openssl/crypto/aes/asm/bsaes-x86_64.pl

3045 lines
70 KiB
Perl

#!/usr/bin/env perl
###################################################################
### AES-128 [originally in CTR mode] ###
### bitsliced implementation for Intel Core 2 processors ###
### requires support of SSE extensions up to SSSE3 ###
### Author: Emilia Käsper and Peter Schwabe ###
### Date: 2009-03-19 ###
### Public domain ###
### ###
### See http://homes.esat.kuleuven.be/~ekasper/#software for ###
### further information. ###
###################################################################
#
# September 2011.
#
# Started as transliteration to "perlasm" the original code has
# undergone following changes:
#
# - code was made position-independent;
# - rounds were folded into a loop resulting in >5x size reduction
# from 12.5KB to 2.2KB;
# - above was possibile thanks to mixcolumns() modification that
# allowed to feed its output back to aesenc[last], this was
# achieved at cost of two additional inter-registers moves;
# - some instruction reordering and interleaving;
# - this module doesn't implement key setup subroutine, instead it
# relies on conversion of "conventional" key schedule as returned
# by AES_set_encrypt_key (see discussion below);
# - first and last round keys are treated differently, which allowed
# to skip one shiftrows(), reduce bit-sliced key schedule and
# speed-up conversion by 22%;
# - support for 192- and 256-bit keys was added;
#
# Resulting performance in CPU cycles spent to encrypt one byte out
# of 4096-byte buffer with 128-bit key is:
#
# Emilia's this(*) difference
#
# Core 2 9.30 8.69 +7%
# Nehalem(**) 7.63 6.98 +9%
# Atom 17.1 17.4 -2%(***)
#
# (*) Comparison is not completely fair, because "this" is ECB,
# i.e. no extra processing such as counter values calculation
# and xor-ing input as in Emilia's CTR implementation is
# performed. However, the CTR calculations stand for not more
# than 1% of total time, so comparison is *rather* fair.
#
# (**) Results were collected on Westmere, which is considered to
# be equivalent to Nehalem for this code.
#
# (***) Slowdown on Atom is rather strange per se, because original
# implementation has a number of 9+-bytes instructions, which
# are bad for Atom front-end, and which I eliminated completely.
# In attempt to address deterioration sbox() was tested in FP
# SIMD "domain" (movaps instead of movdqa, xorps instead of
# pxor, etc.). While it resulted in nominal 4% improvement on
# Atom, it hurted Westmere by more than 2x factor.
#
# As for key schedule conversion subroutine. Interface to OpenSSL
# relies on per-invocation on-the-fly conversion. This naturally
# has impact on performance, especially for short inputs. Conversion
# time in CPU cycles and its ratio to CPU cycles spent in 8x block
# function is:
#
# conversion conversion/8x block
# Core 2 240 0.22
# Nehalem 180 0.20
# Atom 430 0.19
#
# The ratio values mean that 128-byte blocks will be processed
# 16-18% slower, 256-byte blocks - 9-10%, 384-byte blocks - 6-7%,
# etc. Then keep in mind that input sizes not divisible by 128 are
# *effectively* slower, especially shortest ones, e.g. consecutive
# 144-byte blocks are processed 44% slower than one would expect,
# 272 - 29%, 400 - 22%, etc. Yet, despite all these "shortcomings"
# it's still faster than ["hyper-threading-safe" code path in]
# aes-x86_64.pl on all lengths above 64 bytes...
#
# October 2011.
#
# Add decryption procedure. Performance in CPU cycles spent to decrypt
# one byte out of 4096-byte buffer with 128-bit key is:
#
# Core 2 11.0
# Nehalem 9.16
# Atom 20.9
#
# November 2011.
#
# Add bsaes_xts_[en|de]crypt. Less-than-80-bytes-block performance is
# suboptimal, but XTS is meant to be used with larger blocks...
#
# <appro@openssl.org>
$flavour = shift;
$output = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
open STDOUT,"| $^X $xlate $flavour $output";
my ($inp,$out,$len,$key,$ivp)=("%rdi","%rsi","%rdx","%rcx");
my @XMM=map("%xmm$_",(15,0..14)); # best on Atom, +10% over (0..15)
my $ecb=0; # suppress unreferenced ECB subroutines, spare some space...
{
my ($key,$rounds,$const)=("%rax","%r10d","%r11");
sub Sbox {
# input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb
# output in lsb > [b0, b1, b4, b6, b3, b7, b2, b5] < msb
my @b=@_[0..7];
my @t=@_[8..11];
my @s=@_[12..15];
&InBasisChange (@b);
&Inv_GF256 (@b[6,5,0,3,7,1,4,2],@t,@s);
&OutBasisChange (@b[7,1,4,2,6,5,0,3]);
}
sub InBasisChange {
# input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb
# output in lsb > [b6, b5, b0, b3, b7, b1, b4, b2] < msb
my @b=@_[0..7];
$code.=<<___;
pxor @b[6], @b[5]
pxor @b[1], @b[2]
pxor @b[0], @b[3]
pxor @b[2], @b[6]
pxor @b[0], @b[5]
pxor @b[3], @b[6]
pxor @b[7], @b[3]
pxor @b[5], @b[7]
pxor @b[4], @b[3]
pxor @b[5], @b[4]
pxor @b[1], @b[3]
pxor @b[7], @b[2]
pxor @b[5], @b[1]
___
}
sub OutBasisChange {
# input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb
# output in lsb > [b6, b1, b2, b4, b7, b0, b3, b5] < msb
my @b=@_[0..7];
$code.=<<___;
pxor @b[6], @b[0]
pxor @b[4], @b[1]
pxor @b[0], @b[2]
pxor @b[6], @b[4]
pxor @b[1], @b[6]
pxor @b[5], @b[1]
pxor @b[3], @b[5]
pxor @b[7], @b[3]
pxor @b[5], @b[7]
pxor @b[5], @b[2]
pxor @b[7], @b[4]
___
}
sub InvSbox {
# input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb
# output in lsb > [b0, b1, b6, b4, b2, b7, b3, b5] < msb
my @b=@_[0..7];
my @t=@_[8..11];
my @s=@_[12..15];
&InvInBasisChange (@b);
&Inv_GF256 (@b[5,1,2,6,3,7,0,4],@t,@s);
&InvOutBasisChange (@b[3,7,0,4,5,1,2,6]);
}
sub InvInBasisChange { # OutBasisChange in reverse
my @b=@_[5,1,2,6,3,7,0,4];
$code.=<<___
pxor @b[7], @b[4]
pxor @b[5], @b[7]
pxor @b[5], @b[2]
pxor @b[7], @b[3]
pxor @b[3], @b[5]
pxor @b[5], @b[1]
pxor @b[1], @b[6]
pxor @b[0], @b[2]
pxor @b[6], @b[4]
pxor @b[6], @b[0]
pxor @b[4], @b[1]
___
}
sub InvOutBasisChange { # InBasisChange in reverse
my @b=@_[2,5,7,3,6,1,0,4];
$code.=<<___;
pxor @b[5], @b[1]
pxor @b[7], @b[2]
pxor @b[1], @b[3]
pxor @b[5], @b[4]
pxor @b[5], @b[7]
pxor @b[4], @b[3]
pxor @b[0], @b[5]
pxor @b[7], @b[3]
pxor @b[2], @b[6]
pxor @b[1], @b[2]
pxor @b[3], @b[6]
pxor @b[0], @b[3]
pxor @b[6], @b[5]
___
}
sub Mul_GF4 {
#;*************************************************************
#;* Mul_GF4: Input x0-x1,y0-y1 Output x0-x1 Temp t0 (8) *
#;*************************************************************
my ($x0,$x1,$y0,$y1,$t0)=@_;
$code.=<<___;
movdqa $y0, $t0
pxor $y1, $t0
pand $x0, $t0
pxor $x1, $x0
pand $y0, $x1
pand $y1, $x0
pxor $x1, $x0
pxor $t0, $x1
___
}
sub Mul_GF4_N { # not used, see next subroutine
# multiply and scale by N
my ($x0,$x1,$y0,$y1,$t0)=@_;
$code.=<<___;
movdqa $y0, $t0
pxor $y1, $t0
pand $x0, $t0
pxor $x1, $x0
pand $y0, $x1
pand $y1, $x0
pxor $x0, $x1
pxor $t0, $x0
___
}
sub Mul_GF4_N_GF4 {
# interleaved Mul_GF4_N and Mul_GF4
my ($x0,$x1,$y0,$y1,$t0,
$x2,$x3,$y2,$y3,$t1)=@_;
$code.=<<___;
movdqa $y0, $t0
movdqa $y2, $t1
pxor $y1, $t0
pxor $y3, $t1
pand $x0, $t0
pand $x2, $t1
pxor $x1, $x0
pxor $x3, $x2
pand $y0, $x1
pand $y2, $x3
pand $y1, $x0
pand $y3, $x2
pxor $x0, $x1
pxor $x3, $x2
pxor $t0, $x0
pxor $t1, $x3
___
}
sub Mul_GF16_2 {
my @x=@_[0..7];
my @y=@_[8..11];
my @t=@_[12..15];
$code.=<<___;
movdqa @x[0], @t[0]
movdqa @x[1], @t[1]
___
&Mul_GF4 (@x[0], @x[1], @y[0], @y[1], @t[2]);
$code.=<<___;
pxor @x[2], @t[0]
pxor @x[3], @t[1]
pxor @y[2], @y[0]
pxor @y[3], @y[1]
___
Mul_GF4_N_GF4 (@t[0], @t[1], @y[0], @y[1], @t[3],
@x[2], @x[3], @y[2], @y[3], @t[2]);
$code.=<<___;
pxor @t[0], @x[0]
pxor @t[0], @x[2]
pxor @t[1], @x[1]
pxor @t[1], @x[3]
movdqa @x[4], @t[0]
movdqa @x[5], @t[1]
pxor @x[6], @t[0]
pxor @x[7], @t[1]
___
&Mul_GF4_N_GF4 (@t[0], @t[1], @y[0], @y[1], @t[3],
@x[6], @x[7], @y[2], @y[3], @t[2]);
$code.=<<___;
pxor @y[2], @y[0]
pxor @y[3], @y[1]
___
&Mul_GF4 (@x[4], @x[5], @y[0], @y[1], @t[3]);
$code.=<<___;
pxor @t[0], @x[4]
pxor @t[0], @x[6]
pxor @t[1], @x[5]
pxor @t[1], @x[7]
___
}
sub Inv_GF256 {
#;********************************************************************
#;* Inv_GF256: Input x0-x7 Output x0-x7 Temp t0-t3,s0-s3 (144) *
#;********************************************************************
my @x=@_[0..7];
my @t=@_[8..11];
my @s=@_[12..15];
# direct optimizations from hardware
$code.=<<___;
movdqa @x[4], @t[3]
movdqa @x[5], @t[2]
movdqa @x[1], @t[1]
movdqa @x[7], @s[1]
movdqa @x[0], @s[0]
pxor @x[6], @t[3]
pxor @x[7], @t[2]
pxor @x[3], @t[1]
movdqa @t[3], @s[2]
pxor @x[6], @s[1]
movdqa @t[2], @t[0]
pxor @x[2], @s[0]
movdqa @t[3], @s[3]
por @t[1], @t[2]
por @s[0], @t[3]
pxor @t[0], @s[3]
pand @s[0], @s[2]
pxor @t[1], @s[0]
pand @t[1], @t[0]
pand @s[0], @s[3]
movdqa @x[3], @s[0]
pxor @x[2], @s[0]
pand @s[0], @s[1]
pxor @s[1], @t[3]
pxor @s[1], @t[2]
movdqa @x[4], @s[1]
movdqa @x[1], @s[0]
pxor @x[5], @s[1]
pxor @x[0], @s[0]
movdqa @s[1], @t[1]
pand @s[0], @s[1]
por @s[0], @t[1]
pxor @s[1], @t[0]
pxor @s[3], @t[3]
pxor @s[2], @t[2]
pxor @s[3], @t[1]
movdqa @x[7], @s[0]
pxor @s[2], @t[0]
movdqa @x[6], @s[1]
pxor @s[2], @t[1]
movdqa @x[5], @s[2]
pand @x[3], @s[0]
movdqa @x[4], @s[3]
pand @x[2], @s[1]
pand @x[1], @s[2]
por @x[0], @s[3]
pxor @s[0], @t[3]
pxor @s[1], @t[2]
pxor @s[2], @t[1]
pxor @s[3], @t[0]
#Inv_GF16 \t0, \t1, \t2, \t3, \s0, \s1, \s2, \s3
# new smaller inversion
movdqa @t[3], @s[0]
pand @t[1], @t[3]
pxor @t[2], @s[0]
movdqa @t[0], @s[2]
movdqa @s[0], @s[3]
pxor @t[3], @s[2]
pand @s[2], @s[3]
movdqa @t[1], @s[1]
pxor @t[2], @s[3]
pxor @t[0], @s[1]
pxor @t[2], @t[3]
pand @t[3], @s[1]
movdqa @s[2], @t[2]
pxor @t[0], @s[1]
pxor @s[1], @t[2]
pxor @s[1], @t[1]
pand @t[0], @t[2]
pxor @t[2], @s[2]
pxor @t[2], @t[1]
pand @s[3], @s[2]
pxor @s[0], @s[2]
___
# output in s3, s2, s1, t1
# Mul_GF16_2 \x0, \x1, \x2, \x3, \x4, \x5, \x6, \x7, \t2, \t3, \t0, \t1, \s0, \s1, \s2, \s3
# Mul_GF16_2 \x0, \x1, \x2, \x3, \x4, \x5, \x6, \x7, \s3, \s2, \s1, \t1, \s0, \t0, \t2, \t3
&Mul_GF16_2(@x,@s[3,2,1],@t[1],@s[0],@t[0,2,3]);
### output msb > [x3,x2,x1,x0,x7,x6,x5,x4] < lsb
}
# AES linear components
sub ShiftRows {
my @x=@_[0..7];
my $mask=pop;
$code.=<<___;
pxor 0x00($key),@x[0]
pxor 0x10($key),@x[1]
pshufb $mask,@x[0]
pxor 0x20($key),@x[2]
pshufb $mask,@x[1]
pxor 0x30($key),@x[3]
pshufb $mask,@x[2]
pxor 0x40($key),@x[4]
pshufb $mask,@x[3]
pxor 0x50($key),@x[5]
pshufb $mask,@x[4]
pxor 0x60($key),@x[6]
pshufb $mask,@x[5]
pxor 0x70($key),@x[7]
pshufb $mask,@x[6]
lea 0x80($key),$key
pshufb $mask,@x[7]
___
}
sub MixColumns {
# modified to emit output in order suitable for feeding back to aesenc[last]
my @x=@_[0..7];
my @t=@_[8..15];
$code.=<<___;
pshufd \$0x93, @x[0], @t[0] # x0 <<< 32
pshufd \$0x93, @x[1], @t[1]
pxor @t[0], @x[0] # x0 ^ (x0 <<< 32)
pshufd \$0x93, @x[2], @t[2]
pxor @t[1], @x[1]
pshufd \$0x93, @x[3], @t[3]
pxor @t[2], @x[2]
pshufd \$0x93, @x[4], @t[4]
pxor @t[3], @x[3]
pshufd \$0x93, @x[5], @t[5]
pxor @t[4], @x[4]
pshufd \$0x93, @x[6], @t[6]
pxor @t[5], @x[5]
pshufd \$0x93, @x[7], @t[7]
pxor @t[6], @x[6]
pxor @t[7], @x[7]
pxor @x[0], @t[1]
pxor @x[7], @t[0]
pxor @x[7], @t[1]
pshufd \$0x4E, @x[0], @x[0] # (x0 ^ (x0 <<< 32)) <<< 64)
pxor @x[1], @t[2]
pshufd \$0x4E, @x[1], @x[1]
pxor @x[4], @t[5]
pxor @t[0], @x[0]
pxor @x[5], @t[6]
pxor @t[1], @x[1]
pxor @x[3], @t[4]
pshufd \$0x4E, @x[4], @t[0]
pxor @x[6], @t[7]
pshufd \$0x4E, @x[5], @t[1]
pxor @x[2], @t[3]
pshufd \$0x4E, @x[3], @x[4]
pxor @x[7], @t[3]
pshufd \$0x4E, @x[7], @x[5]
pxor @x[7], @t[4]
pshufd \$0x4E, @x[6], @x[3]
pxor @t[4], @t[0]
pshufd \$0x4E, @x[2], @x[6]
pxor @t[5], @t[1]
pxor @t[3], @x[4]
pxor @t[7], @x[5]
pxor @t[6], @x[3]
movdqa @t[0], @x[2]
pxor @t[2], @x[6]
movdqa @t[1], @x[7]
___
}
sub InvMixColumns {
my @x=@_[0..7];
my @t=@_[8..15];
$code.=<<___;
# multiplication by 0x0e
pshufd \$0x93, @x[7], @t[7]
movdqa @x[2], @t[2]
pxor @x[5], @x[7] # 7 5
pxor @x[5], @x[2] # 2 5
pshufd \$0x93, @x[0], @t[0]
movdqa @x[5], @t[5]
pxor @x[0], @x[5] # 5 0 [1]
pxor @x[1], @x[0] # 0 1
pshufd \$0x93, @x[1], @t[1]
pxor @x[2], @x[1] # 1 25
pxor @x[6], @x[0] # 01 6 [2]
pxor @x[3], @x[1] # 125 3 [4]
pshufd \$0x93, @x[3], @t[3]
pxor @x[0], @x[2] # 25 016 [3]
pxor @x[7], @x[3] # 3 75
pxor @x[6], @x[7] # 75 6 [0]
pshufd \$0x93, @x[6], @t[6]
movdqa @x[4], @t[4]
pxor @x[4], @x[6] # 6 4
pxor @x[3], @x[4] # 4 375 [6]
pxor @x[7], @x[3] # 375 756=36
pxor @t[5], @x[6] # 64 5 [7]
pxor @t[2], @x[3] # 36 2
pxor @t[4], @x[3] # 362 4 [5]
pshufd \$0x93, @t[5], @t[5]
___
my @y = @x[7,5,0,2,1,3,4,6];
$code.=<<___;
# multiplication by 0x0b
pxor @y[0], @y[1]
pxor @t[0], @y[0]
pxor @t[1], @y[1]
pshufd \$0x93, @t[2], @t[2]
pxor @t[5], @y[0]
pxor @t[6], @y[1]
pxor @t[7], @y[0]
pshufd \$0x93, @t[4], @t[4]
pxor @t[6], @t[7] # clobber t[7]
pxor @y[0], @y[1]
pxor @t[0], @y[3]
pshufd \$0x93, @t[0], @t[0]
pxor @t[1], @y[2]
pxor @t[1], @y[4]
pxor @t[2], @y[2]
pshufd \$0x93, @t[1], @t[1]
pxor @t[2], @y[3]
pxor @t[2], @y[5]
pxor @t[7], @y[2]
pshufd \$0x93, @t[2], @t[2]
pxor @t[3], @y[3]
pxor @t[3], @y[6]
pxor @t[3], @y[4]
pshufd \$0x93, @t[3], @t[3]
pxor @t[4], @y[7]
pxor @t[4], @y[5]
pxor @t[7], @y[7]
pxor @t[5], @y[3]
pxor @t[4], @y[4]
pxor @t[5], @t[7] # clobber t[7] even more
pxor @t[7], @y[5]
pshufd \$0x93, @t[4], @t[4]
pxor @t[7], @y[6]
pxor @t[7], @y[4]
pxor @t[5], @t[7]
pshufd \$0x93, @t[5], @t[5]
pxor @t[6], @t[7] # restore t[7]
# multiplication by 0x0d
pxor @y[7], @y[4]
pxor @t[4], @y[7]
pshufd \$0x93, @t[6], @t[6]
pxor @t[0], @y[2]
pxor @t[5], @y[7]
pxor @t[2], @y[2]
pshufd \$0x93, @t[7], @t[7]
pxor @y[1], @y[3]
pxor @t[1], @y[1]
pxor @t[0], @y[0]
pxor @t[0], @y[3]
pxor @t[5], @y[1]
pxor @t[5], @y[0]
pxor @t[7], @y[1]
pshufd \$0x93, @t[0], @t[0]
pxor @t[6], @y[0]
pxor @y[1], @y[3]
pxor @t[1], @y[4]
pshufd \$0x93, @t[1], @t[1]
pxor @t[7], @y[7]
pxor @t[2], @y[4]
pxor @t[2], @y[5]
pshufd \$0x93, @t[2], @t[2]
pxor @t[6], @y[2]
pxor @t[3], @t[6] # clobber t[6]
pxor @y[7], @y[4]
pxor @t[6], @y[3]
pxor @t[6], @y[6]
pxor @t[5], @y[5]
pxor @t[4], @y[6]
pshufd \$0x93, @t[4], @t[4]
pxor @t[6], @y[5]
pxor @t[7], @y[6]
pxor @t[3], @t[6] # restore t[6]
pshufd \$0x93, @t[5], @t[5]
pshufd \$0x93, @t[6], @t[6]
pshufd \$0x93, @t[7], @t[7]
pshufd \$0x93, @t[3], @t[3]
# multiplication by 0x09
pxor @y[1], @y[4]
pxor @y[1], @t[1] # t[1]=y[1]
pxor @t[5], @t[0] # clobber t[0]
pxor @t[5], @t[1]
pxor @t[0], @y[3]
pxor @y[0], @t[0] # t[0]=y[0]
pxor @t[6], @t[1]
pxor @t[7], @t[6] # clobber t[6]
pxor @t[1], @y[4]
pxor @t[4], @y[7]
pxor @y[4], @t[4] # t[4]=y[4]
pxor @t[3], @y[6]
pxor @y[3], @t[3] # t[3]=y[3]
pxor @t[2], @y[5]
pxor @y[2], @t[2] # t[2]=y[2]
pxor @t[7], @t[3]
pxor @y[5], @t[5] # t[5]=y[5]
pxor @t[6], @t[2]
pxor @t[6], @t[5]
pxor @y[6], @t[6] # t[6]=y[6]
pxor @y[7], @t[7] # t[7]=y[7]
movdqa @t[0],@XMM[0]
movdqa @t[1],@XMM[1]
movdqa @t[2],@XMM[2]
movdqa @t[3],@XMM[3]
movdqa @t[4],@XMM[4]
movdqa @t[5],@XMM[5]
movdqa @t[6],@XMM[6]
movdqa @t[7],@XMM[7]
___
}
sub aesenc { # not used
my @b=@_[0..7];
my @t=@_[8..15];
$code.=<<___;
movdqa 0x30($const),@t[0] # .LSR
___
&ShiftRows (@b,@t[0]);
&Sbox (@b,@t);
&MixColumns (@b[0,1,4,6,3,7,2,5],@t);
}
sub aesenclast { # not used
my @b=@_[0..7];
my @t=@_[8..15];
$code.=<<___;
movdqa 0x40($const),@t[0] # .LSRM0
___
&ShiftRows (@b,@t[0]);
&Sbox (@b,@t);
$code.=<<___
pxor 0x00($key),@b[0]
pxor 0x10($key),@b[1]
pxor 0x20($key),@b[4]
pxor 0x30($key),@b[6]
pxor 0x40($key),@b[3]
pxor 0x50($key),@b[7]
pxor 0x60($key),@b[2]
pxor 0x70($key),@b[5]
___
}
sub swapmove {
my ($a,$b,$n,$mask,$t)=@_;
$code.=<<___;
movdqa $b,$t
psrlq \$$n,$b
pxor $a,$b
pand $mask,$b
pxor $b,$a
psllq \$$n,$b
pxor $t,$b
___
}
sub swapmove2x {
my ($a0,$b0,$a1,$b1,$n,$mask,$t0,$t1)=@_;
$code.=<<___;
movdqa $b0,$t0
psrlq \$$n,$b0
movdqa $b1,$t1
psrlq \$$n,$b1
pxor $a0,$b0
pxor $a1,$b1
pand $mask,$b0
pand $mask,$b1
pxor $b0,$a0
psllq \$$n,$b0
pxor $b1,$a1
psllq \$$n,$b1
pxor $t0,$b0
pxor $t1,$b1
___
}
sub bitslice {
my @x=reverse(@_[0..7]);
my ($t0,$t1,$t2,$t3)=@_[8..11];
$code.=<<___;
movdqa 0x00($const),$t0 # .LBS0
movdqa 0x10($const),$t1 # .LBS1
___
&swapmove2x(@x[0,1,2,3],1,$t0,$t2,$t3);
&swapmove2x(@x[4,5,6,7],1,$t0,$t2,$t3);
$code.=<<___;
movdqa 0x20($const),$t0 # .LBS2
___
&swapmove2x(@x[0,2,1,3],2,$t1,$t2,$t3);
&swapmove2x(@x[4,6,5,7],2,$t1,$t2,$t3);
&swapmove2x(@x[0,4,1,5],4,$t0,$t2,$t3);
&swapmove2x(@x[2,6,3,7],4,$t0,$t2,$t3);
}
$code.=<<___;
.text
.extern asm_AES_encrypt
.extern asm_AES_decrypt
.type _bsaes_encrypt8,\@abi-omnipotent
.align 64
_bsaes_encrypt8:
lea .LBS0(%rip), $const # constants table
movdqa ($key), @XMM[9] # round 0 key
lea 0x10($key), $key
movdqa 0x50($const), @XMM[8] # .LM0SR
pxor @XMM[9], @XMM[0] # xor with round0 key
pxor @XMM[9], @XMM[1]
pshufb @XMM[8], @XMM[0]
pxor @XMM[9], @XMM[2]
pshufb @XMM[8], @XMM[1]
pxor @XMM[9], @XMM[3]
pshufb @XMM[8], @XMM[2]
pxor @XMM[9], @XMM[4]
pshufb @XMM[8], @XMM[3]
pxor @XMM[9], @XMM[5]
pshufb @XMM[8], @XMM[4]
pxor @XMM[9], @XMM[6]
pshufb @XMM[8], @XMM[5]
pxor @XMM[9], @XMM[7]
pshufb @XMM[8], @XMM[6]
pshufb @XMM[8], @XMM[7]
_bsaes_encrypt8_bitslice:
___
&bitslice (@XMM[0..7, 8..11]);
$code.=<<___;
dec $rounds
jmp .Lenc_sbox
.align 16
.Lenc_loop:
___
&ShiftRows (@XMM[0..7, 8]);
$code.=".Lenc_sbox:\n";
&Sbox (@XMM[0..7, 8..15]);
$code.=<<___;
dec $rounds
jl .Lenc_done
___
&MixColumns (@XMM[0,1,4,6,3,7,2,5, 8..15]);
$code.=<<___;
movdqa 0x30($const), @XMM[8] # .LSR
jnz .Lenc_loop
movdqa 0x40($const), @XMM[8] # .LSRM0
jmp .Lenc_loop
.align 16
.Lenc_done:
___
# output in lsb > [t0, t1, t4, t6, t3, t7, t2, t5] < msb
&bitslice (@XMM[0,1,4,6,3,7,2,5, 8..11]);
$code.=<<___;
movdqa ($key), @XMM[8] # last round key
pxor @XMM[8], @XMM[4]
pxor @XMM[8], @XMM[6]
pxor @XMM[8], @XMM[3]
pxor @XMM[8], @XMM[7]
pxor @XMM[8], @XMM[2]
pxor @XMM[8], @XMM[5]
pxor @XMM[8], @XMM[0]
pxor @XMM[8], @XMM[1]
ret
.size _bsaes_encrypt8,.-_bsaes_encrypt8
.type _bsaes_decrypt8,\@abi-omnipotent
.align 64
_bsaes_decrypt8:
lea .LBS0(%rip), $const # constants table
movdqa ($key), @XMM[9] # round 0 key
lea 0x10($key), $key
movdqa -0x30($const), @XMM[8] # .LM0ISR
pxor @XMM[9], @XMM[0] # xor with round0 key
pxor @XMM[9], @XMM[1]
pshufb @XMM[8], @XMM[0]
pxor @XMM[9], @XMM[2]
pshufb @XMM[8], @XMM[1]
pxor @XMM[9], @XMM[3]
pshufb @XMM[8], @XMM[2]
pxor @XMM[9], @XMM[4]
pshufb @XMM[8], @XMM[3]
pxor @XMM[9], @XMM[5]
pshufb @XMM[8], @XMM[4]
pxor @XMM[9], @XMM[6]
pshufb @XMM[8], @XMM[5]
pxor @XMM[9], @XMM[7]
pshufb @XMM[8], @XMM[6]
pshufb @XMM[8], @XMM[7]
___
&bitslice (@XMM[0..7, 8..11]);
$code.=<<___;
dec $rounds
jmp .Ldec_sbox
.align 16
.Ldec_loop:
___
&ShiftRows (@XMM[0..7, 8]);
$code.=".Ldec_sbox:\n";
&InvSbox (@XMM[0..7, 8..15]);
$code.=<<___;
dec $rounds
jl .Ldec_done
___
&InvMixColumns (@XMM[0,1,6,4,2,7,3,5, 8..15]);
$code.=<<___;
movdqa -0x10($const), @XMM[8] # .LISR
jnz .Ldec_loop
movdqa -0x20($const), @XMM[8] # .LISRM0
jmp .Ldec_loop
.align 16
.Ldec_done:
___
&bitslice (@XMM[0,1,6,4,2,7,3,5, 8..11]);
$code.=<<___;
movdqa ($key), @XMM[8] # last round key
pxor @XMM[8], @XMM[6]
pxor @XMM[8], @XMM[4]
pxor @XMM[8], @XMM[2]
pxor @XMM[8], @XMM[7]
pxor @XMM[8], @XMM[3]
pxor @XMM[8], @XMM[5]
pxor @XMM[8], @XMM[0]
pxor @XMM[8], @XMM[1]
ret
.size _bsaes_decrypt8,.-_bsaes_decrypt8
___
}
{
my ($out,$inp,$rounds,$const)=("%rax","%rcx","%r10d","%r11");
sub bitslice_key {
my @x=reverse(@_[0..7]);
my ($bs0,$bs1,$bs2,$t2,$t3)=@_[8..12];
&swapmove (@x[0,1],1,$bs0,$t2,$t3);
$code.=<<___;
#&swapmove(@x[2,3],1,$t0,$t2,$t3);
movdqa @x[0], @x[2]
movdqa @x[1], @x[3]
___
#&swapmove2x(@x[4,5,6,7],1,$t0,$t2,$t3);
&swapmove2x (@x[0,2,1,3],2,$bs1,$t2,$t3);
$code.=<<___;
#&swapmove2x(@x[4,6,5,7],2,$t1,$t2,$t3);
movdqa @x[0], @x[4]
movdqa @x[2], @x[6]
movdqa @x[1], @x[5]
movdqa @x[3], @x[7]
___
&swapmove2x (@x[0,4,1,5],4,$bs2,$t2,$t3);
&swapmove2x (@x[2,6,3,7],4,$bs2,$t2,$t3);
}
$code.=<<___;
.type _bsaes_key_convert,\@abi-omnipotent
.align 16
_bsaes_key_convert:
lea .Lmasks(%rip), $const
movdqu ($inp), %xmm7 # load round 0 key
lea 0x10($inp), $inp
movdqa 0x00($const), %xmm0 # 0x01...
movdqa 0x10($const), %xmm1 # 0x02...
movdqa 0x20($const), %xmm2 # 0x04...
movdqa 0x30($const), %xmm3 # 0x08...
movdqa 0x40($const), %xmm4 # .LM0
pcmpeqd %xmm5, %xmm5 # .LNOT
movdqu ($inp), %xmm6 # load round 1 key
movdqa %xmm7, ($out) # save round 0 key
lea 0x10($out), $out
dec $rounds
jmp .Lkey_loop
.align 16
.Lkey_loop:
pshufb %xmm4, %xmm6 # .LM0
movdqa %xmm0, %xmm8
movdqa %xmm1, %xmm9
pand %xmm6, %xmm8
pand %xmm6, %xmm9
movdqa %xmm2, %xmm10
pcmpeqb %xmm0, %xmm8
psllq \$4, %xmm0 # 0x10...
movdqa %xmm3, %xmm11
pcmpeqb %xmm1, %xmm9
psllq \$4, %xmm1 # 0x20...
pand %xmm6, %xmm10
pand %xmm6, %xmm11
movdqa %xmm0, %xmm12
pcmpeqb %xmm2, %xmm10
psllq \$4, %xmm2 # 0x40...
movdqa %xmm1, %xmm13
pcmpeqb %xmm3, %xmm11
psllq \$4, %xmm3 # 0x80...
movdqa %xmm2, %xmm14
movdqa %xmm3, %xmm15
pxor %xmm5, %xmm8 # "pnot"
pxor %xmm5, %xmm9
pand %xmm6, %xmm12
pand %xmm6, %xmm13
movdqa %xmm8, 0x00($out) # write bit-sliced round key
pcmpeqb %xmm0, %xmm12
psrlq \$4, %xmm0 # 0x01...
movdqa %xmm9, 0x10($out)
pcmpeqb %xmm1, %xmm13
psrlq \$4, %xmm1 # 0x02...
lea 0x10($inp), $inp
pand %xmm6, %xmm14
pand %xmm6, %xmm15
movdqa %xmm10, 0x20($out)
pcmpeqb %xmm2, %xmm14
psrlq \$4, %xmm2 # 0x04...
movdqa %xmm11, 0x30($out)
pcmpeqb %xmm3, %xmm15
psrlq \$4, %xmm3 # 0x08...
movdqu ($inp), %xmm6 # load next round key
pxor %xmm5, %xmm13 # "pnot"
pxor %xmm5, %xmm14
movdqa %xmm12, 0x40($out)
movdqa %xmm13, 0x50($out)
movdqa %xmm14, 0x60($out)
movdqa %xmm15, 0x70($out)
lea 0x80($out),$out
dec $rounds
jnz .Lkey_loop
movdqa 0x50($const), %xmm7 # .L63
#movdqa %xmm6, ($out) # don't save last round key
ret
.size _bsaes_key_convert,.-_bsaes_key_convert
___
}
if (0 && !$win64) { # following four functions are unsupported interface
# used for benchmarking...
$code.=<<___;
.globl bsaes_enc_key_convert
.type bsaes_enc_key_convert,\@function,2
.align 16
bsaes_enc_key_convert:
mov 240($inp),%r10d # pass rounds
mov $inp,%rcx # pass key
mov $out,%rax # pass key schedule
call _bsaes_key_convert
pxor %xmm6,%xmm7 # fix up last round key
movdqa %xmm7,(%rax) # save last round key
ret
.size bsaes_enc_key_convert,.-bsaes_enc_key_convert
.globl bsaes_encrypt_128
.type bsaes_encrypt_128,\@function,4
.align 16
bsaes_encrypt_128:
.Lenc128_loop:
movdqu 0x00($inp), @XMM[0] # load input
movdqu 0x10($inp), @XMM[1]
movdqu 0x20($inp), @XMM[2]
movdqu 0x30($inp), @XMM[3]
movdqu 0x40($inp), @XMM[4]
movdqu 0x50($inp), @XMM[5]
movdqu 0x60($inp), @XMM[6]
movdqu 0x70($inp), @XMM[7]
mov $key, %rax # pass the $key
lea 0x80($inp), $inp
mov \$10,%r10d
call _bsaes_encrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[4], 0x20($out)
movdqu @XMM[6], 0x30($out)
movdqu @XMM[3], 0x40($out)
movdqu @XMM[7], 0x50($out)
movdqu @XMM[2], 0x60($out)
movdqu @XMM[5], 0x70($out)
lea 0x80($out), $out
sub \$0x80,$len
ja .Lenc128_loop
ret
.size bsaes_encrypt_128,.-bsaes_encrypt_128
.globl bsaes_dec_key_convert
.type bsaes_dec_key_convert,\@function,2
.align 16
bsaes_dec_key_convert:
mov 240($inp),%r10d # pass rounds
mov $inp,%rcx # pass key
mov $out,%rax # pass key schedule
call _bsaes_key_convert
pxor ($out),%xmm7 # fix up round 0 key
movdqa %xmm6,(%rax) # save last round key
movdqa %xmm7,($out)
ret
.size bsaes_dec_key_convert,.-bsaes_dec_key_convert
.globl bsaes_decrypt_128
.type bsaes_decrypt_128,\@function,4
.align 16
bsaes_decrypt_128:
.Ldec128_loop:
movdqu 0x00($inp), @XMM[0] # load input
movdqu 0x10($inp), @XMM[1]
movdqu 0x20($inp), @XMM[2]
movdqu 0x30($inp), @XMM[3]
movdqu 0x40($inp), @XMM[4]
movdqu 0x50($inp), @XMM[5]
movdqu 0x60($inp), @XMM[6]
movdqu 0x70($inp), @XMM[7]
mov $key, %rax # pass the $key
lea 0x80($inp), $inp
mov \$10,%r10d
call _bsaes_decrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[6], 0x20($out)
movdqu @XMM[4], 0x30($out)
movdqu @XMM[2], 0x40($out)
movdqu @XMM[7], 0x50($out)
movdqu @XMM[3], 0x60($out)
movdqu @XMM[5], 0x70($out)
lea 0x80($out), $out
sub \$0x80,$len
ja .Ldec128_loop
ret
.size bsaes_decrypt_128,.-bsaes_decrypt_128
___
}
{
######################################################################
#
# OpenSSL interface
#
my ($arg1,$arg2,$arg3,$arg4,$arg5,$arg6)=$win64 ? ("%rcx","%rdx","%r8","%r9","%r10","%r11d")
: ("%rdi","%rsi","%rdx","%rcx","%r8","%r9d");
my ($inp,$out,$len,$key)=("%r12","%r13","%r14","%r15");
if ($ecb) {
$code.=<<___;
.globl bsaes_ecb_encrypt_blocks
.type bsaes_ecb_encrypt_blocks,\@abi-omnipotent
.align 16
bsaes_ecb_encrypt_blocks:
mov %rsp, %rax
.Lecb_enc_prologue:
push %rbp
push %rbx
push %r12
push %r13
push %r14
push %r15
lea -0x48(%rsp),%rsp
___
$code.=<<___ if ($win64);
lea -0xa0(%rsp), %rsp
movaps %xmm6, 0x40(%rsp)
movaps %xmm7, 0x50(%rsp)
movaps %xmm8, 0x60(%rsp)
movaps %xmm9, 0x70(%rsp)
movaps %xmm10, 0x80(%rsp)
movaps %xmm11, 0x90(%rsp)
movaps %xmm12, 0xa0(%rsp)
movaps %xmm13, 0xb0(%rsp)
movaps %xmm14, 0xc0(%rsp)
movaps %xmm15, 0xd0(%rsp)
.Lecb_enc_body:
___
$code.=<<___;
mov %rsp,%rbp # backup %rsp
mov 240($arg4),%eax # rounds
mov $arg1,$inp # backup arguments
mov $arg2,$out
mov $arg3,$len
mov $arg4,$key
cmp \$8,$arg3
jb .Lecb_enc_short
mov %eax,%ebx # backup rounds
shl \$7,%rax # 128 bytes per inner round key
sub \$`128-32`,%rax # size of bit-sliced key schedule
sub %rax,%rsp
mov %rsp,%rax # pass key schedule
mov $key,%rcx # pass key
mov %ebx,%r10d # pass rounds
call _bsaes_key_convert
pxor %xmm6,%xmm7 # fix up last round key
movdqa %xmm7,(%rax) # save last round key
sub \$8,$len
.Lecb_enc_loop:
movdqu 0x00($inp), @XMM[0] # load input
movdqu 0x10($inp), @XMM[1]
movdqu 0x20($inp), @XMM[2]
movdqu 0x30($inp), @XMM[3]
movdqu 0x40($inp), @XMM[4]
movdqu 0x50($inp), @XMM[5]
mov %rsp, %rax # pass key schedule
movdqu 0x60($inp), @XMM[6]
mov %ebx,%r10d # pass rounds
movdqu 0x70($inp), @XMM[7]
lea 0x80($inp), $inp
call _bsaes_encrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[4], 0x20($out)
movdqu @XMM[6], 0x30($out)
movdqu @XMM[3], 0x40($out)
movdqu @XMM[7], 0x50($out)
movdqu @XMM[2], 0x60($out)
movdqu @XMM[5], 0x70($out)
lea 0x80($out), $out
sub \$8,$len
jnc .Lecb_enc_loop
add \$8,$len
jz .Lecb_enc_done
movdqu 0x00($inp), @XMM[0] # load input
mov %rsp, %rax # pass key schedule
mov %ebx,%r10d # pass rounds
cmp \$2,$len
jb .Lecb_enc_one
movdqu 0x10($inp), @XMM[1]
je .Lecb_enc_two
movdqu 0x20($inp), @XMM[2]
cmp \$4,$len
jb .Lecb_enc_three
movdqu 0x30($inp), @XMM[3]
je .Lecb_enc_four
movdqu 0x40($inp), @XMM[4]
cmp \$6,$len
jb .Lecb_enc_five
movdqu 0x50($inp), @XMM[5]
je .Lecb_enc_six
movdqu 0x60($inp), @XMM[6]
call _bsaes_encrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[4], 0x20($out)
movdqu @XMM[6], 0x30($out)
movdqu @XMM[3], 0x40($out)
movdqu @XMM[7], 0x50($out)
movdqu @XMM[2], 0x60($out)
jmp .Lecb_enc_done
.align 16
.Lecb_enc_six:
call _bsaes_encrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[4], 0x20($out)
movdqu @XMM[6], 0x30($out)
movdqu @XMM[3], 0x40($out)
movdqu @XMM[7], 0x50($out)
jmp .Lecb_enc_done
.align 16
.Lecb_enc_five:
call _bsaes_encrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[4], 0x20($out)
movdqu @XMM[6], 0x30($out)
movdqu @XMM[3], 0x40($out)
jmp .Lecb_enc_done
.align 16
.Lecb_enc_four:
call _bsaes_encrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[4], 0x20($out)
movdqu @XMM[6], 0x30($out)
jmp .Lecb_enc_done
.align 16
.Lecb_enc_three:
call _bsaes_encrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[4], 0x20($out)
jmp .Lecb_enc_done
.align 16
.Lecb_enc_two:
call _bsaes_encrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
jmp .Lecb_enc_done
.align 16
.Lecb_enc_one:
call _bsaes_encrypt8
movdqu @XMM[0], 0x00($out) # write output
jmp .Lecb_enc_done
.align 16
.Lecb_enc_short:
lea ($inp), $arg1
lea ($out), $arg2
lea ($key), $arg3
call asm_AES_encrypt
lea 16($inp), $inp
lea 16($out), $out
dec $len
jnz .Lecb_enc_short
.Lecb_enc_done:
lea (%rsp),%rax
pxor %xmm0, %xmm0
.Lecb_enc_bzero: # wipe key schedule [if any]
movdqa %xmm0, 0x00(%rax)
movdqa %xmm0, 0x10(%rax)
lea 0x20(%rax), %rax
cmp %rax, %rbp
jb .Lecb_enc_bzero
lea (%rbp),%rsp # restore %rsp
___
$code.=<<___ if ($win64);
movaps 0x40(%rbp), %xmm6
movaps 0x50(%rbp), %xmm7
movaps 0x60(%rbp), %xmm8
movaps 0x70(%rbp), %xmm9
movaps 0x80(%rbp), %xmm10
movaps 0x90(%rbp), %xmm11
movaps 0xa0(%rbp), %xmm12
movaps 0xb0(%rbp), %xmm13
movaps 0xc0(%rbp), %xmm14
movaps 0xd0(%rbp), %xmm15
lea 0xa0(%rbp), %rsp
___
$code.=<<___;
mov 0x48(%rsp), %r15
mov 0x50(%rsp), %r14
mov 0x58(%rsp), %r13
mov 0x60(%rsp), %r12
mov 0x68(%rsp), %rbx
mov 0x70(%rsp), %rax
lea 0x78(%rsp), %rsp
mov %rax, %rbp
.Lecb_enc_epilogue:
ret
.size bsaes_ecb_encrypt_blocks,.-bsaes_ecb_encrypt_blocks
.globl bsaes_ecb_decrypt_blocks
.type bsaes_ecb_decrypt_blocks,\@abi-omnipotent
.align 16
bsaes_ecb_decrypt_blocks:
mov %rsp, %rax
.Lecb_dec_prologue:
push %rbp
push %rbx
push %r12
push %r13
push %r14
push %r15
lea -0x48(%rsp),%rsp
___
$code.=<<___ if ($win64);
lea -0xa0(%rsp), %rsp
movaps %xmm6, 0x40(%rsp)
movaps %xmm7, 0x50(%rsp)
movaps %xmm8, 0x60(%rsp)
movaps %xmm9, 0x70(%rsp)
movaps %xmm10, 0x80(%rsp)
movaps %xmm11, 0x90(%rsp)
movaps %xmm12, 0xa0(%rsp)
movaps %xmm13, 0xb0(%rsp)
movaps %xmm14, 0xc0(%rsp)
movaps %xmm15, 0xd0(%rsp)
.Lecb_dec_body:
___
$code.=<<___;
mov %rsp,%rbp # backup %rsp
mov 240($arg4),%eax # rounds
mov $arg1,$inp # backup arguments
mov $arg2,$out
mov $arg3,$len
mov $arg4,$key
cmp \$8,$arg3
jb .Lecb_dec_short
mov %eax,%ebx # backup rounds
shl \$7,%rax # 128 bytes per inner round key
sub \$`128-32`,%rax # size of bit-sliced key schedule
sub %rax,%rsp
mov %rsp,%rax # pass key schedule
mov $key,%rcx # pass key
mov %ebx,%r10d # pass rounds
call _bsaes_key_convert
pxor (%rsp),%xmm7 # fix up 0 round key
movdqa %xmm6,(%rax) # save last round key
movdqa %xmm7,(%rsp)
sub \$8,$len
.Lecb_dec_loop:
movdqu 0x00($inp), @XMM[0] # load input
movdqu 0x10($inp), @XMM[1]
movdqu 0x20($inp), @XMM[2]
movdqu 0x30($inp), @XMM[3]
movdqu 0x40($inp), @XMM[4]
movdqu 0x50($inp), @XMM[5]
mov %rsp, %rax # pass key schedule
movdqu 0x60($inp), @XMM[6]
mov %ebx,%r10d # pass rounds
movdqu 0x70($inp), @XMM[7]
lea 0x80($inp), $inp
call _bsaes_decrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[6], 0x20($out)
movdqu @XMM[4], 0x30($out)
movdqu @XMM[2], 0x40($out)
movdqu @XMM[7], 0x50($out)
movdqu @XMM[3], 0x60($out)
movdqu @XMM[5], 0x70($out)
lea 0x80($out), $out
sub \$8,$len
jnc .Lecb_dec_loop
add \$8,$len
jz .Lecb_dec_done
movdqu 0x00($inp), @XMM[0] # load input
mov %rsp, %rax # pass key schedule
mov %ebx,%r10d # pass rounds
cmp \$2,$len
jb .Lecb_dec_one
movdqu 0x10($inp), @XMM[1]
je .Lecb_dec_two
movdqu 0x20($inp), @XMM[2]
cmp \$4,$len
jb .Lecb_dec_three
movdqu 0x30($inp), @XMM[3]
je .Lecb_dec_four
movdqu 0x40($inp), @XMM[4]
cmp \$6,$len
jb .Lecb_dec_five
movdqu 0x50($inp), @XMM[5]
je .Lecb_dec_six
movdqu 0x60($inp), @XMM[6]
call _bsaes_decrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[6], 0x20($out)
movdqu @XMM[4], 0x30($out)
movdqu @XMM[2], 0x40($out)
movdqu @XMM[7], 0x50($out)
movdqu @XMM[3], 0x60($out)
jmp .Lecb_dec_done
.align 16
.Lecb_dec_six:
call _bsaes_decrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[6], 0x20($out)
movdqu @XMM[4], 0x30($out)
movdqu @XMM[2], 0x40($out)
movdqu @XMM[7], 0x50($out)
jmp .Lecb_dec_done
.align 16
.Lecb_dec_five:
call _bsaes_decrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[6], 0x20($out)
movdqu @XMM[4], 0x30($out)
movdqu @XMM[2], 0x40($out)
jmp .Lecb_dec_done
.align 16
.Lecb_dec_four:
call _bsaes_decrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[6], 0x20($out)
movdqu @XMM[4], 0x30($out)
jmp .Lecb_dec_done
.align 16
.Lecb_dec_three:
call _bsaes_decrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[6], 0x20($out)
jmp .Lecb_dec_done
.align 16
.Lecb_dec_two:
call _bsaes_decrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
jmp .Lecb_dec_done
.align 16
.Lecb_dec_one:
call _bsaes_decrypt8
movdqu @XMM[0], 0x00($out) # write output
jmp .Lecb_dec_done
.align 16
.Lecb_dec_short:
lea ($inp), $arg1
lea ($out), $arg2
lea ($key), $arg3
call asm_AES_decrypt
lea 16($inp), $inp
lea 16($out), $out
dec $len
jnz .Lecb_dec_short
.Lecb_dec_done:
lea (%rsp),%rax
pxor %xmm0, %xmm0
.Lecb_dec_bzero: # wipe key schedule [if any]
movdqa %xmm0, 0x00(%rax)
movdqa %xmm0, 0x10(%rax)
lea 0x20(%rax), %rax
cmp %rax, %rbp
jb .Lecb_dec_bzero
lea (%rbp),%rsp # restore %rsp
___
$code.=<<___ if ($win64);
movaps 0x40(%rbp), %xmm6
movaps 0x50(%rbp), %xmm7
movaps 0x60(%rbp), %xmm8
movaps 0x70(%rbp), %xmm9
movaps 0x80(%rbp), %xmm10
movaps 0x90(%rbp), %xmm11
movaps 0xa0(%rbp), %xmm12
movaps 0xb0(%rbp), %xmm13
movaps 0xc0(%rbp), %xmm14
movaps 0xd0(%rbp), %xmm15
lea 0xa0(%rbp), %rsp
___
$code.=<<___;
mov 0x48(%rsp), %r15
mov 0x50(%rsp), %r14
mov 0x58(%rsp), %r13
mov 0x60(%rsp), %r12
mov 0x68(%rsp), %rbx
mov 0x70(%rsp), %rax
lea 0x78(%rsp), %rsp
mov %rax, %rbp
.Lecb_dec_epilogue:
ret
.size bsaes_ecb_decrypt_blocks,.-bsaes_ecb_decrypt_blocks
___
}
$code.=<<___;
.extern asm_AES_cbc_encrypt
.globl bsaes_cbc_encrypt
.type bsaes_cbc_encrypt,\@abi-omnipotent
.align 16
bsaes_cbc_encrypt:
___
$code.=<<___ if ($win64);
mov 48(%rsp),$arg6 # pull direction flag
___
$code.=<<___;
cmp \$0,$arg6
jne asm_AES_cbc_encrypt
cmp \$128,$arg3
jb asm_AES_cbc_encrypt
mov %rsp, %rax
.Lcbc_dec_prologue:
push %rbp
push %rbx
push %r12
push %r13
push %r14
push %r15
lea -0x48(%rsp), %rsp
___
$code.=<<___ if ($win64);
mov 0xa0(%rsp),$arg5 # pull ivp
lea -0xa0(%rsp), %rsp
movaps %xmm6, 0x40(%rsp)
movaps %xmm7, 0x50(%rsp)
movaps %xmm8, 0x60(%rsp)
movaps %xmm9, 0x70(%rsp)
movaps %xmm10, 0x80(%rsp)
movaps %xmm11, 0x90(%rsp)
movaps %xmm12, 0xa0(%rsp)
movaps %xmm13, 0xb0(%rsp)
movaps %xmm14, 0xc0(%rsp)
movaps %xmm15, 0xd0(%rsp)
.Lcbc_dec_body:
___
$code.=<<___;
mov %rsp, %rbp # backup %rsp
mov 240($arg4), %eax # rounds
mov $arg1, $inp # backup arguments
mov $arg2, $out
mov $arg3, $len
mov $arg4, $key
mov $arg5, %rbx
shr \$4, $len # bytes to blocks
mov %eax, %edx # rounds
shl \$7, %rax # 128 bytes per inner round key
sub \$`128-32`, %rax # size of bit-sliced key schedule
sub %rax, %rsp
mov %rsp, %rax # pass key schedule
mov $key, %rcx # pass key
mov %edx, %r10d # pass rounds
call _bsaes_key_convert
pxor (%rsp),%xmm7 # fix up 0 round key
movdqa %xmm6,(%rax) # save last round key
movdqa %xmm7,(%rsp)
movdqu (%rbx), @XMM[15] # load IV
sub \$8,$len
.Lcbc_dec_loop:
movdqu 0x00($inp), @XMM[0] # load input
movdqu 0x10($inp), @XMM[1]
movdqu 0x20($inp), @XMM[2]
movdqu 0x30($inp), @XMM[3]
movdqu 0x40($inp), @XMM[4]
movdqu 0x50($inp), @XMM[5]
mov %rsp, %rax # pass key schedule
movdqu 0x60($inp), @XMM[6]
mov %edx,%r10d # pass rounds
movdqu 0x70($inp), @XMM[7]
movdqa @XMM[15], 0x20(%rbp) # put aside IV
call _bsaes_decrypt8
pxor 0x20(%rbp), @XMM[0] # ^= IV
movdqu 0x00($inp), @XMM[8] # re-load input
movdqu 0x10($inp), @XMM[9]
pxor @XMM[8], @XMM[1]
movdqu 0x20($inp), @XMM[10]
pxor @XMM[9], @XMM[6]
movdqu 0x30($inp), @XMM[11]
pxor @XMM[10], @XMM[4]
movdqu 0x40($inp), @XMM[12]
pxor @XMM[11], @XMM[2]
movdqu 0x50($inp), @XMM[13]
pxor @XMM[12], @XMM[7]
movdqu 0x60($inp), @XMM[14]
pxor @XMM[13], @XMM[3]
movdqu 0x70($inp), @XMM[15] # IV
pxor @XMM[14], @XMM[5]
movdqu @XMM[0], 0x00($out) # write output
lea 0x80($inp), $inp
movdqu @XMM[1], 0x10($out)
movdqu @XMM[6], 0x20($out)
movdqu @XMM[4], 0x30($out)
movdqu @XMM[2], 0x40($out)
movdqu @XMM[7], 0x50($out)
movdqu @XMM[3], 0x60($out)
movdqu @XMM[5], 0x70($out)
lea 0x80($out), $out
sub \$8,$len
jnc .Lcbc_dec_loop
add \$8,$len
jz .Lcbc_dec_done
movdqu 0x00($inp), @XMM[0] # load input
mov %rsp, %rax # pass key schedule
mov %edx, %r10d # pass rounds
cmp \$2,$len
jb .Lcbc_dec_one
movdqu 0x10($inp), @XMM[1]
je .Lcbc_dec_two
movdqu 0x20($inp), @XMM[2]
cmp \$4,$len
jb .Lcbc_dec_three
movdqu 0x30($inp), @XMM[3]
je .Lcbc_dec_four
movdqu 0x40($inp), @XMM[4]
cmp \$6,$len
jb .Lcbc_dec_five
movdqu 0x50($inp), @XMM[5]
je .Lcbc_dec_six
movdqu 0x60($inp), @XMM[6]
movdqa @XMM[15], 0x20(%rbp) # put aside IV
call _bsaes_decrypt8
pxor 0x20(%rbp), @XMM[0] # ^= IV
movdqu 0x00($inp), @XMM[8] # re-load input
movdqu 0x10($inp), @XMM[9]
pxor @XMM[8], @XMM[1]
movdqu 0x20($inp), @XMM[10]
pxor @XMM[9], @XMM[6]
movdqu 0x30($inp), @XMM[11]
pxor @XMM[10], @XMM[4]
movdqu 0x40($inp), @XMM[12]
pxor @XMM[11], @XMM[2]
movdqu 0x50($inp), @XMM[13]
pxor @XMM[12], @XMM[7]
movdqu 0x60($inp), @XMM[15] # IV
pxor @XMM[13], @XMM[3]
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[6], 0x20($out)
movdqu @XMM[4], 0x30($out)
movdqu @XMM[2], 0x40($out)
movdqu @XMM[7], 0x50($out)
movdqu @XMM[3], 0x60($out)
jmp .Lcbc_dec_done
.align 16
.Lcbc_dec_six:
movdqa @XMM[15], 0x20(%rbp) # put aside IV
call _bsaes_decrypt8
pxor 0x20(%rbp), @XMM[0] # ^= IV
movdqu 0x00($inp), @XMM[8] # re-load input
movdqu 0x10($inp), @XMM[9]
pxor @XMM[8], @XMM[1]
movdqu 0x20($inp), @XMM[10]
pxor @XMM[9], @XMM[6]
movdqu 0x30($inp), @XMM[11]
pxor @XMM[10], @XMM[4]
movdqu 0x40($inp), @XMM[12]
pxor @XMM[11], @XMM[2]
movdqu 0x50($inp), @XMM[15] # IV
pxor @XMM[12], @XMM[7]
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[6], 0x20($out)
movdqu @XMM[4], 0x30($out)
movdqu @XMM[2], 0x40($out)
movdqu @XMM[7], 0x50($out)
jmp .Lcbc_dec_done
.align 16
.Lcbc_dec_five:
movdqa @XMM[15], 0x20(%rbp) # put aside IV
call _bsaes_decrypt8
pxor 0x20(%rbp), @XMM[0] # ^= IV
movdqu 0x00($inp), @XMM[8] # re-load input
movdqu 0x10($inp), @XMM[9]
pxor @XMM[8], @XMM[1]
movdqu 0x20($inp), @XMM[10]
pxor @XMM[9], @XMM[6]
movdqu 0x30($inp), @XMM[11]
pxor @XMM[10], @XMM[4]
movdqu 0x40($inp), @XMM[15] # IV
pxor @XMM[11], @XMM[2]
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[6], 0x20($out)
movdqu @XMM[4], 0x30($out)
movdqu @XMM[2], 0x40($out)
jmp .Lcbc_dec_done
.align 16
.Lcbc_dec_four:
movdqa @XMM[15], 0x20(%rbp) # put aside IV
call _bsaes_decrypt8
pxor 0x20(%rbp), @XMM[0] # ^= IV
movdqu 0x00($inp), @XMM[8] # re-load input
movdqu 0x10($inp), @XMM[9]
pxor @XMM[8], @XMM[1]
movdqu 0x20($inp), @XMM[10]
pxor @XMM[9], @XMM[6]
movdqu 0x30($inp), @XMM[15] # IV
pxor @XMM[10], @XMM[4]
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[6], 0x20($out)
movdqu @XMM[4], 0x30($out)
jmp .Lcbc_dec_done
.align 16
.Lcbc_dec_three:
movdqa @XMM[15], 0x20(%rbp) # put aside IV
call _bsaes_decrypt8
pxor 0x20(%rbp), @XMM[0] # ^= IV
movdqu 0x00($inp), @XMM[8] # re-load input
movdqu 0x10($inp), @XMM[9]
pxor @XMM[8], @XMM[1]
movdqu 0x20($inp), @XMM[15] # IV
pxor @XMM[9], @XMM[6]
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[6], 0x20($out)
jmp .Lcbc_dec_done
.align 16
.Lcbc_dec_two:
movdqa @XMM[15], 0x20(%rbp) # put aside IV
call _bsaes_decrypt8
pxor 0x20(%rbp), @XMM[0] # ^= IV
movdqu 0x00($inp), @XMM[8] # re-load input
movdqu 0x10($inp), @XMM[15] # IV
pxor @XMM[8], @XMM[1]
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
jmp .Lcbc_dec_done
.align 16
.Lcbc_dec_one:
lea ($inp), $arg1
lea 0x20(%rbp), $arg2 # buffer output
lea ($key), $arg3
call asm_AES_decrypt # doesn't touch %xmm
pxor 0x20(%rbp), @XMM[15] # ^= IV
movdqu @XMM[15], ($out) # write output
movdqa @XMM[0], @XMM[15] # IV
.Lcbc_dec_done:
movdqu @XMM[15], (%rbx) # return IV
lea (%rsp), %rax
pxor %xmm0, %xmm0
.Lcbc_dec_bzero: # wipe key schedule [if any]
movdqa %xmm0, 0x00(%rax)
movdqa %xmm0, 0x10(%rax)
lea 0x20(%rax), %rax
cmp %rax, %rbp
ja .Lcbc_dec_bzero
lea (%rbp),%rsp # restore %rsp
___
$code.=<<___ if ($win64);
movaps 0x40(%rbp), %xmm6
movaps 0x50(%rbp), %xmm7
movaps 0x60(%rbp), %xmm8
movaps 0x70(%rbp), %xmm9
movaps 0x80(%rbp), %xmm10
movaps 0x90(%rbp), %xmm11
movaps 0xa0(%rbp), %xmm12
movaps 0xb0(%rbp), %xmm13
movaps 0xc0(%rbp), %xmm14
movaps 0xd0(%rbp), %xmm15
lea 0xa0(%rbp), %rsp
___
$code.=<<___;
mov 0x48(%rsp), %r15
mov 0x50(%rsp), %r14
mov 0x58(%rsp), %r13
mov 0x60(%rsp), %r12
mov 0x68(%rsp), %rbx
mov 0x70(%rsp), %rax
lea 0x78(%rsp), %rsp
mov %rax, %rbp
.Lcbc_dec_epilogue:
ret
.size bsaes_cbc_encrypt,.-bsaes_cbc_encrypt
.globl bsaes_ctr32_encrypt_blocks
.type bsaes_ctr32_encrypt_blocks,\@abi-omnipotent
.align 16
bsaes_ctr32_encrypt_blocks:
mov %rsp, %rax
.Lctr_enc_prologue:
push %rbp
push %rbx
push %r12
push %r13
push %r14
push %r15
lea -0x48(%rsp), %rsp
___
$code.=<<___ if ($win64);
mov 0xa0(%rsp),$arg5 # pull ivp
lea -0xa0(%rsp), %rsp
movaps %xmm6, 0x40(%rsp)
movaps %xmm7, 0x50(%rsp)
movaps %xmm8, 0x60(%rsp)
movaps %xmm9, 0x70(%rsp)
movaps %xmm10, 0x80(%rsp)
movaps %xmm11, 0x90(%rsp)
movaps %xmm12, 0xa0(%rsp)
movaps %xmm13, 0xb0(%rsp)
movaps %xmm14, 0xc0(%rsp)
movaps %xmm15, 0xd0(%rsp)
.Lctr_enc_body:
___
$code.=<<___;
mov %rsp, %rbp # backup %rsp
movdqu ($arg5), %xmm0 # load counter
mov 240($arg4), %eax # rounds
mov $arg1, $inp # backup arguments
mov $arg2, $out
mov $arg3, $len
mov $arg4, $key
movdqa %xmm0, 0x20(%rbp) # copy counter
cmp \$8, $arg3
jb .Lctr_enc_short
mov %eax, %ebx # rounds
shl \$7, %rax # 128 bytes per inner round key
sub \$`128-32`, %rax # size of bit-sliced key schedule
sub %rax, %rsp
mov %rsp, %rax # pass key schedule
mov $key, %rcx # pass key
mov %ebx, %r10d # pass rounds
call _bsaes_key_convert
pxor %xmm6,%xmm7 # fix up last round key
movdqa %xmm7,(%rax) # save last round key
movdqa (%rsp), @XMM[9] # load round0 key
lea .LADD1(%rip), %r11
movdqa 0x20(%rbp), @XMM[0] # counter copy
movdqa -0x20(%r11), @XMM[8] # .LSWPUP
pshufb @XMM[8], @XMM[9] # byte swap upper part
pshufb @XMM[8], @XMM[0]
movdqa @XMM[9], (%rsp) # save adjusted round0 key
jmp .Lctr_enc_loop
.align 16
.Lctr_enc_loop:
movdqa @XMM[0], 0x20(%rbp) # save counter
movdqa @XMM[0], @XMM[1] # prepare 8 counter values
movdqa @XMM[0], @XMM[2]
paddd 0x00(%r11), @XMM[1] # .LADD1
movdqa @XMM[0], @XMM[3]
paddd 0x10(%r11), @XMM[2] # .LADD2
movdqa @XMM[0], @XMM[4]
paddd 0x20(%r11), @XMM[3] # .LADD3
movdqa @XMM[0], @XMM[5]
paddd 0x30(%r11), @XMM[4] # .LADD4
movdqa @XMM[0], @XMM[6]
paddd 0x40(%r11), @XMM[5] # .LADD5
movdqa @XMM[0], @XMM[7]
paddd 0x50(%r11), @XMM[6] # .LADD6
paddd 0x60(%r11), @XMM[7] # .LADD7
# Borrow prologue from _bsaes_encrypt8 to use the opportunity
# to flip byte order in 32-bit counter
movdqa (%rsp), @XMM[9] # round 0 key
lea 0x10(%rsp), %rax # pass key schedule
movdqa -0x10(%r11), @XMM[8] # .LSWPUPM0SR
pxor @XMM[9], @XMM[0] # xor with round0 key
pxor @XMM[9], @XMM[1]
pshufb @XMM[8], @XMM[0]
pxor @XMM[9], @XMM[2]
pshufb @XMM[8], @XMM[1]
pxor @XMM[9], @XMM[3]
pshufb @XMM[8], @XMM[2]
pxor @XMM[9], @XMM[4]
pshufb @XMM[8], @XMM[3]
pxor @XMM[9], @XMM[5]
pshufb @XMM[8], @XMM[4]
pxor @XMM[9], @XMM[6]
pshufb @XMM[8], @XMM[5]
pxor @XMM[9], @XMM[7]
pshufb @XMM[8], @XMM[6]
lea .LBS0(%rip), %r11 # constants table
pshufb @XMM[8], @XMM[7]
mov %ebx,%r10d # pass rounds
call _bsaes_encrypt8_bitslice
sub \$8,$len
jc .Lctr_enc_loop_done
movdqu 0x00($inp), @XMM[8] # load input
movdqu 0x10($inp), @XMM[9]
movdqu 0x20($inp), @XMM[10]
movdqu 0x30($inp), @XMM[11]
movdqu 0x40($inp), @XMM[12]
movdqu 0x50($inp), @XMM[13]
movdqu 0x60($inp), @XMM[14]
movdqu 0x70($inp), @XMM[15]
lea 0x80($inp),$inp
pxor @XMM[0], @XMM[8]
movdqa 0x20(%rbp), @XMM[0] # load counter
pxor @XMM[9], @XMM[1]
movdqu @XMM[8], 0x00($out) # write output
pxor @XMM[10], @XMM[4]
movdqu @XMM[1], 0x10($out)
pxor @XMM[11], @XMM[6]
movdqu @XMM[4], 0x20($out)
pxor @XMM[12], @XMM[3]
movdqu @XMM[6], 0x30($out)
pxor @XMM[13], @XMM[7]
movdqu @XMM[3], 0x40($out)
pxor @XMM[14], @XMM[2]
movdqu @XMM[7], 0x50($out)
pxor @XMM[15], @XMM[5]
movdqu @XMM[2], 0x60($out)
lea .LADD1(%rip), %r11
movdqu @XMM[5], 0x70($out)
lea 0x80($out), $out
paddd 0x70(%r11), @XMM[0] # .LADD8
jnz .Lctr_enc_loop
jmp .Lctr_enc_done
.align 16
.Lctr_enc_loop_done:
add \$8, $len
movdqu 0x00($inp), @XMM[8] # load input
pxor @XMM[8], @XMM[0]
movdqu @XMM[0], 0x00($out) # write output
cmp \$2,$len
jb .Lctr_enc_done
movdqu 0x10($inp), @XMM[9]
pxor @XMM[9], @XMM[1]
movdqu @XMM[1], 0x10($out)
je .Lctr_enc_done
movdqu 0x20($inp), @XMM[10]
pxor @XMM[10], @XMM[4]
movdqu @XMM[4], 0x20($out)
cmp \$4,$len
jb .Lctr_enc_done
movdqu 0x30($inp), @XMM[11]
pxor @XMM[11], @XMM[6]
movdqu @XMM[6], 0x30($out)
je .Lctr_enc_done
movdqu 0x40($inp), @XMM[12]
pxor @XMM[12], @XMM[3]
movdqu @XMM[3], 0x40($out)
cmp \$6,$len
jb .Lctr_enc_done
movdqu 0x50($inp), @XMM[13]
pxor @XMM[13], @XMM[7]
movdqu @XMM[7], 0x50($out)
je .Lctr_enc_done
movdqu 0x60($inp), @XMM[14]
pxor @XMM[14], @XMM[2]
movdqu @XMM[2], 0x60($out)
jmp .Lctr_enc_done
.align 16
.Lctr_enc_short:
lea 0x20(%rbp), $arg1
lea 0x30(%rbp), $arg2
lea ($key), $arg3
call asm_AES_encrypt
movdqu ($inp), @XMM[1]
lea 16($inp), $inp
mov 0x2c(%rbp), %eax # load 32-bit counter
bswap %eax
pxor 0x30(%rbp), @XMM[1]
inc %eax # increment
movdqu @XMM[1], ($out)
bswap %eax
lea 16($out), $out
mov %eax, 0x2c(%rsp) # save 32-bit counter
dec $len
jnz .Lctr_enc_short
.Lctr_enc_done:
lea (%rsp), %rax
pxor %xmm0, %xmm0
.Lctr_enc_bzero: # wipe key schedule [if any]
movdqa %xmm0, 0x00(%rax)
movdqa %xmm0, 0x10(%rax)
lea 0x20(%rax), %rax
cmp %rax, %rbp
ja .Lctr_enc_bzero
lea (%rbp),%rsp # restore %rsp
___
$code.=<<___ if ($win64);
movaps 0x40(%rbp), %xmm6
movaps 0x50(%rbp), %xmm7
movaps 0x60(%rbp), %xmm8
movaps 0x70(%rbp), %xmm9
movaps 0x80(%rbp), %xmm10
movaps 0x90(%rbp), %xmm11
movaps 0xa0(%rbp), %xmm12
movaps 0xb0(%rbp), %xmm13
movaps 0xc0(%rbp), %xmm14
movaps 0xd0(%rbp), %xmm15
lea 0xa0(%rbp), %rsp
___
$code.=<<___;
mov 0x48(%rsp), %r15
mov 0x50(%rsp), %r14
mov 0x58(%rsp), %r13
mov 0x60(%rsp), %r12
mov 0x68(%rsp), %rbx
mov 0x70(%rsp), %rax
lea 0x78(%rsp), %rsp
mov %rax, %rbp
.Lctr_enc_epilogue:
ret
.size bsaes_ctr32_encrypt_blocks,.-bsaes_ctr32_encrypt_blocks
___
######################################################################
# void bsaes_xts_[en|de]crypt(const char *inp,char *out,size_t len,
# const AES_KEY *key1, const AES_KEY *key2,
# const unsigned char iv[16]);
#
my ($twmask,$twres,$twtmp)=@XMM[13..15];
$code.=<<___;
.globl bsaes_xts_encrypt
.type bsaes_xts_encrypt,\@abi-omnipotent
.align 16
bsaes_xts_encrypt:
mov %rsp, %rax
.Lxts_enc_prologue:
push %rbp
push %rbx
push %r12
push %r13
push %r14
push %r15
lea -0x48(%rsp), %rsp
___
$code.=<<___ if ($win64);
mov 0xa0(%rsp),$arg5 # pull key2
mov 0xa8(%rsp),$arg6 # pull ivp
lea -0xa0(%rsp), %rsp
movaps %xmm6, 0x40(%rsp)
movaps %xmm7, 0x50(%rsp)
movaps %xmm8, 0x60(%rsp)
movaps %xmm9, 0x70(%rsp)
movaps %xmm10, 0x80(%rsp)
movaps %xmm11, 0x90(%rsp)
movaps %xmm12, 0xa0(%rsp)
movaps %xmm13, 0xb0(%rsp)
movaps %xmm14, 0xc0(%rsp)
movaps %xmm15, 0xd0(%rsp)
.Lxts_enc_body:
___
$code.=<<___;
mov %rsp, %rbp # backup %rsp
mov $arg1, $inp # backup arguments
mov $arg2, $out
mov $arg3, $len
mov $arg4, $key
lea ($arg6), $arg1
lea 0x20(%rbp), $arg2
lea ($arg5), $arg3
call asm_AES_encrypt # generate initial tweak
mov 240($key), %eax # rounds
mov $len, %rbx # backup $len
mov %eax, %edx # rounds
shl \$7, %rax # 128 bytes per inner round key
sub \$`128-32`, %rax # size of bit-sliced key schedule
sub %rax, %rsp
mov %rsp, %rax # pass key schedule
mov $key, %rcx # pass key
mov %edx, %r10d # pass rounds
call _bsaes_key_convert
pxor %xmm6, %xmm7 # fix up last round key
movdqa %xmm7, (%rax) # save last round key
and \$-16, $len
sub \$0x80, %rsp # place for tweak[8]
movdqa 0x20(%rbp), @XMM[7] # initial tweak
pxor $twtmp, $twtmp
movdqa .Lxts_magic(%rip), $twmask
pcmpgtd @XMM[7], $twtmp # broadcast upper bits
sub \$0x80, $len
jc .Lxts_enc_short
jmp .Lxts_enc_loop
.align 16
.Lxts_enc_loop:
___
for ($i=0;$i<7;$i++) {
$code.=<<___;
pshufd \$0x13, $twtmp, $twres
pxor $twtmp, $twtmp
movdqa @XMM[7], @XMM[$i]
movdqa @XMM[7], `0x10*$i`(%rsp)# save tweak[$i]
paddq @XMM[7], @XMM[7] # psllq 1,$tweak
pand $twmask, $twres # isolate carry and residue
pcmpgtd @XMM[7], $twtmp # broadcast upper bits
pxor $twres, @XMM[7]
___
$code.=<<___ if ($i>=1);
movdqu `0x10*($i-1)`($inp), @XMM[8+$i-1]
___
$code.=<<___ if ($i>=2);
pxor @XMM[8+$i-2], @XMM[$i-2]# input[] ^ tweak[]
___
}
$code.=<<___;
movdqu 0x60($inp), @XMM[8+6]
pxor @XMM[8+5], @XMM[5]
movdqu 0x70($inp), @XMM[8+7]
lea 0x80($inp), $inp
movdqa @XMM[7], 0x70(%rsp)
pxor @XMM[8+6], @XMM[6]
lea 0x80(%rsp), %rax # pass key schedule
pxor @XMM[8+7], @XMM[7]
mov %edx, %r10d # pass rounds
call _bsaes_encrypt8
pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
pxor 0x10(%rsp), @XMM[1]
movdqu @XMM[0], 0x00($out) # write output
pxor 0x20(%rsp), @XMM[4]
movdqu @XMM[1], 0x10($out)
pxor 0x30(%rsp), @XMM[6]
movdqu @XMM[4], 0x20($out)
pxor 0x40(%rsp), @XMM[3]
movdqu @XMM[6], 0x30($out)
pxor 0x50(%rsp), @XMM[7]
movdqu @XMM[3], 0x40($out)
pxor 0x60(%rsp), @XMM[2]
movdqu @XMM[7], 0x50($out)
pxor 0x70(%rsp), @XMM[5]
movdqu @XMM[2], 0x60($out)
movdqu @XMM[5], 0x70($out)
lea 0x80($out), $out
movdqa 0x70(%rsp), @XMM[7] # prepare next iteration tweak
pxor $twtmp, $twtmp
movdqa .Lxts_magic(%rip), $twmask
pcmpgtd @XMM[7], $twtmp
pshufd \$0x13, $twtmp, $twres
pxor $twtmp, $twtmp
paddq @XMM[7], @XMM[7] # psllq 1,$tweak
pand $twmask, $twres # isolate carry and residue
pcmpgtd @XMM[7], $twtmp # broadcast upper bits
pxor $twres, @XMM[7]
sub \$0x80,$len
jnc .Lxts_enc_loop
.Lxts_enc_short:
add \$0x80, $len
jz .Lxts_enc_done
___
for ($i=0;$i<7;$i++) {
$code.=<<___;
pshufd \$0x13, $twtmp, $twres
pxor $twtmp, $twtmp
movdqa @XMM[7], @XMM[$i]
movdqa @XMM[7], `0x10*$i`(%rsp)# save tweak[$i]
paddq @XMM[7], @XMM[7] # psllq 1,$tweak
pand $twmask, $twres # isolate carry and residue
pcmpgtd @XMM[7], $twtmp # broadcast upper bits
pxor $twres, @XMM[7]
___
$code.=<<___ if ($i>=1);
movdqu `0x10*($i-1)`($inp), @XMM[8+$i-1]
cmp \$`0x10*$i`,$len
je .Lxts_enc_$i
___
$code.=<<___ if ($i>=2);
pxor @XMM[8+$i-2], @XMM[$i-2]# input[] ^ tweak[]
___
}
$code.=<<___;
movdqu 0x60($inp), @XMM[8+6]
pxor @XMM[8+5], @XMM[5]
movdqa @XMM[7], 0x70(%rsp)
lea 0x70($inp), $inp
pxor @XMM[8+6], @XMM[6]
lea 0x80(%rsp), %rax # pass key schedule
mov %edx, %r10d # pass rounds
call _bsaes_encrypt8
pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
pxor 0x10(%rsp), @XMM[1]
movdqu @XMM[0], 0x00($out) # write output
pxor 0x20(%rsp), @XMM[4]
movdqu @XMM[1], 0x10($out)
pxor 0x30(%rsp), @XMM[6]
movdqu @XMM[4], 0x20($out)
pxor 0x40(%rsp), @XMM[3]
movdqu @XMM[6], 0x30($out)
pxor 0x50(%rsp), @XMM[7]
movdqu @XMM[3], 0x40($out)
pxor 0x60(%rsp), @XMM[2]
movdqu @XMM[7], 0x50($out)
movdqu @XMM[2], 0x60($out)
lea 0x70($out), $out
movdqa 0x70(%rsp), @XMM[7] # next iteration tweak
jmp .Lxts_enc_done
.align 16
.Lxts_enc_6:
pxor @XMM[8+4], @XMM[4]
lea 0x60($inp), $inp
pxor @XMM[8+5], @XMM[5]
lea 0x80(%rsp), %rax # pass key schedule
mov %edx, %r10d # pass rounds
call _bsaes_encrypt8
pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
pxor 0x10(%rsp), @XMM[1]
movdqu @XMM[0], 0x00($out) # write output
pxor 0x20(%rsp), @XMM[4]
movdqu @XMM[1], 0x10($out)
pxor 0x30(%rsp), @XMM[6]
movdqu @XMM[4], 0x20($out)
pxor 0x40(%rsp), @XMM[3]
movdqu @XMM[6], 0x30($out)
pxor 0x50(%rsp), @XMM[7]
movdqu @XMM[3], 0x40($out)
movdqu @XMM[7], 0x50($out)
lea 0x60($out), $out
movdqa 0x60(%rsp), @XMM[7] # next iteration tweak
jmp .Lxts_enc_done
.align 16
.Lxts_enc_5:
pxor @XMM[8+3], @XMM[3]
lea 0x50($inp), $inp
pxor @XMM[8+4], @XMM[4]
lea 0x80(%rsp), %rax # pass key schedule
mov %edx, %r10d # pass rounds
call _bsaes_encrypt8
pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
pxor 0x10(%rsp), @XMM[1]
movdqu @XMM[0], 0x00($out) # write output
pxor 0x20(%rsp), @XMM[4]
movdqu @XMM[1], 0x10($out)
pxor 0x30(%rsp), @XMM[6]
movdqu @XMM[4], 0x20($out)
pxor 0x40(%rsp), @XMM[3]
movdqu @XMM[6], 0x30($out)
movdqu @XMM[3], 0x40($out)
lea 0x50($out), $out
movdqa 0x50(%rsp), @XMM[7] # next iteration tweak
jmp .Lxts_enc_done
.align 16
.Lxts_enc_4:
pxor @XMM[8+2], @XMM[2]
lea 0x40($inp), $inp
pxor @XMM[8+3], @XMM[3]
lea 0x80(%rsp), %rax # pass key schedule
mov %edx, %r10d # pass rounds
call _bsaes_encrypt8
pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
pxor 0x10(%rsp), @XMM[1]
movdqu @XMM[0], 0x00($out) # write output
pxor 0x20(%rsp), @XMM[4]
movdqu @XMM[1], 0x10($out)
pxor 0x30(%rsp), @XMM[6]
movdqu @XMM[4], 0x20($out)
movdqu @XMM[6], 0x30($out)
lea 0x40($out), $out
movdqa 0x40(%rsp), @XMM[7] # next iteration tweak
jmp .Lxts_enc_done
.align 16
.Lxts_enc_3:
pxor @XMM[8+1], @XMM[1]
lea 0x30($inp), $inp
pxor @XMM[8+2], @XMM[2]
lea 0x80(%rsp), %rax # pass key schedule
mov %edx, %r10d # pass rounds
call _bsaes_encrypt8
pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
pxor 0x10(%rsp), @XMM[1]
movdqu @XMM[0], 0x00($out) # write output
pxor 0x20(%rsp), @XMM[4]
movdqu @XMM[1], 0x10($out)
movdqu @XMM[4], 0x20($out)
lea 0x30($out), $out
movdqa 0x30(%rsp), @XMM[7] # next iteration tweak
jmp .Lxts_enc_done
.align 16
.Lxts_enc_2:
pxor @XMM[8+0], @XMM[0]
lea 0x20($inp), $inp
pxor @XMM[8+1], @XMM[1]
lea 0x80(%rsp), %rax # pass key schedule
mov %edx, %r10d # pass rounds
call _bsaes_encrypt8
pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
pxor 0x10(%rsp), @XMM[1]
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
lea 0x20($out), $out
movdqa 0x20(%rsp), @XMM[7] # next iteration tweak
jmp .Lxts_enc_done
.align 16
.Lxts_enc_1:
pxor @XMM[0], @XMM[8]
lea 0x10($inp), $inp
movdqa @XMM[8], 0x20(%rbp)
lea 0x20(%rbp), $arg1
lea 0x20(%rbp), $arg2
lea ($key), $arg3
call asm_AES_encrypt # doesn't touch %xmm
pxor 0x20(%rbp), @XMM[0] # ^= tweak[]
#pxor @XMM[8], @XMM[0]
#lea 0x80(%rsp), %rax # pass key schedule
#mov %edx, %r10d # pass rounds
#call _bsaes_encrypt8
#pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
movdqu @XMM[0], 0x00($out) # write output
lea 0x10($out), $out
movdqa 0x10(%rsp), @XMM[7] # next iteration tweak
.Lxts_enc_done:
and \$15, %ebx
jz .Lxts_enc_ret
mov $out, %rdx
.Lxts_enc_steal:
movzb ($inp), %eax
movzb -16(%rdx), %ecx
lea 1($inp), $inp
mov %al, -16(%rdx)
mov %cl, 0(%rdx)
lea 1(%rdx), %rdx
sub \$1,%ebx
jnz .Lxts_enc_steal
movdqu -16($out), @XMM[0]
lea 0x20(%rbp), $arg1
pxor @XMM[7], @XMM[0]
lea 0x20(%rbp), $arg2
movdqa @XMM[0], 0x20(%rbp)
lea ($key), $arg3
call asm_AES_encrypt # doesn't touch %xmm
pxor 0x20(%rbp), @XMM[7]
movdqu @XMM[7], -16($out)
.Lxts_enc_ret:
lea (%rsp), %rax
pxor %xmm0, %xmm0
.Lxts_enc_bzero: # wipe key schedule [if any]
movdqa %xmm0, 0x00(%rax)
movdqa %xmm0, 0x10(%rax)
lea 0x20(%rax), %rax
cmp %rax, %rbp
ja .Lxts_enc_bzero
lea (%rbp),%rsp # restore %rsp
___
$code.=<<___ if ($win64);
movaps 0x40(%rbp), %xmm6
movaps 0x50(%rbp), %xmm7
movaps 0x60(%rbp), %xmm8
movaps 0x70(%rbp), %xmm9
movaps 0x80(%rbp), %xmm10
movaps 0x90(%rbp), %xmm11
movaps 0xa0(%rbp), %xmm12
movaps 0xb0(%rbp), %xmm13
movaps 0xc0(%rbp), %xmm14
movaps 0xd0(%rbp), %xmm15
lea 0xa0(%rbp), %rsp
___
$code.=<<___;
mov 0x48(%rsp), %r15
mov 0x50(%rsp), %r14
mov 0x58(%rsp), %r13
mov 0x60(%rsp), %r12
mov 0x68(%rsp), %rbx
mov 0x70(%rsp), %rax
lea 0x78(%rsp), %rsp
mov %rax, %rbp
.Lxts_enc_epilogue:
ret
.size bsaes_xts_encrypt,.-bsaes_xts_encrypt
.globl bsaes_xts_decrypt
.type bsaes_xts_decrypt,\@abi-omnipotent
.align 16
bsaes_xts_decrypt:
mov %rsp, %rax
.Lxts_dec_prologue:
push %rbp
push %rbx
push %r12
push %r13
push %r14
push %r15
lea -0x48(%rsp), %rsp
___
$code.=<<___ if ($win64);
mov 0xa0(%rsp),$arg5 # pull key2
mov 0xa8(%rsp),$arg6 # pull ivp
lea -0xa0(%rsp), %rsp
movaps %xmm6, 0x40(%rsp)
movaps %xmm7, 0x50(%rsp)
movaps %xmm8, 0x60(%rsp)
movaps %xmm9, 0x70(%rsp)
movaps %xmm10, 0x80(%rsp)
movaps %xmm11, 0x90(%rsp)
movaps %xmm12, 0xa0(%rsp)
movaps %xmm13, 0xb0(%rsp)
movaps %xmm14, 0xc0(%rsp)
movaps %xmm15, 0xd0(%rsp)
.Lxts_dec_body:
___
$code.=<<___;
mov %rsp, %rbp # backup %rsp
mov $arg1, $inp # backup arguments
mov $arg2, $out
mov $arg3, $len
mov $arg4, $key
lea ($arg6), $arg1
lea 0x20(%rbp), $arg2
lea ($arg5), $arg3
call asm_AES_encrypt # generate initial tweak
mov 240($key), %eax # rounds
mov $len, %rbx # backup $len
mov %eax, %edx # rounds
shl \$7, %rax # 128 bytes per inner round key
sub \$`128-32`, %rax # size of bit-sliced key schedule
sub %rax, %rsp
mov %rsp, %rax # pass key schedule
mov $key, %rcx # pass key
mov %edx, %r10d # pass rounds
call _bsaes_key_convert
pxor (%rsp), %xmm7 # fix up round 0 key
movdqa %xmm6, (%rax) # save last round key
movdqa %xmm7, (%rsp)
xor %eax, %eax # if ($len%16) len-=16;
and \$-16, $len
test \$15, %ebx
setnz %al
shl \$4, %rax
sub %rax, $len
sub \$0x80, %rsp # place for tweak[8]
movdqa 0x20(%rbp), @XMM[7] # initial tweak
pxor $twtmp, $twtmp
movdqa .Lxts_magic(%rip), $twmask
pcmpgtd @XMM[7], $twtmp # broadcast upper bits
sub \$0x80, $len
jc .Lxts_dec_short
jmp .Lxts_dec_loop
.align 16
.Lxts_dec_loop:
___
for ($i=0;$i<7;$i++) {
$code.=<<___;
pshufd \$0x13, $twtmp, $twres
pxor $twtmp, $twtmp
movdqa @XMM[7], @XMM[$i]
movdqa @XMM[7], `0x10*$i`(%rsp)# save tweak[$i]
paddq @XMM[7], @XMM[7] # psllq 1,$tweak
pand $twmask, $twres # isolate carry and residue
pcmpgtd @XMM[7], $twtmp # broadcast upper bits
pxor $twres, @XMM[7]
___
$code.=<<___ if ($i>=1);
movdqu `0x10*($i-1)`($inp), @XMM[8+$i-1]
___
$code.=<<___ if ($i>=2);
pxor @XMM[8+$i-2], @XMM[$i-2]# input[] ^ tweak[]
___
}
$code.=<<___;
movdqu 0x60($inp), @XMM[8+6]
pxor @XMM[8+5], @XMM[5]
movdqu 0x70($inp), @XMM[8+7]
lea 0x80($inp), $inp
movdqa @XMM[7], 0x70(%rsp)
pxor @XMM[8+6], @XMM[6]
lea 0x80(%rsp), %rax # pass key schedule
pxor @XMM[8+7], @XMM[7]
mov %edx, %r10d # pass rounds
call _bsaes_decrypt8
pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
pxor 0x10(%rsp), @XMM[1]
movdqu @XMM[0], 0x00($out) # write output
pxor 0x20(%rsp), @XMM[6]
movdqu @XMM[1], 0x10($out)
pxor 0x30(%rsp), @XMM[4]
movdqu @XMM[6], 0x20($out)
pxor 0x40(%rsp), @XMM[2]
movdqu @XMM[4], 0x30($out)
pxor 0x50(%rsp), @XMM[7]
movdqu @XMM[2], 0x40($out)
pxor 0x60(%rsp), @XMM[3]
movdqu @XMM[7], 0x50($out)
pxor 0x70(%rsp), @XMM[5]
movdqu @XMM[3], 0x60($out)
movdqu @XMM[5], 0x70($out)
lea 0x80($out), $out
movdqa 0x70(%rsp), @XMM[7] # prepare next iteration tweak
pxor $twtmp, $twtmp
movdqa .Lxts_magic(%rip), $twmask
pcmpgtd @XMM[7], $twtmp
pshufd \$0x13, $twtmp, $twres
pxor $twtmp, $twtmp
paddq @XMM[7], @XMM[7] # psllq 1,$tweak
pand $twmask, $twres # isolate carry and residue
pcmpgtd @XMM[7], $twtmp # broadcast upper bits
pxor $twres, @XMM[7]
sub \$0x80,$len
jnc .Lxts_dec_loop
.Lxts_dec_short:
add \$0x80, $len
jz .Lxts_dec_done
___
for ($i=0;$i<7;$i++) {
$code.=<<___;
pshufd \$0x13, $twtmp, $twres
pxor $twtmp, $twtmp
movdqa @XMM[7], @XMM[$i]
movdqa @XMM[7], `0x10*$i`(%rsp)# save tweak[$i]
paddq @XMM[7], @XMM[7] # psllq 1,$tweak
pand $twmask, $twres # isolate carry and residue
pcmpgtd @XMM[7], $twtmp # broadcast upper bits
pxor $twres, @XMM[7]
___
$code.=<<___ if ($i>=1);
movdqu `0x10*($i-1)`($inp), @XMM[8+$i-1]
cmp \$`0x10*$i`,$len
je .Lxts_dec_$i
___
$code.=<<___ if ($i>=2);
pxor @XMM[8+$i-2], @XMM[$i-2]# input[] ^ tweak[]
___
}
$code.=<<___;
movdqu 0x60($inp), @XMM[8+6]
pxor @XMM[8+5], @XMM[5]
movdqa @XMM[7], 0x70(%rsp)
lea 0x70($inp), $inp
pxor @XMM[8+6], @XMM[6]
lea 0x80(%rsp), %rax # pass key schedule
mov %edx, %r10d # pass rounds
call _bsaes_decrypt8
pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
pxor 0x10(%rsp), @XMM[1]
movdqu @XMM[0], 0x00($out) # write output
pxor 0x20(%rsp), @XMM[6]
movdqu @XMM[1], 0x10($out)
pxor 0x30(%rsp), @XMM[4]
movdqu @XMM[6], 0x20($out)
pxor 0x40(%rsp), @XMM[2]
movdqu @XMM[4], 0x30($out)
pxor 0x50(%rsp), @XMM[7]
movdqu @XMM[2], 0x40($out)
pxor 0x60(%rsp), @XMM[3]
movdqu @XMM[7], 0x50($out)
movdqu @XMM[3], 0x60($out)
lea 0x70($out), $out
movdqa 0x70(%rsp), @XMM[7] # next iteration tweak
jmp .Lxts_dec_done
.align 16
.Lxts_dec_6:
pxor @XMM[8+4], @XMM[4]
lea 0x60($inp), $inp
pxor @XMM[8+5], @XMM[5]
lea 0x80(%rsp), %rax # pass key schedule
mov %edx, %r10d # pass rounds
call _bsaes_decrypt8
pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
pxor 0x10(%rsp), @XMM[1]
movdqu @XMM[0], 0x00($out) # write output
pxor 0x20(%rsp), @XMM[6]
movdqu @XMM[1], 0x10($out)
pxor 0x30(%rsp), @XMM[4]
movdqu @XMM[6], 0x20($out)
pxor 0x40(%rsp), @XMM[2]
movdqu @XMM[4], 0x30($out)
pxor 0x50(%rsp), @XMM[7]
movdqu @XMM[2], 0x40($out)
movdqu @XMM[7], 0x50($out)
lea 0x60($out), $out
movdqa 0x60(%rsp), @XMM[7] # next iteration tweak
jmp .Lxts_dec_done
.align 16
.Lxts_dec_5:
pxor @XMM[8+3], @XMM[3]
lea 0x50($inp), $inp
pxor @XMM[8+4], @XMM[4]
lea 0x80(%rsp), %rax # pass key schedule
mov %edx, %r10d # pass rounds
call _bsaes_decrypt8
pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
pxor 0x10(%rsp), @XMM[1]
movdqu @XMM[0], 0x00($out) # write output
pxor 0x20(%rsp), @XMM[6]
movdqu @XMM[1], 0x10($out)
pxor 0x30(%rsp), @XMM[4]
movdqu @XMM[6], 0x20($out)
pxor 0x40(%rsp), @XMM[2]
movdqu @XMM[4], 0x30($out)
movdqu @XMM[2], 0x40($out)
lea 0x50($out), $out
movdqa 0x50(%rsp), @XMM[7] # next iteration tweak
jmp .Lxts_dec_done
.align 16
.Lxts_dec_4:
pxor @XMM[8+2], @XMM[2]
lea 0x40($inp), $inp
pxor @XMM[8+3], @XMM[3]
lea 0x80(%rsp), %rax # pass key schedule
mov %edx, %r10d # pass rounds
call _bsaes_decrypt8
pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
pxor 0x10(%rsp), @XMM[1]
movdqu @XMM[0], 0x00($out) # write output
pxor 0x20(%rsp), @XMM[6]
movdqu @XMM[1], 0x10($out)
pxor 0x30(%rsp), @XMM[4]
movdqu @XMM[6], 0x20($out)
movdqu @XMM[4], 0x30($out)
lea 0x40($out), $out
movdqa 0x40(%rsp), @XMM[7] # next iteration tweak
jmp .Lxts_dec_done
.align 16
.Lxts_dec_3:
pxor @XMM[8+1], @XMM[1]
lea 0x30($inp), $inp
pxor @XMM[8+2], @XMM[2]
lea 0x80(%rsp), %rax # pass key schedule
mov %edx, %r10d # pass rounds
call _bsaes_decrypt8
pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
pxor 0x10(%rsp), @XMM[1]
movdqu @XMM[0], 0x00($out) # write output
pxor 0x20(%rsp), @XMM[6]
movdqu @XMM[1], 0x10($out)
movdqu @XMM[6], 0x20($out)
lea 0x30($out), $out
movdqa 0x30(%rsp), @XMM[7] # next iteration tweak
jmp .Lxts_dec_done
.align 16
.Lxts_dec_2:
pxor @XMM[8+0], @XMM[0]
lea 0x20($inp), $inp
pxor @XMM[8+1], @XMM[1]
lea 0x80(%rsp), %rax # pass key schedule
mov %edx, %r10d # pass rounds
call _bsaes_decrypt8
pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
pxor 0x10(%rsp), @XMM[1]
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
lea 0x20($out), $out
movdqa 0x20(%rsp), @XMM[7] # next iteration tweak
jmp .Lxts_dec_done
.align 16
.Lxts_dec_1:
pxor @XMM[0], @XMM[8]
lea 0x10($inp), $inp
movdqa @XMM[8], 0x20(%rbp)
lea 0x20(%rbp), $arg1
lea 0x20(%rbp), $arg2
lea ($key), $arg3
call asm_AES_decrypt # doesn't touch %xmm
pxor 0x20(%rbp), @XMM[0] # ^= tweak[]
#pxor @XMM[8], @XMM[0]
#lea 0x80(%rsp), %rax # pass key schedule
#mov %edx, %r10d # pass rounds
#call _bsaes_decrypt8
#pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
movdqu @XMM[0], 0x00($out) # write output
lea 0x10($out), $out
movdqa 0x10(%rsp), @XMM[7] # next iteration tweak
.Lxts_dec_done:
and \$15, %ebx
jz .Lxts_dec_ret
pxor $twtmp, $twtmp
movdqa .Lxts_magic(%rip), $twmask
pcmpgtd @XMM[7], $twtmp
pshufd \$0x13, $twtmp, $twres
movdqa @XMM[7], @XMM[6]
paddq @XMM[7], @XMM[7] # psllq 1,$tweak
pand $twmask, $twres # isolate carry and residue
movdqu ($inp), @XMM[0]
pxor $twres, @XMM[7]
lea 0x20(%rbp), $arg1
pxor @XMM[7], @XMM[0]
lea 0x20(%rbp), $arg2
movdqa @XMM[0], 0x20(%rbp)
lea ($key), $arg3
call asm_AES_decrypt # doesn't touch %xmm
pxor 0x20(%rbp), @XMM[7]
mov $out, %rdx
movdqu @XMM[7], ($out)
.Lxts_dec_steal:
movzb 16($inp), %eax
movzb (%rdx), %ecx
lea 1($inp), $inp
mov %al, (%rdx)
mov %cl, 16(%rdx)
lea 1(%rdx), %rdx
sub \$1,%ebx
jnz .Lxts_dec_steal
movdqu ($out), @XMM[0]
lea 0x20(%rbp), $arg1
pxor @XMM[6], @XMM[0]
lea 0x20(%rbp), $arg2
movdqa @XMM[0], 0x20(%rbp)
lea ($key), $arg3
call asm_AES_decrypt # doesn't touch %xmm
pxor 0x20(%rbp), @XMM[6]
movdqu @XMM[6], ($out)
.Lxts_dec_ret:
lea (%rsp), %rax
pxor %xmm0, %xmm0
.Lxts_dec_bzero: # wipe key schedule [if any]
movdqa %xmm0, 0x00(%rax)
movdqa %xmm0, 0x10(%rax)
lea 0x20(%rax), %rax
cmp %rax, %rbp
ja .Lxts_dec_bzero
lea (%rbp),%rsp # restore %rsp
___
$code.=<<___ if ($win64);
movaps 0x40(%rbp), %xmm6
movaps 0x50(%rbp), %xmm7
movaps 0x60(%rbp), %xmm8
movaps 0x70(%rbp), %xmm9
movaps 0x80(%rbp), %xmm10
movaps 0x90(%rbp), %xmm11
movaps 0xa0(%rbp), %xmm12
movaps 0xb0(%rbp), %xmm13
movaps 0xc0(%rbp), %xmm14
movaps 0xd0(%rbp), %xmm15
lea 0xa0(%rbp), %rsp
___
$code.=<<___;
mov 0x48(%rsp), %r15
mov 0x50(%rsp), %r14
mov 0x58(%rsp), %r13
mov 0x60(%rsp), %r12
mov 0x68(%rsp), %rbx
mov 0x70(%rsp), %rax
lea 0x78(%rsp), %rsp
mov %rax, %rbp
.Lxts_dec_epilogue:
ret
.size bsaes_xts_decrypt,.-bsaes_xts_decrypt
___
}
$code.=<<___;
.type _bsaes_const,\@object
.align 64
_bsaes_const:
.LM0ISR: # InvShiftRows constants
.quad 0x0a0e0206070b0f03, 0x0004080c0d010509
.LISRM0:
.quad 0x01040b0e0205080f, 0x0306090c00070a0d
.LISR:
.quad 0x0504070602010003, 0x0f0e0d0c080b0a09
.LBS0: # bit-slice constants
.quad 0x5555555555555555, 0x5555555555555555
.LBS1:
.quad 0x3333333333333333, 0x3333333333333333
.LBS2:
.quad 0x0f0f0f0f0f0f0f0f, 0x0f0f0f0f0f0f0f0f
.LSR: # shiftrows constants
.quad 0x0504070600030201, 0x0f0e0d0c0a09080b
.LSRM0:
.quad 0x0304090e00050a0f, 0x01060b0c0207080d
.LM0SR:
.quad 0x0a0e02060f03070b, 0x0004080c05090d01
.LSWPUP: # byte-swap upper dword
.quad 0x0706050403020100, 0x0c0d0e0f0b0a0908
.LSWPUPM0SR:
.quad 0x0a0d02060c03070b, 0x0004080f05090e01
.LADD1: # counter increment constants
.quad 0x0000000000000000, 0x0000000100000000
.LADD2:
.quad 0x0000000000000000, 0x0000000200000000
.LADD3:
.quad 0x0000000000000000, 0x0000000300000000
.LADD4:
.quad 0x0000000000000000, 0x0000000400000000
.LADD5:
.quad 0x0000000000000000, 0x0000000500000000
.LADD6:
.quad 0x0000000000000000, 0x0000000600000000
.LADD7:
.quad 0x0000000000000000, 0x0000000700000000
.LADD8:
.quad 0x0000000000000000, 0x0000000800000000
.Lxts_magic:
.long 0x87,0,1,0
.Lmasks:
.quad 0x0101010101010101, 0x0101010101010101
.quad 0x0202020202020202, 0x0202020202020202
.quad 0x0404040404040404, 0x0404040404040404
.quad 0x0808080808080808, 0x0808080808080808
.LM0:
.quad 0x02060a0e03070b0f, 0x0004080c0105090d
.L63:
.quad 0x6363636363636363, 0x6363636363636363
.asciz "Bit-sliced AES for x86_64/SSSE3, Emilia Käsper, Peter Schwabe, Andy Polyakov"
.align 64
.size _bsaes_const,.-_bsaes_const
___
# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
# CONTEXT *context,DISPATCHER_CONTEXT *disp)
if ($win64) {
$rec="%rcx";
$frame="%rdx";
$context="%r8";
$disp="%r9";
$code.=<<___;
.extern __imp_RtlVirtualUnwind
.type se_handler,\@abi-omnipotent
.align 16
se_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
mov 8($disp),%rsi # disp->ImageBase
mov 56($disp),%r11 # disp->HandlerData
mov 0(%r11),%r10d # HandlerData[0]
lea (%rsi,%r10),%r10 # prologue label
cmp %r10,%rbx # context->Rip<prologue label
jb .Lin_prologue
mov 152($context),%rax # pull context->Rsp
mov 4(%r11),%r10d # HandlerData[1]
lea (%rsi,%r10),%r10 # epilogue label
cmp %r10,%rbx # context->Rip>=epilogue label
jae .Lin_prologue
mov 160($context),%rax # pull context->Rbp
lea 0x40(%rax),%rsi # %xmm save area
lea 512($context),%rdi # &context.Xmm6
mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax)
.long 0xa548f3fc # cld; rep movsq
lea 0xa0(%rax),%rax # adjust stack pointer
mov 0x70(%rax),%rbp
mov 0x68(%rax),%rbx
mov 0x60(%rax),%r12
mov 0x58(%rax),%r13
mov 0x50(%rax),%r14
mov 0x48(%rax),%r15
lea 0x78(%rax),%rax # adjust stack pointer
mov %rbx,144($context) # restore context->Rbx
mov %rbp,160($context) # restore context->Rbp
mov %r12,216($context) # restore context->R12
mov %r13,224($context) # restore context->R13
mov %r14,232($context) # restore context->R14
mov %r15,240($context) # restore context->R15
.Lin_prologue:
mov %rax,152($context) # restore context->Rsp
mov 40($disp),%rdi # disp->ContextRecord
mov $context,%rsi # context
mov \$`1232/8`,%ecx # sizeof(CONTEXT)
.long 0xa548f3fc # cld; rep movsq
mov $disp,%rsi
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
mov 8(%rsi),%rdx # arg2, disp->ImageBase
mov 0(%rsi),%r8 # arg3, disp->ControlPc
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
mov 40(%rsi),%r10 # disp->ContextRecord
lea 56(%rsi),%r11 # &disp->HandlerData
lea 24(%rsi),%r12 # &disp->EstablisherFrame
mov %r10,32(%rsp) # arg5
mov %r11,40(%rsp) # arg6
mov %r12,48(%rsp) # arg7
mov %rcx,56(%rsp) # arg8, (NULL)
call *__imp_RtlVirtualUnwind(%rip)
mov \$1,%eax # ExceptionContinueSearch
add \$64,%rsp
popfq
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbp
pop %rbx
pop %rdi
pop %rsi
ret
.size se_handler,.-se_handler
.section .pdata
.align 4
___
$code.=<<___ if ($ecb);
.rva .Lecb_enc_prologue
.rva .Lecb_enc_epilogue
.rva .Lecb_enc_info
.rva .Lecb_dec_prologue
.rva .Lecb_dec_epilogue
.rva .Lecb_dec_info
___
$code.=<<___;
.rva .Lcbc_dec_prologue
.rva .Lcbc_dec_epilogue
.rva .Lcbc_dec_info
.rva .Lctr_enc_prologue
.rva .Lctr_enc_epilogue
.rva .Lctr_enc_info
.rva .Lxts_enc_prologue
.rva .Lxts_enc_epilogue
.rva .Lxts_enc_info
.rva .Lxts_dec_prologue
.rva .Lxts_dec_epilogue
.rva .Lxts_dec_info
.section .xdata
.align 8
___
$code.=<<___ if ($ecb);
.Lecb_enc_info:
.byte 9,0,0,0
.rva se_handler
.rva .Lecb_enc_body,.Lecb_enc_epilogue # HandlerData[]
.Lecb_dec_info:
.byte 9,0,0,0
.rva se_handler
.rva .Lecb_dec_body,.Lecb_dec_epilogue # HandlerData[]
___
$code.=<<___;
.Lcbc_dec_info:
.byte 9,0,0,0
.rva se_handler
.rva .Lcbc_dec_body,.Lcbc_dec_epilogue # HandlerData[]
.Lctr_enc_info:
.byte 9,0,0,0
.rva se_handler
.rva .Lctr_enc_body,.Lctr_enc_epilogue # HandlerData[]
.Lxts_enc_info:
.byte 9,0,0,0
.rva se_handler
.rva .Lxts_enc_body,.Lxts_enc_epilogue # HandlerData[]
.Lxts_dec_info:
.byte 9,0,0,0
.rva se_handler
.rva .Lxts_dec_body,.Lxts_dec_epilogue # HandlerData[]
___
}
$code =~ s/\`([^\`]*)\`/eval($1)/gem;
print $code;
close STDOUT;