openssl/doc/crypto/BN_generate_prime.pod
Rich Salz a528d4f0a9 Remove SSLeay history, etc., from docs
If something was "present in all versions" of SSLeay, or if it was
added to a version of SSLeay (and therefore predates OpenSSL),
remove mention of it.  Documentation history now starts with OpenSSL.

Remove mention of all history before OpenSSL 0.9.8, inclusive.

Remove all AUTHOR sections.

Reviewed-by: Tim Hudson <tjh@openssl.org>
2015-10-28 17:23:51 -04:00

184 lines
6.0 KiB
Plaintext

=pod
=head1 NAME
BN_generate_prime_ex, BN_is_prime_ex, BN_is_prime_fasttest_ex, BN_GENCB_call,
BN_GENCB_new, BN_GENCB_free, BN_GENCB_set_old, BN_GENCB_set, BN_GENCB_get_arg,
BN_generate_prime, BN_is_prime, BN_is_prime_fasttest - generate primes and test
for primality
=head1 SYNOPSIS
#include <openssl/bn.h>
int BN_generate_prime_ex(BIGNUM *ret,int bits,int safe, const BIGNUM *add,
const BIGNUM *rem, BN_GENCB *cb);
int BN_is_prime_ex(const BIGNUM *p,int nchecks, BN_CTX *ctx, BN_GENCB *cb);
int BN_is_prime_fasttest_ex(const BIGNUM *p,int nchecks, BN_CTX *ctx,
int do_trial_division, BN_GENCB *cb);
int BN_GENCB_call(BN_GENCB *cb, int a, int b);
BN_GENCB *BN_GENCB_new(void);
void BN_GENCB_free(BN_GENCB *cb);
void BN_GENCB_set_old(BN_GENCB *gencb,
void (*callback)(int, int, void *), void *cb_arg);
void BN_GENCB_set(BN_GENCB *gencb,
int (*callback)(int, int, BN_GENCB *), void *cb_arg);
void *BN_GENCB_get_arg(BN_GENCB *cb);
Deprecated:
BIGNUM *BN_generate_prime(BIGNUM *ret, int num, int safe, BIGNUM *add,
BIGNUM *rem, void (*callback)(int, int, void *), void *cb_arg);
int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int, int,
void *), BN_CTX *ctx, void *cb_arg);
int BN_is_prime_fasttest(const BIGNUM *a, int checks,
void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg,
int do_trial_division);
=head1 DESCRIPTION
BN_generate_prime_ex() generates a pseudo-random prime number of
at least bit length B<bits>.
If B<ret> is not B<NULL>, it will be used to store the number.
If B<cb> is not B<NULL>, it is used as follows:
=over 4
=item *
B<BN_GENCB_call(cb, 0, i)> is called after generating the i-th
potential prime number.
=item *
While the number is being tested for primality,
B<BN_GENCB_call(cb, 1, j)> is called as described below.
=item *
When a prime has been found, B<BN_GENCB_call(cb, 2, i)> is called.
=back
The prime may have to fulfill additional requirements for use in
Diffie-Hellman key exchange:
If B<add> is not B<NULL>, the prime will fulfill the condition p % B<add>
== B<rem> (p % B<add> == 1 if B<rem> == B<NULL>) in order to suit a given
generator.
If B<safe> is true, it will be a safe prime (i.e. a prime p so
that (p-1)/2 is also prime).
The PRNG must be seeded prior to calling BN_generate_prime_ex().
The prime number generation has a negligible error probability.
BN_is_prime_ex() and BN_is_prime_fasttest_ex() test if the number B<p> is
prime. The following tests are performed until one of them shows that
B<p> is composite; if B<p> passes all these tests, it is considered
prime.
BN_is_prime_fasttest_ex(), when called with B<do_trial_division == 1>,
first attempts trial division by a number of small primes;
if no divisors are found by this test and B<cb> is not B<NULL>,
B<BN_GENCB_call(cb, 1, -1)> is called.
If B<do_trial_division == 0>, this test is skipped.
Both BN_is_prime_ex() and BN_is_prime_fasttest_ex() perform a Miller-Rabin
probabilistic primality test with B<nchecks> iterations. If
B<nchecks == BN_prime_checks>, a number of iterations is used that
yields a false positive rate of at most 2^-80 for random input.
If B<cb> is not B<NULL>, B<BN_GENCB_call(cb, 1, j)> is called
after the j-th iteration (j = 0, 1, ...). B<ctx> is a
pre-allocated B<BN_CTX> (to save the overhead of allocating and
freeing the structure in a loop), or B<NULL>.
BN_GENCB_call calls the callback function held in the B<BN_GENCB> structure
and passes the ints B<a> and B<b> as arguments. There are two types of
B<BN_GENCB> structure that are supported: "new" style and "old" style. New
programs should prefer the "new" style, whilst the "old" style is provided
for backwards compatibility purposes.
A BN_GENCB structure should be created through a call to BN_GENCB_new(),
and freed through a call to BN_GENCB_free().
For "new" style callbacks a BN_GENCB structure should be initialised with a
call to BN_GENCB_set(), where B<gencb> is a B<BN_GENCB *>, B<callback> is of
type B<int (*callback)(int, int, BN_GENCB *)> and B<cb_arg> is a B<void *>.
"Old" style callbacks are the same except they are initialised with a call
to BN_GENCB_set_old() and B<callback> is of type
B<void (*callback)(int, int, void *)>.
A callback is invoked through a call to B<BN_GENCB_call>. This will check
the type of the callback and will invoke B<callback(a, b, gencb)> for new
style callbacks or B<callback(a, b, cb_arg)> for old style.
It is possible to obtained the argument associated with a BN_GENCB structure
(set via a call to BN_GENCB_set or BN_GENCB_set_old) using BN_GENCB_get_arg.
BN_generate_prime (deprecated) works in the same way as
BN_generate_prime_ex but expects an old style callback function
directly in the B<callback> parameter, and an argument to pass to it in
the B<cb_arg>. Similarly BN_is_prime and BN_is_prime_fasttest are
deprecated and can be compared to BN_is_prime_ex and
BN_is_prime_fasttest_ex respectively.
=head1 RETURN VALUES
BN_generate_prime_ex() return 1 on success or 0 on error.
BN_is_prime_ex(), BN_is_prime_fasttest_ex(), BN_is_prime() and
BN_is_prime_fasttest() return 0 if the number is composite, 1 if it is
prime with an error probability of less than 0.25^B<nchecks>, and
-1 on error.
BN_generate_prime() returns the prime number on success, B<NULL> otherwise.
BN_GENCB_new returns a pointer to a BN_GENCB structure on success, or B<NULL>
otherwise.
BN_GENCB_get_arg returns the argument previously associated with a BN_GENCB
structure.
Callback functions should return 1 on success or 0 on error.
The error codes can be obtained by L<ERR_get_error(3)>.
=head1 REMOVED FUNCTIONALITY
As of OpenSSL 1.1.0 it is no longer possible to create a BN_GENCB structure
directly, as in:
BN_GENCB callback;
Instead applications should create a BN_GENCB structure using BN_GENCB_new:
BN_GENCB *callback;
callback = BN_GENCB_new();
if(!callback) /* handle error */
...
BN_GENCB_free(callback);
=head1 SEE ALSO
L<bn(3)>, L<ERR_get_error(3)>, L<rand(3)>
=head1 HISTORY
BN_GENCB_new(), BN_GENCB_free(),
and BN_GENCB_get_arg() were added in OpenSSL 1.1.0
=cut