openssl/crypto/md5/asm/md5-ia64.S
2010-04-20 20:41:23 +00:00

993 lines
21 KiB
ArmAsm

/* Copyright (c) 2005 Hewlett-Packard Development Company, L.P.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
// Common registers are assigned as follows:
//
// COMMON
//
// t0 Const Tbl Ptr TPtr
// t1 Round Constant TRound
// t4 Block residual LenResid
// t5 Residual Data DTmp
//
// {in,out}0 Block 0 Cycle RotateM0
// {in,out}1 Block Value 12 M12
// {in,out}2 Block Value 8 M8
// {in,out}3 Block Value 4 M4
// {in,out}4 Block Value 0 M0
// {in,out}5 Block 1 Cycle RotateM1
// {in,out}6 Block Value 13 M13
// {in,out}7 Block Value 9 M9
// {in,out}8 Block Value 5 M5
// {in,out}9 Block Value 1 M1
// {in,out}10 Block 2 Cycle RotateM2
// {in,out}11 Block Value 14 M14
// {in,out}12 Block Value 10 M10
// {in,out}13 Block Value 6 M6
// {in,out}14 Block Value 2 M2
// {in,out}15 Block 3 Cycle RotateM3
// {in,out}16 Block Value 15 M15
// {in,out}17 Block Value 11 M11
// {in,out}18 Block Value 7 M7
// {in,out}19 Block Value 3 M3
// {in,out}20 Scratch Z
// {in,out}21 Scratch Y
// {in,out}22 Scratch X
// {in,out}23 Scratch W
// {in,out}24 Digest A A
// {in,out}25 Digest B B
// {in,out}26 Digest C C
// {in,out}27 Digest D D
// {in,out}28 Active Data Ptr DPtr
// in28 Dummy Value -
// out28 Dummy Value -
// bt0 Coroutine Link QUICK_RTN
//
/// These predicates are used for computing the padding block(s) and
/// are shared between the driver and digest co-routines
//
// pt0 Extra Pad Block pExtra
// pt1 Load next word pLoad
// pt2 Skip next word pSkip
// pt3 Search for Pad pNoPad
// pt4 Pad Word 0 pPad0
// pt5 Pad Word 1 pPad1
// pt6 Pad Word 2 pPad2
// pt7 Pad Word 3 pPad3
#define DTmp r19
#define LenResid r18
#define QUICK_RTN b6
#define TPtr r14
#define TRound r15
#define pExtra p6
#define pLoad p7
#define pNoPad p9
#define pPad0 p10
#define pPad1 p11
#define pPad2 p12
#define pPad3 p13
#define pSkip p8
#define A_ out24
#define B_ out25
#define C_ out26
#define D_ out27
#define DPtr_ out28
#define M0_ out4
#define M1_ out9
#define M10_ out12
#define M11_ out17
#define M12_ out1
#define M13_ out6
#define M14_ out11
#define M15_ out16
#define M2_ out14
#define M3_ out19
#define M4_ out3
#define M5_ out8
#define M6_ out13
#define M7_ out18
#define M8_ out2
#define M9_ out7
#define RotateM0_ out0
#define RotateM1_ out5
#define RotateM2_ out10
#define RotateM3_ out15
#define W_ out23
#define X_ out22
#define Y_ out21
#define Z_ out20
#define A in24
#define B in25
#define C in26
#define D in27
#define DPtr in28
#define M0 in4
#define M1 in9
#define M10 in12
#define M11 in17
#define M12 in1
#define M13 in6
#define M14 in11
#define M15 in16
#define M2 in14
#define M3 in19
#define M4 in3
#define M5 in8
#define M6 in13
#define M7 in18
#define M8 in2
#define M9 in7
#define RotateM0 in0
#define RotateM1 in5
#define RotateM2 in10
#define RotateM3 in15
#define W in23
#define X in22
#define Y in21
#define Z in20
/* register stack configuration for md5_block_asm_data_order(): */
#define MD5_NINP 3
#define MD5_NLOC 0
#define MD5_NOUT 29
#define MD5_NROT 0
/* register stack configuration for helpers: */
#define _NINPUTS MD5_NOUT
#define _NLOCALS 0
#define _NOUTPUT 0
#define _NROTATE 24 /* this must be <= _NINPUTS */
#if defined(_HPUX_SOURCE) && !defined(_LP64)
#define ADDP addp4
#else
#define ADDP add
#endif
#if defined(_HPUX_SOURCE) || defined(B_ENDIAN)
#define HOST_IS_BIG_ENDIAN
#endif
// Macros for getting the left and right portions of little-endian words
#define GETLW(dst, src, align) dep.z dst = src, 32 - 8 * align, 8 * align
#define GETRW(dst, src, align) extr.u dst = src, 8 * align, 32 - 8 * align
// MD5 driver
//
// Reads an input block, then calls the digest block
// subroutine and adds the results to the accumulated
// digest. It allocates 32 outs which the subroutine
// uses as it's inputs and rotating
// registers. Initializes the round constant pointer and
// takes care of saving/restoring ar.lc
//
/// INPUT
//
// in0 Context Ptr CtxPtr0
// in1 Input Data Ptr DPtrIn
// in2 Integral Blocks BlockCount
// rp Return Address -
//
/// CODE
//
// v2 Input Align InAlign
// t0 Shared w/digest -
// t1 Shared w/digest -
// t2 Shared w/digest -
// t3 Shared w/digest -
// t4 Shared w/digest -
// t5 Shared w/digest -
// t6 PFS Save PFSSave
// t7 ar.lc Save LCSave
// t8 Saved PR PRSave
// t9 2nd CtxPtr CtxPtr1
// t10 Table Base CTable
// t11 Table[0] CTable0
// t13 Accumulator A AccumA
// t14 Accumulator B AccumB
// t15 Accumulator C AccumC
// t16 Accumulator D AccumD
// pt0 Shared w/digest -
// pt1 Shared w/digest -
// pt2 Shared w/digest -
// pt3 Shared w/digest -
// pt4 Shared w/digest -
// pt5 Shared w/digest -
// pt6 Shared w/digest -
// pt7 Shared w/digest -
// pt8 Not Aligned pOff
// pt8 Blocks Left pAgain
#define AccumA r27
#define AccumB r28
#define AccumC r29
#define AccumD r30
#define CTable r24
#define CTable0 r25
#define CtxPtr0 in0
#define CtxPtr1 r23
#define DPtrIn in1
#define BlockCount in2
#define InAlign r10
#define LCSave r21
#define PFSSave r20
#define PRSave r22
#define pAgain p63
#define pOff p63
.text
/* md5_block_asm_data_order(MD5_CTX *c, const void *data, size_t num)
where:
c: a pointer to a structure of this type:
typedef struct MD5state_st
{
MD5_LONG A,B,C,D;
MD5_LONG Nl,Nh;
MD5_LONG data[MD5_LBLOCK];
unsigned int num;
}
MD5_CTX;
data: a pointer to the input data (may be misaligned)
num: the number of 16-byte blocks to hash (i.e., the length
of DATA is 16*NUM.
*/
.type md5_block_asm_data_order, @function
.global md5_block_asm_data_order
.align 32
.proc md5_block_asm_data_order
md5_block_asm_data_order:
.md5_block:
.prologue
{ .mmi
.save ar.pfs, PFSSave
alloc PFSSave = ar.pfs, MD5_NINP, MD5_NLOC, MD5_NOUT, MD5_NROT
ADDP CtxPtr1 = 8, CtxPtr0
mov CTable = ip
}
{ .mmi
ADDP DPtrIn = 0, DPtrIn
ADDP CtxPtr0 = 0, CtxPtr0
.save ar.lc, LCSave
mov LCSave = ar.lc
}
;;
{ .mmi
add CTable = .md5_tbl_data_order#-.md5_block#, CTable
and InAlign = 0x3, DPtrIn
}
{ .mmi
ld4 AccumA = [CtxPtr0], 4
ld4 AccumC = [CtxPtr1], 4
.save pr, PRSave
mov PRSave = pr
.body
}
;;
{ .mmi
ld4 AccumB = [CtxPtr0]
ld4 AccumD = [CtxPtr1]
dep DPtr_ = 0, DPtrIn, 0, 2
} ;;
#ifdef HOST_IS_BIG_ENDIAN
rum psr.be;; // switch to little-endian
#endif
{ .mmb
ld4 CTable0 = [CTable], 4
cmp.ne pOff, p0 = 0, InAlign
(pOff) br.cond.spnt.many .md5_unaligned
} ;;
// The FF load/compute loop rotates values three times, so that
// loading into M12 here produces the M0 value, M13 -> M1, etc.
.md5_block_loop0:
{ .mmi
ld4 M12_ = [DPtr_], 4
mov TPtr = CTable
mov TRound = CTable0
} ;;
{ .mmi
ld4 M13_ = [DPtr_], 4
mov A_ = AccumA
mov B_ = AccumB
} ;;
{ .mmi
ld4 M14_ = [DPtr_], 4
mov C_ = AccumC
mov D_ = AccumD
} ;;
{ .mmb
ld4 M15_ = [DPtr_], 4
add BlockCount = -1, BlockCount
br.call.sptk.many QUICK_RTN = md5_digest_block0
} ;;
// Now, we add the new digest values and do some clean-up
// before checking if there's another full block to process
{ .mmi
add AccumA = AccumA, A_
add AccumB = AccumB, B_
cmp.ne pAgain, p0 = 0, BlockCount
}
{ .mib
add AccumC = AccumC, C_
add AccumD = AccumD, D_
(pAgain) br.cond.dptk.many .md5_block_loop0
} ;;
.md5_exit:
#ifdef HOST_IS_BIG_ENDIAN
sum psr.be;; // switch back to big-endian mode
#endif
{ .mmi
st4 [CtxPtr0] = AccumB, -4
st4 [CtxPtr1] = AccumD, -4
mov pr = PRSave, 0x1ffff ;;
}
{ .mmi
st4 [CtxPtr0] = AccumA
st4 [CtxPtr1] = AccumC
mov ar.lc = LCSave
} ;;
{ .mib
mov ar.pfs = PFSSave
br.ret.sptk.few rp
} ;;
#define MD5UNALIGNED(offset) \
.md5_process##offset: \
{ .mib ; \
nop 0x0 ; \
GETRW(DTmp, DTmp, offset) ; \
} ;; \
.md5_block_loop##offset: \
{ .mmi ; \
ld4 Y_ = [DPtr_], 4 ; \
mov TPtr = CTable ; \
mov TRound = CTable0 ; \
} ;; \
{ .mmi ; \
ld4 M13_ = [DPtr_], 4 ; \
mov A_ = AccumA ; \
mov B_ = AccumB ; \
} ;; \
{ .mii ; \
ld4 M14_ = [DPtr_], 4 ; \
GETLW(W_, Y_, offset) ; \
mov C_ = AccumC ; \
} \
{ .mmi ; \
mov D_ = AccumD ;; \
or M12_ = W_, DTmp ; \
GETRW(DTmp, Y_, offset) ; \
} \
{ .mib ; \
ld4 M15_ = [DPtr_], 4 ; \
add BlockCount = -1, BlockCount ; \
br.call.sptk.many QUICK_RTN = md5_digest_block##offset; \
} ;; \
{ .mmi ; \
add AccumA = AccumA, A_ ; \
add AccumB = AccumB, B_ ; \
cmp.ne pAgain, p0 = 0, BlockCount ; \
} \
{ .mib ; \
add AccumC = AccumC, C_ ; \
add AccumD = AccumD, D_ ; \
(pAgain) br.cond.dptk.many .md5_block_loop##offset ; \
} ;; \
{ .mib ; \
nop 0x0 ; \
nop 0x0 ; \
br.cond.sptk.many .md5_exit ; \
} ;;
.align 32
.md5_unaligned:
//
// Because variable shifts are expensive, we special case each of
// the four alignements. In practice, this won't hurt too much
// since only one working set of code will be loaded.
//
{ .mib
ld4 DTmp = [DPtr_], 4
cmp.eq pOff, p0 = 1, InAlign
(pOff) br.cond.dpnt.many .md5_process1
} ;;
{ .mib
cmp.eq pOff, p0 = 2, InAlign
nop 0x0
(pOff) br.cond.dpnt.many .md5_process2
} ;;
MD5UNALIGNED(3)
MD5UNALIGNED(1)
MD5UNALIGNED(2)
.endp md5_block_asm_data_order
// MD5 Perform the F function and load
//
// Passed the first 4 words (M0 - M3) and initial (A, B, C, D) values,
// computes the FF() round of functions, then branches to the common
// digest code to finish up with GG(), HH, and II().
//
// INPUT
//
// rp Return Address -
//
// CODE
//
// v0 PFS bit bucket PFS
// v1 Loop Trip Count LTrip
// pt0 Load next word pMore
/* For F round: */
#define LTrip r9
#define PFS r8
#define pMore p6
/* For GHI rounds: */
#define T r9
#define U r10
#define V r11
#define COMPUTE(a, b, s, M, R) \
{ \
.mii ; \
ld4 TRound = [TPtr], 4 ; \
dep.z Y = Z, 32, 32 ;; \
shrp Z = Z, Y, 64 - s ; \
} ;; \
{ \
.mmi ; \
add a = Z, b ; \
mov R = M ; \
nop 0x0 ; \
} ;;
#define LOOP(a, b, s, M, R, label) \
{ .mii ; \
ld4 TRound = [TPtr], 4 ; \
dep.z Y = Z, 32, 32 ;; \
shrp Z = Z, Y, 64 - s ; \
} ;; \
{ .mib ; \
add a = Z, b ; \
mov R = M ; \
br.ctop.sptk.many label ; \
} ;;
// G(B, C, D) = (B & D) | (C & ~D)
#define G(a, b, c, d, M) \
{ .mmi ; \
add Z = M, TRound ; \
and Y = b, d ; \
andcm X = c, d ; \
} ;; \
{ .mii ; \
add Z = Z, a ; \
or Y = Y, X ;; \
add Z = Z, Y ; \
} ;;
// H(B, C, D) = B ^ C ^ D
#define H(a, b, c, d, M) \
{ .mmi ; \
add Z = M, TRound ; \
xor Y = b, c ; \
nop 0x0 ; \
} ;; \
{ .mii ; \
add Z = Z, a ; \
xor Y = Y, d ;; \
add Z = Z, Y ; \
} ;;
// I(B, C, D) = C ^ (B | ~D)
//
// However, since we have an andcm operator, we use the fact that
//
// Y ^ Z == ~Y ^ ~Z
//
// to rewrite the expression as
//
// I(B, C, D) = ~C ^ (~B & D)
#define I(a, b, c, d, M) \
{ .mmi ; \
add Z = M, TRound ; \
andcm Y = d, b ; \
andcm X = -1, c ; \
} ;; \
{ .mii ; \
add Z = Z, a ; \
xor Y = Y, X ;; \
add Z = Z, Y ; \
} ;;
#define GG4(label) \
G(A, B, C, D, M0) \
COMPUTE(A, B, 5, M0, RotateM0) \
G(D, A, B, C, M1) \
COMPUTE(D, A, 9, M1, RotateM1) \
G(C, D, A, B, M2) \
COMPUTE(C, D, 14, M2, RotateM2) \
G(B, C, D, A, M3) \
LOOP(B, C, 20, M3, RotateM3, label)
#define HH4(label) \
H(A, B, C, D, M0) \
COMPUTE(A, B, 4, M0, RotateM0) \
H(D, A, B, C, M1) \
COMPUTE(D, A, 11, M1, RotateM1) \
H(C, D, A, B, M2) \
COMPUTE(C, D, 16, M2, RotateM2) \
H(B, C, D, A, M3) \
LOOP(B, C, 23, M3, RotateM3, label)
#define II4(label) \
I(A, B, C, D, M0) \
COMPUTE(A, B, 6, M0, RotateM0) \
I(D, A, B, C, M1) \
COMPUTE(D, A, 10, M1, RotateM1) \
I(C, D, A, B, M2) \
COMPUTE(C, D, 15, M2, RotateM2) \
I(B, C, D, A, M3) \
LOOP(B, C, 21, M3, RotateM3, label)
#define FFLOAD(a, b, c, d, M, N, s) \
{ .mii ; \
(pMore) ld4 N = [DPtr], 4 ; \
add Z = M, TRound ; \
and Y = c, b ; \
} \
{ .mmi ; \
andcm X = d, b ;; \
add Z = Z, a ; \
or Y = Y, X ; \
} ;; \
{ .mii ; \
ld4 TRound = [TPtr], 4 ; \
add Z = Z, Y ;; \
dep.z Y = Z, 32, 32 ; \
} ;; \
{ .mii ; \
nop 0x0 ; \
shrp Z = Z, Y, 64 - s ;; \
add a = Z, b ; \
} ;;
#define FFLOOP(a, b, c, d, M, N, s, dest) \
{ .mii ; \
(pMore) ld4 N = [DPtr], 4 ; \
add Z = M, TRound ; \
and Y = c, b ; \
} \
{ .mmi ; \
andcm X = d, b ;; \
add Z = Z, a ; \
or Y = Y, X ; \
} ;; \
{ .mii ; \
ld4 TRound = [TPtr], 4 ; \
add Z = Z, Y ;; \
dep.z Y = Z, 32, 32 ; \
} ;; \
{ .mii ; \
nop 0x0 ; \
shrp Z = Z, Y, 64 - s ;; \
add a = Z, b ; \
} \
{ .mib ; \
cmp.ne pMore, p0 = 0, LTrip ; \
add LTrip = -1, LTrip ; \
br.ctop.dptk.many dest ; \
} ;;
.type md5_digest_block0, @function
.align 32
.proc md5_digest_block0
.prologue
md5_digest_block0:
.altrp QUICK_RTN
.body
{ .mmi
alloc PFS = ar.pfs, _NINPUTS, _NLOCALS, _NOUTPUT, _NROTATE
mov LTrip = 2
mov ar.lc = 3
} ;;
{ .mii
cmp.eq pMore, p0 = r0, r0
mov ar.ec = 0
nop 0x0
} ;;
.md5_FF_round0:
FFLOAD(A, B, C, D, M12, RotateM0, 7)
FFLOAD(D, A, B, C, M13, RotateM1, 12)
FFLOAD(C, D, A, B, M14, RotateM2, 17)
FFLOOP(B, C, D, A, M15, RotateM3, 22, .md5_FF_round0)
//
// !!! Fall through to md5_digest_GHI
//
.endp md5_digest_block0
.type md5_digest_GHI, @function
.align 32
.proc md5_digest_GHI
.prologue
.regstk _NINPUTS, _NLOCALS, _NOUTPUT, _NROTATE
md5_digest_GHI:
.altrp QUICK_RTN
.body
//
// The following sequence shuffles the block counstants round for the
// next round:
//
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// 1 6 11 0 5 10 14 4 9 14 3 8 13 2 7 12
//
{ .mmi
mov Z = M0
mov Y = M15
mov ar.lc = 3
}
{ .mmi
mov X = M2
mov W = M9
mov V = M4
} ;;
{ .mmi
mov M0 = M1
mov M15 = M12
mov ar.ec = 1
}
{ .mmi
mov M2 = M11
mov M9 = M14
mov M4 = M5
} ;;
{ .mmi
mov M1 = M6
mov M12 = M13
mov U = M3
}
{ .mmi
mov M11 = M8
mov M14 = M7
mov M5 = M10
} ;;
{ .mmi
mov M6 = Y
mov M13 = X
mov M3 = Z
}
{ .mmi
mov M8 = W
mov M7 = V
mov M10 = U
} ;;
.md5_GG_round:
GG4(.md5_GG_round)
// The following sequence shuffles the block constants round for the
// next round:
//
// 1 6 11 0 5 10 14 4 9 14 3 8 13 2 7 12
// 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2
{ .mmi
mov Z = M0
mov Y = M1
mov ar.lc = 3
}
{ .mmi
mov X = M3
mov W = M5
mov V = M6
} ;;
{ .mmi
mov M0 = M4
mov M1 = M11
mov ar.ec = 1
}
{ .mmi
mov M3 = M9
mov U = M8
mov T = M13
} ;;
{ .mmi
mov M4 = Z
mov M11 = Y
mov M5 = M7
}
{ .mmi
mov M6 = M14
mov M8 = M12
mov M13 = M15
} ;;
{ .mmi
mov M7 = W
mov M14 = V
nop 0x0
}
{ .mmi
mov M9 = X
mov M12 = U
mov M15 = T
} ;;
.md5_HH_round:
HH4(.md5_HH_round)
// The following sequence shuffles the block constants round for the
// next round:
//
// 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2
// 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9
{ .mmi
mov Z = M0
mov Y = M15
mov ar.lc = 3
}
{ .mmi
mov X = M10
mov W = M1
mov V = M4
} ;;
{ .mmi
mov M0 = M9
mov M15 = M12
mov ar.ec = 1
}
{ .mmi
mov M10 = M11
mov M1 = M6
mov M4 = M13
} ;;
{ .mmi
mov M9 = M14
mov M12 = M5
mov U = M3
}
{ .mmi
mov M11 = M8
mov M6 = M7
mov M13 = M2
} ;;
{ .mmi
mov M14 = Y
mov M5 = X
mov M3 = Z
}
{ .mmi
mov M8 = W
mov M7 = V
mov M2 = U
} ;;
.md5_II_round:
II4(.md5_II_round)
{ .mib
nop 0x0
nop 0x0
br.ret.sptk.many QUICK_RTN
} ;;
.endp md5_digest_GHI
#define FFLOADU(a, b, c, d, M, P, N, s, offset) \
{ .mii ; \
(pMore) ld4 N = [DPtr], 4 ; \
add Z = M, TRound ; \
and Y = c, b ; \
} \
{ .mmi ; \
andcm X = d, b ;; \
add Z = Z, a ; \
or Y = Y, X ; \
} ;; \
{ .mii ; \
ld4 TRound = [TPtr], 4 ; \
GETLW(W, P, offset) ; \
add Z = Z, Y ; \
} ;; \
{ .mii ; \
or W = W, DTmp ; \
dep.z Y = Z, 32, 32 ;; \
shrp Z = Z, Y, 64 - s ; \
} ;; \
{ .mii ; \
add a = Z, b ; \
GETRW(DTmp, P, offset) ; \
mov P = W ; \
} ;;
#define FFLOOPU(a, b, c, d, M, P, N, s, offset) \
{ .mii ; \
(pMore) ld4 N = [DPtr], 4 ; \
add Z = M, TRound ; \
and Y = c, b ; \
} \
{ .mmi ; \
andcm X = d, b ;; \
add Z = Z, a ; \
or Y = Y, X ; \
} ;; \
{ .mii ; \
ld4 TRound = [TPtr], 4 ; \
(pMore) GETLW(W, P, offset) ; \
add Z = Z, Y ; \
} ;; \
{ .mii ; \
(pMore) or W = W, DTmp ; \
dep.z Y = Z, 32, 32 ;; \
shrp Z = Z, Y, 64 - s ; \
} ;; \
{ .mii ; \
add a = Z, b ; \
(pMore) GETRW(DTmp, P, offset) ; \
(pMore) mov P = W ; \
} \
{ .mib ; \
cmp.ne pMore, p0 = 0, LTrip ; \
add LTrip = -1, LTrip ; \
br.ctop.sptk.many .md5_FF_round##offset ; \
} ;;
#define MD5FBLOCK(offset) \
.type md5_digest_block##offset, @function ; \
\
.align 32 ; \
.proc md5_digest_block##offset ; \
.prologue ; \
.altrp QUICK_RTN ; \
.body ; \
md5_digest_block##offset: \
{ .mmi ; \
alloc PFS = ar.pfs, _NINPUTS, _NLOCALS, _NOUTPUT, _NROTATE ; \
mov LTrip = 2 ; \
mov ar.lc = 3 ; \
} ;; \
{ .mii ; \
cmp.eq pMore, p0 = r0, r0 ; \
mov ar.ec = 0 ; \
nop 0x0 ; \
} ;; \
\
.pred.rel "mutex", pLoad, pSkip ; \
.md5_FF_round##offset: \
FFLOADU(A, B, C, D, M12, M13, RotateM0, 7, offset) \
FFLOADU(D, A, B, C, M13, M14, RotateM1, 12, offset) \
FFLOADU(C, D, A, B, M14, M15, RotateM2, 17, offset) \
FFLOOPU(B, C, D, A, M15, RotateM0, RotateM3, 22, offset) \
\
{ .mib ; \
nop 0x0 ; \
nop 0x0 ; \
br.cond.sptk.many md5_digest_GHI ; \
} ;; \
.endp md5_digest_block##offset
MD5FBLOCK(1)
MD5FBLOCK(2)
MD5FBLOCK(3)
.align 64
.type md5_constants, @object
md5_constants:
.md5_tbl_data_order: // To ensure little-endian data
// order, code as bytes.
data1 0x78, 0xa4, 0x6a, 0xd7 // 0
data1 0x56, 0xb7, 0xc7, 0xe8 // 1
data1 0xdb, 0x70, 0x20, 0x24 // 2
data1 0xee, 0xce, 0xbd, 0xc1 // 3
data1 0xaf, 0x0f, 0x7c, 0xf5 // 4
data1 0x2a, 0xc6, 0x87, 0x47 // 5
data1 0x13, 0x46, 0x30, 0xa8 // 6
data1 0x01, 0x95, 0x46, 0xfd // 7
data1 0xd8, 0x98, 0x80, 0x69 // 8
data1 0xaf, 0xf7, 0x44, 0x8b // 9
data1 0xb1, 0x5b, 0xff, 0xff // 10
data1 0xbe, 0xd7, 0x5c, 0x89 // 11
data1 0x22, 0x11, 0x90, 0x6b // 12
data1 0x93, 0x71, 0x98, 0xfd // 13
data1 0x8e, 0x43, 0x79, 0xa6 // 14
data1 0x21, 0x08, 0xb4, 0x49 // 15
data1 0x62, 0x25, 0x1e, 0xf6 // 16
data1 0x40, 0xb3, 0x40, 0xc0 // 17
data1 0x51, 0x5a, 0x5e, 0x26 // 18
data1 0xaa, 0xc7, 0xb6, 0xe9 // 19
data1 0x5d, 0x10, 0x2f, 0xd6 // 20
data1 0x53, 0x14, 0x44, 0x02 // 21
data1 0x81, 0xe6, 0xa1, 0xd8 // 22
data1 0xc8, 0xfb, 0xd3, 0xe7 // 23
data1 0xe6, 0xcd, 0xe1, 0x21 // 24
data1 0xd6, 0x07, 0x37, 0xc3 // 25
data1 0x87, 0x0d, 0xd5, 0xf4 // 26
data1 0xed, 0x14, 0x5a, 0x45 // 27
data1 0x05, 0xe9, 0xe3, 0xa9 // 28
data1 0xf8, 0xa3, 0xef, 0xfc // 29
data1 0xd9, 0x02, 0x6f, 0x67 // 30
data1 0x8a, 0x4c, 0x2a, 0x8d // 31
data1 0x42, 0x39, 0xfa, 0xff // 32
data1 0x81, 0xf6, 0x71, 0x87 // 33
data1 0x22, 0x61, 0x9d, 0x6d // 34
data1 0x0c, 0x38, 0xe5, 0xfd // 35
data1 0x44, 0xea, 0xbe, 0xa4 // 36
data1 0xa9, 0xcf, 0xde, 0x4b // 37
data1 0x60, 0x4b, 0xbb, 0xf6 // 38
data1 0x70, 0xbc, 0xbf, 0xbe // 39
data1 0xc6, 0x7e, 0x9b, 0x28 // 40
data1 0xfa, 0x27, 0xa1, 0xea // 41
data1 0x85, 0x30, 0xef, 0xd4 // 42
data1 0x05, 0x1d, 0x88, 0x04 // 43
data1 0x39, 0xd0, 0xd4, 0xd9 // 44
data1 0xe5, 0x99, 0xdb, 0xe6 // 45
data1 0xf8, 0x7c, 0xa2, 0x1f // 46
data1 0x65, 0x56, 0xac, 0xc4 // 47
data1 0x44, 0x22, 0x29, 0xf4 // 48
data1 0x97, 0xff, 0x2a, 0x43 // 49
data1 0xa7, 0x23, 0x94, 0xab // 50
data1 0x39, 0xa0, 0x93, 0xfc // 51
data1 0xc3, 0x59, 0x5b, 0x65 // 52
data1 0x92, 0xcc, 0x0c, 0x8f // 53
data1 0x7d, 0xf4, 0xef, 0xff // 54
data1 0xd1, 0x5d, 0x84, 0x85 // 55
data1 0x4f, 0x7e, 0xa8, 0x6f // 56
data1 0xe0, 0xe6, 0x2c, 0xfe // 57
data1 0x14, 0x43, 0x01, 0xa3 // 58
data1 0xa1, 0x11, 0x08, 0x4e // 59
data1 0x82, 0x7e, 0x53, 0xf7 // 60
data1 0x35, 0xf2, 0x3a, 0xbd // 61
data1 0xbb, 0xd2, 0xd7, 0x2a // 62
data1 0x91, 0xd3, 0x86, 0xeb // 63
.size md5_constants#,64*4