/* asn1t.h */ /* * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL project * 2006. */ /* ==================================================================== * Copyright (c) 2006 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* Internal ASN1 structures and functions: not for application use */ int asn1_utctime_to_tm(struct tm *tm, const ASN1_UTCTIME *d); int asn1_generalizedtime_to_tm(struct tm *tm, const ASN1_GENERALIZEDTIME *d); /* ASN1 scan context structure */ struct asn1_sctx_st { /* The ASN1_ITEM associated with this field */ const ASN1_ITEM *it; /* If ASN1_TEMPLATE associated with this field */ const ASN1_TEMPLATE *tt; /* Various flags associated with field and context */ unsigned long flags; /* If SEQUENCE OF or SET OF, field index */ int skidx; /* ASN1 depth of field */ int depth; /* Structure and field name */ const char *sname, *fname; /* If a primitive type the type of underlying field */ int prim_type; /* The field value itself */ ASN1_VALUE **field; /* Callback to pass information to */ int (*scan_cb) (ASN1_SCTX *ctx); /* Context specific application data */ void *app_data; } /* ASN1_SCTX */ ; /* * Method to handle CRL access. In general a CRL could be very large (several * Mb) and can consume large amounts of resources if stored in memory by * multiple processes. This method allows general CRL operations to be * redirected to more efficient callbacks: for example a CRL entry database. */ #define X509_CRL_METHOD_DYNAMIC 1 struct x509_crl_method_st { int flags; int (*crl_init) (X509_CRL *crl); int (*crl_free) (X509_CRL *crl); int (*crl_lookup) (X509_CRL *crl, X509_REVOKED **ret, ASN1_INTEGER *ser, X509_NAME *issuer); int (*crl_verify) (X509_CRL *crl, EVP_PKEY *pk); }; int asn1_ex_i2c(ASN1_VALUE **pval, unsigned char *cont, int *putype, const ASN1_ITEM *it); int asn1_ex_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len, int utype, char *free_cont, const ASN1_ITEM *it); int asn1_get_choice_selector(ASN1_VALUE **pval, const ASN1_ITEM *it); int asn1_set_choice_selector(ASN1_VALUE **pval, int value, const ASN1_ITEM *it); ASN1_VALUE **asn1_get_field_ptr(ASN1_VALUE **pval, const ASN1_TEMPLATE *tt); const ASN1_TEMPLATE *asn1_do_adb(ASN1_VALUE **pval, const ASN1_TEMPLATE *tt, int nullerr); int asn1_do_lock(ASN1_VALUE **pval, int op, const ASN1_ITEM *it); void asn1_enc_init(ASN1_VALUE **pval, const ASN1_ITEM *it); void asn1_enc_free(ASN1_VALUE **pval, const ASN1_ITEM *it); int asn1_enc_restore(int *len, unsigned char **out, ASN1_VALUE **pval, const ASN1_ITEM *it); int asn1_enc_save(ASN1_VALUE **pval, const unsigned char *in, int inlen, const ASN1_ITEM *it);