
public:
AbstractTimerCallback();
AbstractTimerCallback(const AbstractTimerCallback& callback);
virtual ~AbstractTimerCallback();
AbstractTimerCallback& operator = (const AbstractTimerCallback& callback);
virtual void invoke(Timer& timer) const = 0;
virtual AbstractTimerCallback* clone() const = 0;
};
template <class C>
class TimerCallback: public AbstractTimerCallback
/// This template class implements an adapter that sits between
/// a Timer and an object's method invoked by the timer.
/// It is quite similar in concept to the RunnableAdapter, but provides
/// some Timer specific additional methods.
/// See the Timer class for information on how
/// to use this template class.
{
public:
typedef void (C::*Callback)(Timer&);
TimerCallback(C& object, Callback method): _pObject(&object), _method(method)
{
}
TimerCallback(const TimerCallback& callback): _pObject(callback._pObject), _method(callback._method)
{
}
~TimerCallback()
{
}
TimerCallback& operator = (const TimerCallback& callback)
{
if (&callback != this)
{
_pObject = callback._pObject;
_method = callback._method;
}
return *this;
}
void invoke(Timer& timer) const
{
(_pObject->*_method)(timer);
}
AbstractTimerCallback* clone() const
{
return new TimerCallback(*this);
}
private:
TimerCallback();
C* _pObject;
Callback _method;
};
} // namespace Poco
#endif // Foundation_Timer_INCLUDED