/* * Support for Intel AES-NI intruction set * Author: Huang Ying * * Intel AES-NI is a new set of Single Instruction Multiple Data * (SIMD) instructions that are going to be introduced in the next * generation of Intel processor, as of 2009. These instructions * enable fast and secure data encryption and decryption, using the * Advanced Encryption Standard (AES), defined by FIPS Publication * number 197. The architecture introduces six instructions that * offer full hardware support for AES. Four of them support high * performance data encryption and decryption, and the other two * instructions support the AES key expansion procedure. * * The white paper can be downloaded from: * http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf * * This file is based on engines/e_padlock.c */ /* ==================================================================== * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ #include #if !defined(OPENSSL_NO_HW) && !defined(OPENSSL_NO_HW_AES_NI) && !defined(OPENSSL_NO_AES) #include #include #include #include #include #include #include #include #include #include #include /* AES-NI is available *ONLY* on some x86 CPUs. Not only that it doesn't exist elsewhere, but it even can't be compiled on other platforms! */ #undef COMPILE_HW_AESNI #if (defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined(_M_X64) || \ defined(OPENSSL_IA32_SSE2)) && !defined(OPENSSL_NO_ASM) #define COMPILE_HW_AESNI static ENGINE *ENGINE_aesni (void); #endif void ENGINE_load_aesni (void) { /* On non-x86 CPUs it just returns. */ #ifdef COMPILE_HW_AESNI ENGINE *toadd = ENGINE_aesni(); if (!toadd) return; ENGINE_add (toadd); ENGINE_free (toadd); ERR_clear_error (); #endif } #ifdef COMPILE_HW_AESNI int aesni_set_encrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key); int aesni_set_decrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key); void aesni_encrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void aesni_decrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void aesni_ecb_encrypt(const unsigned char *in, unsigned char *out, const unsigned long length, const AES_KEY *key, const int enc); void aesni_cbc_encrypt(const unsigned char *in, unsigned char *out, const unsigned long length, const AES_KEY *key, unsigned char *ivec, const int enc); /* Function for ENGINE detection and control */ static int aesni_init(ENGINE *e); /* Cipher Stuff */ static int aesni_ciphers(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid); #define AESNI_MIN_ALIGN 16 #define AESNI_ALIGN(x) \ ((void *)(((unsigned long)(x)+AESNI_MIN_ALIGN-1)&~(AESNI_MIN_ALIGN-1))) /* Engine names */ static const char *aesni_id = "aesni"; static const char *aesni_name = "Intel AES-NI engine"; /* ===== Engine "management" functions ===== */ /* Prepare the ENGINE structure for registration */ static int aesni_bind_helper(ENGINE *e) { if (!(OPENSSL_ia32cap_P[1] & (1UL << (57-32)))) return 0; /* Register everything or return with an error */ if (!ENGINE_set_id(e, aesni_id) || !ENGINE_set_name(e, aesni_name) || !ENGINE_set_init_function(e, aesni_init) || !ENGINE_set_ciphers (e, aesni_ciphers)) return 0; /* Everything looks good */ return 1; } /* Constructor */ static ENGINE * ENGINE_aesni(void) { ENGINE *eng = ENGINE_new(); if (!eng) { return NULL; } if (!aesni_bind_helper(eng)) { ENGINE_free(eng); return NULL; } return eng; } /* Check availability of the engine */ static int aesni_init(ENGINE *e) { return 1; } #if defined(NID_aes_128_cfb128) && ! defined (NID_aes_128_cfb) #define NID_aes_128_cfb NID_aes_128_cfb128 #endif #if defined(NID_aes_128_ofb128) && ! defined (NID_aes_128_ofb) #define NID_aes_128_ofb NID_aes_128_ofb128 #endif #if defined(NID_aes_192_cfb128) && ! defined (NID_aes_192_cfb) #define NID_aes_192_cfb NID_aes_192_cfb128 #endif #if defined(NID_aes_192_ofb128) && ! defined (NID_aes_192_ofb) #define NID_aes_192_ofb NID_aes_192_ofb128 #endif #if defined(NID_aes_256_cfb128) && ! defined (NID_aes_256_cfb) #define NID_aes_256_cfb NID_aes_256_cfb128 #endif #if defined(NID_aes_256_ofb128) && ! defined (NID_aes_256_ofb) #define NID_aes_256_ofb NID_aes_256_ofb128 #endif /* List of supported ciphers. */ static int aesni_cipher_nids[] = { NID_aes_128_ecb, NID_aes_128_cbc, NID_aes_128_cfb, NID_aes_128_ofb, NID_aes_192_ecb, NID_aes_192_cbc, NID_aes_192_cfb, NID_aes_192_ofb, NID_aes_256_ecb, NID_aes_256_cbc, NID_aes_256_cfb, NID_aes_256_ofb, }; static int aesni_cipher_nids_num = (sizeof(aesni_cipher_nids)/sizeof(aesni_cipher_nids[0])); typedef struct { AES_KEY ks; unsigned int _pad1[3]; } AESNI_KEY; static int aesni_init_key (EVP_CIPHER_CTX *ctx, const unsigned char *user_key, const unsigned char *iv, int enc) { int ret; AES_KEY *key = AESNI_ALIGN(ctx->cipher_data); if ((ctx->cipher->flags & EVP_CIPH_MODE) == EVP_CIPH_CFB_MODE || (ctx->cipher->flags & EVP_CIPH_MODE) == EVP_CIPH_OFB_MODE || enc) ret=aesni_set_encrypt_key(user_key, ctx->key_len * 8, key); else ret=aesni_set_decrypt_key(user_key, ctx->key_len * 8, key); if(ret < 0) { EVPerr(EVP_F_AES_INIT_KEY,EVP_R_AES_KEY_SETUP_FAILED); return 0; } return 1; } static int aesni_cipher_ecb(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { AES_KEY *key = AESNI_ALIGN(ctx->cipher_data); aesni_ecb_encrypt(in, out, inl, key, ctx->encrypt); return 1; } static int aesni_cipher_cbc(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { AES_KEY *key = AESNI_ALIGN(ctx->cipher_data); aesni_cbc_encrypt(in, out, inl, key, ctx->iv, ctx->encrypt); return 1; } static int aesni_cipher_cfb(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { AES_KEY *key = AESNI_ALIGN(ctx->cipher_data); CRYPTO_cfb128_encrypt(in, out, inl, key, ctx->iv, &ctx->num, ctx->encrypt, aesni_encrypt); return 1; } static int aesni_cipher_ofb(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { AES_KEY *key = AESNI_ALIGN(ctx->cipher_data); CRYPTO_ofb128_encrypt(in, out, inl, key, ctx->iv, &ctx->num, aesni_encrypt); return 1; } #define AES_BLOCK_SIZE 16 #define EVP_CIPHER_block_size_ECB AES_BLOCK_SIZE #define EVP_CIPHER_block_size_CBC AES_BLOCK_SIZE #define EVP_CIPHER_block_size_OFB 1 #define EVP_CIPHER_block_size_CFB 1 /* Declaring so many ciphers by hand would be a pain. Instead introduce a bit of preprocessor magic :-) */ #define DECLARE_AES_EVP(ksize,lmode,umode) \ static const EVP_CIPHER aesni_##ksize##_##lmode = { \ NID_aes_##ksize##_##lmode, \ EVP_CIPHER_block_size_##umode, \ ksize / 8, \ AES_BLOCK_SIZE, \ 0 | EVP_CIPH_##umode##_MODE, \ aesni_init_key, \ aesni_cipher_##lmode, \ NULL, \ sizeof(AESNI_KEY), \ EVP_CIPHER_set_asn1_iv, \ EVP_CIPHER_get_asn1_iv, \ NULL, \ NULL \ } DECLARE_AES_EVP(128,ecb,ECB); DECLARE_AES_EVP(128,cbc,CBC); DECLARE_AES_EVP(128,cfb,CFB); DECLARE_AES_EVP(128,ofb,OFB); DECLARE_AES_EVP(192,ecb,ECB); DECLARE_AES_EVP(192,cbc,CBC); DECLARE_AES_EVP(192,cfb,CFB); DECLARE_AES_EVP(192,ofb,OFB); DECLARE_AES_EVP(256,ecb,ECB); DECLARE_AES_EVP(256,cbc,CBC); DECLARE_AES_EVP(256,cfb,CFB); DECLARE_AES_EVP(256,ofb,OFB); static int aesni_ciphers (ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid) { /* No specific cipher => return a list of supported nids ... */ if (!cipher) { *nids = aesni_cipher_nids; return aesni_cipher_nids_num; } /* ... or the requested "cipher" otherwise */ switch (nid) { case NID_aes_128_ecb: *cipher = &aesni_128_ecb; break; case NID_aes_128_cbc: *cipher = &aesni_128_cbc; break; case NID_aes_128_cfb: *cipher = &aesni_128_cfb; break; case NID_aes_128_ofb: *cipher = &aesni_128_ofb; break; case NID_aes_192_ecb: *cipher = &aesni_192_ecb; break; case NID_aes_192_cbc: *cipher = &aesni_192_cbc; break; case NID_aes_192_cfb: *cipher = &aesni_192_cfb; break; case NID_aes_192_ofb: *cipher = &aesni_192_ofb; break; case NID_aes_256_ecb: *cipher = &aesni_256_ecb; break; case NID_aes_256_cbc: *cipher = &aesni_256_cbc; break; case NID_aes_256_cfb: *cipher = &aesni_256_cfb; break; case NID_aes_256_ofb: *cipher = &aesni_256_ofb; break; default: /* Sorry, we don't support this NID */ *cipher = NULL; return 0; } return 1; } #endif /* COMPILE_HW_AESNI */ #endif /* !defined(OPENSSL_NO_HW) && !defined(OPENSSL_NO_HW_AESNI) && !defined(OPENSSL_NO_AES) */