85bcf27ccc
Reviewed-by: Tim Hudson <tjh@openssl.org>
274 lines
6.8 KiB
C
274 lines
6.8 KiB
C
/* bn_x931p.c */
|
|
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
|
|
* project 2005.
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 2005 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* licensing@OpenSSL.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <openssl/bn.h>
|
|
#include "bn_lcl.h"
|
|
|
|
/* X9.31 routines for prime derivation */
|
|
|
|
/* X9.31 prime derivation. This is used to generate the primes pi
|
|
* (p1, p2, q1, q2) from a parameter Xpi by checking successive odd
|
|
* integers.
|
|
*/
|
|
|
|
static int bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx,
|
|
BN_GENCB *cb)
|
|
{
|
|
int i = 0;
|
|
if (!BN_copy(pi, Xpi))
|
|
return 0;
|
|
if (!BN_is_odd(pi) && !BN_add_word(pi, 1))
|
|
return 0;
|
|
for(;;)
|
|
{
|
|
i++;
|
|
BN_GENCB_call(cb, 0, i);
|
|
/* NB 27 MR is specificed in X9.31 */
|
|
if (BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb))
|
|
break;
|
|
if (!BN_add_word(pi, 2))
|
|
return 0;
|
|
}
|
|
BN_GENCB_call(cb, 2, i);
|
|
return 1;
|
|
}
|
|
|
|
/* This is the main X9.31 prime derivation function. From parameters
|
|
* Xp1, Xp2 and Xp derive the prime p. If the parameters p1 or p2 are
|
|
* not NULL they will be returned too: this is needed for testing.
|
|
*/
|
|
|
|
int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
|
|
const BIGNUM *Xp, const BIGNUM *Xp1, const BIGNUM *Xp2,
|
|
const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
|
|
{
|
|
int ret = 0;
|
|
|
|
BIGNUM *t, *p1p2, *pm1;
|
|
|
|
/* Only even e supported */
|
|
if (!BN_is_odd(e))
|
|
return 0;
|
|
|
|
BN_CTX_start(ctx);
|
|
if (!p1)
|
|
p1 = BN_CTX_get(ctx);
|
|
|
|
if (!p2)
|
|
p2 = BN_CTX_get(ctx);
|
|
|
|
t = BN_CTX_get(ctx);
|
|
|
|
p1p2 = BN_CTX_get(ctx);
|
|
|
|
pm1 = BN_CTX_get(ctx);
|
|
|
|
if (!bn_x931_derive_pi(p1, Xp1, ctx, cb))
|
|
goto err;
|
|
|
|
if (!bn_x931_derive_pi(p2, Xp2, ctx, cb))
|
|
goto err;
|
|
|
|
if (!BN_mul(p1p2, p1, p2, ctx))
|
|
goto err;
|
|
|
|
/* First set p to value of Rp */
|
|
|
|
if (!BN_mod_inverse(p, p2, p1, ctx))
|
|
goto err;
|
|
|
|
if (!BN_mul(p, p, p2, ctx))
|
|
goto err;
|
|
|
|
if (!BN_mod_inverse(t, p1, p2, ctx))
|
|
goto err;
|
|
|
|
if (!BN_mul(t, t, p1, ctx))
|
|
goto err;
|
|
|
|
if (!BN_sub(p, p, t))
|
|
goto err;
|
|
|
|
if (p->neg && !BN_add(p, p, p1p2))
|
|
goto err;
|
|
|
|
/* p now equals Rp */
|
|
|
|
if (!BN_mod_sub(p, p, Xp, p1p2, ctx))
|
|
goto err;
|
|
|
|
if (!BN_add(p, p, Xp))
|
|
goto err;
|
|
|
|
/* p now equals Yp0 */
|
|
|
|
for (;;)
|
|
{
|
|
int i = 1;
|
|
BN_GENCB_call(cb, 0, i++);
|
|
if (!BN_copy(pm1, p))
|
|
goto err;
|
|
if (!BN_sub_word(pm1, 1))
|
|
goto err;
|
|
if (!BN_gcd(t, pm1, e, ctx))
|
|
goto err;
|
|
if (BN_is_one(t)
|
|
/* X9.31 specifies 8 MR and 1 Lucas test or any prime test
|
|
* offering similar or better guarantees 50 MR is considerably
|
|
* better.
|
|
*/
|
|
&& BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb))
|
|
break;
|
|
if (!BN_add(p, p, p1p2))
|
|
goto err;
|
|
}
|
|
|
|
BN_GENCB_call(cb, 3, 0);
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
|
|
BN_CTX_end(ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Generate pair of parameters Xp, Xq for X9.31 prime generation.
|
|
* Note: nbits parameter is sum of number of bits in both.
|
|
*/
|
|
|
|
int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *t;
|
|
int i;
|
|
/* Number of bits for each prime is of the form
|
|
* 512+128s for s = 0, 1, ...
|
|
*/
|
|
if ((nbits < 1024) || (nbits & 0xff))
|
|
return 0;
|
|
nbits >>= 1;
|
|
/* The random value Xp must be between sqrt(2) * 2^(nbits-1) and
|
|
* 2^nbits - 1. By setting the top two bits we ensure that the lower
|
|
* bound is exceeded.
|
|
*/
|
|
if (!BN_rand(Xp, nbits, 1, 0))
|
|
return 0;
|
|
|
|
BN_CTX_start(ctx);
|
|
t = BN_CTX_get(ctx);
|
|
|
|
for (i = 0; i < 1000; i++)
|
|
{
|
|
if (!BN_rand(Xq, nbits, 1, 0))
|
|
return 0;
|
|
/* Check that |Xp - Xq| > 2^(nbits - 100) */
|
|
BN_sub(t, Xp, Xq);
|
|
if (BN_num_bits(t) > (nbits - 100))
|
|
break;
|
|
}
|
|
|
|
BN_CTX_end(ctx);
|
|
|
|
if (i < 1000)
|
|
return 1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/* Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1
|
|
* and Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL
|
|
* the relevant parameter will be stored in it.
|
|
*
|
|
* Due to the fact that |Xp - Xq| > 2^(nbits - 100) must be satisfied Xp and Xq
|
|
* are generated using the previous function and supplied as input.
|
|
*/
|
|
|
|
int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
|
|
BIGNUM *Xp1, BIGNUM *Xp2,
|
|
const BIGNUM *Xp,
|
|
const BIGNUM *e, BN_CTX *ctx,
|
|
BN_GENCB *cb)
|
|
{
|
|
int ret = 0;
|
|
|
|
BN_CTX_start(ctx);
|
|
if (!Xp1)
|
|
Xp1 = BN_CTX_get(ctx);
|
|
if (!Xp2)
|
|
Xp2 = BN_CTX_get(ctx);
|
|
|
|
if (!BN_rand(Xp1, 101, 0, 0))
|
|
goto error;
|
|
if (!BN_rand(Xp2, 101, 0, 0))
|
|
goto error;
|
|
if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb))
|
|
goto error;
|
|
|
|
ret = 1;
|
|
|
|
error:
|
|
BN_CTX_end(ctx);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|