openssl/crypto/dsa/dsa_asn1.c
Richard Levitte b39fc56061 Identify and move common internal libcrypto header files
There are header files in crypto/ that are used by a number of crypto/
submodules.  Move those to crypto/include/internal and adapt the
affected source code and Makefiles.

The header files that got moved are:

crypto/cryptolib.h
crypto/md32_common.h

Reviewed-by: Rich Salz <rsalz@openssl.org>
2015-05-14 17:21:40 +02:00

195 lines
6.4 KiB
C

/* dsa_asn1.c */
/*
* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL project
* 2000.
*/
/* ====================================================================
* Copyright (c) 2000-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <stdio.h>
#include "internal/cryptlib.h"
#include <openssl/dsa.h>
#include <openssl/asn1.h>
#include <openssl/asn1t.h>
#include <openssl/rand.h>
/* Override the default new methods */
static int sig_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
void *exarg)
{
if (operation == ASN1_OP_NEW_PRE) {
DSA_SIG *sig;
sig = OPENSSL_malloc(sizeof(*sig));
if (!sig) {
DSAerr(DSA_F_SIG_CB, ERR_R_MALLOC_FAILURE);
return 0;
}
sig->r = NULL;
sig->s = NULL;
*pval = (ASN1_VALUE *)sig;
return 2;
}
return 1;
}
ASN1_SEQUENCE_cb(DSA_SIG, sig_cb) = {
ASN1_SIMPLE(DSA_SIG, r, CBIGNUM),
ASN1_SIMPLE(DSA_SIG, s, CBIGNUM)
} ASN1_SEQUENCE_END_cb(DSA_SIG, DSA_SIG)
IMPLEMENT_ASN1_FUNCTIONS_const(DSA_SIG)
/* Override the default free and new methods */
static int dsa_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
void *exarg)
{
if (operation == ASN1_OP_NEW_PRE) {
*pval = (ASN1_VALUE *)DSA_new();
if (*pval)
return 2;
return 0;
} else if (operation == ASN1_OP_FREE_PRE) {
DSA_free((DSA *)*pval);
*pval = NULL;
return 2;
}
return 1;
}
ASN1_SEQUENCE_cb(DSAPrivateKey, dsa_cb) = {
ASN1_SIMPLE(DSA, version, LONG),
ASN1_SIMPLE(DSA, p, BIGNUM),
ASN1_SIMPLE(DSA, q, BIGNUM),
ASN1_SIMPLE(DSA, g, BIGNUM),
ASN1_SIMPLE(DSA, pub_key, BIGNUM),
ASN1_SIMPLE(DSA, priv_key, BIGNUM)
} ASN1_SEQUENCE_END_cb(DSA, DSAPrivateKey)
IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(DSA, DSAPrivateKey, DSAPrivateKey)
ASN1_SEQUENCE_cb(DSAparams, dsa_cb) = {
ASN1_SIMPLE(DSA, p, BIGNUM),
ASN1_SIMPLE(DSA, q, BIGNUM),
ASN1_SIMPLE(DSA, g, BIGNUM),
} ASN1_SEQUENCE_END_cb(DSA, DSAparams)
IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(DSA, DSAparams, DSAparams)
/*
* DSA public key is a bit trickier... its effectively a CHOICE type decided
* by a field called write_params which can either write out just the public
* key as an INTEGER or the parameters and public key in a SEQUENCE
*/
ASN1_SEQUENCE(DSAPublicKey) = {
ASN1_SIMPLE(DSA, pub_key, BIGNUM),
ASN1_SIMPLE(DSA, p, BIGNUM),
ASN1_SIMPLE(DSA, q, BIGNUM),
ASN1_SIMPLE(DSA, g, BIGNUM)
} ASN1_SEQUENCE_END_name(DSA, DSAPublicKey)
IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(DSA, DSAPublicKey, DSAPublicKey)
DSA *DSAparams_dup(DSA *dsa)
{
return ASN1_item_dup(ASN1_ITEM_rptr(DSAparams), dsa);
}
int DSA_sign(int type, const unsigned char *dgst, int dlen,
unsigned char *sig, unsigned int *siglen, DSA *dsa)
{
DSA_SIG *s;
RAND_seed(dgst, dlen);
s = DSA_do_sign(dgst, dlen, dsa);
if (s == NULL) {
*siglen = 0;
return (0);
}
*siglen = i2d_DSA_SIG(s, &sig);
DSA_SIG_free(s);
return (1);
}
/* data has already been hashed (probably with SHA or SHA-1). */
/*-
* returns
* 1: correct signature
* 0: incorrect signature
* -1: error
*/
int DSA_verify(int type, const unsigned char *dgst, int dgst_len,
const unsigned char *sigbuf, int siglen, DSA *dsa)
{
DSA_SIG *s;
const unsigned char *p = sigbuf;
unsigned char *der = NULL;
int derlen = -1;
int ret = -1;
s = DSA_SIG_new();
if (s == NULL)
return (ret);
if (d2i_DSA_SIG(&s, &p, siglen) == NULL)
goto err;
/* Ensure signature uses DER and doesn't have trailing garbage */
derlen = i2d_DSA_SIG(s, &der);
if (derlen != siglen || memcmp(sigbuf, der, derlen))
goto err;
ret = DSA_do_verify(dgst, dgst_len, s, dsa);
err:
OPENSSL_clear_free(der, derlen);
DSA_SIG_free(s);
return (ret);
}