411 lines
11 KiB
Raku
411 lines
11 KiB
Raku
#!/usr/bin/env perl
|
|
#
|
|
# ====================================================================
|
|
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
|
# project. The module is, however, dual licensed under OpenSSL and
|
|
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
|
# details see http://www.openssl.org/~appro/cryptogams/.
|
|
# ====================================================================
|
|
#
|
|
# The module implements "4-bit" Galois field multiplication and
|
|
# streamed GHASH function. "4-bit" means that it uses 256 bytes
|
|
# per-key table [+128/256 bytes fixed table]. It has two code paths:
|
|
# vanilla x86 and vanilla MMX. Former will be executed on 486 and
|
|
# Pentium, latter on all others. Performance results are for streamed
|
|
# GHASH subroutine and are expressed in cycles per processed byte,
|
|
# less is better:
|
|
#
|
|
# gcc 2.95.3(*) MMX assembler x86 assembler
|
|
#
|
|
# Pentium 100/112(**) - 50
|
|
# PIII 63 /77 17 24
|
|
# P4 96 /122 33 84(***)
|
|
# Opteron 50 /71 22 30
|
|
# Core2 63 /102 21 28
|
|
#
|
|
# (*) gcc 3.4.x was observed to generate few percent slower code,
|
|
# which is one of reasons why 2.95.3 result were chosen;
|
|
# another reason is lack of 3.4.x results for older CPUs;
|
|
# (**) second number is result for code compiled with -fPIC flag,
|
|
# which is actually more relevant, because assembler code is
|
|
# position-independent;
|
|
# (***) see comment in non-MMX routine for further details;
|
|
#
|
|
# To summarize, it's 2-3 times faster than gcc-generated code. To
|
|
# anchor it to something else SHA1 assembler processes single byte
|
|
# in 11-13 cycles.
|
|
|
|
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
|
push(@INC,"${dir}","${dir}../../perlasm");
|
|
require "x86asm.pl";
|
|
|
|
&asm_init($ARGV[0],"gcm-x86.pl",$x86only = $ARGV[$#ARGV] eq "386");
|
|
|
|
&static_label("rem_4bit") if (!$x86only);
|
|
|
|
$Zhh = "ebp";
|
|
$Zhl = "edx";
|
|
$Zlh = "ecx";
|
|
$Zll = "ebx";
|
|
$inp = "edi";
|
|
$Htbl = "esi";
|
|
|
|
$unroll = 0; # Affects x86 loop. Folded loop performs ~7% worse
|
|
# than unrolled, which has to be weighted against
|
|
# almost 2x code size reduction. Well, *overall*
|
|
# code size. x86-specific code shrinks by 7.5x...
|
|
|
|
sub mmx_loop() {
|
|
# MMX version performs 2.5 times better on P4 (see comment in non-MMX
|
|
# routine for further details), 35% better on Opteron and Core2, 40%
|
|
# better on PIII... In other words effort is considered to be well
|
|
# spent...
|
|
my $inp = shift;
|
|
my $rem_4bit = shift;
|
|
my $cnt = $Zhh;
|
|
my $nhi = $Zhl;
|
|
my $nlo = $Zlh;
|
|
my $rem = $Zll;
|
|
|
|
my $Zlo = "mm0";
|
|
my $Zhi = "mm1";
|
|
my $tmp = "mm2";
|
|
|
|
&xor ($nlo,$nlo); # avoid partial register stalls on PIII
|
|
&mov ($nhi,$Zll);
|
|
&mov (&LB($nlo),&LB($nhi));
|
|
&mov ($cnt,15);
|
|
&shl (&LB($nlo),4);
|
|
&and ($nhi,0xf0);
|
|
&movq ($Zlo,&QWP(8,$Htbl,$nlo));
|
|
&movq ($Zhi,&QWP(0,$Htbl,$nlo));
|
|
&movd ($rem,$Zlo);
|
|
&jmp (&label("mmx_loop"));
|
|
|
|
&set_label("mmx_loop",16);
|
|
&psrlq ($Zlo,4);
|
|
&and ($rem,0xf);
|
|
&movq ($tmp,$Zhi);
|
|
&psrlq ($Zhi,4);
|
|
&dec ($cnt);
|
|
&pxor ($Zlo,&QWP(8,$Htbl,$nhi));
|
|
&psllq ($tmp,60);
|
|
&pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
|
|
&movd ($rem,$Zlo);
|
|
&pxor ($Zhi,&QWP(0,$Htbl,$nhi));
|
|
&pxor ($Zlo,$tmp);
|
|
&js (&label("mmx_break"));
|
|
|
|
&movz ($nhi,&BP(0,$inp,$cnt));
|
|
&psrlq ($Zlo,4);
|
|
&mov (&LB($nlo),&LB($nhi));
|
|
&movq ($tmp,$Zhi);
|
|
&shl (&LB($nlo),4);
|
|
&psrlq ($Zhi,4);
|
|
&and ($rem,0xf);
|
|
&pxor ($Zlo,&QWP(8,$Htbl,$nlo));
|
|
&psllq ($tmp,60);
|
|
&pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
|
|
&movd ($rem,$Zlo);
|
|
&pxor ($Zhi,&QWP(0,$Htbl,$nlo));
|
|
&pxor ($Zlo,$tmp);
|
|
&and ($nhi,0xf0);
|
|
&jmp (&label("mmx_loop"));
|
|
|
|
&set_label("mmx_break",16);
|
|
&psrlq ($Zlo,32); # lower part of Zlo is already there
|
|
&movd ($Zhl,$Zhi);
|
|
&psrlq ($Zhi,32);
|
|
&movd ($Zlh,$Zlo);
|
|
&movd ($Zhh,$Zhi);
|
|
|
|
&bswap ($Zll);
|
|
&bswap ($Zhl);
|
|
&bswap ($Zlh);
|
|
&bswap ($Zhh);
|
|
}
|
|
|
|
sub x86_loop {
|
|
my $off = shift;
|
|
my $rem = "eax";
|
|
|
|
&mov ($Zhh,&DWP(4,$Htbl,$Zll));
|
|
&mov ($Zhl,&DWP(0,$Htbl,$Zll));
|
|
&mov ($Zlh,&DWP(12,$Htbl,$Zll));
|
|
&mov ($Zll,&DWP(8,$Htbl,$Zll));
|
|
&xor ($rem,$rem); # avoid partial register stalls on PIII
|
|
|
|
# shrd practically kills P4, 2.5x deterioration, but P4 has
|
|
# MMX code-path to execute. shrd runs tad faster [than twice
|
|
# the shifts, move's and or's] on pre-MMX Pentium (as well as
|
|
# PIII and Core2), *but* minimizes code size, spares register
|
|
# and thus allows to fold the loop...
|
|
if (!$unroll) {
|
|
my $cnt = $inp;
|
|
&mov ($cnt,15);
|
|
&jmp (&label("x86_loop"));
|
|
&set_label("x86_loop",16);
|
|
for($i=1;$i<=2;$i++) {
|
|
&mov (&LB($rem),&LB($Zll));
|
|
&shrd ($Zll,$Zlh,4);
|
|
&and (&LB($rem),0xf);
|
|
&shrd ($Zlh,$Zhl,4);
|
|
&shrd ($Zhl,$Zhh,4);
|
|
&shr ($Zhh,4);
|
|
&xor ($Zhh,&DWP($off+16,"esp",$rem,4));
|
|
|
|
&mov (&LB($rem),&BP($off,"esp",$cnt));
|
|
if ($i&1) {
|
|
&and (&LB($rem),0xf0);
|
|
} else {
|
|
&shl (&LB($rem),4);
|
|
}
|
|
|
|
&xor ($Zll,&DWP(8,$Htbl,$rem));
|
|
&xor ($Zlh,&DWP(12,$Htbl,$rem));
|
|
&xor ($Zhl,&DWP(0,$Htbl,$rem));
|
|
&xor ($Zhh,&DWP(4,$Htbl,$rem));
|
|
|
|
if ($i&1) {
|
|
&dec ($cnt);
|
|
&js (&label("x86_break"));
|
|
} else {
|
|
&jmp (&label("x86_loop"));
|
|
}
|
|
}
|
|
&set_label("x86_break",16);
|
|
} else {
|
|
for($i=1;$i<32;$i++) {
|
|
&comment($i);
|
|
&mov (&LB($rem),&LB($Zll));
|
|
&shrd ($Zll,$Zlh,4);
|
|
&and (&LB($rem),0xf);
|
|
&shrd ($Zlh,$Zhl,4);
|
|
&shrd ($Zhl,$Zhh,4);
|
|
&shr ($Zhh,4);
|
|
&xor ($Zhh,&DWP($off+16,"esp",$rem,4));
|
|
|
|
if ($i&1) {
|
|
&mov (&LB($rem),&BP($off+15-($i>>1),"esp"));
|
|
&and (&LB($rem),0xf0);
|
|
} else {
|
|
&mov (&LB($rem),&BP($off+15-($i>>1),"esp"));
|
|
&shl (&LB($rem),4);
|
|
}
|
|
|
|
&xor ($Zll,&DWP(8,$Htbl,$rem));
|
|
&xor ($Zlh,&DWP(12,$Htbl,$rem));
|
|
&xor ($Zhl,&DWP(0,$Htbl,$rem));
|
|
&xor ($Zhh,&DWP(4,$Htbl,$rem));
|
|
}
|
|
}
|
|
&bswap ($Zll);
|
|
&bswap ($Zlh);
|
|
&bswap ($Zhl);
|
|
if (!$x86only) {
|
|
&bswap ($Zhh);
|
|
} else {
|
|
&mov ("eax",$Zhh);
|
|
&bswap ("eax");
|
|
&mov ($Zhh,"eax");
|
|
}
|
|
}
|
|
|
|
if ($unroll) {
|
|
&function_begin_B("_x86_gmult_4bit_inner");
|
|
&x86_loop(4);
|
|
&ret ();
|
|
&function_end_B("_x86_gmult_4bit_inner");
|
|
}
|
|
|
|
&function_begin("gcm_gmult_4bit");
|
|
if (!$x86only) {
|
|
&call (&label("pic_point"));
|
|
&set_label("pic_point");
|
|
&blindpop("eax");
|
|
&picmeup("ebp","OPENSSL_ia32cap_P","eax",&label("pic_point"));
|
|
&bt (&DWP(0,"ebp"),23); # check for MMX bit
|
|
&jnc (&label("x86"));
|
|
|
|
&lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
|
|
|
|
&mov ($inp,&wparam(0)); # load Xi
|
|
&mov ($Htbl,&wparam(1)); # load Htable
|
|
|
|
&movz ($Zll,&BP(15,$inp));
|
|
|
|
&mmx_loop($inp,"eax");
|
|
|
|
&emms ();
|
|
&mov (&DWP(12,$inp),$Zll);
|
|
&mov (&DWP(4,$inp),$Zhl);
|
|
&mov (&DWP(8,$inp),$Zlh);
|
|
&mov (&DWP(0,$inp),$Zhh);
|
|
|
|
&function_end_A();
|
|
&set_label("x86",16);
|
|
}
|
|
&stack_push(16+4+1); # +1 for stack alignment
|
|
&mov ($inp,&wparam(0)); # load Xi
|
|
&mov ($Htbl,&wparam(1)); # load Htable
|
|
|
|
&mov ($Zhh,&DWP(0,$inp)); # load Xi[16]
|
|
&mov ($Zhl,&DWP(4,$inp));
|
|
&mov ($Zlh,&DWP(8,$inp));
|
|
&mov ($Zll,&DWP(12,$inp));
|
|
|
|
&deposit_rem_4bit(16);
|
|
|
|
&mov (&DWP(0,"esp"),$Zhh); # copy Xi[16] on stack
|
|
&mov (&DWP(4,"esp"),$Zhl);
|
|
&mov (&DWP(8,"esp"),$Zlh);
|
|
&mov (&DWP(12,"esp"),$Zll);
|
|
&shr ($Zll,20);
|
|
&and ($Zll,0xf0);
|
|
|
|
if ($unroll) {
|
|
&call ("_x86_gmult_4bit_inner");
|
|
} else {
|
|
&x86_loop(0);
|
|
&mov ($inp,&wparam(0));
|
|
}
|
|
|
|
&mov (&DWP(12,$inp),$Zll);
|
|
&mov (&DWP(8,$inp),$Zlh);
|
|
&mov (&DWP(4,$inp),$Zhl);
|
|
&mov (&DWP(0,$inp),$Zhh);
|
|
&stack_pop(16+4+1);
|
|
&function_end("gcm_gmult_4bit");
|
|
|
|
# Streamed version performs 20% better on P4, 7% on Opteron,
|
|
# 10% on Core2 and PIII...
|
|
&function_begin("gcm_ghash_4bit");
|
|
if (!$x86only) {
|
|
&call (&label("pic_point"));
|
|
&set_label("pic_point");
|
|
&blindpop("eax");
|
|
&picmeup("ebp","OPENSSL_ia32cap_P","eax",&label("pic_point"));
|
|
&bt (&DWP(0,"ebp"),23); # check for MMX bit
|
|
&jnc (&label("x86"));
|
|
|
|
&lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
|
|
|
|
&mov ($inp,&wparam(0)); # load in
|
|
&mov ($Zlh,&wparam(1)); # load len
|
|
&mov ($Zhh,&wparam(2)); # load Xi
|
|
&mov ($Htbl,&wparam(3)); # load Htable
|
|
&add ($Zlh,$inp);
|
|
&mov (&wparam(1),$Zlh); # len to point at the end of input
|
|
&stack_push(4+1); # +1 for stack alignment
|
|
&mov ($Zll,&DWP(12,$Zhh)); # load Xi[16]
|
|
&mov ($Zhl,&DWP(4,$Zhh));
|
|
&mov ($Zlh,&DWP(8,$Zhh));
|
|
&mov ($Zhh,&DWP(0,$Zhh));
|
|
|
|
&set_label("mmx_outer_loop",16);
|
|
&xor ($Zll,&DWP(12,$inp));
|
|
&xor ($Zhl,&DWP(4,$inp));
|
|
&xor ($Zlh,&DWP(8,$inp));
|
|
&xor ($Zhh,&DWP(0,$inp));
|
|
&mov (&DWP(12,"esp"),$Zll);
|
|
&mov (&DWP(4,"esp"),$Zhl);
|
|
&mov (&DWP(8,"esp"),$Zlh);
|
|
&mov (&DWP(0,"esp"),$Zhh);
|
|
|
|
&shr ($Zll,24);
|
|
|
|
&mmx_loop("esp","eax");
|
|
|
|
&lea ($inp,&DWP(16,$inp));
|
|
&cmp ($inp,&wparam(1));
|
|
&jb (&label("mmx_outer_loop"));
|
|
|
|
&mov ($inp,&wparam(2)); # load Xi
|
|
&emms ();
|
|
&mov (&DWP(12,$inp),$Zll);
|
|
&mov (&DWP(4,$inp),$Zhl);
|
|
&mov (&DWP(8,$inp),$Zlh);
|
|
&mov (&DWP(0,$inp),$Zhh);
|
|
|
|
&stack_pop(4+1);
|
|
&function_end_A();
|
|
&set_label("x86",16);
|
|
}
|
|
&stack_push(16+4+1); # +1 for 64-bit alignment
|
|
&mov ($inp,&wparam(0)); # load in
|
|
&mov ("ecx",&wparam(1)); # load len
|
|
&mov ($Zll,&wparam(2)); # load Xi
|
|
&mov ($Htbl,&wparam(3)); # load Htable
|
|
&add ("ecx",$inp);
|
|
&mov (&wparam(1),"ecx");
|
|
|
|
&mov ($Zhh,&DWP(0,$Zll)); # load Xi[16]
|
|
&mov ($Zhl,&DWP(4,$Zll));
|
|
&mov ($Zlh,&DWP(8,$Zll));
|
|
&mov ($Zll,&DWP(12,$Zll));
|
|
|
|
&deposit_rem_4bit(16);
|
|
|
|
&set_label("x86_outer_loop",16);
|
|
&xor ($Zll,&DWP(12,$inp)); # xor with input
|
|
&xor ($Zlh,&DWP(8,$inp));
|
|
&xor ($Zhl,&DWP(4,$inp));
|
|
&xor ($Zhh,&DWP(0,$inp));
|
|
&mov (&DWP(12,"esp"),$Zll); # dump it on stack
|
|
&mov (&DWP(8,"esp"),$Zlh);
|
|
&mov (&DWP(4,"esp"),$Zhl);
|
|
&mov (&DWP(0,"esp"),$Zhh);
|
|
|
|
&shr ($Zll,20);
|
|
&and ($Zll,0xf0);
|
|
|
|
if ($unroll) {
|
|
&call ("_x86_gmult_4bit_inner");
|
|
} else {
|
|
&x86_loop(0);
|
|
&mov ($inp,&wparam(0));
|
|
}
|
|
&lea ($inp,&DWP(16,$inp));
|
|
&cmp ($inp,&wparam(1));
|
|
&mov (&wparam(0),$inp) if (!$unroll);
|
|
&jb (&label("x86_outer_loop"));
|
|
|
|
&mov ($inp,&wparam(2)); # load Xi
|
|
&mov (&DWP(12,$inp),$Zll);
|
|
&mov (&DWP(8,$inp),$Zlh);
|
|
&mov (&DWP(4,$inp),$Zhl);
|
|
&mov (&DWP(0,$inp),$Zhh);
|
|
&stack_pop(16+4+1);
|
|
&function_end("gcm_ghash_4bit");
|
|
|
|
sub deposit_rem_4bit {
|
|
my $bias = shift;
|
|
|
|
&mov (&DWP($bias+0, "esp"),0x0000<<16);
|
|
&mov (&DWP($bias+4, "esp"),0x1C20<<16);
|
|
&mov (&DWP($bias+8, "esp"),0x3840<<16);
|
|
&mov (&DWP($bias+12,"esp"),0x2460<<16);
|
|
&mov (&DWP($bias+16,"esp"),0x7080<<16);
|
|
&mov (&DWP($bias+20,"esp"),0x6CA0<<16);
|
|
&mov (&DWP($bias+24,"esp"),0x48C0<<16);
|
|
&mov (&DWP($bias+28,"esp"),0x54E0<<16);
|
|
&mov (&DWP($bias+32,"esp"),0xE100<<16);
|
|
&mov (&DWP($bias+36,"esp"),0xFD20<<16);
|
|
&mov (&DWP($bias+40,"esp"),0xD940<<16);
|
|
&mov (&DWP($bias+44,"esp"),0xC560<<16);
|
|
&mov (&DWP($bias+48,"esp"),0x9180<<16);
|
|
&mov (&DWP($bias+52,"esp"),0x8DA0<<16);
|
|
&mov (&DWP($bias+56,"esp"),0xA9C0<<16);
|
|
&mov (&DWP($bias+60,"esp"),0xB5E0<<16);
|
|
}
|
|
|
|
if (!$x86only) {
|
|
&set_label("rem_4bit",64);
|
|
&data_word(0,0x0000<<16,0,0x1C20<<16,0,0x3840<<16,0,0x2460<<16);
|
|
&data_word(0,0x7080<<16,0,0x6CA0<<16,0,0x48C0<<16,0,0x54E0<<16);
|
|
&data_word(0,0xE100<<16,0,0xFD20<<16,0,0xD940<<16,0,0xC560<<16);
|
|
&data_word(0,0x9180<<16,0,0x8DA0<<16,0,0xA9C0<<16,0,0xB5E0<<16);
|
|
}
|
|
&asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
|
|
&asm_finish();
|