openssl/crypto/bn/bn_div.c
Andy Polyakov fb81ac5e6b Support for "multiply high" instruction, see BN_UMULT_HIGH comment in
crypto/bn/bn_lcl.h for further details. It should be noted that for
the moment of this writing the code was tested only on Alpha. If
compiled with DEC C the C implementation exhibits 12% performance
improvement over the crypto/bn/asm/alpha.s (on EV56 box running
AlphaLinux). GNU C is (unfortunately) 8% behind the assembler
implementation. But it's OpenVMS Alpha users who *may* benefit most
as 'apps/openssl speed rsa' exhibits 6 (six) times performance
improvement over the original VMS bignum implementation. Where "*may*"
means "as soon as code is enabled though #define SIXTY_FOUR_BIT and
crypto/bn/asm/vms.mar is skipped."
2000-02-02 16:18:12 +00:00

370 lines
9.3 KiB
C

/* crypto/bn/bn_div.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
#include <stdio.h>
#include <openssl/bn.h>
#include "cryptlib.h"
#include "bn_lcl.h"
/* The old slow way */
#if 0
int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
BN_CTX *ctx)
{
int i,nm,nd;
BIGNUM *D;
bn_check_top(m);
bn_check_top(d);
if (BN_is_zero(d))
{
BNerr(BN_F_BN_DIV,BN_R_DIV_BY_ZERO);
return(0);
}
if (BN_ucmp(m,d) < 0)
{
if (rem != NULL)
{ if (BN_copy(rem,m) == NULL) return(0); }
if (dv != NULL) BN_zero(dv);
return(1);
}
D= &(ctx->bn[ctx->tos]);
if (dv == NULL) dv= &(ctx->bn[ctx->tos+1]);
if (rem == NULL) rem= &(ctx->bn[ctx->tos+2]);
nd=BN_num_bits(d);
nm=BN_num_bits(m);
if (BN_copy(D,d) == NULL) return(0);
if (BN_copy(rem,m) == NULL) return(0);
/* The next 2 are needed so we can do a dv->d[0]|=1 later
* since BN_lshift1 will only work once there is a value :-) */
BN_zero(dv);
bn_wexpand(dv,1);
dv->top=1;
if (!BN_lshift(D,D,nm-nd)) return(0);
for (i=nm-nd; i>=0; i--)
{
if (!BN_lshift1(dv,dv)) return(0);
if (BN_ucmp(rem,D) >= 0)
{
dv->d[0]|=1;
if (!BN_usub(rem,rem,D)) return(0);
}
/* CAN IMPROVE (and have now :=) */
if (!BN_rshift1(D,D)) return(0);
}
rem->neg=BN_is_zero(rem)?0:m->neg;
dv->neg=m->neg^d->neg;
return(1);
}
#else
int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
BN_CTX *ctx)
{
int norm_shift,i,j,loop;
BIGNUM *tmp,wnum,*snum,*sdiv,*res;
BN_ULONG *resp,*wnump;
BN_ULONG d0,d1;
int num_n,div_n;
bn_check_top(num);
bn_check_top(divisor);
if (BN_is_zero(divisor))
{
BNerr(BN_F_BN_DIV,BN_R_DIV_BY_ZERO);
return(0);
}
if (BN_ucmp(num,divisor) < 0)
{
if (rm != NULL)
{ if (BN_copy(rm,num) == NULL) return(0); }
if (dv != NULL) BN_zero(dv);
return(1);
}
tmp= &(ctx->bn[ctx->tos]);
tmp->neg=0;
snum= &(ctx->bn[ctx->tos+1]);
sdiv= &(ctx->bn[ctx->tos+2]);
if (dv == NULL)
res= &(ctx->bn[ctx->tos+3]);
else res=dv;
/* First we normalise the numbers */
norm_shift=BN_BITS2-((BN_num_bits(divisor))%BN_BITS2);
BN_lshift(sdiv,divisor,norm_shift);
sdiv->neg=0;
norm_shift+=BN_BITS2;
BN_lshift(snum,num,norm_shift);
snum->neg=0;
div_n=sdiv->top;
num_n=snum->top;
loop=num_n-div_n;
/* Lets setup a 'window' into snum
* This is the part that corresponds to the current
* 'area' being divided */
BN_init(&wnum);
wnum.d= &(snum->d[loop]);
wnum.top= div_n;
wnum.max= snum->max+1; /* a bit of a lie */
/* Get the top 2 words of sdiv */
/* i=sdiv->top; */
d0=sdiv->d[div_n-1];
d1=(div_n == 1)?0:sdiv->d[div_n-2];
/* pointer to the 'top' of snum */
wnump= &(snum->d[num_n-1]);
/* Setup to 'res' */
res->neg= (num->neg^divisor->neg);
if (!bn_wexpand(res,(loop+1))) goto err;
res->top=loop;
resp= &(res->d[loop-1]);
/* space for temp */
if (!bn_wexpand(tmp,(div_n+1))) goto err;
if (BN_ucmp(&wnum,sdiv) >= 0)
{
if (!BN_usub(&wnum,&wnum,sdiv)) goto err;
*resp=1;
res->d[res->top-1]=1;
}
else
res->top--;
resp--;
for (i=0; i<loop-1; i++)
{
BN_ULONG q,l0;
#ifdef BN_DIV3W
q=bn_div_3_words(wnump,d1,d0);
#else
#if !defined(NO_ASM) && !defined(PEDANTIC)
# if defined(__GNUC__) && __GNUC__>=2
# if defined(__i386)
/*
* There were two reasons for implementing this template:
* - GNU C generates a call to a function (__udivdi3 to be exact)
* in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to
* understand why...);
* - divl doesn't only calculate quotient, but also leaves
* remainder in %edx which we can definitely use here:-)
*
* <appro@fy.chalmers.se>
*/
# define bn_div_words(n0,n1,d0) \
({ asm volatile ( \
"divl %4" \
: "=a"(q), "=d"(rem) \
: "a"(n1), "d"(n0), "g"(d0) \
: "cc"); \
q; \
})
# define REMAINDER_IS_ALREADY_CALCULATED
# endif /* __<cpu> */
# endif /* __GNUC__ */
#endif /* NO_ASM */
BN_ULONG n0,n1,rem=0;
n0=wnump[0];
n1=wnump[-1];
if (n0 == d0)
{
q=BN_MASK2;
#ifdef REMAINDER_IS_ALREADY_CALCULATED /* in this case it isn't */
rem=(n1-q*d0)&BN_MASK2;
#endif
}
else /* n0 < d0 */
#if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(bn_div_words)
q=(BN_ULONG)(((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0);
#else
q=bn_div_words(n0,n1,d0);
#endif
{
#ifdef BN_LLONG
BN_ULLONG t2;
#ifndef REMAINDER_IS_ALREADY_CALCULATED
/*
* rem doesn't have to be BN_ULLONG. The least we
* know it's less that d0, isn't it?
*/
rem=(n1-q*d0)&BN_MASK2;
#endif
t2=(BN_ULLONG)d1*q;
for (;;)
{
if (t2 <= ((((BN_ULLONG)rem)<<BN_BITS2)|wnump[-2]))
break;
q--;
rem += d0;
if (rem < d0) break; /* don't let rem overflow */
t2 -= d1;
}
#else
BN_ULONG t2l,t2h,ql,qh;
#ifndef REMAINDER_IS_ALREADY_CALCULATED
/*
* It's more than enough with the only multiplication.
* See the comment above in BN_LLONG section...
*/
rem=(n1-q*d0)&BN_MASK2;
#endif
#ifdef BN_UMULT_HIGH
t2l = d1 * q;
t2h = BN_UMULT_HIGH(d1,q);
#else
t2l=LBITS(d1); t2h=HBITS(d1);
ql =LBITS(q); qh =HBITS(q);
mul64(t2l,t2h,ql,qh); /* t2=(BN_ULLONG)d1*q; */
#endif
for (;;)
{
if ((t2h < rem) ||
((t2h == rem) && (t2l <= wnump[-2])))
break;
q--;
rem += d0;
if (rem < d0) break; /* don't let rem overflow */
if (t2l < d1) t2h--; t2l -= d1;
}
#endif
}
#endif /* !BN_DIV3W */
l0=bn_mul_words(tmp->d,sdiv->d,div_n,q);
wnum.d--; wnum.top++;
tmp->d[div_n]=l0;
for (j=div_n+1; j>0; j--)
if (tmp->d[j-1]) break;
tmp->top=j;
j=wnum.top;
BN_sub(&wnum,&wnum,tmp);
snum->top=snum->top+wnum.top-j;
if (wnum.neg)
{
q--;
j=wnum.top;
BN_add(&wnum,&wnum,sdiv);
snum->top+=wnum.top-j;
}
*(resp--)=q;
wnump--;
}
if (rm != NULL)
{
BN_rshift(rm,snum,norm_shift);
rm->neg=num->neg;
}
return(1);
err:
return(0);
}
#endif
/* rem != m */
int BN_mod(BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx)
{
#if 0 /* The old slow way */
int i,nm,nd;
BIGNUM *dv;
if (BN_ucmp(m,d) < 0)
return((BN_copy(rem,m) == NULL)?0:1);
dv= &(ctx->bn[ctx->tos]);
if (!BN_copy(rem,m)) return(0);
nm=BN_num_bits(rem);
nd=BN_num_bits(d);
if (!BN_lshift(dv,d,nm-nd)) return(0);
for (i=nm-nd; i>=0; i--)
{
if (BN_cmp(rem,dv) >= 0)
{
if (!BN_sub(rem,rem,dv)) return(0);
}
if (!BN_rshift1(dv,dv)) return(0);
}
return(1);
#else
return(BN_div(NULL,rem,m,d,ctx));
#endif
}