3265 lines
55 KiB
C
Raw Normal View History

//
// VarHolder.h
//
// $Id: //poco/svn/Foundation/include/Poco/VarHolder.h#3 $
//
// Library: Foundation
// Package: Dynamic
// Module: VarHolder
//
// Definition of the VarHolder class.
//
// Copyright (c) 2007, Applied Informatics Software Engineering GmbH.
// and Contributors.
//
// Permission is hereby granted, free of charge, to any person or organization
// obtaining a copy of the software and accompanying documentation covered by
// this license (the "Software") to use, reproduce, display, distribute,
// execute, and transmit the Software, and to prepare derivative works of the
// Software, and to permit third-parties to whom the Software is furnished to
// do so, all subject to the following:
//
// The copyright notices in the Software and this entire statement, including
// the above license grant, this restriction and the following disclaimer,
// must be included in all copies of the Software, in whole or in part, and
// all derivative works of the Software, unless such copies or derivative
// works are solely in the form of machine-executable object code generated by
// a source language processor.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//
#ifndef Foundation_VarHolder_INCLUDED
#define Foundation_VarHolder_INCLUDED
#include "Poco/Foundation.h"
#include "Poco/NumberFormatter.h"
#include "Poco/NumberParser.h"
#include "Poco/DateTime.h"
#include "Poco/Timestamp.h"
#include "Poco/LocalDateTime.h"
#include "Poco/DateTimeFormat.h"
#include "Poco/DateTimeFormatter.h"
#include "Poco/DateTimeParser.h"
#include "Poco/String.h"
#include "Poco/Any.h"
#include "Poco/Exception.h"
#include <vector>
#include <list>
#include <deque>
#include <typeinfo>
#undef min
#undef max
#include <limits>
namespace Poco {
namespace Dynamic {
class Var;
namespace Impl {
bool Foundation_API isJSONString(const Var& any);
/// Returns true for values that should be JSON-formatted as string.
void Foundation_API appendJSONKey(std::string& val, const Var& any);
/// Converts the any to a JSON key (i.e. wraps it into double quotes
/// regardless of the underlying type) and appends it to val.
void Foundation_API appendJSONString(std::string& val, const Var& any);
/// Converts the any to a JSON string (i.e. wraps it into double quotes)
/// regardless of the underlying type) and appends it to val.
void Foundation_API appendJSONValue(std::string& val, const Var& any);
/// Converts the any to a JSON value (if underlying type qualifies
/// as string - see isJSONString() - , it is wrapped into double quotes)
/// and appends it to val
template <typename C>
void containerToJSON(C& cont, std::string& val)
{
// Serialize in JSON format. Note: although this is a vector<T>, the code only
// supports vector<Var>. Total specialization is not possible
// because of the cyclic dependency between Var and VarHolder
// JSON format definition: [ n times: elem ',' ], no ',' for last elem
val.append("[ ");
typename C::const_iterator it = cont.begin();
typename C::const_iterator itEnd = cont.end();
if (!cont.empty())
{
appendJSONValue(val, *it);
++it;
}
for (; it != itEnd; ++it)
{
val.append(", ");
appendJSONValue(val, *it);
}
val.append(" ]");
}
} // namespace Impl
class Foundation_API VarHolder
/// Interface for a data holder used by the Var class.
/// Provides methods to convert between data types.
/// Only data types for which VarHolder specialization exists are supported.
///
/// Provided are specializations for all C++ built-in types with addition of
/// std::string, DateTime, LocalDateTime, Timestamp, std::vector<Var> and DynamicStruct.
///
/// Additional types can be supported by adding specializations. When implementing specializations,
/// the only condition is that they reside in Poco namespace and implement the pure virtual functions
/// clone() and type().
///
/// Those conversions that are not implemented shall fail back to this base
/// class implementation. All the convert() function overloads in this class
/// throw BadCastException.
{
public:
typedef Var ArrayValueType;
virtual ~VarHolder();
/// Destroys the VarHolder.
virtual VarHolder* clone(Placeholder<VarHolder>* pHolder = 0) const = 0;
/// Implementation must implement this function to
/// deep-copy the VarHolder.
/// If small object optimization is enabled (i.e. if
/// POCO_NO_SOO is not defined), VarHolder will be
/// instantiated in-place if it's size is smaller
/// than POCO_SMALL_OBJECT_SIZE.
virtual const std::type_info& type() const = 0;
/// Implementation must return the type information
/// (typeid) for the stored content.
virtual void convert(Int8& val) const;
/// Throws BadCastException. Must be overriden in a type
/// specialization in order to suport the conversion.
virtual void convert(Int16& val) const;
/// Throws BadCastException. Must be overriden in a type
/// specialization in order to suport the conversion.
virtual void convert(Int32& val) const;
/// Throws BadCastException. Must be overriden in a type
/// specialization in order to suport the conversion.
virtual void convert(Int64& val) const;
/// Throws BadCastException. Must be overriden in a type
/// specialization in order to suport the conversion.
virtual void convert(UInt8& val) const;
/// Throws BadCastException. Must be overriden in a type
/// specialization in order to suport the conversion.
virtual void convert(UInt16& val) const;
/// Throws BadCastException. Must be overriden in a type
/// specialization in order to suport the conversion.
virtual void convert(UInt32& val) const;
/// Throws BadCastException. Must be overriden in a type
/// specialization in order to suport the conversion.
virtual void convert(UInt64& val) const;
/// Throws BadCastException. Must be overriden in a type
/// specialization in order to suport the conversion.
virtual void convert(DateTime& val) const;
/// Throws BadCastException. Must be overriden in a type
/// specialization in order to suport the conversion.
virtual void convert(LocalDateTime& val) const;
/// Throws BadCastException. Must be overriden in a type
/// specialization in order to suport the conversion.
virtual void convert(Timestamp& val) const;
/// Throws BadCastException. Must be overriden in a type
/// specialization in order to suport the conversion.
#ifndef POCO_LONG_IS_64_BIT
void convert(long& val) const;
/// Calls convert(Int32).
void convert(unsigned long& val) const;
/// Calls convert(UInt32).
#endif
virtual void convert(bool& val) const;
/// Throws BadCastException. Must be overriden in a type
/// specialization in order to suport the conversion.
virtual void convert(float& val) const;
/// Throws BadCastException. Must be overriden in a type
/// specialization in order to suport the conversion.
virtual void convert(double& val) const;
/// Throws BadCastException. Must be overriden in a type
/// specialization in order to suport the conversion.
virtual void convert(char& val) const;
/// Throws BadCastException. Must be overriden in a type
/// specialization in order to suport the conversion.
virtual void convert(std::string& val) const;
/// Throws BadCastException. Must be overriden in a type
/// specialization in order to suport the conversion.
virtual bool isArray() const;
/// Returns true.
virtual bool isVector() const;
/// Returns false. Must be properly overriden in a type
/// specialization in order to suport the diagnostic.
virtual bool isList() const;
/// Returns false. Must be properly overriden in a type
/// specialization in order to suport the diagnostic.
virtual bool isDeque() const;
/// Returns false. Must be properly overriden in a type
/// specialization in order to suport the diagnostic.
virtual bool isStruct() const;
/// Returns false. Must be properly overriden in a type
/// specialization in order to suport the diagnostic.
virtual bool isInteger() const;
/// Returns false. Must be properly overriden in a type
/// specialization in order to suport the diagnostic.
virtual bool isSigned() const;
/// Returns false. Must be properly overriden in a type
/// specialization in order to suport the diagnostic.
virtual bool isNumeric() const;
/// Returns false. Must be properly overriden in a type
/// specialization in order to suport the diagnostic.
virtual bool isString() const;
/// Returns false. Must be properly overriden in a type
/// specialization in order to suport the diagnostic.
virtual std::size_t size() const;
/// Returns 1 iff Var is not empty or this function overriden.
protected:
VarHolder();
/// Creates the VarHolder.
template <typename T>
VarHolder* cloneHolder(Placeholder<VarHolder>* pVarHolder, const T& val) const
/// Instantiates value holder wrapper. If size of the wrapper is
/// larger than POCO_SMALL_OBJECT_SIZE, holder is instantiated on
/// the heap, otherwise it is instantiated in-place (in the
/// pre-allocated buffer inside the holder).
///
/// Called from clone() member function of the implementation when
/// smal object optimization is enabled.
{
#ifdef POCO_NO_SOO
return new VarHolderImpl<T>(val);
#else
poco_check_ptr (pVarHolder);
if ((sizeof(VarHolderImpl<T>) <= Placeholder<T>::Size::value))
{
new ((VarHolder*) pVarHolder->holder) VarHolderImpl<T>(val);
pVarHolder->setLocal(true);
return (VarHolder*) pVarHolder->holder;
}
else
{
pVarHolder->pHolder = new VarHolderImpl<T>(val);
pVarHolder->setLocal(false);
return pVarHolder->pHolder;
}
#endif
}
template <typename F, typename T>
void convertToSmaller(const F& from, T& to) const
/// This function is meant to convert signed numeric values from
/// larger to smaller type. It checks the upper and lower bound and
/// if from value is within limits of type T (i.e. check calls do not throw),
/// it is converted.
{
poco_static_assert (std::numeric_limits<F>::is_specialized);
poco_static_assert (std::numeric_limits<T>::is_specialized);
poco_static_assert (std::numeric_limits<F>::is_signed);
poco_static_assert (std::numeric_limits<T>::is_signed);
if (std::numeric_limits<F>::is_integer)
{
checkUpperLimit<F,T>(from);
checkLowerLimit<F,T>(from);
}
else
{
checkUpperLimitFloat<F,T>(from);
checkLowerLimitFloat<F,T>(from);
}
to = static_cast<T>(from);
}
template <typename F, typename T>
void convertToSmallerUnsigned(const F& from, T& to) const
/// This function is meant for converting unsigned integral data types,
/// from larger to smaller type. Since lower limit is always 0 for unigned types,
/// only the upper limit is checked, thus saving some cycles compared to the signed
/// version of the function. If the value to be converted is smaller than
/// the maximum value for the target type, the conversion is performed.
{
poco_static_assert (std::numeric_limits<F>::is_specialized);
poco_static_assert (std::numeric_limits<T>::is_specialized);
poco_static_assert (!std::numeric_limits<F>::is_signed);
poco_static_assert (!std::numeric_limits<T>::is_signed);
checkUpperLimit<F,T>(from);
to = static_cast<T>(from);
}
template <typename F, typename T>
void convertSignedToUnsigned(const F& from, T& to) const
/// This function is meant for converting signed integral data types to
/// unsigned data types. Negative values can not be converted and if one is
/// encountered, RangeException is thrown.
/// If upper limit is within the target data type limits, the conversion is performed.
{
poco_static_assert (std::numeric_limits<F>::is_specialized);
poco_static_assert (std::numeric_limits<T>::is_specialized);
poco_static_assert (std::numeric_limits<F>::is_signed);
poco_static_assert (!std::numeric_limits<T>::is_signed);
if (from < 0)
throw RangeException("Value too small.");
checkUpperLimit<F,T>(from);
to = static_cast<T>(from);
}
template <typename F, typename T>
void convertSignedFloatToUnsigned(const F& from, T& to) const
/// This function is meant for converting floating point data types to
/// unsigned integral data types. Negative values can not be converted and if one is
/// encountered, RangeException is thrown.
/// If uper limit is within the target data type limits, the conversion is performed.
{
poco_static_assert (std::numeric_limits<F>::is_specialized);
poco_static_assert (std::numeric_limits<T>::is_specialized);
poco_static_assert (!std::numeric_limits<F>::is_integer);
poco_static_assert (std::numeric_limits<T>::is_integer);
poco_static_assert (!std::numeric_limits<T>::is_signed);
if (from < 0)
throw RangeException("Value too small.");
checkUpperLimitFloat<F,T>(from);
to = static_cast<T>(from);
}
template <typename F, typename T>
void convertUnsignedToSigned(const F& from, T& to) const
/// This function is meant for converting unsigned integral data types to
/// unsigned data types. Negative values can not be converted and if one is
/// encountered, RangeException is thrown.
/// If upper limit is within the target data type limits, the converiosn is performed.
{
poco_static_assert (std::numeric_limits<F>::is_specialized);
poco_static_assert (std::numeric_limits<T>::is_specialized);
poco_static_assert (!std::numeric_limits<F>::is_signed);
poco_static_assert (std::numeric_limits<T>::is_signed);
checkUpperLimit<F,T>(from);
to = static_cast<T>(from);
}
private:
template <typename F, typename T>
void checkUpperLimit(const F& from) const
{
if ((sizeof(T) < sizeof(F)) &&
(from > static_cast<F>(std::numeric_limits<T>::max())))
{
throw RangeException("Value too large.");
}
else
if (static_cast<T>(from) > std::numeric_limits<T>::max())
{
throw RangeException("Value too large.");
}
}
template <typename F, typename T>
void checkUpperLimitFloat(const F& from) const
{
if (from > std::numeric_limits<T>::max())
throw RangeException("Value too large.");
}
template <typename F, typename T>
void checkLowerLimitFloat(const F& from) const
{
if (from < -std::numeric_limits<T>::max())
throw RangeException("Value too small.");
}
template <typename F, typename T>
void checkLowerLimit(const F& from) const
{
if (from < std::numeric_limits<T>::min())
throw RangeException("Value too small.");
}
};
//
// inlines
//
inline void VarHolder::convert(Int8& /*val*/) const
{
throw BadCastException("Can not convert to Int8");
}
inline void VarHolder::convert(Int16& /*val*/) const
{
throw BadCastException("Can not convert to Int16");
}
inline void VarHolder::convert(Int32& /*val*/) const
{
throw BadCastException("Can not convert to Int32");
}
inline void VarHolder::convert(Int64& /*val*/) const
{
throw BadCastException("Can not convert to Int64");
}
inline void VarHolder::convert(UInt8& /*val*/) const
{
throw BadCastException("Can not convert to UInt8");
}
inline void VarHolder::convert(UInt16& /*val*/) const
{
throw BadCastException("Can not convert to UInt16");
}
inline void VarHolder::convert(UInt32& /*val*/) const
{
throw BadCastException("Can not convert to UInt32");
}
inline void VarHolder::convert(UInt64& /*val*/) const
{
throw BadCastException("Can not convert to UInt64");
}
inline void VarHolder::convert(DateTime& /*val*/) const
{
throw BadCastException("Can not convert to DateTime");
}
inline void VarHolder::convert(LocalDateTime& /*val*/) const
{
throw BadCastException("Can not convert to LocalDateTime");
}
inline void VarHolder::convert(Timestamp& /*val*/) const
{
throw BadCastException("Can not convert to Timestamp");
}
#ifndef POCO_LONG_IS_64_BIT
inline void VarHolder::convert(long& val) const
{
Int32 tmp;
convert(tmp);
val = tmp;
}
inline void VarHolder::convert(unsigned long& val) const
{
UInt32 tmp;
convert(tmp);
val = tmp;
}
#endif
inline void VarHolder::convert(bool& /*val*/) const
{
throw BadCastException("Can not convert to bool");
}
inline void VarHolder::convert(float& /*val*/) const
{
throw BadCastException("Can not convert to float");
}
inline void VarHolder::convert(double& /*val*/) const
{
throw BadCastException("Can not convert to double");
}
inline void VarHolder::convert(char& /*val*/) const
{
throw BadCastException("Can not convert to char");
}
inline void VarHolder::convert(std::string& /*val*/) const
{
throw BadCastException("Can not convert to std::string");
}
inline bool VarHolder::isArray() const
{
return true;
}
inline bool VarHolder::isVector() const
{
return false;
}
inline bool VarHolder::isList() const
{
return false;
}
inline bool VarHolder::isDeque() const
{
return false;
}
inline bool VarHolder::isStruct() const
{
return false;
}
inline bool VarHolder::isInteger() const
{
return false;
}
inline bool VarHolder::isSigned() const
{
return false;
}
inline bool VarHolder::isNumeric() const
{
return false;
}
inline bool VarHolder::isString() const
{
return false;
}
inline std::size_t VarHolder::size() const
{
return 1u;
}
template <typename T>
class VarHolderImpl: public VarHolder
/// Template based implementation of a VarHolder.
/// This class provides type storage for user-defined types
/// that do not have VarHolderImpl specialization.
///
/// The actual conversion work happens in the template specializations
/// of this class.
///
/// VarHolderImpl throws following exceptions:
/// BadCastException (if the requested conversion is not implemented)
/// RangeException (if an attempt is made to assign a numeric value outside of the target min/max limits
/// SyntaxException (if an attempt is made to convert a string containing non-numeric characters to number)
///
/// In order to support efficient direct extraction of the held value,
/// all specializations must additionally implement a public member function:
///
/// const T& value() const
///
/// returning a const reference to the actual stored value.
{
public:
VarHolderImpl(const T& val): _val(val)
{
}
~VarHolderImpl()
{
}
const std::type_info& type() const
{
return typeid(T);
}
VarHolder* clone(Placeholder<VarHolder>* pVarHolder = 0) const
{
return cloneHolder(pVarHolder, _val);
}
const T& value() const
{
return _val;
}
private:
VarHolderImpl();
VarHolderImpl(const VarHolderImpl&);
VarHolderImpl& operator = (const VarHolderImpl&);
T _val;
};
template <>
class VarHolderImpl<Int8>: public VarHolder
{
public:
VarHolderImpl(Int8 val): _val(val)
{
}
~VarHolderImpl()
{
}
const std::type_info& type() const
{
return typeid(Int8);
}
void convert(Int8& val) const
{
val = _val;
}
void convert(Int16& val) const
{
val = _val;
}
void convert(Int32& val) const
{
val = _val;
}
void convert(Int64& val) const
{
val = _val;
}
void convert(UInt8& val) const
{
convertSignedToUnsigned(_val, val);
}
void convert(UInt16& val) const
{
convertSignedToUnsigned(_val, val);
}
void convert(UInt32& val) const
{
convertSignedToUnsigned(_val, val);
}
void convert(UInt64& val) const
{
convertSignedToUnsigned(_val, val);
}
void convert(bool& val) const
{
val = (_val != 0);
}
void convert(float& val) const
{
val = static_cast<float>(_val);
}
void convert(double& val) const
{
val = static_cast<double>(_val);
}
void convert(char& val) const
{
val = static_cast<char>(_val);
}
void convert(std::string& val) const
{
val = NumberFormatter::format(_val);
}
VarHolder* clone(Placeholder<VarHolder>* pVarHolder = 0) const
{
return cloneHolder(pVarHolder, _val);
}
const Int8& value() const
{
return _val;
}
bool isArray() const
{
return false;
}
bool isStruct() const
{
return false;
}
bool isInteger() const
{
return std::numeric_limits<Int8>::is_integer;
}
bool isSigned() const
{
return std::numeric_limits<Int8>::is_signed;
}
bool isNumeric() const
{
return std::numeric_limits<Int8>::is_specialized;
}
bool isString() const
{
return false;
}
private:
VarHolderImpl();
VarHolderImpl(const VarHolderImpl&);
VarHolderImpl& operator = (const VarHolderImpl&);
Int8 _val;
};
template <>
class VarHolderImpl<Int16>: public VarHolder
{
public:
VarHolderImpl(Int16 val): _val(val)
{
}
~VarHolderImpl()
{
}
const std::type_info& type() const
{
return typeid(Int16);
}
void convert(Int8& val) const
{
convertToSmaller(_val, val);
}
void convert(Int16& val) const
{
val = _val;
}
void convert(Int32& val) const
{
val = _val;
}
void convert(Int64& val) const
{
val = _val;
}
void convert(UInt8& val) const
{
convertSignedToUnsigned(_val, val);
}
void convert(UInt16& val) const
{
convertSignedToUnsigned(_val, val);
}
void convert(UInt32& val) const
{
convertSignedToUnsigned(_val, val);
}
void convert(UInt64& val) const
{
convertSignedToUnsigned(_val, val);
}
void convert(bool& val) const
{
val = (_val != 0);
}
void convert(float& val) const
{
val = static_cast<float>(_val);
}
void convert(double& val) const
{
val = static_cast<double>(_val);
}
void convert(char& val) const
{
UInt8 tmp;
convert(tmp);
val = static_cast<char>(tmp);
}
void convert(std::string& val) const
{
val = NumberFormatter::format(_val);
}
VarHolder* clone(Placeholder<VarHolder>* pVarHolder = 0) const
{
return cloneHolder(pVarHolder, _val);
}
const Int16& value() const
{
return _val;
}
bool isArray() const
{
return false;
}
bool isStruct() const
{
return false;
}
bool isInteger() const
{
return std::numeric_limits<Int16>::is_integer;
}
bool isSigned() const
{
return std::numeric_limits<Int16>::is_signed;
}
bool isNumeric() const
{
return std::numeric_limits<Int16>::is_specialized;
}
bool isString() const
{
return false;
}
private:
VarHolderImpl();
VarHolderImpl(const VarHolderImpl&);
VarHolderImpl& operator = (const VarHolderImpl&);
Int16 _val;
};
template <>
class VarHolderImpl<Int32>: public VarHolder
{
public:
VarHolderImpl(Int32 val): _val(val)
{
}
~VarHolderImpl()
{
}
const std::type_info& type() const
{
return typeid(Int32);
}
void convert(Int8& val) const
{
convertToSmaller(_val, val);
}
void convert(Int16& val) const
{
convertToSmaller(_val, val);
}
void convert(Int32& val) const
{
val = _val;
}
void convert(Int64& val) const
{
val = _val;
}
void convert(UInt8& val) const
{
convertSignedToUnsigned(_val, val);
}
void convert(UInt16& val) const
{
convertSignedToUnsigned(_val, val);
}
void convert(UInt32& val) const
{
convertSignedToUnsigned(_val, val);
}
void convert(UInt64& val) const
{
convertSignedToUnsigned(_val, val);
}
void convert(bool& val) const
{
val = (_val != 0);
}
void convert(float& val) const
{
val = static_cast<float>(_val);
}
void convert(double& val) const
{
val = static_cast<double>(_val);
}
void convert(char& val) const
{
UInt8 tmp;
convert(tmp);
val = static_cast<char>(tmp);
}
void convert(std::string& val) const
{
val = NumberFormatter::format(_val);
}
VarHolder* clone(Placeholder<VarHolder>* pVarHolder = 0) const
{
return cloneHolder(pVarHolder, _val);
}
const Int32& value() const
{
return _val;
}
bool isArray() const
{
return false;
}
bool isStruct() const
{
return false;
}
bool isInteger() const
{
return std::numeric_limits<Int32>::is_integer;
}
bool isSigned() const
{
return std::numeric_limits<Int32>::is_signed;
}
bool isNumeric() const
{
return std::numeric_limits<Int32>::is_specialized;
}
bool isString() const
{
return false;
}
private:
VarHolderImpl();
VarHolderImpl(const VarHolderImpl&);
VarHolderImpl& operator = (const VarHolderImpl&);
Int32 _val;
};
template <>
class VarHolderImpl<Int64>: public VarHolder
{
public:
VarHolderImpl(Int64 val): _val(val)
{
}
~VarHolderImpl()
{
}
const std::type_info& type() const
{
return typeid(Int64);
}
void convert(Int8& val) const
{
convertToSmaller(_val, val);
}
void convert(Int16& val) const
{
convertToSmaller(_val, val);
}
void convert(Int32& val) const
{
convertToSmaller(_val, val);
}
void convert(Int64& val) const
{
val = _val;
}
void convert(UInt8& val) const
{
convertSignedToUnsigned(_val, val);
}
void convert(UInt16& val) const
{
convertSignedToUnsigned(_val, val);
}
void convert(UInt32& val) const
{
convertSignedToUnsigned(_val, val);
}
void convert(UInt64& val) const
{
convertSignedToUnsigned(_val, val);
}
void convert(bool& val) const
{
val = (_val != 0);
}
void convert(float& val) const
{
val = static_cast<float>(_val);
}
void convert(double& val) const
{
val = static_cast<double>(_val);
}
void convert(char& val) const
{
UInt8 tmp;
convert(tmp);
val = static_cast<char>(tmp);
}
void convert(std::string& val) const
{
val = NumberFormatter::format(_val);
}
void convert(DateTime& dt) const
{
dt = Timestamp(_val);
}
void convert(LocalDateTime& ldt) const
{
ldt = Timestamp(_val);
}
void convert(Timestamp& val) const
{
val = Timestamp(_val);
}
VarHolder* clone(Placeholder<VarHolder>* pVarHolder = 0) const
{
return cloneHolder(pVarHolder, _val);
}
const Int64& value() const
{
return _val;
}
bool isArray() const
{
return false;
}
bool isStruct() const
{
return false;
}
bool isInteger() const
{
return std::numeric_limits<Int64>::is_integer;
}
bool isSigned() const
{
return std::numeric_limits<Int64>::is_signed;
}
bool isNumeric() const
{
return std::numeric_limits<Int64>::is_specialized;
}
bool isString() const
{
return false;
}
private:
VarHolderImpl();
VarHolderImpl(const VarHolderImpl&);
VarHolderImpl& operator = (const VarHolderImpl&);
Int64 _val;
};
template <>
class VarHolderImpl<UInt8>: public VarHolder
{
public:
VarHolderImpl(UInt8 val): _val(val)
{
}
~VarHolderImpl()
{
}
const std::type_info& type() const
{
return typeid(UInt8);
}
void convert(Int8& val) const
{
convertUnsignedToSigned(_val, val);
}
void convert(Int16& val) const
{
convertUnsignedToSigned(_val, val);
}
void convert(Int32& val) const
{
val = static_cast<Int32>(_val);
}
void convert(Int64& val) const
{
val = static_cast<Int64>(_val);
}
void convert(UInt8& val) const
{
val = _val;
}
void convert(UInt16& val) const
{
val = _val;
}
void convert(UInt32& val) const
{
val = _val;
}
void convert(UInt64& val) const
{
val = _val;
}
void convert(bool& val) const
{
val = (_val != 0);
}
void convert(float& val) const
{
val = static_cast<float>(_val);
}
void convert(double& val) const
{
val = static_cast<double>(_val);
}
void convert(char& val) const
{
UInt8 tmp;
convert(tmp);
val = static_cast<char>(tmp);
}
void convert(std::string& val) const
{
val = NumberFormatter::format(_val);
}
VarHolder* clone(Placeholder<VarHolder>* pVarHolder = 0) const
{
return cloneHolder(pVarHolder, _val);
}
const UInt8& value() const
{
return _val;
}
bool isArray() const
{
return false;
}
bool isStruct() const
{
return false;
}
bool isInteger() const
{
return std::numeric_limits<UInt8>::is_integer;
}
bool isSigned() const
{
return std::numeric_limits<UInt8>::is_signed;
}
bool isNumeric() const
{
return std::numeric_limits<UInt8>::is_specialized;
}
bool isString() const
{
return false;
}
private:
VarHolderImpl();
VarHolderImpl(const VarHolderImpl&);
VarHolderImpl& operator = (const VarHolderImpl&);
UInt8 _val;
};
template <>
class VarHolderImpl<UInt16>: public VarHolder
{
public:
VarHolderImpl(UInt16 val): _val(val)
{
}
~VarHolderImpl()
{
}
const std::type_info& type() const
{
return typeid(UInt16);
}
void convert(Int8& val) const
{
convertUnsignedToSigned(_val, val);
}
void convert(Int16& val) const
{
convertUnsignedToSigned(_val, val);
}
void convert(Int32& val) const
{
convertUnsignedToSigned(_val, val);
}
void convert(Int64& val) const
{
val = static_cast<Int64>(_val);
}
void convert(UInt8& val) const
{
convertToSmallerUnsigned(_val, val);
}
void convert(UInt16& val) const
{
val = _val;
}
void convert(UInt32& val) const
{
val = _val;
}
void convert(UInt64& val) const
{
val = _val;
}
void convert(bool& val) const
{
val = (_val != 0);
}
void convert(float& val) const
{
val = static_cast<float>(_val);
}
void convert(double& val) const
{
val = static_cast<double>(_val);
}
void convert(char& val) const
{
UInt8 tmp;
convert(tmp);
val = static_cast<char>(tmp);
}
void convert(std::string& val) const
{
val = NumberFormatter::format(_val);
}
VarHolder* clone(Placeholder<VarHolder>* pVarHolder = 0) const
{
return cloneHolder(pVarHolder, _val);
}
const UInt16& value() const
{
return _val;
}
bool isArray() const
{
return false;
}
bool isStruct() const
{
return false;
}
bool isInteger() const
{
return std::numeric_limits<UInt16>::is_integer;
}
bool isSigned() const
{
return std::numeric_limits<UInt16>::is_signed;
}
bool isNumeric() const
{
return std::numeric_limits<UInt16>::is_specialized;
}
bool isString() const
{
return false;
}
private:
VarHolderImpl();
VarHolderImpl(const VarHolderImpl&);
VarHolderImpl& operator = (const VarHolderImpl&);
UInt16 _val;
};
template <>
class VarHolderImpl<UInt32>: public VarHolder
{
public:
VarHolderImpl(UInt32 val): _val(val)
{
}
~VarHolderImpl()
{
}
const std::type_info& type() const
{
return typeid(UInt32);
}
void convert(Int8& val) const
{
convertUnsignedToSigned(_val, val);
}
void convert(Int16& val) const
{
convertUnsignedToSigned(_val, val);
}
void convert(Int32& val) const
{
convertUnsignedToSigned(_val, val);
}
void convert(Int64& val) const
{
convertUnsignedToSigned(_val, val);
}
void convert(UInt8& val) const
{
convertToSmallerUnsigned(_val, val);
}
void convert(UInt16& val) const
{
convertToSmallerUnsigned(_val, val);
}
void convert(UInt32& val) const
{
val = _val;
}
void convert(UInt64& val) const
{
val = _val;
}
void convert(bool& val) const
{
val = (_val != 0);
}
void convert(float& val) const
{
val = static_cast<float>(_val);
}
void convert(double& val) const
{
val = static_cast<double>(_val);
}
void convert(char& val) const
{
UInt8 tmp;
convert(tmp);
val = static_cast<char>(tmp);
}
void convert(std::string& val) const
{
val = NumberFormatter::format(_val);
}
VarHolder* clone(Placeholder<VarHolder>* pVarHolder = 0) const
{
return cloneHolder(pVarHolder, _val);
}
const UInt32& value() const
{
return _val;
}
bool isArray() const
{
return false;
}
bool isStruct() const
{
return false;
}
bool isInteger() const
{
return std::numeric_limits<UInt32>::is_integer;
}
bool isSigned() const
{
return std::numeric_limits<UInt32>::is_signed;
}
bool isNumeric() const
{
return std::numeric_limits<UInt32>::is_specialized;
}
bool isString() const
{
return false;
}
private:
VarHolderImpl();
VarHolderImpl(const VarHolderImpl&);
VarHolderImpl& operator = (const VarHolderImpl&);
UInt32 _val;
};
template <>
class VarHolderImpl<UInt64>: public VarHolder
{
public:
VarHolderImpl(UInt64 val): _val(val)
{
}
~VarHolderImpl()
{
}
const std::type_info& type() const
{
return typeid(UInt64);
}
void convert(Int8& val) const
{
convertUnsignedToSigned(_val, val);
}
void convert(Int16& val) const
{
convertUnsignedToSigned(_val, val);
}
void convert(Int32& val) const
{
convertUnsignedToSigned(_val, val);
}
void convert(Int64& val) const
{
convertUnsignedToSigned(_val, val);
}
void convert(UInt8& val) const
{
convertToSmallerUnsigned(_val, val);
}
void convert(UInt16& val) const
{
convertToSmallerUnsigned(_val, val);
}
void convert(UInt32& val) const
{
convertToSmallerUnsigned(_val, val);
}
void convert(UInt64& val) const
{
val = _val;
}
void convert(bool& val) const
{
val = (_val != 0);
}
void convert(float& val) const
{
val = static_cast<float>(_val);
}
void convert(double& val) const
{
val = static_cast<double>(_val);
}
void convert(char& val) const
{
UInt8 tmp;
convert(tmp);
val = static_cast<char>(tmp);
}
void convert(std::string& val) const
{
val = NumberFormatter::format(_val);
}
void convert(DateTime& dt) const
{
Int64 val;
convertUnsignedToSigned(_val, val);
dt = Timestamp(val);
}
void convert(LocalDateTime& ldt) const
{
Int64 val;
convertUnsignedToSigned(_val, val);
ldt = Timestamp(val);
}
void convert(Timestamp& val) const
{
Int64 tmp;
convertUnsignedToSigned(_val, tmp);
val = Timestamp(tmp);
}
VarHolder* clone(Placeholder<VarHolder>* pVarHolder = 0) const
{
return cloneHolder(pVarHolder, _val);
}
const UInt64& value() const
{
return _val;
}
bool isArray() const
{
return false;
}
bool isStruct() const
{
return false;
}
bool isInteger() const
{
return std::numeric_limits<UInt64>::is_integer;
}
bool isSigned() const
{
return std::numeric_limits<UInt64>::is_signed;
}
bool isNumeric() const
{
return std::numeric_limits<UInt64>::is_specialized;
}
bool isString() const
{
return false;
}
private:
VarHolderImpl();
VarHolderImpl(const VarHolderImpl&);
VarHolderImpl& operator = (const VarHolderImpl&);
UInt64 _val;
};
template <>
class VarHolderImpl<bool>: public VarHolder
{
public:
VarHolderImpl(bool val): _val(val)
{
}
~VarHolderImpl()
{
}
const std::type_info& type() const
{
return typeid(bool);
}
void convert(Int8& val) const
{
val = static_cast<Int8>(_val ? 1 : 0);
}
void convert(Int16& val) const
{
val = static_cast<Int16>(_val ? 1 : 0);
}
void convert(Int32& val) const
{
val = static_cast<Int32>(_val ? 1 : 0);
}
void convert(Int64& val) const
{
val = static_cast<Int64>(_val ? 1 : 0);
}
void convert(UInt8& val) const
{
val = static_cast<UInt8>(_val ? 1 : 0);
}
void convert(UInt16& val) const
{
val = static_cast<UInt16>(_val ? 1 : 0);
}
void convert(UInt32& val) const
{
val = static_cast<UInt32>(_val ? 1 : 0);
}
void convert(UInt64& val) const
{
val = static_cast<UInt64>(_val ? 1 : 0);
}
void convert(bool& val) const
{
val = _val;
}
void convert(float& val) const
{
val = (_val ? 1.0f : 0.0f);
}
void convert(double& val) const
{
val = (_val ? 1.0 : 0.0);
}
void convert(char& val) const
{
val = static_cast<char>(_val ? 1 : 0);
}
void convert(std::string& val) const
{
val = (_val ? "true" : "false");
}
VarHolder* clone(Placeholder<VarHolder>* pVarHolder = 0) const
{
return cloneHolder(pVarHolder, _val);
}
const bool& value() const
{
return _val;
}
bool isArray() const
{
return false;
}
bool isStruct() const
{
return false;
}
bool isInteger() const
{
return std::numeric_limits<bool>::is_integer;
}
bool isSigned() const
{
return std::numeric_limits<bool>::is_signed;
}
bool isNumeric() const
{
return std::numeric_limits<bool>::is_specialized;
}
bool isString() const
{
return false;
}
private:
VarHolderImpl();
VarHolderImpl(const VarHolderImpl&);
VarHolderImpl& operator = (const VarHolderImpl&);
bool _val;
};
template <>
class VarHolderImpl<float>: public VarHolder
{
public:
VarHolderImpl(float val): _val(val)
{
}
~VarHolderImpl()
{
}
const std::type_info& type() const
{
return typeid(float);
}
void convert(Int8& val) const
{
convertToSmaller(_val, val);
}
void convert(Int16& val) const
{
convertToSmaller(_val, val);
}
void convert(Int32& val) const
{
convertToSmaller(_val, val);
}
void convert(Int64& val) const
{
convertToSmaller(_val, val);
}
void convert(UInt8& val) const
{
convertSignedFloatToUnsigned(_val, val);
}
void convert(UInt16& val) const
{
convertSignedFloatToUnsigned(_val, val);
}
void convert(UInt32& val) const
{
convertSignedFloatToUnsigned(_val, val);
}
void convert(UInt64& val) const
{
convertSignedFloatToUnsigned(_val, val);
}
void convert(bool& val) const
{
val = !(_val <= std::numeric_limits<float>::min() &&
_val >= -1 * std::numeric_limits<float>::min());
}
void convert(float& val) const
{
val = _val;
}
void convert(double& val) const
{
val = _val;
}
void convert(char& val) const
{
UInt8 tmp;
convert(tmp);
val = static_cast<char>(tmp);
}
void convert(std::string& val) const
{
val = NumberFormatter::format(_val);
}
VarHolder* clone(Placeholder<VarHolder>* pVarHolder = 0) const
{
return cloneHolder(pVarHolder, _val);
}
const float& value() const
{
return _val;
}
bool isArray() const
{
return false;
}
bool isStruct() const
{
return false;
}
bool isInteger() const
{
return std::numeric_limits<float>::is_integer;
}
bool isSigned() const
{
return std::numeric_limits<float>::is_signed;
}
bool isNumeric() const
{
return std::numeric_limits<float>::is_specialized;
}
bool isString() const
{
return false;
}
private:
VarHolderImpl();
VarHolderImpl(const VarHolderImpl&);
VarHolderImpl& operator = (const VarHolderImpl&);
float _val;
};
template <>
class VarHolderImpl<double>: public VarHolder
{
public:
VarHolderImpl(double val): _val(val)
{
}
~VarHolderImpl()
{
}
const std::type_info& type() const
{
return typeid(double);
}
void convert(Int8& val) const
{
convertToSmaller(_val, val);
}
void convert(Int16& val) const
{
convertToSmaller(_val, val);
}
void convert(Int32& val) const
{
convertToSmaller(_val, val);
}
void convert(Int64& val) const
{
convertToSmaller(_val, val);
}
void convert(UInt8& val) const
{
convertSignedFloatToUnsigned(_val, val);
}
void convert(UInt16& val) const
{
convertSignedFloatToUnsigned(_val, val);
}
void convert(UInt32& val) const
{
convertSignedFloatToUnsigned(_val, val);
}
void convert(UInt64& val) const
{
convertSignedFloatToUnsigned(_val, val);
}
void convert(bool& val) const
{
val = !(_val <= std::numeric_limits<double>::min() &&
_val >= -1 * std::numeric_limits<double>::min());
}
void convert(float& val) const
{
double fMin = -1 * std::numeric_limits<float>::max();
double fMax = std::numeric_limits<float>::max();
if (_val < fMin) throw RangeException("Value too small.");
if (_val > fMax) throw RangeException("Value too large.");
val = static_cast<float>(_val);
}
void convert(double& val) const
{
val = _val;
}
void convert(char& val) const
{
UInt8 tmp;
convert(tmp);
val = static_cast<char>(tmp);
}
void convert(std::string& val) const
{
val = NumberFormatter::format(_val);
}
VarHolder* clone(Placeholder<VarHolder>* pVarHolder = 0) const
{
return cloneHolder(pVarHolder, _val);
}
const double& value() const
{
return _val;
}
bool isArray() const
{
return false;
}
bool isStruct() const
{
return false;
}
bool isInteger() const
{
return std::numeric_limits<double>::is_integer;
}
bool isSigned() const
{
return std::numeric_limits<double>::is_signed;
}
bool isNumeric() const
{
return std::numeric_limits<double>::is_specialized;
}
bool isString() const
{
return false;
}
private:
VarHolderImpl();
VarHolderImpl(const VarHolderImpl&);
VarHolderImpl& operator = (const VarHolderImpl&);
double _val;
};
template <>
class VarHolderImpl<char>: public VarHolder
{
public:
VarHolderImpl(char val): _val(val)
{
}
~VarHolderImpl()
{
}
const std::type_info& type() const
{
return typeid(char);
}
void convert(Int8& val) const
{
val = static_cast<Int8>(_val);
}
void convert(Int16& val) const
{
val = static_cast<UInt8>(_val);
}
void convert(Int32& val) const
{
val = static_cast<UInt8>(_val);
}
void convert(Int64& val) const
{
val = static_cast<UInt8>(_val);
}
void convert(UInt8& val) const
{
val = static_cast<UInt8>(_val);
}
void convert(UInt16& val) const
{
val = static_cast<UInt8>(_val);
}
void convert(UInt32& val) const
{
val = static_cast<UInt8>(_val);
}
void convert(UInt64& val) const
{
val = static_cast<UInt8>(_val);
}
void convert(bool& val) const
{
val = (_val != '\0');
}
void convert(float& val) const
{
val = static_cast<float>(_val);
}
void convert(double& val) const
{
val = static_cast<double>(_val);
}
void convert(char& val) const
{
val = _val;
}
void convert(std::string& val) const
{
val = std::string(1, _val);
}
VarHolder* clone(Placeholder<VarHolder>* pVarHolder = 0) const
{
return cloneHolder(pVarHolder, _val);
}
const char& value() const
{
return _val;
}
bool isArray() const
{
return false;
}
bool isStruct() const
{
return false;
}
bool isInteger() const
{
return std::numeric_limits<char>::is_integer;
}
bool isSigned() const
{
return std::numeric_limits<char>::is_signed;
}
bool isNumeric() const
{
return std::numeric_limits<char>::is_specialized;
}
bool isString() const
{
return false;
}
private:
VarHolderImpl();
VarHolderImpl(const VarHolderImpl&);
VarHolderImpl& operator = (const VarHolderImpl&);
char _val;
};
template <typename T>
class VarHolderImpl<std::basic_string<T> >: public VarHolder
{
public:
VarHolderImpl(const char* pVal): _val(pVal)
{
}
VarHolderImpl(const std::string& val): _val(val)
{
}
~VarHolderImpl()
{
}
const std::type_info& type() const
{
return typeid(std::string);
}
void convert(Int8& val) const
{
int v = NumberParser::parse(_val);
convertToSmaller(v, val);
}
void convert(Int16& val) const
{
int v = NumberParser::parse(_val);
convertToSmaller(v, val);
}
void convert(Int32& val) const
{
val = NumberParser::parse(_val);
}
void convert(Int64& val) const
{
val = NumberParser::parse64(_val);
}
void convert(UInt8& val) const
{
unsigned int v = NumberParser::parseUnsigned(_val);
convertToSmallerUnsigned(v, val);
}
void convert(UInt16& val) const
{
unsigned int v = NumberParser::parseUnsigned(_val);
convertToSmallerUnsigned(v, val);
}
void convert(UInt32& val) const
{
val = NumberParser::parseUnsigned(_val);
}
void convert(UInt64& val) const
{
val = NumberParser::parseUnsigned64(_val);
}
void convert(bool& val) const
{
static const std::string VAL_FALSE("false");
static const std::string VAL_INT_FALSE("0");
if (_val.empty() ||
_val == VAL_INT_FALSE ||
(icompare(_val, VAL_FALSE) == 0))
{
val = false;
}
else val = true;
}
void convert(float& val) const
{
double v = NumberParser::parseFloat(_val);
convertToSmaller(v, val);
}
void convert(double& val) const
{
val = NumberParser::parseFloat(_val);
}
void convert(char& val) const
{
if (_val.empty())
val = '\0';
else
val = _val[0];
}
void convert(std::string& val) const
{
val = _val;
}
void convert(DateTime& val) const
{
int tzd = 0;
if (!DateTimeParser::tryParse(DateTimeFormat::ISO8601_FORMAT, _val, val, tzd))
throw BadCastException("string -> DateTime");
}
void convert(LocalDateTime& ldt) const
{
int tzd = 0;
DateTime tmp;
if (!DateTimeParser::tryParse(DateTimeFormat::ISO8601_FORMAT, _val, tmp, tzd))
throw BadCastException("string -> LocalDateTime");
ldt = LocalDateTime(tzd, tmp, false);
}
void convert(Timestamp& ts) const
{
int tzd = 0;
DateTime tmp;
if (!DateTimeParser::tryParse(DateTimeFormat::ISO8601_FORMAT, _val, tmp, tzd))
throw BadCastException("string -> Timestamp");
ts = tmp.timestamp();
}
VarHolder* clone(Placeholder<VarHolder>* pVarHolder = 0) const
{
return cloneHolder(pVarHolder, _val);
}
const std::string& value() const
{
return _val;
}
bool isString() const
{
return true;
}
std::size_t size() const
{
return _val.length();
}
T& operator[](std::string::size_type n)
{
if (n < size()) return _val.operator[](n);
throw RangeException("String index out of range");
}
const T& operator[](std::string::size_type n) const
{
if (n < size()) return _val.operator[](n);
throw RangeException("String index out of range");
}
private:
VarHolderImpl();
VarHolderImpl(const VarHolderImpl&);
VarHolderImpl& operator = (const VarHolderImpl&);
std::basic_string<T> _val;
};
#ifndef POCO_LONG_IS_64_BIT
template <>
class VarHolderImpl<long>: public VarHolder
{
public:
VarHolderImpl(long val): _val(val)
{
}
~VarHolderImpl()
{
}
const std::type_info& type() const
{
return typeid(long);
}
void convert(Int8& val) const
{
convertToSmaller(_val, val);
}
void convert(Int16& val) const
{
convertToSmaller(_val, val);
}
void convert(Int32& val) const
{
val = static_cast<Int32>(_val);
}
void convert(Int64& val) const
{
val = static_cast<Int64>(_val);
}
void convert(UInt8& val) const
{
convertSignedToUnsigned(_val, val);
}
void convert(UInt16& val) const
{
convertSignedToUnsigned(_val, val);
}
void convert(UInt32& val) const
{
convertSignedToUnsigned(_val, val);
}
void convert(UInt64& val) const
{
convertSignedToUnsigned(_val, val);
}
void convert(bool& val) const
{
val = (_val != 0);
}
void convert(float& val) const
{
val = static_cast<float>(_val);
}
void convert(double& val) const
{
val = static_cast<double>(_val);
}
void convert(char& val) const
{
UInt8 tmp;
convert(tmp);
val = static_cast<char>(tmp);
}
void convert(std::string& val) const
{
val = NumberFormatter::format(_val);
}
VarHolder* clone(Placeholder<VarHolder>* pVarHolder = 0) const
{
return cloneHolder(pVarHolder, _val);
}
const long& value() const
{
return _val;
}
bool isArray() const
{
return false;
}
bool isStruct() const
{
return false;
}
bool isInteger() const
{
return std::numeric_limits<long>::is_integer;
}
bool isSigned() const
{
return std::numeric_limits<long>::is_signed;
}
bool isNumeric() const
{
return std::numeric_limits<long>::is_specialized;
}
bool isString() const
{
return false;
}
private:
VarHolderImpl();
VarHolderImpl(const VarHolderImpl&);
VarHolderImpl& operator = (const VarHolderImpl&);
long _val;
};
template <>
class VarHolderImpl<unsigned long>: public VarHolder
{
public:
VarHolderImpl(unsigned long val): _val(val)
{
}
~VarHolderImpl()
{
}
const std::type_info& type() const
{
return typeid(unsigned long);
}
void convert(Int8& val) const
{
convertUnsignedToSigned(_val, val);
}
void convert(Int16& val) const
{
convertUnsignedToSigned(_val, val);
}
void convert(Int32& val) const
{
convertUnsignedToSigned(_val, val);
}
void convert(Int64& val) const
{
convertUnsignedToSigned(_val, val);
}
void convert(UInt8& val) const
{
convertToSmallerUnsigned(_val, val);
}
void convert(UInt16& val) const
{
convertToSmallerUnsigned(_val, val);
}
void convert(UInt32& val) const
{
convertToSmallerUnsigned(_val, val);
}
void convert(UInt64& val) const
{
val = static_cast<UInt64>(_val);
}
void convert(bool& val) const
{
val = (_val != 0);
}
void convert(float& val) const
{
val = static_cast<float>(_val);
}
void convert(double& val) const
{
val = static_cast<double>(_val);
}
void convert(char& val) const
{
UInt8 tmp;
convert(tmp);
val = static_cast<char>(tmp);
}
void convert(std::string& val) const
{
val = NumberFormatter::format(_val);
}
VarHolder* clone(Placeholder<VarHolder>* pVarHolder = 0) const
{
return cloneHolder(pVarHolder, _val);
}
const unsigned long& value() const
{
return _val;
}
bool isArray() const
{
return false;
}
bool isStruct() const
{
return false;
}
bool isInteger() const
{
return std::numeric_limits<unsigned long>::is_integer;
}
bool isSigned() const
{
return std::numeric_limits<unsigned long>::is_signed;
}
bool isNumeric() const
{
return std::numeric_limits<unsigned long>::is_specialized;
}
bool isString() const
{
return false;
}
private:
VarHolderImpl();
VarHolderImpl(const VarHolderImpl&);
VarHolderImpl& operator = (const VarHolderImpl&);
unsigned long _val;
};
#endif // 64bit
template <typename T>
class VarHolderImpl<std::vector<T> >: public VarHolder
{
public:
VarHolderImpl(const std::vector<T>& val): _val(val)
{
}
~VarHolderImpl()
{
}
const std::type_info& type() const
{
return typeid(std::vector<T>);
}
void convert(std::string& val) const
{
Impl::containerToJSON(_val, val);
}
VarHolder* clone(Placeholder<VarHolder>* pVarHolder = 0) const
{
return cloneHolder(pVarHolder, _val);
}
const std::vector<T>& value() const
{
return _val;
}
bool isVector() const
{
return true;
}
std::size_t size() const
{
return _val.size();
}
T& operator[](typename std::vector<T>::size_type n)
{
if (n < size()) return _val.operator[](n);
throw RangeException("List index out of range");
}
const T& operator[](typename std::vector<T>::size_type n) const
{
if (n < size()) return _val.operator[](n);
throw RangeException("List index out of range");
}
private:
VarHolderImpl();
VarHolderImpl(const VarHolderImpl&);
VarHolderImpl& operator = (const VarHolderImpl&);
std::vector<T> _val;
};
template <typename T>
class VarHolderImpl<std::list<T> >: public VarHolder
{
public:
VarHolderImpl(const std::list<T>& val): _val(val)
{
}
~VarHolderImpl()
{
}
const std::type_info& type() const
{
return typeid(std::list<T>);
}
void convert(std::string& val) const
{
Impl::containerToJSON(_val, val);
}
VarHolder* clone(Placeholder<VarHolder>* pVarHolder = 0) const
{
return cloneHolder(pVarHolder, _val);
}
const std::list<T>& value() const
{
return _val;
}
bool isList() const
{
return true;
}
std::size_t size() const
{
return _val.size();
}
T& operator[](typename std::list<T>::size_type n)
{
if (n >= size())
throw RangeException("List index out of range");
2013-05-27 21:05:12 -05:00
typename std::list<T>::size_type counter = 0;
typename std::list<T>::iterator it = _val.begin();
for (; counter < n; ++counter) ++it;
return *it;
}
const T& operator[](typename std::list<T>::size_type n) const
{
if (n >= size())
throw RangeException("List index out of range");
2013-05-27 21:05:12 -05:00
typename std::list<T>::size_type counter = 0;
typename std::list<T>::const_iterator it = _val.begin();
for (; counter < n; ++counter) ++it;
return *it;
}
private:
VarHolderImpl();
VarHolderImpl(const VarHolderImpl&);
VarHolderImpl& operator = (const VarHolderImpl&);
std::list<T> _val;
};
template <typename T>
class VarHolderImpl<std::deque<T> >: public VarHolder
{
public:
VarHolderImpl(const std::deque<T>& val): _val(val)
{
}
~VarHolderImpl()
{
}
const std::type_info& type() const
{
return typeid(std::deque<T>);
}
void convert(std::string& val) const
{
Impl::containerToJSON(_val, val);
}
VarHolder* clone(Placeholder<VarHolder>* pVarHolder = 0) const
{
return cloneHolder(pVarHolder, _val);
}
const std::deque<T>& value() const
{
return _val;
}
bool isDeque() const
{
return true;
}
std::size_t size() const
{
return _val.size();
}
T& operator[](typename std::deque<T>::size_type n)
{
if (n < size()) return _val.operator[](n);
throw RangeException("List index out of range");
}
const T& operator[](typename std::deque<T>::size_type n) const
{
if (n < size()) return _val.operator[](n);
throw RangeException("List index out of range");
}
private:
VarHolderImpl();
VarHolderImpl(const VarHolderImpl&);
VarHolderImpl& operator = (const VarHolderImpl&);
std::deque<T> _val;
};
template <>
class VarHolderImpl<DateTime>: public VarHolder
{
public:
VarHolderImpl(const DateTime& val): _val(val)
{
}
~VarHolderImpl()
{
}
const std::type_info& type() const
{
return typeid(DateTime);
}
void convert(Int8& /*val*/) const
{
throw BadCastException();
}
void convert(Int16& /*val*/) const
{
throw BadCastException();
}
void convert(Int32& /*val*/) const
{
throw BadCastException();
}
void convert(Int64& val) const
{
val = _val.timestamp().epochMicroseconds();
}
void convert(UInt64& val) const
{
val = _val.timestamp().epochMicroseconds();
}
void convert(std::string& val) const
{
val = DateTimeFormatter::format(_val, Poco::DateTimeFormat::ISO8601_FORMAT);
}
void convert(DateTime& val) const
{
val = _val;
}
void convert(LocalDateTime& ldt) const
{
ldt = _val.timestamp();
}
void convert(Timestamp& ts) const
{
ts = _val.timestamp();
}
VarHolder* clone(Placeholder<VarHolder>* pVarHolder = 0) const
{
return cloneHolder(pVarHolder, _val);
}
const DateTime& value() const
{
return _val;
}
bool isArray() const
{
return false;
}
bool isStruct() const
{
return false;
}
bool isInteger() const
{
return false;
}
bool isSigned() const
{
return false;
}
bool isNumeric() const
{
return false;
}
bool isString() const
{
return false;
}
private:
VarHolderImpl();
VarHolderImpl(const VarHolderImpl&);
VarHolderImpl& operator = (const VarHolderImpl&);
DateTime _val;
};
template <>
class VarHolderImpl<LocalDateTime>: public VarHolder
{
public:
VarHolderImpl(const LocalDateTime& val): _val(val)
{
}
~VarHolderImpl()
{
}
const std::type_info& type() const
{
return typeid(LocalDateTime);
}
void convert(Int64& val) const
{
val = _val.timestamp().epochMicroseconds();
}
void convert(UInt64& val) const
{
val = _val.timestamp().epochMicroseconds();
}
void convert(std::string& val) const
{
val = DateTimeFormatter::format(_val, Poco::DateTimeFormat::ISO8601_FORMAT);
}
void convert(DateTime& val) const
{
val = _val.timestamp();
}
void convert(LocalDateTime& ldt) const
{
ldt = _val;
}
void convert(Timestamp& ts) const
{
ts = _val.timestamp();
}
VarHolder* clone(Placeholder<VarHolder>* pVarHolder = 0) const
{
return cloneHolder(pVarHolder, _val);
}
const LocalDateTime& value() const
{
return _val;
}
bool isArray() const
{
return false;
}
bool isStruct() const
{
return false;
}
bool isInteger() const
{
return false;
}
bool isSigned() const
{
return false;
}
bool isNumeric() const
{
return false;
}
bool isString() const
{
return false;
}
private:
VarHolderImpl();
VarHolderImpl(const VarHolderImpl&);
VarHolderImpl& operator = (const VarHolderImpl&);
LocalDateTime _val;
};
template <>
class VarHolderImpl<Timestamp>: public VarHolder
{
public:
VarHolderImpl(const Timestamp& val): _val(val)
{
}
~VarHolderImpl()
{
}
const std::type_info& type() const
{
return typeid(Timestamp);
}
void convert(Int64& val) const
{
val = _val.epochMicroseconds();
}
void convert(UInt64& val) const
{
val = _val.epochMicroseconds();
}
void convert(std::string& val) const
{
val = DateTimeFormatter::format(_val, Poco::DateTimeFormat::ISO8601_FORMAT);
}
void convert(DateTime& val) const
{
val = _val;
}
void convert(LocalDateTime& ldt) const
{
ldt = _val;
}
void convert(Timestamp& ts) const
{
ts = _val;
}
VarHolder* clone(Placeholder<VarHolder>* pVarHolder = 0) const
{
return cloneHolder(pVarHolder, _val);
}
const Timestamp& value() const
{
return _val;
}
bool isArray() const
{
return false;
}
bool isStruct() const
{
return false;
}
bool isInteger() const
{
return false;
}
bool isSigned() const
{
return false;
}
bool isNumeric() const
{
return false;
}
bool isString() const
{
return false;
}
private:
VarHolderImpl();
VarHolderImpl(const VarHolderImpl&);
VarHolderImpl& operator = (const VarHolderImpl&);
Timestamp _val;
};
typedef std::vector<Var> Vector;
typedef std::deque<Var> Deque;
typedef std::list<Var> List;
typedef Vector Array;
} } // namespace Poco::Dynamic
#endif // Foundation_VarHolder_INCLUDED