openssl/ssl/t1_enc.c
Matt Caswell c2f5de13cd Cleanse buffers
Cleanse various intermediate buffers used by the PRF (backported version
from master).

Conflicts:
	ssl/s3_enc.c

Conflicts:
	ssl/t1_enc.c

Conflicts:
	ssl/t1_enc.c

Reviewed-by: Richard Levitte <levitte@openssl.org>
2015-03-11 10:57:14 +00:00

936 lines
31 KiB
C

/* ssl/t1_enc.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <stdio.h>
#include "ssl_locl.h"
#ifndef OPENSSL_NO_COMP
# include <openssl/comp.h>
#endif
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/md5.h>
#ifdef KSSL_DEBUG
# include <openssl/des.h>
#endif
static void tls1_P_hash(const EVP_MD *md, const unsigned char *sec,
int sec_len, unsigned char *seed, int seed_len,
unsigned char *out, int olen)
{
int chunk;
unsigned int j;
HMAC_CTX ctx;
HMAC_CTX ctx_tmp;
unsigned char A1[EVP_MAX_MD_SIZE];
unsigned int A1_len;
chunk = EVP_MD_size(md);
HMAC_CTX_init(&ctx);
HMAC_CTX_init(&ctx_tmp);
HMAC_CTX_set_flags(&ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
HMAC_CTX_set_flags(&ctx_tmp, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
HMAC_Init_ex(&ctx, sec, sec_len, md, NULL);
HMAC_Init_ex(&ctx_tmp, sec, sec_len, md, NULL);
HMAC_Update(&ctx, seed, seed_len);
HMAC_Final(&ctx, A1, &A1_len);
for (;;) {
HMAC_Init_ex(&ctx, NULL, 0, NULL, NULL); /* re-init */
HMAC_Init_ex(&ctx_tmp, NULL, 0, NULL, NULL); /* re-init */
HMAC_Update(&ctx, A1, A1_len);
HMAC_Update(&ctx_tmp, A1, A1_len);
HMAC_Update(&ctx, seed, seed_len);
if (olen > chunk) {
HMAC_Final(&ctx, out, &j);
out += j;
olen -= j;
/* calc the next A1 value */
HMAC_Final(&ctx_tmp, A1, &A1_len);
} else { /* last one */
HMAC_Final(&ctx, A1, &A1_len);
memcpy(out, A1, olen);
break;
}
}
HMAC_CTX_cleanup(&ctx);
HMAC_CTX_cleanup(&ctx_tmp);
OPENSSL_cleanse(A1, sizeof(A1));
}
static void tls1_PRF(const EVP_MD *md5, const EVP_MD *sha1,
unsigned char *label, int label_len,
const unsigned char *sec, int slen, unsigned char *out1,
unsigned char *out2, int olen)
{
int len, i;
const unsigned char *S1, *S2;
len = slen / 2;
S1 = sec;
S2 = &(sec[len]);
len += (slen & 1); /* add for odd, make longer */
tls1_P_hash(md5, S1, len, label, label_len, out1, olen);
tls1_P_hash(sha1, S2, len, label, label_len, out2, olen);
for (i = 0; i < olen; i++)
out1[i] ^= out2[i];
}
static void tls1_generate_key_block(SSL *s, unsigned char *km,
unsigned char *tmp, int num)
{
unsigned char *p;
unsigned char buf[SSL3_RANDOM_SIZE * 2 + TLS_MD_MAX_CONST_SIZE];
p = buf;
memcpy(p, TLS_MD_KEY_EXPANSION_CONST, TLS_MD_KEY_EXPANSION_CONST_SIZE);
p += TLS_MD_KEY_EXPANSION_CONST_SIZE;
memcpy(p, s->s3->server_random, SSL3_RANDOM_SIZE);
p += SSL3_RANDOM_SIZE;
memcpy(p, s->s3->client_random, SSL3_RANDOM_SIZE);
p += SSL3_RANDOM_SIZE;
tls1_PRF(s->ctx->md5, s->ctx->sha1, buf, (int)(p - buf),
s->session->master_key, s->session->master_key_length,
km, tmp, num);
#ifdef KSSL_DEBUG
printf("tls1_generate_key_block() ==> %d byte master_key =\n\t",
s->session->master_key_length);
{
int i;
for (i = 0; i < s->session->master_key_length; i++) {
printf("%02X", s->session->master_key[i]);
}
printf("\n");
}
#endif /* KSSL_DEBUG */
}
int tls1_change_cipher_state(SSL *s, int which)
{
static const unsigned char empty[] = "";
unsigned char *p, *mac_secret;
unsigned char *exp_label, buf[TLS_MD_MAX_CONST_SIZE +
SSL3_RANDOM_SIZE * 2];
unsigned char tmp1[EVP_MAX_KEY_LENGTH];
unsigned char tmp2[EVP_MAX_KEY_LENGTH];
unsigned char iv1[EVP_MAX_IV_LENGTH * 2];
unsigned char iv2[EVP_MAX_IV_LENGTH * 2];
unsigned char *ms, *key, *iv;
int client_write;
EVP_CIPHER_CTX *dd;
const EVP_CIPHER *c;
#ifndef OPENSSL_NO_COMP
const SSL_COMP *comp;
#endif
const EVP_MD *m;
int is_export, n, i, j, k, exp_label_len, cl;
int reuse_dd = 0;
is_export = SSL_C_IS_EXPORT(s->s3->tmp.new_cipher);
c = s->s3->tmp.new_sym_enc;
m = s->s3->tmp.new_hash;
#ifndef OPENSSL_NO_COMP
comp = s->s3->tmp.new_compression;
#endif
#ifdef KSSL_DEBUG
key_block = s->s3->tmp.key_block;
printf("tls1_change_cipher_state(which= %d) w/\n", which);
printf("\talg= %ld, comp= %p\n", s->s3->tmp.new_cipher->algorithms,
(void *)comp);
printf("\tevp_cipher == %p ==? &d_cbc_ede_cipher3\n", (void *)c);
printf("\tevp_cipher: nid, blksz= %d, %d, keylen=%d, ivlen=%d\n",
c->nid, c->block_size, c->key_len, c->iv_len);
printf("\tkey_block: len= %d, data= ", s->s3->tmp.key_block_length);
{
int ki;
for (ki = 0; ki < s->s3->tmp.key_block_length; ki++)
printf("%02x", s->s3->tmp.key_block[ki]);
printf("\n");
}
#endif /* KSSL_DEBUG */
if (which & SSL3_CC_READ) {
if (s->enc_read_ctx != NULL)
reuse_dd = 1;
else if ((s->enc_read_ctx =
OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))) == NULL)
goto err;
else
/*
* make sure it's intialized in case we exit later with an error
*/
EVP_CIPHER_CTX_init(s->enc_read_ctx);
dd = s->enc_read_ctx;
s->read_hash = m;
#ifndef OPENSSL_NO_COMP
if (s->expand != NULL) {
COMP_CTX_free(s->expand);
s->expand = NULL;
}
if (comp != NULL) {
s->expand = COMP_CTX_new(comp->method);
if (s->expand == NULL) {
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE,
SSL_R_COMPRESSION_LIBRARY_ERROR);
goto err2;
}
if (s->s3->rrec.comp == NULL)
s->s3->rrec.comp = (unsigned char *)
OPENSSL_malloc(SSL3_RT_MAX_ENCRYPTED_LENGTH);
if (s->s3->rrec.comp == NULL)
goto err;
}
#endif
/*
* this is done by dtls1_reset_seq_numbers for DTLS1_VERSION
*/
if (s->version != DTLS1_VERSION)
memset(&(s->s3->read_sequence[0]), 0, 8);
mac_secret = &(s->s3->read_mac_secret[0]);
} else {
if (s->enc_write_ctx != NULL)
reuse_dd = 1;
else if ((s->enc_write_ctx =
OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))) == NULL)
goto err;
else
/*
* make sure it's intialized in case we exit later with an error
*/
EVP_CIPHER_CTX_init(s->enc_write_ctx);
dd = s->enc_write_ctx;
s->write_hash = m;
#ifndef OPENSSL_NO_COMP
if (s->compress != NULL) {
COMP_CTX_free(s->compress);
s->compress = NULL;
}
if (comp != NULL) {
s->compress = COMP_CTX_new(comp->method);
if (s->compress == NULL) {
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE,
SSL_R_COMPRESSION_LIBRARY_ERROR);
goto err2;
}
}
#endif
/*
* this is done by dtls1_reset_seq_numbers for DTLS1_VERSION
*/
if (s->version != DTLS1_VERSION)
memset(&(s->s3->write_sequence[0]), 0, 8);
mac_secret = &(s->s3->write_mac_secret[0]);
}
if (reuse_dd)
EVP_CIPHER_CTX_cleanup(dd);
p = s->s3->tmp.key_block;
i = EVP_MD_size(m);
cl = EVP_CIPHER_key_length(c);
j = is_export ? (cl < SSL_C_EXPORT_KEYLENGTH(s->s3->tmp.new_cipher) ?
cl : SSL_C_EXPORT_KEYLENGTH(s->s3->tmp.new_cipher)) : cl;
/* Was j=(exp)?5:EVP_CIPHER_key_length(c); */
k = EVP_CIPHER_iv_length(c);
if ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) ||
(which == SSL3_CHANGE_CIPHER_SERVER_READ)) {
ms = &(p[0]);
n = i + i;
key = &(p[n]);
n += j + j;
iv = &(p[n]);
n += k + k;
exp_label = (unsigned char *)TLS_MD_CLIENT_WRITE_KEY_CONST;
exp_label_len = TLS_MD_CLIENT_WRITE_KEY_CONST_SIZE;
client_write = 1;
} else {
n = i;
ms = &(p[n]);
n += i + j;
key = &(p[n]);
n += j + k;
iv = &(p[n]);
n += k;
exp_label = (unsigned char *)TLS_MD_SERVER_WRITE_KEY_CONST;
exp_label_len = TLS_MD_SERVER_WRITE_KEY_CONST_SIZE;
client_write = 0;
}
if (n > s->s3->tmp.key_block_length) {
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
goto err2;
}
memcpy(mac_secret, ms, i);
#ifdef TLS_DEBUG
printf("which = %04X\nmac key=", which);
{
int z;
for (z = 0; z < i; z++)
printf("%02X%c", ms[z], ((z + 1) % 16) ? ' ' : '\n');
}
#endif
if (is_export) {
/*
* In here I set both the read and write key/iv to the same value
* since only the correct one will be used :-).
*/
p = buf;
memcpy(p, exp_label, exp_label_len);
p += exp_label_len;
memcpy(p, s->s3->client_random, SSL3_RANDOM_SIZE);
p += SSL3_RANDOM_SIZE;
memcpy(p, s->s3->server_random, SSL3_RANDOM_SIZE);
p += SSL3_RANDOM_SIZE;
tls1_PRF(s->ctx->md5, s->ctx->sha1, buf, (int)(p - buf), key, j,
tmp1, tmp2, EVP_CIPHER_key_length(c));
key = tmp1;
if (k > 0) {
p = buf;
memcpy(p, TLS_MD_IV_BLOCK_CONST, TLS_MD_IV_BLOCK_CONST_SIZE);
p += TLS_MD_IV_BLOCK_CONST_SIZE;
memcpy(p, s->s3->client_random, SSL3_RANDOM_SIZE);
p += SSL3_RANDOM_SIZE;
memcpy(p, s->s3->server_random, SSL3_RANDOM_SIZE);
p += SSL3_RANDOM_SIZE;
tls1_PRF(s->ctx->md5, s->ctx->sha1, buf, p - buf, empty, 0,
iv1, iv2, k * 2);
if (client_write)
iv = iv1;
else
iv = &(iv1[k]);
}
}
s->session->key_arg_length = 0;
#ifdef KSSL_DEBUG
{
int ki;
printf("EVP_CipherInit_ex(dd,c,key=,iv=,which)\n");
printf("\tkey= ");
for (ki = 0; ki < c->key_len; ki++)
printf("%02x", key[ki]);
printf("\n");
printf("\t iv= ");
for (ki = 0; ki < c->iv_len; ki++)
printf("%02x", iv[ki]);
printf("\n");
}
#endif /* KSSL_DEBUG */
EVP_CipherInit_ex(dd, c, NULL, key, iv, (which & SSL3_CC_WRITE));
#ifdef TLS_DEBUG
printf("which = %04X\nkey=", which);
{
int z;
for (z = 0; z < EVP_CIPHER_key_length(c); z++)
printf("%02X%c", key[z], ((z + 1) % 16) ? ' ' : '\n');
}
printf("\niv=");
{
int z;
for (z = 0; z < k; z++)
printf("%02X%c", iv[z], ((z + 1) % 16) ? ' ' : '\n');
}
printf("\n");
#endif
OPENSSL_cleanse(tmp1, sizeof(tmp1));
OPENSSL_cleanse(tmp2, sizeof(tmp1));
OPENSSL_cleanse(iv1, sizeof(iv1));
OPENSSL_cleanse(iv2, sizeof(iv2));
return (1);
err:
SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE);
err2:
return (0);
}
int tls1_setup_key_block(SSL *s)
{
unsigned char *p1, *p2;
const EVP_CIPHER *c;
const EVP_MD *hash;
int num;
SSL_COMP *comp;
#ifdef KSSL_DEBUG
printf("tls1_setup_key_block()\n");
#endif /* KSSL_DEBUG */
if (s->s3->tmp.key_block_length != 0)
return (1);
if (!ssl_cipher_get_evp(s->session, &c, &hash, &comp)) {
SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
return (0);
}
s->s3->tmp.new_sym_enc = c;
s->s3->tmp.new_hash = hash;
num =
EVP_CIPHER_key_length(c) + EVP_MD_size(hash) +
EVP_CIPHER_iv_length(c);
num *= 2;
ssl3_cleanup_key_block(s);
if ((p1 = (unsigned char *)OPENSSL_malloc(num)) == NULL)
goto err;
if ((p2 = (unsigned char *)OPENSSL_malloc(num)) == NULL)
goto err;
s->s3->tmp.key_block_length = num;
s->s3->tmp.key_block = p1;
#ifdef TLS_DEBUG
printf("client random\n");
{
int z;
for (z = 0; z < SSL3_RANDOM_SIZE; z++)
printf("%02X%c", s->s3->client_random[z],
((z + 1) % 16) ? ' ' : '\n');
}
printf("server random\n");
{
int z;
for (z = 0; z < SSL3_RANDOM_SIZE; z++)
printf("%02X%c", s->s3->server_random[z],
((z + 1) % 16) ? ' ' : '\n');
}
printf("pre-master\n");
{
int z;
for (z = 0; z < s->session->master_key_length; z++)
printf("%02X%c", s->session->master_key[z],
((z + 1) % 16) ? ' ' : '\n');
}
#endif
tls1_generate_key_block(s, p1, p2, num);
OPENSSL_cleanse(p2, num);
OPENSSL_free(p2);
#ifdef TLS_DEBUG
printf("\nkey block\n");
{
int z;
for (z = 0; z < num; z++)
printf("%02X%c", p1[z], ((z + 1) % 16) ? ' ' : '\n');
}
#endif
if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS)) {
/*
* enable vulnerability countermeasure for CBC ciphers with known-IV
* problem (http://www.openssl.org/~bodo/tls-cbc.txt)
*/
s->s3->need_empty_fragments = 1;
if (s->session->cipher != NULL) {
if ((s->session->cipher->algorithms & SSL_ENC_MASK) == SSL_eNULL)
s->s3->need_empty_fragments = 0;
#ifndef OPENSSL_NO_RC4
if ((s->session->cipher->algorithms & SSL_ENC_MASK) == SSL_RC4)
s->s3->need_empty_fragments = 0;
#endif
}
}
return (1);
err:
SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE);
return (0);
}
/*-
* tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively.
*
* Returns:
* 0: (in non-constant time) if the record is publically invalid (i.e. too
* short etc).
* 1: if the record's padding is valid / the encryption was successful.
* -1: if the record's padding/AEAD-authenticator is invalid or, if sending,
* an internal error occured.
*/
int tls1_enc(SSL *s, int send)
{
SSL3_RECORD *rec;
EVP_CIPHER_CTX *ds;
unsigned long l;
int bs, i, j, k, pad = 0, ret, mac_size = 0;
const EVP_CIPHER *enc;
if (send) {
ds = s->enc_write_ctx;
rec = &(s->s3->wrec);
if (s->enc_write_ctx == NULL)
enc = NULL;
else
enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx);
} else {
ds = s->enc_read_ctx;
rec = &(s->s3->rrec);
if (s->enc_read_ctx == NULL)
enc = NULL;
else
enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx);
}
#ifdef KSSL_DEBUG
printf("tls1_enc(%d)\n", send);
#endif /* KSSL_DEBUG */
if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) {
memmove(rec->data, rec->input, rec->length);
rec->input = rec->data;
ret = 1;
} else {
l = rec->length;
bs = EVP_CIPHER_block_size(ds->cipher);
if ((bs != 1) && send) {
i = bs - ((int)l % bs);
/* Add weird padding of upto 256 bytes */
/* we need to add 'i' padding bytes of value j */
j = i - 1;
if (s->options & SSL_OP_TLS_BLOCK_PADDING_BUG) {
if (s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG)
j++;
}
for (k = (int)l; k < (int)(l + i); k++)
rec->input[k] = j;
l += i;
rec->length += i;
}
#ifdef KSSL_DEBUG
{
unsigned long ui;
printf("EVP_Cipher(ds=%p,rec->data=%p,rec->input=%p,l=%ld) ==>\n",
ds, rec->data, rec->input, l);
printf
("\tEVP_CIPHER_CTX: %d buf_len, %d key_len [%d %d], %d iv_len\n",
ds->buf_len, ds->cipher->key_len, DES_KEY_SZ,
DES_SCHEDULE_SZ, ds->cipher->iv_len);
printf("\t\tIV: ");
for (i = 0; i < ds->cipher->iv_len; i++)
printf("%02X", ds->iv[i]);
printf("\n");
printf("\trec->input=");
for (ui = 0; ui < l; ui++)
printf(" %02x", rec->input[ui]);
printf("\n");
}
#endif /* KSSL_DEBUG */
if (!send) {
if (l == 0 || l % bs != 0)
return 0;
}
EVP_Cipher(ds, rec->data, rec->input, l);
#ifdef KSSL_DEBUG
{
unsigned long ki;
printf("\trec->data=");
for (ki = 0; ki < l; i++)
printf(" %02x", rec->data[ki]);
printf("\n");
}
#endif /* KSSL_DEBUG */
ret = 1;
if (s->read_hash != NULL)
mac_size = EVP_MD_size(s->read_hash);
if ((bs != 1) && !send)
ret = tls1_cbc_remove_padding(s, rec, bs, mac_size);
if (pad && !send)
rec->length -= pad;
}
return ret;
}
int tls1_cert_verify_mac(SSL *s, EVP_MD_CTX *in_ctx, unsigned char *out)
{
unsigned int ret;
EVP_MD_CTX ctx;
EVP_MD_CTX_init(&ctx);
EVP_MD_CTX_copy_ex(&ctx, in_ctx);
EVP_DigestFinal_ex(&ctx, out, &ret);
EVP_MD_CTX_cleanup(&ctx);
return ((int)ret);
}
int tls1_final_finish_mac(SSL *s, EVP_MD_CTX *in1_ctx, EVP_MD_CTX *in2_ctx,
const char *str, int slen, unsigned char *out)
{
unsigned int i;
EVP_MD_CTX ctx;
unsigned char buf[TLS_MD_MAX_CONST_SIZE + MD5_DIGEST_LENGTH +
SHA_DIGEST_LENGTH];
unsigned char *q, buf2[12];
q = buf;
memcpy(q, str, slen);
q += slen;
EVP_MD_CTX_init(&ctx);
EVP_MD_CTX_copy_ex(&ctx, in1_ctx);
EVP_DigestFinal_ex(&ctx, q, &i);
q += i;
EVP_MD_CTX_copy_ex(&ctx, in2_ctx);
EVP_DigestFinal_ex(&ctx, q, &i);
q += i;
tls1_PRF(s->ctx->md5, s->ctx->sha1, buf, (int)(q - buf),
s->session->master_key, s->session->master_key_length,
out, buf2, sizeof buf2);
EVP_MD_CTX_cleanup(&ctx);
OPENSSL_cleanse(buf, (int)(q - buf));
OPENSSL_cleanse(buf2, sizeof(buf2));
return sizeof buf2;
}
int tls1_mac(SSL *ssl, unsigned char *md, int send)
{
SSL3_RECORD *rec;
unsigned char *mac_sec, *seq;
const EVP_MD *hash;
size_t md_size, orig_len;
int i;
HMAC_CTX hmac;
unsigned char header[13];
if (send) {
rec = &(ssl->s3->wrec);
mac_sec = &(ssl->s3->write_mac_secret[0]);
seq = &(ssl->s3->write_sequence[0]);
hash = ssl->write_hash;
} else {
rec = &(ssl->s3->rrec);
mac_sec = &(ssl->s3->read_mac_secret[0]);
seq = &(ssl->s3->read_sequence[0]);
hash = ssl->read_hash;
}
md_size = EVP_MD_size(hash);
/* I should fix this up TLS TLS TLS TLS TLS XXXXXXXX */
HMAC_CTX_init(&hmac);
HMAC_Init_ex(&hmac, mac_sec, EVP_MD_size(hash), hash, NULL);
if (ssl->version == DTLS1_BAD_VER ||
(ssl->version == DTLS1_VERSION
&& ssl->client_version != DTLS1_BAD_VER)) {
unsigned char dtlsseq[8], *p = dtlsseq;
s2n(send ? ssl->d1->w_epoch : ssl->d1->r_epoch, p);
memcpy(p, &seq[2], 6);
memcpy(header, dtlsseq, 8);
} else
memcpy(header, seq, 8);
/*
* kludge: tls1_cbc_remove_padding passes padding length in rec->type
*/
orig_len = rec->length + md_size + ((unsigned int)rec->type >> 8);
rec->type &= 0xff;
header[8] = rec->type;
header[9] = (unsigned char)(ssl->version >> 8);
header[10] = (unsigned char)(ssl->version);
header[11] = (rec->length) >> 8;
header[12] = (rec->length) & 0xff;
if (!send &&
EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
ssl3_cbc_record_digest_supported(hash)) {
/*
* This is a CBC-encrypted record. We must avoid leaking any
* timing-side channel information about how many blocks of data we
* are hashing because that gives an attacker a timing-oracle.
*/
/* Final param == not SSLv3 */
ssl3_cbc_digest_record(hash,
md, &md_size,
header, rec->input,
rec->length + md_size, orig_len,
ssl->s3->read_mac_secret,
EVP_MD_size(ssl->read_hash),
/* not SSLv3 */
0);
} else {
unsigned mds;
HMAC_Update(&hmac, header, sizeof(header));
HMAC_Update(&hmac, rec->input, rec->length);
HMAC_Final(&hmac, md, &mds);
md_size = mds;
#ifdef OPENSSL_FIPS
if (!send && FIPS_mode())
tls_fips_digest_extra(ssl->enc_read_ctx,
hash,
&hmac, rec->input, rec->length, orig_len);
#endif
}
HMAC_CTX_cleanup(&hmac);
#ifdef TLS_DEBUG
printf("seq=");
{
int z;
for (z = 0; z < 8; z++)
printf("%02X ", seq[z]);
printf("\n");
}
printf("rec=");
{
unsigned int z;
for (z = 0; z < rec->length; z++)
printf("%02X ", rec->data[z]);
printf("\n");
}
#endif
if (SSL_version(ssl) != DTLS1_VERSION
&& SSL_version(ssl) != DTLS1_BAD_VER) {
for (i = 7; i >= 0; i--) {
++seq[i];
if (seq[i] != 0)
break;
}
}
#ifdef TLS_DEBUG
{
unsigned int z;
for (z = 0; z < md_size; z++)
printf("%02X ", md[z]);
printf("\n");
}
#endif
return (md_size);
}
int tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p,
int len)
{
unsigned char buf[SSL3_RANDOM_SIZE * 2 + TLS_MD_MASTER_SECRET_CONST_SIZE];
unsigned char buff[SSL_MAX_MASTER_KEY_LENGTH];
#ifdef KSSL_DEBUG
printf("tls1_generate_master_secret(%p,%p, %p, %d)\n", (void *)s, out, p,
len);
#endif /* KSSL_DEBUG */
/* Setup the stuff to munge */
memcpy(buf, TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE);
memcpy(&(buf[TLS_MD_MASTER_SECRET_CONST_SIZE]),
s->s3->client_random, SSL3_RANDOM_SIZE);
memcpy(&(buf[SSL3_RANDOM_SIZE + TLS_MD_MASTER_SECRET_CONST_SIZE]),
s->s3->server_random, SSL3_RANDOM_SIZE);
tls1_PRF(s->ctx->md5, s->ctx->sha1,
buf, TLS_MD_MASTER_SECRET_CONST_SIZE + SSL3_RANDOM_SIZE * 2, p,
len, s->session->master_key, buff, sizeof buff);
OPENSSL_cleanse(buf, sizeof buf);
OPENSSL_cleanse(buff, sizeof buff);
#ifdef KSSL_DEBUG
printf("tls1_generate_master_secret() complete\n");
#endif /* KSSL_DEBUG */
return (SSL3_MASTER_SECRET_SIZE);
}
int tls1_alert_code(int code)
{
switch (code) {
case SSL_AD_CLOSE_NOTIFY:
return (SSL3_AD_CLOSE_NOTIFY);
case SSL_AD_UNEXPECTED_MESSAGE:
return (SSL3_AD_UNEXPECTED_MESSAGE);
case SSL_AD_BAD_RECORD_MAC:
return (SSL3_AD_BAD_RECORD_MAC);
case SSL_AD_DECRYPTION_FAILED:
return (TLS1_AD_DECRYPTION_FAILED);
case SSL_AD_RECORD_OVERFLOW:
return (TLS1_AD_RECORD_OVERFLOW);
case SSL_AD_DECOMPRESSION_FAILURE:
return (SSL3_AD_DECOMPRESSION_FAILURE);
case SSL_AD_HANDSHAKE_FAILURE:
return (SSL3_AD_HANDSHAKE_FAILURE);
case SSL_AD_NO_CERTIFICATE:
return (-1);
case SSL_AD_BAD_CERTIFICATE:
return (SSL3_AD_BAD_CERTIFICATE);
case SSL_AD_UNSUPPORTED_CERTIFICATE:
return (SSL3_AD_UNSUPPORTED_CERTIFICATE);
case SSL_AD_CERTIFICATE_REVOKED:
return (SSL3_AD_CERTIFICATE_REVOKED);
case SSL_AD_CERTIFICATE_EXPIRED:
return (SSL3_AD_CERTIFICATE_EXPIRED);
case SSL_AD_CERTIFICATE_UNKNOWN:
return (SSL3_AD_CERTIFICATE_UNKNOWN);
case SSL_AD_ILLEGAL_PARAMETER:
return (SSL3_AD_ILLEGAL_PARAMETER);
case SSL_AD_UNKNOWN_CA:
return (TLS1_AD_UNKNOWN_CA);
case SSL_AD_ACCESS_DENIED:
return (TLS1_AD_ACCESS_DENIED);
case SSL_AD_DECODE_ERROR:
return (TLS1_AD_DECODE_ERROR);
case SSL_AD_DECRYPT_ERROR:
return (TLS1_AD_DECRYPT_ERROR);
case SSL_AD_EXPORT_RESTRICTION:
return (TLS1_AD_EXPORT_RESTRICTION);
case SSL_AD_PROTOCOL_VERSION:
return (TLS1_AD_PROTOCOL_VERSION);
case SSL_AD_INSUFFICIENT_SECURITY:
return (TLS1_AD_INSUFFICIENT_SECURITY);
case SSL_AD_INTERNAL_ERROR:
return (TLS1_AD_INTERNAL_ERROR);
case SSL_AD_USER_CANCELLED:
return (TLS1_AD_USER_CANCELLED);
case SSL_AD_NO_RENEGOTIATION:
return (TLS1_AD_NO_RENEGOTIATION);
case SSL_AD_UNSUPPORTED_EXTENSION:
return (TLS1_AD_UNSUPPORTED_EXTENSION);
case SSL_AD_CERTIFICATE_UNOBTAINABLE:
return (TLS1_AD_CERTIFICATE_UNOBTAINABLE);
case SSL_AD_UNRECOGNIZED_NAME:
return (TLS1_AD_UNRECOGNIZED_NAME);
case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE:
return (TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE);
case SSL_AD_BAD_CERTIFICATE_HASH_VALUE:
return (TLS1_AD_BAD_CERTIFICATE_HASH_VALUE);
case SSL_AD_UNKNOWN_PSK_IDENTITY:
return (TLS1_AD_UNKNOWN_PSK_IDENTITY);
case SSL_AD_INAPPROPRIATE_FALLBACK:
return (TLS1_AD_INAPPROPRIATE_FALLBACK);
#ifdef DTLS1_AD_MISSING_HANDSHAKE_MESSAGE
case DTLS1_AD_MISSING_HANDSHAKE_MESSAGE:
return (DTLS1_AD_MISSING_HANDSHAKE_MESSAGE);
#endif
default:
return (-1);
}
}