openssl/crypto/rc2/rc2_skey.c
Dr. Stephen Henson 916bcab28e Prohibit low level cipher APIs in FIPS mode.
Not complete: ciphers with assembly language key setup are not
covered yet.
2011-06-01 16:54:06 +00:00

154 lines
6.0 KiB
C

/* crypto/rc2/rc2_skey.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
#include <openssl/crypto.h>
#include <openssl/rc2.h>
#include "rc2_locl.h"
static const unsigned char key_table[256]={
0xd9,0x78,0xf9,0xc4,0x19,0xdd,0xb5,0xed,0x28,0xe9,0xfd,0x79,
0x4a,0xa0,0xd8,0x9d,0xc6,0x7e,0x37,0x83,0x2b,0x76,0x53,0x8e,
0x62,0x4c,0x64,0x88,0x44,0x8b,0xfb,0xa2,0x17,0x9a,0x59,0xf5,
0x87,0xb3,0x4f,0x13,0x61,0x45,0x6d,0x8d,0x09,0x81,0x7d,0x32,
0xbd,0x8f,0x40,0xeb,0x86,0xb7,0x7b,0x0b,0xf0,0x95,0x21,0x22,
0x5c,0x6b,0x4e,0x82,0x54,0xd6,0x65,0x93,0xce,0x60,0xb2,0x1c,
0x73,0x56,0xc0,0x14,0xa7,0x8c,0xf1,0xdc,0x12,0x75,0xca,0x1f,
0x3b,0xbe,0xe4,0xd1,0x42,0x3d,0xd4,0x30,0xa3,0x3c,0xb6,0x26,
0x6f,0xbf,0x0e,0xda,0x46,0x69,0x07,0x57,0x27,0xf2,0x1d,0x9b,
0xbc,0x94,0x43,0x03,0xf8,0x11,0xc7,0xf6,0x90,0xef,0x3e,0xe7,
0x06,0xc3,0xd5,0x2f,0xc8,0x66,0x1e,0xd7,0x08,0xe8,0xea,0xde,
0x80,0x52,0xee,0xf7,0x84,0xaa,0x72,0xac,0x35,0x4d,0x6a,0x2a,
0x96,0x1a,0xd2,0x71,0x5a,0x15,0x49,0x74,0x4b,0x9f,0xd0,0x5e,
0x04,0x18,0xa4,0xec,0xc2,0xe0,0x41,0x6e,0x0f,0x51,0xcb,0xcc,
0x24,0x91,0xaf,0x50,0xa1,0xf4,0x70,0x39,0x99,0x7c,0x3a,0x85,
0x23,0xb8,0xb4,0x7a,0xfc,0x02,0x36,0x5b,0x25,0x55,0x97,0x31,
0x2d,0x5d,0xfa,0x98,0xe3,0x8a,0x92,0xae,0x05,0xdf,0x29,0x10,
0x67,0x6c,0xba,0xc9,0xd3,0x00,0xe6,0xcf,0xe1,0x9e,0xa8,0x2c,
0x63,0x16,0x01,0x3f,0x58,0xe2,0x89,0xa9,0x0d,0x38,0x34,0x1b,
0xab,0x33,0xff,0xb0,0xbb,0x48,0x0c,0x5f,0xb9,0xb1,0xcd,0x2e,
0xc5,0xf3,0xdb,0x47,0xe5,0xa5,0x9c,0x77,0x0a,0xa6,0x20,0x68,
0xfe,0x7f,0xc1,0xad,
};
#if defined(_MSC_VER) && defined(_ARM_)
#pragma optimize("g",off)
#endif
/* It has come to my attention that there are 2 versions of the RC2
* key schedule. One which is normal, and anther which has a hook to
* use a reduced key length.
* BSAFE uses the 'retarded' version. What I previously shipped is
* the same as specifying 1024 for the 'bits' parameter. Bsafe uses
* a version where the bits parameter is the same as len*8 */
void RC2_set_key(RC2_KEY *key, int len, const unsigned char *data, int bits)
#ifdef OPENSSL_FIPS
{
fips_cipher_abort(RC2);
private_RC2_set_key(key, len, data, bits);
}
void private_RC2_set_key(RC2_KEY *key, int len, const unsigned char *data, int bits)
#endif
{
int i,j;
unsigned char *k;
RC2_INT *ki;
unsigned int c,d;
k= (unsigned char *)&(key->data[0]);
*k=0; /* for if there is a zero length key */
if (len > 128) len=128;
if (bits <= 0) bits=1024;
if (bits > 1024) bits=1024;
for (i=0; i<len; i++)
k[i]=data[i];
/* expand table */
d=k[len-1];
j=0;
for (i=len; i < 128; i++,j++)
{
d=key_table[(k[j]+d)&0xff];
k[i]=d;
}
/* hmm.... key reduction to 'bits' bits */
j=(bits+7)>>3;
i=128-j;
c= (0xff>>(-bits & 0x07));
d=key_table[k[i]&c];
k[i]=d;
while (i--)
{
d=key_table[k[i+j]^d];
k[i]=d;
}
/* copy from bytes into RC2_INT's */
ki= &(key->data[63]);
for (i=127; i>=0; i-=2)
*(ki--)=((k[i]<<8)|k[i-1])&0xffff;
}
#if defined(_MSC_VER)
#pragma optimize("",on)
#endif