openssl/crypto/evp/e_aes.c
2011-05-30 10:13:42 +00:00

980 lines
24 KiB
C

/* ====================================================================
* Copyright (c) 2001 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
*/
#define OPENSSL_FIPSAPI
#include <openssl/opensslconf.h>
#ifndef OPENSSL_NO_AES
#include <openssl/evp.h>
#include <openssl/err.h>
#include <string.h>
#include <assert.h>
#include <openssl/aes.h>
#include "evp_locl.h"
#include "modes_lcl.h"
#include <openssl/rand.h>
typedef struct
{
AES_KEY ks;
} EVP_AES_KEY;
#if defined(AES_ASM) && !defined(I386_ONLY) && ( \
((defined(__i386) || defined(__i386__) || \
defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \
defined(__x86_64) || defined(__x86_64__) || \
defined(_M_AMD64) || defined(_M_X64) || \
defined(__INTEL__) )
int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
AES_KEY *key);
int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
AES_KEY *key);
void aesni_encrypt(const unsigned char *in, unsigned char *out,
const AES_KEY *key);
void aesni_decrypt(const unsigned char *in, unsigned char *out,
const AES_KEY *key);
void aesni_ecb_encrypt(const unsigned char *in,
unsigned char *out,
size_t length,
const AES_KEY *key,
int enc);
void aesni_cbc_encrypt(const unsigned char *in,
unsigned char *out,
size_t length,
const AES_KEY *key,
unsigned char *ivec, int enc);
void aesni_ctr32_encrypt_blocks(const unsigned char *in,
unsigned char *out,
size_t blocks,
const void *key,
const unsigned char *ivec);
extern unsigned int OPENSSL_ia32cap_P[2];
#define AESNI_CAPABLE (1<<(57-32))
static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
int ret;
if (((ctx->cipher->flags & EVP_CIPH_MODE) == EVP_CIPH_ECB_MODE
|| (ctx->cipher->flags & EVP_CIPH_MODE) == EVP_CIPH_CBC_MODE)
&& !enc)
ret = OPENSSL_ia32cap_P[1]&AESNI_CAPABLE ?
aesni_set_decrypt_key(key, ctx->key_len*8, ctx->cipher_data):
AES_set_decrypt_key(key, ctx->key_len * 8, ctx->cipher_data);
else
ret = OPENSSL_ia32cap_P[1]&AESNI_CAPABLE ?
aesni_set_encrypt_key(key, ctx->key_len*8, ctx->cipher_data):
AES_set_encrypt_key(key, ctx->key_len * 8, ctx->cipher_data);
if(ret < 0)
{
EVPerr(EVP_F_AES_INIT_KEY,EVP_R_AES_KEY_SETUP_FAILED);
return 0;
}
return 1;
}
static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out,
const unsigned char *in, size_t len)
{
if (OPENSSL_ia32cap_P[1]&AESNI_CAPABLE)
aesni_cbc_encrypt(in,out,len,ctx->cipher_data,ctx->iv,ctx->encrypt);
else
AES_cbc_encrypt(in,out,len,ctx->cipher_data,ctx->iv,ctx->encrypt);
return 1;
}
static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out,
const unsigned char *in, size_t len)
{
size_t bl = ctx->cipher->block_size;
if (len<bl) return 1;
if (OPENSSL_ia32cap_P[1]&AESNI_CAPABLE)
aesni_ecb_encrypt(in,out,len,ctx->cipher_data,ctx->encrypt);
else {
size_t i;
if (ctx->encrypt) {
for (i=0,len-=bl;i<=len;i+=bl)
AES_encrypt(in+i,out+i,ctx->cipher_data);
} else {
for (i=0,len-=bl;i<=len;i+=bl)
AES_decrypt(in+i,out+i,ctx->cipher_data);
}
}
return 1;
}
static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out,
const unsigned char *in,size_t len)
{
CRYPTO_ofb128_encrypt(in,out,len,ctx->cipher_data,
ctx->iv,&ctx->num,
OPENSSL_ia32cap_P[1]&AESNI_CAPABLE ?
(block128_f)aesni_encrypt :
(block128_f)AES_encrypt);
return 1;
}
static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out,
const unsigned char *in,size_t len)
{
CRYPTO_cfb128_encrypt(in,out,len,ctx->cipher_data,
ctx->iv,&ctx->num,ctx->encrypt,
OPENSSL_ia32cap_P[1]&AESNI_CAPABLE ?
(block128_f)aesni_encrypt :
(block128_f)AES_encrypt);
return 1;
}
static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out,
const unsigned char *in,size_t len)
{
CRYPTO_cfb128_8_encrypt(in,out,len,ctx->cipher_data,
ctx->iv,&ctx->num,ctx->encrypt,
OPENSSL_ia32cap_P[1]&AESNI_CAPABLE ?
(block128_f)aesni_encrypt :
(block128_f)AES_encrypt);
return 1;
}
#define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4))
static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out,
const unsigned char *in,size_t len)
{
block128_f block = OPENSSL_ia32cap_P[1]&AESNI_CAPABLE ?
(block128_f)aesni_encrypt :
(block128_f)AES_encrypt;
if (ctx->flags&EVP_CIPH_FLAG_LENGTH_BITS) {
CRYPTO_cfb128_1_encrypt(in,out,len,ctx->cipher_data,
ctx->iv,&ctx->num,ctx->encrypt,block);
return 1;
}
while (len>=MAXBITCHUNK) {
CRYPTO_cfb128_1_encrypt(in,out,MAXBITCHUNK*8,ctx->cipher_data,
ctx->iv,&ctx->num,ctx->encrypt,block);
len-=MAXBITCHUNK;
}
if (len)
CRYPTO_cfb128_1_encrypt(in,out,len*8,ctx->cipher_data,
ctx->iv,&ctx->num,ctx->encrypt,block);
return 1;
}
static int aes_counter(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
unsigned int num;
num = ctx->num;
if (OPENSSL_ia32cap_P[1]&AESNI_CAPABLE)
CRYPTO_ctr128_encrypt_ctr32(in,out,len,
ctx->cipher_data,ctx->iv,ctx->buf,&num,
(ctr128_f)aesni_ctr32_encrypt_blocks);
else
CRYPTO_ctr128_encrypt(in,out,len,
ctx->cipher_data,ctx->iv,ctx->buf,&num,
(block128_f)AES_encrypt);
ctx->num = (size_t)num;
return 1;
}
#define BLOCK_CIPHER_mydef(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
static const EVP_CIPHER aes_##keylen##_##mode = { \
nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
flags|EVP_CIPH_##MODE##_MODE, \
aes_init_key,aes_##mode##_cipher,NULL,sizeof(EVP_AES_KEY), \
NULL,NULL,NULL,NULL }; \
const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) { return &aes_##keylen##_##mode; }
#define BLOCK_CIPHER_mydefs(nid,keylen,flags) \
BLOCK_CIPHER_mydef(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
BLOCK_CIPHER_mydef(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
BLOCK_CIPHER_mydef(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
BLOCK_CIPHER_mydef(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
BLOCK_CIPHER_mydef(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \
BLOCK_CIPHER_mydef(nid,keylen,1,16,cfb8,cfb8,CFB,flags)
BLOCK_CIPHER_mydefs(NID_aes,128,EVP_CIPH_FLAG_FIPS)
BLOCK_CIPHER_mydefs(NID_aes,192,EVP_CIPH_FLAG_FIPS)
BLOCK_CIPHER_mydefs(NID_aes,256,EVP_CIPH_FLAG_FIPS)
#else
static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
int ret;
if (((ctx->cipher->flags & EVP_CIPH_MODE) == EVP_CIPH_ECB_MODE
|| (ctx->cipher->flags & EVP_CIPH_MODE) == EVP_CIPH_CBC_MODE)
&& !enc)
ret=AES_set_decrypt_key(key, ctx->key_len * 8, ctx->cipher_data);
else
ret=AES_set_encrypt_key(key, ctx->key_len * 8, ctx->cipher_data);
if(ret < 0)
{
EVPerr(EVP_F_AES_INIT_KEY,EVP_R_AES_KEY_SETUP_FAILED);
return 0;
}
return 1;
}
#define data(ctx) EVP_C_DATA(EVP_AES_KEY,ctx)
IMPLEMENT_BLOCK_CIPHER(aes_128, ks, AES, EVP_AES_KEY,
NID_aes_128, 16, 16, 16, 128,
EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_DEFAULT_ASN1,
aes_init_key, NULL, NULL, NULL, NULL)
IMPLEMENT_BLOCK_CIPHER(aes_192, ks, AES, EVP_AES_KEY,
NID_aes_192, 16, 24, 16, 128,
EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_DEFAULT_ASN1,
aes_init_key, NULL, NULL, NULL, NULL)
IMPLEMENT_BLOCK_CIPHER(aes_256, ks, AES, EVP_AES_KEY,
NID_aes_256, 16, 32, 16, 128,
EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_DEFAULT_ASN1,
aes_init_key, NULL, NULL, NULL, NULL)
#define IMPLEMENT_AES_CFBR(ksize,cbits) IMPLEMENT_CFBR(aes,AES,EVP_AES_KEY,ks,ksize,cbits,16,EVP_CIPH_FLAG_FIPS)
IMPLEMENT_AES_CFBR(128,1)
IMPLEMENT_AES_CFBR(192,1)
IMPLEMENT_AES_CFBR(256,1)
IMPLEMENT_AES_CFBR(128,8)
IMPLEMENT_AES_CFBR(192,8)
IMPLEMENT_AES_CFBR(256,8)
static int aes_counter (EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
unsigned int num;
num = ctx->num;
#ifdef AES_CTR_ASM
void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out,
size_t blocks, const AES_KEY *key,
const unsigned char ivec[AES_BLOCK_SIZE]);
CRYPTO_ctr128_encrypt_ctr32(in,out,len,
&((EVP_AES_KEY *)ctx->cipher_data)->ks,
ctx->iv,ctx->buf,&num,(ctr128_f)AES_ctr32_encrypt);
#else
CRYPTO_ctr128_encrypt(in,out,len,
&((EVP_AES_KEY *)ctx->cipher_data)->ks,
ctx->iv,ctx->buf,&num,(block128_f)AES_encrypt);
#endif
ctx->num = (size_t)num;
return 1;
}
#endif
static const EVP_CIPHER aes_128_ctr_cipher=
{
NID_aes_128_ctr,1,16,16,
EVP_CIPH_CTR_MODE|EVP_CIPH_FLAG_FIPS,
aes_init_key,
aes_counter,
NULL,
sizeof(EVP_AES_KEY),
NULL,
NULL,
NULL,
NULL
};
const EVP_CIPHER *EVP_aes_128_ctr (void)
{ return &aes_128_ctr_cipher; }
static const EVP_CIPHER aes_192_ctr_cipher=
{
NID_aes_192_ctr,1,24,16,
EVP_CIPH_CTR_MODE|EVP_CIPH_FLAG_FIPS,
aes_init_key,
aes_counter,
NULL,
sizeof(EVP_AES_KEY),
NULL,
NULL,
NULL,
NULL
};
const EVP_CIPHER *EVP_aes_192_ctr (void)
{ return &aes_192_ctr_cipher; }
static const EVP_CIPHER aes_256_ctr_cipher=
{
NID_aes_256_ctr,1,32,16,
EVP_CIPH_CTR_MODE|EVP_CIPH_FLAG_FIPS,
aes_init_key,
aes_counter,
NULL,
sizeof(EVP_AES_KEY),
NULL,
NULL,
NULL,
NULL
};
const EVP_CIPHER *EVP_aes_256_ctr (void)
{ return &aes_256_ctr_cipher; }
typedef struct
{
/* AES key schedule to use */
AES_KEY ks;
/* Set if key initialised */
int key_set;
/* Set if an iv is set */
int iv_set;
GCM128_CONTEXT gcm;
/* Temporary IV store */
unsigned char *iv;
/* IV length */
int ivlen;
int taglen;
/* It is OK to generate IVs */
int iv_gen;
} EVP_AES_GCM_CTX;
static int aes_gcm_cleanup(EVP_CIPHER_CTX *c)
{
EVP_AES_GCM_CTX *gctx = c->cipher_data;
OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm));
if (gctx->iv != c->iv)
OPENSSL_free(gctx->iv);
return 1;
}
/* increment counter (64-bit int) by 1 */
static void ctr64_inc(unsigned char *counter) {
int n=8;
unsigned char c;
do {
--n;
c = counter[n];
++c;
counter[n] = c;
if (c) return;
} while (n);
}
static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
{
EVP_AES_GCM_CTX *gctx = c->cipher_data;
switch (type)
{
case EVP_CTRL_INIT:
gctx->key_set = 0;
gctx->iv_set = 0;
gctx->ivlen = c->cipher->iv_len;
gctx->iv = c->iv;
gctx->taglen = -1;
gctx->iv_gen = 0;
return 1;
case EVP_CTRL_GCM_SET_IVLEN:
if (arg <= 0)
return 0;
#ifdef OPENSSL_FIPS
if (FIPS_module_mode() && !(c->flags & EVP_CIPH_FLAG_NON_FIPS_ALLOW)
&& arg < 12)
return 0;
#endif
/* Allocate memory for IV if needed */
if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen))
{
if (gctx->iv != c->iv)
OPENSSL_free(gctx->iv);
gctx->iv = OPENSSL_malloc(arg);
if (!gctx->iv)
return 0;
}
gctx->ivlen = arg;
return 1;
case EVP_CTRL_GCM_SET_TAG:
if (arg <= 0 || arg > 16 || c->encrypt)
return 0;
memcpy(c->buf, ptr, arg);
gctx->taglen = arg;
return 1;
case EVP_CTRL_GCM_GET_TAG:
if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0)
return 0;
memcpy(ptr, c->buf, arg);
return 1;
case EVP_CTRL_GCM_SET_IV_FIXED:
/* Special case: -1 length restores whole IV */
if (arg == -1)
{
memcpy(gctx->iv, ptr, gctx->ivlen);
gctx->iv_gen = 1;
return 1;
}
/* Fixed field must be at least 4 bytes and invocation field
* at least 8.
*/
if ((arg < 4) || (gctx->ivlen - arg) < 8)
return 0;
if (arg)
memcpy(gctx->iv, ptr, arg);
if (RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
return 0;
gctx->iv_gen = 1;
return 1;
case EVP_CTRL_GCM_IV_GEN:
if (gctx->iv_gen == 0 || gctx->key_set == 0)
return 0;
CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
memcpy(ptr, gctx->iv, gctx->ivlen);
/* Invocation field will be at least 8 bytes in size and
* so no need to check wrap around or increment more than
* last 8 bytes.
*/
ctr64_inc(gctx->iv + gctx->ivlen - 8);
gctx->iv_set = 1;
return 1;
default:
return -1;
}
}
static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
if (!iv && !key)
return 1;
if (key)
{
AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks);
CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f)AES_encrypt);
/* If we have an iv can set it directly, otherwise use
* saved IV.
*/
if (iv == NULL && gctx->iv_set)
iv = gctx->iv;
if (iv)
{
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
gctx->iv_set = 1;
}
gctx->key_set = 1;
}
else
{
/* If key set use IV, otherwise copy */
if (gctx->key_set)
CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
else
memcpy(gctx->iv, iv, gctx->ivlen);
gctx->iv_set = 1;
gctx->iv_gen = 0;
}
return 1;
}
static int aes_gcm(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
/* If not set up, return error */
if (!gctx->iv_set && !gctx->key_set)
return -1;
if (!ctx->encrypt && gctx->taglen < 0)
return -1;
if (in)
{
if (out == NULL)
{
if (CRYPTO_gcm128_aad(&gctx->gcm, in, len))
return -1;
}
else if (ctx->encrypt)
{
if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, len))
return -1;
}
else
{
if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, len))
return -1;
}
return len;
}
else
{
if (!ctx->encrypt)
{
if (CRYPTO_gcm128_finish(&gctx->gcm,
ctx->buf, gctx->taglen) != 0)
return -1;
gctx->iv_set = 0;
return 0;
}
CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
gctx->taglen = 16;
/* Don't reuse the IV */
gctx->iv_set = 0;
return 0;
}
}
static const EVP_CIPHER aes_128_gcm_cipher=
{
NID_aes_128_gcm,1,16,12,
EVP_CIPH_GCM_MODE|EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_DEFAULT_ASN1
| EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER
| EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT,
aes_gcm_init_key,
aes_gcm,
aes_gcm_cleanup,
sizeof(EVP_AES_GCM_CTX),
NULL,
NULL,
aes_gcm_ctrl,
NULL
};
const EVP_CIPHER *EVP_aes_128_gcm (void)
{ return &aes_128_gcm_cipher; }
static const EVP_CIPHER aes_192_gcm_cipher=
{
NID_aes_192_gcm,1,24,12,
EVP_CIPH_GCM_MODE|EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_DEFAULT_ASN1
| EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER
| EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT,
aes_gcm_init_key,
aes_gcm,
aes_gcm_cleanup,
sizeof(EVP_AES_GCM_CTX),
NULL,
NULL,
aes_gcm_ctrl,
NULL
};
const EVP_CIPHER *EVP_aes_192_gcm (void)
{ return &aes_192_gcm_cipher; }
static const EVP_CIPHER aes_256_gcm_cipher=
{
NID_aes_256_gcm,1,32,12,
EVP_CIPH_GCM_MODE|EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_DEFAULT_ASN1
| EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER
| EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT,
aes_gcm_init_key,
aes_gcm,
aes_gcm_cleanup,
sizeof(EVP_AES_GCM_CTX),
NULL,
NULL,
aes_gcm_ctrl,
NULL
};
const EVP_CIPHER *EVP_aes_256_gcm (void)
{ return &aes_256_gcm_cipher; }
typedef struct
{
/* AES key schedules to use */
AES_KEY ks1, ks2;
XTS128_CONTEXT xts;
} EVP_AES_XTS_CTX;
static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
{
EVP_AES_XTS_CTX *xctx = c->cipher_data;
if (type != EVP_CTRL_INIT)
return -1;
/* key1 and key2 are used as an indicator both key and IV are set */
xctx->xts.key1 = NULL;
xctx->xts.key2 = NULL;
return 1;
}
static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
if (!iv && !key)
return 1;
if (key)
{
/* key_len is two AES keys */
if (enc)
{
AES_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1);
xctx->xts.block1 = (block128_f)AES_encrypt;
}
else
{
AES_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1);
xctx->xts.block1 = (block128_f)AES_decrypt;
}
AES_set_encrypt_key(key + ctx->key_len/2,
ctx->key_len * 4, &xctx->ks2);
xctx->xts.block2 = (block128_f)AES_encrypt;
xctx->xts.key1 = &xctx->ks1;
}
if (iv)
{
xctx->xts.key2 = &xctx->ks2;
memcpy(ctx->iv, iv, 16);
}
return 1;
}
static int aes_xts(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
if (!xctx->xts.key1 || !xctx->xts.key2)
return -1;
if (!out || !in)
return -1;
#ifdef OPENSSL_FIPS
/* Requirement of SP800-38E */
if (FIPS_module_mode() && !(ctx->flags & EVP_CIPH_FLAG_NON_FIPS_ALLOW) &&
(len > (1L<<20)*16))
{
EVPerr(EVP_F_AES_XTS, EVP_R_TOO_LARGE);
return -1;
}
#endif
if (CRYPTO_xts128_encrypt(&xctx->xts, ctx->iv, in, out, len,
ctx->encrypt))
return -1;
return len;
}
static const EVP_CIPHER aes_128_xts_cipher=
{
NID_aes_128_xts,16,32,16,
EVP_CIPH_XTS_MODE|EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_DEFAULT_ASN1
| EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER
| EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT,
aes_xts_init_key,
aes_xts,
0,
sizeof(EVP_AES_XTS_CTX),
NULL,
NULL,
aes_xts_ctrl,
NULL
};
const EVP_CIPHER *EVP_aes_128_xts (void)
{ return &aes_128_xts_cipher; }
static const EVP_CIPHER aes_256_xts_cipher=
{
NID_aes_256_xts,16,64,16,
EVP_CIPH_XTS_MODE|EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_DEFAULT_ASN1
| EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER
| EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT,
aes_xts_init_key,
aes_xts,
0,
sizeof(EVP_AES_XTS_CTX),
NULL,
NULL,
aes_xts_ctrl,
NULL
};
const EVP_CIPHER *EVP_aes_256_xts (void)
{ return &aes_256_xts_cipher; }
typedef struct
{
/* AES key schedule to use */
AES_KEY ks;
/* Set if key initialised */
int key_set;
/* Set if an iv is set */
int iv_set;
/* Set if tag is valid */
int tag_set;
/* Set if message length set */
int len_set;
/* L and M parameters from RFC3610 */
int L, M;
CCM128_CONTEXT ccm;
} EVP_AES_CCM_CTX;
static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
{
EVP_AES_CCM_CTX *cctx = c->cipher_data;
switch (type)
{
case EVP_CTRL_INIT:
cctx->key_set = 0;
cctx->iv_set = 0;
cctx->L = 8;
cctx->M = 12;
cctx->tag_set = 0;
cctx->len_set = 0;
return 1;
case EVP_CTRL_CCM_SET_IVLEN:
arg = 15 - arg;
case EVP_CTRL_CCM_SET_L:
if (arg < 2 || arg > 8)
return 0;
cctx->L = arg;
return 1;
case EVP_CTRL_CCM_SET_TAG:
if ((arg & 1) || arg < 4 || arg > 16)
return 0;
if ((c->encrypt && ptr) || (!c->encrypt && !ptr))
return 0;
if (ptr)
{
cctx->tag_set = 1;
memcpy(c->buf, ptr, arg);
}
cctx->M = arg;
return 1;
case EVP_CTRL_CCM_GET_TAG:
if (!c->encrypt || !cctx->tag_set)
return 0;
if(!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg))
return 0;
cctx->tag_set = 0;
cctx->iv_set = 0;
cctx->len_set = 0;
return 1;
default:
return -1;
}
}
static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
if (!iv && !key)
return 1;
if (key)
{
AES_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks);
CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
&cctx->ks, (block128_f)AES_encrypt);
cctx->key_set = 1;
}
if (iv)
{
memcpy(ctx->iv, iv, 15 - cctx->L);
cctx->iv_set = 1;
}
return 1;
}
static int aes_ccm(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t len)
{
EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
CCM128_CONTEXT *ccm = &cctx->ccm;
/* If not set up, return error */
if (!cctx->iv_set && !cctx->key_set)
return -1;
if (!ctx->encrypt && !cctx->tag_set)
return -1;
if (!out)
{
if (!in)
{
if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L,len))
return -1;
cctx->len_set = 1;
return len;
}
/* If have AAD need message length */
if (!cctx->len_set && len)
return -1;
CRYPTO_ccm128_aad(ccm, in, len);
return len;
}
/* EVP_*Final() doesn't return any data */
if (!in)
return 0;
/* If not set length yet do it */
if (!cctx->len_set)
{
if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len))
return -1;
cctx->len_set = 1;
}
if (ctx->encrypt)
{
if (CRYPTO_ccm128_encrypt(ccm, in, out, len))
return -1;
cctx->tag_set = 1;
return len;
}
else
{
int rv = -1;
if (!CRYPTO_ccm128_decrypt(ccm, in, out, len))
{
unsigned char tag[16];
if (CRYPTO_ccm128_tag(ccm, tag, cctx->M))
{
if (!memcmp(tag, ctx->buf, cctx->M))
rv = len;
}
}
if (rv == -1)
OPENSSL_cleanse(out, len);
cctx->iv_set = 0;
cctx->tag_set = 0;
cctx->len_set = 0;
return rv;
}
}
static const EVP_CIPHER aes_128_ccm_cipher=
{
NID_aes_128_ccm,1,16,12,
EVP_CIPH_CCM_MODE|EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_DEFAULT_ASN1
| EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER
| EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT,
aes_ccm_init_key,
aes_ccm,
0,
sizeof(EVP_AES_CCM_CTX),
NULL,
NULL,
aes_ccm_ctrl,
NULL
};
const EVP_CIPHER *EVP_aes_128_ccm (void)
{ return &aes_128_ccm_cipher; }
static const EVP_CIPHER aes_192_ccm_cipher=
{
NID_aes_192_ccm,1,24,12,
EVP_CIPH_CCM_MODE|EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_DEFAULT_ASN1
| EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER
| EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT,
aes_ccm_init_key,
aes_ccm,
0,
sizeof(EVP_AES_CCM_CTX),
NULL,
NULL,
aes_ccm_ctrl,
NULL
};
const EVP_CIPHER *EVP_aes_192_ccm (void)
{ return &aes_192_ccm_cipher; }
static const EVP_CIPHER aes_256_ccm_cipher=
{
NID_aes_256_ccm,1,32,12,
EVP_CIPH_CCM_MODE|EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_DEFAULT_ASN1
| EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER
| EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT,
aes_ccm_init_key,
aes_ccm,
0,
sizeof(EVP_AES_CCM_CTX),
NULL,
NULL,
aes_ccm_ctrl,
NULL
};
const EVP_CIPHER *EVP_aes_256_ccm (void)
{ return &aes_256_ccm_cipher; }
#endif