de50494505
improvement on Core2. I still need to detect Core2 and choose this path...
243 lines
6.0 KiB
Raku
Executable File
243 lines
6.0 KiB
Raku
Executable File
#!/usr/bin/env perl
|
||
#
|
||
# ====================================================================
|
||
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
|
||
# project. Rights for redistribution and usage in source and binary
|
||
# forms are granted according to the OpenSSL license.
|
||
# ====================================================================
|
||
#
|
||
# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
|
||
# "hand-coded assembler"] doesn't stand for the whole improvement
|
||
# coefficient. It turned out that eliminating RC4_CHAR from config
|
||
# line results in ~40% improvement (yes, even for C implementation).
|
||
# Presumably it has everything to do with AMD cache architecture and
|
||
# RAW or whatever penalties. Once again! The module *requires* config
|
||
# line *without* RC4_CHAR! As for coding "secret," I bet on partial
|
||
# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
|
||
# I simply 'inc %r8b'. Even though optimization manual discourages
|
||
# to operate on partial registers, it turned out to be the best bet.
|
||
# At least for AMD... How IA32E would perform remains to be seen...
|
||
|
||
# As was shown by Marc Bevand reordering of couple of load operations
|
||
# results in even higher performance gain of 3.3x:-) At least on
|
||
# Opteron... For reference, 1x in this case is RC4_CHAR C-code
|
||
# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
|
||
# Latter means that if you want to *estimate* what to expect from
|
||
# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
|
||
|
||
# Intel P4 EM64T core was found to run the AMD64 code really slow...
|
||
# The only way to achieve comparable performance on P4 was to keep
|
||
# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
|
||
# compose blended code, which would perform even within 30% marginal
|
||
# on either AMD and Intel platforms, I implement both cases. See
|
||
# rc4_skey.c for further details...
|
||
|
||
# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
|
||
# those with add/sub results in 50% performance improvement of folded
|
||
# loop...
|
||
|
||
# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
|
||
# performance by >30% [unlike P4 32-bit case that is]. But this is
|
||
# provided that loads are reordered even more aggressively! Both code
|
||
# pathes, AMD64 and EM64T, reorder loads in essentially same manner
|
||
# as my IA-64 implementation. On Opteron this resulted in modest 5%
|
||
# improvement [I had to test it], while final Intel P4 performance
|
||
# achieves respectful 432MBps on 2.8GHz processor now. For reference.
|
||
# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
|
||
# RC4_INT code-path. While if executed on Opteron, it's only 25%
|
||
# slower than the RC4_INT one [meaning that if CPU <20>-arch detection
|
||
# is not implemented, then this final RC4_CHAR code-path should be
|
||
# preferred, as it provides better *all-round* performance].
|
||
|
||
$output=shift;
|
||
open STDOUT,"| $^X ../perlasm/x86_64-xlate.pl $output";
|
||
|
||
$dat="%rdi"; # arg1
|
||
$len="%rsi"; # arg2
|
||
$inp="%rdx"; # arg3
|
||
$out="%rcx"; # arg4
|
||
|
||
@XX=("%r8","%r10");
|
||
@TX=("%r9","%r11");
|
||
$YY="%r12";
|
||
$TY="%r13";
|
||
|
||
$code=<<___;
|
||
.text
|
||
|
||
.globl RC4
|
||
.type RC4,\@function,4
|
||
.align 16
|
||
RC4: or $len,$len
|
||
jne .Lentry
|
||
ret
|
||
.Lentry:
|
||
push %r12
|
||
push %r13
|
||
|
||
add \$8,$dat
|
||
movl -8($dat),$XX[0]#d
|
||
movl -4($dat),$YY#d
|
||
cmpl \$-1,256($dat)
|
||
je .LRC4_CHAR
|
||
inc $XX[0]#b
|
||
movl ($dat,$XX[0],4),$TX[0]#d
|
||
test \$-8,$len
|
||
jz .Lloop1
|
||
jmp .Lloop8
|
||
.align 16
|
||
.Lloop8:
|
||
___
|
||
for ($i=0;$i<8;$i++) {
|
||
$code.=<<___;
|
||
add $TX[0]#b,$YY#b
|
||
mov $XX[0],$XX[1]
|
||
movl ($dat,$YY,4),$TY#d
|
||
ror \$8,%rax # ror is redundant when $i=0
|
||
inc $XX[1]#b
|
||
movl ($dat,$XX[1],4),$TX[1]#d
|
||
cmp $XX[1],$YY
|
||
movl $TX[0]#d,($dat,$YY,4)
|
||
cmove $TX[0],$TX[1]
|
||
movl $TY#d,($dat,$XX[0],4)
|
||
add $TX[0]#b,$TY#b
|
||
movb ($dat,$TY,4),%al
|
||
___
|
||
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
|
||
}
|
||
$code.=<<___;
|
||
ror \$8,%rax
|
||
sub \$8,$len
|
||
|
||
xor ($inp),%rax
|
||
add \$8,$inp
|
||
mov %rax,($out)
|
||
add \$8,$out
|
||
|
||
test \$-8,$len
|
||
jnz .Lloop8
|
||
cmp \$0,$len
|
||
jne .Lloop1
|
||
___
|
||
$code.=<<___;
|
||
.Lexit:
|
||
sub \$1,$XX[0]#b
|
||
movl $XX[0]#d,-8($dat)
|
||
movl $YY#d,-4($dat)
|
||
|
||
pop %r13
|
||
pop %r12
|
||
ret
|
||
.align 16
|
||
.Lloop1:
|
||
add $TX[0]#b,$YY#b
|
||
movl ($dat,$YY,4),$TY#d
|
||
movl $TX[0]#d,($dat,$YY,4)
|
||
movl $TY#d,($dat,$XX[0],4)
|
||
add $TY#b,$TX[0]#b
|
||
inc $XX[0]#b
|
||
movl ($dat,$TX[0],4),$TY#d
|
||
movl ($dat,$XX[0],4),$TX[0]#d
|
||
xorb ($inp),$TY#b
|
||
inc $inp
|
||
movb $TY#b,($out)
|
||
inc $out
|
||
dec $len
|
||
jnz .Lloop1
|
||
jmp .Lexit
|
||
|
||
.align 16
|
||
.LRC4_CHAR:
|
||
add \$1,$XX[0]#b
|
||
movzb ($dat,$XX[0]),$TX[0]#d
|
||
test \$-8,$len
|
||
jz .Lcloop1
|
||
push %rbx
|
||
jmp .Lcloop8
|
||
.align 16
|
||
.Lcloop8:
|
||
mov ($inp),%eax
|
||
mov 4($inp),%ebx
|
||
___
|
||
# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
|
||
for ($i=0;$i<4;$i++) {
|
||
$code.=<<___;
|
||
add $TX[0]#b,$YY#b
|
||
lea 1($XX[0]),$XX[1]
|
||
movzb ($dat,$YY),$TY#d
|
||
movzb $XX[1]#b,$XX[1]#d
|
||
movzb ($dat,$XX[1]),$TX[1]#d
|
||
movb $TX[0]#b,($dat,$YY)
|
||
cmp $XX[1],$YY
|
||
movb $TY#b,($dat,$XX[0])
|
||
jne .Lcmov$i # Intel cmov is sloooow...
|
||
mov $TX[0],$TX[1]
|
||
.Lcmov$i:
|
||
add $TX[0]#b,$TY#b
|
||
xor ($dat,$TY),%al
|
||
ror \$8,%eax
|
||
___
|
||
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
|
||
}
|
||
for ($i=4;$i<8;$i++) {
|
||
$code.=<<___;
|
||
add $TX[0]#b,$YY#b
|
||
lea 1($XX[0]),$XX[1]
|
||
movzb ($dat,$YY),$TY#d
|
||
movzb $XX[1]#b,$XX[1]#d
|
||
movzb ($dat,$XX[1]),$TX[1]#d
|
||
movb $TX[0]#b,($dat,$YY)
|
||
cmp $XX[1],$YY
|
||
movb $TY#b,($dat,$XX[0])
|
||
jne .Lcmov$i # Intel cmov is sloooow...
|
||
mov $TX[0],$TX[1]
|
||
.Lcmov$i:
|
||
add $TX[0]#b,$TY#b
|
||
xor ($dat,$TY),%bl
|
||
ror \$8,%ebx
|
||
___
|
||
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
|
||
}
|
||
$code.=<<___;
|
||
lea -8($len),$len
|
||
mov %eax,($out)
|
||
lea 8($inp),$inp
|
||
mov %ebx,4($out)
|
||
lea 8($out),$out
|
||
|
||
test \$-8,$len
|
||
jnz .Lcloop8
|
||
pop %rbx
|
||
cmp \$0,$len
|
||
jne .Lcloop1
|
||
jmp .Lexit
|
||
___
|
||
$code.=<<___;
|
||
.align 16
|
||
.Lcloop1:
|
||
add $TX[0]#b,$YY#b
|
||
movzb ($dat,$YY),$TY#d
|
||
movb $TX[0]#b,($dat,$YY)
|
||
movb $TY#b,($dat,$XX[0])
|
||
add $TX[0]#b,$TY#b
|
||
add \$1,$XX[0]#b
|
||
movzb $TY#b,$TY#d
|
||
movzb $XX[0]#b,$XX[0]#d
|
||
movzb ($dat,$TY),$TY#d
|
||
movzb ($dat,$XX[0]),$TX[0]#d
|
||
xorb ($inp),$TY#b
|
||
lea 1($inp),$inp
|
||
movb $TY#b,($out)
|
||
lea 1($out),$out
|
||
sub \$1,$len
|
||
jnz .Lcloop1
|
||
jmp .Lexit
|
||
.size RC4,.-RC4
|
||
___
|
||
|
||
$code =~ s/#([bwd])/$1/gm;
|
||
|
||
print $code;
|
||
|
||
close STDOUT;
|