openssl/crypto/asn1/a_verify.c
Dr. Stephen Henson 684400ce19 Fix various certificate fingerprint issues.
By using non-DER or invalid encodings outside the signed portion of a
certificate the fingerprint can be changed without breaking the signature.
Although no details of the signed portion of the certificate can be changed
this can cause problems with some applications: e.g. those using the
certificate fingerprint for blacklists.

1. Reject signatures with non zero unused bits.

If the BIT STRING containing the signature has non zero unused bits reject
the signature. All current signature algorithms require zero unused bits.

2. Check certificate algorithm consistency.

Check the AlgorithmIdentifier inside TBS matches the one in the
certificate signature. NB: this will result in signature failure
errors for some broken certificates.

3. Check DSA/ECDSA signatures use DER.

Reencode DSA/ECDSA signatures and compare with the original received
signature. Return an error if there is a mismatch.

This will reject various cases including garbage after signature
(thanks to Antti Karjalainen and Tuomo Untinen from the Codenomicon CROSS
program for discovering this case) and use of BER or invalid ASN.1 INTEGERs
(negative or with leading zeroes).

CVE-2014-8275
Reviewed-by: Emilia Käsper <emilia@openssl.org>
2015-01-05 14:35:19 +00:00

253 lines
7.1 KiB
C

/* crypto/asn1/a_verify.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
#include <stdio.h>
#include <time.h>
#include "cryptlib.h"
#ifndef NO_SYS_TYPES_H
# include <sys/types.h>
#endif
#include <openssl/bn.h>
#include <openssl/x509.h>
#include <openssl/objects.h>
#include <openssl/buffer.h>
#include <openssl/evp.h>
#include "asn1_locl.h"
#ifndef NO_ASN1_OLD
int ASN1_verify(i2d_of_void *i2d, X509_ALGOR *a, ASN1_BIT_STRING *signature,
char *data, EVP_PKEY *pkey)
{
EVP_MD_CTX ctx;
const EVP_MD *type;
unsigned char *p,*buf_in=NULL;
int ret= -1,i,inl;
EVP_MD_CTX_init(&ctx);
i=OBJ_obj2nid(a->algorithm);
type=EVP_get_digestbyname(OBJ_nid2sn(i));
if (type == NULL)
{
ASN1err(ASN1_F_ASN1_VERIFY,ASN1_R_UNKNOWN_MESSAGE_DIGEST_ALGORITHM);
goto err;
}
if (signature->type == V_ASN1_BIT_STRING && signature->flags & 0x7)
{
ASN1err(ASN1_F_ASN1_VERIFY, ASN1_R_INVALID_BIT_STRING_BITS_LEFT);
goto err;
}
inl=i2d(data,NULL);
buf_in=OPENSSL_malloc((unsigned int)inl);
if (buf_in == NULL)
{
ASN1err(ASN1_F_ASN1_VERIFY,ERR_R_MALLOC_FAILURE);
goto err;
}
p=buf_in;
i2d(data,&p);
ret=
EVP_VerifyInit_ex(&ctx,type, NULL)
&& EVP_VerifyUpdate(&ctx,(unsigned char *)buf_in,inl);
OPENSSL_cleanse(buf_in,(unsigned int)inl);
OPENSSL_free(buf_in);
if (!ret)
{
ASN1err(ASN1_F_ASN1_VERIFY,ERR_R_EVP_LIB);
goto err;
}
ret = -1;
if (EVP_VerifyFinal(&ctx,(unsigned char *)signature->data,
(unsigned int)signature->length,pkey) <= 0)
{
ASN1err(ASN1_F_ASN1_VERIFY,ERR_R_EVP_LIB);
ret=0;
goto err;
}
/* we don't need to zero the 'ctx' because we just checked
* public information */
/* memset(&ctx,0,sizeof(ctx)); */
ret=1;
err:
EVP_MD_CTX_cleanup(&ctx);
return(ret);
}
#endif
int ASN1_item_verify(const ASN1_ITEM *it, X509_ALGOR *a,
ASN1_BIT_STRING *signature, void *asn, EVP_PKEY *pkey)
{
EVP_MD_CTX ctx;
unsigned char *buf_in=NULL;
int ret= -1,inl;
int mdnid, pknid;
if (!pkey)
{
ASN1err(ASN1_F_ASN1_ITEM_VERIFY, ERR_R_PASSED_NULL_PARAMETER);
return -1;
}
if (signature->type == V_ASN1_BIT_STRING && signature->flags & 0x7)
{
ASN1err(ASN1_F_ASN1_VERIFY, ASN1_R_INVALID_BIT_STRING_BITS_LEFT);
return -1;
}
EVP_MD_CTX_init(&ctx);
/* Convert signature OID into digest and public key OIDs */
if (!OBJ_find_sigid_algs(OBJ_obj2nid(a->algorithm), &mdnid, &pknid))
{
ASN1err(ASN1_F_ASN1_ITEM_VERIFY,ASN1_R_UNKNOWN_SIGNATURE_ALGORITHM);
goto err;
}
if (mdnid == NID_undef)
{
if (!pkey->ameth || !pkey->ameth->item_verify)
{
ASN1err(ASN1_F_ASN1_ITEM_VERIFY,ASN1_R_UNKNOWN_SIGNATURE_ALGORITHM);
goto err;
}
ret = pkey->ameth->item_verify(&ctx, it, asn, a,
signature, pkey);
/* Return value of 2 means carry on, anything else means we
* exit straight away: either a fatal error of the underlying
* verification routine handles all verification.
*/
if (ret != 2)
goto err;
ret = -1;
}
else
{
const EVP_MD *type;
type=EVP_get_digestbynid(mdnid);
if (type == NULL)
{
ASN1err(ASN1_F_ASN1_ITEM_VERIFY,ASN1_R_UNKNOWN_MESSAGE_DIGEST_ALGORITHM);
goto err;
}
/* Check public key OID matches public key type */
if (EVP_PKEY_type(pknid) != pkey->ameth->pkey_id)
{
ASN1err(ASN1_F_ASN1_ITEM_VERIFY,ASN1_R_WRONG_PUBLIC_KEY_TYPE);
goto err;
}
if (!EVP_DigestVerifyInit(&ctx, NULL, type, NULL, pkey))
{
ASN1err(ASN1_F_ASN1_ITEM_VERIFY,ERR_R_EVP_LIB);
ret=0;
goto err;
}
}
inl = ASN1_item_i2d(asn, &buf_in, it);
if (buf_in == NULL)
{
ASN1err(ASN1_F_ASN1_ITEM_VERIFY,ERR_R_MALLOC_FAILURE);
goto err;
}
ret = EVP_DigestVerifyUpdate(&ctx,buf_in,inl);
OPENSSL_cleanse(buf_in,(unsigned int)inl);
OPENSSL_free(buf_in);
if (!ret)
{
ASN1err(ASN1_F_ASN1_ITEM_VERIFY,ERR_R_EVP_LIB);
goto err;
}
ret = -1;
if (EVP_DigestVerifyFinal(&ctx,signature->data,
(size_t)signature->length) <= 0)
{
ASN1err(ASN1_F_ASN1_ITEM_VERIFY,ERR_R_EVP_LIB);
ret=0;
goto err;
}
/* we don't need to zero the 'ctx' because we just checked
* public information */
/* memset(&ctx,0,sizeof(ctx)); */
ret=1;
err:
EVP_MD_CTX_cleanup(&ctx);
return(ret);
}