414 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Perl
		
	
	
	
	
	
			
		
		
	
	
			414 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Perl
		
	
	
	
	
	
| #!/usr/bin/env perl
 | |
| 
 | |
| # ====================================================================
 | |
| # [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
 | |
| # project. The module is, however, dual licensed under OpenSSL and
 | |
| # CRYPTOGAMS licenses depending on where you obtain it. For further
 | |
| # details see http://www.openssl.org/~appro/cryptogams/.
 | |
| # ====================================================================
 | |
| 
 | |
| # At some point it became apparent that the original SSLeay RC4
 | |
| # assembler implementation performs suboptimally on latest IA-32
 | |
| # microarchitectures. After re-tuning performance has changed as
 | |
| # following:
 | |
| #
 | |
| # Pentium	-10%
 | |
| # Pentium III	+12%
 | |
| # AMD		+50%(*)
 | |
| # P4		+250%(**)
 | |
| #
 | |
| # (*)	This number is actually a trade-off:-) It's possible to
 | |
| #	achieve	+72%, but at the cost of -48% off PIII performance.
 | |
| #	In other words code performing further 13% faster on AMD
 | |
| #	would perform almost 2 times slower on Intel PIII...
 | |
| #	For reference! This code delivers ~80% of rc4-amd64.pl
 | |
| #	performance on the same Opteron machine.
 | |
| # (**)	This number requires compressed key schedule set up by
 | |
| #	RC4_set_key [see commentary below for further details].
 | |
| #
 | |
| #					<appro@fy.chalmers.se>
 | |
| 
 | |
| # May 2011
 | |
| #
 | |
| # Optimize for Core2 and Westmere [and incidentally Opteron]. Current
 | |
| # performance in cycles per processed byte (less is better) and
 | |
| # improvement relative to previous version of this module is:
 | |
| #
 | |
| # Pentium	10.2			# original numbers
 | |
| # Pentium III	7.8(*)
 | |
| # Intel P4	7.5
 | |
| #
 | |
| # Opteron	6.1/+20%		# new MMX numbers
 | |
| # Core2		5.3/+67%(**)
 | |
| # Westmere	5.1/+94%(**)
 | |
| # Sandy Bridge	5.0/+8%
 | |
| # Atom		12.6/+6%
 | |
| # VIA Nano	6.4/+9%
 | |
| # Ivy Bridge	4.9/±0%
 | |
| # Bulldozer	4.9/+15%
 | |
| #
 | |
| # (*)	PIII can actually deliver 6.6 cycles per byte with MMX code,
 | |
| #	but this specific code performs poorly on Core2. And vice
 | |
| #	versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs
 | |
| #	poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU
 | |
| #	[anymore], I chose to discard PIII-specific code path and opt
 | |
| #	for original IALU-only code, which is why MMX/SSE code path
 | |
| #	is guarded by SSE2 bit (see below), not MMX/SSE.
 | |
| # (**)	Performance vs. block size on Core2 and Westmere had a maximum
 | |
| #	at ... 64 bytes block size. And it was quite a maximum, 40-60%
 | |
| #	in comparison to largest 8KB block size. Above improvement
 | |
| #	coefficients are for the largest block size.
 | |
| 
 | |
| $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
 | |
| push(@INC,"${dir}","${dir}../../perlasm");
 | |
| require "x86asm.pl";
 | |
| 
 | |
| &asm_init($ARGV[0],"rc4-586.pl");
 | |
| 
 | |
| $xx="eax";
 | |
| $yy="ebx";
 | |
| $tx="ecx";
 | |
| $ty="edx";
 | |
| $inp="esi";
 | |
| $out="ebp";
 | |
| $dat="edi";
 | |
| 
 | |
| sub RC4_loop {
 | |
|   my $i=shift;
 | |
|   my $func = ($i==0)?*mov:*or;
 | |
| 
 | |
| 	&add	(&LB($yy),&LB($tx));
 | |
| 	&mov	($ty,&DWP(0,$dat,$yy,4));
 | |
| 	&mov	(&DWP(0,$dat,$yy,4),$tx);
 | |
| 	&mov	(&DWP(0,$dat,$xx,4),$ty);
 | |
| 	&add	($ty,$tx);
 | |
| 	&inc	(&LB($xx));
 | |
| 	&and	($ty,0xff);
 | |
| 	&ror	($out,8)	if ($i!=0);
 | |
| 	if ($i<3) {
 | |
| 	  &mov	($tx,&DWP(0,$dat,$xx,4));
 | |
| 	} else {
 | |
| 	  &mov	($tx,&wparam(3));	# reload [re-biased] out
 | |
| 	}
 | |
| 	&$func	($out,&DWP(0,$dat,$ty,4));
 | |
| }
 | |
| 
 | |
| if ($alt=0) {
 | |
|   # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron,
 | |
|   # but ~40% slower on Core2 and Westmere... Attempt to add movz
 | |
|   # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet
 | |
|   # on Core2 with movz it's almost 20% slower than below alternative
 | |
|   # code... Yes, it's a total mess...
 | |
|   my @XX=($xx,$out);
 | |
|   $RC4_loop_mmx = sub {		# SSE actually...
 | |
|     my $i=shift;
 | |
|     my $j=$i<=0?0:$i>>1;
 | |
|     my $mm=$i<=0?"mm0":"mm".($i&1);
 | |
| 
 | |
| 	&add	(&LB($yy),&LB($tx));
 | |
| 	&lea	(@XX[1],&DWP(1,@XX[0]));
 | |
| 	&pxor	("mm2","mm0")				if ($i==0);
 | |
| 	&psllq	("mm1",8)				if ($i==0);
 | |
| 	&and	(@XX[1],0xff);
 | |
| 	&pxor	("mm0","mm0")				if ($i<=0);
 | |
| 	&mov	($ty,&DWP(0,$dat,$yy,4));
 | |
| 	&mov	(&DWP(0,$dat,$yy,4),$tx);
 | |
| 	&pxor	("mm1","mm2")				if ($i==0);
 | |
| 	&mov	(&DWP(0,$dat,$XX[0],4),$ty);
 | |
| 	&add	(&LB($ty),&LB($tx));
 | |
| 	&movd	(@XX[0],"mm7")				if ($i==0);
 | |
| 	&mov	($tx,&DWP(0,$dat,@XX[1],4));
 | |
| 	&pxor	("mm1","mm1")				if ($i==1);
 | |
| 	&movq	("mm2",&QWP(0,$inp))			if ($i==1);
 | |
| 	&movq	(&QWP(-8,(@XX[0],$inp)),"mm1")		if ($i==0);
 | |
| 	&pinsrw	($mm,&DWP(0,$dat,$ty,4),$j);
 | |
| 
 | |
| 	push	(@XX,shift(@XX))			if ($i>=0);
 | |
|   }
 | |
| } else {
 | |
|   # Using pinsrw here improves performane on Intel CPUs by 2-3%, but
 | |
|   # brings down AMD by 7%...
 | |
|   $RC4_loop_mmx = sub {
 | |
|     my $i=shift;
 | |
| 
 | |
| 	&add	(&LB($yy),&LB($tx));
 | |
| 	&psllq	("mm1",8*(($i-1)&7))			if (abs($i)!=1);
 | |
| 	&mov	($ty,&DWP(0,$dat,$yy,4));
 | |
| 	&mov	(&DWP(0,$dat,$yy,4),$tx);
 | |
| 	&mov	(&DWP(0,$dat,$xx,4),$ty);
 | |
| 	&inc	($xx);
 | |
| 	&add	($ty,$tx);
 | |
| 	&movz	($xx,&LB($xx));				# (*)
 | |
| 	&movz	($ty,&LB($ty));				# (*)
 | |
| 	&pxor	("mm2",$i==1?"mm0":"mm1")		if ($i>=0);
 | |
| 	&movq	("mm0",&QWP(0,$inp))			if ($i<=0);
 | |
| 	&movq	(&QWP(-8,($out,$inp)),"mm2")		if ($i==0);
 | |
| 	&mov	($tx,&DWP(0,$dat,$xx,4));
 | |
| 	&movd	($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4));
 | |
| 
 | |
| 	# (*)	This is the key to Core2 and Westmere performance.
 | |
| 	#	Whithout movz out-of-order execution logic confuses
 | |
| 	#	itself and fails to reorder loads and stores. Problem
 | |
| 	#	appears to be fixed in Sandy Bridge...
 | |
|   }
 | |
| }
 | |
| 
 | |
| &external_label("OPENSSL_ia32cap_P");
 | |
| 
 | |
| # void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out);
 | |
| &function_begin("RC4");
 | |
| 	&mov	($dat,&wparam(0));	# load key schedule pointer
 | |
| 	&mov	($ty, &wparam(1));	# load len
 | |
| 	&mov	($inp,&wparam(2));	# load inp
 | |
| 	&mov	($out,&wparam(3));	# load out
 | |
| 
 | |
| 	&xor	($xx,$xx);		# avoid partial register stalls
 | |
| 	&xor	($yy,$yy);
 | |
| 
 | |
| 	&cmp	($ty,0);		# safety net
 | |
| 	&je	(&label("abort"));
 | |
| 
 | |
| 	&mov	(&LB($xx),&BP(0,$dat));	# load key->x
 | |
| 	&mov	(&LB($yy),&BP(4,$dat));	# load key->y
 | |
| 	&add	($dat,8);
 | |
| 
 | |
| 	&lea	($tx,&DWP(0,$inp,$ty));
 | |
| 	&sub	($out,$inp);		# re-bias out
 | |
| 	&mov	(&wparam(1),$tx);	# save input+len
 | |
| 
 | |
| 	&inc	(&LB($xx));
 | |
| 
 | |
| 	# detect compressed key schedule...
 | |
| 	&cmp	(&DWP(256,$dat),-1);
 | |
| 	&je	(&label("RC4_CHAR"));
 | |
| 
 | |
| 	&mov	($tx,&DWP(0,$dat,$xx,4));
 | |
| 
 | |
| 	&and	($ty,-4);		# how many 4-byte chunks?
 | |
| 	&jz	(&label("loop1"));
 | |
| 
 | |
| 	&test	($ty,-8);
 | |
| 	&mov	(&wparam(3),$out);	# $out as accumulator in these loops
 | |
| 	&jz	(&label("go4loop4"));
 | |
| 
 | |
| 	&picmeup($out,"OPENSSL_ia32cap_P");
 | |
| 	&bt	(&DWP(0,$out),26);	# check SSE2 bit [could have been MMX]
 | |
| 	&jnc	(&label("go4loop4"));
 | |
| 
 | |
| 	&mov	($out,&wparam(3))	if (!$alt);
 | |
| 	&movd	("mm7",&wparam(3))	if ($alt);
 | |
| 	&and	($ty,-8);
 | |
| 	&lea	($ty,&DWP(-8,$inp,$ty));
 | |
| 	&mov	(&DWP(-4,$dat),$ty);	# save input+(len/8)*8-8
 | |
| 
 | |
| 	&$RC4_loop_mmx(-1);
 | |
| 	&jmp(&label("loop_mmx_enter"));
 | |
| 
 | |
| 	&set_label("loop_mmx",16);
 | |
| 		&$RC4_loop_mmx(0);
 | |
| 	&set_label("loop_mmx_enter");
 | |
| 		for 	($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); }
 | |
| 		&mov	($ty,$yy);
 | |
| 		&xor	($yy,$yy);		# this is second key to Core2
 | |
| 		&mov	(&LB($yy),&LB($ty));	# and Westmere performance...
 | |
| 		&cmp	($inp,&DWP(-4,$dat));
 | |
| 		&lea	($inp,&DWP(8,$inp));
 | |
| 	&jb	(&label("loop_mmx"));
 | |
| 
 | |
|     if ($alt) {
 | |
| 	&movd	($out,"mm7");
 | |
| 	&pxor	("mm2","mm0");
 | |
| 	&psllq	("mm1",8);
 | |
| 	&pxor	("mm1","mm2");
 | |
| 	&movq	(&QWP(-8,$out,$inp),"mm1");
 | |
|     } else {
 | |
| 	&psllq	("mm1",56);
 | |
| 	&pxor	("mm2","mm1");
 | |
| 	&movq	(&QWP(-8,$out,$inp),"mm2");
 | |
|     }
 | |
| 	&emms	();
 | |
| 
 | |
| 	&cmp	($inp,&wparam(1));	# compare to input+len
 | |
| 	&je	(&label("done"));
 | |
| 	&jmp	(&label("loop1"));
 | |
| 
 | |
| &set_label("go4loop4",16);
 | |
| 	&lea	($ty,&DWP(-4,$inp,$ty));
 | |
| 	&mov	(&wparam(2),$ty);	# save input+(len/4)*4-4
 | |
| 
 | |
| 	&set_label("loop4");
 | |
| 		for ($i=0;$i<4;$i++) { RC4_loop($i); }
 | |
| 		&ror	($out,8);
 | |
| 		&xor	($out,&DWP(0,$inp));
 | |
| 		&cmp	($inp,&wparam(2));	# compare to input+(len/4)*4-4
 | |
| 		&mov	(&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here
 | |
| 		&lea	($inp,&DWP(4,$inp));
 | |
| 		&mov	($tx,&DWP(0,$dat,$xx,4));
 | |
| 	&jb	(&label("loop4"));
 | |
| 
 | |
| 	&cmp	($inp,&wparam(1));	# compare to input+len
 | |
| 	&je	(&label("done"));
 | |
| 	&mov	($out,&wparam(3));	# restore $out
 | |
| 
 | |
| 	&set_label("loop1",16);
 | |
| 		&add	(&LB($yy),&LB($tx));
 | |
| 		&mov	($ty,&DWP(0,$dat,$yy,4));
 | |
| 		&mov	(&DWP(0,$dat,$yy,4),$tx);
 | |
| 		&mov	(&DWP(0,$dat,$xx,4),$ty);
 | |
| 		&add	($ty,$tx);
 | |
| 		&inc	(&LB($xx));
 | |
| 		&and	($ty,0xff);
 | |
| 		&mov	($ty,&DWP(0,$dat,$ty,4));
 | |
| 		&xor	(&LB($ty),&BP(0,$inp));
 | |
| 		&lea	($inp,&DWP(1,$inp));
 | |
| 		&mov	($tx,&DWP(0,$dat,$xx,4));
 | |
| 		&cmp	($inp,&wparam(1));	# compare to input+len
 | |
| 		&mov	(&BP(-1,$out,$inp),&LB($ty));
 | |
| 	&jb	(&label("loop1"));
 | |
| 
 | |
| 	&jmp	(&label("done"));
 | |
| 
 | |
| # this is essentially Intel P4 specific codepath...
 | |
| &set_label("RC4_CHAR",16);
 | |
| 	&movz	($tx,&BP(0,$dat,$xx));
 | |
| 	# strangely enough unrolled loop performs over 20% slower...
 | |
| 	&set_label("cloop1");
 | |
| 		&add	(&LB($yy),&LB($tx));
 | |
| 		&movz	($ty,&BP(0,$dat,$yy));
 | |
| 		&mov	(&BP(0,$dat,$yy),&LB($tx));
 | |
| 		&mov	(&BP(0,$dat,$xx),&LB($ty));
 | |
| 		&add	(&LB($ty),&LB($tx));
 | |
| 		&movz	($ty,&BP(0,$dat,$ty));
 | |
| 		&add	(&LB($xx),1);
 | |
| 		&xor	(&LB($ty),&BP(0,$inp));
 | |
| 		&lea	($inp,&DWP(1,$inp));
 | |
| 		&movz	($tx,&BP(0,$dat,$xx));
 | |
| 		&cmp	($inp,&wparam(1));
 | |
| 		&mov	(&BP(-1,$out,$inp),&LB($ty));
 | |
| 	&jb	(&label("cloop1"));
 | |
| 
 | |
| &set_label("done");
 | |
| 	&dec	(&LB($xx));
 | |
| 	&mov	(&DWP(-4,$dat),$yy);		# save key->y
 | |
| 	&mov	(&BP(-8,$dat),&LB($xx));	# save key->x
 | |
| &set_label("abort");
 | |
| &function_end("RC4");
 | |
| 
 | |
| ########################################################################
 | |
| 
 | |
| $inp="esi";
 | |
| $out="edi";
 | |
| $idi="ebp";
 | |
| $ido="ecx";
 | |
| $idx="edx";
 | |
| 
 | |
| # void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data);
 | |
| &function_begin("RC4_set_key");
 | |
| 	&mov	($out,&wparam(0));		# load key
 | |
| 	&mov	($idi,&wparam(1));		# load len
 | |
| 	&mov	($inp,&wparam(2));		# load data
 | |
| 	&picmeup($idx,"OPENSSL_ia32cap_P");
 | |
| 
 | |
| 	&lea	($out,&DWP(2*4,$out));		# &key->data
 | |
| 	&lea	($inp,&DWP(0,$inp,$idi));	# $inp to point at the end
 | |
| 	&neg	($idi);
 | |
| 	&xor	("eax","eax");
 | |
| 	&mov	(&DWP(-4,$out),$idi);		# borrow key->y
 | |
| 
 | |
| 	&bt	(&DWP(0,$idx),20);		# check for bit#20
 | |
| 	&jc	(&label("c1stloop"));
 | |
| 
 | |
| &set_label("w1stloop",16);
 | |
| 	&mov	(&DWP(0,$out,"eax",4),"eax");	# key->data[i]=i;
 | |
| 	&add	(&LB("eax"),1);			# i++;
 | |
| 	&jnc	(&label("w1stloop"));
 | |
| 
 | |
| 	&xor	($ido,$ido);
 | |
| 	&xor	($idx,$idx);
 | |
| 
 | |
| &set_label("w2ndloop",16);
 | |
| 	&mov	("eax",&DWP(0,$out,$ido,4));
 | |
| 	&add	(&LB($idx),&BP(0,$inp,$idi));
 | |
| 	&add	(&LB($idx),&LB("eax"));
 | |
| 	&add	($idi,1);
 | |
| 	&mov	("ebx",&DWP(0,$out,$idx,4));
 | |
| 	&jnz	(&label("wnowrap"));
 | |
| 	  &mov	($idi,&DWP(-4,$out));
 | |
| 	&set_label("wnowrap");
 | |
| 	&mov	(&DWP(0,$out,$idx,4),"eax");
 | |
| 	&mov	(&DWP(0,$out,$ido,4),"ebx");
 | |
| 	&add	(&LB($ido),1);
 | |
| 	&jnc	(&label("w2ndloop"));
 | |
| &jmp	(&label("exit"));
 | |
| 
 | |
| # Unlike all other x86 [and x86_64] implementations, Intel P4 core
 | |
| # [including EM64T] was found to perform poorly with above "32-bit" key
 | |
| # schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded
 | |
| # assembler turned out to be 3.5x if re-coded for compressed 8-bit one,
 | |
| # a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit
 | |
| # schedule for x86[_64], because non-P4 implementations suffer from
 | |
| # significant performance losses then, e.g. PIII exhibits >2x
 | |
| # deterioration, and so does Opteron. In order to assure optimal
 | |
| # all-round performance, we detect P4 at run-time and set up compressed
 | |
| # key schedule, which is recognized by RC4 procedure.
 | |
| 
 | |
| &set_label("c1stloop",16);
 | |
| 	&mov	(&BP(0,$out,"eax"),&LB("eax"));	# key->data[i]=i;
 | |
| 	&add	(&LB("eax"),1);			# i++;
 | |
| 	&jnc	(&label("c1stloop"));
 | |
| 
 | |
| 	&xor	($ido,$ido);
 | |
| 	&xor	($idx,$idx);
 | |
| 	&xor	("ebx","ebx");
 | |
| 
 | |
| &set_label("c2ndloop",16);
 | |
| 	&mov	(&LB("eax"),&BP(0,$out,$ido));
 | |
| 	&add	(&LB($idx),&BP(0,$inp,$idi));
 | |
| 	&add	(&LB($idx),&LB("eax"));
 | |
| 	&add	($idi,1);
 | |
| 	&mov	(&LB("ebx"),&BP(0,$out,$idx));
 | |
| 	&jnz	(&label("cnowrap"));
 | |
| 	  &mov	($idi,&DWP(-4,$out));
 | |
| 	&set_label("cnowrap");
 | |
| 	&mov	(&BP(0,$out,$idx),&LB("eax"));
 | |
| 	&mov	(&BP(0,$out,$ido),&LB("ebx"));
 | |
| 	&add	(&LB($ido),1);
 | |
| 	&jnc	(&label("c2ndloop"));
 | |
| 
 | |
| 	&mov	(&DWP(256,$out),-1);		# mark schedule as compressed
 | |
| 
 | |
| &set_label("exit");
 | |
| 	&xor	("eax","eax");
 | |
| 	&mov	(&DWP(-8,$out),"eax");		# key->x=0;
 | |
| 	&mov	(&DWP(-4,$out),"eax");		# key->y=0;
 | |
| &function_end("RC4_set_key");
 | |
| 
 | |
| # const char *RC4_options(void);
 | |
| &function_begin_B("RC4_options");
 | |
| 	&call	(&label("pic_point"));
 | |
| &set_label("pic_point");
 | |
| 	&blindpop("eax");
 | |
| 	&lea	("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax"));
 | |
| 	&picmeup("edx","OPENSSL_ia32cap_P");
 | |
| 	&mov	("edx",&DWP(0,"edx"));
 | |
| 	&bt	("edx",20);
 | |
| 	&jc	(&label("1xchar"));
 | |
| 	&bt	("edx",26);
 | |
| 	&jnc	(&label("ret"));
 | |
| 	&add	("eax",25);
 | |
| 	&ret	();
 | |
| &set_label("1xchar");
 | |
| 	&add	("eax",12);
 | |
| &set_label("ret");
 | |
| 	&ret	();
 | |
| &set_label("opts",64);
 | |
| &asciz	("rc4(4x,int)");
 | |
| &asciz	("rc4(1x,char)");
 | |
| &asciz	("rc4(8x,mmx)");
 | |
| &asciz	("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>");
 | |
| &align	(64);
 | |
| &function_end_B("RC4_options");
 | |
| 
 | |
| &asm_finish();
 | |
| 
 | 
