/* crypto/bn/bn_asm.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #ifndef BN_DEBUG # undef NDEBUG /* avoid conflicting definitions */ # define NDEBUG #endif #include <assert.h> #include <openssl/crypto.h> #include "cryptlib.h" #include "bn_lcl.h" #if defined(BN_LLONG) || defined(BN_UMULT_HIGH) BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG c1 = 0; assert(num >= 0); if (num <= 0) return (c1); # ifndef OPENSSL_SMALL_FOOTPRINT while (num & ~3) { mul_add(rp[0], ap[0], w, c1); mul_add(rp[1], ap[1], w, c1); mul_add(rp[2], ap[2], w, c1); mul_add(rp[3], ap[3], w, c1); ap += 4; rp += 4; num -= 4; } # endif while (num) { mul_add(rp[0], ap[0], w, c1); ap++; rp++; num--; } return (c1); } BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG c1 = 0; assert(num >= 0); if (num <= 0) return (c1); # ifndef OPENSSL_SMALL_FOOTPRINT while (num & ~3) { mul(rp[0], ap[0], w, c1); mul(rp[1], ap[1], w, c1); mul(rp[2], ap[2], w, c1); mul(rp[3], ap[3], w, c1); ap += 4; rp += 4; num -= 4; } # endif while (num) { mul(rp[0], ap[0], w, c1); ap++; rp++; num--; } return (c1); } void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) { assert(n >= 0); if (n <= 0) return; # ifndef OPENSSL_SMALL_FOOTPRINT while (n & ~3) { sqr(r[0], r[1], a[0]); sqr(r[2], r[3], a[1]); sqr(r[4], r[5], a[2]); sqr(r[6], r[7], a[3]); a += 4; r += 8; n -= 4; } # endif while (n) { sqr(r[0], r[1], a[0]); a++; r += 2; n--; } } #else /* !(defined(BN_LLONG) || * defined(BN_UMULT_HIGH)) */ BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG c = 0; BN_ULONG bl, bh; assert(num >= 0); if (num <= 0) return ((BN_ULONG)0); bl = LBITS(w); bh = HBITS(w); # ifndef OPENSSL_SMALL_FOOTPRINT while (num & ~3) { mul_add(rp[0], ap[0], bl, bh, c); mul_add(rp[1], ap[1], bl, bh, c); mul_add(rp[2], ap[2], bl, bh, c); mul_add(rp[3], ap[3], bl, bh, c); ap += 4; rp += 4; num -= 4; } # endif while (num) { mul_add(rp[0], ap[0], bl, bh, c); ap++; rp++; num--; } return (c); } BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) { BN_ULONG carry = 0; BN_ULONG bl, bh; assert(num >= 0); if (num <= 0) return ((BN_ULONG)0); bl = LBITS(w); bh = HBITS(w); # ifndef OPENSSL_SMALL_FOOTPRINT while (num & ~3) { mul(rp[0], ap[0], bl, bh, carry); mul(rp[1], ap[1], bl, bh, carry); mul(rp[2], ap[2], bl, bh, carry); mul(rp[3], ap[3], bl, bh, carry); ap += 4; rp += 4; num -= 4; } # endif while (num) { mul(rp[0], ap[0], bl, bh, carry); ap++; rp++; num--; } return (carry); } void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) { assert(n >= 0); if (n <= 0) return; # ifndef OPENSSL_SMALL_FOOTPRINT while (n & ~3) { sqr64(r[0], r[1], a[0]); sqr64(r[2], r[3], a[1]); sqr64(r[4], r[5], a[2]); sqr64(r[6], r[7], a[3]); a += 4; r += 8; n -= 4; } # endif while (n) { sqr64(r[0], r[1], a[0]); a++; r += 2; n--; } } #endif /* !(defined(BN_LLONG) || * defined(BN_UMULT_HIGH)) */ #if defined(BN_LLONG) && defined(BN_DIV2W) BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) { return ((BN_ULONG)(((((BN_ULLONG) h) << BN_BITS2) | l) / (BN_ULLONG) d)); } #else /* Divide h,l by d and return the result. */ /* I need to test this some more :-( */ BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) { BN_ULONG dh, dl, q, ret = 0, th, tl, t; int i, count = 2; if (d == 0) return (BN_MASK2); i = BN_num_bits_word(d); assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i)); i = BN_BITS2 - i; if (h >= d) h -= d; if (i) { d <<= i; h = (h << i) | (l >> (BN_BITS2 - i)); l <<= i; } dh = (d & BN_MASK2h) >> BN_BITS4; dl = (d & BN_MASK2l); for (;;) { if ((h >> BN_BITS4) == dh) q = BN_MASK2l; else q = h / dh; th = q * dh; tl = dl * q; for (;;) { t = h - th; if ((t & BN_MASK2h) || ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4)))) break; q--; th -= dh; tl -= dl; } t = (tl >> BN_BITS4); tl = (tl << BN_BITS4) & BN_MASK2h; th += t; if (l < tl) th++; l -= tl; if (h < th) { h += d; q--; } h -= th; if (--count == 0) break; ret = q << BN_BITS4; h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2; l = (l & BN_MASK2l) << BN_BITS4; } ret |= q; return (ret); } #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */ #ifdef BN_LLONG BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) { BN_ULLONG ll = 0; assert(n >= 0); if (n <= 0) return ((BN_ULONG)0); # ifndef OPENSSL_SMALL_FOOTPRINT while (n & ~3) { ll += (BN_ULLONG) a[0] + b[0]; r[0] = (BN_ULONG)ll & BN_MASK2; ll >>= BN_BITS2; ll += (BN_ULLONG) a[1] + b[1]; r[1] = (BN_ULONG)ll & BN_MASK2; ll >>= BN_BITS2; ll += (BN_ULLONG) a[2] + b[2]; r[2] = (BN_ULONG)ll & BN_MASK2; ll >>= BN_BITS2; ll += (BN_ULLONG) a[3] + b[3]; r[3] = (BN_ULONG)ll & BN_MASK2; ll >>= BN_BITS2; a += 4; b += 4; r += 4; n -= 4; } # endif while (n) { ll += (BN_ULLONG) a[0] + b[0]; r[0] = (BN_ULONG)ll & BN_MASK2; ll >>= BN_BITS2; a++; b++; r++; n--; } return ((BN_ULONG)ll); } #else /* !BN_LLONG */ BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) { BN_ULONG c, l, t; assert(n >= 0); if (n <= 0) return ((BN_ULONG)0); c = 0; # ifndef OPENSSL_SMALL_FOOTPRINT while (n & ~3) { t = a[0]; t = (t + c) & BN_MASK2; c = (t < c); l = (t + b[0]) & BN_MASK2; c += (l < t); r[0] = l; t = a[1]; t = (t + c) & BN_MASK2; c = (t < c); l = (t + b[1]) & BN_MASK2; c += (l < t); r[1] = l; t = a[2]; t = (t + c) & BN_MASK2; c = (t < c); l = (t + b[2]) & BN_MASK2; c += (l < t); r[2] = l; t = a[3]; t = (t + c) & BN_MASK2; c = (t < c); l = (t + b[3]) & BN_MASK2; c += (l < t); r[3] = l; a += 4; b += 4; r += 4; n -= 4; } # endif while (n) { t = a[0]; t = (t + c) & BN_MASK2; c = (t < c); l = (t + b[0]) & BN_MASK2; c += (l < t); r[0] = l; a++; b++; r++; n--; } return ((BN_ULONG)c); } #endif /* !BN_LLONG */ BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) { BN_ULONG t1, t2; int c = 0; assert(n >= 0); if (n <= 0) return ((BN_ULONG)0); #ifndef OPENSSL_SMALL_FOOTPRINT while (n & ~3) { t1 = a[0]; t2 = b[0]; r[0] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) c = (t1 < t2); t1 = a[1]; t2 = b[1]; r[1] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) c = (t1 < t2); t1 = a[2]; t2 = b[2]; r[2] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) c = (t1 < t2); t1 = a[3]; t2 = b[3]; r[3] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) c = (t1 < t2); a += 4; b += 4; r += 4; n -= 4; } #endif while (n) { t1 = a[0]; t2 = b[0]; r[0] = (t1 - t2 - c) & BN_MASK2; if (t1 != t2) c = (t1 < t2); a++; b++; r++; n--; } return (c); } #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT) # undef bn_mul_comba8 # undef bn_mul_comba4 # undef bn_sqr_comba8 # undef bn_sqr_comba4 /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */ /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */ /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */ /* * sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number * c=(c2,c1,c0) */ # ifdef BN_LLONG /* * Keep in mind that additions to multiplication result can not * overflow, because its high half cannot be all-ones. */ # define mul_add_c(a,b,c0,c1,c2) do { \ BN_ULONG hi; \ BN_ULLONG t = (BN_ULLONG)(a)*(b); \ t += c0; /* no carry */ \ c0 = (BN_ULONG)Lw(t); \ hi = (BN_ULONG)Hw(t); \ c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ } while(0) # define mul_add_c2(a,b,c0,c1,c2) do { \ BN_ULONG hi; \ BN_ULLONG t = (BN_ULLONG)(a)*(b); \ BN_ULLONG tt = t+c0; /* no carry */ \ c0 = (BN_ULONG)Lw(tt); \ hi = (BN_ULONG)Hw(tt); \ c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ t += c0; /* no carry */ \ c0 = (BN_ULONG)Lw(t); \ hi = (BN_ULONG)Hw(t); \ c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ } while(0) # define sqr_add_c(a,i,c0,c1,c2) do { \ BN_ULONG hi; \ BN_ULLONG t = (BN_ULLONG)a[i]*a[i]; \ t += c0; /* no carry */ \ c0 = (BN_ULONG)Lw(t); \ hi = (BN_ULONG)Hw(t); \ c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ } while(0) # define sqr_add_c2(a,i,j,c0,c1,c2) \ mul_add_c2((a)[i],(a)[j],c0,c1,c2) # elif defined(BN_UMULT_LOHI) /* * Keep in mind that additions to hi can not overflow, because * the high word of a multiplication result cannot be all-ones. */ # define mul_add_c(a,b,c0,c1,c2) do { \ BN_ULONG ta = (a), tb = (b); \ BN_ULONG lo, hi; \ BN_UMULT_LOHI(lo,hi,ta,tb); \ c0 += lo; hi += (c0<lo)?1:0; \ c1 += hi; c2 += (c1<hi)?1:0; \ } while(0) # define mul_add_c2(a,b,c0,c1,c2) do { \ BN_ULONG ta = (a), tb = (b); \ BN_ULONG lo, hi, tt; \ BN_UMULT_LOHI(lo,hi,ta,tb); \ c0 += lo; tt = hi+((c0<lo)?1:0); \ c1 += tt; c2 += (c1<tt)?1:0; \ c0 += lo; hi += (c0<lo)?1:0; \ c1 += hi; c2 += (c1<hi)?1:0; \ } while(0) # define sqr_add_c(a,i,c0,c1,c2) do { \ BN_ULONG ta = (a)[i]; \ BN_ULONG lo, hi; \ BN_UMULT_LOHI(lo,hi,ta,ta); \ c0 += lo; hi += (c0<lo)?1:0; \ c1 += hi; c2 += (c1<hi)?1:0; \ } while(0) # define sqr_add_c2(a,i,j,c0,c1,c2) \ mul_add_c2((a)[i],(a)[j],c0,c1,c2) # elif defined(BN_UMULT_HIGH) /* * Keep in mind that additions to hi can not overflow, because * the high word of a multiplication result cannot be all-ones. */ # define mul_add_c(a,b,c0,c1,c2) do { \ BN_ULONG ta = (a), tb = (b); \ BN_ULONG lo = ta * tb; \ BN_ULONG hi = BN_UMULT_HIGH(ta,tb); \ c0 += lo; hi += (c0<lo)?1:0; \ c1 += hi; c2 += (c1<hi)?1:0; \ } while(0) # define mul_add_c2(a,b,c0,c1,c2) do { \ BN_ULONG ta = (a), tb = (b), tt; \ BN_ULONG lo = ta * tb; \ BN_ULONG hi = BN_UMULT_HIGH(ta,tb); \ c0 += lo; tt = hi + ((c0<lo)?1:0); \ c1 += tt; c2 += (c1<tt)?1:0; \ c0 += lo; hi += (c0<lo)?1:0; \ c1 += hi; c2 += (c1<hi)?1:0; \ } while(0) # define sqr_add_c(a,i,c0,c1,c2) do { \ BN_ULONG ta = (a)[i]; \ BN_ULONG lo = ta * ta; \ BN_ULONG hi = BN_UMULT_HIGH(ta,ta); \ c0 += lo; hi += (c0<lo)?1:0; \ c1 += hi; c2 += (c1<hi)?1:0; \ } while(0) # define sqr_add_c2(a,i,j,c0,c1,c2) \ mul_add_c2((a)[i],(a)[j],c0,c1,c2) # else /* !BN_LLONG */ /* * Keep in mind that additions to hi can not overflow, because * the high word of a multiplication result cannot be all-ones. */ # define mul_add_c(a,b,c0,c1,c2) do { \ BN_ULONG lo = LBITS(a), hi = HBITS(a); \ BN_ULONG bl = LBITS(b), bh = HBITS(b); \ mul64(lo,hi,bl,bh); \ c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \ c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ } while(0) # define mul_add_c2(a,b,c0,c1,c2) do { \ BN_ULONG tt; \ BN_ULONG lo = LBITS(a), hi = HBITS(a); \ BN_ULONG bl = LBITS(b), bh = HBITS(b); \ mul64(lo,hi,bl,bh); \ tt = hi; \ c0 = (c0+lo)&BN_MASK2; if (c0<lo) tt++; \ c1 = (c1+tt)&BN_MASK2; if (c1<tt) c2++; \ c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \ c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ } while(0) # define sqr_add_c(a,i,c0,c1,c2) do { \ BN_ULONG lo, hi; \ sqr64(lo,hi,(a)[i]); \ c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \ c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ } while(0) # define sqr_add_c2(a,i,j,c0,c1,c2) \ mul_add_c2((a)[i],(a)[j],c0,c1,c2) # endif /* !BN_LLONG */ void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) { BN_ULONG c1, c2, c3; c1 = 0; c2 = 0; c3 = 0; mul_add_c(a[0], b[0], c1, c2, c3); r[0] = c1; c1 = 0; mul_add_c(a[0], b[1], c2, c3, c1); mul_add_c(a[1], b[0], c2, c3, c1); r[1] = c2; c2 = 0; mul_add_c(a[2], b[0], c3, c1, c2); mul_add_c(a[1], b[1], c3, c1, c2); mul_add_c(a[0], b[2], c3, c1, c2); r[2] = c3; c3 = 0; mul_add_c(a[0], b[3], c1, c2, c3); mul_add_c(a[1], b[2], c1, c2, c3); mul_add_c(a[2], b[1], c1, c2, c3); mul_add_c(a[3], b[0], c1, c2, c3); r[3] = c1; c1 = 0; mul_add_c(a[4], b[0], c2, c3, c1); mul_add_c(a[3], b[1], c2, c3, c1); mul_add_c(a[2], b[2], c2, c3, c1); mul_add_c(a[1], b[3], c2, c3, c1); mul_add_c(a[0], b[4], c2, c3, c1); r[4] = c2; c2 = 0; mul_add_c(a[0], b[5], c3, c1, c2); mul_add_c(a[1], b[4], c3, c1, c2); mul_add_c(a[2], b[3], c3, c1, c2); mul_add_c(a[3], b[2], c3, c1, c2); mul_add_c(a[4], b[1], c3, c1, c2); mul_add_c(a[5], b[0], c3, c1, c2); r[5] = c3; c3 = 0; mul_add_c(a[6], b[0], c1, c2, c3); mul_add_c(a[5], b[1], c1, c2, c3); mul_add_c(a[4], b[2], c1, c2, c3); mul_add_c(a[3], b[3], c1, c2, c3); mul_add_c(a[2], b[4], c1, c2, c3); mul_add_c(a[1], b[5], c1, c2, c3); mul_add_c(a[0], b[6], c1, c2, c3); r[6] = c1; c1 = 0; mul_add_c(a[0], b[7], c2, c3, c1); mul_add_c(a[1], b[6], c2, c3, c1); mul_add_c(a[2], b[5], c2, c3, c1); mul_add_c(a[3], b[4], c2, c3, c1); mul_add_c(a[4], b[3], c2, c3, c1); mul_add_c(a[5], b[2], c2, c3, c1); mul_add_c(a[6], b[1], c2, c3, c1); mul_add_c(a[7], b[0], c2, c3, c1); r[7] = c2; c2 = 0; mul_add_c(a[7], b[1], c3, c1, c2); mul_add_c(a[6], b[2], c3, c1, c2); mul_add_c(a[5], b[3], c3, c1, c2); mul_add_c(a[4], b[4], c3, c1, c2); mul_add_c(a[3], b[5], c3, c1, c2); mul_add_c(a[2], b[6], c3, c1, c2); mul_add_c(a[1], b[7], c3, c1, c2); r[8] = c3; c3 = 0; mul_add_c(a[2], b[7], c1, c2, c3); mul_add_c(a[3], b[6], c1, c2, c3); mul_add_c(a[4], b[5], c1, c2, c3); mul_add_c(a[5], b[4], c1, c2, c3); mul_add_c(a[6], b[3], c1, c2, c3); mul_add_c(a[7], b[2], c1, c2, c3); r[9] = c1; c1 = 0; mul_add_c(a[7], b[3], c2, c3, c1); mul_add_c(a[6], b[4], c2, c3, c1); mul_add_c(a[5], b[5], c2, c3, c1); mul_add_c(a[4], b[6], c2, c3, c1); mul_add_c(a[3], b[7], c2, c3, c1); r[10] = c2; c2 = 0; mul_add_c(a[4], b[7], c3, c1, c2); mul_add_c(a[5], b[6], c3, c1, c2); mul_add_c(a[6], b[5], c3, c1, c2); mul_add_c(a[7], b[4], c3, c1, c2); r[11] = c3; c3 = 0; mul_add_c(a[7], b[5], c1, c2, c3); mul_add_c(a[6], b[6], c1, c2, c3); mul_add_c(a[5], b[7], c1, c2, c3); r[12] = c1; c1 = 0; mul_add_c(a[6], b[7], c2, c3, c1); mul_add_c(a[7], b[6], c2, c3, c1); r[13] = c2; c2 = 0; mul_add_c(a[7], b[7], c3, c1, c2); r[14] = c3; r[15] = c1; } void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) { BN_ULONG c1, c2, c3; c1 = 0; c2 = 0; c3 = 0; mul_add_c(a[0], b[0], c1, c2, c3); r[0] = c1; c1 = 0; mul_add_c(a[0], b[1], c2, c3, c1); mul_add_c(a[1], b[0], c2, c3, c1); r[1] = c2; c2 = 0; mul_add_c(a[2], b[0], c3, c1, c2); mul_add_c(a[1], b[1], c3, c1, c2); mul_add_c(a[0], b[2], c3, c1, c2); r[2] = c3; c3 = 0; mul_add_c(a[0], b[3], c1, c2, c3); mul_add_c(a[1], b[2], c1, c2, c3); mul_add_c(a[2], b[1], c1, c2, c3); mul_add_c(a[3], b[0], c1, c2, c3); r[3] = c1; c1 = 0; mul_add_c(a[3], b[1], c2, c3, c1); mul_add_c(a[2], b[2], c2, c3, c1); mul_add_c(a[1], b[3], c2, c3, c1); r[4] = c2; c2 = 0; mul_add_c(a[2], b[3], c3, c1, c2); mul_add_c(a[3], b[2], c3, c1, c2); r[5] = c3; c3 = 0; mul_add_c(a[3], b[3], c1, c2, c3); r[6] = c1; r[7] = c2; } void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) { BN_ULONG c1, c2, c3; c1 = 0; c2 = 0; c3 = 0; sqr_add_c(a, 0, c1, c2, c3); r[0] = c1; c1 = 0; sqr_add_c2(a, 1, 0, c2, c3, c1); r[1] = c2; c2 = 0; sqr_add_c(a, 1, c3, c1, c2); sqr_add_c2(a, 2, 0, c3, c1, c2); r[2] = c3; c3 = 0; sqr_add_c2(a, 3, 0, c1, c2, c3); sqr_add_c2(a, 2, 1, c1, c2, c3); r[3] = c1; c1 = 0; sqr_add_c(a, 2, c2, c3, c1); sqr_add_c2(a, 3, 1, c2, c3, c1); sqr_add_c2(a, 4, 0, c2, c3, c1); r[4] = c2; c2 = 0; sqr_add_c2(a, 5, 0, c3, c1, c2); sqr_add_c2(a, 4, 1, c3, c1, c2); sqr_add_c2(a, 3, 2, c3, c1, c2); r[5] = c3; c3 = 0; sqr_add_c(a, 3, c1, c2, c3); sqr_add_c2(a, 4, 2, c1, c2, c3); sqr_add_c2(a, 5, 1, c1, c2, c3); sqr_add_c2(a, 6, 0, c1, c2, c3); r[6] = c1; c1 = 0; sqr_add_c2(a, 7, 0, c2, c3, c1); sqr_add_c2(a, 6, 1, c2, c3, c1); sqr_add_c2(a, 5, 2, c2, c3, c1); sqr_add_c2(a, 4, 3, c2, c3, c1); r[7] = c2; c2 = 0; sqr_add_c(a, 4, c3, c1, c2); sqr_add_c2(a, 5, 3, c3, c1, c2); sqr_add_c2(a, 6, 2, c3, c1, c2); sqr_add_c2(a, 7, 1, c3, c1, c2); r[8] = c3; c3 = 0; sqr_add_c2(a, 7, 2, c1, c2, c3); sqr_add_c2(a, 6, 3, c1, c2, c3); sqr_add_c2(a, 5, 4, c1, c2, c3); r[9] = c1; c1 = 0; sqr_add_c(a, 5, c2, c3, c1); sqr_add_c2(a, 6, 4, c2, c3, c1); sqr_add_c2(a, 7, 3, c2, c3, c1); r[10] = c2; c2 = 0; sqr_add_c2(a, 7, 4, c3, c1, c2); sqr_add_c2(a, 6, 5, c3, c1, c2); r[11] = c3; c3 = 0; sqr_add_c(a, 6, c1, c2, c3); sqr_add_c2(a, 7, 5, c1, c2, c3); r[12] = c1; c1 = 0; sqr_add_c2(a, 7, 6, c2, c3, c1); r[13] = c2; c2 = 0; sqr_add_c(a, 7, c3, c1, c2); r[14] = c3; r[15] = c1; } void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) { BN_ULONG c1, c2, c3; c1 = 0; c2 = 0; c3 = 0; sqr_add_c(a, 0, c1, c2, c3); r[0] = c1; c1 = 0; sqr_add_c2(a, 1, 0, c2, c3, c1); r[1] = c2; c2 = 0; sqr_add_c(a, 1, c3, c1, c2); sqr_add_c2(a, 2, 0, c3, c1, c2); r[2] = c3; c3 = 0; sqr_add_c2(a, 3, 0, c1, c2, c3); sqr_add_c2(a, 2, 1, c1, c2, c3); r[3] = c1; c1 = 0; sqr_add_c(a, 2, c2, c3, c1); sqr_add_c2(a, 3, 1, c2, c3, c1); r[4] = c2; c2 = 0; sqr_add_c2(a, 3, 2, c3, c1, c2); r[5] = c3; c3 = 0; sqr_add_c(a, 3, c1, c2, c3); r[6] = c1; r[7] = c2; } # ifdef OPENSSL_NO_ASM # ifdef OPENSSL_BN_ASM_MONT # include <alloca.h> /* * This is essentially reference implementation, which may or may not * result in performance improvement. E.g. on IA-32 this routine was * observed to give 40% faster rsa1024 private key operations and 10% * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a * reference implementation, one to be used as starting point for * platform-specific assembler. Mentioned numbers apply to compiler * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and * can vary not only from platform to platform, but even for compiler * versions. Assembler vs. assembler improvement coefficients can * [and are known to] differ and are to be documented elsewhere. */ int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0p, int num) { BN_ULONG c0, c1, ml, *tp, n0; # ifdef mul64 BN_ULONG mh; # endif volatile BN_ULONG *vp; int i = 0, j; # if 0 /* template for platform-specific * implementation */ if (ap == bp) return bn_sqr_mont(rp, ap, np, n0p, num); # endif vp = tp = alloca((num + 2) * sizeof(BN_ULONG)); n0 = *n0p; c0 = 0; ml = bp[0]; # ifdef mul64 mh = HBITS(ml); ml = LBITS(ml); for (j = 0; j < num; ++j) mul(tp[j], ap[j], ml, mh, c0); # else for (j = 0; j < num; ++j) mul(tp[j], ap[j], ml, c0); # endif tp[num] = c0; tp[num + 1] = 0; goto enter; for (i = 0; i < num; i++) { c0 = 0; ml = bp[i]; # ifdef mul64 mh = HBITS(ml); ml = LBITS(ml); for (j = 0; j < num; ++j) mul_add(tp[j], ap[j], ml, mh, c0); # else for (j = 0; j < num; ++j) mul_add(tp[j], ap[j], ml, c0); # endif c1 = (tp[num] + c0) & BN_MASK2; tp[num] = c1; tp[num + 1] = (c1 < c0 ? 1 : 0); enter: c1 = tp[0]; ml = (c1 * n0) & BN_MASK2; c0 = 0; # ifdef mul64 mh = HBITS(ml); ml = LBITS(ml); mul_add(c1, np[0], ml, mh, c0); # else mul_add(c1, ml, np[0], c0); # endif for (j = 1; j < num; j++) { c1 = tp[j]; # ifdef mul64 mul_add(c1, np[j], ml, mh, c0); # else mul_add(c1, ml, np[j], c0); # endif tp[j - 1] = c1 & BN_MASK2; } c1 = (tp[num] + c0) & BN_MASK2; tp[num - 1] = c1; tp[num] = tp[num + 1] + (c1 < c0 ? 1 : 0); } if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) { c0 = bn_sub_words(rp, tp, np, num); if (tp[num] != 0 || c0 == 0) { for (i = 0; i < num + 2; i++) vp[i] = 0; return 1; } } for (i = 0; i < num; i++) rp[i] = tp[i], vp[i] = 0; vp[num] = 0; vp[num + 1] = 0; return 1; } # else /* * Return value of 0 indicates that multiplication/convolution was not * performed to signal the caller to fall down to alternative/original * code-path. */ int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0, int num) { return 0; } # endif /* OPENSSL_BN_ASM_MONT */ # endif #else /* !BN_MUL_COMBA */ /* hmm... is it faster just to do a multiply? */ # undef bn_sqr_comba4 # undef bn_sqr_comba8 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) { BN_ULONG t[8]; bn_sqr_normal(r, a, 4, t); } void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) { BN_ULONG t[16]; bn_sqr_normal(r, a, 8, t); } void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) { r[4] = bn_mul_words(&(r[0]), a, 4, b[0]); r[5] = bn_mul_add_words(&(r[1]), a, 4, b[1]); r[6] = bn_mul_add_words(&(r[2]), a, 4, b[2]); r[7] = bn_mul_add_words(&(r[3]), a, 4, b[3]); } void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) { r[8] = bn_mul_words(&(r[0]), a, 8, b[0]); r[9] = bn_mul_add_words(&(r[1]), a, 8, b[1]); r[10] = bn_mul_add_words(&(r[2]), a, 8, b[2]); r[11] = bn_mul_add_words(&(r[3]), a, 8, b[3]); r[12] = bn_mul_add_words(&(r[4]), a, 8, b[4]); r[13] = bn_mul_add_words(&(r[5]), a, 8, b[5]); r[14] = bn_mul_add_words(&(r[6]), a, 8, b[6]); r[15] = bn_mul_add_words(&(r[7]), a, 8, b[7]); } # ifdef OPENSSL_NO_ASM # ifdef OPENSSL_BN_ASM_MONT # include <alloca.h> int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0p, int num) { BN_ULONG c0, c1, *tp, n0 = *n0p; volatile BN_ULONG *vp; int i = 0, j; vp = tp = alloca((num + 2) * sizeof(BN_ULONG)); for (i = 0; i <= num; i++) tp[i] = 0; for (i = 0; i < num; i++) { c0 = bn_mul_add_words(tp, ap, num, bp[i]); c1 = (tp[num] + c0) & BN_MASK2; tp[num] = c1; tp[num + 1] = (c1 < c0 ? 1 : 0); c0 = bn_mul_add_words(tp, np, num, tp[0] * n0); c1 = (tp[num] + c0) & BN_MASK2; tp[num] = c1; tp[num + 1] += (c1 < c0 ? 1 : 0); for (j = 0; j <= num; j++) tp[j] = tp[j + 1]; } if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) { c0 = bn_sub_words(rp, tp, np, num); if (tp[num] != 0 || c0 == 0) { for (i = 0; i < num + 2; i++) vp[i] = 0; return 1; } } for (i = 0; i < num; i++) rp[i] = tp[i], vp[i] = 0; vp[num] = 0; vp[num + 1] = 0; return 1; } # else int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0, int num) { return 0; } # endif /* OPENSSL_BN_ASM_MONT */ # endif #endif /* !BN_MUL_COMBA */