openssl/crypto/rc4/asm/rc4-amd64.pl
Andy Polyakov 376729e130 RC4 tune-up for Intel P4 core, both 32- and 64-bit ones. As it's
apparently impossible to compose blended code with would perform
satisfactory on all x86 and x86_64 cores, an extra RC4_CHAR
code-path is introduced and P4 core is detected at run-time. This
way we keep original performance on non-P4 implementations and
turbo-charge P4 performance by factor of 2.8x (on 32-bit core).
2004-11-21 10:36:25 +00:00

226 lines
5.7 KiB
Prolog
Executable File

#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
# project. Rights for redistribution and usage in source and binary
# forms are granted according to the OpenSSL license.
# ====================================================================
#
# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
# "hand-coded assembler"] doesn't stand for the whole improvement
# coefficient. It turned out that eliminating RC4_CHAR from config
# line results in ~40% improvement (yes, even for C implementation).
# Presumably it has everything to do with AMD cache architecture and
# RAW or whatever penalties. Once again! The module *requires* config
# line *without* RC4_CHAR! As for coding "secret," I bet on partial
# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
# I simply 'inc %r8b'. Even though optimization manual discourages
# to operate on partial registers, it turned out to be the best bet.
# At least for AMD... How IA32E would perform remains to be seen...
# As was shown by Marc Bevand reordering of couple of load operations
# results in even higher performance gain of 3.3x:-) At least on
# Opteron... For reference, 1x in this case is RC4_CHAR C-code
# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
# Latter means that if you want to *estimate* what to expect from
# *your* CPU, then multiply 54 by 3.3 and clock frequency in GHz.
# Intel P4 EM64T core was found to run the AMD64 code really slow...
# The only way to achieve comparable performance on P4 is to keep
# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
# compose blended code, which would perform even within 30% marginal
# on either AMD and Intel platforms, I implement both cases. See
# rc4_skey.c for further details...
$output=shift;
$win64a=1 if ($output =~ /win64a.[s|asm]/);
open STDOUT,">$output" || die "can't open $output: $!";
if (defined($win64a)) {
$dat="%rcx"; # arg1
$len="%rdx"; # arg2
$inp="%rsi"; # r8, arg3 moves here
$out="%rdi"; # r9, arg4 moves here
} else {
$dat="%rdi"; # arg1
$len="%rsi"; # arg2
$inp="%rdx"; # arg3
$out="%rcx"; # arg4
}
$XX="%r10";
$TX="%r8";
$YY="%r11";
$TY="%r9";
sub PTR() {
my $ret=shift;
if (defined($win64a)) {
$ret =~ s/\[([\S]+)\+([\S]+)\]/[$2+$1]/g; # [%rN+%rM*4]->[%rM*4+%rN]
$ret =~ s/:([^\[]+)\[([^\]]+)\]/:[$2+$1]/g; # :off[ea]->:[ea+off]
} else {
$ret =~ s/[\+\*]/,/g; # [%rN+%rM*4]->[%rN,%rM,4]
$ret =~ s/\[([^\]]+)\]/($1)/g; # [%rN]->(%rN)
}
$ret;
}
$code=<<___ if (!defined($win64a));
.text
.globl RC4
.type RC4,\@function
.align 16
RC4: or $len,$len
jne .Lentry
repret
.Lentry:
___
$code=<<___ if (defined($win64a));
_TEXT SEGMENT
PUBLIC RC4
ALIGN 16
RC4 PROC
or $len,$len
jne .Lentry
repret
.Lentry:
push %rdi
push %rsi
sub \$40,%rsp
mov %r8,$inp
mov %r9,$out
___
$code.=<<___;
add \$8,$dat
movl `&PTR("DWORD:-8[$dat]")`,$XX#d
movl `&PTR("DWORD:-4[$dat]")`,$YY#d
cmpl \$-1,`&PTR("DWORD:256[$dat]")`
je .LRC4_CHAR
test \$-8,$len
jz .Lloop1
.align 16
.Lloop8:
inc $XX#b
movl `&PTR("DWORD:[$dat+$XX*4]")`,$TX#d
add $TX#b,$YY#b
movl `&PTR("DWORD:[$dat+$YY*4]")`,$TY#d
movl $TX#d,`&PTR("DWORD:[$dat+$YY*4]")`
movl $TY#d,`&PTR("DWORD:[$dat+$XX*4]")`
add $TX#b,$TY#b
inc $XX#b
movl `&PTR("DWORD:[$dat+$XX*4]")`,$TX#d
movb `&PTR("BYTE:[$dat+$TY*4]")`,%al
___
for ($i=1;$i<=6;$i++) {
$code.=<<___;
add $TX#b,$YY#b
ror \$8,%rax
movl `&PTR("DWORD:[$dat+$YY*4]")`,$TY#d
movl $TX#d,`&PTR("DWORD:[$dat+$YY*4]")`
movl $TY#d,`&PTR("DWORD:[$dat+$XX*4]")`
add $TX#b,$TY#b
inc $XX#b
movl `&PTR("DWORD:[$dat+$XX*4]")`,$TX#d
movb `&PTR("BYTE:[$dat+$TY*4]")`,%al
___
}
$code.=<<___;
add $TX#b,$YY#b
ror \$8,%rax
movl `&PTR("DWORD:[$dat+$YY*4]")`,$TY#d
movl $TX#d,`&PTR("DWORD:[$dat+$YY*4]")`
movl $TY#d,`&PTR("DWORD:[$dat+$XX*4]")`
sub \$8,$len
add $TY#b,$TX#b
movb `&PTR("BYTE:[$dat+$TX*4]")`,%al
ror \$8,%rax
add \$8,$inp
add \$8,$out
xor `&PTR("QWORD:-8[$inp]")`,%rax
mov %rax,`&PTR("QWORD:-8[$out]")`
test \$-8,$len
jnz .Lloop8
cmp \$0,$len
jne .Lloop1
.Lexit:
movl $XX#d,`&PTR("DWORD:-8[$dat]")`
movl $YY#d,`&PTR("DWORD:-4[$dat]")`
___
$code.=<<___ if (defined($win64a));
add \$40,%rsp
pop %rsi
pop %rdi
___
$code.=<<___;
repret
.align 16
.Lloop1:
movzb `&PTR("BYTE:[$inp]")`,%eax
inc $XX#b
movl `&PTR("DWORD:[$dat+$XX*4]")`,$TX#d
add $TX#b,$YY#b
movl `&PTR("DWORD:[$dat+$YY*4]")`,$TY#d
movl $TX#d,`&PTR("DWORD:[$dat+$YY*4]")`
movl $TY#d,`&PTR("DWORD:[$dat+$XX*4]")`
add $TY#b,$TX#b
movl `&PTR("DWORD:[$dat+$TX*4]")`,$TY#d
xor $TY,%rax
inc $inp
movb %al,`&PTR("BYTE:[$out]")`
inc $out
dec $len
jnz .Lloop1
jmp .Lexit
.align 16
.LRC4_CHAR:
inc $XX#b
movzb `&PTR("BYTE:[$dat+$XX]")`,$TX#d
add $TX#b,$YY#b
movzb `&PTR("BYTE:[$dat+$YY]")`,$TY#d
movb $TX#b,`&PTR("BYTE:[$dat+$YY]")`
movb $TY#b,`&PTR("BYTE:[$dat+$XX]")`
add $TX#b,$TY#b
movzb `&PTR("BYTE:[$dat+$TY]")`,$TY#d
xorb `&PTR("BYTE:[$inp]")`,$TY#b
movb $TY#b,`&PTR("BYTE:[$out]")`
inc $inp
inc $out
dec $len
jnz .LRC4_CHAR
jmp .Lexit
___
$code.=<<___ if (defined($win64a));
RC4 ENDP
_TEXT ENDS
END
___
$code.=<<___ if (!defined($win64a));
.size RC4,.-RC4
___
$code =~ s/#([bwd])/$1/gm;
$code =~ s/\`([^\`]*)\`/eval $1/gem;
if (defined($win64a)) {
$code =~ s/\.align/ALIGN/gm;
$code =~ s/[\$%]//gm;
$code =~ s/\.L/\$L/gm;
$code =~ s/([\w]+)([\s]+)([\S]+),([\S]+)/$1$2$4,$3/gm;
$code =~ s/([QD]*WORD|BYTE):/$1 PTR/gm;
$code =~ s/mov[bwlq]/mov/gm;
$code =~ s/movzb/movzx/gm;
$code =~ s/repret/DB\t0F3h,0C3h/gm;
$code =~ s/cmpl/cmp/gm;
$code =~ s/xorb/xor/gm;
} else {
$code =~ s/([QD]*WORD|BYTE)://gm;
$code =~ s/repret/.byte\t0xF3,0xC3/gm;
}
print $code;