3e181369dd
tested, because kernel is not in shape to handle it *yet*. The code is committed mostly to stimulate the kernel development.
232 lines
6.8 KiB
Perl
232 lines
6.8 KiB
Perl
#!/usr/bin/env perl
|
||
#
|
||
# ====================================================================
|
||
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
||
# project. The module is, however, dual licensed under OpenSSL and
|
||
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
||
# details see http://www.openssl.org/~appro/cryptogams/.
|
||
# ====================================================================
|
||
#
|
||
# December 2011
|
||
#
|
||
# The module implements GCM GHASH function and underlying single
|
||
# multiplication operation in GF(2^128). Even though subroutines
|
||
# have _4bit suffix, they are not using any tables, but rely on
|
||
# hardware Galois Field Multiply support. Streamed GHASH processes
|
||
# byte in ~7 cycles, which is >6x faster than "4-bit" table-driven
|
||
# code compiled with TI's cl6x 6.0 with -mv6400+ -o2 flags. We are
|
||
# comparing apples vs. oranges, but compiler surely could have done
|
||
# better, because theoretical [though not necessarily achievable]
|
||
# estimate for "4-bit" table-driven implementation is ~12 cycles.
|
||
|
||
while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {}
|
||
open STDOUT,">$output";
|
||
|
||
($Xip,$Htable,$inp,$len)=("A4","B4","A6","B6"); # arguments
|
||
|
||
($Z0,$Z1,$Z2,$Z3, $H0, $H1, $H2, $H3,
|
||
$H0x,$H1x,$H2x,$H3x)=map("A$_",(16..27));
|
||
($H01u,$H01y,$H2u,$H3u, $H0y,$H1y,$H2y,$H3y,
|
||
$H0z,$H1z,$H2z,$H3z)=map("B$_",(16..27));
|
||
($FF000000,$E10000)=("B30","B31");
|
||
($xip,$x0,$x1,$xib)=map("B$_",(6..9)); # $xip zaps $len
|
||
$xia="A9";
|
||
($rem,$res)=("B4","B5"); # $rem zaps $Htable
|
||
|
||
$code.=<<___;
|
||
.text
|
||
|
||
.asg B3,RA
|
||
|
||
.if 0
|
||
.global _gcm_gmult_1bit
|
||
_gcm_gmult_1bit:
|
||
ADDAD $Htable,2,$Htable
|
||
.endif
|
||
.global _gcm_gmult_4bit
|
||
_gcm_gmult_4bit:
|
||
.asmfunc
|
||
LDDW *${Htable}[-1],$H1:$H0 ; H.lo
|
||
LDDW *${Htable}[-2],$H3:$H2 ; H.hi
|
||
|| MV $Xip,${xip} ; reassign Xi
|
||
|| MVK 15,B1 ; SPLOOPD constant
|
||
|
||
MVK 0xE1,$E10000
|
||
|| LDBU *++${xip}[15],$x1 ; Xi[15]
|
||
MVK 0xFF,$FF000000
|
||
|| LDBU *--${xip},$x0 ; Xi[14]
|
||
SHL $E10000,16,$E10000 ; [pre-shifted] reduction polynomial
|
||
SHL $FF000000,24,$FF000000 ; upper byte mask
|
||
|| BNOP ghash_loop?
|
||
|| MVK 1,B0 ; take a single spin
|
||
|
||
PACKH2 $H0,$H1,$xia ; pack H0' and H1's upper bytes
|
||
AND $H2,$FF000000,$H2u ; H2's upper byte
|
||
AND $H3,$FF000000,$H3u ; H3's upper byte
|
||
|| SHRU $H2u,8,$H2u
|
||
SHRU $H3u,8,$H3u
|
||
|| ZERO $Z1:$Z0
|
||
SHRU2 $xia,8,$H01u
|
||
|| ZERO $Z3:$Z2
|
||
.endasmfunc
|
||
|
||
.global _gcm_ghash_4bit
|
||
_gcm_ghash_4bit:
|
||
.asmfunc
|
||
LDDW *${Htable}[-1],$H1:$H0 ; H.lo
|
||
|| SHRU $len,4,B0 ; reassign len
|
||
LDDW *${Htable}[-2],$H3:$H2 ; H.hi
|
||
|| MV $Xip,${xip} ; reassign Xi
|
||
|| MVK 15,B1 ; SPLOOPD constant
|
||
|
||
MVK 0xE1,$E10000
|
||
|| [B0] LDNDW *${inp}[1],$H1x:$H0x
|
||
MVK 0xFF,$FF000000
|
||
|| [B0] LDNDW *${inp}++[2],$H3x:$H2x
|
||
SHL $E10000,16,$E10000 ; [pre-shifted] reduction polynomial
|
||
|| LDDW *${xip}[1],$Z1:$Z0
|
||
SHL $FF000000,24,$FF000000 ; upper byte mask
|
||
|| LDDW *${xip}[0],$Z3:$Z2
|
||
|
||
PACKH2 $H0,$H1,$xia ; pack H0' and H1's upper bytes
|
||
AND $H2,$FF000000,$H2u ; H2's upper byte
|
||
AND $H3,$FF000000,$H3u ; H3's upper byte
|
||
|| SHRU $H2u,8,$H2u
|
||
SHRU $H3u,8,$H3u
|
||
SHRU2 $xia,8,$H01u
|
||
|
||
|| [B0] XOR $H0x,$Z0,$Z0 ; Xi^=inp
|
||
|| [B0] XOR $H1x,$Z1,$Z1
|
||
.if .LITTLE_ENDIAN
|
||
[B0] XOR $H2x,$Z2,$Z2
|
||
|| [B0] XOR $H3x,$Z3,$Z3
|
||
|| [B0] SHRU $Z1,24,$xia ; Xi[15], avoid cross-path stall
|
||
STDW $Z1:$Z0,*${xip}[1]
|
||
|| [B0] SHRU $Z1,16,$x0 ; Xi[14]
|
||
|| [B0] ZERO $Z1:$Z0
|
||
.else
|
||
[B0] XOR $H2x,$Z2,$Z2
|
||
|| [B0] XOR $H3x,$Z3,$Z3
|
||
|| [B0] MV $Z0,$xia ; Xi[15], avoid cross-path stall
|
||
STDW $Z1:$Z0,*${xip}[1]
|
||
|| [B0] SHRU $Z0,8,$x0 ; Xi[14]
|
||
|| [B0] ZERO $Z1:$Z0
|
||
.endif
|
||
STDW $Z3:$Z2,*${xip}[0]
|
||
|| [B0] ZERO $Z3:$Z2
|
||
|| [B0] MV $xia,$x1
|
||
[B0] ADDK 14,${xip}
|
||
|
||
ghash_loop?:
|
||
SPLOOPD 6 ; 6*16+7
|
||
|| MVC B1,ILC
|
||
|| [B0] SUB B0,1,B0
|
||
|| ZERO A0
|
||
|| ADD $x1,$x1,$xib ; SHL $x1,1,$xib
|
||
|| SHL $x1,1,$xia
|
||
___
|
||
|
||
########____________________________
|
||
# 0 D2. M1 M2 |
|
||
# 1 M1 |
|
||
# 2 M1 M2 |
|
||
# 3 D1. M1 M2 |
|
||
# 4 S1. L1 |
|
||
# 5 S2 S1x L1 D2 L2 |____________________________
|
||
# 6/0 L1 S1 L2 S2x |D2. M1 M2 |
|
||
# 7/1 L1 S1 D1x S2 M2 | M1 |
|
||
# 8/2 S1 L1x S2 | M1 M2 |
|
||
# 9/3 S1 L1x | D1. M1 M2 |
|
||
# 10/4 D1x | S1. L1 |
|
||
# 11/5 |S2 S1x L1 D2 L2 |____________
|
||
# 12/6/0 D1x __| L1 S1 L2 S2x |D2. ....
|
||
# 7/1 L1 S1 D1x S2 M2 | ....
|
||
# 8/2 S1 L1x S2 | ....
|
||
#####... ................|............
|
||
$code.=<<___;
|
||
XORMPY $H0,$xia,$H0x ; 0 ; H<>Xi[i]
|
||
|| XORMPY $H01u,$xib,$H01y
|
||
|| [A0] LDBU *--${xip},$x0
|
||
XORMPY $H1,$xia,$H1x ; 1
|
||
XORMPY $H2,$xia,$H2x ; 2
|
||
|| XORMPY $H2u,$xib,$H2y
|
||
XORMPY $H3,$xia,$H3x ; 3
|
||
|| XORMPY $H3u,$xib,$H3y
|
||
||[!A0] MVK.D 15,A0 ; *--${xip} counter
|
||
XOR.L $H0x,$Z0,$Z0 ; 4 ; Z^=H<>Xi[i]
|
||
|| [A0] SUB.S A0,1,A0
|
||
XOR.L $H1x,$Z1,$Z1 ; 5
|
||
|| AND.D $H01y,$FF000000,$H0z
|
||
|| SWAP2.L $H01y,$H1y ; ; SHL $H01y,16,$H1y
|
||
|| SHL $x0,1,$xib
|
||
|| SHL $x0,1,$xia
|
||
|
||
XOR.L $H2x,$Z2,$Z2 ; 6/0 ; [0,0] in epilogue
|
||
|| SHL $Z0,1,$rem ; ; rem=Z<<1
|
||
|| SHRMB.S $Z1,$Z0,$Z0 ; ; Z>>=8
|
||
|| AND.L $H1y,$FF000000,$H1z
|
||
XOR.L $H3x,$Z3,$Z3 ; 7/1
|
||
|| SHRMB.S $Z2,$Z1,$Z1
|
||
|| XOR.D $H0z,$Z0,$Z0 ; merge upper byte products
|
||
|| AND.S $H2y,$FF000000,$H2z
|
||
|| XORMPY $E10000,$rem,$res ; ; implicit rem&0x1FE
|
||
XOR.L $H1z,$Z1,$Z1 ; 8/2
|
||
|| SHRMB.S $Z3,$Z2,$Z2
|
||
|| AND.S $H3y,$FF000000,$H3z
|
||
XOR.L $H2z,$Z2,$Z2 ; 9/3
|
||
|| SHRU $Z3,8,$Z3
|
||
XOR.D $H3z,$Z3,$Z3 ; 10/4
|
||
NOP ; 11/5
|
||
|
||
SPKERNEL 0,2
|
||
|| XOR.D $res,$Z3,$Z3 ; 12/6/0; Z^=res
|
||
|
||
; input pre-fetch is possible where D1 slot is available...
|
||
[B0] LDNDW *${inp}[1],$H1x:$H0x ; 8/-
|
||
[B0] LDNDW *${inp}++[2],$H3x:$H2x ; 9/-
|
||
NOP ; 10/-
|
||
.if .LITTLE_ENDIAN
|
||
SWAP2 $Z0,$Z1 ; 11/-
|
||
|| SWAP4 $Z1,$Z0
|
||
SWAP4 $Z1,$Z1 ; 12/-
|
||
|| SWAP2 $Z0,$Z0
|
||
SWAP2 $Z2,$Z3
|
||
|| SWAP4 $Z3,$Z2
|
||
||[!B0] BNOP RA
|
||
SWAP4 $Z3,$Z3
|
||
|| SWAP2 $Z2,$Z2
|
||
|| [B0] BNOP ghash_loop?
|
||
[B0] XOR $H0x,$Z0,$Z0 ; Xi^=inp
|
||
|| [B0] XOR $H1x,$Z1,$Z1
|
||
[B0] XOR $H2x,$Z2,$Z2
|
||
|| [B0] XOR $H3x,$Z3,$Z3
|
||
|| [B0] SHRU $Z1,24,$xia ; Xi[15], avoid cross-path stall
|
||
STDW $Z1:$Z0,*${xip}[1]
|
||
|| [B0] SHRU $Z1,16,$x0 ; Xi[14]
|
||
|| [B0] ZERO $Z1:$Z0
|
||
.else
|
||
[!B0] BNOP RA ; 11/-
|
||
[B0] BNOP ghash_loop? ; 12/-
|
||
[B0] XOR $H0x,$Z0,$Z0 ; Xi^=inp
|
||
|| [B0] XOR $H1x,$Z1,$Z1
|
||
[B0] XOR $H2x,$Z2,$Z2
|
||
|| [B0] XOR $H3x,$Z3,$Z3
|
||
|| [B0] MV $Z0,$xia ; Xi[15], avoid cross-path stall
|
||
STDW $Z1:$Z0,*${xip}[1]
|
||
|| [B0] SHRU $Z0,8,$x0 ; Xi[14]
|
||
|| [B0] ZERO $Z1:$Z0
|
||
.endif
|
||
STDW $Z3:$Z2,*${xip}[0]
|
||
|| [B0] ZERO $Z3:$Z2
|
||
|| [B0] MV $xia,$x1
|
||
[B0] ADDK 14,${xip}
|
||
.endasmfunc
|
||
|
||
.sect .const
|
||
.cstring "GHASH for C64x+, CRYPTOGAMS by <appro\@openssl.org>"
|
||
.align 4
|
||
___
|
||
|
||
print $code;
|
||
close STDOUT;
|