/* crypto/sha/sha512.c */ /* ==================================================================== * Copyright (c) 2004 The OpenSSL Project. All rights reserved * according to the OpenSSL license [found in ../../LICENSE]. * ==================================================================== */ #include #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA512) /* * IMPLEMENTATION NOTES. * * As you might have noticed 32-bit hash algorithms: * * - permit SHA_LONG to be wider than 32-bit (case on CRAY); * - optimized versions implement two transform functions: one operating * on [aligned] data in host byte order and one - on data in input * stream byte order; * - share common byte-order neutral collector and padding function * implementations, ../md32_common.h; * * Neither of the above applies to this SHA-512 implementations. Reasons * [in reverse order] are: * * - it's the only 64-bit hash algorithm for the moment of this writing, * there is no need for common collector/padding implementation [yet]; * - by supporting only one transform function [which operates on * *aligned* data in input stream byte order, big-endian in this case] * we minimize burden of maintenance in two ways: a) collector/padding * function is simpler; b) only one transform function to stare at; * - SHA_LONG64 is required to be exactly 64-bit in order to be able to * apply a number of optimizations to mitigate potential performance * penalties caused by previous design decision; * * Caveat lector. * * Implementation relies on the fact that "long long" is 64-bit on * both 32- and 64-bit platforms. If some compiler vendor comes up * with 128-bit long long, adjustment to sha.h would be required. * As this implementation relies on 64-bit integer type, it's totally * inappropriate for platforms which don't support it, most notably * 16-bit platforms. * */ #include #include #include #include #include #include "cryptlib.h" const char SHA512_version[]="SHA-512" OPENSSL_VERSION_PTEXT; #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \ defined(__x86_64) || defined(_M_AMD64) || defined(_M_X64) || \ defined(__s390__) || defined(__s390x__) || \ defined(SHA512_ASM) #define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA #endif int SHA384_Init (SHA512_CTX *c) { #if defined(SHA512_ASM) && (defined(__arm__) || defined(__arm)) /* maintain dword order required by assembler module */ unsigned int *h = (unsigned int *)c->h; h[0] = 0xcbbb9d5d; h[1] = 0xc1059ed8; h[2] = 0x629a292a; h[3] = 0x367cd507; h[4] = 0x9159015a; h[5] = 0x3070dd17; h[6] = 0x152fecd8; h[7] = 0xf70e5939; h[8] = 0x67332667; h[9] = 0xffc00b31; h[10] = 0x8eb44a87; h[11] = 0x68581511; h[12] = 0xdb0c2e0d; h[13] = 0x64f98fa7; h[14] = 0x47b5481d; h[15] = 0xbefa4fa4; #else c->h[0]=U64(0xcbbb9d5dc1059ed8); c->h[1]=U64(0x629a292a367cd507); c->h[2]=U64(0x9159015a3070dd17); c->h[3]=U64(0x152fecd8f70e5939); c->h[4]=U64(0x67332667ffc00b31); c->h[5]=U64(0x8eb44a8768581511); c->h[6]=U64(0xdb0c2e0d64f98fa7); c->h[7]=U64(0x47b5481dbefa4fa4); #endif c->Nl=0; c->Nh=0; c->num=0; c->md_len=SHA384_DIGEST_LENGTH; return 1; } int SHA512_Init (SHA512_CTX *c) { #if defined(SHA512_ASM) && (defined(__arm__) || defined(__arm)) /* maintain dword order required by assembler module */ unsigned int *h = (unsigned int *)c->h; h[0] = 0x6a09e667; h[1] = 0xf3bcc908; h[2] = 0xbb67ae85; h[3] = 0x84caa73b; h[4] = 0x3c6ef372; h[5] = 0xfe94f82b; h[6] = 0xa54ff53a; h[7] = 0x5f1d36f1; h[8] = 0x510e527f; h[9] = 0xade682d1; h[10] = 0x9b05688c; h[11] = 0x2b3e6c1f; h[12] = 0x1f83d9ab; h[13] = 0xfb41bd6b; h[14] = 0x5be0cd19; h[15] = 0x137e2179; #else c->h[0]=U64(0x6a09e667f3bcc908); c->h[1]=U64(0xbb67ae8584caa73b); c->h[2]=U64(0x3c6ef372fe94f82b); c->h[3]=U64(0xa54ff53a5f1d36f1); c->h[4]=U64(0x510e527fade682d1); c->h[5]=U64(0x9b05688c2b3e6c1f); c->h[6]=U64(0x1f83d9abfb41bd6b); c->h[7]=U64(0x5be0cd19137e2179); #endif c->Nl=0; c->Nh=0; c->num=0; c->md_len=SHA512_DIGEST_LENGTH; return 1; } #ifndef SHA512_ASM static #endif void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num); int SHA512_Final (unsigned char *md, SHA512_CTX *c) { unsigned char *p=(unsigned char *)c->u.p; size_t n=c->num; p[n]=0x80; /* There always is a room for one */ n++; if (n > (sizeof(c->u)-16)) memset (p+n,0,sizeof(c->u)-n), n=0, sha512_block_data_order (c,p,1); memset (p+n,0,sizeof(c->u)-16-n); #ifdef B_ENDIAN c->u.d[SHA_LBLOCK-2] = c->Nh; c->u.d[SHA_LBLOCK-1] = c->Nl; #else p[sizeof(c->u)-1] = (unsigned char)(c->Nl); p[sizeof(c->u)-2] = (unsigned char)(c->Nl>>8); p[sizeof(c->u)-3] = (unsigned char)(c->Nl>>16); p[sizeof(c->u)-4] = (unsigned char)(c->Nl>>24); p[sizeof(c->u)-5] = (unsigned char)(c->Nl>>32); p[sizeof(c->u)-6] = (unsigned char)(c->Nl>>40); p[sizeof(c->u)-7] = (unsigned char)(c->Nl>>48); p[sizeof(c->u)-8] = (unsigned char)(c->Nl>>56); p[sizeof(c->u)-9] = (unsigned char)(c->Nh); p[sizeof(c->u)-10] = (unsigned char)(c->Nh>>8); p[sizeof(c->u)-11] = (unsigned char)(c->Nh>>16); p[sizeof(c->u)-12] = (unsigned char)(c->Nh>>24); p[sizeof(c->u)-13] = (unsigned char)(c->Nh>>32); p[sizeof(c->u)-14] = (unsigned char)(c->Nh>>40); p[sizeof(c->u)-15] = (unsigned char)(c->Nh>>48); p[sizeof(c->u)-16] = (unsigned char)(c->Nh>>56); #endif sha512_block_data_order (c,p,1); if (md==0) return 0; #if defined(SHA512_ASM) && (defined(__arm__) || defined(__arm)) /* recall assembler dword order... */ n = c->md_len; if (n == SHA384_DIGEST_LENGTH || n == SHA512_DIGEST_LENGTH) { unsigned int *h = (unsigned int *)c->h, t; for (n/=4;n;n--) { t = *(h++); *(md++) = (unsigned char)(t>>24); *(md++) = (unsigned char)(t>>16); *(md++) = (unsigned char)(t>>8); *(md++) = (unsigned char)(t); } } else return 0; #else switch (c->md_len) { /* Let compiler decide if it's appropriate to unroll... */ case SHA384_DIGEST_LENGTH: for (n=0;nh[n]; *(md++) = (unsigned char)(t>>56); *(md++) = (unsigned char)(t>>48); *(md++) = (unsigned char)(t>>40); *(md++) = (unsigned char)(t>>32); *(md++) = (unsigned char)(t>>24); *(md++) = (unsigned char)(t>>16); *(md++) = (unsigned char)(t>>8); *(md++) = (unsigned char)(t); } break; case SHA512_DIGEST_LENGTH: for (n=0;nh[n]; *(md++) = (unsigned char)(t>>56); *(md++) = (unsigned char)(t>>48); *(md++) = (unsigned char)(t>>40); *(md++) = (unsigned char)(t>>32); *(md++) = (unsigned char)(t>>24); *(md++) = (unsigned char)(t>>16); *(md++) = (unsigned char)(t>>8); *(md++) = (unsigned char)(t); } break; /* ... as well as make sure md_len is not abused. */ default: return 0; } #endif return 1; } int SHA384_Final (unsigned char *md,SHA512_CTX *c) { return SHA512_Final (md,c); } int SHA512_Update (SHA512_CTX *c, const void *_data, size_t len) { SHA_LONG64 l; unsigned char *p=c->u.p; const unsigned char *data=(const unsigned char *)_data; if (len==0) return 1; l = (c->Nl+(((SHA_LONG64)len)<<3))&U64(0xffffffffffffffff); if (l < c->Nl) c->Nh++; if (sizeof(len)>=8) c->Nh+=(((SHA_LONG64)len)>>61); c->Nl=l; if (c->num != 0) { size_t n = sizeof(c->u) - c->num; if (len < n) { memcpy (p+c->num,data,len), c->num += len; return 1; } else { memcpy (p+c->num,data,n), c->num = 0; len-=n, data+=n; sha512_block_data_order (c,p,1); } } if (len >= sizeof(c->u)) { #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA if ((size_t)data%sizeof(c->u.d[0]) != 0) while (len >= sizeof(c->u)) memcpy (p,data,sizeof(c->u)), sha512_block_data_order (c,p,1), len -= sizeof(c->u), data += sizeof(c->u); else #endif sha512_block_data_order (c,data,len/sizeof(c->u)), data += len, len %= sizeof(c->u), data -= len; } if (len != 0) memcpy (p,data,len), c->num = (int)len; return 1; } int SHA384_Update (SHA512_CTX *c, const void *data, size_t len) { return SHA512_Update (c,data,len); } void SHA512_Transform (SHA512_CTX *c, const unsigned char *data) { sha512_block_data_order (c,data,1); } unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md) { SHA512_CTX c; static unsigned char m[SHA384_DIGEST_LENGTH]; if (md == NULL) md=m; SHA384_Init(&c); SHA512_Update(&c,d,n); SHA512_Final(md,&c); OPENSSL_cleanse(&c,sizeof(c)); return(md); } unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md) { SHA512_CTX c; static unsigned char m[SHA512_DIGEST_LENGTH]; if (md == NULL) md=m; SHA512_Init(&c); SHA512_Update(&c,d,n); SHA512_Final(md,&c); OPENSSL_cleanse(&c,sizeof(c)); return(md); } #ifndef SHA512_ASM static const SHA_LONG64 K512[80] = { U64(0x428a2f98d728ae22),U64(0x7137449123ef65cd), U64(0xb5c0fbcfec4d3b2f),U64(0xe9b5dba58189dbbc), U64(0x3956c25bf348b538),U64(0x59f111f1b605d019), U64(0x923f82a4af194f9b),U64(0xab1c5ed5da6d8118), U64(0xd807aa98a3030242),U64(0x12835b0145706fbe), U64(0x243185be4ee4b28c),U64(0x550c7dc3d5ffb4e2), U64(0x72be5d74f27b896f),U64(0x80deb1fe3b1696b1), U64(0x9bdc06a725c71235),U64(0xc19bf174cf692694), U64(0xe49b69c19ef14ad2),U64(0xefbe4786384f25e3), U64(0x0fc19dc68b8cd5b5),U64(0x240ca1cc77ac9c65), U64(0x2de92c6f592b0275),U64(0x4a7484aa6ea6e483), U64(0x5cb0a9dcbd41fbd4),U64(0x76f988da831153b5), U64(0x983e5152ee66dfab),U64(0xa831c66d2db43210), U64(0xb00327c898fb213f),U64(0xbf597fc7beef0ee4), U64(0xc6e00bf33da88fc2),U64(0xd5a79147930aa725), U64(0x06ca6351e003826f),U64(0x142929670a0e6e70), U64(0x27b70a8546d22ffc),U64(0x2e1b21385c26c926), U64(0x4d2c6dfc5ac42aed),U64(0x53380d139d95b3df), U64(0x650a73548baf63de),U64(0x766a0abb3c77b2a8), U64(0x81c2c92e47edaee6),U64(0x92722c851482353b), U64(0xa2bfe8a14cf10364),U64(0xa81a664bbc423001), U64(0xc24b8b70d0f89791),U64(0xc76c51a30654be30), U64(0xd192e819d6ef5218),U64(0xd69906245565a910), U64(0xf40e35855771202a),U64(0x106aa07032bbd1b8), U64(0x19a4c116b8d2d0c8),U64(0x1e376c085141ab53), U64(0x2748774cdf8eeb99),U64(0x34b0bcb5e19b48a8), U64(0x391c0cb3c5c95a63),U64(0x4ed8aa4ae3418acb), U64(0x5b9cca4f7763e373),U64(0x682e6ff3d6b2b8a3), U64(0x748f82ee5defb2fc),U64(0x78a5636f43172f60), U64(0x84c87814a1f0ab72),U64(0x8cc702081a6439ec), U64(0x90befffa23631e28),U64(0xa4506cebde82bde9), U64(0xbef9a3f7b2c67915),U64(0xc67178f2e372532b), U64(0xca273eceea26619c),U64(0xd186b8c721c0c207), U64(0xeada7dd6cde0eb1e),U64(0xf57d4f7fee6ed178), U64(0x06f067aa72176fba),U64(0x0a637dc5a2c898a6), U64(0x113f9804bef90dae),U64(0x1b710b35131c471b), U64(0x28db77f523047d84),U64(0x32caab7b40c72493), U64(0x3c9ebe0a15c9bebc),U64(0x431d67c49c100d4c), U64(0x4cc5d4becb3e42b6),U64(0x597f299cfc657e2a), U64(0x5fcb6fab3ad6faec),U64(0x6c44198c4a475817) }; #ifndef PEDANTIC # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) # if defined(__x86_64) || defined(__x86_64__) # define ROTR(a,n) ({ SHA_LONG64 ret; \ asm ("rorq %1,%0" \ : "=r"(ret) \ : "J"(n),"0"(a) \ : "cc"); ret; }) # if !defined(B_ENDIAN) # define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x))); \ asm ("bswapq %0" \ : "=r"(ret) \ : "0"(ret)); ret; }) # endif # elif (defined(__i386) || defined(__i386__)) && !defined(B_ENDIAN) # if defined(I386_ONLY) # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\ unsigned int hi=p[0],lo=p[1]; \ asm("xchgb %%ah,%%al;xchgb %%dh,%%dl;"\ "roll $16,%%eax; roll $16,%%edx; "\ "xchgb %%ah,%%al;xchgb %%dh,%%dl;" \ : "=a"(lo),"=d"(hi) \ : "0"(lo),"1"(hi) : "cc"); \ ((SHA_LONG64)hi)<<32|lo; }) # else # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\ unsigned int hi=p[0],lo=p[1]; \ asm ("bswapl %0; bswapl %1;" \ : "=r"(lo),"=r"(hi) \ : "0"(lo),"1"(hi)); \ ((SHA_LONG64)hi)<<32|lo; }) # endif # elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64) # define ROTR(a,n) ({ unsigned long ret; \ asm ("rotrdi %0,%1,%2" \ : "=r"(ret) \ : "r"(a),"K"(n)); ret; }) # endif # elif defined(_MSC_VER) # if defined(_WIN64) /* applies to both IA-64 and AMD64 */ # pragma intrinsic(_rotr64) # define ROTR(a,n) _rotr64((a),n) # endif # if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) # if defined(I386_ONLY) static SHA_LONG64 __fastcall __pull64be(const void *x) { _asm mov edx, [ecx + 0] _asm mov eax, [ecx + 4] _asm xchg dh,dl _asm xchg ah,al _asm rol edx,16 _asm rol eax,16 _asm xchg dh,dl _asm xchg ah,al } # else static SHA_LONG64 __fastcall __pull64be(const void *x) { _asm mov edx, [ecx + 0] _asm mov eax, [ecx + 4] _asm bswap edx _asm bswap eax } # endif # define PULL64(x) __pull64be(&(x)) # if _MSC_VER<=1200 # pragma inline_depth(0) # endif # endif # endif #endif #ifndef PULL64 #define B(x,j) (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8)) #define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7)) #endif #ifndef ROTR #define ROTR(x,s) (((x)>>s) | (x)<<(64-s)) #endif #define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39)) #define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41)) #define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7)) #define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6)) #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) #if defined(__i386) || defined(__i386__) || defined(_M_IX86) /* * This code should give better results on 32-bit CPU with less than * ~24 registers, both size and performance wise... */ static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num) { const SHA_LONG64 *W=in; SHA_LONG64 A,E,T; SHA_LONG64 X[9+80],*F; int i; while (num--) { F = X+80; A = ctx->h[0]; F[1] = ctx->h[1]; F[2] = ctx->h[2]; F[3] = ctx->h[3]; E = ctx->h[4]; F[5] = ctx->h[5]; F[6] = ctx->h[6]; F[7] = ctx->h[7]; for (i=0;i<16;i++,F--) { #ifdef B_ENDIAN T = W[i]; #else T = PULL64(W[i]); #endif F[0] = A; F[4] = E; F[8] = T; T += F[7] + Sigma1(E) + Ch(E,F[5],F[6]) + K512[i]; E = F[3] + T; A = T + Sigma0(A) + Maj(A,F[1],F[2]); } for (;i<80;i++,F--) { T = sigma0(F[8+16-1]); T += sigma1(F[8+16-14]); T += F[8+16] + F[8+16-9]; F[0] = A; F[4] = E; F[8] = T; T += F[7] + Sigma1(E) + Ch(E,F[5],F[6]) + K512[i]; E = F[3] + T; A = T + Sigma0(A) + Maj(A,F[1],F[2]); } ctx->h[0] += A; ctx->h[1] += F[1]; ctx->h[2] += F[2]; ctx->h[3] += F[3]; ctx->h[4] += E; ctx->h[5] += F[5]; ctx->h[6] += F[6]; ctx->h[7] += F[7]; W+=SHA_LBLOCK; } } #elif defined(OPENSSL_SMALL_FOOTPRINT) static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num) { const SHA_LONG64 *W=in; SHA_LONG64 a,b,c,d,e,f,g,h,s0,s1,T1,T2; SHA_LONG64 X[16]; int i; while (num--) { a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7]; for (i=0;i<16;i++) { #ifdef B_ENDIAN T1 = X[i] = W[i]; #else T1 = X[i] = PULL64(W[i]); #endif T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; T2 = Sigma0(a) + Maj(a,b,c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; } for (;i<80;i++) { s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf]; T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; T2 = Sigma0(a) + Maj(a,b,c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; } ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; W+=SHA_LBLOCK; } } #else #define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \ T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; \ h = Sigma0(a) + Maj(a,b,c); \ d += T1; h += T1; } while (0) #define ROUND_16_80(i,j,a,b,c,d,e,f,g,h,X) do { \ s0 = X[(j+1)&0x0f]; s0 = sigma0(s0); \ s1 = X[(j+14)&0x0f]; s1 = sigma1(s1); \ T1 = X[(j)&0x0f] += s0 + s1 + X[(j+9)&0x0f]; \ ROUND_00_15(i+j,a,b,c,d,e,f,g,h); } while (0) static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num) { const SHA_LONG64 *W=in; SHA_LONG64 a,b,c,d,e,f,g,h,s0,s1,T1; SHA_LONG64 X[16]; int i; while (num--) { a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7]; #ifdef B_ENDIAN T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h); T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g); T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f); T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e); T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d); T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c); T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b); T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a); T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h); T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g); T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f); T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e); T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d); T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c); T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b); T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a); #else T1 = X[0] = PULL64(W[0]); ROUND_00_15(0,a,b,c,d,e,f,g,h); T1 = X[1] = PULL64(W[1]); ROUND_00_15(1,h,a,b,c,d,e,f,g); T1 = X[2] = PULL64(W[2]); ROUND_00_15(2,g,h,a,b,c,d,e,f); T1 = X[3] = PULL64(W[3]); ROUND_00_15(3,f,g,h,a,b,c,d,e); T1 = X[4] = PULL64(W[4]); ROUND_00_15(4,e,f,g,h,a,b,c,d); T1 = X[5] = PULL64(W[5]); ROUND_00_15(5,d,e,f,g,h,a,b,c); T1 = X[6] = PULL64(W[6]); ROUND_00_15(6,c,d,e,f,g,h,a,b); T1 = X[7] = PULL64(W[7]); ROUND_00_15(7,b,c,d,e,f,g,h,a); T1 = X[8] = PULL64(W[8]); ROUND_00_15(8,a,b,c,d,e,f,g,h); T1 = X[9] = PULL64(W[9]); ROUND_00_15(9,h,a,b,c,d,e,f,g); T1 = X[10] = PULL64(W[10]); ROUND_00_15(10,g,h,a,b,c,d,e,f); T1 = X[11] = PULL64(W[11]); ROUND_00_15(11,f,g,h,a,b,c,d,e); T1 = X[12] = PULL64(W[12]); ROUND_00_15(12,e,f,g,h,a,b,c,d); T1 = X[13] = PULL64(W[13]); ROUND_00_15(13,d,e,f,g,h,a,b,c); T1 = X[14] = PULL64(W[14]); ROUND_00_15(14,c,d,e,f,g,h,a,b); T1 = X[15] = PULL64(W[15]); ROUND_00_15(15,b,c,d,e,f,g,h,a); #endif for (i=16;i<80;i+=16) { ROUND_16_80(i, 0,a,b,c,d,e,f,g,h,X); ROUND_16_80(i, 1,h,a,b,c,d,e,f,g,X); ROUND_16_80(i, 2,g,h,a,b,c,d,e,f,X); ROUND_16_80(i, 3,f,g,h,a,b,c,d,e,X); ROUND_16_80(i, 4,e,f,g,h,a,b,c,d,X); ROUND_16_80(i, 5,d,e,f,g,h,a,b,c,X); ROUND_16_80(i, 6,c,d,e,f,g,h,a,b,X); ROUND_16_80(i, 7,b,c,d,e,f,g,h,a,X); ROUND_16_80(i, 8,a,b,c,d,e,f,g,h,X); ROUND_16_80(i, 9,h,a,b,c,d,e,f,g,X); ROUND_16_80(i,10,g,h,a,b,c,d,e,f,X); ROUND_16_80(i,11,f,g,h,a,b,c,d,e,X); ROUND_16_80(i,12,e,f,g,h,a,b,c,d,X); ROUND_16_80(i,13,d,e,f,g,h,a,b,c,X); ROUND_16_80(i,14,c,d,e,f,g,h,a,b,X); ROUND_16_80(i,15,b,c,d,e,f,g,h,a,X); } ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; W+=SHA_LBLOCK; } } #endif #endif /* SHA512_ASM */ #else /* !OPENSSL_NO_SHA512 */ #if defined(PEDANTIC) || defined(__DECC) || defined(OPENSSL_SYS_MACOSX) static void *dummy=&dummy; #endif #endif /* !OPENSSL_NO_SHA512 */