openssl/crypto/modes/asm/ghash-s390x.pl

263 lines
6.0 KiB
Raku

#!/usr/bin/env perl
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
# September 2010.
#
# The module implements "4-bit" GCM GHASH function and underlying
# single multiplication operation in GF(2^128). "4-bit" means that it
# uses 256 bytes per-key table [+128 bytes shared table]. Performance
# was measured to be ~18 cycles per processed byte on z10, which is
# almost 40% better than gcc-generated code. It should be noted that
# 18 cycles is worse result than expected: loop is scheduled for 12
# and the result should be close to 12. In the lack of instruction-
# level profiling data it's impossible to tell why...
# November 2010.
#
# Adapt for -m31 build. If kernel supports what's called "highgprs"
# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
# instructions and achieve "64-bit" performance even in 31-bit legacy
# application context. The feature is not specific to any particular
# processor, as long as it's "z-CPU". Latter implies that the code
# remains z/Architecture specific. On z990 it was measured to perform
# 2.8x better than 32-bit code generated by gcc 4.3.
# March 2011.
#
# Support for hardware KIMD-GHASH is verified to produce correct
# result and therefore is engaged. On z196 it was measured to process
# 8KB buffer ~7 faster than software implementation. It's not as
# impressive for smaller buffer sizes and for smallest 16-bytes buffer
# it's actually almost 2 times slower. Which is the reason why
# KIMD-GHASH is not used in gcm_gmult_4bit.
$flavour = shift;
if ($flavour =~ /3[12]/) {
$SIZE_T=4;
$g="";
} else {
$SIZE_T=8;
$g="g";
}
while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
open STDOUT,">$output";
$softonly=0;
$Zhi="%r0";
$Zlo="%r1";
$Xi="%r2"; # argument block
$Htbl="%r3";
$inp="%r4";
$len="%r5";
$rem0="%r6"; # variables
$rem1="%r7";
$nlo="%r8";
$nhi="%r9";
$xi="%r10";
$cnt="%r11";
$tmp="%r12";
$x78="%r13";
$rem_4bit="%r14";
$sp="%r15";
$code.=<<___;
.text
.globl gcm_gmult_4bit
.align 32
gcm_gmult_4bit:
___
$code.=<<___ if(!$softonly && 0); # hardware is slow for single block...
larl %r1,OPENSSL_s390xcap_P
lg %r0,0(%r1)
tmhl %r0,0x4000 # check for message-security-assist
jz .Lsoft_gmult
lghi %r0,0
la %r1,16($sp)
.long 0xb93e0004 # kimd %r0,%r4
lg %r1,24($sp)
tmhh %r1,0x4000 # check for function 65
jz .Lsoft_gmult
stg %r0,16($sp) # arrange 16 bytes of zero input
stg %r0,24($sp)
lghi %r0,65 # function 65
la %r1,0($Xi) # H lies right after Xi in gcm128_context
la $inp,16($sp)
lghi $len,16
.long 0xb93e0004 # kimd %r0,$inp
brc 1,.-4 # pay attention to "partial completion"
br %r14
.align 32
.Lsoft_gmult:
___
$code.=<<___;
stm${g} %r6,%r14,6*$SIZE_T($sp)
aghi $Xi,-1
lghi $len,1
lghi $x78,`0xf<<3`
larl $rem_4bit,rem_4bit
lg $Zlo,8+1($Xi) # Xi
j .Lgmult_shortcut
.type gcm_gmult_4bit,\@function
.size gcm_gmult_4bit,(.-gcm_gmult_4bit)
.globl gcm_ghash_4bit
.align 32
gcm_ghash_4bit:
___
$code.=<<___ if(!$softonly);
larl %r1,OPENSSL_s390xcap_P
lg %r0,0(%r1)
tmhl %r0,0x4000 # check for message-security-assist
jz .Lsoft_ghash
lghi %r0,0
la %r1,16($sp)
.long 0xb93e0004 # kimd %r0,%r4
lg %r1,24($sp)
tmhh %r1,0x4000 # check for function 65
jz .Lsoft_ghash
lghi %r0,65 # function 65
la %r1,0($Xi) # H lies right after Xi in gcm128_context
.long 0xb93e0004 # kimd %r0,$inp
brc 1,.-4 # pay attention to "partial completion"
br %r14
.align 32
.Lsoft_ghash:
___
$code.=<<___ if ($flavour =~ /3[12]/);
llgfr $len,$len
___
$code.=<<___;
stm${g} %r6,%r14,6*$SIZE_T($sp)
aghi $Xi,-1
srlg $len,$len,4
lghi $x78,`0xf<<3`
larl $rem_4bit,rem_4bit
lg $Zlo,8+1($Xi) # Xi
lg $Zhi,0+1($Xi)
lghi $tmp,0
.Louter:
xg $Zhi,0($inp) # Xi ^= inp
xg $Zlo,8($inp)
xgr $Zhi,$tmp
stg $Zlo,8+1($Xi)
stg $Zhi,0+1($Xi)
.Lgmult_shortcut:
lghi $tmp,0xf0
sllg $nlo,$Zlo,4
srlg $xi,$Zlo,8 # extract second byte
ngr $nlo,$tmp
lgr $nhi,$Zlo
lghi $cnt,14
ngr $nhi,$tmp
lg $Zlo,8($nlo,$Htbl)
lg $Zhi,0($nlo,$Htbl)
sllg $nlo,$xi,4
sllg $rem0,$Zlo,3
ngr $nlo,$tmp
ngr $rem0,$x78
ngr $xi,$tmp
sllg $tmp,$Zhi,60
srlg $Zlo,$Zlo,4
srlg $Zhi,$Zhi,4
xg $Zlo,8($nhi,$Htbl)
xg $Zhi,0($nhi,$Htbl)
lgr $nhi,$xi
sllg $rem1,$Zlo,3
xgr $Zlo,$tmp
ngr $rem1,$x78
j .Lghash_inner
.align 16
.Lghash_inner:
srlg $Zlo,$Zlo,4
sllg $tmp,$Zhi,60
xg $Zlo,8($nlo,$Htbl)
srlg $Zhi,$Zhi,4
llgc $xi,0($cnt,$Xi)
xg $Zhi,0($nlo,$Htbl)
sllg $nlo,$xi,4
xg $Zhi,0($rem0,$rem_4bit)
nill $nlo,0xf0
sllg $rem0,$Zlo,3
xgr $Zlo,$tmp
ngr $rem0,$x78
nill $xi,0xf0
sllg $tmp,$Zhi,60
srlg $Zlo,$Zlo,4
srlg $Zhi,$Zhi,4
xg $Zlo,8($nhi,$Htbl)
xg $Zhi,0($nhi,$Htbl)
lgr $nhi,$xi
xg $Zhi,0($rem1,$rem_4bit)
sllg $rem1,$Zlo,3
xgr $Zlo,$tmp
ngr $rem1,$x78
brct $cnt,.Lghash_inner
sllg $tmp,$Zhi,60
srlg $Zlo,$Zlo,4
srlg $Zhi,$Zhi,4
xg $Zlo,8($nlo,$Htbl)
xg $Zhi,0($nlo,$Htbl)
sllg $xi,$Zlo,3
xg $Zhi,0($rem0,$rem_4bit)
xgr $Zlo,$tmp
ngr $xi,$x78
sllg $tmp,$Zhi,60
srlg $Zlo,$Zlo,4
srlg $Zhi,$Zhi,4
xg $Zlo,8($nhi,$Htbl)
xg $Zhi,0($nhi,$Htbl)
xgr $Zlo,$tmp
xg $Zhi,0($rem1,$rem_4bit)
lg $tmp,0($xi,$rem_4bit)
la $inp,16($inp)
sllg $tmp,$tmp,4 # correct last rem_4bit[rem]
brctg $len,.Louter
xgr $Zhi,$tmp
stg $Zlo,8+1($Xi)
stg $Zhi,0+1($Xi)
lm${g} %r6,%r14,6*$SIZE_T($sp)
br %r14
.type gcm_ghash_4bit,\@function
.size gcm_ghash_4bit,(.-gcm_ghash_4bit)
.align 64
rem_4bit:
.long `0x0000<<12`,0,`0x1C20<<12`,0,`0x3840<<12`,0,`0x2460<<12`,0
.long `0x7080<<12`,0,`0x6CA0<<12`,0,`0x48C0<<12`,0,`0x54E0<<12`,0
.long `0xE100<<12`,0,`0xFD20<<12`,0,`0xD940<<12`,0,`0xC560<<12`,0
.long `0x9180<<12`,0,`0x8DA0<<12`,0,`0xA9C0<<12`,0,`0xB5E0<<12`,0
.type rem_4bit,\@object
.size rem_4bit,(.-rem_4bit)
.string "GHASH for s390x, CRYPTOGAMS by <appro\@openssl.org>"
___
$code =~ s/\`([^\`]*)\`/eval $1/gem;
print $code;
close STDOUT;