openssl/crypto/sha/asm/sha256-armv4.pl
2014-06-01 22:29:50 +02:00

651 lines
16 KiB
Prolog

#!/usr/bin/env perl
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
# SHA256 block procedure for ARMv4. May 2007.
# Performance is ~2x better than gcc 3.4 generated code and in "abso-
# lute" terms is ~2250 cycles per 64-byte block or ~35 cycles per
# byte [on single-issue Xscale PXA250 core].
# July 2010.
#
# Rescheduling for dual-issue pipeline resulted in 22% improvement on
# Cortex A8 core and ~20 cycles per processed byte.
# February 2011.
#
# Profiler-assisted and platform-specific optimization resulted in 16%
# improvement on Cortex A8 core and ~15.4 cycles per processed byte.
# September 2013.
#
# Add NEON implementation. On Cortex A8 it was measured to process one
# byte in 12.5 cycles or 23% faster than integer-only code. Snapdragon
# S4 does it in 12.5 cycles too, but it's 50% faster than integer-only
# code (meaning that latter performs sub-optimally, nothing was done
# about it).
# May 2014.
#
# Add ARMv8 code path performing at 2.0 cpb on Apple A7.
while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
open STDOUT,">$output";
$ctx="r0"; $t0="r0";
$inp="r1"; $t4="r1";
$len="r2"; $t1="r2";
$T1="r3"; $t3="r3";
$A="r4";
$B="r5";
$C="r6";
$D="r7";
$E="r8";
$F="r9";
$G="r10";
$H="r11";
@V=($A,$B,$C,$D,$E,$F,$G,$H);
$t2="r12";
$Ktbl="r14";
@Sigma0=( 2,13,22);
@Sigma1=( 6,11,25);
@sigma0=( 7,18, 3);
@sigma1=(17,19,10);
sub BODY_00_15 {
my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
$code.=<<___ if ($i<16);
#if __ARM_ARCH__>=7
@ ldr $t1,[$inp],#4 @ $i
# if $i==15
str $inp,[sp,#17*4] @ make room for $t4
# endif
eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]`
add $a,$a,$t2 @ h+=Maj(a,b,c) from the past
eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]` @ Sigma1(e)
rev $t1,$t1
#else
@ ldrb $t1,[$inp,#3] @ $i
add $a,$a,$t2 @ h+=Maj(a,b,c) from the past
ldrb $t2,[$inp,#2]
ldrb $t0,[$inp,#1]
orr $t1,$t1,$t2,lsl#8
ldrb $t2,[$inp],#4
orr $t1,$t1,$t0,lsl#16
# if $i==15
str $inp,[sp,#17*4] @ make room for $t4
# endif
eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]`
orr $t1,$t1,$t2,lsl#24
eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]` @ Sigma1(e)
#endif
___
$code.=<<___;
ldr $t2,[$Ktbl],#4 @ *K256++
add $h,$h,$t1 @ h+=X[i]
str $t1,[sp,#`$i%16`*4]
eor $t1,$f,$g
add $h,$h,$t0,ror#$Sigma1[0] @ h+=Sigma1(e)
and $t1,$t1,$e
add $h,$h,$t2 @ h+=K256[i]
eor $t1,$t1,$g @ Ch(e,f,g)
eor $t0,$a,$a,ror#`$Sigma0[1]-$Sigma0[0]`
add $h,$h,$t1 @ h+=Ch(e,f,g)
#if $i==31
and $t2,$t2,#0xff
cmp $t2,#0xf2 @ done?
#endif
#if $i<15
# if __ARM_ARCH__>=7
ldr $t1,[$inp],#4 @ prefetch
# else
ldrb $t1,[$inp,#3]
# endif
eor $t2,$a,$b @ a^b, b^c in next round
#else
ldr $t1,[sp,#`($i+2)%16`*4] @ from future BODY_16_xx
eor $t2,$a,$b @ a^b, b^c in next round
ldr $t4,[sp,#`($i+15)%16`*4] @ from future BODY_16_xx
#endif
eor $t0,$t0,$a,ror#`$Sigma0[2]-$Sigma0[0]` @ Sigma0(a)
and $t3,$t3,$t2 @ (b^c)&=(a^b)
add $d,$d,$h @ d+=h
eor $t3,$t3,$b @ Maj(a,b,c)
add $h,$h,$t0,ror#$Sigma0[0] @ h+=Sigma0(a)
@ add $h,$h,$t3 @ h+=Maj(a,b,c)
___
($t2,$t3)=($t3,$t2);
}
sub BODY_16_XX {
my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
$code.=<<___;
@ ldr $t1,[sp,#`($i+1)%16`*4] @ $i
@ ldr $t4,[sp,#`($i+14)%16`*4]
mov $t0,$t1,ror#$sigma0[0]
add $a,$a,$t2 @ h+=Maj(a,b,c) from the past
mov $t2,$t4,ror#$sigma1[0]
eor $t0,$t0,$t1,ror#$sigma0[1]
eor $t2,$t2,$t4,ror#$sigma1[1]
eor $t0,$t0,$t1,lsr#$sigma0[2] @ sigma0(X[i+1])
ldr $t1,[sp,#`($i+0)%16`*4]
eor $t2,$t2,$t4,lsr#$sigma1[2] @ sigma1(X[i+14])
ldr $t4,[sp,#`($i+9)%16`*4]
add $t2,$t2,$t0
eor $t0,$e,$e,ror#`$Sigma1[1]-$Sigma1[0]` @ from BODY_00_15
add $t1,$t1,$t2
eor $t0,$t0,$e,ror#`$Sigma1[2]-$Sigma1[0]` @ Sigma1(e)
add $t1,$t1,$t4 @ X[i]
___
&BODY_00_15(@_);
}
$code=<<___;
#include "arm_arch.h"
.text
.code 32
.type K256,%object
.align 5
K256:
.word 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
.word 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
.word 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
.word 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
.word 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
.word 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
.word 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
.word 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
.word 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
.word 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
.word 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
.word 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
.word 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
.word 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
.word 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
.word 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
.size K256,.-K256
.word 0 @ terminator
.LOPENSSL_armcap:
.word OPENSSL_armcap_P-sha256_block_data_order
.align 5
.global sha256_block_data_order
.type sha256_block_data_order,%function
sha256_block_data_order:
sub r3,pc,#8 @ sha256_block_data_order
add $len,$inp,$len,lsl#6 @ len to point at the end of inp
#if __ARM_ARCH__>=7
ldr r12,.LOPENSSL_armcap
ldr r12,[r3,r12] @ OPENSSL_armcap_P
tst r12,#ARMV8_SHA256
bne .LARMv8
tst r12,#ARMV7_NEON
bne .LNEON
#endif
stmdb sp!,{$ctx,$inp,$len,r4-r11,lr}
ldmia $ctx,{$A,$B,$C,$D,$E,$F,$G,$H}
sub $Ktbl,r3,#256+32 @ K256
sub sp,sp,#16*4 @ alloca(X[16])
.Loop:
# if __ARM_ARCH__>=7
ldr $t1,[$inp],#4
# else
ldrb $t1,[$inp,#3]
# endif
eor $t3,$B,$C @ magic
eor $t2,$t2,$t2
___
for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
$code.=".Lrounds_16_xx:\n";
for (;$i<32;$i++) { &BODY_16_XX($i,@V); unshift(@V,pop(@V)); }
$code.=<<___;
ldreq $t3,[sp,#16*4] @ pull ctx
bne .Lrounds_16_xx
add $A,$A,$t2 @ h+=Maj(a,b,c) from the past
ldr $t0,[$t3,#0]
ldr $t1,[$t3,#4]
ldr $t2,[$t3,#8]
add $A,$A,$t0
ldr $t0,[$t3,#12]
add $B,$B,$t1
ldr $t1,[$t3,#16]
add $C,$C,$t2
ldr $t2,[$t3,#20]
add $D,$D,$t0
ldr $t0,[$t3,#24]
add $E,$E,$t1
ldr $t1,[$t3,#28]
add $F,$F,$t2
ldr $inp,[sp,#17*4] @ pull inp
ldr $t2,[sp,#18*4] @ pull inp+len
add $G,$G,$t0
add $H,$H,$t1
stmia $t3,{$A,$B,$C,$D,$E,$F,$G,$H}
cmp $inp,$t2
sub $Ktbl,$Ktbl,#256 @ rewind Ktbl
bne .Loop
add sp,sp,#`16+3`*4 @ destroy frame
#if __ARM_ARCH__>=5
ldmia sp!,{r4-r11,pc}
#else
ldmia sp!,{r4-r11,lr}
tst lr,#1
moveq pc,lr @ be binary compatible with V4, yet
bx lr @ interoperable with Thumb ISA:-)
#endif
.size sha256_block_data_order,.-sha256_block_data_order
___
######################################################################
# NEON stuff
#
{{{
my @X=map("q$_",(0..3));
my ($T0,$T1,$T2,$T3,$T4,$T5)=("q8","q9","q10","q11","d24","d25");
my $Xfer=$t4;
my $j=0;
sub Dlo() { shift=~m|q([1]?[0-9])|?"d".($1*2):""; }
sub Dhi() { shift=~m|q([1]?[0-9])|?"d".($1*2+1):""; }
sub AUTOLOAD() # thunk [simplified] x86-style perlasm
{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
my $arg = pop;
$arg = "#$arg" if ($arg*1 eq $arg);
$code .= "\t$opcode\t".join(',',@_,$arg)."\n";
}
sub Xupdate()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body);
my ($a,$b,$c,$d,$e,$f,$g,$h);
&vext_8 ($T0,@X[0],@X[1],4); # X[1..4]
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vext_8 ($T1,@X[2],@X[3],4); # X[9..12]
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T2,$T0,$sigma0[0]);
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 (@X[0],@X[0],$T1); # X[0..3] += X[9..12]
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T1,$T0,$sigma0[2]);
eval(shift(@insns));
eval(shift(@insns));
&vsli_32 ($T2,$T0,32-$sigma0[0]);
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T3,$T0,$sigma0[1]);
eval(shift(@insns));
eval(shift(@insns));
&veor ($T1,$T1,$T2);
eval(shift(@insns));
eval(shift(@insns));
&vsli_32 ($T3,$T0,32-$sigma0[1]);
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T4,&Dhi(@X[3]),$sigma1[0]);
eval(shift(@insns));
eval(shift(@insns));
&veor ($T1,$T1,$T3); # sigma0(X[1..4])
eval(shift(@insns));
eval(shift(@insns));
&vsli_32 ($T4,&Dhi(@X[3]),32-$sigma1[0]);
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T5,&Dhi(@X[3]),$sigma1[2]);
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 (@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4])
eval(shift(@insns));
eval(shift(@insns));
&veor ($T5,$T5,$T4);
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T4,&Dhi(@X[3]),$sigma1[1]);
eval(shift(@insns));
eval(shift(@insns));
&vsli_32 ($T4,&Dhi(@X[3]),32-$sigma1[1]);
eval(shift(@insns));
eval(shift(@insns));
&veor ($T5,$T5,$T4); # sigma1(X[14..15])
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 (&Dlo(@X[0]),&Dlo(@X[0]),$T5);# X[0..1] += sigma1(X[14..15])
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T4,&Dlo(@X[0]),$sigma1[0]);
eval(shift(@insns));
eval(shift(@insns));
&vsli_32 ($T4,&Dlo(@X[0]),32-$sigma1[0]);
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T5,&Dlo(@X[0]),$sigma1[2]);
eval(shift(@insns));
eval(shift(@insns));
&veor ($T5,$T5,$T4);
eval(shift(@insns));
eval(shift(@insns));
&vshr_u32 ($T4,&Dlo(@X[0]),$sigma1[1]);
eval(shift(@insns));
eval(shift(@insns));
&vld1_32 ("{$T0}","[$Ktbl,:128]!");
eval(shift(@insns));
eval(shift(@insns));
&vsli_32 ($T4,&Dlo(@X[0]),32-$sigma1[1]);
eval(shift(@insns));
eval(shift(@insns));
&veor ($T5,$T5,$T4); # sigma1(X[16..17])
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 (&Dhi(@X[0]),&Dhi(@X[0]),$T5);# X[2..3] += sigma1(X[16..17])
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 ($T0,$T0,@X[0]);
while($#insns>=2) { eval(shift(@insns)); }
&vst1_32 ("{$T0}","[$Xfer,:128]!");
eval(shift(@insns));
eval(shift(@insns));
push(@X,shift(@X)); # "rotate" X[]
}
sub Xpreload()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body);
my ($a,$b,$c,$d,$e,$f,$g,$h);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vld1_32 ("{$T0}","[$Ktbl,:128]!");
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vrev32_8 (@X[0],@X[0]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vadd_i32 ($T0,$T0,@X[0]);
foreach (@insns) { eval; } # remaining instructions
&vst1_32 ("{$T0}","[$Xfer,:128]!");
push(@X,shift(@X)); # "rotate" X[]
}
sub body_00_15 () {
(
'($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
'&add ($h,$h,$t1)', # h+=X[i]+K[i]
'&eor ($t1,$f,$g)',
'&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
'&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past
'&and ($t1,$t1,$e)',
'&eor ($t2,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e)
'&eor ($t0,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
'&eor ($t1,$t1,$g)', # Ch(e,f,g)
'&add ($h,$h,$t2,"ror#$Sigma1[0]")', # h+=Sigma1(e)
'&eor ($t2,$a,$b)', # a^b, b^c in next round
'&eor ($t0,$t0,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a)
'&add ($h,$h,$t1)', # h+=Ch(e,f,g)
'&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'.
'&ldr ($t1,"[$Ktbl]") if ($j==15);'.
'&ldr ($t1,"[sp,#64]") if ($j==31)',
'&and ($t3,$t3,$t2)', # (b^c)&=(a^b)
'&add ($d,$d,$h)', # d+=h
'&add ($h,$h,$t0,"ror#$Sigma0[0]");'. # h+=Sigma0(a)
'&eor ($t3,$t3,$b)', # Maj(a,b,c)
'$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
)
}
$code.=<<___;
#if __ARM_ARCH__>=7
.fpu neon
.type sha256_block_data_order_neon,%function
.align 4
sha256_block_data_order_neon:
.LNEON:
stmdb sp!,{r4-r12,lr}
mov $t2,sp
sub sp,sp,#16*4+16 @ alloca
sub $Ktbl,r3,#256+32 @ K256
bic sp,sp,#15 @ align for 128-bit stores
vld1.8 {@X[0]},[$inp]!
vld1.8 {@X[1]},[$inp]!
vld1.8 {@X[2]},[$inp]!
vld1.8 {@X[3]},[$inp]!
vld1.32 {$T0},[$Ktbl,:128]!
vld1.32 {$T1},[$Ktbl,:128]!
vld1.32 {$T2},[$Ktbl,:128]!
vld1.32 {$T3},[$Ktbl,:128]!
vrev32.8 @X[0],@X[0] @ yes, even on
str $ctx,[sp,#64]
vrev32.8 @X[1],@X[1] @ big-endian
str $inp,[sp,#68]
mov $Xfer,sp
vrev32.8 @X[2],@X[2]
str $len,[sp,#72]
vrev32.8 @X[3],@X[3]
str $t2,[sp,#76] @ save original sp
vadd.i32 $T0,$T0,@X[0]
vadd.i32 $T1,$T1,@X[1]
vst1.32 {$T0},[$Xfer,:128]!
vadd.i32 $T2,$T2,@X[2]
vst1.32 {$T1},[$Xfer,:128]!
vadd.i32 $T3,$T3,@X[3]
vst1.32 {$T2},[$Xfer,:128]!
vst1.32 {$T3},[$Xfer,:128]!
ldmia $ctx,{$A-$H}
sub $Xfer,$Xfer,#64
ldr $t1,[sp,#0]
eor $t2,$t2,$t2
eor $t3,$B,$C
b .L_00_48
.align 4
.L_00_48:
___
&Xupdate(\&body_00_15);
&Xupdate(\&body_00_15);
&Xupdate(\&body_00_15);
&Xupdate(\&body_00_15);
$code.=<<___;
teq $t1,#0 @ check for K256 terminator
ldr $t1,[sp,#0]
sub $Xfer,$Xfer,#64
bne .L_00_48
ldr $inp,[sp,#68]
ldr $t0,[sp,#72]
sub $Ktbl,$Ktbl,#256 @ rewind $Ktbl
teq $inp,$t0
subeq $inp,$inp,#64 @ avoid SEGV
vld1.8 {@X[0]},[$inp]! @ load next input block
vld1.8 {@X[1]},[$inp]!
vld1.8 {@X[2]},[$inp]!
vld1.8 {@X[3]},[$inp]!
strne $inp,[sp,#68]
mov $Xfer,sp
___
&Xpreload(\&body_00_15);
&Xpreload(\&body_00_15);
&Xpreload(\&body_00_15);
&Xpreload(\&body_00_15);
$code.=<<___;
ldr $t0,[$t1,#0]
add $A,$A,$t2 @ h+=Maj(a,b,c) from the past
ldr $t2,[$t1,#4]
ldr $t3,[$t1,#8]
ldr $t4,[$t1,#12]
add $A,$A,$t0 @ accumulate
ldr $t0,[$t1,#16]
add $B,$B,$t2
ldr $t2,[$t1,#20]
add $C,$C,$t3
ldr $t3,[$t1,#24]
add $D,$D,$t4
ldr $t4,[$t1,#28]
add $E,$E,$t0
str $A,[$t1],#4
add $F,$F,$t2
str $B,[$t1],#4
add $G,$G,$t3
str $C,[$t1],#4
add $H,$H,$t4
str $D,[$t1],#4
stmia $t1,{$E-$H}
movne $Xfer,sp
ldrne $t1,[sp,#0]
eorne $t2,$t2,$t2
ldreq sp,[sp,#76] @ restore original sp
eorne $t3,$B,$C
bne .L_00_48
ldmia sp!,{r4-r12,pc}
.size sha256_block_data_order_neon,.-sha256_block_data_order_neon
#endif
___
}}}
######################################################################
# ARMv8 stuff
#
{{{
my ($ABCD,$EFGH,$abcd)=map("q$_",(0..2));
my @MSG=map("q$_",(8..11));
my ($W0,$W1,$ABCD_SAVE,$EFGH_SAVE)=map("q$_",(12..15));
my $Ktbl="r3";
$code.=<<___;
#if __ARM_ARCH__>=7
.type sha256_block_data_order_armv8,%function
.align 5
sha256_block_data_order_armv8:
.LARMv8:
vld1.32 {$ABCD,$EFGH},[$ctx]
sub $Ktbl,r3,#sha256_block_data_order-K256
.Loop_v8:
vld1.8 {@MSG[0]-@MSG[1]},[$inp]!
vld1.8 {@MSG[2]-@MSG[3]},[$inp]!
vld1.32 {$W0},[$Ktbl]!
vrev32.8 @MSG[0],@MSG[0]
vrev32.8 @MSG[1],@MSG[1]
vrev32.8 @MSG[2],@MSG[2]
vrev32.8 @MSG[3],@MSG[3]
vmov $ABCD_SAVE,$ABCD @ offload
vmov $EFGH_SAVE,$EFGH
teq $inp,$len
___
for($i=0;$i<12;$i++) {
$code.=<<___;
vld1.32 {$W1},[$Ktbl]!
vadd.i32 $W0,$W0,@MSG[0]
sha256su0 @MSG[0],@MSG[1]
vmov $abcd,$ABCD
sha256h $ABCD,$EFGH,$W0
sha256h2 $EFGH,$abcd,$W0
sha256su1 @MSG[0],@MSG[2],@MSG[3]
___
($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
}
$code.=<<___;
vld1.32 {$W1},[$Ktbl]!
vadd.i32 $W0,$W0,@MSG[0]
vmov $abcd,$ABCD
sha256h $ABCD,$EFGH,$W0
sha256h2 $EFGH,$abcd,$W0
vld1.32 {$W0},[$Ktbl]!
vadd.i32 $W1,$W1,@MSG[1]
vmov $abcd,$ABCD
sha256h $ABCD,$EFGH,$W1
sha256h2 $EFGH,$abcd,$W1
vld1.32 {$W1},[$Ktbl]
vadd.i32 $W0,$W0,@MSG[2]
sub $Ktbl,$Ktbl,#256-16 @ rewind
vmov $abcd,$ABCD
sha256h $ABCD,$EFGH,$W0
sha256h2 $EFGH,$abcd,$W0
vadd.i32 $W1,$W1,@MSG[3]
vmov $abcd,$ABCD
sha256h $ABCD,$EFGH,$W1
sha256h2 $EFGH,$abcd,$W1
vadd.i32 $ABCD,$ABCD,$ABCD_SAVE
vadd.i32 $EFGH,$EFGH,$EFGH_SAVE
bne .Loop_v8
vst1.32 {$ABCD,$EFGH},[$ctx]
bx lr
.size sha256_block_data_order_armv8,.-sha256_block_data_order_armv8
#endif
___
}}}
$code.=<<___;
.asciz "SHA256 block transform for ARMv4/NEON/ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
.align 2
.comm OPENSSL_armcap_P,4,4
___
{ my %opcode = (
"sha256h" => 0xf3000c40, "sha256h2" => 0xf3100c40,
"sha256su0" => 0xf3ba03c0, "sha256su1" => 0xf3200c40 );
sub unsha256 {
my ($mnemonic,$arg)=@_;
$arg =~ m/q([0-9]+)(?:,\s*q([0-9]+))?,\s*q([0-9]+)/o
&&
sprintf ".long\t0x%08x\t@ %s %s",
$opcode{$mnemonic}|(($1&7)<<13)|(($1&8)<<19)
|(($2&7)<<17)|(($2&8)<<4)
|(($3&7)<<1) |(($3&8)<<2),
$mnemonic,$arg;
}
}
foreach (split($/,$code)) {
s/\`([^\`]*)\`/eval $1/geo;
s/\b(sha256\w+)\s+(q.*)/unsha256($1,$2)/geo;
s/\bbx\s+lr\b/.word\t0xe12fff1e/go; # make it possible to compile with -march=armv4
print $_,"\n";
}
close STDOUT; # enforce flush