756 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Perl
		
	
	
	
	
	
			
		
		
	
	
			756 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Perl
		
	
	
	
	
	
| #!/usr/bin/env perl
 | |
| #
 | |
| # ====================================================================
 | |
| # Written by David Mosberger <David.Mosberger@acm.org> based on the
 | |
| # Itanium optimized Crypto code which was released by HP Labs at
 | |
| # http://www.hpl.hp.com/research/linux/crypto/.
 | |
| #
 | |
| # Copyright (c) 2005 Hewlett-Packard Development Company, L.P.
 | |
| #
 | |
| # Permission is hereby granted, free of charge, to any person obtaining
 | |
| # a copy of this software and associated documentation files (the
 | |
| # "Software"), to deal in the Software without restriction, including
 | |
| # without limitation the rights to use, copy, modify, merge, publish,
 | |
| # distribute, sublicense, and/or sell copies of the Software, and to
 | |
| # permit persons to whom the Software is furnished to do so, subject to
 | |
| # the following conditions:
 | |
| #
 | |
| # The above copyright notice and this permission notice shall be
 | |
| # included in all copies or substantial portions of the Software.
 | |
| 
 | |
| # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 | |
| # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | |
| # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 | |
| # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 | |
| # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 | |
| # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 | |
| # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.  */
 | |
| 
 | |
| 
 | |
| 
 | |
| # This is a little helper program which generates a software-pipelined
 | |
| # for RC4 encryption.  The basic algorithm looks like this:
 | |
| #
 | |
| #   for (counter = 0; counter < len; ++counter)
 | |
| #     {
 | |
| #       in = inp[counter];
 | |
| #       SI = S[I];
 | |
| #       J = (SI + J) & 0xff;
 | |
| #       SJ = S[J];
 | |
| #       T = (SI + SJ) & 0xff;
 | |
| #       S[I] = SJ, S[J] = SI;
 | |
| #       ST = S[T];
 | |
| #       outp[counter] = in ^ ST;
 | |
| #       I = (I + 1) & 0xff;
 | |
| #     }
 | |
| #
 | |
| # Pipelining this loop isn't easy, because the stores to the S[] array
 | |
| # need to be observed in the right order.  The loop generated by the
 | |
| # code below has the following pipeline diagram:
 | |
| #
 | |
| #      cycle
 | |
| #     | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 |11 |12 |13 |14 |15 |16 |17 |
 | |
| # iter
 | |
| #   1: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx
 | |
| #   2:             xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx
 | |
| #   3:                         xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx
 | |
| #
 | |
| #   where:
 | |
| # 	LDI = load of S[I]
 | |
| # 	LDJ = load of S[J]
 | |
| # 	SWP = swap of S[I] and S[J]
 | |
| # 	LDT = load of S[T]
 | |
| #
 | |
| # Note that in the above diagram, the major trouble-spot is that LDI
 | |
| # of the 2nd iteration is performed BEFORE the SWP of the first
 | |
| # iteration.  Fortunately, this is easy to detect (I of the 1st
 | |
| # iteration will be equal to J of the 2nd iteration) and when this
 | |
| # happens, we simply forward the proper value from the 1st iteration
 | |
| # to the 2nd one.  The proper value in this case is simply the value
 | |
| # of S[I] from the first iteration (thanks to the fact that SWP
 | |
| # simply swaps the contents of S[I] and S[J]).
 | |
| #
 | |
| # Another potential trouble-spot is in cycle 7, where SWP of the 1st
 | |
| # iteration issues at the same time as the LDI of the 3rd iteration.
 | |
| # However, thanks to IA-64 execution semantics, this can be taken
 | |
| # care of simply by placing LDI later in the instruction-group than
 | |
| # SWP.  IA-64 CPUs will automatically forward the value if they
 | |
| # detect that the SWP and LDI are accessing the same memory-location.
 | |
| 
 | |
| # The core-loop that can be pipelined then looks like this (annotated
 | |
| # with McKinley/Madison issue port & latency numbers, assuming L1
 | |
| # cache hits for the most part):
 | |
| 
 | |
| # operation:	    instruction:		    issue-ports:  latency
 | |
| # ------------------  -----------------------------   ------------- -------
 | |
| 
 | |
| # Data = *inp++       ld1 data = [inp], 1             M0-M1         1 cyc     c0
 | |
| #                     shladd Iptr = I, KeyTable, 3    M0-M3, I0, I1 1 cyc
 | |
| # I = (I + 1) & 0xff  padd1 nextI = I, one            M0-M3, I0, I1 3 cyc
 | |
| #                     ;;
 | |
| # SI = S[I]           ld8 SI = [Iptr]                 M0-M1         1 cyc     c1 * after SWAP!
 | |
| #                     ;;
 | |
| #                     cmp.eq.unc pBypass = I, J                                  * after J is valid!
 | |
| # J = SI + J          add J = J, SI                   M0-M3, I0, I1 1 cyc     c2
 | |
| #                     (pBypass) br.cond.spnt Bypass
 | |
| #                     ;;
 | |
| # ---------------------------------------------------------------------------------------
 | |
| # J = J & 0xff        zxt1 J = J                      I0, I1, 1 cyc           c3
 | |
| #                     ;;
 | |
| #                     shladd Jptr = J, KeyTable, 3    M0-M3, I0, I1 1 cyc     c4
 | |
| #                     ;;
 | |
| # SJ = S[J]           ld8 SJ = [Jptr]                 M0-M1         1 cyc     c5
 | |
| #                     ;;
 | |
| # ---------------------------------------------------------------------------------------
 | |
| # T = (SI + SJ)       add T = SI, SJ                  M0-M3, I0, I1 1 cyc     c6
 | |
| #                     ;;
 | |
| # T = T & 0xff        zxt1 T = T                      I0, I1        1 cyc
 | |
| # S[I] = SJ           st8 [Iptr] = SJ                 M2-M3                   c7
 | |
| # S[J] = SI           st8 [Jptr] = SI                 M2-M3
 | |
| #                     ;;
 | |
| #                     shladd Tptr = T, KeyTable, 3    M0-M3, I0, I1 1 cyc     c8
 | |
| #                     ;;
 | |
| # ---------------------------------------------------------------------------------------
 | |
| # T = S[T]            ld8 T = [Tptr]                  M0-M1         1 cyc     c9
 | |
| #                     ;;
 | |
| # data ^= T           xor data = data, T              M0-M3, I0, I1 1 cyc     c10
 | |
| #                     ;;
 | |
| # *out++ = Data ^ T   dep word = word, data, 8, POS   I0, I1        1 cyc     c11
 | |
| #                     ;;
 | |
| # ---------------------------------------------------------------------------------------
 | |
| 
 | |
| # There are several points worth making here:
 | |
| 
 | |
| #   - Note that due to the bypass/forwarding-path, the first two
 | |
| #     phases of the loop are strangly mingled together.  In
 | |
| #     particular, note that the first stage of the pipeline is
 | |
| #     using the value of "J", as calculated by the second stage.
 | |
| #   - Each bundle-pair will have exactly 6 instructions.
 | |
| #   - Pipelined, the loop can execute in 3 cycles/iteration and
 | |
| #     4 stages.  However, McKinley/Madison can issue "st1" to
 | |
| #     the same bank at a rate of at most one per 4 cycles.  Thus,
 | |
| #     instead of storing each byte, we accumulate them in a word
 | |
| #     and then write them back at once with a single "st8" (this
 | |
| #     implies that the setup code needs to ensure that the output
 | |
| #     buffer is properly aligned, if need be, by encoding the
 | |
| #     first few bytes separately).
 | |
| #   - There is no space for a "br.ctop" instruction.  For this
 | |
| #     reason we can't use module-loop support in IA-64 and have
 | |
| #     to do a traditional, purely software-pipelined loop.
 | |
| #   - We can't replace any of the remaining "add/zxt1" pairs with
 | |
| #     "padd1" because the latency for that instruction is too high
 | |
| #     and would push the loop to the point where more bypasses
 | |
| #     would be needed, which we don't have space for.
 | |
| #   - The above loop runs at around 3.26 cycles/byte, or roughly
 | |
| #     440 MByte/sec on a 1.5GHz Madison.  This is well below the
 | |
| #     system bus bandwidth and hence with judicious use of
 | |
| #     "lfetch" this loop can run at (almost) peak speed even when
 | |
| #     the input and output data reside in memory.  The
 | |
| #     max. latency that can be tolerated is (PREFETCH_DISTANCE *
 | |
| #     L2_LINE_SIZE * 3 cyc), or about 384 cycles assuming (at
 | |
| #     least) 1-ahead prefetching of 128 byte cache-lines.  Note
 | |
| #     that we do NOT prefetch into L1, since that would only
 | |
| #     interfere with the S[] table values stored there.  This is
 | |
| #     acceptable because there is a 10 cycle latency between
 | |
| #     load and first use of the input data.
 | |
| #   - We use a branch to out-of-line bypass-code of cycle-pressure:
 | |
| #     we calculate the next J, check for the need to activate the
 | |
| #     bypass path, and activate the bypass path ALL IN THE SAME
 | |
| #     CYCLE.  If we didn't have these constraints, we could do
 | |
| #     the bypass with a simple conditional move instruction.
 | |
| #     Fortunately, the bypass paths get activated relatively
 | |
| #     infrequently, so the extra branches don't cost all that much
 | |
| #     (about 0.04 cycles/byte, measured on a 16396 byte file with
 | |
| #     random input data).
 | |
| #
 | |
| 
 | |
| $phases = 4;		# number of stages/phases in the pipelined-loop
 | |
| $unroll_count = 6;	# number of times we unrolled it
 | |
| $pComI = (1 << 0);
 | |
| $pComJ = (1 << 1);
 | |
| $pComT = (1 << 2);
 | |
| $pOut  = (1 << 3);
 | |
| 
 | |
| $NData = 4;
 | |
| $NIP = 3;
 | |
| $NJP = 2;
 | |
| $NI = 2;
 | |
| $NSI = 3;
 | |
| $NSJ = 2;
 | |
| $NT = 2;
 | |
| $NOutWord = 2;
 | |
| 
 | |
| #
 | |
| # $threshold is the minimum length before we attempt to use the
 | |
| # big software-pipelined loop.  It MUST be greater-or-equal
 | |
| # to:
 | |
| #  		PHASES * (UNROLL_COUNT + 1) + 7
 | |
| #
 | |
| # The "+ 7" comes from the fact we may have to encode up to
 | |
| #   7 bytes separately before the output pointer is aligned.
 | |
| #
 | |
| $threshold = (3 * ($phases * ($unroll_count + 1)) + 7);
 | |
| 
 | |
| sub I {
 | |
|     local *code = shift;
 | |
|     local $format = shift;
 | |
|     $code .= sprintf ("\t\t".$format."\n", @_);
 | |
| }
 | |
| 
 | |
| sub P {
 | |
|     local *code = shift;
 | |
|     local $format = shift;
 | |
|     $code .= sprintf ($format."\n", @_);
 | |
| }
 | |
| 
 | |
| sub STOP {
 | |
|     local *code = shift;
 | |
|     $code .=<<___;
 | |
| 		;;
 | |
| ___
 | |
| }
 | |
| 
 | |
| sub emit_body {
 | |
|     local *c = shift;
 | |
|     local *bypass = shift;
 | |
|     local ($iteration, $p) = @_;
 | |
| 
 | |
|     local $i0 = $iteration;
 | |
|     local $i1 = $iteration - 1;
 | |
|     local $i2 = $iteration - 2;
 | |
|     local $i3 = $iteration - 3;
 | |
|     local $iw0 = ($iteration - 3) / 8;
 | |
|     local $iw1 = ($iteration > 3) ? ($iteration - 4) / 8 : 1;
 | |
|     local $byte_num = ($iteration - 3) % 8;
 | |
|     local $label = $iteration + 1;
 | |
|     local $pAny = ($p & 0xf) == 0xf;
 | |
|     local $pByp = (($p & $pComI) && ($iteration > 0));
 | |
| 
 | |
|     $c.=<<___;
 | |
| //////////////////////////////////////////////////
 | |
| ___
 | |
| 
 | |
|     if (($p & 0xf) == 0) {
 | |
| 	$c.="#ifdef HOST_IS_BIG_ENDIAN\n";
 | |
| 	&I(\$c,"shr.u	OutWord[%u] = OutWord[%u], 32;;",
 | |
| 				$iw1 % $NOutWord, $iw1 % $NOutWord);
 | |
| 	$c.="#endif\n";
 | |
| 	&I(\$c, "st4 [OutPtr] = OutWord[%u], 4", $iw1 % $NOutWord);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     # Cycle 0
 | |
|     &I(\$c, "{ .mmi")					      if ($pAny);
 | |
|     &I(\$c, "ld1    Data[%u] = [InPtr], 1", $i0 % $NData)     if ($p & $pComI);
 | |
|     &I(\$c, "padd1  I[%u] = One, I[%u]", $i0 % $NI, $i1 % $NI)if ($p & $pComI);
 | |
|     &I(\$c, "zxt1   J = J")				      if ($p & $pComJ);
 | |
|     &I(\$c, "}")					      if ($pAny);
 | |
|     &I(\$c, "{ .mmi")					      if ($pAny);
 | |
|     &I(\$c, "LKEY   T[%u] = [T[%u]]", $i1 % $NT, $i1 % $NT)   if ($p & $pOut);
 | |
|     &I(\$c, "add    T[%u] = SI[%u], SJ[%u]",
 | |
|        $i0 % $NT, $i2 % $NSI, $i1 % $NSJ)		      if ($p & $pComT);
 | |
|     &I(\$c, "KEYADDR(IPr[%u], I[%u])", $i0 % $NIP, $i1 % $NI) if ($p & $pComI);
 | |
|     &I(\$c, "}")					      if ($pAny);
 | |
|     &STOP(\$c);
 | |
| 
 | |
|     # Cycle 1
 | |
|     &I(\$c, "{ .mmi")					      if ($pAny);
 | |
|     &I(\$c, "SKEY   [IPr[%u]] = SJ[%u]", $i2 % $NIP, $i1%$NSJ)if ($p & $pComT);
 | |
|     &I(\$c, "SKEY   [JP[%u]] = SI[%u]", $i1 % $NJP, $i2%$NSI) if ($p & $pComT);
 | |
|     &I(\$c, "zxt1   T[%u] = T[%u]", $i0 % $NT, $i0 % $NT)     if ($p & $pComT);
 | |
|     &I(\$c, "}")					      if ($pAny);
 | |
|     &I(\$c, "{ .mmi")					      if ($pAny);
 | |
|     &I(\$c, "LKEY   SI[%u] = [IPr[%u]]", $i0 % $NSI, $i0%$NIP)if ($p & $pComI);
 | |
|     &I(\$c, "KEYADDR(JP[%u], J)", $i0 % $NJP)		      if ($p & $pComJ);
 | |
|     &I(\$c, "xor    Data[%u] = Data[%u], T[%u]",
 | |
|        $i3 % $NData, $i3 % $NData, $i1 % $NT)		      if ($p & $pOut);
 | |
|     &I(\$c, "}")					      if ($pAny);
 | |
|     &STOP(\$c);
 | |
| 
 | |
|     # Cycle 2
 | |
|     &I(\$c, "{ .mmi")					      if ($pAny);
 | |
|     &I(\$c, "LKEY   SJ[%u] = [JP[%u]]", $i0 % $NSJ, $i0%$NJP) if ($p & $pComJ);
 | |
|     &I(\$c, "cmp.eq pBypass, p0 = I[%u], J", $i1 % $NI)	      if ($pByp);
 | |
|     &I(\$c, "dep OutWord[%u] = Data[%u], OutWord[%u], BYTE_POS(%u), 8",
 | |
|        $iw0%$NOutWord, $i3%$NData, $iw1%$NOutWord, $byte_num) if ($p & $pOut);
 | |
|     &I(\$c, "}")					      if ($pAny);
 | |
|     &I(\$c, "{ .mmb")					      if ($pAny);
 | |
|     &I(\$c, "add    J = J, SI[%u]", $i0 % $NSI)		      if ($p & $pComI);
 | |
|     &I(\$c, "KEYADDR(T[%u], T[%u])", $i0 % $NT, $i0 % $NT)    if ($p & $pComT);
 | |
|     &P(\$c, "(pBypass)\tbr.cond.spnt.many .rc4Bypass%u",$label)if ($pByp);
 | |
|     &I(\$c, "}") if ($pAny);
 | |
|     &STOP(\$c);
 | |
| 
 | |
|     &P(\$c, ".rc4Resume%u:", $label)			      if ($pByp);
 | |
|     if ($byte_num == 0 && $iteration >= $phases) {
 | |
| 	&I(\$c, "st8 [OutPtr] = OutWord[%u], 8",
 | |
| 	   $iw1 % $NOutWord)				      if ($p & $pOut);
 | |
| 	if ($iteration == (1 + $unroll_count) * $phases - 1) {
 | |
| 	    if ($unroll_count == 6) {
 | |
| 		&I(\$c, "mov OutWord[%u] = OutWord[%u]",
 | |
| 		   $iw1 % $NOutWord, $iw0 % $NOutWord);
 | |
| 	    }
 | |
| 	    &I(\$c, "lfetch.nt1 [InPrefetch], %u",
 | |
| 	       $unroll_count * $phases);
 | |
| 	    &I(\$c, "lfetch.excl.nt1 [OutPrefetch], %u",
 | |
| 	       $unroll_count * $phases);
 | |
| 	    &I(\$c, "br.cloop.sptk.few .rc4Loop");
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if ($pByp) {
 | |
| 	&P(\$bypass, ".rc4Bypass%u:", $label);
 | |
| 	&I(\$bypass, "sub J = J, SI[%u]", $i0 % $NSI);
 | |
| 	&I(\$bypass, "nop 0");
 | |
| 	&I(\$bypass, "nop 0");
 | |
| 	&I(\$bypass, ";;");
 | |
| 	&I(\$bypass, "add J = J, SI[%u]", $i1 % $NSI);
 | |
| 	&I(\$bypass, "mov SI[%u] = SI[%u]", $i0 % $NSI, $i1 % $NSI);
 | |
| 	&I(\$bypass, "br.sptk.many .rc4Resume%u\n", $label);
 | |
| 	&I(\$bypass, ";;");
 | |
|     }
 | |
| }
 | |
| 
 | |
| $code=<<___;
 | |
| .ident \"rc4-ia64.s, version 3.0\"
 | |
| .ident \"Copyright (c) 2005 Hewlett-Packard Development Company, L.P.\"
 | |
| 
 | |
| #define LCSave		r8
 | |
| #define PRSave		r9
 | |
| 
 | |
| /* Inputs become invalid once rotation begins!  */
 | |
| 
 | |
| #define StateTable	in0
 | |
| #define DataLen		in1
 | |
| #define InputBuffer	in2
 | |
| #define OutputBuffer	in3
 | |
| 
 | |
| #define KTable		r14
 | |
| #define J		r15
 | |
| #define InPtr		r16
 | |
| #define OutPtr		r17
 | |
| #define InPrefetch	r18
 | |
| #define OutPrefetch	r19
 | |
| #define One		r20
 | |
| #define LoopCount	r21
 | |
| #define Remainder	r22
 | |
| #define IFinal		r23
 | |
| #define EndPtr		r24
 | |
| 
 | |
| #define tmp0		r25
 | |
| #define tmp1		r26
 | |
| 
 | |
| #define pBypass		p6
 | |
| #define pDone		p7
 | |
| #define pSmall		p8
 | |
| #define pAligned	p9
 | |
| #define pUnaligned	p10
 | |
| 
 | |
| #define pComputeI	pPhase[0]
 | |
| #define pComputeJ	pPhase[1]
 | |
| #define pComputeT	pPhase[2]
 | |
| #define pOutput		pPhase[3]
 | |
| 
 | |
| #define RetVal		r8
 | |
| #define L_OK		p7
 | |
| #define L_NOK		p8
 | |
| 
 | |
| #define	_NINPUTS	4
 | |
| #define	_NOUTPUT	0
 | |
| 
 | |
| #define	_NROTATE	24
 | |
| #define	_NLOCALS	(_NROTATE - _NINPUTS - _NOUTPUT)
 | |
| 
 | |
| #ifndef SZ
 | |
| # define SZ	4	// this must be set to sizeof(RC4_INT)
 | |
| #endif
 | |
| 
 | |
| #if SZ == 1
 | |
| # define LKEY			ld1
 | |
| # define SKEY			st1
 | |
| # define KEYADDR(dst, i)	add dst = i, KTable
 | |
| #elif SZ == 2
 | |
| # define LKEY			ld2
 | |
| # define SKEY			st2
 | |
| # define KEYADDR(dst, i)	shladd dst = i, 1, KTable
 | |
| #elif SZ == 4
 | |
| # define LKEY			ld4
 | |
| # define SKEY			st4
 | |
| # define KEYADDR(dst, i)	shladd dst = i, 2, KTable
 | |
| #else
 | |
| # define LKEY			ld8
 | |
| # define SKEY			st8
 | |
| # define KEYADDR(dst, i)	shladd dst = i, 3, KTable
 | |
| #endif
 | |
| 
 | |
| #if defined(_HPUX_SOURCE) && !defined(_LP64)
 | |
| # define ADDP	addp4
 | |
| #else
 | |
| # define ADDP	add
 | |
| #endif
 | |
| 
 | |
| /* Define a macro for the bit number of the n-th byte: */
 | |
| 
 | |
| #if defined(_HPUX_SOURCE) || defined(B_ENDIAN)
 | |
| # define HOST_IS_BIG_ENDIAN
 | |
| # define BYTE_POS(n)	(56 - (8 * (n)))
 | |
| #else
 | |
| # define BYTE_POS(n)	(8 * (n))
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|    We must perform the first phase of the pipeline explicitly since
 | |
|    we will always load from the stable the first time. The br.cexit
 | |
|    will never be taken since regardless of the number of bytes because
 | |
|    the epilogue count is 4.
 | |
| */
 | |
| /* MODSCHED_RC4 macro was split to _PROLOGUE and _LOOP, because HP-UX
 | |
|    assembler failed on original macro with syntax error. <appro> */
 | |
| #define MODSCHED_RC4_PROLOGUE						   \\
 | |
| 	{								   \\
 | |
| 				ld1		Data[0] = [InPtr], 1;	   \\
 | |
| 				add		IFinal = 1, I[1];	   \\
 | |
| 				KEYADDR(IPr[0], I[1]);			   \\
 | |
| 	} ;;								   \\
 | |
| 	{								   \\
 | |
| 				LKEY		SI[0] = [IPr[0]];	   \\
 | |
| 				mov		pr.rot = 0x10000;	   \\
 | |
| 				mov		ar.ec = 4;		   \\
 | |
| 	} ;;								   \\
 | |
| 	{								   \\
 | |
| 				add		J = J, SI[0];		   \\
 | |
| 				zxt1		I[0] = IFinal;		   \\
 | |
| 				br.cexit.spnt.few .+16; /* never taken */  \\
 | |
| 	} ;;
 | |
| #define MODSCHED_RC4_LOOP(label)					   \\
 | |
| label:									   \\
 | |
| 	{	.mmi;							   \\
 | |
| 		(pComputeI)	ld1		Data[0] = [InPtr], 1;	   \\
 | |
| 		(pComputeI)	add		IFinal = 1, I[1];	   \\
 | |
| 		(pComputeJ)	zxt1		J = J;			   \\
 | |
| 	}{	.mmi;							   \\
 | |
| 		(pOutput)	LKEY		T[1] = [T[1]];		   \\
 | |
| 		(pComputeT)	add		T[0] = SI[2], SJ[1];	   \\
 | |
| 		(pComputeI)	KEYADDR(IPr[0], I[1]);			   \\
 | |
| 	} ;;								   \\
 | |
| 	{	.mmi;							   \\
 | |
| 		(pComputeT)	SKEY		[IPr[2]] = SJ[1];	   \\
 | |
| 		(pComputeT)	SKEY		[JP[1]] = SI[2];	   \\
 | |
| 		(pComputeT)	zxt1		T[0] = T[0];		   \\
 | |
| 	}{	.mmi;							   \\
 | |
| 		(pComputeI)	LKEY		SI[0] = [IPr[0]];	   \\
 | |
| 		(pComputeJ)	KEYADDR(JP[0], J);			   \\
 | |
| 		(pComputeI)	cmp.eq.unc	pBypass, p0 = I[1], J;	   \\
 | |
| 	} ;;								   \\
 | |
| 	{	.mmi;							   \\
 | |
| 		(pComputeJ)	LKEY		SJ[0] = [JP[0]];	   \\
 | |
| 		(pOutput)	xor		Data[3] = Data[3], T[1];   \\
 | |
| 				nop		0x0;			   \\
 | |
| 	}{	.mmi;							   \\
 | |
| 		(pComputeT)	KEYADDR(T[0], T[0]);			   \\
 | |
| 		(pBypass)	mov		SI[0] = SI[1];		   \\
 | |
| 		(pComputeI)	zxt1		I[0] = IFinal;		   \\
 | |
| 	} ;;								   \\
 | |
| 	{	.mmb;							   \\
 | |
| 		(pOutput)	st1		[OutPtr] = Data[3], 1;	   \\
 | |
| 		(pComputeI)	add		J = J, SI[0];		   \\
 | |
| 				br.ctop.sptk.few label;			   \\
 | |
| 	} ;;
 | |
| 
 | |
| 	.text
 | |
| 
 | |
| 	.align	32
 | |
| 
 | |
| 	.type	RC4, \@function
 | |
| 	.global	RC4
 | |
| 
 | |
| 	.proc	RC4
 | |
| 	.prologue
 | |
| 
 | |
| RC4:
 | |
| 	{
 | |
| 	  	.mmi
 | |
| 		alloc	r2 = ar.pfs, _NINPUTS, _NLOCALS, _NOUTPUT, _NROTATE
 | |
| 
 | |
| 		.rotr Data[4], I[2], IPr[3], SI[3], JP[2], SJ[2], T[2], \\
 | |
| 		      OutWord[2]
 | |
| 		.rotp pPhase[4]
 | |
| 
 | |
| 		ADDP		InPrefetch = 0, InputBuffer
 | |
| 		ADDP		KTable = 0, StateTable
 | |
| 	}
 | |
| 	{
 | |
| 		.mmi
 | |
| 		ADDP		InPtr = 0, InputBuffer
 | |
| 		ADDP		OutPtr = 0, OutputBuffer
 | |
| 		mov		RetVal = r0
 | |
| 	}
 | |
| 	;;
 | |
| 	{
 | |
| 		.mmi
 | |
| 		lfetch.nt1	[InPrefetch], 0x80
 | |
| 		ADDP		OutPrefetch = 0, OutputBuffer
 | |
| 	}
 | |
| 	{               // Return 0 if the input length is nonsensical
 | |
|         	.mib
 | |
| 		ADDP		StateTable = 0, StateTable
 | |
|         	cmp.ge.unc  	L_NOK, L_OK = r0, DataLen
 | |
| 	(L_NOK) br.ret.sptk.few rp
 | |
| 	}
 | |
| 	;;
 | |
| 	{
 | |
|         	.mib
 | |
|         	cmp.eq.or  	L_NOK, L_OK = r0, InPtr
 | |
|         	cmp.eq.or  	L_NOK, L_OK = r0, OutPtr
 | |
| 		nop		0x0
 | |
| 	}
 | |
| 	{
 | |
| 		.mib
 | |
|         	cmp.eq.or  	L_NOK, L_OK = r0, StateTable
 | |
| 		nop		0x0
 | |
| 	(L_NOK) br.ret.sptk.few rp
 | |
| 	}
 | |
| 	;;
 | |
| 		LKEY		I[1] = [KTable], SZ
 | |
| /* Prefetch the state-table. It contains 256 elements of size SZ */
 | |
| 
 | |
| #if SZ == 1
 | |
| 		ADDP		tmp0 = 1*128, StateTable
 | |
| #elif SZ == 2
 | |
| 		ADDP		tmp0 = 3*128, StateTable
 | |
| 		ADDP		tmp1 = 2*128, StateTable
 | |
| #elif SZ == 4
 | |
| 		ADDP		tmp0 = 7*128, StateTable
 | |
| 		ADDP		tmp1 = 6*128, StateTable
 | |
| #elif SZ == 8
 | |
| 		ADDP		tmp0 = 15*128, StateTable
 | |
| 		ADDP		tmp1 = 14*128, StateTable
 | |
| #endif
 | |
| 		;;
 | |
| #if SZ >= 8
 | |
| 		lfetch.fault.nt1		[tmp0], -256	// 15
 | |
| 		lfetch.fault.nt1		[tmp1], -256;;
 | |
| 		lfetch.fault.nt1		[tmp0], -256	// 13
 | |
| 		lfetch.fault.nt1		[tmp1], -256;;
 | |
| 		lfetch.fault.nt1		[tmp0], -256	// 11
 | |
| 		lfetch.fault.nt1		[tmp1], -256;;
 | |
| 		lfetch.fault.nt1		[tmp0], -256	//  9
 | |
| 		lfetch.fault.nt1		[tmp1], -256;;
 | |
| #endif
 | |
| #if SZ >= 4
 | |
| 		lfetch.fault.nt1		[tmp0], -256	//  7
 | |
| 		lfetch.fault.nt1		[tmp1], -256;;
 | |
| 		lfetch.fault.nt1		[tmp0], -256	//  5
 | |
| 		lfetch.fault.nt1		[tmp1], -256;;
 | |
| #endif
 | |
| #if SZ >= 2
 | |
| 		lfetch.fault.nt1		[tmp0], -256	//  3
 | |
| 		lfetch.fault.nt1		[tmp1], -256;;
 | |
| #endif
 | |
| 	{
 | |
| 		.mii
 | |
| 		lfetch.fault.nt1		[tmp0]		//  1
 | |
| 		add		I[1]=1,I[1];;
 | |
| 		zxt1		I[1]=I[1]
 | |
| 	}
 | |
| 	{
 | |
| 		.mmi
 | |
| 		lfetch.nt1	[InPrefetch], 0x80
 | |
| 		lfetch.excl.nt1	[OutPrefetch], 0x80
 | |
| 		.save		pr, PRSave
 | |
| 		mov		PRSave = pr
 | |
| 	} ;;
 | |
| 	{
 | |
| 		.mmi
 | |
| 		lfetch.excl.nt1	[OutPrefetch], 0x80
 | |
| 		LKEY		J = [KTable], SZ
 | |
| 		ADDP		EndPtr = DataLen, InPtr
 | |
| 	}  ;;
 | |
| 	{
 | |
| 		.mmi
 | |
| 		ADDP		EndPtr = -1, EndPtr	// Make it point to
 | |
| 							// last data byte.
 | |
| 		mov		One = 1
 | |
| 		.save		ar.lc, LCSave
 | |
| 		mov		LCSave = ar.lc
 | |
| 		.body
 | |
| 	} ;;
 | |
| 	{
 | |
| 		.mmb
 | |
| 		sub		Remainder = 0, OutPtr
 | |
| 		cmp.gtu		pSmall, p0 = $threshold, DataLen
 | |
| (pSmall)	br.cond.dpnt	.rc4Remainder		// Data too small for
 | |
| 							// big loop.
 | |
| 	} ;;
 | |
| 	{
 | |
| 		.mmi
 | |
| 		and		Remainder = 0x7, Remainder
 | |
| 		;;
 | |
| 		cmp.eq		pAligned, pUnaligned = Remainder, r0
 | |
| 		nop		0x0
 | |
| 	} ;;
 | |
| 	{
 | |
| 		.mmb
 | |
| .pred.rel	"mutex",pUnaligned,pAligned
 | |
| (pUnaligned)	add		Remainder = -1, Remainder
 | |
| (pAligned)	sub		Remainder = EndPtr, InPtr
 | |
| (pAligned)	br.cond.dptk.many .rc4Aligned
 | |
| 	} ;;
 | |
| 	{
 | |
| 		.mmi
 | |
| 		nop		0x0
 | |
| 		nop		0x0
 | |
| 		mov.i		ar.lc = Remainder
 | |
| 	}
 | |
| 
 | |
| /* Do the initial few bytes via the compact, modulo-scheduled loop
 | |
|    until the output pointer is 8-byte-aligned.  */
 | |
| 
 | |
| 		MODSCHED_RC4_PROLOGUE
 | |
| 		MODSCHED_RC4_LOOP(.RC4AlignLoop)
 | |
| 
 | |
| 	{
 | |
| 		.mib
 | |
| 		sub		Remainder = EndPtr, InPtr
 | |
| 		zxt1		IFinal = IFinal
 | |
| 		clrrrb				// Clear CFM.rrb.pr so
 | |
| 		;;				// next "mov pr.rot = N"
 | |
| 						// does the right thing.
 | |
| 	}
 | |
| 	{
 | |
| 		.mmi
 | |
| 		mov		I[1] = IFinal
 | |
| 		nop		0x0
 | |
| 		nop		0x0
 | |
| 	} ;;
 | |
| 
 | |
| 
 | |
| .rc4Aligned:
 | |
| 
 | |
| /*
 | |
|    Unrolled loop count = (Remainder - ($unroll_count+1)*$phases)/($unroll_count*$phases)
 | |
|  */
 | |
| 
 | |
| 	{
 | |
| 		.mlx
 | |
| 		add	LoopCount = 1 - ($unroll_count + 1)*$phases, Remainder
 | |
| 		movl		Remainder = 0xaaaaaaaaaaaaaaab
 | |
| 	} ;;
 | |
| 	{
 | |
| 		.mmi
 | |
| 		setf.sig	f6 = LoopCount		// M2, M3	6 cyc
 | |
| 		setf.sig	f7 = Remainder		// M2, M3	6 cyc
 | |
| 		nop		0x0
 | |
| 	} ;;
 | |
| 	{
 | |
| 		.mfb
 | |
| 		nop		0x0
 | |
| 		xmpy.hu		f6 = f6, f7
 | |
| 		nop		0x0
 | |
| 	} ;;
 | |
| 	{
 | |
| 		.mmi
 | |
| 		getf.sig	LoopCount = f6;;	// M2		5 cyc
 | |
| 		nop		0x0
 | |
| 		shr.u		LoopCount = LoopCount, 4
 | |
| 	} ;;
 | |
| 	{
 | |
| 		.mmi
 | |
| 		nop		0x0
 | |
| 		nop		0x0
 | |
| 		mov.i		ar.lc = LoopCount
 | |
| 	} ;;
 | |
| 
 | |
| /* Now comes the unrolled loop: */
 | |
| 
 | |
| .rc4Prologue:
 | |
| ___
 | |
| 
 | |
| $iteration = 0;
 | |
| 
 | |
| # Generate the prologue:
 | |
| $predicates = 1;
 | |
| for ($i = 0; $i < $phases; ++$i) {
 | |
|     &emit_body (\$code, \$bypass, $iteration++, $predicates);
 | |
|     $predicates = ($predicates << 1) | 1;
 | |
| }
 | |
| 
 | |
| $code.=<<___;
 | |
| .rc4Loop:
 | |
| ___
 | |
| 
 | |
| # Generate the body:
 | |
| for ($i = 0; $i < $unroll_count*$phases; ++$i) {
 | |
|     &emit_body (\$code, \$bypass, $iteration++, $predicates);
 | |
| }
 | |
| 
 | |
| $code.=<<___;
 | |
| .rc4Epilogue:
 | |
| ___
 | |
| 
 | |
| # Generate the epilogue:
 | |
| for ($i = 0; $i < $phases; ++$i) {
 | |
|     $predicates <<= 1;
 | |
|     &emit_body (\$code, \$bypass, $iteration++, $predicates);
 | |
| }
 | |
| 
 | |
| $code.=<<___;
 | |
| 	{
 | |
| 		.mmi
 | |
| 		lfetch.nt1	[EndPtr]	// fetch line with last byte
 | |
| 		mov		IFinal = I[1]
 | |
| 		nop		0x0
 | |
| 	}
 | |
| 
 | |
| .rc4Remainder:
 | |
| 	{
 | |
| 		.mmi
 | |
| 		sub		Remainder = EndPtr, InPtr	// Calculate
 | |
| 								// # of bytes
 | |
| 								// left - 1
 | |
| 		nop		0x0
 | |
| 		nop		0x0
 | |
| 	} ;;
 | |
| 	{
 | |
| 		.mib
 | |
| 		cmp.eq		pDone, p0 = -1, Remainder // done already?
 | |
| 		mov.i		ar.lc = Remainder
 | |
| (pDone)		br.cond.dptk.few .rc4Complete
 | |
| 	}
 | |
| 
 | |
| /* Do the remaining bytes via the compact, modulo-scheduled loop */
 | |
| 
 | |
| 		MODSCHED_RC4_PROLOGUE
 | |
| 		MODSCHED_RC4_LOOP(.RC4RestLoop)
 | |
| 
 | |
| .rc4Complete:
 | |
| 	{
 | |
| 		.mmi
 | |
| 		add		KTable = -SZ, KTable
 | |
| 		add		IFinal = -1, IFinal
 | |
| 		mov		ar.lc = LCSave
 | |
| 	} ;;
 | |
| 	{
 | |
| 		.mii
 | |
| 		SKEY		[KTable] = J,-SZ
 | |
| 		zxt1		IFinal = IFinal
 | |
| 		mov		pr = PRSave, 0x1FFFF
 | |
| 	} ;;
 | |
| 	{
 | |
| 		.mib
 | |
| 		SKEY		[KTable] = IFinal
 | |
| 		add		RetVal = 1, r0
 | |
| 		br.ret.sptk.few	rp
 | |
| 	} ;;
 | |
| ___
 | |
| 
 | |
| # Last but not least, emit the code for the bypass-code of the unrolled loop:
 | |
| 
 | |
| $code.=$bypass;
 | |
| 
 | |
| $code.=<<___;
 | |
| 	.endp RC4
 | |
| ___
 | |
| 
 | |
| print $code;
 | 
