Matt Caswell 90945fa31a Continue standardising malloc style for libcrypto
Continuing from previous commit ensure our style is consistent for malloc
return checks.

Reviewed-by: Kurt Roeckx <kurt@openssl.org>
2015-11-09 22:48:41 +00:00

265 lines
8.5 KiB
C

/* crypto/cmac/cmac.c */
/*
* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
* project.
*/
/* ====================================================================
* Copyright (c) 2010 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "internal/cryptlib.h"
#include <openssl/cmac.h>
struct CMAC_CTX_st {
/* Cipher context to use */
EVP_CIPHER_CTX cctx;
/* Keys k1 and k2 */
unsigned char k1[EVP_MAX_BLOCK_LENGTH];
unsigned char k2[EVP_MAX_BLOCK_LENGTH];
/* Temporary block */
unsigned char tbl[EVP_MAX_BLOCK_LENGTH];
/* Last (possibly partial) block */
unsigned char last_block[EVP_MAX_BLOCK_LENGTH];
/* Number of bytes in last block: -1 means context not initialised */
int nlast_block;
};
/* Make temporary keys K1 and K2 */
static void make_kn(unsigned char *k1, const unsigned char *l, int bl)
{
int i;
unsigned char c = l[0], carry = c >> 7, cnext;
/* Shift block to left, including carry */
for (i = 0; i < bl - 1; i++, c = cnext)
k1[i] = (c << 1) | ((cnext = l[i + 1]) >> 7);
/* If MSB set fixup with R */
k1[i] = (c << 1) ^ ((0 - carry) & (bl == 16 ? 0x87 : 0x1b));
}
CMAC_CTX *CMAC_CTX_new(void)
{
CMAC_CTX *ctx;
ctx = OPENSSL_malloc(sizeof(*ctx));
if (ctx == NULL)
return NULL;
EVP_CIPHER_CTX_init(&ctx->cctx);
ctx->nlast_block = -1;
return ctx;
}
void CMAC_CTX_cleanup(CMAC_CTX *ctx)
{
EVP_CIPHER_CTX_cleanup(&ctx->cctx);
OPENSSL_cleanse(ctx->tbl, EVP_MAX_BLOCK_LENGTH);
OPENSSL_cleanse(ctx->k1, EVP_MAX_BLOCK_LENGTH);
OPENSSL_cleanse(ctx->k2, EVP_MAX_BLOCK_LENGTH);
OPENSSL_cleanse(ctx->last_block, EVP_MAX_BLOCK_LENGTH);
ctx->nlast_block = -1;
}
EVP_CIPHER_CTX *CMAC_CTX_get0_cipher_ctx(CMAC_CTX *ctx)
{
return &ctx->cctx;
}
void CMAC_CTX_free(CMAC_CTX *ctx)
{
if (!ctx)
return;
CMAC_CTX_cleanup(ctx);
OPENSSL_free(ctx);
}
int CMAC_CTX_copy(CMAC_CTX *out, const CMAC_CTX *in)
{
int bl;
if (in->nlast_block == -1)
return 0;
if (!EVP_CIPHER_CTX_copy(&out->cctx, &in->cctx))
return 0;
bl = M_EVP_CIPHER_CTX_block_size(&in->cctx);
memcpy(out->k1, in->k1, bl);
memcpy(out->k2, in->k2, bl);
memcpy(out->tbl, in->tbl, bl);
memcpy(out->last_block, in->last_block, bl);
out->nlast_block = in->nlast_block;
return 1;
}
int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t keylen,
const EVP_CIPHER *cipher, ENGINE *impl)
{
static const unsigned char zero_iv[EVP_MAX_BLOCK_LENGTH] = { 0 };
/* All zeros means restart */
if (!key && !cipher && !impl && keylen == 0) {
/* Not initialised */
if (ctx->nlast_block == -1)
return 0;
if (!M_EVP_EncryptInit_ex(&ctx->cctx, NULL, NULL, NULL, zero_iv))
return 0;
memset(ctx->tbl, 0, M_EVP_CIPHER_CTX_block_size(&ctx->cctx));
ctx->nlast_block = 0;
return 1;
}
/* Initialiase context */
if (cipher && !M_EVP_EncryptInit_ex(&ctx->cctx, cipher, impl, NULL, NULL))
return 0;
/* Non-NULL key means initialisation complete */
if (key) {
int bl;
if (!M_EVP_CIPHER_CTX_cipher(&ctx->cctx))
return 0;
if (!EVP_CIPHER_CTX_set_key_length(&ctx->cctx, keylen))
return 0;
if (!M_EVP_EncryptInit_ex(&ctx->cctx, NULL, NULL, key, zero_iv))
return 0;
bl = M_EVP_CIPHER_CTX_block_size(&ctx->cctx);
if (!EVP_Cipher(&ctx->cctx, ctx->tbl, zero_iv, bl))
return 0;
make_kn(ctx->k1, ctx->tbl, bl);
make_kn(ctx->k2, ctx->k1, bl);
OPENSSL_cleanse(ctx->tbl, bl);
/* Reset context again ready for first data block */
if (!M_EVP_EncryptInit_ex(&ctx->cctx, NULL, NULL, NULL, zero_iv))
return 0;
/* Zero tbl so resume works */
memset(ctx->tbl, 0, bl);
ctx->nlast_block = 0;
}
return 1;
}
int CMAC_Update(CMAC_CTX *ctx, const void *in, size_t dlen)
{
const unsigned char *data = in;
size_t bl;
if (ctx->nlast_block == -1)
return 0;
if (dlen == 0)
return 1;
bl = M_EVP_CIPHER_CTX_block_size(&ctx->cctx);
/* Copy into partial block if we need to */
if (ctx->nlast_block > 0) {
size_t nleft;
nleft = bl - ctx->nlast_block;
if (dlen < nleft)
nleft = dlen;
memcpy(ctx->last_block + ctx->nlast_block, data, nleft);
dlen -= nleft;
ctx->nlast_block += nleft;
/* If no more to process return */
if (dlen == 0)
return 1;
data += nleft;
/* Else not final block so encrypt it */
if (!EVP_Cipher(&ctx->cctx, ctx->tbl, ctx->last_block, bl))
return 0;
}
/* Encrypt all but one of the complete blocks left */
while (dlen > bl) {
if (!EVP_Cipher(&ctx->cctx, ctx->tbl, data, bl))
return 0;
dlen -= bl;
data += bl;
}
/* Copy any data left to last block buffer */
memcpy(ctx->last_block, data, dlen);
ctx->nlast_block = dlen;
return 1;
}
int CMAC_Final(CMAC_CTX *ctx, unsigned char *out, size_t *poutlen)
{
int i, bl, lb;
if (ctx->nlast_block == -1)
return 0;
bl = M_EVP_CIPHER_CTX_block_size(&ctx->cctx);
*poutlen = (size_t)bl;
if (!out)
return 1;
lb = ctx->nlast_block;
/* Is last block complete? */
if (lb == bl) {
for (i = 0; i < bl; i++)
out[i] = ctx->last_block[i] ^ ctx->k1[i];
} else {
ctx->last_block[lb] = 0x80;
if (bl - lb > 1)
memset(ctx->last_block + lb + 1, 0, bl - lb - 1);
for (i = 0; i < bl; i++)
out[i] = ctx->last_block[i] ^ ctx->k2[i];
}
if (!EVP_Cipher(&ctx->cctx, out, out, bl)) {
OPENSSL_cleanse(out, bl);
return 0;
}
return 1;
}
int CMAC_resume(CMAC_CTX *ctx)
{
if (ctx->nlast_block == -1)
return 0;
/*
* The buffer "tbl" containes the last fully encrypted block which is the
* last IV (or all zeroes if no last encrypted block). The last block has
* not been modified since CMAC_final(). So reinitliasing using the last
* decrypted block will allow CMAC to continue after calling
* CMAC_Final().
*/
return M_EVP_EncryptInit_ex(&ctx->cctx, NULL, NULL, NULL, ctx->tbl);
}