openssl/crypto/rsa/rsa_oaep.c
Emilia Kasper 294d1e36c2 RT3066: rewrite RSA padding checks to be slightly more constant time.
Also tweak s3_cbc.c to use new constant-time methods.
Also fix memory leaks from internal errors in RSA_padding_check_PKCS1_OAEP_mgf1

This patch is based on the original RT submission by Adam Langley <agl@chromium.org>,
as well as code from BoringSSL and OpenSSL.

Reviewed-by: Kurt Roeckx <kurt@openssl.org>
2014-09-24 12:45:42 +02:00

290 lines
7.6 KiB
C

/* crypto/rsa/rsa_oaep.c */
/* Written by Ulf Moeller. This software is distributed on an "AS IS"
basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. */
/* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */
/* See Victor Shoup, "OAEP reconsidered," Nov. 2000,
* <URL: http://www.shoup.net/papers/oaep.ps.Z>
* for problems with the security proof for the
* original OAEP scheme, which EME-OAEP is based on.
*
* A new proof can be found in E. Fujisaki, T. Okamoto,
* D. Pointcheval, J. Stern, "RSA-OEAP is Still Alive!",
* Dec. 2000, <URL: http://eprint.iacr.org/2000/061/>.
* The new proof has stronger requirements for the
* underlying permutation: "partial-one-wayness" instead
* of one-wayness. For the RSA function, this is
* an equivalent notion.
*/
#define OPENSSL_FIPSAPI
#include "../constant_time_locl.h"
#if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA1)
#include <stdio.h>
#include "cryptlib.h"
#include <openssl/bn.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>
#include <openssl/rand.h>
#include <openssl/sha.h>
int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen,
const unsigned char *from, int flen,
const unsigned char *param, int plen)
{
return RSA_padding_add_PKCS1_OAEP_mgf1(to, tlen, from, flen,
param, plen, NULL, NULL);
}
int RSA_padding_add_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
const unsigned char *from, int flen,
const unsigned char *param, int plen,
const EVP_MD *md, const EVP_MD *mgf1md)
{
int i, emlen = tlen - 1;
unsigned char *db, *seed;
unsigned char *dbmask, seedmask[EVP_MAX_MD_SIZE];
int mdlen;
if (md == NULL)
md = EVP_sha1();
if (mgf1md == NULL)
mgf1md = md;
mdlen = EVP_MD_size(md);
if (flen > emlen - 2 * mdlen - 1)
{
RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1,
RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
return 0;
}
if (emlen < 2 * mdlen + 1)
{
RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, RSA_R_KEY_SIZE_TOO_SMALL);
return 0;
}
to[0] = 0;
seed = to + 1;
db = to + mdlen + 1;
if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL))
return 0;
memset(db + mdlen, 0,
emlen - flen - 2 * mdlen - 1);
db[emlen - flen - mdlen - 1] = 0x01;
memcpy(db + emlen - flen - mdlen, from, (unsigned int) flen);
if (RAND_bytes(seed, mdlen) <= 0)
return 0;
#ifdef PKCS_TESTVECT
memcpy(seed,
"\xaa\xfd\x12\xf6\x59\xca\xe6\x34\x89\xb4\x79\xe5\x07\x6d\xde\xc2\xf0\x6c\xb5\x8f",
20);
#endif
dbmask = OPENSSL_malloc(emlen - mdlen);
if (dbmask == NULL)
{
RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE);
return 0;
}
if (PKCS1_MGF1(dbmask, emlen - mdlen, seed, mdlen, mgf1md) < 0)
return 0;
for (i = 0; i < emlen - mdlen; i++)
db[i] ^= dbmask[i];
if (PKCS1_MGF1(seedmask, mdlen, db, emlen - mdlen, mgf1md) < 0)
return 0;
for (i = 0; i < mdlen; i++)
seed[i] ^= seedmask[i];
OPENSSL_free(dbmask);
return 1;
}
int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen,
const unsigned char *from, int flen, int num,
const unsigned char *param, int plen)
{
return RSA_padding_check_PKCS1_OAEP_mgf1(to, tlen, from , flen, num,
param, plen,
NULL, NULL);
}
int RSA_padding_check_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
const unsigned char *from, int flen, int num,
const unsigned char *param, int plen,
const EVP_MD *md, const EVP_MD *mgf1md)
{
int i, dblen, mlen = -1, one_index = 0, msg_index;
unsigned int good, found_one_byte;
const unsigned char *maskedseed, *maskeddb;
/* |em| is the encoded message, zero-padded to exactly |num| bytes:
* em = Y || maskedSeed || maskedDB */
unsigned char *db = NULL, *em = NULL, seed[EVP_MAX_MD_SIZE],
phash[EVP_MAX_MD_SIZE];
int mdlen;
if (md == NULL)
md = EVP_sha1();
if (mgf1md == NULL)
mgf1md = md;
mdlen = EVP_MD_size(md);
if (tlen <= 0 || flen <= 0)
return -1;
/*
* |num| is the length of the modulus; |flen| is the length of the
* encoded message. Therefore, for any |from| that was obtained by
* decrypting a ciphertext, we must have |flen| <= |num|. Similarly,
* num < 2 * mdlen + 2 must hold for the modulus irrespective of
* the ciphertext, see PKCS #1 v2.2, section 7.1.2.
* This does not leak any side-channel information.
*/
if (num < flen || num < 2 * mdlen + 2)
goto decoding_err;
dblen = num - mdlen - 1;
db = OPENSSL_malloc(dblen);
em = OPENSSL_malloc(num);
if (db == NULL || em == NULL)
{
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE);
goto cleanup;
}
/*
* Always do this zero-padding copy (even when num == flen) to avoid
* leaking that information. The copy still leaks some side-channel
* information, but it's impossible to have a fixed memory access
* pattern since we can't read out of the bounds of |from|.
*
* TODO(emilia): Consider porting BN_bn2bin_padded from BoringSSL.
*/
memset(em, 0, num);
memcpy(em + num - flen, from, flen);
/*
* The first byte must be zero, however we must not leak if this is
* true. See James H. Manger, "A Chosen Ciphertext Attack on RSA
* Optimal Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001).
*/
good = constant_time_is_zero(em[0]);
maskedseed = em + 1;
maskeddb = em + 1 + mdlen;
if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md))
goto cleanup;
for (i = 0; i < mdlen; i++)
seed[i] ^= maskedseed[i];
if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md))
goto cleanup;
for (i = 0; i < dblen; i++)
db[i] ^= maskeddb[i];
if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL))
goto cleanup;
good &= constant_time_is_zero(CRYPTO_memcmp(db, phash, mdlen));
found_one_byte = 0;
for (i = mdlen; i < dblen; i++)
{
/* Padding consists of a number of 0-bytes, followed by a 1. */
unsigned int equals1 = constant_time_eq(db[i], 1);
unsigned int equals0 = constant_time_is_zero(db[i]);
one_index = constant_time_select_int(~found_one_byte & equals1,
i, one_index);
found_one_byte |= equals1;
good &= (found_one_byte | equals0);
}
good &= found_one_byte;
/*
* At this point |good| is zero unless the plaintext was valid,
* so plaintext-awareness ensures timing side-channels are no longer a
* concern.
*/
if (!good)
goto decoding_err;
msg_index = one_index + 1;
mlen = dblen - msg_index;
if (tlen < mlen)
{
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, RSA_R_DATA_TOO_LARGE);
mlen = -1;
}
else
{
memcpy(to, db + msg_index, mlen);
goto cleanup;
}
decoding_err:
/* To avoid chosen ciphertext attacks, the error message should not reveal
* which kind of decoding error happened. */
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, RSA_R_OAEP_DECODING_ERROR);
cleanup:
if (db != NULL) OPENSSL_free(db);
if (em != NULL) OPENSSL_free(em);
return mlen;
}
int PKCS1_MGF1(unsigned char *mask, long len,
const unsigned char *seed, long seedlen, const EVP_MD *dgst)
{
long i, outlen = 0;
unsigned char cnt[4];
EVP_MD_CTX c;
unsigned char md[EVP_MAX_MD_SIZE];
int mdlen;
int rv = -1;
EVP_MD_CTX_init(&c);
mdlen = M_EVP_MD_size(dgst);
if (mdlen < 0)
goto err;
for (i = 0; outlen < len; i++)
{
cnt[0] = (unsigned char)((i >> 24) & 255);
cnt[1] = (unsigned char)((i >> 16) & 255);
cnt[2] = (unsigned char)((i >> 8)) & 255;
cnt[3] = (unsigned char)(i & 255);
if (!EVP_DigestInit_ex(&c,dgst, NULL)
|| !EVP_DigestUpdate(&c, seed, seedlen)
|| !EVP_DigestUpdate(&c, cnt, 4))
goto err;
if (outlen + mdlen <= len)
{
if (!EVP_DigestFinal_ex(&c, mask + outlen, NULL))
goto err;
outlen += mdlen;
}
else
{
if (!EVP_DigestFinal_ex(&c, md, NULL))
goto err;
memcpy(mask + outlen, md, len - outlen);
outlen = len;
}
}
rv = 0;
err:
EVP_MD_CTX_cleanup(&c);
return rv;
}
#endif