// // IPAddress.cpp // // $Id: //poco/1.4/Net/src/IPAddress.cpp#5 $ // // Library: Net // Package: NetCore // Module: IPAddress // // Copyright (c) 2005-2011, Applied Informatics Software Engineering GmbH. // and Contributors. // // Permission is hereby granted, free of charge, to any person or organization // obtaining a copy of the software and accompanying documentation covered by // this license (the "Software") to use, reproduce, display, distribute, // execute, and transmit the Software, and to prepare derivative works of the // Software, and to permit third-parties to whom the Software is furnished to // do so, all subject to the following: // // The copyright notices in the Software and this entire statement, including // the above license grant, this restriction and the following disclaimer, // must be included in all copies of the Software, in whole or in part, and // all derivative works of the Software, unless such copies or derivative // works are solely in the form of machine-executable object code generated by // a source language processor. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT // SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE // FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. // #include "Poco/Net/IPAddressImpl.h" #include "Poco/Net/NetException.h" #include "Poco/RefCountedObject.h" #include "Poco/NumberFormatter.h" #include "Poco/String.h" #include "Poco/Types.h" using Poco::RefCountedObject; using Poco::NumberFormatter; using Poco::toLower; using Poco::UInt8; using Poco::UInt16; using Poco::UInt32; namespace { template unsigned maskBits(T val, unsigned size) /// Returns the length of the mask (number of bits set in val). /// The val should be either all zeros or two contiguos areas of 1s and 0s. /// The algorithm ignores invalid non-contiguous series of 1s and treats val /// as if all bits between MSb and last non-zero bit are set to 1. { unsigned count = 0; if (val) { val = (val ^ (val - 1)) >> 1; for (count = 0; val; ++count) val >>= 1; } else count = size; return size - count; } } // namespace namespace Poco { namespace Net { namespace Impl { // // IPAddressImpl // IPAddressImpl::IPAddressImpl() { } IPAddressImpl::~IPAddressImpl() { } // // IPv4AddressImpl // IPv4AddressImpl::IPv4AddressImpl() { std::memset(&_addr, 0, sizeof(_addr)); } IPv4AddressImpl::IPv4AddressImpl(const void* addr) { std::memcpy(&_addr, addr, sizeof(_addr)); } IPv4AddressImpl::IPv4AddressImpl(unsigned prefix) { UInt32 addr = (prefix == 32) ? 0xffffffff : ~(0xffffffff >> prefix); _addr.s_addr = htonl(addr); } IPv4AddressImpl::IPv4AddressImpl(const IPv4AddressImpl& addr) { std::memcpy(&_addr, &addr._addr, sizeof(_addr)); } IPv4AddressImpl& IPv4AddressImpl::operator = (const IPv4AddressImpl& addr) { std::memcpy(&_addr, &addr._addr, sizeof(_addr)); return *this; } std::string IPv4AddressImpl::toString() const { const UInt8* bytes = reinterpret_cast(&_addr); std::string result; result.reserve(16); NumberFormatter::append(result, bytes[0]); result.append("."); NumberFormatter::append(result, bytes[1]); result.append("."); NumberFormatter::append(result, bytes[2]); result.append("."); NumberFormatter::append(result, bytes[3]); return result; } poco_socklen_t IPv4AddressImpl::length() const { return sizeof(_addr); } const void* IPv4AddressImpl::addr() const { return &_addr; } IPAddressImpl::Family IPv4AddressImpl::family() const { return IPAddressImpl::IPv4; } int IPv4AddressImpl::af() const { return AF_INET; } unsigned IPv4AddressImpl::prefixLength() const { return maskBits(ntohl(_addr.s_addr), 32); } Poco::UInt32 IPv4AddressImpl::scope() const { return 0; } bool IPv4AddressImpl::isWildcard() const { return _addr.s_addr == INADDR_ANY; } bool IPv4AddressImpl::isBroadcast() const { return _addr.s_addr == INADDR_NONE; } bool IPv4AddressImpl::isLoopback() const { return (ntohl(_addr.s_addr) & 0xFF000000) == 0x7F000000; // 127.0.0.1 to 127.255.255.255 } bool IPv4AddressImpl::isMulticast() const { return (ntohl(_addr.s_addr) & 0xF0000000) == 0xE0000000; // 224.0.0.0/24 to 239.0.0.0/24 } bool IPv4AddressImpl::isLinkLocal() const { return (ntohl(_addr.s_addr) & 0xFFFF0000) == 0xA9FE0000; // 169.254.0.0/16 } bool IPv4AddressImpl::isSiteLocal() const { UInt32 addr = ntohl(_addr.s_addr); return (addr & 0xFF000000) == 0x0A000000 || // 10.0.0.0/24 (addr & 0xFFFF0000) == 0xC0A80000 || // 192.68.0.0/16 (addr >= 0xAC100000 && addr <= 0xAC1FFFFF); // 172.16.0.0 to 172.31.255.255 } bool IPv4AddressImpl::isIPv4Compatible() const { return true; } bool IPv4AddressImpl::isIPv4Mapped() const { return true; } bool IPv4AddressImpl::isWellKnownMC() const { return (ntohl(_addr.s_addr) & 0xFFFFFF00) == 0xE0000000; // 224.0.0.0/8 } bool IPv4AddressImpl::isNodeLocalMC() const { return false; } bool IPv4AddressImpl::isLinkLocalMC() const { return (ntohl(_addr.s_addr) & 0xFF000000) == 0xE0000000; // 244.0.0.0/24 } bool IPv4AddressImpl::isSiteLocalMC() const { return (ntohl(_addr.s_addr) & 0xFFFF0000) == 0xEFFF0000; // 239.255.0.0/16 } bool IPv4AddressImpl::isOrgLocalMC() const { return (ntohl(_addr.s_addr) & 0xFFFF0000) == 0xEFC00000; // 239.192.0.0/16 } bool IPv4AddressImpl::isGlobalMC() const { UInt32 addr = ntohl(_addr.s_addr); return addr >= 0xE0000100 && addr <= 0xEE000000; // 224.0.1.0 to 238.255.255.255 } IPv4AddressImpl IPv4AddressImpl::parse(const std::string& addr) { if (addr.empty()) return IPv4AddressImpl(); #if defined(_WIN32) struct in_addr ia; ia.s_addr = inet_addr(addr.c_str()); if (ia.s_addr == INADDR_NONE && addr != "255.255.255.255") return IPv4AddressImpl(); else return IPv4AddressImpl(&ia); #else #if __GNUC__ < 3 || defined(POCO_VXWORKS) struct in_addr ia; ia.s_addr = inet_addr(const_cast(addr.c_str())); if (ia.s_addr == INADDR_NONE && addr != "255.255.255.255") return IPv4AddressImpl(); else return IPv4AddressImpl(&ia); #else struct in_addr ia; if (inet_aton(addr.c_str(), &ia)) return IPv4AddressImpl(&ia); else return IPv4AddressImpl(); #endif #endif } void IPv4AddressImpl::mask(const IPAddressImpl* pMask, const IPAddressImpl* pSet) { poco_assert (pMask->af() == AF_INET && pSet->af() == AF_INET); _addr.s_addr &= static_cast(pMask)->_addr.s_addr; _addr.s_addr |= static_cast(pSet)->_addr.s_addr & ~static_cast(pMask)->_addr.s_addr; } IPAddressImpl* IPv4AddressImpl::clone() const { return new IPv4AddressImpl(&_addr); } IPv4AddressImpl IPv4AddressImpl::operator & (const IPv4AddressImpl& addr) const { IPv4AddressImpl result(&_addr); result._addr.s_addr &= addr._addr.s_addr; return result; } IPv4AddressImpl IPv4AddressImpl::operator | (const IPv4AddressImpl& addr) const { IPv4AddressImpl result(&_addr); result._addr.s_addr |= addr._addr.s_addr; return result; } IPv4AddressImpl IPv4AddressImpl::operator ^ (const IPv4AddressImpl& addr) const { IPv4AddressImpl result(&_addr); result._addr.s_addr ^= addr._addr.s_addr; return result; } IPv4AddressImpl IPv4AddressImpl::operator ~ () const { IPv4AddressImpl result(&_addr); result._addr.s_addr ^= 0xffffffff; return result; } bool IPv4AddressImpl::operator == (const IPv4AddressImpl& addr) const { return 0 == std::memcmp(&addr._addr, &_addr, sizeof(_addr)); } bool IPv4AddressImpl::operator != (const IPv4AddressImpl& addr) const { return !(*this == addr); } #if defined(POCO_HAVE_IPv6) // // IPv6AddressImpl // IPv6AddressImpl::IPv6AddressImpl(): _scope(0) { std::memset(&_addr, 0, sizeof(_addr)); } IPv6AddressImpl::IPv6AddressImpl(const void* addr): _scope(0) { std::memcpy(&_addr, addr, sizeof(_addr)); } IPv6AddressImpl::IPv6AddressImpl(const void* addr, Poco::UInt32 scope): _scope(scope) { std::memcpy(&_addr, addr, sizeof(_addr)); } IPv6AddressImpl::IPv6AddressImpl(const IPv6AddressImpl& addr): _scope(addr._scope) { std::memcpy((void*) &_addr, (void*) &addr._addr, sizeof(_addr)); } IPv6AddressImpl& IPv6AddressImpl::operator = (const IPv6AddressImpl& addr) { _scope = addr._scope; std::memcpy(&_addr, &addr._addr, sizeof(_addr)); return *this; } IPv6AddressImpl::IPv6AddressImpl(unsigned prefix): _scope(0) { unsigned i = 0; #ifdef POCO_OS_FAMILY_WINDOWS for (; prefix >= 16; ++i, prefix -= 16) { _addr.s6_addr16[i] = 0xffff; } if (prefix > 0) _addr.s6_addr16[i++] = htons(~(0xffff >> prefix)); while (i < 8) _addr.s6_addr16[i++] = 0; #else for (; prefix >= 32; ++i, prefix -= 32) { _addr.s6_addr32[i] = 0xffffffff; } if (prefix > 0) _addr.s6_addr32[i++] = htonl(~(0xffffffffU >> prefix)); while (i < 4) _addr.s6_addr32[i++] = 0; #endif } std::string IPv6AddressImpl::toString() const { const UInt16* words = reinterpret_cast(&_addr); if (isIPv4Compatible() || isIPv4Mapped()) { std::string result; result.reserve(24); if (words[5] == 0) result.append("::"); else result.append("::ffff:"); const UInt8* bytes = reinterpret_cast(&_addr); NumberFormatter::append(result, bytes[12]); result.append("."); NumberFormatter::append(result, bytes[13]); result.append("."); NumberFormatter::append(result, bytes[14]); result.append("."); NumberFormatter::append(result, bytes[15]); return result; } else { std::string result; result.reserve(64); bool zeroSequence = false; int i = 0; while (i < 8) { if (!zeroSequence && words[i] == 0) { int zi = i; while (zi < 8 && words[zi] == 0) ++zi; if (zi > i + 1) { i = zi; result.append(":"); zeroSequence = true; } } if (i > 0) result.append(":"); if (i < 8) NumberFormatter::appendHex(result, ntohs(words[i++])); } if (_scope > 0) { result.append("%"); #if defined(_WIN32) NumberFormatter::append(result, _scope); #else char buffer[IFNAMSIZ]; if (if_indextoname(_scope, buffer)) { result.append(buffer); } else { NumberFormatter::append(result, _scope); } #endif } return toLower(result); } } poco_socklen_t IPv6AddressImpl::length() const { return sizeof(_addr); } const void* IPv6AddressImpl::addr() const { return &_addr; } IPAddressImpl::Family IPv6AddressImpl::family() const { return IPAddressImpl::IPv6; } int IPv6AddressImpl::af() const { return AF_INET6; } unsigned IPv6AddressImpl::prefixLength() const { unsigned bits = 0; unsigned bitPos = 128; #if defined(POCO_OS_FAMILY_UNIX) for (int i = 3; i >= 0; --i) { unsigned addr = ntohl(_addr.s6_addr32[i]); if ((bits = maskBits(addr, 32))) return (bitPos - (32 - bits)); bitPos -= 32; } return 0; #elif defined(POCO_OS_FAMILY_WINDOWS) for (int i = 7; i >= 0; --i) { unsigned short addr = ntohs(_addr.s6_addr16[i]); if ((bits = maskBits(addr, 16))) return (bitPos - (16 - bits)); bitPos -= 16; } return 0; #else #warning prefixLength() not implemented throw NotImplementedException("prefixLength() not implemented"); #endif } Poco::UInt32 IPv6AddressImpl::scope() const { return _scope; } bool IPv6AddressImpl::isWildcard() const { const UInt16* words = reinterpret_cast(&_addr); return words[0] == 0 && words[1] == 0 && words[2] == 0 && words[3] == 0 && words[4] == 0 && words[5] == 0 && words[6] == 0 && words[7] == 0; } bool IPv6AddressImpl::isBroadcast() const { return false; } bool IPv6AddressImpl::isLoopback() const { const UInt16* words = reinterpret_cast(&_addr); return words[0] == 0 && words[1] == 0 && words[2] == 0 && words[3] == 0 && words[4] == 0 && words[5] == 0 && words[6] == 0 && ntohs(words[7]) == 0x0001; } bool IPv6AddressImpl::isMulticast() const { const UInt16* words = reinterpret_cast(&_addr); return (ntohs(words[0]) & 0xFFE0) == 0xFF00; } bool IPv6AddressImpl::isLinkLocal() const { const UInt16* words = reinterpret_cast(&_addr); return (ntohs(words[0]) & 0xFFE0) == 0xFE80; } bool IPv6AddressImpl::isSiteLocal() const { const UInt16* words = reinterpret_cast(&_addr); return ((ntohs(words[0]) & 0xFFE0) == 0xFEC0) || ((ntohs(words[0]) & 0xFF00) == 0xFC00); } bool IPv6AddressImpl::isIPv4Compatible() const { const UInt16* words = reinterpret_cast(&_addr); return words[0] == 0 && words[1] == 0 && words[2] == 0 && words[3] == 0 && words[4] == 0 && words[5] == 0; } bool IPv6AddressImpl::isIPv4Mapped() const { const UInt16* words = reinterpret_cast(&_addr); return words[0] == 0 && words[1] == 0 && words[2] == 0 && words[3] == 0 && words[4] == 0 && ntohs(words[5]) == 0xFFFF; } bool IPv6AddressImpl::isWellKnownMC() const { const UInt16* words = reinterpret_cast(&_addr); return (ntohs(words[0]) & 0xFFF0) == 0xFF00; } bool IPv6AddressImpl::isNodeLocalMC() const { const UInt16* words = reinterpret_cast(&_addr); return (ntohs(words[0]) & 0xFFEF) == 0xFF01; } bool IPv6AddressImpl::isLinkLocalMC() const { const UInt16* words = reinterpret_cast(&_addr); return (ntohs(words[0]) & 0xFFEF) == 0xFF02; } bool IPv6AddressImpl::isSiteLocalMC() const { const UInt16* words = reinterpret_cast(&_addr); return (ntohs(words[0]) & 0xFFEF) == 0xFF05; } bool IPv6AddressImpl::isOrgLocalMC() const { const UInt16* words = reinterpret_cast(&_addr); return (ntohs(words[0]) & 0xFFEF) == 0xFF08; } bool IPv6AddressImpl::isGlobalMC() const { const UInt16* words = reinterpret_cast(&_addr); return (ntohs(words[0]) & 0xFFEF) == 0xFF0F; } IPv6AddressImpl IPv6AddressImpl::parse(const std::string& addr) { if (addr.empty()) return IPv6AddressImpl(); #if defined(_WIN32) struct addrinfo* pAI; struct addrinfo hints; std::memset(&hints, 0, sizeof(hints)); hints.ai_flags = AI_NUMERICHOST; int rc = getaddrinfo(addr.c_str(), NULL, &hints, &pAI); if (rc == 0) { IPv6AddressImpl result = IPv6AddressImpl(&reinterpret_cast(pAI->ai_addr)->sin6_addr, static_cast(reinterpret_cast(pAI->ai_addr)->sin6_scope_id)); freeaddrinfo(pAI); return result; } else return IPv6AddressImpl(); #else struct in6_addr ia; std::string::size_type pos = addr.find('%'); if (std::string::npos != pos) { std::string::size_type start = ('[' == addr[0]) ? 1 : 0; std::string unscopedAddr(addr, start, pos - start); std::string scope(addr, pos + 1, addr.size() - start - pos); Poco::UInt32 scopeId(0); if (!(scopeId = if_nametoindex(scope.c_str()))) return 0; if (inet_pton(AF_INET6, unscopedAddr.c_str(), &ia) == 1) return IPv6AddressImpl(&ia, scopeId); else return 0; } else { if (inet_pton(AF_INET6, addr.c_str(), &ia) == 1) return new IPv6AddressImpl(&ia); else return 0; } #endif } void IPv6AddressImpl::mask(const IPAddressImpl* pMask, const IPAddressImpl* pSet) { throw Poco::NotImplementedException("mask() is only supported for IPv4 addresses"); } IPAddressImpl* IPv6AddressImpl::clone() const { return new IPv6AddressImpl(&_addr, _scope); } IPv6AddressImpl IPv6AddressImpl::operator & (const IPv6AddressImpl& addr) const { IPv6AddressImpl result(&_addr); #ifdef POCO_OS_FAMILY_WINDOWS result._addr.s6_addr16[0] &= addr._addr.s6_addr16[0]; result._addr.s6_addr16[1] &= addr._addr.s6_addr16[1]; result._addr.s6_addr16[2] &= addr._addr.s6_addr16[2]; result._addr.s6_addr16[3] &= addr._addr.s6_addr16[3]; result._addr.s6_addr16[4] &= addr._addr.s6_addr16[4]; result._addr.s6_addr16[5] &= addr._addr.s6_addr16[5]; result._addr.s6_addr16[6] &= addr._addr.s6_addr16[6]; result._addr.s6_addr16[7] &= addr._addr.s6_addr16[7]; #else result._addr.s6_addr32[0] &= addr._addr.s6_addr32[0]; result._addr.s6_addr32[1] &= addr._addr.s6_addr32[1]; result._addr.s6_addr32[2] &= addr._addr.s6_addr32[2]; result._addr.s6_addr32[3] &= addr._addr.s6_addr32[3]; #endif return result; } IPv6AddressImpl IPv6AddressImpl::operator | (const IPv6AddressImpl& addr) const { IPv6AddressImpl result(&_addr); #ifdef POCO_OS_FAMILY_WINDOWS result._addr.s6_addr16[0] |= addr._addr.s6_addr16[0]; result._addr.s6_addr16[1] |= addr._addr.s6_addr16[1]; result._addr.s6_addr16[2] |= addr._addr.s6_addr16[2]; result._addr.s6_addr16[3] |= addr._addr.s6_addr16[3]; result._addr.s6_addr16[4] |= addr._addr.s6_addr16[4]; result._addr.s6_addr16[5] |= addr._addr.s6_addr16[5]; result._addr.s6_addr16[6] |= addr._addr.s6_addr16[6]; result._addr.s6_addr16[7] |= addr._addr.s6_addr16[7]; #else result._addr.s6_addr32[0] |= addr._addr.s6_addr32[0]; result._addr.s6_addr32[1] |= addr._addr.s6_addr32[1]; result._addr.s6_addr32[2] |= addr._addr.s6_addr32[2]; result._addr.s6_addr32[3] |= addr._addr.s6_addr32[3]; #endif return result; } IPv6AddressImpl IPv6AddressImpl::operator ^ (const IPv6AddressImpl& addr) const { IPv6AddressImpl result(&_addr); #ifdef POCO_OS_FAMILY_WINDOWS result._addr.s6_addr16[0] ^= addr._addr.s6_addr16[0]; result._addr.s6_addr16[1] ^= addr._addr.s6_addr16[1]; result._addr.s6_addr16[2] ^= addr._addr.s6_addr16[2]; result._addr.s6_addr16[3] ^= addr._addr.s6_addr16[3]; result._addr.s6_addr16[4] ^= addr._addr.s6_addr16[4]; result._addr.s6_addr16[5] ^= addr._addr.s6_addr16[5]; result._addr.s6_addr16[6] ^= addr._addr.s6_addr16[6]; result._addr.s6_addr16[7] ^= addr._addr.s6_addr16[7]; #else result._addr.s6_addr32[0] ^= addr._addr.s6_addr32[0]; result._addr.s6_addr32[1] ^= addr._addr.s6_addr32[1]; result._addr.s6_addr32[2] ^= addr._addr.s6_addr32[2]; result._addr.s6_addr32[3] ^= addr._addr.s6_addr32[3]; #endif return result; } IPv6AddressImpl IPv6AddressImpl::operator ~ () const { IPv6AddressImpl result(&_addr); #ifdef POCO_OS_FAMILY_WINDOWS result._addr.s6_addr16[0] ^= 0xffff; result._addr.s6_addr16[1] ^= 0xffff; result._addr.s6_addr16[2] ^= 0xffff; result._addr.s6_addr16[3] ^= 0xffff; result._addr.s6_addr16[4] ^= 0xffff; result._addr.s6_addr16[5] ^= 0xffff; result._addr.s6_addr16[6] ^= 0xffff; result._addr.s6_addr16[7] ^= 0xffff; #else result._addr.s6_addr32[0] ^= 0xffffffff; result._addr.s6_addr32[1] ^= 0xffffffff; result._addr.s6_addr32[2] ^= 0xffffffff; result._addr.s6_addr32[3] ^= 0xffffffff; #endif return result; } bool IPv6AddressImpl::operator == (const IPv6AddressImpl& addr) const { return 0 == std::memcmp(&addr._addr, &_addr, sizeof(_addr)); } bool IPv6AddressImpl::operator != (const IPv6AddressImpl& addr) const { return !(*this == addr); } #endif // POCO_HAVE_IPv6 } } } // namespace Poco::Net::Impl