#!/usr/bin/env perl # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # sha1_block procedure for ARMv4. # # January 2007. # Size/performance trade-off # ==================================================================== # impl size in bytes comp cycles[*] measured performance # ==================================================================== # thumb 304 3212 4420 # armv4-small 392/+29% 1958/+64% 2250/+96% # armv4-compact 740/+89% 1552/+26% 1840/+22% # armv4-large 1420/+92% 1307/+19% 1370/+34%[***] # full unroll ~5100/+260% ~1260/+4% ~1300/+5% # ==================================================================== # thumb = same as 'small' but in Thumb instructions[**] and # with recurring code in two private functions; # small = detached Xload/update, loops are folded; # compact = detached Xload/update, 5x unroll; # large = interleaved Xload/update, 5x unroll; # full unroll = interleaved Xload/update, full unroll, estimated[!]; # # [*] Manually counted instructions in "grand" loop body. Measured # performance is affected by prologue and epilogue overhead, # i-cache availability, branch penalties, etc. # [**] While each Thumb instruction is twice smaller, they are not as # diverse as ARM ones: e.g., there are only two arithmetic # instructions with 3 arguments, no [fixed] rotate, addressing # modes are limited. As result it takes more instructions to do # the same job in Thumb, therefore the code is never twice as # small and always slower. # [***] which is also ~35% better than compiler generated code. $output=shift; open STDOUT,">$output"; $ctx="r0"; $inp="r1"; $len="r2"; $a="r3"; $b="r4"; $c="r5"; $d="r6"; $e="r7"; $K="r8"; $t0="r9"; $t1="r10"; $t2="r11"; $t3="r12"; $Xi="r14"; @V=($a,$b,$c,$d,$e); # One can optimize this for aligned access on big-endian architecture, # but code's endian neutrality makes it too pretty:-) sub Xload { my ($a,$b,$c,$d,$e)=@_; $code.=<<___; ldrb $t0,[$inp],#4 ldrb $t1,[$inp,#-3] ldrb $t2,[$inp,#-2] ldrb $t3,[$inp,#-1] add $e,$K,$e,ror#2 @ E+=K_00_19 orr $t0,$t1,$t0,lsl#8 add $e,$e,$a,ror#27 @ E+=ROR(A,27) orr $t0,$t2,$t0,lsl#8 eor $t1,$c,$d @ F_xx_xx orr $t0,$t3,$t0,lsl#8 add $e,$e,$t0 @ E+=X[i] str $t0,[$Xi,#-4]! ___ } sub Xupdate { my ($a,$b,$c,$d,$e,$flag)=@_; $code.=<<___; ldr $t0,[$Xi,#15*4] ldr $t1,[$Xi,#13*4] ldr $t2,[$Xi,#7*4] ldr $t3,[$Xi,#2*4] add $e,$K,$e,ror#2 @ E+=K_xx_xx eor $t0,$t0,$t1 eor $t2,$t2,$t3 eor $t0,$t0,$t2 add $e,$e,$a,ror#27 @ E+=ROR(A,27) ___ $code.=<<___ if (!defined($flag)); eor $t1,$c,$d @ F_xx_xx, but not in 40_59 ___ $code.=<<___; mov $t0,$t0,ror#31 add $e,$e,$t0 @ E+=X[i] str $t0,[$Xi,#-4]! ___ } sub BODY_00_15 { my ($a,$b,$c,$d,$e)=@_; &Xload(@_); $code.=<<___; and $t1,$b,$t1,ror#2 eor $t1,$t1,$d,ror#2 @ F_00_19(B,C,D) add $e,$e,$t1 @ E+=F_00_19(B,C,D) ___ } sub BODY_16_19 { my ($a,$b,$c,$d,$e)=@_; &Xupdate(@_); $code.=<<___; and $t1,$b,$t1,ror#2 eor $t1,$t1,$d,ror#2 @ F_00_19(B,C,D) add $e,$e,$t1 @ E+=F_00_19(B,C,D) ___ } sub BODY_20_39 { my ($a,$b,$c,$d,$e)=@_; &Xupdate(@_); $code.=<<___; eor $t1,$b,$t1,ror#2 @ F_20_39(B,C,D) add $e,$e,$t1 @ E+=F_20_39(B,C,D) ___ } sub BODY_40_59 { my ($a,$b,$c,$d,$e)=@_; if (1) { &Xupdate(@_); $code.=<<___; and $t2,$c,$d and $t1,$b,$t1,ror#2 add $e,$e,$t2,ror#2 add $e,$e,$t1 @ E+=F_40_59(B,C,D) ___ } else { &Xupdate(@_,1); $code.=<<___; and $t1,$b,$c,ror#2 orr $t2,$b,$c,ror#2 and $t2,$t2,$d,ror#2 orr $t1,$t1,$t2 @ F_40_59(B,C,D) add $e,$e,$t1 @ E+=F_40_59(B,C,D) ___ } } $code=<<___; .text .global sha1_block_data_order .type sha1_block_data_order,%function .align 2 sha1_block_data_order: stmdb sp!,{r4-r12,lr} add $len,$inp,$len,lsl#6 @ $len to point at the end of $inp ldmia $ctx,{$a,$b,$c,$d,$e} .Lloop: ldr $K,.LK_00_19 mov $Xi,sp sub sp,sp,#15*4 mov $c,$c,ror#30 mov $d,$d,ror#30 mov $e,$e,ror#30 @ [6] .L_00_15: ___ for($i=0;$i<5;$i++) { &BODY_00_15(@V); unshift(@V,pop(@V)); } $code.=<<___; teq $Xi,sp bne .L_00_15 @ [((11+4)*5+2)*3] ___ &BODY_00_15(@V); unshift(@V,pop(@V)); &BODY_16_19(@V); unshift(@V,pop(@V)); &BODY_16_19(@V); unshift(@V,pop(@V)); &BODY_16_19(@V); unshift(@V,pop(@V)); &BODY_16_19(@V); unshift(@V,pop(@V)); $code.=<<___; ldr $K,.LK_20_39 @ [+15+16*4] sub sp,sp,#25*4 cmn sp,#0 @ [+3], clear carry to denote 20_39 .L_20_39_or_60_79: ___ for($i=0;$i<5;$i++) { &BODY_20_39(@V); unshift(@V,pop(@V)); } $code.=<<___; teq $Xi,sp @ preserve carry bne .L_20_39_or_60_79 @ [+((12+3)*5+2)*4] bcs .L_done @ [+((12+3)*5+2)*4], spare 300 bytes ldr $K,.LK_40_59 sub sp,sp,#20*4 @ [+2] .L_40_59: ___ for($i=0;$i<5;$i++) { &BODY_40_59(@V); unshift(@V,pop(@V)); } $code.=<<___; teq $Xi,sp bne .L_40_59 @ [+((12+5)*5+2)*4] ldr $K,.LK_60_79 sub sp,sp,#20*4 cmp sp,#0 @ set carry to denote 60_79 b .L_20_39_or_60_79 @ [+4], spare 300 bytes .L_done: add sp,sp,#80*4 @ "deallocate" stack frame ldmia $ctx,{$K,$t0,$t1,$t2,$t3} add $a,$K,$a add $b,$t0,$b add $c,$t1,$c,ror#2 add $d,$t2,$d,ror#2 add $e,$t3,$e,ror#2 stmia $ctx,{$a,$b,$c,$d,$e} teq $inp,$len bne .Lloop @ [+18], total 1307 ldmia sp!,{r4-r12,lr} tst lr,#1 moveq pc,lr @ be binary compatible with V4, yet bx lr @ interoperable with Thumb ISA:-) .align 2 .LK_00_19: .word 0x5a827999 .LK_20_39: .word 0x6ed9eba1 .LK_40_59: .word 0x8f1bbcdc .LK_60_79: .word 0xca62c1d6 .size sha1_block_data_order,.-sha1_block_data_order .asciz "SHA1 block transform for ARMv4, CRYPTOGAMS by " .align 2 ___ $code =~ s/\bbx\s+lr\b/.word\t0xe12fff1e/gm; # make it possible to compile with -march=armv4 print $code; close STDOUT; # enforce flush