GH #1538: update double-conversion to v1.1.5

This commit is contained in:
Guenter Obiltschnig 2017-02-11 12:49:14 +01:00
parent 6c207b5157
commit c2aca1d109
10 changed files with 94 additions and 52 deletions

View File

@ -192,13 +192,13 @@ static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
delta_plus = delta_minus;
}
*length = 0;
while (true) {
for (;;) {
uint16_t digit;
digit = numerator->DivideModuloIntBignum(*denominator);
ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
// digit = numerator / denominator (integer division).
// numerator = numerator % denominator.
buffer[(*length)++] = digit + '0';
buffer[(*length)++] = static_cast<char>(digit + '0');
// Can we stop already?
// If the remainder of the division is less than the distance to the lower
@ -282,7 +282,7 @@ static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
// exponent (decimal_point), when rounding upwards.
static void GenerateCountedDigits(int count, int* decimal_point,
Bignum* numerator, Bignum* denominator,
Vector<char>(buffer), int* length) {
Vector<char> buffer, int* length) {
ASSERT(count >= 0);
for (int i = 0; i < count - 1; ++i) {
uint16_t digit;
@ -290,7 +290,7 @@ static void GenerateCountedDigits(int count, int* decimal_point,
ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
// digit = numerator / denominator (integer division).
// numerator = numerator % denominator.
buffer[i] = digit + '0';
buffer[i] = static_cast<char>(digit + '0');
// Prepare for next iteration.
numerator->Times10();
}
@ -300,7 +300,8 @@ static void GenerateCountedDigits(int count, int* decimal_point,
if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
digit++;
}
buffer[count - 1] = digit + '0';
ASSERT(digit <= 10);
buffer[count - 1] = static_cast<char>(digit + '0');
// Correct bad digits (in case we had a sequence of '9's). Propagate the
// carry until we hat a non-'9' or til we reach the first digit.
for (int i = count - 1; i > 0; --i) {

View File

@ -40,6 +40,7 @@ Bignum::Bignum()
template<typename S>
static int BitSize(S value) {
(void) value; // Mark variable as used.
return 8 * sizeof(value);
}
@ -122,9 +123,8 @@ void Bignum::AssignDecimalString(Vector<const char> value) {
static int HexCharValue(char c) {
if ('0' <= c && c <= '9') return c - '0';
if ('a' <= c && c <= 'f') return 10 + c - 'a';
if ('A' <= c && c <= 'F') return 10 + c - 'A';
UNREACHABLE();
return 0; // To make compiler happy.
ASSERT('A' <= c && c <= 'F');
return 10 + c - 'A';
}
@ -501,13 +501,14 @@ uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
// Start by removing multiples of 'other' until both numbers have the same
// number of digits.
while (BigitLength() > other.BigitLength()) {
// This naive approach is extremely inefficient if the this divided other
// might be big. This function is implemented for doubleToString where
// This naive approach is extremely inefficient if `this` divided by other
// is big. This function is implemented for doubleToString where
// the result should be small (less than 10).
ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
ASSERT(bigits_[used_digits_ - 1] < 0x10000);
// Remove the multiples of the first digit.
// Example this = 23 and other equals 9. -> Remove 2 multiples.
result += bigits_[used_digits_ - 1];
result += static_cast<uint16_t>(bigits_[used_digits_ - 1]);
SubtractTimes(other, bigits_[used_digits_ - 1]);
}
@ -523,13 +524,15 @@ uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
// Shortcut for easy (and common) case.
int quotient = this_bigit / other_bigit;
bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
result += quotient;
ASSERT(quotient < 0x10000);
result += static_cast<uint16_t>(quotient);
Clamp();
return result;
}
int division_estimate = this_bigit / (other_bigit + 1);
result += division_estimate;
ASSERT(division_estimate < 0x10000);
result += static_cast<uint16_t>(division_estimate);
SubtractTimes(other, division_estimate);
if (other_bigit * (division_estimate + 1) > this_bigit) {
@ -560,8 +563,8 @@ static int SizeInHexChars(S number) {
static char HexCharOfValue(int value) {
ASSERT(0 <= value && value <= 16);
if (value < 10) return value + '0';
return value - 10 + 'A';
if (value < 10) return static_cast<char>(value + '0');
return static_cast<char>(value - 10 + 'A');
}
@ -755,7 +758,6 @@ void Bignum::SubtractTimes(const Bignum& other, int factor) {
Chunk difference = bigits_[i] - borrow;
bigits_[i] = difference & kBigitMask;
borrow = difference >> (kChunkSize - 1);
++i;
}
Clamp();
}

View File

@ -152,6 +152,7 @@ void PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
ASSERT(0 <= index && index < kCachedPowersLength);
CachedPower cached_power = kCachedPowers[index];
ASSERT(min_exponent <= cached_power.binary_exponent);
(void) max_exponent; // Mark variable as used.
ASSERT(cached_power.binary_exponent <= max_exponent);
*decimal_exponent = cached_power.decimal_exponent;
*power = DiyFp(cached_power.significand, cached_power.binary_exponent);

View File

@ -348,7 +348,6 @@ static BignumDtoaMode DtoaToBignumDtoaMode(
case DoubleToStringConverter::PRECISION: return BIGNUM_DTOA_PRECISION;
default:
UNREACHABLE();
return BIGNUM_DTOA_SHORTEST; // To silence compiler.
}
}
@ -403,8 +402,8 @@ void DoubleToStringConverter::DoubleToAscii(double v,
vector, length, point);
break;
default:
UNREACHABLE();
fast_worked = false;
UNREACHABLE();
}
if (fast_worked) return;
@ -462,6 +461,28 @@ static double SignedZero(bool sign) {
}
// Returns true if 'c' is a decimal digit that is valid for the given radix.
//
// The function is small and could be inlined, but VS2012 emitted a warning
// because it constant-propagated the radix and concluded that the last
// condition was always true. By moving it into a separate function the
// compiler wouldn't warn anymore.
static bool IsDecimalDigitForRadix(int c, int radix) {
return '0' <= c && c <= '9' && (c - '0') < radix;
}
// Returns true if 'c' is a character digit that is valid for the given radix.
// The 'a_character' should be 'a' or 'A'.
//
// The function is small and could be inlined, but VS2012 emitted a warning
// because it constant-propagated the radix and concluded that the first
// condition was always false. By moving it into a separate function the
// compiler wouldn't warn anymore.
static bool IsCharacterDigitForRadix(int c, int radix, char a_character) {
return radix > 10 && c >= a_character && c < a_character + radix - 10;
}
// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
template <int radix_log_2>
static double RadixStringToIeee(const char* current,
@ -492,11 +513,11 @@ static double RadixStringToIeee(const char* current,
do {
int digit;
if (*current >= '0' && *current <= '9' && *current < '0' + radix) {
if (IsDecimalDigitForRadix(*current, radix)) {
digit = static_cast<char>(*current) - '0';
} else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) {
} else if (IsCharacterDigitForRadix(*current, radix, 'a')) {
digit = static_cast<char>(*current) - 'a' + 10;
} else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) {
} else if (IsCharacterDigitForRadix(*current, radix, 'A')) {
digit = static_cast<char>(*current) - 'A' + 10;
} else {
if (allow_trailing_junk || !AdvanceToNonspace(&current, end)) {
@ -523,7 +544,7 @@ static double RadixStringToIeee(const char* current,
exponent = overflow_bits_count;
bool zero_tail = true;
while (true) {
for (;;) {
++current;
if (current == end || !isDigit(*current, radix)) break;
zero_tail = zero_tail && *current == '0';
@ -577,7 +598,7 @@ double StringToDoubleConverter::StringToIeee(
const char* input,
int length,
int* processed_characters_count,
bool read_as_double) {
bool read_as_double) const {
const char* current = input;
const char* end = input + length;
@ -600,7 +621,7 @@ double StringToDoubleConverter::StringToIeee(
if (allow_leading_spaces || allow_trailing_spaces) {
if (!AdvanceToNonspace(&current, end)) {
*processed_characters_count = current - input;
*processed_characters_count = static_cast<int>(current - input);
return empty_string_value_;
}
if (!allow_leading_spaces && (input != current)) {
@ -649,7 +670,7 @@ double StringToDoubleConverter::StringToIeee(
}
ASSERT(buffer_pos == 0);
*processed_characters_count = current - input;
*processed_characters_count = static_cast<int>(current - input);
return sign ? -Double::Infinity() : Double::Infinity();
}
}
@ -668,7 +689,7 @@ double StringToDoubleConverter::StringToIeee(
}
ASSERT(buffer_pos == 0);
*processed_characters_count = current - input;
*processed_characters_count = static_cast<int>(current - input);
return sign ? -Double::NaN() : Double::NaN();
}
}
@ -677,7 +698,7 @@ double StringToDoubleConverter::StringToIeee(
if (*current == '0') {
++current;
if (current == end) {
*processed_characters_count = current - input;
*processed_characters_count = static_cast<int>(current - input);
return SignedZero(sign);
}
@ -700,7 +721,7 @@ double StringToDoubleConverter::StringToIeee(
&tail_pointer);
if (tail_pointer != NULL) {
if (allow_trailing_spaces) AdvanceToNonspace(&tail_pointer, end);
*processed_characters_count = tail_pointer - input;
*processed_characters_count = static_cast<int>(tail_pointer - input);
}
return result;
}
@ -709,7 +730,7 @@ double StringToDoubleConverter::StringToIeee(
while (*current == '0') {
++current;
if (current == end) {
*processed_characters_count = current - input;
*processed_characters_count = static_cast<int>(current - input);
return SignedZero(sign);
}
}
@ -757,7 +778,7 @@ double StringToDoubleConverter::StringToIeee(
while (*current == '0') {
++current;
if (current == end) {
*processed_characters_count = current - input;
*processed_characters_count = static_cast<int>(current - input);
return SignedZero(sign);
}
exponent--; // Move this 0 into the exponent.
@ -864,7 +885,7 @@ double StringToDoubleConverter::StringToIeee(
read_as_double,
&tail_pointer);
ASSERT(tail_pointer != NULL);
*processed_characters_count = current - input;
*processed_characters_count = static_cast<int>(current - input);
return result;
}
@ -882,7 +903,7 @@ double StringToDoubleConverter::StringToIeee(
} else {
converted = Strtof(Vector<const char>(buffer, buffer_pos), exponent);
}
*processed_characters_count = current - input;
*processed_characters_count = static_cast<int>(current - input);
return sign? -converted: converted;
}

View File

@ -502,7 +502,7 @@ class StringToDoubleConverter {
// in the 'processed_characters_count'. Trailing junk is never included.
double StringToDouble(const char* buffer,
int length,
int* processed_characters_count) {
int* processed_characters_count) const {
return StringToIeee(buffer, length, processed_characters_count, true);
}
@ -511,7 +511,7 @@ class StringToDoubleConverter {
// due to potential double-rounding.
float StringToFloat(const char* buffer,
int length,
int* processed_characters_count) {
int* processed_characters_count) const {
return static_cast<float>(StringToIeee(buffer, length,
processed_characters_count, false));
}
@ -526,7 +526,7 @@ class StringToDoubleConverter {
double StringToIeee(const char* buffer,
int length,
int* processed_characters_count,
bool read_as_double);
bool read_as_double) const;
DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter);
};

View File

@ -248,10 +248,7 @@ static void BiggestPowerTen(uint32_t number,
// Note: kPowersOf10[i] == 10^(i-1).
exponent_plus_one_guess++;
// We don't have any guarantees that 2^number_bits <= number.
// TODO(floitsch): can we change the 'while' into an 'if'? We definitely see
// number < (2^number_bits - 1), but I haven't encountered
// number < (2^number_bits - 2) yet.
while (number < kSmallPowersOfTen[exponent_plus_one_guess]) {
if (number < kSmallPowersOfTen[exponent_plus_one_guess]) {
exponent_plus_one_guess--;
}
*power = kSmallPowersOfTen[exponent_plus_one_guess];
@ -350,7 +347,8 @@ static bool DigitGen(DiyFp low,
// that is smaller than integrals.
while (*kappa > 0) {
int digit = integrals / divisor;
buffer[*length] = '0' + digit;
ASSERT(digit <= 9);
buffer[*length] = static_cast<char>('0' + digit);
(*length)++;
integrals %= divisor;
(*kappa)--;
@ -379,13 +377,14 @@ static bool DigitGen(DiyFp low,
ASSERT(one.e() >= -60);
ASSERT(fractionals < one.f());
ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
while (true) {
for (;;) {
fractionals *= 10;
unit *= 10;
unsafe_interval.set_f(unsafe_interval.f() * 10);
// Integer division by one.
int digit = static_cast<int>(fractionals >> -one.e());
buffer[*length] = '0' + digit;
ASSERT(digit <= 9);
buffer[*length] = static_cast<char>('0' + digit);
(*length)++;
fractionals &= one.f() - 1; // Modulo by one.
(*kappa)--;
@ -459,7 +458,8 @@ static bool DigitGenCounted(DiyFp w,
// that is smaller than 'integrals'.
while (*kappa > 0) {
int digit = integrals / divisor;
buffer[*length] = '0' + digit;
ASSERT(digit <= 9);
buffer[*length] = static_cast<char>('0' + digit);
(*length)++;
requested_digits--;
integrals %= divisor;
@ -492,7 +492,8 @@ static bool DigitGenCounted(DiyFp w,
w_error *= 10;
// Integer division by one.
int digit = static_cast<int>(fractionals >> -one.e());
buffer[*length] = '0' + digit;
ASSERT(digit <= 9);
buffer[*length] = static_cast<char>('0' + digit);
(*length)++;
requested_digits--;
fractionals &= one.f() - 1; // Modulo by one.

View File

@ -133,7 +133,7 @@ static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
while (number != 0) {
int digit = number % 10;
number /= 10;
buffer[(*length) + number_length] = '0' + digit;
buffer[(*length) + number_length] = static_cast<char>('0' + digit);
number_length++;
}
// Exchange the digits.
@ -150,7 +150,7 @@ static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
}
static void FillDigits64FixedLength(uint64_t number, int requested_length,
static void FillDigits64FixedLength(uint64_t number,
Vector<char> buffer, int* length) {
const uint32_t kTen7 = 10000000;
// For efficiency cut the number into 3 uint32_t parts, and print those.
@ -253,7 +253,8 @@ static void FillFractionals(uint64_t fractionals, int exponent,
fractionals *= 5;
point--;
int digit = static_cast<int>(fractionals >> point);
buffer[*length] = '0' + digit;
ASSERT(digit <= 9);
buffer[*length] = static_cast<char>('0' + digit);
(*length)++;
fractionals -= static_cast<uint64_t>(digit) << point;
}
@ -274,7 +275,8 @@ static void FillFractionals(uint64_t fractionals, int exponent,
fractionals128.Multiply(5);
point--;
int digit = fractionals128.DivModPowerOf2(point);
buffer[*length] = '0' + digit;
ASSERT(digit <= 9);
buffer[*length] = static_cast<char>('0' + digit);
(*length)++;
}
if (fractionals128.BitAt(point - 1) == 1) {
@ -358,7 +360,7 @@ bool FastFixedDtoa(double v,
remainder = (dividend % divisor) << exponent;
}
FillDigits32(quotient, buffer, length);
FillDigits64FixedLength(remainder, divisor_power, buffer, length);
FillDigits64FixedLength(remainder, buffer, length);
*decimal_point = *length;
} else if (exponent >= 0) {
// 0 <= exponent <= 11

View File

@ -256,6 +256,8 @@ class Double {
return (significand & kSignificandMask) |
(biased_exponent << kPhysicalSignificandSize);
}
DISALLOW_COPY_AND_ASSIGN(Double);
};
class Single {
@ -391,6 +393,8 @@ class Single {
static const uint32_t kNaN = 0x7FC00000;
const uint32_t d32_;
DISALLOW_COPY_AND_ASSIGN(Single);
};
} // namespace double_conversion

View File

@ -137,6 +137,7 @@ static void TrimAndCut(Vector<const char> buffer, int exponent,
Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed);
exponent += left_trimmed.length() - right_trimmed.length();
if (right_trimmed.length() > kMaxSignificantDecimalDigits) {
(void) space_size; // Mark variable as used.
ASSERT(space_size >= kMaxSignificantDecimalDigits);
CutToMaxSignificantDigits(right_trimmed, exponent,
buffer_copy_space, updated_exponent);
@ -515,6 +516,7 @@ float Strtof(Vector<const char> buffer, int exponent) {
double double_next2 = Double(double_next).NextDouble();
f4 = static_cast<float>(double_next2);
}
(void) f2; // Mark variable as used.
ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4);
// If the guess doesn't lie near a single-precision boundary we can simply

View File

@ -33,7 +33,8 @@
#include <assert.h>
#ifndef ASSERT
#define ASSERT(condition) (assert(condition))
#define ASSERT(condition) \
assert(condition);
#endif
#ifndef UNIMPLEMENTED
#define UNIMPLEMENTED() (abort())
@ -56,7 +57,8 @@
defined(__ARMEL__) || defined(_M_ARM) || defined(__arm__) || defined(__arm64__) || \
defined(__avr32__) || \
defined(__hppa__) || defined(__ia64__) || \
defined(__mips__) || defined(__powerpc__) || \
defined(__mips__) || \
defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__) || \
defined(__sparc__) || defined(__sparc) || defined(__s390__) || \
defined(__SH4__) || defined(__alpha__) || \
defined(_MIPS_ARCH_MIPS32R2) || \
@ -74,6 +76,11 @@
#error Target architecture was not detected as supported by Double-Conversion.
#endif
#if defined(__GNUC__)
#define DOUBLE_CONVERSION_UNUSED __attribute__((unused))
#else
#define DOUBLE_CONVERSION_UNUSED
#endif
#if defined(_WIN32) && !defined(__MINGW32__)
@ -299,7 +306,8 @@ template <class Dest, class Source>
inline Dest BitCast(const Source& source) {
// Compile time assertion: sizeof(Dest) == sizeof(Source)
// A compile error here means your Dest and Source have different sizes.
typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
DOUBLE_CONVERSION_UNUSED
typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
Dest dest;
memmove(&dest, &source, sizeof(dest));