openssl/crypto/sha/sha512.c
Richard Levitte b39fc56061 Identify and move common internal libcrypto header files
There are header files in crypto/ that are used by a number of crypto/
submodules.  Move those to crypto/include/internal and adapt the
affected source code and Makefiles.

The header files that got moved are:

crypto/cryptolib.h
crypto/md32_common.h

Reviewed-by: Rich Salz <rsalz@openssl.org>
2015-05-14 17:21:40 +02:00

678 lines
23 KiB
C

/* crypto/sha/sha512.c */
/* ====================================================================
* Copyright (c) 2004 The OpenSSL Project. All rights reserved
* according to the OpenSSL license [found in ../../LICENSE].
* ====================================================================
*/
#include <openssl/opensslconf.h>
/*-
* IMPLEMENTATION NOTES.
*
* As you might have noticed 32-bit hash algorithms:
*
* - permit SHA_LONG to be wider than 32-bit
* - optimized versions implement two transform functions: one operating
* on [aligned] data in host byte order and one - on data in input
* stream byte order;
* - share common byte-order neutral collector and padding function
* implementations, ../md32_common.h;
*
* Neither of the above applies to this SHA-512 implementations. Reasons
* [in reverse order] are:
*
* - it's the only 64-bit hash algorithm for the moment of this writing,
* there is no need for common collector/padding implementation [yet];
* - by supporting only one transform function [which operates on
* *aligned* data in input stream byte order, big-endian in this case]
* we minimize burden of maintenance in two ways: a) collector/padding
* function is simpler; b) only one transform function to stare at;
* - SHA_LONG64 is required to be exactly 64-bit in order to be able to
* apply a number of optimizations to mitigate potential performance
* penalties caused by previous design decision;
*
* Caveat lector.
*
* Implementation relies on the fact that "long long" is 64-bit on
* both 32- and 64-bit platforms. If some compiler vendor comes up
* with 128-bit long long, adjustment to sha.h would be required.
* As this implementation relies on 64-bit integer type, it's totally
* inappropriate for platforms which don't support it, most notably
* 16-bit platforms.
* <appro@fy.chalmers.se>
*/
#include <stdlib.h>
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/sha.h>
#include <openssl/opensslv.h>
#include "internal/cryptlib.h"
const char SHA512_version[] = "SHA-512" OPENSSL_VERSION_PTEXT;
#if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
defined(__x86_64) || defined(_M_AMD64) || defined(_M_X64) || \
defined(__s390__) || defined(__s390x__) || \
defined(__aarch64__) || \
defined(SHA512_ASM)
# define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
#endif
int SHA384_Init(SHA512_CTX *c)
{
c->h[0] = U64(0xcbbb9d5dc1059ed8);
c->h[1] = U64(0x629a292a367cd507);
c->h[2] = U64(0x9159015a3070dd17);
c->h[3] = U64(0x152fecd8f70e5939);
c->h[4] = U64(0x67332667ffc00b31);
c->h[5] = U64(0x8eb44a8768581511);
c->h[6] = U64(0xdb0c2e0d64f98fa7);
c->h[7] = U64(0x47b5481dbefa4fa4);
c->Nl = 0;
c->Nh = 0;
c->num = 0;
c->md_len = SHA384_DIGEST_LENGTH;
return 1;
}
int SHA512_Init(SHA512_CTX *c)
{
c->h[0] = U64(0x6a09e667f3bcc908);
c->h[1] = U64(0xbb67ae8584caa73b);
c->h[2] = U64(0x3c6ef372fe94f82b);
c->h[3] = U64(0xa54ff53a5f1d36f1);
c->h[4] = U64(0x510e527fade682d1);
c->h[5] = U64(0x9b05688c2b3e6c1f);
c->h[6] = U64(0x1f83d9abfb41bd6b);
c->h[7] = U64(0x5be0cd19137e2179);
c->Nl = 0;
c->Nh = 0;
c->num = 0;
c->md_len = SHA512_DIGEST_LENGTH;
return 1;
}
#ifndef SHA512_ASM
static
#endif
void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num);
int SHA512_Final(unsigned char *md, SHA512_CTX *c)
{
unsigned char *p = (unsigned char *)c->u.p;
size_t n = c->num;
p[n] = 0x80; /* There always is a room for one */
n++;
if (n > (sizeof(c->u) - 16)) {
memset(p + n, 0, sizeof(c->u) - n);
n = 0;
sha512_block_data_order(c, p, 1);
}
memset(p + n, 0, sizeof(c->u) - 16 - n);
#ifdef B_ENDIAN
c->u.d[SHA_LBLOCK - 2] = c->Nh;
c->u.d[SHA_LBLOCK - 1] = c->Nl;
#else
p[sizeof(c->u) - 1] = (unsigned char)(c->Nl);
p[sizeof(c->u) - 2] = (unsigned char)(c->Nl >> 8);
p[sizeof(c->u) - 3] = (unsigned char)(c->Nl >> 16);
p[sizeof(c->u) - 4] = (unsigned char)(c->Nl >> 24);
p[sizeof(c->u) - 5] = (unsigned char)(c->Nl >> 32);
p[sizeof(c->u) - 6] = (unsigned char)(c->Nl >> 40);
p[sizeof(c->u) - 7] = (unsigned char)(c->Nl >> 48);
p[sizeof(c->u) - 8] = (unsigned char)(c->Nl >> 56);
p[sizeof(c->u) - 9] = (unsigned char)(c->Nh);
p[sizeof(c->u) - 10] = (unsigned char)(c->Nh >> 8);
p[sizeof(c->u) - 11] = (unsigned char)(c->Nh >> 16);
p[sizeof(c->u) - 12] = (unsigned char)(c->Nh >> 24);
p[sizeof(c->u) - 13] = (unsigned char)(c->Nh >> 32);
p[sizeof(c->u) - 14] = (unsigned char)(c->Nh >> 40);
p[sizeof(c->u) - 15] = (unsigned char)(c->Nh >> 48);
p[sizeof(c->u) - 16] = (unsigned char)(c->Nh >> 56);
#endif
sha512_block_data_order(c, p, 1);
if (md == 0)
return 0;
switch (c->md_len) {
/* Let compiler decide if it's appropriate to unroll... */
case SHA384_DIGEST_LENGTH:
for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) {
SHA_LONG64 t = c->h[n];
*(md++) = (unsigned char)(t >> 56);
*(md++) = (unsigned char)(t >> 48);
*(md++) = (unsigned char)(t >> 40);
*(md++) = (unsigned char)(t >> 32);
*(md++) = (unsigned char)(t >> 24);
*(md++) = (unsigned char)(t >> 16);
*(md++) = (unsigned char)(t >> 8);
*(md++) = (unsigned char)(t);
}
break;
case SHA512_DIGEST_LENGTH:
for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) {
SHA_LONG64 t = c->h[n];
*(md++) = (unsigned char)(t >> 56);
*(md++) = (unsigned char)(t >> 48);
*(md++) = (unsigned char)(t >> 40);
*(md++) = (unsigned char)(t >> 32);
*(md++) = (unsigned char)(t >> 24);
*(md++) = (unsigned char)(t >> 16);
*(md++) = (unsigned char)(t >> 8);
*(md++) = (unsigned char)(t);
}
break;
/* ... as well as make sure md_len is not abused. */
default:
return 0;
}
return 1;
}
int SHA384_Final(unsigned char *md, SHA512_CTX *c)
{
return SHA512_Final(md, c);
}
int SHA512_Update(SHA512_CTX *c, const void *_data, size_t len)
{
SHA_LONG64 l;
unsigned char *p = c->u.p;
const unsigned char *data = (const unsigned char *)_data;
if (len == 0)
return 1;
l = (c->Nl + (((SHA_LONG64) len) << 3)) & U64(0xffffffffffffffff);
if (l < c->Nl)
c->Nh++;
if (sizeof(len) >= 8)
c->Nh += (((SHA_LONG64) len) >> 61);
c->Nl = l;
if (c->num != 0) {
size_t n = sizeof(c->u) - c->num;
if (len < n) {
memcpy(p + c->num, data, len), c->num += (unsigned int)len;
return 1;
} else {
memcpy(p + c->num, data, n), c->num = 0;
len -= n, data += n;
sha512_block_data_order(c, p, 1);
}
}
if (len >= sizeof(c->u)) {
#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
if ((size_t)data % sizeof(c->u.d[0]) != 0)
while (len >= sizeof(c->u))
memcpy(p, data, sizeof(c->u)),
sha512_block_data_order(c, p, 1),
len -= sizeof(c->u), data += sizeof(c->u);
else
#endif
sha512_block_data_order(c, data, len / sizeof(c->u)),
data += len, len %= sizeof(c->u), data -= len;
}
if (len != 0)
memcpy(p, data, len), c->num = (int)len;
return 1;
}
int SHA384_Update(SHA512_CTX *c, const void *data, size_t len)
{
return SHA512_Update(c, data, len);
}
void SHA512_Transform(SHA512_CTX *c, const unsigned char *data)
{
#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
if ((size_t)data % sizeof(c->u.d[0]) != 0)
memcpy(c->u.p, data, sizeof(c->u.p)), data = c->u.p;
#endif
sha512_block_data_order(c, data, 1);
}
unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md)
{
SHA512_CTX c;
static unsigned char m[SHA384_DIGEST_LENGTH];
if (md == NULL)
md = m;
SHA384_Init(&c);
SHA512_Update(&c, d, n);
SHA512_Final(md, &c);
OPENSSL_cleanse(&c, sizeof(c));
return (md);
}
unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md)
{
SHA512_CTX c;
static unsigned char m[SHA512_DIGEST_LENGTH];
if (md == NULL)
md = m;
SHA512_Init(&c);
SHA512_Update(&c, d, n);
SHA512_Final(md, &c);
OPENSSL_cleanse(&c, sizeof(c));
return (md);
}
#ifndef SHA512_ASM
static const SHA_LONG64 K512[80] = {
U64(0x428a2f98d728ae22), U64(0x7137449123ef65cd),
U64(0xb5c0fbcfec4d3b2f), U64(0xe9b5dba58189dbbc),
U64(0x3956c25bf348b538), U64(0x59f111f1b605d019),
U64(0x923f82a4af194f9b), U64(0xab1c5ed5da6d8118),
U64(0xd807aa98a3030242), U64(0x12835b0145706fbe),
U64(0x243185be4ee4b28c), U64(0x550c7dc3d5ffb4e2),
U64(0x72be5d74f27b896f), U64(0x80deb1fe3b1696b1),
U64(0x9bdc06a725c71235), U64(0xc19bf174cf692694),
U64(0xe49b69c19ef14ad2), U64(0xefbe4786384f25e3),
U64(0x0fc19dc68b8cd5b5), U64(0x240ca1cc77ac9c65),
U64(0x2de92c6f592b0275), U64(0x4a7484aa6ea6e483),
U64(0x5cb0a9dcbd41fbd4), U64(0x76f988da831153b5),
U64(0x983e5152ee66dfab), U64(0xa831c66d2db43210),
U64(0xb00327c898fb213f), U64(0xbf597fc7beef0ee4),
U64(0xc6e00bf33da88fc2), U64(0xd5a79147930aa725),
U64(0x06ca6351e003826f), U64(0x142929670a0e6e70),
U64(0x27b70a8546d22ffc), U64(0x2e1b21385c26c926),
U64(0x4d2c6dfc5ac42aed), U64(0x53380d139d95b3df),
U64(0x650a73548baf63de), U64(0x766a0abb3c77b2a8),
U64(0x81c2c92e47edaee6), U64(0x92722c851482353b),
U64(0xa2bfe8a14cf10364), U64(0xa81a664bbc423001),
U64(0xc24b8b70d0f89791), U64(0xc76c51a30654be30),
U64(0xd192e819d6ef5218), U64(0xd69906245565a910),
U64(0xf40e35855771202a), U64(0x106aa07032bbd1b8),
U64(0x19a4c116b8d2d0c8), U64(0x1e376c085141ab53),
U64(0x2748774cdf8eeb99), U64(0x34b0bcb5e19b48a8),
U64(0x391c0cb3c5c95a63), U64(0x4ed8aa4ae3418acb),
U64(0x5b9cca4f7763e373), U64(0x682e6ff3d6b2b8a3),
U64(0x748f82ee5defb2fc), U64(0x78a5636f43172f60),
U64(0x84c87814a1f0ab72), U64(0x8cc702081a6439ec),
U64(0x90befffa23631e28), U64(0xa4506cebde82bde9),
U64(0xbef9a3f7b2c67915), U64(0xc67178f2e372532b),
U64(0xca273eceea26619c), U64(0xd186b8c721c0c207),
U64(0xeada7dd6cde0eb1e), U64(0xf57d4f7fee6ed178),
U64(0x06f067aa72176fba), U64(0x0a637dc5a2c898a6),
U64(0x113f9804bef90dae), U64(0x1b710b35131c471b),
U64(0x28db77f523047d84), U64(0x32caab7b40c72493),
U64(0x3c9ebe0a15c9bebc), U64(0x431d67c49c100d4c),
U64(0x4cc5d4becb3e42b6), U64(0x597f299cfc657e2a),
U64(0x5fcb6fab3ad6faec), U64(0x6c44198c4a475817)
};
# ifndef PEDANTIC
# if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
# if defined(__x86_64) || defined(__x86_64__)
# define ROTR(a,n) ({ SHA_LONG64 ret; \
asm ("rorq %1,%0" \
: "=r"(ret) \
: "J"(n),"0"(a) \
: "cc"); ret; })
# if !defined(B_ENDIAN)
# define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x))); \
asm ("bswapq %0" \
: "=r"(ret) \
: "0"(ret)); ret; })
# endif
# elif (defined(__i386) || defined(__i386__)) && !defined(B_ENDIAN)
# if defined(I386_ONLY)
# define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
unsigned int hi=p[0],lo=p[1]; \
asm("xchgb %%ah,%%al;xchgb %%dh,%%dl;"\
"roll $16,%%eax; roll $16,%%edx; "\
"xchgb %%ah,%%al;xchgb %%dh,%%dl;" \
: "=a"(lo),"=d"(hi) \
: "0"(lo),"1"(hi) : "cc"); \
((SHA_LONG64)hi)<<32|lo; })
# else
# define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
unsigned int hi=p[0],lo=p[1]; \
asm ("bswapl %0; bswapl %1;" \
: "=r"(lo),"=r"(hi) \
: "0"(lo),"1"(hi)); \
((SHA_LONG64)hi)<<32|lo; })
# endif
# elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
# define ROTR(a,n) ({ SHA_LONG64 ret; \
asm ("rotrdi %0,%1,%2" \
: "=r"(ret) \
: "r"(a),"K"(n)); ret; })
# elif defined(__aarch64__)
# define ROTR(a,n) ({ SHA_LONG64 ret; \
asm ("ror %0,%1,%2" \
: "=r"(ret) \
: "r"(a),"I"(n)); ret; })
# if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
__BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__
# define PULL64(x) ({ SHA_LONG64 ret; \
asm ("rev %0,%1" \
: "=r"(ret) \
: "r"(*((const SHA_LONG64 *)(&(x))))); ret; })
# endif
# endif
# elif defined(_MSC_VER)
# if defined(_WIN64) /* applies to both IA-64 and AMD64 */
# pragma intrinsic(_rotr64)
# define ROTR(a,n) _rotr64((a),n)
# endif
# if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
# if defined(I386_ONLY)
static SHA_LONG64 __fastcall __pull64be(const void *x)
{
_asm mov edx,[ecx + 0]
_asm mov eax,[ecx + 4]
_asm xchg dh, dl
_asm xchg ah, al
_asm rol edx, 16 _asm rol eax, 16 _asm xchg dh, dl _asm xchg ah, al}
# else
static SHA_LONG64 __fastcall __pull64be(const void *x)
{
_asm mov edx,[ecx + 0]
_asm mov eax,[ecx + 4]
_asm bswap edx _asm bswap eax}
# endif
# define PULL64(x) __pull64be(&(x))
# if _MSC_VER<=1200
# pragma inline_depth(0)
# endif
# endif
# endif
# endif
# ifndef PULL64
# define B(x,j) (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8))
# define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
# endif
# ifndef ROTR
# define ROTR(x,s) (((x)>>s) | (x)<<(64-s))
# endif
# define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
# define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
# define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
# define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
# define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
# define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
# if defined(__i386) || defined(__i386__) || defined(_M_IX86)
/*
* This code should give better results on 32-bit CPU with less than
* ~24 registers, both size and performance wise...
*/ static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
size_t num)
{
const SHA_LONG64 *W = in;
SHA_LONG64 A, E, T;
SHA_LONG64 X[9 + 80], *F;
int i;
while (num--) {
F = X + 80;
A = ctx->h[0];
F[1] = ctx->h[1];
F[2] = ctx->h[2];
F[3] = ctx->h[3];
E = ctx->h[4];
F[5] = ctx->h[5];
F[6] = ctx->h[6];
F[7] = ctx->h[7];
for (i = 0; i < 16; i++, F--) {
# ifdef B_ENDIAN
T = W[i];
# else
T = PULL64(W[i]);
# endif
F[0] = A;
F[4] = E;
F[8] = T;
T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
E = F[3] + T;
A = T + Sigma0(A) + Maj(A, F[1], F[2]);
}
for (; i < 80; i++, F--) {
T = sigma0(F[8 + 16 - 1]);
T += sigma1(F[8 + 16 - 14]);
T += F[8 + 16] + F[8 + 16 - 9];
F[0] = A;
F[4] = E;
F[8] = T;
T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
E = F[3] + T;
A = T + Sigma0(A) + Maj(A, F[1], F[2]);
}
ctx->h[0] += A;
ctx->h[1] += F[1];
ctx->h[2] += F[2];
ctx->h[3] += F[3];
ctx->h[4] += E;
ctx->h[5] += F[5];
ctx->h[6] += F[6];
ctx->h[7] += F[7];
W += SHA_LBLOCK;
}
}
# elif defined(OPENSSL_SMALL_FOOTPRINT)
static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
size_t num)
{
const SHA_LONG64 *W = in;
SHA_LONG64 a, b, c, d, e, f, g, h, s0, s1, T1, T2;
SHA_LONG64 X[16];
int i;
while (num--) {
a = ctx->h[0];
b = ctx->h[1];
c = ctx->h[2];
d = ctx->h[3];
e = ctx->h[4];
f = ctx->h[5];
g = ctx->h[6];
h = ctx->h[7];
for (i = 0; i < 16; i++) {
# ifdef B_ENDIAN
T1 = X[i] = W[i];
# else
T1 = X[i] = PULL64(W[i]);
# endif
T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i];
T2 = Sigma0(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
}
for (; i < 80; i++) {
s0 = X[(i + 1) & 0x0f];
s0 = sigma0(s0);
s1 = X[(i + 14) & 0x0f];
s1 = sigma1(s1);
T1 = X[i & 0xf] += s0 + s1 + X[(i + 9) & 0xf];
T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i];
T2 = Sigma0(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
}
ctx->h[0] += a;
ctx->h[1] += b;
ctx->h[2] += c;
ctx->h[3] += d;
ctx->h[4] += e;
ctx->h[5] += f;
ctx->h[6] += g;
ctx->h[7] += h;
W += SHA_LBLOCK;
}
}
# else
# define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; \
h = Sigma0(a) + Maj(a,b,c); \
d += T1; h += T1; } while (0)
# define ROUND_16_80(i,j,a,b,c,d,e,f,g,h,X) do { \
s0 = X[(j+1)&0x0f]; s0 = sigma0(s0); \
s1 = X[(j+14)&0x0f]; s1 = sigma1(s1); \
T1 = X[(j)&0x0f] += s0 + s1 + X[(j+9)&0x0f]; \
ROUND_00_15(i+j,a,b,c,d,e,f,g,h); } while (0)
static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
size_t num)
{
const SHA_LONG64 *W = in;
SHA_LONG64 a, b, c, d, e, f, g, h, s0, s1, T1;
SHA_LONG64 X[16];
int i;
while (num--) {
a = ctx->h[0];
b = ctx->h[1];
c = ctx->h[2];
d = ctx->h[3];
e = ctx->h[4];
f = ctx->h[5];
g = ctx->h[6];
h = ctx->h[7];
# ifdef B_ENDIAN
T1 = X[0] = W[0];
ROUND_00_15(0, a, b, c, d, e, f, g, h);
T1 = X[1] = W[1];
ROUND_00_15(1, h, a, b, c, d, e, f, g);
T1 = X[2] = W[2];
ROUND_00_15(2, g, h, a, b, c, d, e, f);
T1 = X[3] = W[3];
ROUND_00_15(3, f, g, h, a, b, c, d, e);
T1 = X[4] = W[4];
ROUND_00_15(4, e, f, g, h, a, b, c, d);
T1 = X[5] = W[5];
ROUND_00_15(5, d, e, f, g, h, a, b, c);
T1 = X[6] = W[6];
ROUND_00_15(6, c, d, e, f, g, h, a, b);
T1 = X[7] = W[7];
ROUND_00_15(7, b, c, d, e, f, g, h, a);
T1 = X[8] = W[8];
ROUND_00_15(8, a, b, c, d, e, f, g, h);
T1 = X[9] = W[9];
ROUND_00_15(9, h, a, b, c, d, e, f, g);
T1 = X[10] = W[10];
ROUND_00_15(10, g, h, a, b, c, d, e, f);
T1 = X[11] = W[11];
ROUND_00_15(11, f, g, h, a, b, c, d, e);
T1 = X[12] = W[12];
ROUND_00_15(12, e, f, g, h, a, b, c, d);
T1 = X[13] = W[13];
ROUND_00_15(13, d, e, f, g, h, a, b, c);
T1 = X[14] = W[14];
ROUND_00_15(14, c, d, e, f, g, h, a, b);
T1 = X[15] = W[15];
ROUND_00_15(15, b, c, d, e, f, g, h, a);
# else
T1 = X[0] = PULL64(W[0]);
ROUND_00_15(0, a, b, c, d, e, f, g, h);
T1 = X[1] = PULL64(W[1]);
ROUND_00_15(1, h, a, b, c, d, e, f, g);
T1 = X[2] = PULL64(W[2]);
ROUND_00_15(2, g, h, a, b, c, d, e, f);
T1 = X[3] = PULL64(W[3]);
ROUND_00_15(3, f, g, h, a, b, c, d, e);
T1 = X[4] = PULL64(W[4]);
ROUND_00_15(4, e, f, g, h, a, b, c, d);
T1 = X[5] = PULL64(W[5]);
ROUND_00_15(5, d, e, f, g, h, a, b, c);
T1 = X[6] = PULL64(W[6]);
ROUND_00_15(6, c, d, e, f, g, h, a, b);
T1 = X[7] = PULL64(W[7]);
ROUND_00_15(7, b, c, d, e, f, g, h, a);
T1 = X[8] = PULL64(W[8]);
ROUND_00_15(8, a, b, c, d, e, f, g, h);
T1 = X[9] = PULL64(W[9]);
ROUND_00_15(9, h, a, b, c, d, e, f, g);
T1 = X[10] = PULL64(W[10]);
ROUND_00_15(10, g, h, a, b, c, d, e, f);
T1 = X[11] = PULL64(W[11]);
ROUND_00_15(11, f, g, h, a, b, c, d, e);
T1 = X[12] = PULL64(W[12]);
ROUND_00_15(12, e, f, g, h, a, b, c, d);
T1 = X[13] = PULL64(W[13]);
ROUND_00_15(13, d, e, f, g, h, a, b, c);
T1 = X[14] = PULL64(W[14]);
ROUND_00_15(14, c, d, e, f, g, h, a, b);
T1 = X[15] = PULL64(W[15]);
ROUND_00_15(15, b, c, d, e, f, g, h, a);
# endif
for (i = 16; i < 80; i += 16) {
ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
}
ctx->h[0] += a;
ctx->h[1] += b;
ctx->h[2] += c;
ctx->h[3] += d;
ctx->h[4] += e;
ctx->h[5] += f;
ctx->h[6] += g;
ctx->h[7] += h;
W += SHA_LBLOCK;
}
}
# endif
#endif /* SHA512_ASM */