openssl/crypto/rc4/asm/rc4-ia64.S

158 lines
5.8 KiB
ArmAsm

// ====================================================================
// Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
// project.
//
// Rights for redistribution and usage in source and binary forms are
// granted according to the OpenSSL license. Warranty of any kind is
// disclaimed.
// ====================================================================
.ident "rc4-ia64.S, Version 1.1"
.ident "IA-64 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>"
// What's wrong with compiler generated code? Because of the nature of
// C language, compiler doesn't [dare to] reorder load and stores. But
// being memory-bound, RC4 should benefit from reorder [on in-order-
// execution core such as IA-64]. But what can we reorder? At the very
// least we can safely reorder references to key schedule in respect
// to input and output streams. Secondly, from the first [close] glance
// it appeared that it's possible to pull up some references to
// elements of the key schedule itself. Original rationale ["prior
// loads are not safe only for "degenerated" key schedule, when some
// elements equal to the same value"] was kind of sloppy. I should have
// formulated as it really was: if we assume that pulling up reference
// to key[x+1] is not safe, then it would mean that key schedule would
// "degenerate," which is never the case. The problem is that this
// holds true in respect to references to key[x], but not to key[y].
// Legitimate "collisions" do occur within every 256^2 bytes window.
// Fortunately there're enough free instruction slots to keep prior
// reference to key[x+1], detect "collision" and compensate for it.
// All this without sacrificing a single clock cycle:-)
// Furthermore. In order to compress loop body to the minimum, I chose
// to deploy deposit instruction, which substitutes for the whole
// key->data+((x&255)<<log2(sizeof(key->data[0]))). This unfortunately
// requires key->data to be aligned at sizeof(key->data) boundary.
// This is why you'll find "RC4_INT pad[512-256-2];" addenum to RC4_KEY
// and "d=(RC4_INT *)(((size_t)(d+255))&~(sizeof(key->data)-1));" in
// rc4_skey.c [and rc4_enc.c, where it's retained for debugging
// purposes]. Throughput is ~210MBps on 900MHz CPU, which is is >3x
// faster than gcc generated code and +30% - if compared to HP-UX C.
// Unrolling loop below should give >30% on top of that...
.text
.explicit
#if defined(_HPUX_SOURCE) && !defined(_LP64)
# define ADDP addp4
#else
# define ADDP add
#endif
#define SZ 4 // this is set to sizeof(RC4_INT)
// SZ==4 seems to be optimal. At least SZ==8 is not any faster, not for
// assembler implementation, while SZ==1 code is ~30% slower.
#if SZ==1 // RC4_INT is unsigned char
# define LDKEY ld1
# define STKEY st1
# define OFF 0
#elif SZ==4 // RC4_INT is unsigned int
# define LDKEY ld4
# define STKEY st4
# define OFF 2
#elif SZ==8 // RC4_INT is unsigned long
# define LDKEY ld8
# define STKEY st8
# define OFF 3
#endif
out=r8; // [expanded] output pointer
inp=r9; // [expanded] output pointer
prsave=r10;
key=r28; // [expanded] pointer to RC4_KEY
ksch=r29; // (key->data+255)[&~(sizeof(key->data)-1)]
xx=r30;
yy=r31;
// void RC4(RC4_KEY *key,size_t len,const void *inp,void *out);
.global RC4#
.proc RC4#
.align 32
.skip 16
RC4:
.prologue
.fframe 0
.save ar.pfs,r2
.save ar.lc,r3
.save pr,prsave
{ .mii; alloc r2=ar.pfs,4,12,0,16
mov prsave=pr
ADDP key=0,in0 };;
{ .mib; cmp.eq p6,p0=0,in1 // len==0?
mov r3=ar.lc
(p6) br.ret.spnt.many b0 };; // emergency exit
.body
.rotr dat[4],key_x[4],tx[2],rnd[2],key_y[2],ty[1];
{ .mib; LDKEY xx=[key],SZ // load key->x
add in1=-1,in1 // adjust len for loop counter
nop.b 0 }
{ .mib; ADDP inp=0,in2
ADDP out=0,in3
brp.loop.imp .Ltop,.Lexit-16 };;
{ .mmi; LDKEY yy=[key] // load key->y
add ksch=(255+1)*SZ,key // as ksch will be used with
// deposit instruction only,
// I don't have to &~255...
mov ar.lc=in1 }
{ .mmi; mov key_y[1]=r0 // guarantee inequality
// in first iteration
add xx=1,xx
mov pr.rot=1<<16 };;
{ .mii; nop.m 0
dep key_x[1]=xx,ksch,OFF,8
mov ar.ec=3 };; // note that epilogue counter
// is off by 1. I compensate
// for this at exit...
.Ltop:
// The loop is scheduled for 3*(n+2) spin-rate on Itanium 2, which
// theoretically gives asymptotic performance of clock frequency
// divided by 3 bytes per seconds, or 500MBps on 1.5GHz CPU. Measured
// performance however is distinctly lower than 1/4:-( The culplrit
// seems to be *(out++)=dat, which inadvertently splits the bundle,
// even though there is M-port available... Unrolling is due...
// Unrolled loop should collect output with variable shift instruction
// in order to avoid starvation for integer shifter... It should be
// possible to get pretty close to theoretical peak...
{ .mmi; (p16) LDKEY tx[0]=[key_x[1]] // tx=key[xx]
(p17) LDKEY ty[0]=[key_y[1]] // ty=key[yy]
(p18) dep rnd[1]=rnd[1],ksch,OFF,8} // &key[(tx+ty)&255]
{ .mmi; (p19) st1 [out]=dat[3],1 // *(out++)=dat
(p16) add xx=1,xx // x++
(p16) cmp.ne.unc p20,p21=key_x[1],key_y[1] };;
{ .mmi; (p18) LDKEY rnd[1]=[rnd[1]] // rnd=key[(tx+ty)&255]
(p16) ld1 dat[0]=[inp],1 // dat=*(inp++)
(p16) dep key_x[0]=xx,ksch,OFF,8 } // &key[xx&255]
.pred.rel "mutex",p20,p21
{ .mmi; (p21) add yy=yy,tx[1] // (p16)
(p20) add yy=yy,tx[0] // (p16) y+=tx
(p21) mov tx[0]=tx[1] };; // (p16)
{ .mmi; (p17) STKEY [key_y[1]]=tx[1] // key[yy]=tx
(p17) STKEY [key_x[2]]=ty[0] // key[xx]=ty
(p16) dep key_y[0]=yy,ksch,OFF,8 } // &key[yy&255]
{ .mmb; (p17) add rnd[0]=tx[1],ty[0] // tx+=ty
(p18) xor dat[2]=dat[2],rnd[1] // dat^=rnd
br.ctop.sptk .Ltop };;
.Lexit:
{ .mib; STKEY [key]=yy,-SZ // save key->y
mov pr=prsave,0x1ffff
nop.b 0 }
{ .mib; st1 [out]=dat[3],1 // compensate for truncated
// epilogue counter
add xx=-1,xx
nop.b 0 };;
{ .mib; STKEY [key]=xx // save key->x
mov ar.lc=r3
br.ret.sptk.many b0 };;
.endp RC4#