939 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			939 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* crypto/ec/ec_mult.c */
 | 
						|
/*
 | 
						|
 * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
 | 
						|
 */
 | 
						|
/* ====================================================================
 | 
						|
 * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
 | 
						|
 *
 | 
						|
 * Redistribution and use in source and binary forms, with or without
 | 
						|
 * modification, are permitted provided that the following conditions
 | 
						|
 * are met:
 | 
						|
 *
 | 
						|
 * 1. Redistributions of source code must retain the above copyright
 | 
						|
 *    notice, this list of conditions and the following disclaimer. 
 | 
						|
 *
 | 
						|
 * 2. Redistributions in binary form must reproduce the above copyright
 | 
						|
 *    notice, this list of conditions and the following disclaimer in
 | 
						|
 *    the documentation and/or other materials provided with the
 | 
						|
 *    distribution.
 | 
						|
 *
 | 
						|
 * 3. All advertising materials mentioning features or use of this
 | 
						|
 *    software must display the following acknowledgment:
 | 
						|
 *    "This product includes software developed by the OpenSSL Project
 | 
						|
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 | 
						|
 *
 | 
						|
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 | 
						|
 *    endorse or promote products derived from this software without
 | 
						|
 *    prior written permission. For written permission, please contact
 | 
						|
 *    openssl-core@openssl.org.
 | 
						|
 *
 | 
						|
 * 5. Products derived from this software may not be called "OpenSSL"
 | 
						|
 *    nor may "OpenSSL" appear in their names without prior written
 | 
						|
 *    permission of the OpenSSL Project.
 | 
						|
 *
 | 
						|
 * 6. Redistributions of any form whatsoever must retain the following
 | 
						|
 *    acknowledgment:
 | 
						|
 *    "This product includes software developed by the OpenSSL Project
 | 
						|
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 | 
						|
 *
 | 
						|
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 | 
						|
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
						|
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 | 
						|
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 | 
						|
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | 
						|
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 | 
						|
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | 
						|
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | 
						|
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 | 
						|
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | 
						|
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 | 
						|
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 * ====================================================================
 | 
						|
 *
 | 
						|
 * This product includes cryptographic software written by Eric Young
 | 
						|
 * (eay@cryptsoft.com).  This product includes software written by Tim
 | 
						|
 * Hudson (tjh@cryptsoft.com).
 | 
						|
 *
 | 
						|
 */
 | 
						|
/* ====================================================================
 | 
						|
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
 | 
						|
 * Portions of this software developed by SUN MICROSYSTEMS, INC.,
 | 
						|
 * and contributed to the OpenSSL project.
 | 
						|
 */
 | 
						|
 | 
						|
#include <string.h>
 | 
						|
 | 
						|
#include <openssl/err.h>
 | 
						|
 | 
						|
#include "ec_lcl.h"
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * This file implements the wNAF-based interleaving multi-exponentation method
 | 
						|
 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
 | 
						|
 * for multiplication with precomputation, we use wNAF splitting
 | 
						|
 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>).
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* structure for precomputed multiples of the generator */
 | 
						|
typedef struct ec_pre_comp_st {
 | 
						|
	const EC_GROUP *group; /* parent EC_GROUP object */
 | 
						|
	size_t blocksize;      /* block size for wNAF splitting */
 | 
						|
	size_t numblocks;      /* max. number of blocks for which we have precomputation */
 | 
						|
	size_t w;              /* window size */
 | 
						|
	EC_POINT **points;     /* array with pre-calculated multiples of generator:
 | 
						|
	                        * 'num' pointers to EC_POINT objects followed by a NULL */
 | 
						|
	size_t num;            /* numblocks * 2^(w-1) */
 | 
						|
	int references;
 | 
						|
} EC_PRE_COMP;
 | 
						|
 
 | 
						|
/* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */
 | 
						|
static void *ec_pre_comp_dup(void *);
 | 
						|
static void ec_pre_comp_free(void *);
 | 
						|
static void ec_pre_comp_clear_free(void *);
 | 
						|
 | 
						|
static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
 | 
						|
	{
 | 
						|
	EC_PRE_COMP *ret = NULL;
 | 
						|
 | 
						|
	if (!group)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP));
 | 
						|
	if (!ret)
 | 
						|
		{
 | 
						|
		ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
 | 
						|
		return ret;
 | 
						|
		}
 | 
						|
	ret->group = group;
 | 
						|
	ret->blocksize = 8; /* default */
 | 
						|
	ret->numblocks = 0;
 | 
						|
	ret->w = 4; /* default */
 | 
						|
	ret->points = NULL;
 | 
						|
	ret->num = 0;
 | 
						|
	ret->references = 1;
 | 
						|
	return ret;
 | 
						|
	}
 | 
						|
 | 
						|
static void *ec_pre_comp_dup(void *src_)
 | 
						|
	{
 | 
						|
	EC_PRE_COMP *src = src_;
 | 
						|
 | 
						|
	/* no need to actually copy, these objects never change! */
 | 
						|
 | 
						|
	CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
 | 
						|
 | 
						|
	return src_;
 | 
						|
	}
 | 
						|
 | 
						|
static void ec_pre_comp_free(void *pre_)
 | 
						|
	{
 | 
						|
	int i;
 | 
						|
	EC_PRE_COMP *pre = pre_;
 | 
						|
 | 
						|
	if (!pre)
 | 
						|
		return;
 | 
						|
 | 
						|
	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
 | 
						|
	if (i > 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (pre->points)
 | 
						|
		{
 | 
						|
		EC_POINT **p;
 | 
						|
 | 
						|
		for (p = pre->points; *p != NULL; p++)
 | 
						|
			EC_POINT_free(*p);
 | 
						|
		OPENSSL_free(pre->points);
 | 
						|
		}
 | 
						|
	OPENSSL_free(pre);
 | 
						|
	}
 | 
						|
 | 
						|
static void ec_pre_comp_clear_free(void *pre_)
 | 
						|
	{
 | 
						|
	int i;
 | 
						|
	EC_PRE_COMP *pre = pre_;
 | 
						|
 | 
						|
	if (!pre)
 | 
						|
		return;
 | 
						|
 | 
						|
	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
 | 
						|
	if (i > 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (pre->points)
 | 
						|
		{
 | 
						|
		EC_POINT **p;
 | 
						|
 | 
						|
		for (p = pre->points; *p != NULL; p++)
 | 
						|
			EC_POINT_clear_free(*p);
 | 
						|
		OPENSSL_cleanse(pre->points, sizeof pre->points);
 | 
						|
		OPENSSL_free(pre->points);
 | 
						|
		}
 | 
						|
	OPENSSL_cleanse(pre, sizeof pre);
 | 
						|
	OPENSSL_free(pre);
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
 | 
						|
 * This is an array  r[]  of values that are either zero or odd with an
 | 
						|
 * absolute value less than  2^w  satisfying
 | 
						|
 *     scalar = \sum_j r[j]*2^j
 | 
						|
 * where at most one of any  w+1  consecutive digits is non-zero
 | 
						|
 * with the exception that the most significant digit may be only
 | 
						|
 * w-1 zeros away from that next non-zero digit.
 | 
						|
 */
 | 
						|
static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len)
 | 
						|
	{
 | 
						|
	int window_val;
 | 
						|
	int ok = 0;
 | 
						|
	signed char *r = NULL;
 | 
						|
	int sign = 1;
 | 
						|
	int bit, next_bit, mask;
 | 
						|
	size_t len = 0, j;
 | 
						|
	
 | 
						|
	if (BN_is_zero(scalar))
 | 
						|
		{
 | 
						|
		r = OPENSSL_malloc(1);
 | 
						|
		if (!r)
 | 
						|
			{
 | 
						|
			ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
 | 
						|
			goto err;
 | 
						|
			}
 | 
						|
		r[0] = 0;
 | 
						|
		*ret_len = 1;
 | 
						|
		return r;
 | 
						|
		}
 | 
						|
		
 | 
						|
	if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute values less than 2^7 */
 | 
						|
		{
 | 
						|
		ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
 | 
						|
		goto err;
 | 
						|
		}
 | 
						|
	bit = 1 << w; /* at most 128 */
 | 
						|
	next_bit = bit << 1; /* at most 256 */
 | 
						|
	mask = next_bit - 1; /* at most 255 */
 | 
						|
 | 
						|
	if (BN_is_negative(scalar))
 | 
						|
		{
 | 
						|
		sign = -1;
 | 
						|
		}
 | 
						|
 | 
						|
	len = BN_num_bits(scalar);
 | 
						|
	r = OPENSSL_malloc(len + 1); /* modified wNAF may be one digit longer than binary representation
 | 
						|
	                              * (*ret_len will be set to the actual length, i.e. at most
 | 
						|
	                              * BN_num_bits(scalar) + 1) */
 | 
						|
	if (r == NULL)
 | 
						|
		{
 | 
						|
		ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
 | 
						|
		goto err;
 | 
						|
		}
 | 
						|
 | 
						|
	if (scalar->d == NULL || scalar->top == 0)
 | 
						|
		{
 | 
						|
		ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
 | 
						|
		goto err;
 | 
						|
		}
 | 
						|
	window_val = scalar->d[0] & mask;
 | 
						|
	j = 0;
 | 
						|
	while ((window_val != 0) || (j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */
 | 
						|
		{
 | 
						|
		int digit = 0;
 | 
						|
 | 
						|
		/* 0 <= window_val <= 2^(w+1) */
 | 
						|
 | 
						|
		if (window_val & 1)
 | 
						|
			{
 | 
						|
			/* 0 < window_val < 2^(w+1) */
 | 
						|
 | 
						|
			if (window_val & bit)
 | 
						|
				{
 | 
						|
				digit = window_val - next_bit; /* -2^w < digit < 0 */
 | 
						|
 | 
						|
#if 1 /* modified wNAF */
 | 
						|
				if (j + w + 1 >= len)
 | 
						|
					{
 | 
						|
					/* special case for generating modified wNAFs:
 | 
						|
					 * no new bits will be added into window_val,
 | 
						|
					 * so using a positive digit here will decrease
 | 
						|
					 * the total length of the representation */
 | 
						|
					
 | 
						|
					digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
 | 
						|
					}
 | 
						|
#endif
 | 
						|
				}
 | 
						|
			else
 | 
						|
				{
 | 
						|
				digit = window_val; /* 0 < digit < 2^w */
 | 
						|
				}
 | 
						|
			
 | 
						|
			if (digit <= -bit || digit >= bit || !(digit & 1))
 | 
						|
				{
 | 
						|
				ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
 | 
						|
				goto err;
 | 
						|
				}
 | 
						|
 | 
						|
			window_val -= digit;
 | 
						|
 | 
						|
			/* now window_val is 0 or 2^(w+1) in standard wNAF generation;
 | 
						|
			 * for modified window NAFs, it may also be 2^w
 | 
						|
			 */
 | 
						|
			if (window_val != 0 && window_val != next_bit && window_val != bit)
 | 
						|
				{
 | 
						|
				ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
 | 
						|
				goto err;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
		r[j++] = sign * digit;
 | 
						|
 | 
						|
		window_val >>= 1;
 | 
						|
		window_val += bit * BN_is_bit_set(scalar, j + w);
 | 
						|
 | 
						|
		if (window_val > next_bit)
 | 
						|
			{
 | 
						|
			ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
 | 
						|
			goto err;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
	if (j > len + 1)
 | 
						|
		{
 | 
						|
		ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
 | 
						|
		goto err;
 | 
						|
		}
 | 
						|
	len = j;
 | 
						|
	ok = 1;
 | 
						|
 | 
						|
 err:
 | 
						|
	if (!ok)
 | 
						|
		{
 | 
						|
		OPENSSL_free(r);
 | 
						|
		r = NULL;
 | 
						|
		}
 | 
						|
	if (ok)
 | 
						|
		*ret_len = len;
 | 
						|
	return r;
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
/* TODO: table should be optimised for the wNAF-based implementation,
 | 
						|
 *       sometimes smaller windows will give better performance
 | 
						|
 *       (thus the boundaries should be increased)
 | 
						|
 */
 | 
						|
#define EC_window_bits_for_scalar_size(b) \
 | 
						|
		((size_t) \
 | 
						|
		 ((b) >= 2000 ? 6 : \
 | 
						|
		  (b) >=  800 ? 5 : \
 | 
						|
		  (b) >=  300 ? 4 : \
 | 
						|
		  (b) >=   70 ? 3 : \
 | 
						|
		  (b) >=   20 ? 2 : \
 | 
						|
		  1))
 | 
						|
 | 
						|
/* Compute
 | 
						|
 *      \sum scalars[i]*points[i],
 | 
						|
 * also including
 | 
						|
 *      scalar*generator
 | 
						|
 * in the addition if scalar != NULL
 | 
						|
 */
 | 
						|
int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
 | 
						|
	size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
 | 
						|
	{
 | 
						|
	BN_CTX *new_ctx = NULL;
 | 
						|
	const EC_POINT *generator = NULL;
 | 
						|
	EC_POINT *tmp = NULL;
 | 
						|
	size_t totalnum;
 | 
						|
	size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
 | 
						|
	size_t pre_points_per_block = 0;
 | 
						|
	size_t i, j;
 | 
						|
	int k;
 | 
						|
	int r_is_inverted = 0;
 | 
						|
	int r_is_at_infinity = 1;
 | 
						|
	size_t *wsize = NULL; /* individual window sizes */
 | 
						|
	signed char **wNAF = NULL; /* individual wNAFs */
 | 
						|
	size_t *wNAF_len = NULL;
 | 
						|
	size_t max_len = 0;
 | 
						|
	size_t num_val;
 | 
						|
	EC_POINT **val = NULL; /* precomputation */
 | 
						|
	EC_POINT **v;
 | 
						|
	EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or 'pre_comp->points' */
 | 
						|
	const EC_PRE_COMP *pre_comp = NULL;
 | 
						|
	int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be treated like other scalars,
 | 
						|
	                     * i.e. precomputation is not available */
 | 
						|
	int ret = 0;
 | 
						|
	
 | 
						|
	if (group->meth != r->meth)
 | 
						|
		{
 | 
						|
		ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
 | 
						|
		return 0;
 | 
						|
		}
 | 
						|
 | 
						|
	if ((scalar == NULL) && (num == 0))
 | 
						|
		{
 | 
						|
		return EC_POINT_set_to_infinity(group, r);
 | 
						|
		}
 | 
						|
 | 
						|
	for (i = 0; i < num; i++)
 | 
						|
		{
 | 
						|
		if (group->meth != points[i]->meth)
 | 
						|
			{
 | 
						|
			ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
 | 
						|
			return 0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
	if (ctx == NULL)
 | 
						|
		{
 | 
						|
		ctx = new_ctx = BN_CTX_new();
 | 
						|
		if (ctx == NULL)
 | 
						|
			goto err;
 | 
						|
		}
 | 
						|
 | 
						|
	if (scalar != NULL)
 | 
						|
		{
 | 
						|
		generator = EC_GROUP_get0_generator(group);
 | 
						|
		if (generator == NULL)
 | 
						|
			{
 | 
						|
			ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
 | 
						|
			goto err;
 | 
						|
			}
 | 
						|
		
 | 
						|
		/* look if we can use precomputed multiples of generator */
 | 
						|
 | 
						|
		pre_comp = EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
 | 
						|
 | 
						|
		if (pre_comp && pre_comp->numblocks && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0))
 | 
						|
			{
 | 
						|
			blocksize = pre_comp->blocksize;
 | 
						|
 | 
						|
			/* determine maximum number of blocks that wNAF splitting may yield
 | 
						|
			 * (NB: maximum wNAF length is bit length plus one) */
 | 
						|
			numblocks = (BN_num_bits(scalar) / blocksize) + 1;
 | 
						|
 | 
						|
			/* we cannot use more blocks than we have precomputation for */
 | 
						|
			if (numblocks > pre_comp->numblocks)
 | 
						|
				numblocks = pre_comp->numblocks;
 | 
						|
 | 
						|
			pre_points_per_block = 1u << (pre_comp->w - 1);
 | 
						|
 | 
						|
			/* check that pre_comp looks sane */
 | 
						|
			if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block))
 | 
						|
				{
 | 
						|
				ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
 | 
						|
				goto err;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		else
 | 
						|
			{
 | 
						|
			/* can't use precomputation */
 | 
						|
			pre_comp = NULL;
 | 
						|
			numblocks = 1;
 | 
						|
			num_scalar = 1; /* treat 'scalar' like 'num'-th element of 'scalars' */
 | 
						|
			}
 | 
						|
		}
 | 
						|
	
 | 
						|
	totalnum = num + numblocks;
 | 
						|
 | 
						|
	wsize    = OPENSSL_malloc(totalnum * sizeof wsize[0]);
 | 
						|
	wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
 | 
						|
	wNAF     = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space for pivot */
 | 
						|
	val_sub  = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
 | 
						|
		 
 | 
						|
	if (!wsize || !wNAF_len || !wNAF || !val_sub)
 | 
						|
		{
 | 
						|
		ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
 | 
						|
		goto err;
 | 
						|
		}
 | 
						|
 | 
						|
	wNAF[0] = NULL;	/* preliminary pivot */
 | 
						|
 | 
						|
	/* num_val will be the total number of temporarily precomputed points */
 | 
						|
	num_val = 0;
 | 
						|
 | 
						|
	for (i = 0; i < num + num_scalar; i++)
 | 
						|
		{
 | 
						|
		size_t bits;
 | 
						|
 | 
						|
		bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
 | 
						|
		wsize[i] = EC_window_bits_for_scalar_size(bits);
 | 
						|
		num_val += 1u << (wsize[i] - 1);
 | 
						|
		wNAF[i + 1] = NULL; /* make sure we always have a pivot */
 | 
						|
		wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]);
 | 
						|
		if (wNAF[i] == NULL)
 | 
						|
			goto err;
 | 
						|
		if (wNAF_len[i] > max_len)
 | 
						|
			max_len = wNAF_len[i];
 | 
						|
		}
 | 
						|
 | 
						|
	if (numblocks)
 | 
						|
		{
 | 
						|
		/* we go here iff scalar != NULL */
 | 
						|
		
 | 
						|
		if (pre_comp == NULL)
 | 
						|
			{
 | 
						|
			if (num_scalar != 1)
 | 
						|
				{
 | 
						|
				ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
 | 
						|
				goto err;
 | 
						|
				}
 | 
						|
			/* we have already generated a wNAF for 'scalar' */
 | 
						|
			}
 | 
						|
		else
 | 
						|
			{
 | 
						|
			signed char *tmp_wNAF = NULL;
 | 
						|
			size_t tmp_len = 0;
 | 
						|
			
 | 
						|
			if (num_scalar != 0)
 | 
						|
				{
 | 
						|
				ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
 | 
						|
				goto err;
 | 
						|
				}
 | 
						|
 | 
						|
			/* use the window size for which we have precomputation */
 | 
						|
			wsize[num] = pre_comp->w;
 | 
						|
			tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len);
 | 
						|
			if (!tmp_wNAF)
 | 
						|
				goto err;
 | 
						|
 | 
						|
			if (tmp_len <= max_len)
 | 
						|
				{
 | 
						|
				/* One of the other wNAFs is at least as long
 | 
						|
				 * as the wNAF belonging to the generator,
 | 
						|
				 * so wNAF splitting will not buy us anything. */
 | 
						|
 | 
						|
				numblocks = 1;
 | 
						|
				totalnum = num + 1; /* don't use wNAF splitting */
 | 
						|
				wNAF[num] = tmp_wNAF;
 | 
						|
				wNAF[num + 1] = NULL;
 | 
						|
				wNAF_len[num] = tmp_len;
 | 
						|
				if (tmp_len > max_len)
 | 
						|
					max_len = tmp_len;
 | 
						|
				/* pre_comp->points starts with the points that we need here: */
 | 
						|
				val_sub[num] = pre_comp->points;
 | 
						|
				}
 | 
						|
			else
 | 
						|
				{
 | 
						|
				/* don't include tmp_wNAF directly into wNAF array
 | 
						|
				 * - use wNAF splitting and include the blocks */
 | 
						|
 | 
						|
				signed char *pp;
 | 
						|
				EC_POINT **tmp_points;
 | 
						|
				
 | 
						|
				if (tmp_len < numblocks * blocksize)
 | 
						|
					{
 | 
						|
					/* possibly we can do with fewer blocks than estimated */
 | 
						|
					numblocks = (tmp_len + blocksize - 1) / blocksize;
 | 
						|
					if (numblocks > pre_comp->numblocks)
 | 
						|
						{
 | 
						|
						ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
 | 
						|
						goto err;
 | 
						|
						}
 | 
						|
					totalnum = num + numblocks;
 | 
						|
					}
 | 
						|
				
 | 
						|
				/* split wNAF in 'numblocks' parts */
 | 
						|
				pp = tmp_wNAF;
 | 
						|
				tmp_points = pre_comp->points;
 | 
						|
 | 
						|
				for (i = num; i < totalnum; i++)
 | 
						|
					{
 | 
						|
					if (i < totalnum - 1)
 | 
						|
						{
 | 
						|
						wNAF_len[i] = blocksize;
 | 
						|
						if (tmp_len < blocksize)
 | 
						|
							{
 | 
						|
							ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
 | 
						|
							goto err;
 | 
						|
							}
 | 
						|
						tmp_len -= blocksize;
 | 
						|
						}
 | 
						|
					else
 | 
						|
						/* last block gets whatever is left
 | 
						|
						 * (this could be more or less than 'blocksize'!) */
 | 
						|
						wNAF_len[i] = tmp_len;
 | 
						|
					
 | 
						|
					wNAF[i + 1] = NULL;
 | 
						|
					wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
 | 
						|
					if (wNAF[i] == NULL)
 | 
						|
						{
 | 
						|
						ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
 | 
						|
						OPENSSL_free(tmp_wNAF);
 | 
						|
						goto err;
 | 
						|
						}
 | 
						|
					memcpy(wNAF[i], pp, wNAF_len[i]);
 | 
						|
					if (wNAF_len[i] > max_len)
 | 
						|
						max_len = wNAF_len[i];
 | 
						|
 | 
						|
					if (*tmp_points == NULL)
 | 
						|
						{
 | 
						|
						ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
 | 
						|
						OPENSSL_free(tmp_wNAF);
 | 
						|
						goto err;
 | 
						|
						}
 | 
						|
					val_sub[i] = tmp_points;
 | 
						|
					tmp_points += pre_points_per_block;
 | 
						|
					pp += blocksize;
 | 
						|
					}
 | 
						|
				OPENSSL_free(tmp_wNAF);
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
	/* All points we precompute now go into a single array 'val'.
 | 
						|
	 * 'val_sub[i]' is a pointer to the subarray for the i-th point,
 | 
						|
	 * or to a subarray of 'pre_comp->points' if we already have precomputation. */
 | 
						|
	val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
 | 
						|
	if (val == NULL)
 | 
						|
		{
 | 
						|
		ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
 | 
						|
		goto err;
 | 
						|
		}
 | 
						|
	val[num_val] = NULL; /* pivot element */
 | 
						|
 | 
						|
	/* allocate points for precomputation */
 | 
						|
	v = val;
 | 
						|
	for (i = 0; i < num + num_scalar; i++)
 | 
						|
		{
 | 
						|
		val_sub[i] = v;
 | 
						|
		for (j = 0; j < (1u << (wsize[i] - 1)); j++)
 | 
						|
			{
 | 
						|
			*v = EC_POINT_new(group);
 | 
						|
			if (*v == NULL) goto err;
 | 
						|
			v++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	if (!(v == val + num_val))
 | 
						|
		{
 | 
						|
		ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
 | 
						|
		goto err;
 | 
						|
		}
 | 
						|
 | 
						|
	if (!(tmp = EC_POINT_new(group)))
 | 
						|
		goto err;
 | 
						|
 | 
						|
	/* prepare precomputed values:
 | 
						|
	 *    val_sub[i][0] :=     points[i]
 | 
						|
	 *    val_sub[i][1] := 3 * points[i]
 | 
						|
	 *    val_sub[i][2] := 5 * points[i]
 | 
						|
	 *    ...
 | 
						|
	 */
 | 
						|
	for (i = 0; i < num + num_scalar; i++)
 | 
						|
		{
 | 
						|
		if (i < num)
 | 
						|
			{
 | 
						|
			if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err;
 | 
						|
			}
 | 
						|
		else
 | 
						|
			{
 | 
						|
			if (!EC_POINT_copy(val_sub[i][0], generator)) goto err;
 | 
						|
			}
 | 
						|
 | 
						|
		if (wsize[i] > 1)
 | 
						|
			{
 | 
						|
			if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err;
 | 
						|
			for (j = 1; j < (1u << (wsize[i] - 1)); j++)
 | 
						|
				{
 | 
						|
				if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
#if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
 | 
						|
	if (!EC_POINTs_make_affine(group, num_val, val, ctx))
 | 
						|
		goto err;
 | 
						|
#endif
 | 
						|
 | 
						|
	r_is_at_infinity = 1;
 | 
						|
 | 
						|
	for (k = max_len - 1; k >= 0; k--)
 | 
						|
		{
 | 
						|
		if (!r_is_at_infinity)
 | 
						|
			{
 | 
						|
			if (!EC_POINT_dbl(group, r, r, ctx)) goto err;
 | 
						|
			}
 | 
						|
		
 | 
						|
		for (i = 0; i < totalnum; i++)
 | 
						|
			{
 | 
						|
			if (wNAF_len[i] > (size_t)k)
 | 
						|
				{
 | 
						|
				int digit = wNAF[i][k];
 | 
						|
				int is_neg;
 | 
						|
 | 
						|
				if (digit) 
 | 
						|
					{
 | 
						|
					is_neg = digit < 0;
 | 
						|
 | 
						|
					if (is_neg)
 | 
						|
						digit = -digit;
 | 
						|
 | 
						|
					if (is_neg != r_is_inverted)
 | 
						|
						{
 | 
						|
						if (!r_is_at_infinity)
 | 
						|
							{
 | 
						|
							if (!EC_POINT_invert(group, r, ctx)) goto err;
 | 
						|
							}
 | 
						|
						r_is_inverted = !r_is_inverted;
 | 
						|
						}
 | 
						|
 | 
						|
					/* digit > 0 */
 | 
						|
 | 
						|
					if (r_is_at_infinity)
 | 
						|
						{
 | 
						|
						if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) goto err;
 | 
						|
						r_is_at_infinity = 0;
 | 
						|
						}
 | 
						|
					else
 | 
						|
						{
 | 
						|
						if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) goto err;
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
	if (r_is_at_infinity)
 | 
						|
		{
 | 
						|
		if (!EC_POINT_set_to_infinity(group, r)) goto err;
 | 
						|
		}
 | 
						|
	else
 | 
						|
		{
 | 
						|
		if (r_is_inverted)
 | 
						|
			if (!EC_POINT_invert(group, r, ctx)) goto err;
 | 
						|
		}
 | 
						|
	
 | 
						|
	ret = 1;
 | 
						|
 | 
						|
 err:
 | 
						|
	if (new_ctx != NULL)
 | 
						|
		BN_CTX_free(new_ctx);
 | 
						|
	if (tmp != NULL)
 | 
						|
		EC_POINT_free(tmp);
 | 
						|
	if (wsize != NULL)
 | 
						|
		OPENSSL_free(wsize);
 | 
						|
	if (wNAF_len != NULL)
 | 
						|
		OPENSSL_free(wNAF_len);
 | 
						|
	if (wNAF != NULL)
 | 
						|
		{
 | 
						|
		signed char **w;
 | 
						|
		
 | 
						|
		for (w = wNAF; *w != NULL; w++)
 | 
						|
			OPENSSL_free(*w);
 | 
						|
		
 | 
						|
		OPENSSL_free(wNAF);
 | 
						|
		}
 | 
						|
	if (val != NULL)
 | 
						|
		{
 | 
						|
		for (v = val; *v != NULL; v++)
 | 
						|
			EC_POINT_clear_free(*v);
 | 
						|
 | 
						|
		OPENSSL_free(val);
 | 
						|
		}
 | 
						|
	if (val_sub != NULL)
 | 
						|
		{
 | 
						|
		OPENSSL_free(val_sub);
 | 
						|
		}
 | 
						|
	return ret;
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
/* ec_wNAF_precompute_mult()
 | 
						|
 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
 | 
						|
 * for use with wNAF splitting as implemented in ec_wNAF_mul().
 | 
						|
 * 
 | 
						|
 * 'pre_comp->points' is an array of multiples of the generator
 | 
						|
 * of the following form:
 | 
						|
 * points[0] =     generator;
 | 
						|
 * points[1] = 3 * generator;
 | 
						|
 * ...
 | 
						|
 * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
 | 
						|
 * points[2^(w-1)]   =     2^blocksize * generator;
 | 
						|
 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
 | 
						|
 * ...
 | 
						|
 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
 | 
						|
 * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
 | 
						|
 * ...
 | 
						|
 * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
 | 
						|
 * points[2^(w-1)*numblocks]       = NULL
 | 
						|
 */
 | 
						|
int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
 | 
						|
	{
 | 
						|
	const EC_POINT *generator;
 | 
						|
	EC_POINT *tmp_point = NULL, *base = NULL, **var;
 | 
						|
	BN_CTX *new_ctx = NULL;
 | 
						|
	BIGNUM *order;
 | 
						|
	size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
 | 
						|
	EC_POINT **points = NULL;
 | 
						|
	EC_PRE_COMP *pre_comp;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	/* if there is an old EC_PRE_COMP object, throw it away */
 | 
						|
	EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
 | 
						|
 | 
						|
	if ((pre_comp = ec_pre_comp_new(group)) == NULL)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	generator = EC_GROUP_get0_generator(group);
 | 
						|
	if (generator == NULL)
 | 
						|
		{
 | 
						|
		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
 | 
						|
		goto err;
 | 
						|
		}
 | 
						|
 | 
						|
	if (ctx == NULL)
 | 
						|
		{
 | 
						|
		ctx = new_ctx = BN_CTX_new();
 | 
						|
		if (ctx == NULL)
 | 
						|
			goto err;
 | 
						|
		}
 | 
						|
	
 | 
						|
	BN_CTX_start(ctx);
 | 
						|
	order = BN_CTX_get(ctx);
 | 
						|
	if (order == NULL) goto err;
 | 
						|
	
 | 
						|
	if (!EC_GROUP_get_order(group, order, ctx)) goto err;		
 | 
						|
	if (BN_is_zero(order))
 | 
						|
		{
 | 
						|
		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
 | 
						|
		goto err;
 | 
						|
		}
 | 
						|
 | 
						|
	bits = BN_num_bits(order);
 | 
						|
	/* The following parameters mean we precompute (approximately)
 | 
						|
	 * one point per bit.
 | 
						|
	 *
 | 
						|
	 * TBD: The combination  8, 4  is perfect for 160 bits; for other
 | 
						|
	 * bit lengths, other parameter combinations might provide better
 | 
						|
	 * efficiency.
 | 
						|
	 */
 | 
						|
	blocksize = 8;
 | 
						|
	w = 4;
 | 
						|
	if (EC_window_bits_for_scalar_size(bits) > w)
 | 
						|
		{
 | 
						|
		/* let's not make the window too small ... */
 | 
						|
		w = EC_window_bits_for_scalar_size(bits);
 | 
						|
		}
 | 
						|
 | 
						|
	numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks to use for wNAF splitting */
 | 
						|
	
 | 
						|
	pre_points_per_block = 1u << (w - 1);
 | 
						|
	num = pre_points_per_block * numblocks; /* number of points to compute and store */
 | 
						|
 | 
						|
	points = OPENSSL_malloc(sizeof (EC_POINT*)*(num + 1));
 | 
						|
	if (!points)
 | 
						|
		{
 | 
						|
		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
 | 
						|
		goto err;
 | 
						|
		}
 | 
						|
 | 
						|
	var = points;
 | 
						|
	var[num] = NULL; /* pivot */
 | 
						|
	for (i = 0; i < num; i++)
 | 
						|
		{
 | 
						|
		if ((var[i] = EC_POINT_new(group)) == NULL)
 | 
						|
			{
 | 
						|
			ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
 | 
						|
			goto err;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
	if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group)))
 | 
						|
		{
 | 
						|
		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
 | 
						|
		goto err;
 | 
						|
		}	
 | 
						|
	
 | 
						|
	if (!EC_POINT_copy(base, generator))
 | 
						|
		goto err;
 | 
						|
	
 | 
						|
	/* do the precomputation */
 | 
						|
	for (i = 0; i < numblocks; i++)
 | 
						|
		{
 | 
						|
		size_t j;
 | 
						|
 | 
						|
		if (!EC_POINT_dbl(group, tmp_point, base, ctx))
 | 
						|
			goto err;
 | 
						|
 | 
						|
		if (!EC_POINT_copy(*var++, base))
 | 
						|
			goto err;
 | 
						|
 | 
						|
		for (j = 1; j < pre_points_per_block; j++, var++)
 | 
						|
			{
 | 
						|
			/* calculate odd multiples of the current base point */
 | 
						|
			if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
 | 
						|
				goto err;
 | 
						|
			}
 | 
						|
 | 
						|
		if (i < numblocks - 1)
 | 
						|
			{
 | 
						|
			/* get the next base (multiply current one by 2^blocksize) */
 | 
						|
			size_t k;
 | 
						|
 | 
						|
			if (blocksize <= 2)
 | 
						|
				{
 | 
						|
				ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
 | 
						|
				goto err;
 | 
						|
				}				
 | 
						|
 | 
						|
			if (!EC_POINT_dbl(group, base, tmp_point, ctx))
 | 
						|
				goto err;
 | 
						|
			for (k = 2; k < blocksize; k++)
 | 
						|
				{
 | 
						|
				if (!EC_POINT_dbl(group,base,base,ctx))
 | 
						|
					goto err;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 		}
 | 
						|
 | 
						|
	if (!EC_POINTs_make_affine(group, num, points, ctx))
 | 
						|
		goto err;
 | 
						|
	
 | 
						|
	pre_comp->group = group;
 | 
						|
	pre_comp->blocksize = blocksize;
 | 
						|
	pre_comp->numblocks = numblocks;
 | 
						|
	pre_comp->w = w;
 | 
						|
	pre_comp->points = points;
 | 
						|
	points = NULL;
 | 
						|
	pre_comp->num = num;
 | 
						|
 | 
						|
	if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp,
 | 
						|
		ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free))
 | 
						|
		goto err;
 | 
						|
	pre_comp = NULL;
 | 
						|
 | 
						|
	ret = 1;
 | 
						|
 err:
 | 
						|
	if (ctx != NULL)
 | 
						|
		BN_CTX_end(ctx);
 | 
						|
	if (new_ctx != NULL)
 | 
						|
		BN_CTX_free(new_ctx);
 | 
						|
	if (pre_comp)
 | 
						|
		ec_pre_comp_free(pre_comp);
 | 
						|
	if (points)
 | 
						|
		{
 | 
						|
		EC_POINT **p;
 | 
						|
 | 
						|
		for (p = points; *p != NULL; p++)
 | 
						|
			EC_POINT_free(*p);
 | 
						|
		OPENSSL_free(points);
 | 
						|
		}
 | 
						|
	if (tmp_point)
 | 
						|
		EC_POINT_free(tmp_point);
 | 
						|
	if (base)
 | 
						|
		EC_POINT_free(base);
 | 
						|
	return ret;
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
 | 
						|
	{
 | 
						|
	if (EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free) != NULL)
 | 
						|
		return 1;
 | 
						|
	else
 | 
						|
		return 0;
 | 
						|
	}
 |