// // SmallObjectAllocator.h // // $Id: //poco/1.4/Foundation/include/Poco/SmallObjectAllocator.h#1 $ // // Library: Foundation // Package: Core // Module: SmallObjectAllocator // // Definition of the SmallObjectAllocator template. // // Copyright (c) 2004-2006, Applied Informatics Software Engineering GmbH. // and Contributors. // // Permission is hereby granted, free of charge, to any person or organization // obtaining a copy of the software and accompanying documentation covered by // this license (the "Software") to use, reproduce, display, distribute, // execute, and transmit the Software, and to prepare derivative works of the // Software, and to permit third-parties to whom the Software is furnished to // do so, all subject to the following: // // The copyright notices in the Software and this entire statement, including // the above license grant, this restriction and the following disclaimer, // must be included in all copies of the Software, in whole or in part, and // all derivative works of the Software, unless such copies or derivative // works are solely in the form of machine-executable object code generated by // a source language processor. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT // SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE // FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. // #ifndef Foundation_SmallObjectAllocator_INCLUDED #define Foundation_SmallObjectAllocator_INCLUDED #include "Poco/Foundation.h" #include "Poco/Types.h" namespace Poco { template class SmallObjectAllocator /// SmallObjectAllocator template is a lightweight wrapper implementing /// small object allocation optimization idiom. Class is statically /// parameterized on type created and the size threshold, which defaults /// to the created object size; it follows that the default behavior is /// use of automatically allocated memory (i.e. the value wrapped is /// stored in the pre-allocated buffer). To enforce heap allocation, /// specify S parameter to a value smaller than the size of the type /// being instantiated. /// /// The SmallObjectAllocator trade-off is the runtime check for memory /// location where the value resides. The runtime check occurs at /// construction/destruction as well as every value access. Value /// access check can be alleviated by caching the value reference. /// /// Usage example: /// /// SmallObjectAllocator s; // on the stack /// SmallObjectAllocator h; // force heap alloc /// int& i = s.get(); // no runtime performance penalty after this point /// i = 5; /// { public: SmallObjectAllocator() { if (isOnHeap()) _memory.ptr = new T(); else new (_memory.buf) T; } SmallObjectAllocator(const T& val) { if (isOnHeap()) _memory.ptr = new T(val); else new (_memory.buf) T(val); } SmallObjectAllocator(const SmallObjectAllocator& other) { if (this != &other) { if (isOnHeap()) _memory.ptr = new T(*other._memory.ptr); else new (_memory.buf) T(*reinterpret_cast(other._memory.buf)); } } ~SmallObjectAllocator() { if (isOnHeap()) delete _memory.ptr; else reinterpret_cast(_memory.buf)->~T(); } SmallObjectAllocator& operator =(const SmallObjectAllocator& other) { if (this != &other) { if (isOnHeap()) _memory.ptr = new T(*other._memory.ptr); else new (_memory.buf) T(*reinterpret_cast(other._memory.buf)); } return *this; } T& get() { if (isOnHeap()) return *_memory.ptr; else return reinterpret_cast(*(_memory.buf)); } const T& get() const { if (isOnHeap()) return *_memory.ptr; else return reinterpret_cast(*_memory.buf); } bool isOnHeap() const { return sizeof(T) > S; } private: union { unsigned char buf[S]; T* ptr; } _memory; }; template <> class SmallObjectAllocator /// SmallObjectAllocator char* specialization. /// /// The treshold between auto and heap allocation /// is controlled through POCO_SMALL_OBJECT_SIZE compile /// time constant, which on 32 or 64-bit systems defaults /// to 31 or 63 bytes respectively. This specialization /// adds an extra byte to indicate the allocation strategy. /// /// To summarize, e.g. POCO_SMALL_OBJECT_SIZE value of 7 will /// take up at least 8 bytes of storage (for auto allocation) /// with 6 bytes as the effective string length: /// /// +---+---+---+---+---+---+---+---+ /// | c | c | c | c | c | c | 0 | f | /// +---+---+---+---+---+---+---+---+ /// /// Legend: /// c - character /// 0 - terminating zero /// f - allocation flag /// { public: static const std::size_t Size = POCO_SMALL_OBJECT_SIZE; SmallObjectAllocator(std::size_t sz) { _memory.buf[Size] = (sz > Size) ? 1 : 0; if (_memory.buf[Size]) _memory.ptr = new char[sz + 1]; } SmallObjectAllocator(const char* pCh, std::size_t sz) { allocateAndAssign(pCh, sz); } SmallObjectAllocator(const char* pCh) { allocateAndAssign(pCh, strlen(pCh)); } ~SmallObjectAllocator() { if (_memory.buf[Size]) delete _memory.ptr; } SmallObjectAllocator & operator = (const char* pCh) { allocateAndAssign(pCh, strlen(pCh)); return *this; } char* get() { if (_memory.buf[Size]) return _memory.ptr; else return _memory.buf; } const char* get() const { if (_memory.buf[Size]) return _memory.ptr; else return _memory.buf; } bool isOnHeap() const { return _memory.buf[Size] != 0; } private: SmallObjectAllocator(); void allocateAndAssign(const char* pCh, std::size_t sz) { _memory.buf[Size] = (sz > Size) ? 1 : 0; if (_memory.buf[Size]) { _memory.ptr = new char[sz + 1]; _memory.ptr[sz] = '\0'; std::memcpy(_memory.ptr, pCh, sz); } else { _memory.buf[sz] = '\0'; std::memcpy(_memory.buf, pCh, sz); } } union { char buf[Size + 1]; char* ptr; } _memory; }; typedef SmallObjectAllocator SmallStringAllocator; } // namespace Poco #endif // Foundation_SmallObjectAllocator_INCLUDED