Since we don't use the eay style any more, there's no point tryint to tell emacs to use it. Reviewed-by: Ben Laurie <ben@openssl.org>
		
			
				
	
	
		
			2875 lines
		
	
	
		
			91 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2875 lines
		
	
	
		
			91 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* apps/speed.c */
 | 
						|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * This package is an SSL implementation written
 | 
						|
 * by Eric Young (eay@cryptsoft.com).
 | 
						|
 * The implementation was written so as to conform with Netscapes SSL.
 | 
						|
 *
 | 
						|
 * This library is free for commercial and non-commercial use as long as
 | 
						|
 * the following conditions are aheared to.  The following conditions
 | 
						|
 * apply to all code found in this distribution, be it the RC4, RSA,
 | 
						|
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 | 
						|
 * included with this distribution is covered by the same copyright terms
 | 
						|
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 | 
						|
 *
 | 
						|
 * Copyright remains Eric Young's, and as such any Copyright notices in
 | 
						|
 * the code are not to be removed.
 | 
						|
 * If this package is used in a product, Eric Young should be given attribution
 | 
						|
 * as the author of the parts of the library used.
 | 
						|
 * This can be in the form of a textual message at program startup or
 | 
						|
 * in documentation (online or textual) provided with the package.
 | 
						|
 *
 | 
						|
 * Redistribution and use in source and binary forms, with or without
 | 
						|
 * modification, are permitted provided that the following conditions
 | 
						|
 * are met:
 | 
						|
 * 1. Redistributions of source code must retain the copyright
 | 
						|
 *    notice, this list of conditions and the following disclaimer.
 | 
						|
 * 2. Redistributions in binary form must reproduce the above copyright
 | 
						|
 *    notice, this list of conditions and the following disclaimer in the
 | 
						|
 *    documentation and/or other materials provided with the distribution.
 | 
						|
 * 3. All advertising materials mentioning features or use of this software
 | 
						|
 *    must display the following acknowledgement:
 | 
						|
 *    "This product includes cryptographic software written by
 | 
						|
 *     Eric Young (eay@cryptsoft.com)"
 | 
						|
 *    The word 'cryptographic' can be left out if the rouines from the library
 | 
						|
 *    being used are not cryptographic related :-).
 | 
						|
 * 4. If you include any Windows specific code (or a derivative thereof) from
 | 
						|
 *    the apps directory (application code) you must include an acknowledgement:
 | 
						|
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 | 
						|
 *
 | 
						|
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 | 
						|
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
						|
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | 
						|
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | 
						|
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | 
						|
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | 
						|
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | 
						|
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | 
						|
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | 
						|
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | 
						|
 * SUCH DAMAGE.
 | 
						|
 *
 | 
						|
 * The licence and distribution terms for any publically available version or
 | 
						|
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 | 
						|
 * copied and put under another distribution licence
 | 
						|
 * [including the GNU Public Licence.]
 | 
						|
 */
 | 
						|
/* ====================================================================
 | 
						|
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
 | 
						|
 *
 | 
						|
 * Portions of the attached software ("Contribution") are developed by
 | 
						|
 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
 | 
						|
 *
 | 
						|
 * The Contribution is licensed pursuant to the OpenSSL open source
 | 
						|
 * license provided above.
 | 
						|
 *
 | 
						|
 * The ECDH and ECDSA speed test software is originally written by
 | 
						|
 * Sumit Gupta of Sun Microsystems Laboratories.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
/* most of this code has been pilfered from my libdes speed.c program */
 | 
						|
 | 
						|
#ifndef OPENSSL_NO_SPEED
 | 
						|
 | 
						|
# undef SECONDS
 | 
						|
# define SECONDS         3
 | 
						|
# define RSA_SECONDS     10
 | 
						|
# define DSA_SECONDS     10
 | 
						|
# define ECDSA_SECONDS   10
 | 
						|
# define ECDH_SECONDS    10
 | 
						|
 | 
						|
/* 11-Sep-92 Andrew Daviel   Support for Silicon Graphics IRIX added */
 | 
						|
/* 06-Apr-92 Luke Brennan    Support for VMS and add extra signal calls */
 | 
						|
 | 
						|
# undef PROG
 | 
						|
# define PROG speed_main
 | 
						|
 | 
						|
# include <stdio.h>
 | 
						|
# include <stdlib.h>
 | 
						|
 | 
						|
# include <string.h>
 | 
						|
# include <math.h>
 | 
						|
# include "apps.h"
 | 
						|
# ifdef OPENSSL_NO_STDIO
 | 
						|
#  define APPS_WIN16
 | 
						|
# endif
 | 
						|
# include <openssl/crypto.h>
 | 
						|
# include <openssl/rand.h>
 | 
						|
# include <openssl/err.h>
 | 
						|
# include <openssl/evp.h>
 | 
						|
# include <openssl/objects.h>
 | 
						|
# if !defined(OPENSSL_SYS_MSDOS)
 | 
						|
#  include OPENSSL_UNISTD
 | 
						|
# endif
 | 
						|
 | 
						|
# ifndef OPENSSL_SYS_NETWARE
 | 
						|
#  include <signal.h>
 | 
						|
# endif
 | 
						|
 | 
						|
# if defined(_WIN32) || defined(__CYGWIN__)
 | 
						|
#  include <windows.h>
 | 
						|
#  if defined(__CYGWIN__) && !defined(_WIN32)
 | 
						|
  /*
 | 
						|
   * <windows.h> should define _WIN32, which normally is mutually exclusive
 | 
						|
   * with __CYGWIN__, but if it didn't...
 | 
						|
   */
 | 
						|
#   define _WIN32
 | 
						|
  /* this is done because Cygwin alarm() fails sometimes. */
 | 
						|
#  endif
 | 
						|
# endif
 | 
						|
 | 
						|
# include <openssl/bn.h>
 | 
						|
# ifndef OPENSSL_NO_DES
 | 
						|
#  include <openssl/des.h>
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_AES
 | 
						|
#  include <openssl/aes.h>
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_CAMELLIA
 | 
						|
#  include <openssl/camellia.h>
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_MD2
 | 
						|
#  include <openssl/md2.h>
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_MDC2
 | 
						|
#  include <openssl/mdc2.h>
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_MD4
 | 
						|
#  include <openssl/md4.h>
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_MD5
 | 
						|
#  include <openssl/md5.h>
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_HMAC
 | 
						|
#  include <openssl/hmac.h>
 | 
						|
# endif
 | 
						|
# include <openssl/evp.h>
 | 
						|
# ifndef OPENSSL_NO_SHA
 | 
						|
#  include <openssl/sha.h>
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RIPEMD
 | 
						|
#  include <openssl/ripemd.h>
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_WHIRLPOOL
 | 
						|
#  include <openssl/whrlpool.h>
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RC4
 | 
						|
#  include <openssl/rc4.h>
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RC5
 | 
						|
#  include <openssl/rc5.h>
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RC2
 | 
						|
#  include <openssl/rc2.h>
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_IDEA
 | 
						|
#  include <openssl/idea.h>
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_SEED
 | 
						|
#  include <openssl/seed.h>
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_BF
 | 
						|
#  include <openssl/blowfish.h>
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_CAST
 | 
						|
#  include <openssl/cast.h>
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RSA
 | 
						|
#  include <openssl/rsa.h>
 | 
						|
#  include "./testrsa.h"
 | 
						|
# endif
 | 
						|
# include <openssl/x509.h>
 | 
						|
# ifndef OPENSSL_NO_DSA
 | 
						|
#  include <openssl/dsa.h>
 | 
						|
#  include "./testdsa.h"
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_ECDSA
 | 
						|
#  include <openssl/ecdsa.h>
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_ECDH
 | 
						|
#  include <openssl/ecdh.h>
 | 
						|
# endif
 | 
						|
# include <openssl/modes.h>
 | 
						|
 | 
						|
# ifdef OPENSSL_FIPS
 | 
						|
#  ifdef OPENSSL_DOING_MAKEDEPEND
 | 
						|
#   undef AES_set_encrypt_key
 | 
						|
#   undef AES_set_decrypt_key
 | 
						|
#   undef DES_set_key_unchecked
 | 
						|
#  endif
 | 
						|
#  define BF_set_key      private_BF_set_key
 | 
						|
#  define CAST_set_key    private_CAST_set_key
 | 
						|
#  define idea_set_encrypt_key    private_idea_set_encrypt_key
 | 
						|
#  define SEED_set_key    private_SEED_set_key
 | 
						|
#  define RC2_set_key     private_RC2_set_key
 | 
						|
#  define RC4_set_key     private_RC4_set_key
 | 
						|
#  define DES_set_key_unchecked   private_DES_set_key_unchecked
 | 
						|
#  define AES_set_encrypt_key     private_AES_set_encrypt_key
 | 
						|
#  define AES_set_decrypt_key     private_AES_set_decrypt_key
 | 
						|
#  define Camellia_set_key        private_Camellia_set_key
 | 
						|
# endif
 | 
						|
 | 
						|
# ifndef HAVE_FORK
 | 
						|
#  if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_MACINTOSH_CLASSIC) || defined(OPENSSL_SYS_OS2) || defined(OPENSSL_SYS_NETWARE)
 | 
						|
#   define HAVE_FORK 0
 | 
						|
#  else
 | 
						|
#   define HAVE_FORK 1
 | 
						|
#  endif
 | 
						|
# endif
 | 
						|
 | 
						|
# if HAVE_FORK
 | 
						|
#  undef NO_FORK
 | 
						|
# else
 | 
						|
#  define NO_FORK
 | 
						|
# endif
 | 
						|
 | 
						|
# undef BUFSIZE
 | 
						|
# define BUFSIZE ((long)1024*8+1)
 | 
						|
static volatile int run = 0;
 | 
						|
 | 
						|
static int mr = 0;
 | 
						|
static int usertime = 1;
 | 
						|
 | 
						|
static double Time_F(int s);
 | 
						|
static void print_message(const char *s, long num, int length);
 | 
						|
static void pkey_print_message(const char *str, const char *str2,
 | 
						|
                               long num, int bits, int sec);
 | 
						|
static void print_result(int alg, int run_no, int count, double time_used);
 | 
						|
# ifndef NO_FORK
 | 
						|
static int do_multi(int multi);
 | 
						|
# endif
 | 
						|
 | 
						|
# define ALGOR_NUM       30
 | 
						|
# define SIZE_NUM        5
 | 
						|
# define RSA_NUM         4
 | 
						|
# define DSA_NUM         3
 | 
						|
 | 
						|
# define EC_NUM       16
 | 
						|
# define MAX_ECDH_SIZE 256
 | 
						|
 | 
						|
static const char *names[ALGOR_NUM] = {
 | 
						|
    "md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4",
 | 
						|
    "des cbc", "des ede3", "idea cbc", "seed cbc",
 | 
						|
    "rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc",
 | 
						|
    "aes-128 cbc", "aes-192 cbc", "aes-256 cbc",
 | 
						|
    "camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc",
 | 
						|
    "evp", "sha256", "sha512", "whirlpool",
 | 
						|
    "aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash"
 | 
						|
};
 | 
						|
 | 
						|
static double results[ALGOR_NUM][SIZE_NUM];
 | 
						|
static int lengths[SIZE_NUM] = { 16, 64, 256, 1024, 8 * 1024 };
 | 
						|
 | 
						|
# ifndef OPENSSL_NO_RSA
 | 
						|
static double rsa_results[RSA_NUM][2];
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_DSA
 | 
						|
static double dsa_results[DSA_NUM][2];
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_ECDSA
 | 
						|
static double ecdsa_results[EC_NUM][2];
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_ECDH
 | 
						|
static double ecdh_results[EC_NUM][1];
 | 
						|
# endif
 | 
						|
 | 
						|
# if defined(OPENSSL_NO_DSA) && !(defined(OPENSSL_NO_ECDSA) && defined(OPENSSL_NO_ECDH))
 | 
						|
static const char rnd_seed[] =
 | 
						|
    "string to make the random number generator think it has entropy";
 | 
						|
static int rnd_fake = 0;
 | 
						|
# endif
 | 
						|
 | 
						|
# ifdef SIGALRM
 | 
						|
#  if defined(__STDC__) || defined(sgi) || defined(_AIX)
 | 
						|
#   define SIGRETTYPE void
 | 
						|
#  else
 | 
						|
#   define SIGRETTYPE int
 | 
						|
#  endif
 | 
						|
 | 
						|
static SIGRETTYPE sig_done(int sig);
 | 
						|
static SIGRETTYPE sig_done(int sig)
 | 
						|
{
 | 
						|
    signal(SIGALRM, sig_done);
 | 
						|
    run = 0;
 | 
						|
#  ifdef LINT
 | 
						|
    sig = sig;
 | 
						|
#  endif
 | 
						|
}
 | 
						|
# endif
 | 
						|
 | 
						|
# define START   0
 | 
						|
# define STOP    1
 | 
						|
 | 
						|
# if defined(_WIN32)
 | 
						|
 | 
						|
#  if !defined(SIGALRM)
 | 
						|
#   define SIGALRM
 | 
						|
#  endif
 | 
						|
static unsigned int lapse, schlock;
 | 
						|
static void alarm_win32(unsigned int secs)
 | 
						|
{
 | 
						|
    lapse = secs * 1000;
 | 
						|
}
 | 
						|
 | 
						|
#  define alarm alarm_win32
 | 
						|
 | 
						|
static DWORD WINAPI sleepy(VOID * arg)
 | 
						|
{
 | 
						|
    schlock = 1;
 | 
						|
    Sleep(lapse);
 | 
						|
    run = 0;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static double Time_F(int s)
 | 
						|
{
 | 
						|
    if (s == START) {
 | 
						|
        HANDLE thr;
 | 
						|
        schlock = 0;
 | 
						|
        thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL);
 | 
						|
        if (thr == NULL) {
 | 
						|
            DWORD ret = GetLastError();
 | 
						|
            BIO_printf(bio_err, "unable to CreateThread (%d)", ret);
 | 
						|
            ExitProcess(ret);
 | 
						|
        }
 | 
						|
        CloseHandle(thr);       /* detach the thread */
 | 
						|
        while (!schlock)
 | 
						|
            Sleep(0);           /* scheduler spinlock */
 | 
						|
    }
 | 
						|
 | 
						|
    return app_tminterval(s, usertime);
 | 
						|
}
 | 
						|
# else
 | 
						|
 | 
						|
static double Time_F(int s)
 | 
						|
{
 | 
						|
    return app_tminterval(s, usertime);
 | 
						|
}
 | 
						|
# endif
 | 
						|
 | 
						|
# ifndef OPENSSL_NO_ECDH
 | 
						|
static const int KDF1_SHA1_len = 20;
 | 
						|
static void *KDF1_SHA1(const void *in, size_t inlen, void *out,
 | 
						|
                       size_t *outlen)
 | 
						|
{
 | 
						|
#  ifndef OPENSSL_NO_SHA
 | 
						|
    if (*outlen < SHA_DIGEST_LENGTH)
 | 
						|
        return NULL;
 | 
						|
    else
 | 
						|
        *outlen = SHA_DIGEST_LENGTH;
 | 
						|
    return SHA1(in, inlen, out);
 | 
						|
#  else
 | 
						|
    return NULL;
 | 
						|
#  endif                        /* OPENSSL_NO_SHA */
 | 
						|
}
 | 
						|
# endif                         /* OPENSSL_NO_ECDH */
 | 
						|
 | 
						|
static void multiblock_speed(const EVP_CIPHER *evp_cipher);
 | 
						|
 | 
						|
int MAIN(int, char **);
 | 
						|
 | 
						|
int MAIN(int argc, char **argv)
 | 
						|
{
 | 
						|
    unsigned char *buf = NULL, *buf2 = NULL;
 | 
						|
    int mret = 1;
 | 
						|
    long count = 0, save_count = 0;
 | 
						|
    int i, j, k;
 | 
						|
# if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA)
 | 
						|
    long rsa_count;
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RSA
 | 
						|
    unsigned rsa_num;
 | 
						|
# endif
 | 
						|
    unsigned char md[EVP_MAX_MD_SIZE];
 | 
						|
# ifndef OPENSSL_NO_MD2
 | 
						|
    unsigned char md2[MD2_DIGEST_LENGTH];
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_MDC2
 | 
						|
    unsigned char mdc2[MDC2_DIGEST_LENGTH];
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_MD4
 | 
						|
    unsigned char md4[MD4_DIGEST_LENGTH];
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_MD5
 | 
						|
    unsigned char md5[MD5_DIGEST_LENGTH];
 | 
						|
    unsigned char hmac[MD5_DIGEST_LENGTH];
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_SHA
 | 
						|
    unsigned char sha[SHA_DIGEST_LENGTH];
 | 
						|
#  ifndef OPENSSL_NO_SHA256
 | 
						|
    unsigned char sha256[SHA256_DIGEST_LENGTH];
 | 
						|
#  endif
 | 
						|
#  ifndef OPENSSL_NO_SHA512
 | 
						|
    unsigned char sha512[SHA512_DIGEST_LENGTH];
 | 
						|
#  endif
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_WHIRLPOOL
 | 
						|
    unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH];
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RIPEMD
 | 
						|
    unsigned char rmd160[RIPEMD160_DIGEST_LENGTH];
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RC4
 | 
						|
    RC4_KEY rc4_ks;
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RC5
 | 
						|
    RC5_32_KEY rc5_ks;
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RC2
 | 
						|
    RC2_KEY rc2_ks;
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_IDEA
 | 
						|
    IDEA_KEY_SCHEDULE idea_ks;
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_SEED
 | 
						|
    SEED_KEY_SCHEDULE seed_ks;
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_BF
 | 
						|
    BF_KEY bf_ks;
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_CAST
 | 
						|
    CAST_KEY cast_ks;
 | 
						|
# endif
 | 
						|
    static const unsigned char key16[16] = {
 | 
						|
        0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
 | 
						|
        0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
 | 
						|
    };
 | 
						|
# ifndef OPENSSL_NO_AES
 | 
						|
    static const unsigned char key24[24] = {
 | 
						|
        0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
 | 
						|
        0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
 | 
						|
        0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
 | 
						|
    };
 | 
						|
    static const unsigned char key32[32] = {
 | 
						|
        0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
 | 
						|
        0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
 | 
						|
        0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
 | 
						|
        0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
 | 
						|
    };
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_CAMELLIA
 | 
						|
    static const unsigned char ckey24[24] = {
 | 
						|
        0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
 | 
						|
        0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
 | 
						|
        0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
 | 
						|
    };
 | 
						|
    static const unsigned char ckey32[32] = {
 | 
						|
        0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
 | 
						|
        0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
 | 
						|
        0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
 | 
						|
        0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
 | 
						|
    };
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_AES
 | 
						|
#  define MAX_BLOCK_SIZE 128
 | 
						|
# else
 | 
						|
#  define MAX_BLOCK_SIZE 64
 | 
						|
# endif
 | 
						|
    unsigned char DES_iv[8];
 | 
						|
    unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
 | 
						|
# ifndef OPENSSL_NO_DES
 | 
						|
    static DES_cblock key =
 | 
						|
        { 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0 };
 | 
						|
    static DES_cblock key2 =
 | 
						|
        { 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 };
 | 
						|
    static DES_cblock key3 =
 | 
						|
        { 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 };
 | 
						|
    DES_key_schedule sch;
 | 
						|
    DES_key_schedule sch2;
 | 
						|
    DES_key_schedule sch3;
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_AES
 | 
						|
    AES_KEY aes_ks1, aes_ks2, aes_ks3;
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_CAMELLIA
 | 
						|
    CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3;
 | 
						|
# endif
 | 
						|
# define D_MD2           0
 | 
						|
# define D_MDC2          1
 | 
						|
# define D_MD4           2
 | 
						|
# define D_MD5           3
 | 
						|
# define D_HMAC          4
 | 
						|
# define D_SHA1          5
 | 
						|
# define D_RMD160        6
 | 
						|
# define D_RC4           7
 | 
						|
# define D_CBC_DES       8
 | 
						|
# define D_EDE3_DES      9
 | 
						|
# define D_CBC_IDEA      10
 | 
						|
# define D_CBC_SEED      11
 | 
						|
# define D_CBC_RC2       12
 | 
						|
# define D_CBC_RC5       13
 | 
						|
# define D_CBC_BF        14
 | 
						|
# define D_CBC_CAST      15
 | 
						|
# define D_CBC_128_AES   16
 | 
						|
# define D_CBC_192_AES   17
 | 
						|
# define D_CBC_256_AES   18
 | 
						|
# define D_CBC_128_CML   19
 | 
						|
# define D_CBC_192_CML   20
 | 
						|
# define D_CBC_256_CML   21
 | 
						|
# define D_EVP           22
 | 
						|
# define D_SHA256        23
 | 
						|
# define D_SHA512        24
 | 
						|
# define D_WHIRLPOOL     25
 | 
						|
# define D_IGE_128_AES   26
 | 
						|
# define D_IGE_192_AES   27
 | 
						|
# define D_IGE_256_AES   28
 | 
						|
# define D_GHASH         29
 | 
						|
    double d = 0.0;
 | 
						|
    long c[ALGOR_NUM][SIZE_NUM];
 | 
						|
# define R_DSA_512       0
 | 
						|
# define R_DSA_1024      1
 | 
						|
# define R_DSA_2048      2
 | 
						|
# define R_RSA_512       0
 | 
						|
# define R_RSA_1024      1
 | 
						|
# define R_RSA_2048      2
 | 
						|
# define R_RSA_4096      3
 | 
						|
 | 
						|
# define R_EC_P160    0
 | 
						|
# define R_EC_P192    1
 | 
						|
# define R_EC_P224    2
 | 
						|
# define R_EC_P256    3
 | 
						|
# define R_EC_P384    4
 | 
						|
# define R_EC_P521    5
 | 
						|
# define R_EC_K163    6
 | 
						|
# define R_EC_K233    7
 | 
						|
# define R_EC_K283    8
 | 
						|
# define R_EC_K409    9
 | 
						|
# define R_EC_K571    10
 | 
						|
# define R_EC_B163    11
 | 
						|
# define R_EC_B233    12
 | 
						|
# define R_EC_B283    13
 | 
						|
# define R_EC_B409    14
 | 
						|
# define R_EC_B571    15
 | 
						|
 | 
						|
# ifndef OPENSSL_NO_RSA
 | 
						|
    RSA *rsa_key[RSA_NUM];
 | 
						|
    long rsa_c[RSA_NUM][2];
 | 
						|
    static unsigned int rsa_bits[RSA_NUM] = {
 | 
						|
        512, 1024, 2048, 4096
 | 
						|
    };
 | 
						|
    static unsigned char *rsa_data[RSA_NUM] = {
 | 
						|
        test512, test1024, test2048, test4096
 | 
						|
    };
 | 
						|
    static int rsa_data_length[RSA_NUM] = {
 | 
						|
        sizeof(test512), sizeof(test1024),
 | 
						|
        sizeof(test2048), sizeof(test4096)
 | 
						|
    };
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_DSA
 | 
						|
    DSA *dsa_key[DSA_NUM];
 | 
						|
    long dsa_c[DSA_NUM][2];
 | 
						|
    static unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 };
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_EC
 | 
						|
    /*
 | 
						|
     * We only test over the following curves as they are representative, To
 | 
						|
     * add tests over more curves, simply add the curve NID and curve name to
 | 
						|
     * the following arrays and increase the EC_NUM value accordingly.
 | 
						|
     */
 | 
						|
    static unsigned int test_curves[EC_NUM] = {
 | 
						|
        /* Prime Curves */
 | 
						|
        NID_secp160r1,
 | 
						|
        NID_X9_62_prime192v1,
 | 
						|
        NID_secp224r1,
 | 
						|
        NID_X9_62_prime256v1,
 | 
						|
        NID_secp384r1,
 | 
						|
        NID_secp521r1,
 | 
						|
        /* Binary Curves */
 | 
						|
        NID_sect163k1,
 | 
						|
        NID_sect233k1,
 | 
						|
        NID_sect283k1,
 | 
						|
        NID_sect409k1,
 | 
						|
        NID_sect571k1,
 | 
						|
        NID_sect163r2,
 | 
						|
        NID_sect233r1,
 | 
						|
        NID_sect283r1,
 | 
						|
        NID_sect409r1,
 | 
						|
        NID_sect571r1
 | 
						|
    };
 | 
						|
    static const char *test_curves_names[EC_NUM] = {
 | 
						|
        /* Prime Curves */
 | 
						|
        "secp160r1",
 | 
						|
        "nistp192",
 | 
						|
        "nistp224",
 | 
						|
        "nistp256",
 | 
						|
        "nistp384",
 | 
						|
        "nistp521",
 | 
						|
        /* Binary Curves */
 | 
						|
        "nistk163",
 | 
						|
        "nistk233",
 | 
						|
        "nistk283",
 | 
						|
        "nistk409",
 | 
						|
        "nistk571",
 | 
						|
        "nistb163",
 | 
						|
        "nistb233",
 | 
						|
        "nistb283",
 | 
						|
        "nistb409",
 | 
						|
        "nistb571"
 | 
						|
    };
 | 
						|
    static int test_curves_bits[EC_NUM] = {
 | 
						|
        160, 192, 224, 256, 384, 521,
 | 
						|
        163, 233, 283, 409, 571,
 | 
						|
        163, 233, 283, 409, 571
 | 
						|
    };
 | 
						|
 | 
						|
# endif
 | 
						|
 | 
						|
# ifndef OPENSSL_NO_ECDSA
 | 
						|
    unsigned char ecdsasig[256];
 | 
						|
    unsigned int ecdsasiglen;
 | 
						|
    EC_KEY *ecdsa[EC_NUM];
 | 
						|
    long ecdsa_c[EC_NUM][2];
 | 
						|
# endif
 | 
						|
 | 
						|
# ifndef OPENSSL_NO_ECDH
 | 
						|
    EC_KEY *ecdh_a[EC_NUM], *ecdh_b[EC_NUM];
 | 
						|
    unsigned char secret_a[MAX_ECDH_SIZE], secret_b[MAX_ECDH_SIZE];
 | 
						|
    int secret_size_a, secret_size_b;
 | 
						|
    int ecdh_checks = 0;
 | 
						|
    int secret_idx = 0;
 | 
						|
    long ecdh_c[EC_NUM][2];
 | 
						|
# endif
 | 
						|
 | 
						|
    int rsa_doit[RSA_NUM];
 | 
						|
    int dsa_doit[DSA_NUM];
 | 
						|
# ifndef OPENSSL_NO_ECDSA
 | 
						|
    int ecdsa_doit[EC_NUM];
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_ECDH
 | 
						|
    int ecdh_doit[EC_NUM];
 | 
						|
# endif
 | 
						|
    int doit[ALGOR_NUM];
 | 
						|
    int pr_header = 0;
 | 
						|
    const EVP_CIPHER *evp_cipher = NULL;
 | 
						|
    const EVP_MD *evp_md = NULL;
 | 
						|
    int decrypt = 0;
 | 
						|
# ifndef NO_FORK
 | 
						|
    int multi = 0;
 | 
						|
# endif
 | 
						|
    int multiblock = 0;
 | 
						|
 | 
						|
# ifndef TIMES
 | 
						|
    usertime = -1;
 | 
						|
# endif
 | 
						|
 | 
						|
    apps_startup();
 | 
						|
    memset(results, 0, sizeof(results));
 | 
						|
# ifndef OPENSSL_NO_DSA
 | 
						|
    memset(dsa_key, 0, sizeof(dsa_key));
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_ECDSA
 | 
						|
    for (i = 0; i < EC_NUM; i++)
 | 
						|
        ecdsa[i] = NULL;
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_ECDH
 | 
						|
    for (i = 0; i < EC_NUM; i++) {
 | 
						|
        ecdh_a[i] = NULL;
 | 
						|
        ecdh_b[i] = NULL;
 | 
						|
    }
 | 
						|
# endif
 | 
						|
 | 
						|
    if (bio_err == NULL)
 | 
						|
        if ((bio_err = BIO_new(BIO_s_file())) != NULL)
 | 
						|
            BIO_set_fp(bio_err, stderr, BIO_NOCLOSE | BIO_FP_TEXT);
 | 
						|
 | 
						|
    if (!load_config(bio_err, NULL))
 | 
						|
        goto end;
 | 
						|
 | 
						|
# ifndef OPENSSL_NO_RSA
 | 
						|
    memset(rsa_key, 0, sizeof(rsa_key));
 | 
						|
    for (i = 0; i < RSA_NUM; i++)
 | 
						|
        rsa_key[i] = NULL;
 | 
						|
# endif
 | 
						|
 | 
						|
    if ((buf = (unsigned char *)OPENSSL_malloc((int)BUFSIZE)) == NULL) {
 | 
						|
        BIO_printf(bio_err, "out of memory\n");
 | 
						|
        goto end;
 | 
						|
    }
 | 
						|
    if ((buf2 = (unsigned char *)OPENSSL_malloc((int)BUFSIZE)) == NULL) {
 | 
						|
        BIO_printf(bio_err, "out of memory\n");
 | 
						|
        goto end;
 | 
						|
    }
 | 
						|
 | 
						|
    memset(c, 0, sizeof(c));
 | 
						|
    memset(DES_iv, 0, sizeof(DES_iv));
 | 
						|
    memset(iv, 0, sizeof(iv));
 | 
						|
 | 
						|
    for (i = 0; i < ALGOR_NUM; i++)
 | 
						|
        doit[i] = 0;
 | 
						|
    for (i = 0; i < RSA_NUM; i++)
 | 
						|
        rsa_doit[i] = 0;
 | 
						|
    for (i = 0; i < DSA_NUM; i++)
 | 
						|
        dsa_doit[i] = 0;
 | 
						|
# ifndef OPENSSL_NO_ECDSA
 | 
						|
    for (i = 0; i < EC_NUM; i++)
 | 
						|
        ecdsa_doit[i] = 0;
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_ECDH
 | 
						|
    for (i = 0; i < EC_NUM; i++)
 | 
						|
        ecdh_doit[i] = 0;
 | 
						|
# endif
 | 
						|
 | 
						|
    j = 0;
 | 
						|
    argc--;
 | 
						|
    argv++;
 | 
						|
    while (argc) {
 | 
						|
        if ((argc > 0) && (strcmp(*argv, "-elapsed") == 0)) {
 | 
						|
            usertime = 0;
 | 
						|
            j--;                /* Otherwise, -elapsed gets confused with an
 | 
						|
                                 * algorithm. */
 | 
						|
        } else if ((argc > 0) && (strcmp(*argv, "-evp") == 0)) {
 | 
						|
            argc--;
 | 
						|
            argv++;
 | 
						|
            if (argc == 0) {
 | 
						|
                BIO_printf(bio_err, "no EVP given\n");
 | 
						|
                goto end;
 | 
						|
            }
 | 
						|
            evp_cipher = EVP_get_cipherbyname(*argv);
 | 
						|
            if (!evp_cipher) {
 | 
						|
                evp_md = EVP_get_digestbyname(*argv);
 | 
						|
            }
 | 
						|
            if (!evp_cipher && !evp_md) {
 | 
						|
                BIO_printf(bio_err, "%s is an unknown cipher or digest\n",
 | 
						|
                           *argv);
 | 
						|
                goto end;
 | 
						|
            }
 | 
						|
            doit[D_EVP] = 1;
 | 
						|
        } else if (argc > 0 && !strcmp(*argv, "-decrypt")) {
 | 
						|
            decrypt = 1;
 | 
						|
            j--;                /* Otherwise, -elapsed gets confused with an
 | 
						|
                                 * algorithm. */
 | 
						|
        }
 | 
						|
# ifndef OPENSSL_NO_ENGINE
 | 
						|
        else if ((argc > 0) && (strcmp(*argv, "-engine") == 0)) {
 | 
						|
            argc--;
 | 
						|
            argv++;
 | 
						|
            if (argc == 0) {
 | 
						|
                BIO_printf(bio_err, "no engine given\n");
 | 
						|
                goto end;
 | 
						|
            }
 | 
						|
            setup_engine(bio_err, *argv, 0);
 | 
						|
            /*
 | 
						|
             * j will be increased again further down.  We just don't want
 | 
						|
             * speed to confuse an engine with an algorithm, especially when
 | 
						|
             * none is given (which means all of them should be run)
 | 
						|
             */
 | 
						|
            j--;
 | 
						|
        }
 | 
						|
# endif
 | 
						|
# ifndef NO_FORK
 | 
						|
        else if ((argc > 0) && (strcmp(*argv, "-multi") == 0)) {
 | 
						|
            argc--;
 | 
						|
            argv++;
 | 
						|
            if (argc == 0) {
 | 
						|
                BIO_printf(bio_err, "no multi count given\n");
 | 
						|
                goto end;
 | 
						|
            }
 | 
						|
            multi = atoi(argv[0]);
 | 
						|
            if (multi <= 0) {
 | 
						|
                BIO_printf(bio_err, "bad multi count\n");
 | 
						|
                goto end;
 | 
						|
            }
 | 
						|
            j--;                /* Otherwise, -mr gets confused with an
 | 
						|
                                 * algorithm. */
 | 
						|
        }
 | 
						|
# endif
 | 
						|
        else if (argc > 0 && !strcmp(*argv, "-mr")) {
 | 
						|
            mr = 1;
 | 
						|
            j--;                /* Otherwise, -mr gets confused with an
 | 
						|
                                 * algorithm. */
 | 
						|
        } else if (argc > 0 && !strcmp(*argv, "-mb")) {
 | 
						|
            multiblock = 1;
 | 
						|
            j--;
 | 
						|
        } else
 | 
						|
# ifndef OPENSSL_NO_MD2
 | 
						|
        if (strcmp(*argv, "md2") == 0)
 | 
						|
            doit[D_MD2] = 1;
 | 
						|
        else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_MDC2
 | 
						|
        if (strcmp(*argv, "mdc2") == 0)
 | 
						|
            doit[D_MDC2] = 1;
 | 
						|
        else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_MD4
 | 
						|
        if (strcmp(*argv, "md4") == 0)
 | 
						|
            doit[D_MD4] = 1;
 | 
						|
        else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_MD5
 | 
						|
        if (strcmp(*argv, "md5") == 0)
 | 
						|
            doit[D_MD5] = 1;
 | 
						|
        else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_MD5
 | 
						|
        if (strcmp(*argv, "hmac") == 0)
 | 
						|
            doit[D_HMAC] = 1;
 | 
						|
        else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_SHA
 | 
						|
        if (strcmp(*argv, "sha1") == 0)
 | 
						|
            doit[D_SHA1] = 1;
 | 
						|
        else if (strcmp(*argv, "sha") == 0)
 | 
						|
            doit[D_SHA1] = 1, doit[D_SHA256] = 1, doit[D_SHA512] = 1;
 | 
						|
        else
 | 
						|
#  ifndef OPENSSL_NO_SHA256
 | 
						|
        if (strcmp(*argv, "sha256") == 0)
 | 
						|
            doit[D_SHA256] = 1;
 | 
						|
        else
 | 
						|
#  endif
 | 
						|
#  ifndef OPENSSL_NO_SHA512
 | 
						|
        if (strcmp(*argv, "sha512") == 0)
 | 
						|
            doit[D_SHA512] = 1;
 | 
						|
        else
 | 
						|
#  endif
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_WHIRLPOOL
 | 
						|
        if (strcmp(*argv, "whirlpool") == 0)
 | 
						|
            doit[D_WHIRLPOOL] = 1;
 | 
						|
        else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RIPEMD
 | 
						|
        if (strcmp(*argv, "ripemd") == 0)
 | 
						|
            doit[D_RMD160] = 1;
 | 
						|
        else if (strcmp(*argv, "rmd160") == 0)
 | 
						|
            doit[D_RMD160] = 1;
 | 
						|
        else if (strcmp(*argv, "ripemd160") == 0)
 | 
						|
            doit[D_RMD160] = 1;
 | 
						|
        else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RC4
 | 
						|
        if (strcmp(*argv, "rc4") == 0)
 | 
						|
            doit[D_RC4] = 1;
 | 
						|
        else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_DES
 | 
						|
        if (strcmp(*argv, "des-cbc") == 0)
 | 
						|
            doit[D_CBC_DES] = 1;
 | 
						|
        else if (strcmp(*argv, "des-ede3") == 0)
 | 
						|
            doit[D_EDE3_DES] = 1;
 | 
						|
        else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_AES
 | 
						|
        if (strcmp(*argv, "aes-128-cbc") == 0)
 | 
						|
            doit[D_CBC_128_AES] = 1;
 | 
						|
        else if (strcmp(*argv, "aes-192-cbc") == 0)
 | 
						|
            doit[D_CBC_192_AES] = 1;
 | 
						|
        else if (strcmp(*argv, "aes-256-cbc") == 0)
 | 
						|
            doit[D_CBC_256_AES] = 1;
 | 
						|
        else if (strcmp(*argv, "aes-128-ige") == 0)
 | 
						|
            doit[D_IGE_128_AES] = 1;
 | 
						|
        else if (strcmp(*argv, "aes-192-ige") == 0)
 | 
						|
            doit[D_IGE_192_AES] = 1;
 | 
						|
        else if (strcmp(*argv, "aes-256-ige") == 0)
 | 
						|
            doit[D_IGE_256_AES] = 1;
 | 
						|
        else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_CAMELLIA
 | 
						|
        if (strcmp(*argv, "camellia-128-cbc") == 0)
 | 
						|
            doit[D_CBC_128_CML] = 1;
 | 
						|
        else if (strcmp(*argv, "camellia-192-cbc") == 0)
 | 
						|
            doit[D_CBC_192_CML] = 1;
 | 
						|
        else if (strcmp(*argv, "camellia-256-cbc") == 0)
 | 
						|
            doit[D_CBC_256_CML] = 1;
 | 
						|
        else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RSA
 | 
						|
#  if 0                         /* was: #ifdef RSAref */
 | 
						|
        if (strcmp(*argv, "rsaref") == 0) {
 | 
						|
            RSA_set_default_openssl_method(RSA_PKCS1_RSAref());
 | 
						|
            j--;
 | 
						|
        } else
 | 
						|
#  endif
 | 
						|
#  ifndef RSA_NULL
 | 
						|
        if (strcmp(*argv, "openssl") == 0) {
 | 
						|
            RSA_set_default_method(RSA_PKCS1_SSLeay());
 | 
						|
            j--;
 | 
						|
        } else
 | 
						|
#  endif
 | 
						|
# endif                         /* !OPENSSL_NO_RSA */
 | 
						|
        if (strcmp(*argv, "dsa512") == 0)
 | 
						|
            dsa_doit[R_DSA_512] = 2;
 | 
						|
        else if (strcmp(*argv, "dsa1024") == 0)
 | 
						|
            dsa_doit[R_DSA_1024] = 2;
 | 
						|
        else if (strcmp(*argv, "dsa2048") == 0)
 | 
						|
            dsa_doit[R_DSA_2048] = 2;
 | 
						|
        else if (strcmp(*argv, "rsa512") == 0)
 | 
						|
            rsa_doit[R_RSA_512] = 2;
 | 
						|
        else if (strcmp(*argv, "rsa1024") == 0)
 | 
						|
            rsa_doit[R_RSA_1024] = 2;
 | 
						|
        else if (strcmp(*argv, "rsa2048") == 0)
 | 
						|
            rsa_doit[R_RSA_2048] = 2;
 | 
						|
        else if (strcmp(*argv, "rsa4096") == 0)
 | 
						|
            rsa_doit[R_RSA_4096] = 2;
 | 
						|
        else
 | 
						|
# ifndef OPENSSL_NO_RC2
 | 
						|
        if (strcmp(*argv, "rc2-cbc") == 0)
 | 
						|
            doit[D_CBC_RC2] = 1;
 | 
						|
        else if (strcmp(*argv, "rc2") == 0)
 | 
						|
            doit[D_CBC_RC2] = 1;
 | 
						|
        else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RC5
 | 
						|
        if (strcmp(*argv, "rc5-cbc") == 0)
 | 
						|
            doit[D_CBC_RC5] = 1;
 | 
						|
        else if (strcmp(*argv, "rc5") == 0)
 | 
						|
            doit[D_CBC_RC5] = 1;
 | 
						|
        else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_IDEA
 | 
						|
        if (strcmp(*argv, "idea-cbc") == 0)
 | 
						|
            doit[D_CBC_IDEA] = 1;
 | 
						|
        else if (strcmp(*argv, "idea") == 0)
 | 
						|
            doit[D_CBC_IDEA] = 1;
 | 
						|
        else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_SEED
 | 
						|
        if (strcmp(*argv, "seed-cbc") == 0)
 | 
						|
            doit[D_CBC_SEED] = 1;
 | 
						|
        else if (strcmp(*argv, "seed") == 0)
 | 
						|
            doit[D_CBC_SEED] = 1;
 | 
						|
        else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_BF
 | 
						|
        if (strcmp(*argv, "bf-cbc") == 0)
 | 
						|
            doit[D_CBC_BF] = 1;
 | 
						|
        else if (strcmp(*argv, "blowfish") == 0)
 | 
						|
            doit[D_CBC_BF] = 1;
 | 
						|
        else if (strcmp(*argv, "bf") == 0)
 | 
						|
            doit[D_CBC_BF] = 1;
 | 
						|
        else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_CAST
 | 
						|
        if (strcmp(*argv, "cast-cbc") == 0)
 | 
						|
            doit[D_CBC_CAST] = 1;
 | 
						|
        else if (strcmp(*argv, "cast") == 0)
 | 
						|
            doit[D_CBC_CAST] = 1;
 | 
						|
        else if (strcmp(*argv, "cast5") == 0)
 | 
						|
            doit[D_CBC_CAST] = 1;
 | 
						|
        else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_DES
 | 
						|
        if (strcmp(*argv, "des") == 0) {
 | 
						|
            doit[D_CBC_DES] = 1;
 | 
						|
            doit[D_EDE3_DES] = 1;
 | 
						|
        } else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_AES
 | 
						|
        if (strcmp(*argv, "aes") == 0) {
 | 
						|
            doit[D_CBC_128_AES] = 1;
 | 
						|
            doit[D_CBC_192_AES] = 1;
 | 
						|
            doit[D_CBC_256_AES] = 1;
 | 
						|
        } else if (strcmp(*argv, "ghash") == 0) {
 | 
						|
            doit[D_GHASH] = 1;
 | 
						|
        } else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_CAMELLIA
 | 
						|
        if (strcmp(*argv, "camellia") == 0) {
 | 
						|
            doit[D_CBC_128_CML] = 1;
 | 
						|
            doit[D_CBC_192_CML] = 1;
 | 
						|
            doit[D_CBC_256_CML] = 1;
 | 
						|
        } else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RSA
 | 
						|
        if (strcmp(*argv, "rsa") == 0) {
 | 
						|
            rsa_doit[R_RSA_512] = 1;
 | 
						|
            rsa_doit[R_RSA_1024] = 1;
 | 
						|
            rsa_doit[R_RSA_2048] = 1;
 | 
						|
            rsa_doit[R_RSA_4096] = 1;
 | 
						|
        } else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_DSA
 | 
						|
        if (strcmp(*argv, "dsa") == 0) {
 | 
						|
            dsa_doit[R_DSA_512] = 1;
 | 
						|
            dsa_doit[R_DSA_1024] = 1;
 | 
						|
            dsa_doit[R_DSA_2048] = 1;
 | 
						|
        } else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_ECDSA
 | 
						|
        if (strcmp(*argv, "ecdsap160") == 0)
 | 
						|
            ecdsa_doit[R_EC_P160] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdsap192") == 0)
 | 
						|
            ecdsa_doit[R_EC_P192] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdsap224") == 0)
 | 
						|
            ecdsa_doit[R_EC_P224] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdsap256") == 0)
 | 
						|
            ecdsa_doit[R_EC_P256] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdsap384") == 0)
 | 
						|
            ecdsa_doit[R_EC_P384] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdsap521") == 0)
 | 
						|
            ecdsa_doit[R_EC_P521] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdsak163") == 0)
 | 
						|
            ecdsa_doit[R_EC_K163] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdsak233") == 0)
 | 
						|
            ecdsa_doit[R_EC_K233] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdsak283") == 0)
 | 
						|
            ecdsa_doit[R_EC_K283] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdsak409") == 0)
 | 
						|
            ecdsa_doit[R_EC_K409] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdsak571") == 0)
 | 
						|
            ecdsa_doit[R_EC_K571] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdsab163") == 0)
 | 
						|
            ecdsa_doit[R_EC_B163] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdsab233") == 0)
 | 
						|
            ecdsa_doit[R_EC_B233] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdsab283") == 0)
 | 
						|
            ecdsa_doit[R_EC_B283] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdsab409") == 0)
 | 
						|
            ecdsa_doit[R_EC_B409] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdsab571") == 0)
 | 
						|
            ecdsa_doit[R_EC_B571] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdsa") == 0) {
 | 
						|
            for (i = 0; i < EC_NUM; i++)
 | 
						|
                ecdsa_doit[i] = 1;
 | 
						|
        } else
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_ECDH
 | 
						|
        if (strcmp(*argv, "ecdhp160") == 0)
 | 
						|
            ecdh_doit[R_EC_P160] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdhp192") == 0)
 | 
						|
            ecdh_doit[R_EC_P192] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdhp224") == 0)
 | 
						|
            ecdh_doit[R_EC_P224] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdhp256") == 0)
 | 
						|
            ecdh_doit[R_EC_P256] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdhp384") == 0)
 | 
						|
            ecdh_doit[R_EC_P384] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdhp521") == 0)
 | 
						|
            ecdh_doit[R_EC_P521] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdhk163") == 0)
 | 
						|
            ecdh_doit[R_EC_K163] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdhk233") == 0)
 | 
						|
            ecdh_doit[R_EC_K233] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdhk283") == 0)
 | 
						|
            ecdh_doit[R_EC_K283] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdhk409") == 0)
 | 
						|
            ecdh_doit[R_EC_K409] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdhk571") == 0)
 | 
						|
            ecdh_doit[R_EC_K571] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdhb163") == 0)
 | 
						|
            ecdh_doit[R_EC_B163] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdhb233") == 0)
 | 
						|
            ecdh_doit[R_EC_B233] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdhb283") == 0)
 | 
						|
            ecdh_doit[R_EC_B283] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdhb409") == 0)
 | 
						|
            ecdh_doit[R_EC_B409] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdhb571") == 0)
 | 
						|
            ecdh_doit[R_EC_B571] = 2;
 | 
						|
        else if (strcmp(*argv, "ecdh") == 0) {
 | 
						|
            for (i = 0; i < EC_NUM; i++)
 | 
						|
                ecdh_doit[i] = 1;
 | 
						|
        } else
 | 
						|
# endif
 | 
						|
        {
 | 
						|
            BIO_printf(bio_err, "Error: bad option or value\n");
 | 
						|
            BIO_printf(bio_err, "\n");
 | 
						|
            BIO_printf(bio_err, "Available values:\n");
 | 
						|
# ifndef OPENSSL_NO_MD2
 | 
						|
            BIO_printf(bio_err, "md2      ");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_MDC2
 | 
						|
            BIO_printf(bio_err, "mdc2     ");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_MD4
 | 
						|
            BIO_printf(bio_err, "md4      ");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_MD5
 | 
						|
            BIO_printf(bio_err, "md5      ");
 | 
						|
#  ifndef OPENSSL_NO_HMAC
 | 
						|
            BIO_printf(bio_err, "hmac     ");
 | 
						|
#  endif
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_SHA1
 | 
						|
            BIO_printf(bio_err, "sha1     ");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_SHA256
 | 
						|
            BIO_printf(bio_err, "sha256   ");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_SHA512
 | 
						|
            BIO_printf(bio_err, "sha512   ");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_WHIRLPOOL
 | 
						|
            BIO_printf(bio_err, "whirlpool");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RIPEMD160
 | 
						|
            BIO_printf(bio_err, "rmd160");
 | 
						|
# endif
 | 
						|
# if !defined(OPENSSL_NO_MD2) || !defined(OPENSSL_NO_MDC2) || \
 | 
						|
    !defined(OPENSSL_NO_MD4) || !defined(OPENSSL_NO_MD5) || \
 | 
						|
    !defined(OPENSSL_NO_SHA1) || !defined(OPENSSL_NO_RIPEMD160) || \
 | 
						|
    !defined(OPENSSL_NO_WHIRLPOOL)
 | 
						|
            BIO_printf(bio_err, "\n");
 | 
						|
# endif
 | 
						|
 | 
						|
# ifndef OPENSSL_NO_IDEA
 | 
						|
            BIO_printf(bio_err, "idea-cbc ");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_SEED
 | 
						|
            BIO_printf(bio_err, "seed-cbc ");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RC2
 | 
						|
            BIO_printf(bio_err, "rc2-cbc  ");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RC5
 | 
						|
            BIO_printf(bio_err, "rc5-cbc  ");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_BF
 | 
						|
            BIO_printf(bio_err, "bf-cbc");
 | 
						|
# endif
 | 
						|
# if !defined(OPENSSL_NO_IDEA) || !defined(OPENSSL_NO_SEED) || !defined(OPENSSL_NO_RC2) || \
 | 
						|
    !defined(OPENSSL_NO_BF) || !defined(OPENSSL_NO_RC5)
 | 
						|
            BIO_printf(bio_err, "\n");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_DES
 | 
						|
            BIO_printf(bio_err, "des-cbc  des-ede3 ");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_AES
 | 
						|
            BIO_printf(bio_err, "aes-128-cbc aes-192-cbc aes-256-cbc ");
 | 
						|
            BIO_printf(bio_err, "aes-128-ige aes-192-ige aes-256-ige ");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_CAMELLIA
 | 
						|
            BIO_printf(bio_err, "\n");
 | 
						|
            BIO_printf(bio_err,
 | 
						|
                       "camellia-128-cbc camellia-192-cbc camellia-256-cbc ");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RC4
 | 
						|
            BIO_printf(bio_err, "rc4");
 | 
						|
# endif
 | 
						|
            BIO_printf(bio_err, "\n");
 | 
						|
 | 
						|
# ifndef OPENSSL_NO_RSA
 | 
						|
            BIO_printf(bio_err, "rsa512   rsa1024  rsa2048  rsa4096\n");
 | 
						|
# endif
 | 
						|
 | 
						|
# ifndef OPENSSL_NO_DSA
 | 
						|
            BIO_printf(bio_err, "dsa512   dsa1024  dsa2048\n");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_ECDSA
 | 
						|
            BIO_printf(bio_err, "ecdsap160 ecdsap192 ecdsap224 "
 | 
						|
                       "ecdsap256 ecdsap384 ecdsap521\n");
 | 
						|
            BIO_printf(bio_err,
 | 
						|
                       "ecdsak163 ecdsak233 ecdsak283 ecdsak409 ecdsak571\n");
 | 
						|
            BIO_printf(bio_err,
 | 
						|
                       "ecdsab163 ecdsab233 ecdsab283 ecdsab409 ecdsab571\n");
 | 
						|
            BIO_printf(bio_err, "ecdsa\n");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_ECDH
 | 
						|
            BIO_printf(bio_err, "ecdhp160  ecdhp192  ecdhp224 "
 | 
						|
                       "ecdhp256  ecdhp384  ecdhp521\n");
 | 
						|
            BIO_printf(bio_err,
 | 
						|
                       "ecdhk163  ecdhk233  ecdhk283  ecdhk409  ecdhk571\n");
 | 
						|
            BIO_printf(bio_err,
 | 
						|
                       "ecdhb163  ecdhb233  ecdhb283  ecdhb409  ecdhb571\n");
 | 
						|
            BIO_printf(bio_err, "ecdh\n");
 | 
						|
# endif
 | 
						|
 | 
						|
# ifndef OPENSSL_NO_IDEA
 | 
						|
            BIO_printf(bio_err, "idea     ");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_SEED
 | 
						|
            BIO_printf(bio_err, "seed     ");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RC2
 | 
						|
            BIO_printf(bio_err, "rc2      ");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_DES
 | 
						|
            BIO_printf(bio_err, "des      ");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_AES
 | 
						|
            BIO_printf(bio_err, "aes      ");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_CAMELLIA
 | 
						|
            BIO_printf(bio_err, "camellia ");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RSA
 | 
						|
            BIO_printf(bio_err, "rsa      ");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_BF
 | 
						|
            BIO_printf(bio_err, "blowfish");
 | 
						|
# endif
 | 
						|
# if !defined(OPENSSL_NO_IDEA) || !defined(OPENSSL_NO_SEED) || \
 | 
						|
    !defined(OPENSSL_NO_RC2) || !defined(OPENSSL_NO_DES) || \
 | 
						|
    !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_BF) || \
 | 
						|
    !defined(OPENSSL_NO_AES) || !defined(OPENSSL_NO_CAMELLIA)
 | 
						|
            BIO_printf(bio_err, "\n");
 | 
						|
# endif
 | 
						|
 | 
						|
            BIO_printf(bio_err, "\n");
 | 
						|
            BIO_printf(bio_err, "Available options:\n");
 | 
						|
# if defined(TIMES) || defined(USE_TOD)
 | 
						|
            BIO_printf(bio_err, "-elapsed        "
 | 
						|
                       "measure time in real time instead of CPU user time.\n");
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_ENGINE
 | 
						|
            BIO_printf(bio_err,
 | 
						|
                       "-engine e       "
 | 
						|
                       "use engine e, possibly a hardware device.\n");
 | 
						|
# endif
 | 
						|
            BIO_printf(bio_err, "-evp e          " "use EVP e.\n");
 | 
						|
            BIO_printf(bio_err,
 | 
						|
                       "-decrypt        "
 | 
						|
                       "time decryption instead of encryption (only EVP).\n");
 | 
						|
            BIO_printf(bio_err,
 | 
						|
                       "-mr             "
 | 
						|
                       "produce machine readable output.\n");
 | 
						|
# ifndef NO_FORK
 | 
						|
            BIO_printf(bio_err,
 | 
						|
                       "-multi n        " "run n benchmarks in parallel.\n");
 | 
						|
# endif
 | 
						|
            goto end;
 | 
						|
        }
 | 
						|
        argc--;
 | 
						|
        argv++;
 | 
						|
        j++;
 | 
						|
    }
 | 
						|
 | 
						|
# ifndef NO_FORK
 | 
						|
    if (multi && do_multi(multi))
 | 
						|
        goto show_res;
 | 
						|
# endif
 | 
						|
 | 
						|
    if (j == 0) {
 | 
						|
        for (i = 0; i < ALGOR_NUM; i++) {
 | 
						|
            if (i != D_EVP)
 | 
						|
                doit[i] = 1;
 | 
						|
        }
 | 
						|
        for (i = 0; i < RSA_NUM; i++)
 | 
						|
            rsa_doit[i] = 1;
 | 
						|
        for (i = 0; i < DSA_NUM; i++)
 | 
						|
            dsa_doit[i] = 1;
 | 
						|
# ifndef OPENSSL_NO_ECDSA
 | 
						|
        for (i = 0; i < EC_NUM; i++)
 | 
						|
            ecdsa_doit[i] = 1;
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_ECDH
 | 
						|
        for (i = 0; i < EC_NUM; i++)
 | 
						|
            ecdh_doit[i] = 1;
 | 
						|
# endif
 | 
						|
    }
 | 
						|
    for (i = 0; i < ALGOR_NUM; i++)
 | 
						|
        if (doit[i])
 | 
						|
            pr_header++;
 | 
						|
 | 
						|
    if (usertime == 0 && !mr)
 | 
						|
        BIO_printf(bio_err,
 | 
						|
                   "You have chosen to measure elapsed time "
 | 
						|
                   "instead of user CPU time.\n");
 | 
						|
 | 
						|
# ifndef OPENSSL_NO_RSA
 | 
						|
    for (i = 0; i < RSA_NUM; i++) {
 | 
						|
        const unsigned char *p;
 | 
						|
 | 
						|
        p = rsa_data[i];
 | 
						|
        rsa_key[i] = d2i_RSAPrivateKey(NULL, &p, rsa_data_length[i]);
 | 
						|
        if (rsa_key[i] == NULL) {
 | 
						|
            BIO_printf(bio_err, "internal error loading RSA key number %d\n",
 | 
						|
                       i);
 | 
						|
            goto end;
 | 
						|
        }
 | 
						|
#  if 0
 | 
						|
        else {
 | 
						|
            BIO_printf(bio_err,
 | 
						|
                       mr ? "+RK:%d:"
 | 
						|
                       : "Loaded RSA key, %d bit modulus and e= 0x",
 | 
						|
                       BN_num_bits(rsa_key[i]->n));
 | 
						|
            BN_print(bio_err, rsa_key[i]->e);
 | 
						|
            BIO_printf(bio_err, "\n");
 | 
						|
        }
 | 
						|
#  endif
 | 
						|
    }
 | 
						|
# endif
 | 
						|
 | 
						|
# ifndef OPENSSL_NO_DSA
 | 
						|
    dsa_key[0] = get_dsa512();
 | 
						|
    dsa_key[1] = get_dsa1024();
 | 
						|
    dsa_key[2] = get_dsa2048();
 | 
						|
# endif
 | 
						|
 | 
						|
# ifndef OPENSSL_NO_DES
 | 
						|
    DES_set_key_unchecked(&key, &sch);
 | 
						|
    DES_set_key_unchecked(&key2, &sch2);
 | 
						|
    DES_set_key_unchecked(&key3, &sch3);
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_AES
 | 
						|
    AES_set_encrypt_key(key16, 128, &aes_ks1);
 | 
						|
    AES_set_encrypt_key(key24, 192, &aes_ks2);
 | 
						|
    AES_set_encrypt_key(key32, 256, &aes_ks3);
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_CAMELLIA
 | 
						|
    Camellia_set_key(key16, 128, &camellia_ks1);
 | 
						|
    Camellia_set_key(ckey24, 192, &camellia_ks2);
 | 
						|
    Camellia_set_key(ckey32, 256, &camellia_ks3);
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_IDEA
 | 
						|
    idea_set_encrypt_key(key16, &idea_ks);
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_SEED
 | 
						|
    SEED_set_key(key16, &seed_ks);
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RC4
 | 
						|
    RC4_set_key(&rc4_ks, 16, key16);
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RC2
 | 
						|
    RC2_set_key(&rc2_ks, 16, key16, 128);
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RC5
 | 
						|
    RC5_32_set_key(&rc5_ks, 16, key16, 12);
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_BF
 | 
						|
    BF_set_key(&bf_ks, 16, key16);
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_CAST
 | 
						|
    CAST_set_key(&cast_ks, 16, key16);
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RSA
 | 
						|
    memset(rsa_c, 0, sizeof(rsa_c));
 | 
						|
# endif
 | 
						|
# ifndef SIGALRM
 | 
						|
#  ifndef OPENSSL_NO_DES
 | 
						|
    BIO_printf(bio_err, "First we calculate the approximate speed ...\n");
 | 
						|
    count = 10;
 | 
						|
    do {
 | 
						|
        long it;
 | 
						|
        count *= 2;
 | 
						|
        Time_F(START);
 | 
						|
        for (it = count; it; it--)
 | 
						|
            DES_ecb_encrypt((DES_cblock *)buf,
 | 
						|
                            (DES_cblock *)buf, &sch, DES_ENCRYPT);
 | 
						|
        d = Time_F(STOP);
 | 
						|
    } while (d < 3);
 | 
						|
    save_count = count;
 | 
						|
    c[D_MD2][0] = count / 10;
 | 
						|
    c[D_MDC2][0] = count / 10;
 | 
						|
    c[D_MD4][0] = count;
 | 
						|
    c[D_MD5][0] = count;
 | 
						|
    c[D_HMAC][0] = count;
 | 
						|
    c[D_SHA1][0] = count;
 | 
						|
    c[D_RMD160][0] = count;
 | 
						|
    c[D_RC4][0] = count * 5;
 | 
						|
    c[D_CBC_DES][0] = count;
 | 
						|
    c[D_EDE3_DES][0] = count / 3;
 | 
						|
    c[D_CBC_IDEA][0] = count;
 | 
						|
    c[D_CBC_SEED][0] = count;
 | 
						|
    c[D_CBC_RC2][0] = count;
 | 
						|
    c[D_CBC_RC5][0] = count;
 | 
						|
    c[D_CBC_BF][0] = count;
 | 
						|
    c[D_CBC_CAST][0] = count;
 | 
						|
    c[D_CBC_128_AES][0] = count;
 | 
						|
    c[D_CBC_192_AES][0] = count;
 | 
						|
    c[D_CBC_256_AES][0] = count;
 | 
						|
    c[D_CBC_128_CML][0] = count;
 | 
						|
    c[D_CBC_192_CML][0] = count;
 | 
						|
    c[D_CBC_256_CML][0] = count;
 | 
						|
    c[D_SHA256][0] = count;
 | 
						|
    c[D_SHA512][0] = count;
 | 
						|
    c[D_WHIRLPOOL][0] = count;
 | 
						|
    c[D_IGE_128_AES][0] = count;
 | 
						|
    c[D_IGE_192_AES][0] = count;
 | 
						|
    c[D_IGE_256_AES][0] = count;
 | 
						|
    c[D_GHASH][0] = count;
 | 
						|
 | 
						|
    for (i = 1; i < SIZE_NUM; i++) {
 | 
						|
        c[D_MD2][i] = c[D_MD2][0] * 4 * lengths[0] / lengths[i];
 | 
						|
        c[D_MDC2][i] = c[D_MDC2][0] * 4 * lengths[0] / lengths[i];
 | 
						|
        c[D_MD4][i] = c[D_MD4][0] * 4 * lengths[0] / lengths[i];
 | 
						|
        c[D_MD5][i] = c[D_MD5][0] * 4 * lengths[0] / lengths[i];
 | 
						|
        c[D_HMAC][i] = c[D_HMAC][0] * 4 * lengths[0] / lengths[i];
 | 
						|
        c[D_SHA1][i] = c[D_SHA1][0] * 4 * lengths[0] / lengths[i];
 | 
						|
        c[D_RMD160][i] = c[D_RMD160][0] * 4 * lengths[0] / lengths[i];
 | 
						|
        c[D_SHA256][i] = c[D_SHA256][0] * 4 * lengths[0] / lengths[i];
 | 
						|
        c[D_SHA512][i] = c[D_SHA512][0] * 4 * lengths[0] / lengths[i];
 | 
						|
        c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * lengths[0] / lengths[i];
 | 
						|
    }
 | 
						|
    for (i = 1; i < SIZE_NUM; i++) {
 | 
						|
        long l0, l1;
 | 
						|
 | 
						|
        l0 = (long)lengths[i - 1];
 | 
						|
        l1 = (long)lengths[i];
 | 
						|
        c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1;
 | 
						|
        c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1;
 | 
						|
        c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1;
 | 
						|
        c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1;
 | 
						|
        c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1;
 | 
						|
        c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1;
 | 
						|
        c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1;
 | 
						|
        c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1;
 | 
						|
        c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1;
 | 
						|
        c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1;
 | 
						|
        c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1;
 | 
						|
        c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1;
 | 
						|
        c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1;
 | 
						|
        c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1;
 | 
						|
        c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1;
 | 
						|
        c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1;
 | 
						|
        c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1;
 | 
						|
        c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1;
 | 
						|
    }
 | 
						|
#   ifndef OPENSSL_NO_RSA
 | 
						|
    rsa_c[R_RSA_512][0] = count / 2000;
 | 
						|
    rsa_c[R_RSA_512][1] = count / 400;
 | 
						|
    for (i = 1; i < RSA_NUM; i++) {
 | 
						|
        rsa_c[i][0] = rsa_c[i - 1][0] / 8;
 | 
						|
        rsa_c[i][1] = rsa_c[i - 1][1] / 4;
 | 
						|
        if ((rsa_doit[i] <= 1) && (rsa_c[i][0] == 0))
 | 
						|
            rsa_doit[i] = 0;
 | 
						|
        else {
 | 
						|
            if (rsa_c[i][0] == 0) {
 | 
						|
                rsa_c[i][0] = 1;
 | 
						|
                rsa_c[i][1] = 20;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
#   endif
 | 
						|
 | 
						|
#   ifndef OPENSSL_NO_DSA
 | 
						|
    dsa_c[R_DSA_512][0] = count / 1000;
 | 
						|
    dsa_c[R_DSA_512][1] = count / 1000 / 2;
 | 
						|
    for (i = 1; i < DSA_NUM; i++) {
 | 
						|
        dsa_c[i][0] = dsa_c[i - 1][0] / 4;
 | 
						|
        dsa_c[i][1] = dsa_c[i - 1][1] / 4;
 | 
						|
        if ((dsa_doit[i] <= 1) && (dsa_c[i][0] == 0))
 | 
						|
            dsa_doit[i] = 0;
 | 
						|
        else {
 | 
						|
            if (dsa_c[i] == 0) {
 | 
						|
                dsa_c[i][0] = 1;
 | 
						|
                dsa_c[i][1] = 1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
#   endif
 | 
						|
 | 
						|
#   ifndef OPENSSL_NO_ECDSA
 | 
						|
    ecdsa_c[R_EC_P160][0] = count / 1000;
 | 
						|
    ecdsa_c[R_EC_P160][1] = count / 1000 / 2;
 | 
						|
    for (i = R_EC_P192; i <= R_EC_P521; i++) {
 | 
						|
        ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
 | 
						|
        ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
 | 
						|
        if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
 | 
						|
            ecdsa_doit[i] = 0;
 | 
						|
        else {
 | 
						|
            if (ecdsa_c[i] == 0) {
 | 
						|
                ecdsa_c[i][0] = 1;
 | 
						|
                ecdsa_c[i][1] = 1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    ecdsa_c[R_EC_K163][0] = count / 1000;
 | 
						|
    ecdsa_c[R_EC_K163][1] = count / 1000 / 2;
 | 
						|
    for (i = R_EC_K233; i <= R_EC_K571; i++) {
 | 
						|
        ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
 | 
						|
        ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
 | 
						|
        if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
 | 
						|
            ecdsa_doit[i] = 0;
 | 
						|
        else {
 | 
						|
            if (ecdsa_c[i] == 0) {
 | 
						|
                ecdsa_c[i][0] = 1;
 | 
						|
                ecdsa_c[i][1] = 1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    ecdsa_c[R_EC_B163][0] = count / 1000;
 | 
						|
    ecdsa_c[R_EC_B163][1] = count / 1000 / 2;
 | 
						|
    for (i = R_EC_B233; i <= R_EC_B571; i++) {
 | 
						|
        ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
 | 
						|
        ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
 | 
						|
        if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
 | 
						|
            ecdsa_doit[i] = 0;
 | 
						|
        else {
 | 
						|
            if (ecdsa_c[i] == 0) {
 | 
						|
                ecdsa_c[i][0] = 1;
 | 
						|
                ecdsa_c[i][1] = 1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
#   endif
 | 
						|
 | 
						|
#   ifndef OPENSSL_NO_ECDH
 | 
						|
    ecdh_c[R_EC_P160][0] = count / 1000;
 | 
						|
    ecdh_c[R_EC_P160][1] = count / 1000;
 | 
						|
    for (i = R_EC_P192; i <= R_EC_P521; i++) {
 | 
						|
        ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
 | 
						|
        ecdh_c[i][1] = ecdh_c[i - 1][1] / 2;
 | 
						|
        if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
 | 
						|
            ecdh_doit[i] = 0;
 | 
						|
        else {
 | 
						|
            if (ecdh_c[i] == 0) {
 | 
						|
                ecdh_c[i][0] = 1;
 | 
						|
                ecdh_c[i][1] = 1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    ecdh_c[R_EC_K163][0] = count / 1000;
 | 
						|
    ecdh_c[R_EC_K163][1] = count / 1000;
 | 
						|
    for (i = R_EC_K233; i <= R_EC_K571; i++) {
 | 
						|
        ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
 | 
						|
        ecdh_c[i][1] = ecdh_c[i - 1][1] / 2;
 | 
						|
        if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
 | 
						|
            ecdh_doit[i] = 0;
 | 
						|
        else {
 | 
						|
            if (ecdh_c[i] == 0) {
 | 
						|
                ecdh_c[i][0] = 1;
 | 
						|
                ecdh_c[i][1] = 1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    ecdh_c[R_EC_B163][0] = count / 1000;
 | 
						|
    ecdh_c[R_EC_B163][1] = count / 1000;
 | 
						|
    for (i = R_EC_B233; i <= R_EC_B571; i++) {
 | 
						|
        ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
 | 
						|
        ecdh_c[i][1] = ecdh_c[i - 1][1] / 2;
 | 
						|
        if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
 | 
						|
            ecdh_doit[i] = 0;
 | 
						|
        else {
 | 
						|
            if (ecdh_c[i] == 0) {
 | 
						|
                ecdh_c[i][0] = 1;
 | 
						|
                ecdh_c[i][1] = 1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
#   endif
 | 
						|
 | 
						|
#   define COND(d) (count < (d))
 | 
						|
#   define COUNT(d) (d)
 | 
						|
#  else
 | 
						|
/* not worth fixing */
 | 
						|
#   error "You cannot disable DES on systems without SIGALRM."
 | 
						|
#  endif                        /* OPENSSL_NO_DES */
 | 
						|
# else
 | 
						|
#  define COND(c) (run && count<0x7fffffff)
 | 
						|
#  define COUNT(d) (count)
 | 
						|
#  ifndef _WIN32
 | 
						|
    signal(SIGALRM, sig_done);
 | 
						|
#  endif
 | 
						|
# endif                         /* SIGALRM */
 | 
						|
 | 
						|
# ifndef OPENSSL_NO_MD2
 | 
						|
    if (doit[D_MD2]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_MD2], c[D_MD2][j], lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_MD2][j]); count++)
 | 
						|
                EVP_Digest(buf, (unsigned long)lengths[j], &(md2[0]), NULL,
 | 
						|
                           EVP_md2(), NULL);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_MD2, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_MDC2
 | 
						|
    if (doit[D_MDC2]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_MDC2], c[D_MDC2][j], lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_MDC2][j]); count++)
 | 
						|
                EVP_Digest(buf, (unsigned long)lengths[j], &(mdc2[0]), NULL,
 | 
						|
                           EVP_mdc2(), NULL);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_MDC2, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
# endif
 | 
						|
 | 
						|
# ifndef OPENSSL_NO_MD4
 | 
						|
    if (doit[D_MD4]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_MD4], c[D_MD4][j], lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_MD4][j]); count++)
 | 
						|
                EVP_Digest(&(buf[0]), (unsigned long)lengths[j], &(md4[0]),
 | 
						|
                           NULL, EVP_md4(), NULL);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_MD4, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
# endif
 | 
						|
 | 
						|
# ifndef OPENSSL_NO_MD5
 | 
						|
    if (doit[D_MD5]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_MD5], c[D_MD5][j], lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_MD5][j]); count++)
 | 
						|
                EVP_Digest(&(buf[0]), (unsigned long)lengths[j], &(md5[0]),
 | 
						|
                           NULL, EVP_get_digestbyname("md5"), NULL);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_MD5, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
# endif
 | 
						|
 | 
						|
# if !defined(OPENSSL_NO_MD5) && !defined(OPENSSL_NO_HMAC)
 | 
						|
    if (doit[D_HMAC]) {
 | 
						|
        HMAC_CTX hctx;
 | 
						|
 | 
						|
        HMAC_CTX_init(&hctx);
 | 
						|
        HMAC_Init_ex(&hctx, (unsigned char *)"This is a key...",
 | 
						|
                     16, EVP_md5(), NULL);
 | 
						|
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_HMAC], c[D_HMAC][j], lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_HMAC][j]); count++) {
 | 
						|
                HMAC_Init_ex(&hctx, NULL, 0, NULL, NULL);
 | 
						|
                HMAC_Update(&hctx, buf, lengths[j]);
 | 
						|
                HMAC_Final(&hctx, &(hmac[0]), NULL);
 | 
						|
            }
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_HMAC, j, count, d);
 | 
						|
        }
 | 
						|
        HMAC_CTX_cleanup(&hctx);
 | 
						|
    }
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_SHA
 | 
						|
    if (doit[D_SHA1]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_SHA1], c[D_SHA1][j], lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_SHA1][j]); count++)
 | 
						|
                EVP_Digest(buf, (unsigned long)lengths[j], &(sha[0]), NULL,
 | 
						|
                           EVP_sha1(), NULL);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_SHA1, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
#  ifndef OPENSSL_NO_SHA256
 | 
						|
    if (doit[D_SHA256]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_SHA256], c[D_SHA256][j], lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_SHA256][j]); count++)
 | 
						|
                SHA256(buf, lengths[j], sha256);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_SHA256, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
#  endif
 | 
						|
 | 
						|
#  ifndef OPENSSL_NO_SHA512
 | 
						|
    if (doit[D_SHA512]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_SHA512], c[D_SHA512][j], lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_SHA512][j]); count++)
 | 
						|
                SHA512(buf, lengths[j], sha512);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_SHA512, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
#  endif
 | 
						|
# endif
 | 
						|
 | 
						|
# ifndef OPENSSL_NO_WHIRLPOOL
 | 
						|
    if (doit[D_WHIRLPOOL]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][j], lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_WHIRLPOOL][j]); count++)
 | 
						|
                WHIRLPOOL(buf, lengths[j], whirlpool);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_WHIRLPOOL, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
# endif
 | 
						|
 | 
						|
# ifndef OPENSSL_NO_RIPEMD
 | 
						|
    if (doit[D_RMD160]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_RMD160], c[D_RMD160][j], lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_RMD160][j]); count++)
 | 
						|
                EVP_Digest(buf, (unsigned long)lengths[j], &(rmd160[0]), NULL,
 | 
						|
                           EVP_ripemd160(), NULL);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_RMD160, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RC4
 | 
						|
    if (doit[D_RC4]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_RC4], c[D_RC4][j], lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_RC4][j]); count++)
 | 
						|
                RC4(&rc4_ks, (unsigned int)lengths[j], buf, buf);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_RC4, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_DES
 | 
						|
    if (doit[D_CBC_DES]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_CBC_DES], c[D_CBC_DES][j], lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_CBC_DES][j]); count++)
 | 
						|
                DES_ncbc_encrypt(buf, buf, lengths[j], &sch,
 | 
						|
                                 &DES_iv, DES_ENCRYPT);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_CBC_DES, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (doit[D_EDE3_DES]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_EDE3_DES], c[D_EDE3_DES][j], lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_EDE3_DES][j]); count++)
 | 
						|
                DES_ede3_cbc_encrypt(buf, buf, lengths[j],
 | 
						|
                                     &sch, &sch2, &sch3,
 | 
						|
                                     &DES_iv, DES_ENCRYPT);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_EDE3_DES, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_AES
 | 
						|
    if (doit[D_CBC_128_AES]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][j],
 | 
						|
                          lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_CBC_128_AES][j]); count++)
 | 
						|
                AES_cbc_encrypt(buf, buf,
 | 
						|
                                (unsigned long)lengths[j], &aes_ks1,
 | 
						|
                                iv, AES_ENCRYPT);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_CBC_128_AES, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (doit[D_CBC_192_AES]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][j],
 | 
						|
                          lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_CBC_192_AES][j]); count++)
 | 
						|
                AES_cbc_encrypt(buf, buf,
 | 
						|
                                (unsigned long)lengths[j], &aes_ks2,
 | 
						|
                                iv, AES_ENCRYPT);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_CBC_192_AES, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (doit[D_CBC_256_AES]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][j],
 | 
						|
                          lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_CBC_256_AES][j]); count++)
 | 
						|
                AES_cbc_encrypt(buf, buf,
 | 
						|
                                (unsigned long)lengths[j], &aes_ks3,
 | 
						|
                                iv, AES_ENCRYPT);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_CBC_256_AES, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (doit[D_IGE_128_AES]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][j],
 | 
						|
                          lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_IGE_128_AES][j]); count++)
 | 
						|
                AES_ige_encrypt(buf, buf2,
 | 
						|
                                (unsigned long)lengths[j], &aes_ks1,
 | 
						|
                                iv, AES_ENCRYPT);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_IGE_128_AES, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (doit[D_IGE_192_AES]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][j],
 | 
						|
                          lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_IGE_192_AES][j]); count++)
 | 
						|
                AES_ige_encrypt(buf, buf2,
 | 
						|
                                (unsigned long)lengths[j], &aes_ks2,
 | 
						|
                                iv, AES_ENCRYPT);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_IGE_192_AES, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (doit[D_IGE_256_AES]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][j],
 | 
						|
                          lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_IGE_256_AES][j]); count++)
 | 
						|
                AES_ige_encrypt(buf, buf2,
 | 
						|
                                (unsigned long)lengths[j], &aes_ks3,
 | 
						|
                                iv, AES_ENCRYPT);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_IGE_256_AES, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (doit[D_GHASH]) {
 | 
						|
        GCM128_CONTEXT *ctx =
 | 
						|
            CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt);
 | 
						|
        CRYPTO_gcm128_setiv(ctx, (unsigned char *)"0123456789ab", 12);
 | 
						|
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_GHASH], c[D_GHASH][j], lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_GHASH][j]); count++)
 | 
						|
                CRYPTO_gcm128_aad(ctx, buf, lengths[j]);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_GHASH, j, count, d);
 | 
						|
        }
 | 
						|
        CRYPTO_gcm128_release(ctx);
 | 
						|
    }
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_CAMELLIA
 | 
						|
    if (doit[D_CBC_128_CML]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][j],
 | 
						|
                          lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_CBC_128_CML][j]); count++)
 | 
						|
                Camellia_cbc_encrypt(buf, buf,
 | 
						|
                                     (unsigned long)lengths[j], &camellia_ks1,
 | 
						|
                                     iv, CAMELLIA_ENCRYPT);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_CBC_128_CML, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (doit[D_CBC_192_CML]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][j],
 | 
						|
                          lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_CBC_192_CML][j]); count++)
 | 
						|
                Camellia_cbc_encrypt(buf, buf,
 | 
						|
                                     (unsigned long)lengths[j], &camellia_ks2,
 | 
						|
                                     iv, CAMELLIA_ENCRYPT);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_CBC_192_CML, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (doit[D_CBC_256_CML]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][j],
 | 
						|
                          lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_CBC_256_CML][j]); count++)
 | 
						|
                Camellia_cbc_encrypt(buf, buf,
 | 
						|
                                     (unsigned long)lengths[j], &camellia_ks3,
 | 
						|
                                     iv, CAMELLIA_ENCRYPT);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_CBC_256_CML, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_IDEA
 | 
						|
    if (doit[D_CBC_IDEA]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][j], lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_CBC_IDEA][j]); count++)
 | 
						|
                idea_cbc_encrypt(buf, buf,
 | 
						|
                                 (unsigned long)lengths[j], &idea_ks,
 | 
						|
                                 iv, IDEA_ENCRYPT);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_CBC_IDEA, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_SEED
 | 
						|
    if (doit[D_CBC_SEED]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_CBC_SEED], c[D_CBC_SEED][j], lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_CBC_SEED][j]); count++)
 | 
						|
                SEED_cbc_encrypt(buf, buf,
 | 
						|
                                 (unsigned long)lengths[j], &seed_ks, iv, 1);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_CBC_SEED, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RC2
 | 
						|
    if (doit[D_CBC_RC2]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_CBC_RC2], c[D_CBC_RC2][j], lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_CBC_RC2][j]); count++)
 | 
						|
                RC2_cbc_encrypt(buf, buf,
 | 
						|
                                (unsigned long)lengths[j], &rc2_ks,
 | 
						|
                                iv, RC2_ENCRYPT);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_CBC_RC2, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RC5
 | 
						|
    if (doit[D_CBC_RC5]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_CBC_RC5], c[D_CBC_RC5][j], lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_CBC_RC5][j]); count++)
 | 
						|
                RC5_32_cbc_encrypt(buf, buf,
 | 
						|
                                   (unsigned long)lengths[j], &rc5_ks,
 | 
						|
                                   iv, RC5_ENCRYPT);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_CBC_RC5, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_BF
 | 
						|
    if (doit[D_CBC_BF]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_CBC_BF], c[D_CBC_BF][j], lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_CBC_BF][j]); count++)
 | 
						|
                BF_cbc_encrypt(buf, buf,
 | 
						|
                               (unsigned long)lengths[j], &bf_ks,
 | 
						|
                               iv, BF_ENCRYPT);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_CBC_BF, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_CAST
 | 
						|
    if (doit[D_CBC_CAST]) {
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            print_message(names[D_CBC_CAST], c[D_CBC_CAST][j], lengths[j]);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(c[D_CBC_CAST][j]); count++)
 | 
						|
                CAST_cbc_encrypt(buf, buf,
 | 
						|
                                 (unsigned long)lengths[j], &cast_ks,
 | 
						|
                                 iv, CAST_ENCRYPT);
 | 
						|
            d = Time_F(STOP);
 | 
						|
            print_result(D_CBC_CAST, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
# endif
 | 
						|
 | 
						|
    if (doit[D_EVP]) {
 | 
						|
# ifdef EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
 | 
						|
        if (multiblock && evp_cipher) {
 | 
						|
            if (!
 | 
						|
                (EVP_CIPHER_flags(evp_cipher) &
 | 
						|
                 EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
 | 
						|
                fprintf(stderr, "%s is not multi-block capable\n",
 | 
						|
                        OBJ_nid2ln(evp_cipher->nid));
 | 
						|
                goto end;
 | 
						|
            }
 | 
						|
            multiblock_speed(evp_cipher);
 | 
						|
            mret = 0;
 | 
						|
            goto end;
 | 
						|
        }
 | 
						|
# endif
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            if (evp_cipher) {
 | 
						|
                EVP_CIPHER_CTX ctx;
 | 
						|
                int outl;
 | 
						|
 | 
						|
                names[D_EVP] = OBJ_nid2ln(evp_cipher->nid);
 | 
						|
                /*
 | 
						|
                 * -O3 -fschedule-insns messes up an optimization here!
 | 
						|
                 * names[D_EVP] somehow becomes NULL
 | 
						|
                 */
 | 
						|
                print_message(names[D_EVP], save_count, lengths[j]);
 | 
						|
 | 
						|
                EVP_CIPHER_CTX_init(&ctx);
 | 
						|
                if (decrypt)
 | 
						|
                    EVP_DecryptInit_ex(&ctx, evp_cipher, NULL, key16, iv);
 | 
						|
                else
 | 
						|
                    EVP_EncryptInit_ex(&ctx, evp_cipher, NULL, key16, iv);
 | 
						|
                EVP_CIPHER_CTX_set_padding(&ctx, 0);
 | 
						|
 | 
						|
                Time_F(START);
 | 
						|
                if (decrypt)
 | 
						|
                    for (count = 0, run = 1;
 | 
						|
                         COND(save_count * 4 * lengths[0] / lengths[j]);
 | 
						|
                         count++)
 | 
						|
                        EVP_DecryptUpdate(&ctx, buf, &outl, buf, lengths[j]);
 | 
						|
                else
 | 
						|
                    for (count = 0, run = 1;
 | 
						|
                         COND(save_count * 4 * lengths[0] / lengths[j]);
 | 
						|
                         count++)
 | 
						|
                        EVP_EncryptUpdate(&ctx, buf, &outl, buf, lengths[j]);
 | 
						|
                if (decrypt)
 | 
						|
                    EVP_DecryptFinal_ex(&ctx, buf, &outl);
 | 
						|
                else
 | 
						|
                    EVP_EncryptFinal_ex(&ctx, buf, &outl);
 | 
						|
                d = Time_F(STOP);
 | 
						|
                EVP_CIPHER_CTX_cleanup(&ctx);
 | 
						|
            }
 | 
						|
            if (evp_md) {
 | 
						|
                names[D_EVP] = OBJ_nid2ln(evp_md->type);
 | 
						|
                print_message(names[D_EVP], save_count, lengths[j]);
 | 
						|
 | 
						|
                Time_F(START);
 | 
						|
                for (count = 0, run = 1;
 | 
						|
                     COND(save_count * 4 * lengths[0] / lengths[j]); count++)
 | 
						|
                    EVP_Digest(buf, lengths[j], &(md[0]), NULL, evp_md, NULL);
 | 
						|
 | 
						|
                d = Time_F(STOP);
 | 
						|
            }
 | 
						|
            print_result(D_EVP, j, count, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    RAND_pseudo_bytes(buf, 36);
 | 
						|
# ifndef OPENSSL_NO_RSA
 | 
						|
    for (j = 0; j < RSA_NUM; j++) {
 | 
						|
        int ret;
 | 
						|
        if (!rsa_doit[j])
 | 
						|
            continue;
 | 
						|
        ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, &rsa_num, rsa_key[j]);
 | 
						|
        if (ret == 0) {
 | 
						|
            BIO_printf(bio_err,
 | 
						|
                       "RSA sign failure.  No RSA sign will be done.\n");
 | 
						|
            ERR_print_errors(bio_err);
 | 
						|
            rsa_count = 1;
 | 
						|
        } else {
 | 
						|
            pkey_print_message("private", "rsa",
 | 
						|
                               rsa_c[j][0], rsa_bits[j], RSA_SECONDS);
 | 
						|
            /* RSA_blinding_on(rsa_key[j],NULL); */
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(rsa_c[j][0]); count++) {
 | 
						|
                ret = RSA_sign(NID_md5_sha1, buf, 36, buf2,
 | 
						|
                               &rsa_num, rsa_key[j]);
 | 
						|
                if (ret == 0) {
 | 
						|
                    BIO_printf(bio_err, "RSA sign failure\n");
 | 
						|
                    ERR_print_errors(bio_err);
 | 
						|
                    count = 1;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            d = Time_F(STOP);
 | 
						|
            BIO_printf(bio_err,
 | 
						|
                       mr ? "+R1:%ld:%d:%.2f\n"
 | 
						|
                       : "%ld %d bit private RSA's in %.2fs\n",
 | 
						|
                       count, rsa_bits[j], d);
 | 
						|
            rsa_results[j][0] = d / (double)count;
 | 
						|
            rsa_count = count;
 | 
						|
        }
 | 
						|
 | 
						|
#  if 1
 | 
						|
        ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[j]);
 | 
						|
        if (ret <= 0) {
 | 
						|
            BIO_printf(bio_err,
 | 
						|
                       "RSA verify failure.  No RSA verify will be done.\n");
 | 
						|
            ERR_print_errors(bio_err);
 | 
						|
            rsa_doit[j] = 0;
 | 
						|
        } else {
 | 
						|
            pkey_print_message("public", "rsa",
 | 
						|
                               rsa_c[j][1], rsa_bits[j], RSA_SECONDS);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(rsa_c[j][1]); count++) {
 | 
						|
                ret = RSA_verify(NID_md5_sha1, buf, 36, buf2,
 | 
						|
                                 rsa_num, rsa_key[j]);
 | 
						|
                if (ret <= 0) {
 | 
						|
                    BIO_printf(bio_err, "RSA verify failure\n");
 | 
						|
                    ERR_print_errors(bio_err);
 | 
						|
                    count = 1;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            d = Time_F(STOP);
 | 
						|
            BIO_printf(bio_err,
 | 
						|
                       mr ? "+R2:%ld:%d:%.2f\n"
 | 
						|
                       : "%ld %d bit public RSA's in %.2fs\n",
 | 
						|
                       count, rsa_bits[j], d);
 | 
						|
            rsa_results[j][1] = d / (double)count;
 | 
						|
        }
 | 
						|
#  endif
 | 
						|
 | 
						|
        if (rsa_count <= 1) {
 | 
						|
            /* if longer than 10s, don't do any more */
 | 
						|
            for (j++; j < RSA_NUM; j++)
 | 
						|
                rsa_doit[j] = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
# endif
 | 
						|
 | 
						|
    RAND_pseudo_bytes(buf, 20);
 | 
						|
# ifndef OPENSSL_NO_DSA
 | 
						|
    if (RAND_status() != 1) {
 | 
						|
        RAND_seed(rnd_seed, sizeof rnd_seed);
 | 
						|
        rnd_fake = 1;
 | 
						|
    }
 | 
						|
    for (j = 0; j < DSA_NUM; j++) {
 | 
						|
        unsigned int kk;
 | 
						|
        int ret;
 | 
						|
 | 
						|
        if (!dsa_doit[j])
 | 
						|
            continue;
 | 
						|
 | 
						|
        /* DSA_generate_key(dsa_key[j]); */
 | 
						|
        /* DSA_sign_setup(dsa_key[j],NULL); */
 | 
						|
        ret = DSA_sign(EVP_PKEY_DSA, buf, 20, buf2, &kk, dsa_key[j]);
 | 
						|
        if (ret == 0) {
 | 
						|
            BIO_printf(bio_err,
 | 
						|
                       "DSA sign failure.  No DSA sign will be done.\n");
 | 
						|
            ERR_print_errors(bio_err);
 | 
						|
            rsa_count = 1;
 | 
						|
        } else {
 | 
						|
            pkey_print_message("sign", "dsa",
 | 
						|
                               dsa_c[j][0], dsa_bits[j], DSA_SECONDS);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(dsa_c[j][0]); count++) {
 | 
						|
                ret = DSA_sign(EVP_PKEY_DSA, buf, 20, buf2, &kk, dsa_key[j]);
 | 
						|
                if (ret == 0) {
 | 
						|
                    BIO_printf(bio_err, "DSA sign failure\n");
 | 
						|
                    ERR_print_errors(bio_err);
 | 
						|
                    count = 1;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            d = Time_F(STOP);
 | 
						|
            BIO_printf(bio_err,
 | 
						|
                       mr ? "+R3:%ld:%d:%.2f\n"
 | 
						|
                       : "%ld %d bit DSA signs in %.2fs\n",
 | 
						|
                       count, dsa_bits[j], d);
 | 
						|
            dsa_results[j][0] = d / (double)count;
 | 
						|
            rsa_count = count;
 | 
						|
        }
 | 
						|
 | 
						|
        ret = DSA_verify(EVP_PKEY_DSA, buf, 20, buf2, kk, dsa_key[j]);
 | 
						|
        if (ret <= 0) {
 | 
						|
            BIO_printf(bio_err,
 | 
						|
                       "DSA verify failure.  No DSA verify will be done.\n");
 | 
						|
            ERR_print_errors(bio_err);
 | 
						|
            dsa_doit[j] = 0;
 | 
						|
        } else {
 | 
						|
            pkey_print_message("verify", "dsa",
 | 
						|
                               dsa_c[j][1], dsa_bits[j], DSA_SECONDS);
 | 
						|
            Time_F(START);
 | 
						|
            for (count = 0, run = 1; COND(dsa_c[j][1]); count++) {
 | 
						|
                ret = DSA_verify(EVP_PKEY_DSA, buf, 20, buf2, kk, dsa_key[j]);
 | 
						|
                if (ret <= 0) {
 | 
						|
                    BIO_printf(bio_err, "DSA verify failure\n");
 | 
						|
                    ERR_print_errors(bio_err);
 | 
						|
                    count = 1;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            d = Time_F(STOP);
 | 
						|
            BIO_printf(bio_err,
 | 
						|
                       mr ? "+R4:%ld:%d:%.2f\n"
 | 
						|
                       : "%ld %d bit DSA verify in %.2fs\n",
 | 
						|
                       count, dsa_bits[j], d);
 | 
						|
            dsa_results[j][1] = d / (double)count;
 | 
						|
        }
 | 
						|
 | 
						|
        if (rsa_count <= 1) {
 | 
						|
            /* if longer than 10s, don't do any more */
 | 
						|
            for (j++; j < DSA_NUM; j++)
 | 
						|
                dsa_doit[j] = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (rnd_fake)
 | 
						|
        RAND_cleanup();
 | 
						|
# endif
 | 
						|
 | 
						|
# ifndef OPENSSL_NO_ECDSA
 | 
						|
    if (RAND_status() != 1) {
 | 
						|
        RAND_seed(rnd_seed, sizeof rnd_seed);
 | 
						|
        rnd_fake = 1;
 | 
						|
    }
 | 
						|
    for (j = 0; j < EC_NUM; j++) {
 | 
						|
        int ret;
 | 
						|
 | 
						|
        if (!ecdsa_doit[j])
 | 
						|
            continue;           /* Ignore Curve */
 | 
						|
        ecdsa[j] = EC_KEY_new_by_curve_name(test_curves[j]);
 | 
						|
        if (ecdsa[j] == NULL) {
 | 
						|
            BIO_printf(bio_err, "ECDSA failure.\n");
 | 
						|
            ERR_print_errors(bio_err);
 | 
						|
            rsa_count = 1;
 | 
						|
        } else {
 | 
						|
#  if 1
 | 
						|
            EC_KEY_precompute_mult(ecdsa[j], NULL);
 | 
						|
#  endif
 | 
						|
            /* Perform ECDSA signature test */
 | 
						|
            EC_KEY_generate_key(ecdsa[j]);
 | 
						|
            ret = ECDSA_sign(0, buf, 20, ecdsasig, &ecdsasiglen, ecdsa[j]);
 | 
						|
            if (ret == 0) {
 | 
						|
                BIO_printf(bio_err,
 | 
						|
                           "ECDSA sign failure.  No ECDSA sign will be done.\n");
 | 
						|
                ERR_print_errors(bio_err);
 | 
						|
                rsa_count = 1;
 | 
						|
            } else {
 | 
						|
                pkey_print_message("sign", "ecdsa",
 | 
						|
                                   ecdsa_c[j][0],
 | 
						|
                                   test_curves_bits[j], ECDSA_SECONDS);
 | 
						|
 | 
						|
                Time_F(START);
 | 
						|
                for (count = 0, run = 1; COND(ecdsa_c[j][0]); count++) {
 | 
						|
                    ret = ECDSA_sign(0, buf, 20,
 | 
						|
                                     ecdsasig, &ecdsasiglen, ecdsa[j]);
 | 
						|
                    if (ret == 0) {
 | 
						|
                        BIO_printf(bio_err, "ECDSA sign failure\n");
 | 
						|
                        ERR_print_errors(bio_err);
 | 
						|
                        count = 1;
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                d = Time_F(STOP);
 | 
						|
 | 
						|
                BIO_printf(bio_err,
 | 
						|
                           mr ? "+R5:%ld:%d:%.2f\n" :
 | 
						|
                           "%ld %d bit ECDSA signs in %.2fs \n",
 | 
						|
                           count, test_curves_bits[j], d);
 | 
						|
                ecdsa_results[j][0] = d / (double)count;
 | 
						|
                rsa_count = count;
 | 
						|
            }
 | 
						|
 | 
						|
            /* Perform ECDSA verification test */
 | 
						|
            ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[j]);
 | 
						|
            if (ret != 1) {
 | 
						|
                BIO_printf(bio_err,
 | 
						|
                           "ECDSA verify failure.  No ECDSA verify will be done.\n");
 | 
						|
                ERR_print_errors(bio_err);
 | 
						|
                ecdsa_doit[j] = 0;
 | 
						|
            } else {
 | 
						|
                pkey_print_message("verify", "ecdsa",
 | 
						|
                                   ecdsa_c[j][1],
 | 
						|
                                   test_curves_bits[j], ECDSA_SECONDS);
 | 
						|
                Time_F(START);
 | 
						|
                for (count = 0, run = 1; COND(ecdsa_c[j][1]); count++) {
 | 
						|
                    ret =
 | 
						|
                        ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen,
 | 
						|
                                     ecdsa[j]);
 | 
						|
                    if (ret != 1) {
 | 
						|
                        BIO_printf(bio_err, "ECDSA verify failure\n");
 | 
						|
                        ERR_print_errors(bio_err);
 | 
						|
                        count = 1;
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                d = Time_F(STOP);
 | 
						|
                BIO_printf(bio_err,
 | 
						|
                           mr ? "+R6:%ld:%d:%.2f\n"
 | 
						|
                           : "%ld %d bit ECDSA verify in %.2fs\n",
 | 
						|
                           count, test_curves_bits[j], d);
 | 
						|
                ecdsa_results[j][1] = d / (double)count;
 | 
						|
            }
 | 
						|
 | 
						|
            if (rsa_count <= 1) {
 | 
						|
                /* if longer than 10s, don't do any more */
 | 
						|
                for (j++; j < EC_NUM; j++)
 | 
						|
                    ecdsa_doit[j] = 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (rnd_fake)
 | 
						|
        RAND_cleanup();
 | 
						|
# endif
 | 
						|
 | 
						|
# ifndef OPENSSL_NO_ECDH
 | 
						|
    if (RAND_status() != 1) {
 | 
						|
        RAND_seed(rnd_seed, sizeof rnd_seed);
 | 
						|
        rnd_fake = 1;
 | 
						|
    }
 | 
						|
    for (j = 0; j < EC_NUM; j++) {
 | 
						|
        if (!ecdh_doit[j])
 | 
						|
            continue;
 | 
						|
        ecdh_a[j] = EC_KEY_new_by_curve_name(test_curves[j]);
 | 
						|
        ecdh_b[j] = EC_KEY_new_by_curve_name(test_curves[j]);
 | 
						|
        if ((ecdh_a[j] == NULL) || (ecdh_b[j] == NULL)) {
 | 
						|
            BIO_printf(bio_err, "ECDH failure.\n");
 | 
						|
            ERR_print_errors(bio_err);
 | 
						|
            rsa_count = 1;
 | 
						|
        } else {
 | 
						|
            /* generate two ECDH key pairs */
 | 
						|
            if (!EC_KEY_generate_key(ecdh_a[j]) ||
 | 
						|
                !EC_KEY_generate_key(ecdh_b[j])) {
 | 
						|
                BIO_printf(bio_err, "ECDH key generation failure.\n");
 | 
						|
                ERR_print_errors(bio_err);
 | 
						|
                rsa_count = 1;
 | 
						|
            } else {
 | 
						|
                /*
 | 
						|
                 * If field size is not more than 24 octets, then use SHA-1
 | 
						|
                 * hash of result; otherwise, use result (see section 4.8 of
 | 
						|
                 * draft-ietf-tls-ecc-03.txt).
 | 
						|
                 */
 | 
						|
                int field_size, outlen;
 | 
						|
                void *(*kdf) (const void *in, size_t inlen, void *out,
 | 
						|
                              size_t *xoutlen);
 | 
						|
                field_size =
 | 
						|
                    EC_GROUP_get_degree(EC_KEY_get0_group(ecdh_a[j]));
 | 
						|
                if (field_size <= 24 * 8) {
 | 
						|
                    outlen = KDF1_SHA1_len;
 | 
						|
                    kdf = KDF1_SHA1;
 | 
						|
                } else {
 | 
						|
                    outlen = (field_size + 7) / 8;
 | 
						|
                    kdf = NULL;
 | 
						|
                }
 | 
						|
                secret_size_a =
 | 
						|
                    ECDH_compute_key(secret_a, outlen,
 | 
						|
                                     EC_KEY_get0_public_key(ecdh_b[j]),
 | 
						|
                                     ecdh_a[j], kdf);
 | 
						|
                secret_size_b =
 | 
						|
                    ECDH_compute_key(secret_b, outlen,
 | 
						|
                                     EC_KEY_get0_public_key(ecdh_a[j]),
 | 
						|
                                     ecdh_b[j], kdf);
 | 
						|
                if (secret_size_a != secret_size_b)
 | 
						|
                    ecdh_checks = 0;
 | 
						|
                else
 | 
						|
                    ecdh_checks = 1;
 | 
						|
 | 
						|
                for (secret_idx = 0; (secret_idx < secret_size_a)
 | 
						|
                     && (ecdh_checks == 1); secret_idx++) {
 | 
						|
                    if (secret_a[secret_idx] != secret_b[secret_idx])
 | 
						|
                        ecdh_checks = 0;
 | 
						|
                }
 | 
						|
 | 
						|
                if (ecdh_checks == 0) {
 | 
						|
                    BIO_printf(bio_err, "ECDH computations don't match.\n");
 | 
						|
                    ERR_print_errors(bio_err);
 | 
						|
                    rsa_count = 1;
 | 
						|
                }
 | 
						|
 | 
						|
                pkey_print_message("", "ecdh",
 | 
						|
                                   ecdh_c[j][0],
 | 
						|
                                   test_curves_bits[j], ECDH_SECONDS);
 | 
						|
                Time_F(START);
 | 
						|
                for (count = 0, run = 1; COND(ecdh_c[j][0]); count++) {
 | 
						|
                    ECDH_compute_key(secret_a, outlen,
 | 
						|
                                     EC_KEY_get0_public_key(ecdh_b[j]),
 | 
						|
                                     ecdh_a[j], kdf);
 | 
						|
                }
 | 
						|
                d = Time_F(STOP);
 | 
						|
                BIO_printf(bio_err,
 | 
						|
                           mr ? "+R7:%ld:%d:%.2f\n" :
 | 
						|
                           "%ld %d-bit ECDH ops in %.2fs\n", count,
 | 
						|
                           test_curves_bits[j], d);
 | 
						|
                ecdh_results[j][0] = d / (double)count;
 | 
						|
                rsa_count = count;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (rsa_count <= 1) {
 | 
						|
            /* if longer than 10s, don't do any more */
 | 
						|
            for (j++; j < EC_NUM; j++)
 | 
						|
                ecdh_doit[j] = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (rnd_fake)
 | 
						|
        RAND_cleanup();
 | 
						|
# endif
 | 
						|
# ifndef NO_FORK
 | 
						|
 show_res:
 | 
						|
# endif
 | 
						|
    if (!mr) {
 | 
						|
        fprintf(stdout, "%s\n", SSLeay_version(SSLEAY_VERSION));
 | 
						|
        fprintf(stdout, "%s\n", SSLeay_version(SSLEAY_BUILT_ON));
 | 
						|
        printf("options:");
 | 
						|
        printf("%s ", BN_options());
 | 
						|
# ifndef OPENSSL_NO_MD2
 | 
						|
        printf("%s ", MD2_options());
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_RC4
 | 
						|
        printf("%s ", RC4_options());
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_DES
 | 
						|
        printf("%s ", DES_options());
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_AES
 | 
						|
        printf("%s ", AES_options());
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_IDEA
 | 
						|
        printf("%s ", idea_options());
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_BF
 | 
						|
        printf("%s ", BF_options());
 | 
						|
# endif
 | 
						|
        fprintf(stdout, "\n%s\n", SSLeay_version(SSLEAY_CFLAGS));
 | 
						|
    }
 | 
						|
 | 
						|
    if (pr_header) {
 | 
						|
        if (mr)
 | 
						|
            fprintf(stdout, "+H");
 | 
						|
        else {
 | 
						|
            fprintf(stdout,
 | 
						|
                    "The 'numbers' are in 1000s of bytes per second processed.\n");
 | 
						|
            fprintf(stdout, "type        ");
 | 
						|
        }
 | 
						|
        for (j = 0; j < SIZE_NUM; j++)
 | 
						|
            fprintf(stdout, mr ? ":%d" : "%7d bytes", lengths[j]);
 | 
						|
        fprintf(stdout, "\n");
 | 
						|
    }
 | 
						|
 | 
						|
    for (k = 0; k < ALGOR_NUM; k++) {
 | 
						|
        if (!doit[k])
 | 
						|
            continue;
 | 
						|
        if (mr)
 | 
						|
            fprintf(stdout, "+F:%d:%s", k, names[k]);
 | 
						|
        else
 | 
						|
            fprintf(stdout, "%-13s", names[k]);
 | 
						|
        for (j = 0; j < SIZE_NUM; j++) {
 | 
						|
            if (results[k][j] > 10000 && !mr)
 | 
						|
                fprintf(stdout, " %11.2fk", results[k][j] / 1e3);
 | 
						|
            else
 | 
						|
                fprintf(stdout, mr ? ":%.2f" : " %11.2f ", results[k][j]);
 | 
						|
        }
 | 
						|
        fprintf(stdout, "\n");
 | 
						|
    }
 | 
						|
# ifndef OPENSSL_NO_RSA
 | 
						|
    j = 1;
 | 
						|
    for (k = 0; k < RSA_NUM; k++) {
 | 
						|
        if (!rsa_doit[k])
 | 
						|
            continue;
 | 
						|
        if (j && !mr) {
 | 
						|
            printf("%18ssign    verify    sign/s verify/s\n", " ");
 | 
						|
            j = 0;
 | 
						|
        }
 | 
						|
        if (mr)
 | 
						|
            fprintf(stdout, "+F2:%u:%u:%f:%f\n",
 | 
						|
                    k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]);
 | 
						|
        else
 | 
						|
            fprintf(stdout, "rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
 | 
						|
                    rsa_bits[k], rsa_results[k][0], rsa_results[k][1],
 | 
						|
                    1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1]);
 | 
						|
    }
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_DSA
 | 
						|
    j = 1;
 | 
						|
    for (k = 0; k < DSA_NUM; k++) {
 | 
						|
        if (!dsa_doit[k])
 | 
						|
            continue;
 | 
						|
        if (j && !mr) {
 | 
						|
            printf("%18ssign    verify    sign/s verify/s\n", " ");
 | 
						|
            j = 0;
 | 
						|
        }
 | 
						|
        if (mr)
 | 
						|
            fprintf(stdout, "+F3:%u:%u:%f:%f\n",
 | 
						|
                    k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]);
 | 
						|
        else
 | 
						|
            fprintf(stdout, "dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
 | 
						|
                    dsa_bits[k], dsa_results[k][0], dsa_results[k][1],
 | 
						|
                    1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1]);
 | 
						|
    }
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_ECDSA
 | 
						|
    j = 1;
 | 
						|
    for (k = 0; k < EC_NUM; k++) {
 | 
						|
        if (!ecdsa_doit[k])
 | 
						|
            continue;
 | 
						|
        if (j && !mr) {
 | 
						|
            printf("%30ssign    verify    sign/s verify/s\n", " ");
 | 
						|
            j = 0;
 | 
						|
        }
 | 
						|
 | 
						|
        if (mr)
 | 
						|
            fprintf(stdout, "+F4:%u:%u:%f:%f\n",
 | 
						|
                    k, test_curves_bits[k],
 | 
						|
                    ecdsa_results[k][0], ecdsa_results[k][1]);
 | 
						|
        else
 | 
						|
            fprintf(stdout,
 | 
						|
                    "%4u bit ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
 | 
						|
                    test_curves_bits[k],
 | 
						|
                    test_curves_names[k],
 | 
						|
                    ecdsa_results[k][0], ecdsa_results[k][1],
 | 
						|
                    1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1]);
 | 
						|
    }
 | 
						|
# endif
 | 
						|
 | 
						|
# ifndef OPENSSL_NO_ECDH
 | 
						|
    j = 1;
 | 
						|
    for (k = 0; k < EC_NUM; k++) {
 | 
						|
        if (!ecdh_doit[k])
 | 
						|
            continue;
 | 
						|
        if (j && !mr) {
 | 
						|
            printf("%30sop      op/s\n", " ");
 | 
						|
            j = 0;
 | 
						|
        }
 | 
						|
        if (mr)
 | 
						|
            fprintf(stdout, "+F5:%u:%u:%f:%f\n",
 | 
						|
                    k, test_curves_bits[k],
 | 
						|
                    ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
 | 
						|
 | 
						|
        else
 | 
						|
            fprintf(stdout, "%4u bit ecdh (%s) %8.4fs %8.1f\n",
 | 
						|
                    test_curves_bits[k],
 | 
						|
                    test_curves_names[k],
 | 
						|
                    ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
 | 
						|
    }
 | 
						|
# endif
 | 
						|
 | 
						|
    mret = 0;
 | 
						|
 | 
						|
 end:
 | 
						|
    ERR_print_errors(bio_err);
 | 
						|
    if (buf != NULL)
 | 
						|
        OPENSSL_free(buf);
 | 
						|
    if (buf2 != NULL)
 | 
						|
        OPENSSL_free(buf2);
 | 
						|
# ifndef OPENSSL_NO_RSA
 | 
						|
    for (i = 0; i < RSA_NUM; i++)
 | 
						|
        if (rsa_key[i] != NULL)
 | 
						|
            RSA_free(rsa_key[i]);
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_DSA
 | 
						|
    for (i = 0; i < DSA_NUM; i++)
 | 
						|
        if (dsa_key[i] != NULL)
 | 
						|
            DSA_free(dsa_key[i]);
 | 
						|
# endif
 | 
						|
 | 
						|
# ifndef OPENSSL_NO_ECDSA
 | 
						|
    for (i = 0; i < EC_NUM; i++)
 | 
						|
        if (ecdsa[i] != NULL)
 | 
						|
            EC_KEY_free(ecdsa[i]);
 | 
						|
# endif
 | 
						|
# ifndef OPENSSL_NO_ECDH
 | 
						|
    for (i = 0; i < EC_NUM; i++) {
 | 
						|
        if (ecdh_a[i] != NULL)
 | 
						|
            EC_KEY_free(ecdh_a[i]);
 | 
						|
        if (ecdh_b[i] != NULL)
 | 
						|
            EC_KEY_free(ecdh_b[i]);
 | 
						|
    }
 | 
						|
# endif
 | 
						|
 | 
						|
    apps_shutdown();
 | 
						|
    OPENSSL_EXIT(mret);
 | 
						|
}
 | 
						|
 | 
						|
static void print_message(const char *s, long num, int length)
 | 
						|
{
 | 
						|
# ifdef SIGALRM
 | 
						|
    BIO_printf(bio_err,
 | 
						|
               mr ? "+DT:%s:%d:%d\n"
 | 
						|
               : "Doing %s for %ds on %d size blocks: ", s, SECONDS, length);
 | 
						|
    (void)BIO_flush(bio_err);
 | 
						|
    alarm(SECONDS);
 | 
						|
# else
 | 
						|
    BIO_printf(bio_err,
 | 
						|
               mr ? "+DN:%s:%ld:%d\n"
 | 
						|
               : "Doing %s %ld times on %d size blocks: ", s, num, length);
 | 
						|
    (void)BIO_flush(bio_err);
 | 
						|
# endif
 | 
						|
# ifdef LINT
 | 
						|
    num = num;
 | 
						|
# endif
 | 
						|
}
 | 
						|
 | 
						|
static void pkey_print_message(const char *str, const char *str2, long num,
 | 
						|
                               int bits, int tm)
 | 
						|
{
 | 
						|
# ifdef SIGALRM
 | 
						|
    BIO_printf(bio_err,
 | 
						|
               mr ? "+DTP:%d:%s:%s:%d\n"
 | 
						|
               : "Doing %d bit %s %s's for %ds: ", bits, str, str2, tm);
 | 
						|
    (void)BIO_flush(bio_err);
 | 
						|
    alarm(tm);
 | 
						|
# else
 | 
						|
    BIO_printf(bio_err,
 | 
						|
               mr ? "+DNP:%ld:%d:%s:%s\n"
 | 
						|
               : "Doing %ld %d bit %s %s's: ", num, bits, str, str2);
 | 
						|
    (void)BIO_flush(bio_err);
 | 
						|
# endif
 | 
						|
# ifdef LINT
 | 
						|
    num = num;
 | 
						|
# endif
 | 
						|
}
 | 
						|
 | 
						|
static void print_result(int alg, int run_no, int count, double time_used)
 | 
						|
{
 | 
						|
    BIO_printf(bio_err,
 | 
						|
               mr ? "+R:%d:%s:%f\n"
 | 
						|
               : "%d %s's in %.2fs\n", count, names[alg], time_used);
 | 
						|
    results[alg][run_no] = ((double)count) / time_used * lengths[run_no];
 | 
						|
}
 | 
						|
 | 
						|
# ifndef NO_FORK
 | 
						|
static char *sstrsep(char **string, const char *delim)
 | 
						|
{
 | 
						|
    char isdelim[256];
 | 
						|
    char *token = *string;
 | 
						|
 | 
						|
    if (**string == 0)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    memset(isdelim, 0, sizeof isdelim);
 | 
						|
    isdelim[0] = 1;
 | 
						|
 | 
						|
    while (*delim) {
 | 
						|
        isdelim[(unsigned char)(*delim)] = 1;
 | 
						|
        delim++;
 | 
						|
    }
 | 
						|
 | 
						|
    while (!isdelim[(unsigned char)(**string)]) {
 | 
						|
        (*string)++;
 | 
						|
    }
 | 
						|
 | 
						|
    if (**string) {
 | 
						|
        **string = 0;
 | 
						|
        (*string)++;
 | 
						|
    }
 | 
						|
 | 
						|
    return token;
 | 
						|
}
 | 
						|
 | 
						|
static int do_multi(int multi)
 | 
						|
{
 | 
						|
    int n;
 | 
						|
    int fd[2];
 | 
						|
    int *fds;
 | 
						|
    static char sep[] = ":";
 | 
						|
 | 
						|
    fds = malloc(multi * sizeof *fds);
 | 
						|
    for (n = 0; n < multi; ++n) {
 | 
						|
        if (pipe(fd) == -1) {
 | 
						|
            fprintf(stderr, "pipe failure\n");
 | 
						|
            exit(1);
 | 
						|
        }
 | 
						|
        fflush(stdout);
 | 
						|
        fflush(stderr);
 | 
						|
        if (fork()) {
 | 
						|
            close(fd[1]);
 | 
						|
            fds[n] = fd[0];
 | 
						|
        } else {
 | 
						|
            close(fd[0]);
 | 
						|
            close(1);
 | 
						|
            if (dup(fd[1]) == -1) {
 | 
						|
                fprintf(stderr, "dup failed\n");
 | 
						|
                exit(1);
 | 
						|
            }
 | 
						|
            close(fd[1]);
 | 
						|
            mr = 1;
 | 
						|
            usertime = 0;
 | 
						|
            free(fds);
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
        printf("Forked child %d\n", n);
 | 
						|
    }
 | 
						|
 | 
						|
    /* for now, assume the pipe is long enough to take all the output */
 | 
						|
    for (n = 0; n < multi; ++n) {
 | 
						|
        FILE *f;
 | 
						|
        char buf[1024];
 | 
						|
        char *p;
 | 
						|
 | 
						|
        f = fdopen(fds[n], "r");
 | 
						|
        while (fgets(buf, sizeof buf, f)) {
 | 
						|
            p = strchr(buf, '\n');
 | 
						|
            if (p)
 | 
						|
                *p = '\0';
 | 
						|
            if (buf[0] != '+') {
 | 
						|
                fprintf(stderr, "Don't understand line '%s' from child %d\n",
 | 
						|
                        buf, n);
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            printf("Got: %s from %d\n", buf, n);
 | 
						|
            if (!strncmp(buf, "+F:", 3)) {
 | 
						|
                int alg;
 | 
						|
                int j;
 | 
						|
 | 
						|
                p = buf + 3;
 | 
						|
                alg = atoi(sstrsep(&p, sep));
 | 
						|
                sstrsep(&p, sep);
 | 
						|
                for (j = 0; j < SIZE_NUM; ++j)
 | 
						|
                    results[alg][j] += atof(sstrsep(&p, sep));
 | 
						|
            } else if (!strncmp(buf, "+F2:", 4)) {
 | 
						|
                int k;
 | 
						|
                double d;
 | 
						|
 | 
						|
                p = buf + 4;
 | 
						|
                k = atoi(sstrsep(&p, sep));
 | 
						|
                sstrsep(&p, sep);
 | 
						|
 | 
						|
                d = atof(sstrsep(&p, sep));
 | 
						|
                if (n)
 | 
						|
                    rsa_results[k][0] = 1 / (1 / rsa_results[k][0] + 1 / d);
 | 
						|
                else
 | 
						|
                    rsa_results[k][0] = d;
 | 
						|
 | 
						|
                d = atof(sstrsep(&p, sep));
 | 
						|
                if (n)
 | 
						|
                    rsa_results[k][1] = 1 / (1 / rsa_results[k][1] + 1 / d);
 | 
						|
                else
 | 
						|
                    rsa_results[k][1] = d;
 | 
						|
            }
 | 
						|
#  ifndef OPENSSL_NO_DSA
 | 
						|
            else if (!strncmp(buf, "+F3:", 4)) {
 | 
						|
                int k;
 | 
						|
                double d;
 | 
						|
 | 
						|
                p = buf + 4;
 | 
						|
                k = atoi(sstrsep(&p, sep));
 | 
						|
                sstrsep(&p, sep);
 | 
						|
 | 
						|
                d = atof(sstrsep(&p, sep));
 | 
						|
                if (n)
 | 
						|
                    dsa_results[k][0] = 1 / (1 / dsa_results[k][0] + 1 / d);
 | 
						|
                else
 | 
						|
                    dsa_results[k][0] = d;
 | 
						|
 | 
						|
                d = atof(sstrsep(&p, sep));
 | 
						|
                if (n)
 | 
						|
                    dsa_results[k][1] = 1 / (1 / dsa_results[k][1] + 1 / d);
 | 
						|
                else
 | 
						|
                    dsa_results[k][1] = d;
 | 
						|
            }
 | 
						|
#  endif
 | 
						|
#  ifndef OPENSSL_NO_ECDSA
 | 
						|
            else if (!strncmp(buf, "+F4:", 4)) {
 | 
						|
                int k;
 | 
						|
                double d;
 | 
						|
 | 
						|
                p = buf + 4;
 | 
						|
                k = atoi(sstrsep(&p, sep));
 | 
						|
                sstrsep(&p, sep);
 | 
						|
 | 
						|
                d = atof(sstrsep(&p, sep));
 | 
						|
                if (n)
 | 
						|
                    ecdsa_results[k][0] =
 | 
						|
                        1 / (1 / ecdsa_results[k][0] + 1 / d);
 | 
						|
                else
 | 
						|
                    ecdsa_results[k][0] = d;
 | 
						|
 | 
						|
                d = atof(sstrsep(&p, sep));
 | 
						|
                if (n)
 | 
						|
                    ecdsa_results[k][1] =
 | 
						|
                        1 / (1 / ecdsa_results[k][1] + 1 / d);
 | 
						|
                else
 | 
						|
                    ecdsa_results[k][1] = d;
 | 
						|
            }
 | 
						|
#  endif
 | 
						|
 | 
						|
#  ifndef OPENSSL_NO_ECDH
 | 
						|
            else if (!strncmp(buf, "+F5:", 4)) {
 | 
						|
                int k;
 | 
						|
                double d;
 | 
						|
 | 
						|
                p = buf + 4;
 | 
						|
                k = atoi(sstrsep(&p, sep));
 | 
						|
                sstrsep(&p, sep);
 | 
						|
 | 
						|
                d = atof(sstrsep(&p, sep));
 | 
						|
                if (n)
 | 
						|
                    ecdh_results[k][0] = 1 / (1 / ecdh_results[k][0] + 1 / d);
 | 
						|
                else
 | 
						|
                    ecdh_results[k][0] = d;
 | 
						|
 | 
						|
            }
 | 
						|
#  endif
 | 
						|
 | 
						|
            else if (!strncmp(buf, "+H:", 3)) {
 | 
						|
            } else
 | 
						|
                fprintf(stderr, "Unknown type '%s' from child %d\n", buf, n);
 | 
						|
        }
 | 
						|
 | 
						|
        fclose(f);
 | 
						|
    }
 | 
						|
    free(fds);
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
# endif
 | 
						|
 | 
						|
static void multiblock_speed(const EVP_CIPHER *evp_cipher)
 | 
						|
{
 | 
						|
    static int mblengths[] =
 | 
						|
        { 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 };
 | 
						|
    int j, count, num = sizeof(lengths) / sizeof(lengths[0]);
 | 
						|
    const char *alg_name;
 | 
						|
    unsigned char *inp, *out, no_key[32], no_iv[16];
 | 
						|
    EVP_CIPHER_CTX ctx;
 | 
						|
    double d = 0.0;
 | 
						|
 | 
						|
    inp = OPENSSL_malloc(mblengths[num - 1]);
 | 
						|
    out = OPENSSL_malloc(mblengths[num - 1] + 1024);
 | 
						|
    if (!inp || !out) {
 | 
						|
        BIO_printf(bio_err,"Out of memory\n");
 | 
						|
        goto end;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    EVP_CIPHER_CTX_init(&ctx);
 | 
						|
    EVP_EncryptInit_ex(&ctx, evp_cipher, NULL, no_key, no_iv);
 | 
						|
    EVP_CIPHER_CTX_ctrl(&ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key),
 | 
						|
                        no_key);
 | 
						|
    alg_name = OBJ_nid2ln(evp_cipher->nid);
 | 
						|
 | 
						|
    for (j = 0; j < num; j++) {
 | 
						|
        print_message(alg_name, 0, mblengths[j]);
 | 
						|
        Time_F(START);
 | 
						|
        for (count = 0, run = 1; run && count < 0x7fffffff; count++) {
 | 
						|
            unsigned char aad[EVP_AEAD_TLS1_AAD_LEN];
 | 
						|
            EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param;
 | 
						|
            size_t len = mblengths[j];
 | 
						|
            int packlen;
 | 
						|
 | 
						|
            memset(aad, 0, 8);  /* avoid uninitialized values */
 | 
						|
            aad[8] = 23;        /* SSL3_RT_APPLICATION_DATA */
 | 
						|
            aad[9] = 3;         /* version */
 | 
						|
            aad[10] = 2;
 | 
						|
            aad[11] = 0;        /* length */
 | 
						|
            aad[12] = 0;
 | 
						|
            mb_param.out = NULL;
 | 
						|
            mb_param.inp = aad;
 | 
						|
            mb_param.len = len;
 | 
						|
            mb_param.interleave = 8;
 | 
						|
 | 
						|
            packlen = EVP_CIPHER_CTX_ctrl(&ctx,
 | 
						|
                                          EVP_CTRL_TLS1_1_MULTIBLOCK_AAD,
 | 
						|
                                          sizeof(mb_param), &mb_param);
 | 
						|
 | 
						|
            if (packlen > 0) {
 | 
						|
                mb_param.out = out;
 | 
						|
                mb_param.inp = inp;
 | 
						|
                mb_param.len = len;
 | 
						|
                EVP_CIPHER_CTX_ctrl(&ctx,
 | 
						|
                                    EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT,
 | 
						|
                                    sizeof(mb_param), &mb_param);
 | 
						|
            } else {
 | 
						|
                int pad;
 | 
						|
 | 
						|
                RAND_bytes(out, 16);
 | 
						|
                len += 16;
 | 
						|
                aad[11] = len >> 8;
 | 
						|
                aad[12] = len;
 | 
						|
                pad = EVP_CIPHER_CTX_ctrl(&ctx,
 | 
						|
                                          EVP_CTRL_AEAD_TLS1_AAD,
 | 
						|
                                          EVP_AEAD_TLS1_AAD_LEN, aad);
 | 
						|
                EVP_Cipher(&ctx, out, inp, len + pad);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        d = Time_F(STOP);
 | 
						|
        BIO_printf(bio_err,
 | 
						|
                   mr ? "+R:%d:%s:%f\n"
 | 
						|
                   : "%d %s's in %.2fs\n", count, "evp", d);
 | 
						|
        results[D_EVP][j] = ((double)count) / d * mblengths[j];
 | 
						|
    }
 | 
						|
 | 
						|
    if (mr) {
 | 
						|
        fprintf(stdout, "+H");
 | 
						|
        for (j = 0; j < num; j++)
 | 
						|
            fprintf(stdout, ":%d", mblengths[j]);
 | 
						|
        fprintf(stdout, "\n");
 | 
						|
        fprintf(stdout, "+F:%d:%s", D_EVP, alg_name);
 | 
						|
        for (j = 0; j < num; j++)
 | 
						|
            fprintf(stdout, ":%.2f", results[D_EVP][j]);
 | 
						|
        fprintf(stdout, "\n");
 | 
						|
    } else {
 | 
						|
        fprintf(stdout,
 | 
						|
                "The 'numbers' are in 1000s of bytes per second processed.\n");
 | 
						|
        fprintf(stdout, "type                    ");
 | 
						|
        for (j = 0; j < num; j++)
 | 
						|
            fprintf(stdout, "%7d bytes", mblengths[j]);
 | 
						|
        fprintf(stdout, "\n");
 | 
						|
        fprintf(stdout, "%-24s", alg_name);
 | 
						|
 | 
						|
        for (j = 0; j < num; j++) {
 | 
						|
            if (results[D_EVP][j] > 10000)
 | 
						|
                fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3);
 | 
						|
            else
 | 
						|
                fprintf(stdout, " %11.2f ", results[D_EVP][j]);
 | 
						|
        }
 | 
						|
        fprintf(stdout, "\n");
 | 
						|
    }
 | 
						|
 | 
						|
end:
 | 
						|
    if (inp)
 | 
						|
        OPENSSL_free(inp);
 | 
						|
    if (out)
 | 
						|
        OPENSSL_free(out);
 | 
						|
}
 | 
						|
#endif
 |