438 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			438 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* crypto/evp/encode.c */
 | 
						|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * This package is an SSL implementation written
 | 
						|
 * by Eric Young (eay@cryptsoft.com).
 | 
						|
 * The implementation was written so as to conform with Netscapes SSL.
 | 
						|
 *
 | 
						|
 * This library is free for commercial and non-commercial use as long as
 | 
						|
 * the following conditions are aheared to.  The following conditions
 | 
						|
 * apply to all code found in this distribution, be it the RC4, RSA,
 | 
						|
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 | 
						|
 * included with this distribution is covered by the same copyright terms
 | 
						|
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 | 
						|
 *
 | 
						|
 * Copyright remains Eric Young's, and as such any Copyright notices in
 | 
						|
 * the code are not to be removed.
 | 
						|
 * If this package is used in a product, Eric Young should be given attribution
 | 
						|
 * as the author of the parts of the library used.
 | 
						|
 * This can be in the form of a textual message at program startup or
 | 
						|
 * in documentation (online or textual) provided with the package.
 | 
						|
 *
 | 
						|
 * Redistribution and use in source and binary forms, with or without
 | 
						|
 * modification, are permitted provided that the following conditions
 | 
						|
 * are met:
 | 
						|
 * 1. Redistributions of source code must retain the copyright
 | 
						|
 *    notice, this list of conditions and the following disclaimer.
 | 
						|
 * 2. Redistributions in binary form must reproduce the above copyright
 | 
						|
 *    notice, this list of conditions and the following disclaimer in the
 | 
						|
 *    documentation and/or other materials provided with the distribution.
 | 
						|
 * 3. All advertising materials mentioning features or use of this software
 | 
						|
 *    must display the following acknowledgement:
 | 
						|
 *    "This product includes cryptographic software written by
 | 
						|
 *     Eric Young (eay@cryptsoft.com)"
 | 
						|
 *    The word 'cryptographic' can be left out if the rouines from the library
 | 
						|
 *    being used are not cryptographic related :-).
 | 
						|
 * 4. If you include any Windows specific code (or a derivative thereof) from
 | 
						|
 *    the apps directory (application code) you must include an acknowledgement:
 | 
						|
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 | 
						|
 *
 | 
						|
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 | 
						|
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
						|
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | 
						|
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | 
						|
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | 
						|
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | 
						|
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | 
						|
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | 
						|
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | 
						|
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | 
						|
 * SUCH DAMAGE.
 | 
						|
 *
 | 
						|
 * The licence and distribution terms for any publically available version or
 | 
						|
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 | 
						|
 * copied and put under another distribution licence
 | 
						|
 * [including the GNU Public Licence.]
 | 
						|
 */
 | 
						|
 | 
						|
#include <stdio.h>
 | 
						|
#include "internal/cryptlib.h"
 | 
						|
#include <openssl/evp.h>
 | 
						|
#include "evp_locl.h"
 | 
						|
 | 
						|
static unsigned char conv_ascii2bin(unsigned char a);
 | 
						|
#ifndef CHARSET_EBCDIC
 | 
						|
# define conv_bin2ascii(a)       (data_bin2ascii[(a)&0x3f])
 | 
						|
#else
 | 
						|
/*
 | 
						|
 * We assume that PEM encoded files are EBCDIC files (i.e., printable text
 | 
						|
 * files). Convert them here while decoding. When encoding, output is EBCDIC
 | 
						|
 * (text) format again. (No need for conversion in the conv_bin2ascii macro,
 | 
						|
 * as the underlying textstring data_bin2ascii[] is already EBCDIC)
 | 
						|
 */
 | 
						|
# define conv_bin2ascii(a)       (data_bin2ascii[(a)&0x3f])
 | 
						|
#endif
 | 
						|
 | 
						|
/*-
 | 
						|
 * 64 char lines
 | 
						|
 * pad input with 0
 | 
						|
 * left over chars are set to =
 | 
						|
 * 1 byte  => xx==
 | 
						|
 * 2 bytes => xxx=
 | 
						|
 * 3 bytes => xxxx
 | 
						|
 */
 | 
						|
#define BIN_PER_LINE    (64/4*3)
 | 
						|
#define CHUNKS_PER_LINE (64/4)
 | 
						|
#define CHAR_PER_LINE   (64+1)
 | 
						|
 | 
						|
static const unsigned char data_bin2ascii[65] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ\
 | 
						|
abcdefghijklmnopqrstuvwxyz0123456789+/";
 | 
						|
 | 
						|
/*-
 | 
						|
 * 0xF0 is a EOLN
 | 
						|
 * 0xF1 is ignore but next needs to be 0xF0 (for \r\n processing).
 | 
						|
 * 0xF2 is EOF
 | 
						|
 * 0xE0 is ignore at start of line.
 | 
						|
 * 0xFF is error
 | 
						|
 */
 | 
						|
 | 
						|
#define B64_EOLN                0xF0
 | 
						|
#define B64_CR                  0xF1
 | 
						|
#define B64_EOF                 0xF2
 | 
						|
#define B64_WS                  0xE0
 | 
						|
#define B64_ERROR               0xFF
 | 
						|
#define B64_NOT_BASE64(a)       (((a)|0x13) == 0xF3)
 | 
						|
#define B64_BASE64(a)           !B64_NOT_BASE64(a)
 | 
						|
 | 
						|
static const unsigned char data_ascii2bin[128] = {
 | 
						|
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
 | 
						|
    0xFF, 0xE0, 0xF0, 0xFF, 0xFF, 0xF1, 0xFF, 0xFF,
 | 
						|
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
 | 
						|
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
 | 
						|
    0xE0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
 | 
						|
    0xFF, 0xFF, 0xFF, 0x3E, 0xFF, 0xF2, 0xFF, 0x3F,
 | 
						|
    0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B,
 | 
						|
    0x3C, 0x3D, 0xFF, 0xFF, 0xFF, 0x00, 0xFF, 0xFF,
 | 
						|
    0xFF, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
 | 
						|
    0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E,
 | 
						|
    0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16,
 | 
						|
    0x17, 0x18, 0x19, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
 | 
						|
    0xFF, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20,
 | 
						|
    0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28,
 | 
						|
    0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30,
 | 
						|
    0x31, 0x32, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
 | 
						|
};
 | 
						|
 | 
						|
#ifndef CHARSET_EBCDIC
 | 
						|
static unsigned char conv_ascii2bin(unsigned char a)
 | 
						|
{
 | 
						|
    if (a & 0x80)
 | 
						|
        return B64_ERROR;
 | 
						|
    return data_ascii2bin[a];
 | 
						|
}
 | 
						|
#else
 | 
						|
static unsigned char conv_ascii2bin(unsigned char a)
 | 
						|
{
 | 
						|
    a = os_toascii[a];
 | 
						|
    if (a & 0x80)
 | 
						|
        return B64_ERROR;
 | 
						|
    return data_ascii2bin[a];
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
EVP_ENCODE_CTX *EVP_ENCODE_CTX_new(void)
 | 
						|
{
 | 
						|
    return (EVP_ENCODE_CTX *)OPENSSL_zalloc(sizeof(EVP_ENCODE_CTX));
 | 
						|
}
 | 
						|
 | 
						|
void EVP_ENCODE_CTX_free(EVP_ENCODE_CTX *ctx)
 | 
						|
{
 | 
						|
    OPENSSL_free(ctx);
 | 
						|
}
 | 
						|
int EVP_ENCODE_CTX_num(EVP_ENCODE_CTX *ctx)
 | 
						|
{
 | 
						|
    return ctx->num;
 | 
						|
}
 | 
						|
 | 
						|
void EVP_EncodeInit(EVP_ENCODE_CTX *ctx)
 | 
						|
{
 | 
						|
    ctx->length = 48;
 | 
						|
    ctx->num = 0;
 | 
						|
    ctx->line_num = 0;
 | 
						|
}
 | 
						|
 | 
						|
void EVP_EncodeUpdate(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl,
 | 
						|
                      const unsigned char *in, int inl)
 | 
						|
{
 | 
						|
    int i, j;
 | 
						|
    unsigned int total = 0;
 | 
						|
 | 
						|
    *outl = 0;
 | 
						|
    if (inl <= 0)
 | 
						|
        return;
 | 
						|
    OPENSSL_assert(ctx->length <= (int)sizeof(ctx->enc_data));
 | 
						|
    if ((ctx->num + inl) < ctx->length) {
 | 
						|
        memcpy(&(ctx->enc_data[ctx->num]), in, inl);
 | 
						|
        ctx->num += inl;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    if (ctx->num != 0) {
 | 
						|
        i = ctx->length - ctx->num;
 | 
						|
        memcpy(&(ctx->enc_data[ctx->num]), in, i);
 | 
						|
        in += i;
 | 
						|
        inl -= i;
 | 
						|
        j = EVP_EncodeBlock(out, ctx->enc_data, ctx->length);
 | 
						|
        ctx->num = 0;
 | 
						|
        out += j;
 | 
						|
        *(out++) = '\n';
 | 
						|
        *out = '\0';
 | 
						|
        total = j + 1;
 | 
						|
    }
 | 
						|
    while (inl >= ctx->length) {
 | 
						|
        j = EVP_EncodeBlock(out, in, ctx->length);
 | 
						|
        in += ctx->length;
 | 
						|
        inl -= ctx->length;
 | 
						|
        out += j;
 | 
						|
        *(out++) = '\n';
 | 
						|
        *out = '\0';
 | 
						|
        total += j + 1;
 | 
						|
    }
 | 
						|
    if (inl != 0)
 | 
						|
        memcpy(&(ctx->enc_data[0]), in, inl);
 | 
						|
    ctx->num = inl;
 | 
						|
    *outl = total;
 | 
						|
}
 | 
						|
 | 
						|
void EVP_EncodeFinal(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl)
 | 
						|
{
 | 
						|
    unsigned int ret = 0;
 | 
						|
 | 
						|
    if (ctx->num != 0) {
 | 
						|
        ret = EVP_EncodeBlock(out, ctx->enc_data, ctx->num);
 | 
						|
        out[ret++] = '\n';
 | 
						|
        out[ret] = '\0';
 | 
						|
        ctx->num = 0;
 | 
						|
    }
 | 
						|
    *outl = ret;
 | 
						|
}
 | 
						|
 | 
						|
int EVP_EncodeBlock(unsigned char *t, const unsigned char *f, int dlen)
 | 
						|
{
 | 
						|
    int i, ret = 0;
 | 
						|
    unsigned long l;
 | 
						|
 | 
						|
    for (i = dlen; i > 0; i -= 3) {
 | 
						|
        if (i >= 3) {
 | 
						|
            l = (((unsigned long)f[0]) << 16L) |
 | 
						|
                (((unsigned long)f[1]) << 8L) | f[2];
 | 
						|
            *(t++) = conv_bin2ascii(l >> 18L);
 | 
						|
            *(t++) = conv_bin2ascii(l >> 12L);
 | 
						|
            *(t++) = conv_bin2ascii(l >> 6L);
 | 
						|
            *(t++) = conv_bin2ascii(l);
 | 
						|
        } else {
 | 
						|
            l = ((unsigned long)f[0]) << 16L;
 | 
						|
            if (i == 2)
 | 
						|
                l |= ((unsigned long)f[1] << 8L);
 | 
						|
 | 
						|
            *(t++) = conv_bin2ascii(l >> 18L);
 | 
						|
            *(t++) = conv_bin2ascii(l >> 12L);
 | 
						|
            *(t++) = (i == 1) ? '=' : conv_bin2ascii(l >> 6L);
 | 
						|
            *(t++) = '=';
 | 
						|
        }
 | 
						|
        ret += 4;
 | 
						|
        f += 3;
 | 
						|
    }
 | 
						|
 | 
						|
    *t = '\0';
 | 
						|
    return (ret);
 | 
						|
}
 | 
						|
 | 
						|
void EVP_DecodeInit(EVP_ENCODE_CTX *ctx)
 | 
						|
{
 | 
						|
    /* Only ctx->num is used during decoding. */
 | 
						|
    ctx->num = 0;
 | 
						|
    ctx->length = 0;
 | 
						|
    ctx->line_num = 0;
 | 
						|
    ctx->expect_nl = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*-
 | 
						|
 * -1 for error
 | 
						|
 *  0 for last line
 | 
						|
 *  1 for full line
 | 
						|
 *
 | 
						|
 * Note: even though EVP_DecodeUpdate attempts to detect and report end of
 | 
						|
 * content, the context doesn't currently remember it and will accept more data
 | 
						|
 * in the next call. Therefore, the caller is responsible for checking and
 | 
						|
 * rejecting a 0 return value in the middle of content.
 | 
						|
 *
 | 
						|
 * Note: even though EVP_DecodeUpdate has historically tried to detect end of
 | 
						|
 * content based on line length, this has never worked properly. Therefore,
 | 
						|
 * we now return 0 when one of the following is true:
 | 
						|
 *   - Padding or B64_EOF was detected and the last block is complete.
 | 
						|
 *   - Input has zero-length.
 | 
						|
 * -1 is returned if:
 | 
						|
 *   - Invalid characters are detected.
 | 
						|
 *   - There is extra trailing padding, or data after padding.
 | 
						|
 *   - B64_EOF is detected after an incomplete base64 block.
 | 
						|
 */
 | 
						|
int EVP_DecodeUpdate(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl,
 | 
						|
                     const unsigned char *in, int inl)
 | 
						|
{
 | 
						|
    int seof = 0, eof = 0, rv = -1, ret = 0, i, v, tmp, n, decoded_len;
 | 
						|
    unsigned char *d;
 | 
						|
 | 
						|
    n = ctx->num;
 | 
						|
    d = ctx->enc_data;
 | 
						|
 | 
						|
    if (n > 0 && d[n - 1] == '=') {
 | 
						|
        eof++;
 | 
						|
        if (n > 1 && d[n - 2] == '=')
 | 
						|
            eof++;
 | 
						|
    }
 | 
						|
 | 
						|
     /* Legacy behaviour: an empty input chunk signals end of input. */
 | 
						|
    if (inl == 0) {
 | 
						|
        rv = 0;
 | 
						|
        goto end;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < inl; i++) {
 | 
						|
        tmp = *(in++);
 | 
						|
        v = conv_ascii2bin(tmp);
 | 
						|
        if (v == B64_ERROR) {
 | 
						|
            rv = -1;
 | 
						|
            goto end;
 | 
						|
        }
 | 
						|
 | 
						|
        if (tmp == '=') {
 | 
						|
            eof++;
 | 
						|
        } else if (eof > 0 && B64_BASE64(v)) {
 | 
						|
            /* More data after padding. */
 | 
						|
            rv = -1;
 | 
						|
            goto end;
 | 
						|
        }
 | 
						|
 | 
						|
        if (eof > 2) {
 | 
						|
            rv = -1;
 | 
						|
            goto end;
 | 
						|
        }
 | 
						|
 | 
						|
        if (v == B64_EOF) {
 | 
						|
            seof = 1;
 | 
						|
            goto tail;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Only save valid base64 characters. */
 | 
						|
        if (B64_BASE64(v)) {
 | 
						|
            if (n >= 64) {
 | 
						|
                /*
 | 
						|
                 * We increment n once per loop, and empty the buffer as soon as
 | 
						|
                 * we reach 64 characters, so this can only happen if someone's
 | 
						|
                 * manually messed with the ctx. Refuse to write any more data.
 | 
						|
                 */
 | 
						|
                rv = -1;
 | 
						|
                goto end;
 | 
						|
            }
 | 
						|
            OPENSSL_assert(n < (int)sizeof(ctx->enc_data));
 | 
						|
            d[n++] = tmp;
 | 
						|
        }
 | 
						|
 | 
						|
        if (n == 64) {
 | 
						|
            decoded_len = EVP_DecodeBlock(out, d, n);
 | 
						|
            n = 0;
 | 
						|
            if (decoded_len < 0 || eof > decoded_len) {
 | 
						|
                rv = -1;
 | 
						|
                goto end;
 | 
						|
            }
 | 
						|
            ret += decoded_len - eof;
 | 
						|
            out += decoded_len - eof;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Legacy behaviour: if the current line is a full base64-block (i.e., has
 | 
						|
     * 0 mod 4 base64 characters), it is processed immediately. We keep this
 | 
						|
     * behaviour as applications may not be calling EVP_DecodeFinal properly.
 | 
						|
     */
 | 
						|
tail:
 | 
						|
    if (n > 0) {
 | 
						|
        if ((n & 3) == 0) {
 | 
						|
            decoded_len = EVP_DecodeBlock(out, d, n);
 | 
						|
            n = 0;
 | 
						|
            if (decoded_len < 0 || eof > decoded_len) {
 | 
						|
                rv = -1;
 | 
						|
                goto end;
 | 
						|
            }
 | 
						|
            ret += (decoded_len - eof);
 | 
						|
        } else if (seof) {
 | 
						|
            /* EOF in the middle of a base64 block. */
 | 
						|
            rv = -1;
 | 
						|
            goto end;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    rv = seof || (n == 0 && eof) ? 0 : 1;
 | 
						|
end:
 | 
						|
    /* Legacy behaviour. This should probably rather be zeroed on error. */
 | 
						|
    *outl = ret;
 | 
						|
    ctx->num = n;
 | 
						|
    return (rv);
 | 
						|
}
 | 
						|
 | 
						|
int EVP_DecodeBlock(unsigned char *t, const unsigned char *f, int n)
 | 
						|
{
 | 
						|
    int i, ret = 0, a, b, c, d;
 | 
						|
    unsigned long l;
 | 
						|
 | 
						|
    /* trim white space from the start of the line. */
 | 
						|
    while ((conv_ascii2bin(*f) == B64_WS) && (n > 0)) {
 | 
						|
        f++;
 | 
						|
        n--;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * strip off stuff at the end of the line ascii2bin values B64_WS,
 | 
						|
     * B64_EOLN, B64_EOLN and B64_EOF
 | 
						|
     */
 | 
						|
    while ((n > 3) && (B64_NOT_BASE64(conv_ascii2bin(f[n - 1]))))
 | 
						|
        n--;
 | 
						|
 | 
						|
    if (n % 4 != 0)
 | 
						|
        return (-1);
 | 
						|
 | 
						|
    for (i = 0; i < n; i += 4) {
 | 
						|
        a = conv_ascii2bin(*(f++));
 | 
						|
        b = conv_ascii2bin(*(f++));
 | 
						|
        c = conv_ascii2bin(*(f++));
 | 
						|
        d = conv_ascii2bin(*(f++));
 | 
						|
        if ((a & 0x80) || (b & 0x80) || (c & 0x80) || (d & 0x80))
 | 
						|
            return (-1);
 | 
						|
        l = ((((unsigned long)a) << 18L) |
 | 
						|
             (((unsigned long)b) << 12L) |
 | 
						|
             (((unsigned long)c) << 6L) | (((unsigned long)d)));
 | 
						|
        *(t++) = (unsigned char)(l >> 16L) & 0xff;
 | 
						|
        *(t++) = (unsigned char)(l >> 8L) & 0xff;
 | 
						|
        *(t++) = (unsigned char)(l) & 0xff;
 | 
						|
        ret += 3;
 | 
						|
    }
 | 
						|
    return (ret);
 | 
						|
}
 | 
						|
 | 
						|
int EVP_DecodeFinal(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    *outl = 0;
 | 
						|
    if (ctx->num != 0) {
 | 
						|
        i = EVP_DecodeBlock(out, ctx->enc_data, ctx->num);
 | 
						|
        if (i < 0)
 | 
						|
            return (-1);
 | 
						|
        ctx->num = 0;
 | 
						|
        *outl = i;
 | 
						|
        return (1);
 | 
						|
    } else
 | 
						|
        return (1);
 | 
						|
}
 |