// // PBKDF2Engine.h // // Library: Foundation // Package: Crypt // Module: PBKDF2Engine // // Definition of the PBKDF2Engine class. // // Copyright (c) 2014, Applied Informatics Software Engineering GmbH. // and Contributors. // // SPDX-License-Identifier: BSL-1.0 // #ifndef Foundation_PBKDF2Engine_INCLUDED #define Foundation_PBKDF2Engine_INCLUDED #include "Poco/Foundation.h" #include "Poco/DigestEngine.h" #include "Poco/ByteOrder.h" #include namespace Poco { template class PBKDF2Engine: public DigestEngine /// This class implementes the Password-Based Key Derivation Function 2, /// as specified in RFC 2898. The underlying DigestEngine (HMACEngine, etc.), /// which must accept the passphrase as constructor argument (std::string), /// must be given as template argument. /// /// PBKDF2 (Password-Based Key Derivation Function 2) is a key derivation function /// that is part of RSA Laboratories' Public-Key Cryptography Standards (PKCS) series, /// specifically PKCS #5 v2.0, also published as Internet Engineering Task Force's /// RFC 2898. It replaces an earlier standard, PBKDF1, which could only produce /// derived keys up to 160 bits long. /// /// PBKDF2 applies a pseudorandom function, such as a cryptographic hash, cipher, or /// HMAC to the input password or passphrase along with a salt value and repeats the /// process many times to produce a derived key, which can then be used as a /// cryptographic key in subsequent operations. The added computational work makes /// password cracking much more difficult, and is known as key stretching. /// When the standard was written in 2000, the recommended minimum number of /// iterations was 1000, but the parameter is intended to be increased over time as /// CPU speeds increase. Having a salt added to the password reduces the ability to /// use precomputed hashes (rainbow tables) for attacks, and means that multiple /// passwords have to be tested individually, not all at once. The standard /// recommends a salt length of at least 64 bits. [Wikipedia] /// /// The PBKDF2 algorithm is implemented as a DigestEngine. The passphrase is specified /// by calling update(). /// /// Example (WPA2): /// PBKDF2Engine > pbkdf2(ssid, 4096, 256); /// pbkdf2.update(passphrase); /// DigestEngine::Digest d = pbkdf2.digest(); { public: enum { PRF_DIGEST_SIZE = PRF::DIGEST_SIZE }; PBKDF2Engine(const std::string& salt, unsigned c = 4096, Poco::UInt32 dkLen = PRF_DIGEST_SIZE): _s(salt), _c(c), _dkLen(dkLen) { _result.reserve(_dkLen + PRF_DIGEST_SIZE); } ~PBKDF2Engine() { } std::size_t digestLength() const { return _dkLen; } void reset() { _p.clear(); _result.clear(); } const DigestEngine::Digest& digest() { Poco::UInt32 i = 1; while (_result.size() < _dkLen) { f(i++); } _result.resize(_dkLen); return _result; } protected: void updateImpl(const void* data, std::size_t length) { _p.append(reinterpret_cast(data), length); } void f(Poco::UInt32 i) { PRF prf(_p); prf.update(_s); Poco::UInt32 iBE = Poco::ByteOrder::toBigEndian(i); prf.update(&iBE, sizeof(iBE)); Poco::DigestEngine::Digest up = prf.digest(); Poco::DigestEngine::Digest ux = up; poco_assert_dbg(ux.size() == PRF_DIGEST_SIZE); for (unsigned k = 1; k < _c; k++) { prf.reset(); prf.update(&up[0], up.size()); Poco::DigestEngine::Digest u = prf.digest(); poco_assert_dbg(u.size() == PRF_DIGEST_SIZE); for (int ui = 0; ui < PRF_DIGEST_SIZE; ui++) { ux[ui] ^= u[ui]; } std::swap(up, u); } _result.insert(_result.end(), ux.begin(), ux.end()); } private: PBKDF2Engine(); PBKDF2Engine(const PBKDF2Engine&); PBKDF2Engine& operator = (const PBKDF2Engine&); std::string _p; std::string _s; unsigned _c; Poco::UInt32 _dkLen; DigestEngine::Digest _result; }; } // namespace Poco #endif // Foundation_PBKDF2Engine_INCLUDED