/* ==================================================================== * Copyright (c) 2014 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== */ #include #include #include "modes_lcl.h" #ifndef OPENSSL_NO_OCB union ublock { unsigned char *chrblk; OCB_BLOCK *ocbblk; }; /* * Calculate the number of binary trailing zero's in any given number */ static u32 ocb_ntz(u64 n) { u32 cnt = 0; /* * We do a right-to-left simple sequential search. This is surprisingly * efficient as the distribution of trailing zeros is not uniform, * e.g. the number of possible inputs with no trailing zeros is equal to * the number with 1 or more; the number with exactly 1 is equal to the * number with 2 or more, etc. Checking the last two bits covers 75% of * all numbers. Checking the last three covers 87.5% */ while (!(n & 1)) { n >>= 1; cnt++; } return cnt; } /* * Shift a block of 16 bytes left by shift bits */ static void ocb_block_lshift(OCB_BLOCK *in, size_t shift, OCB_BLOCK *out) { unsigned char shift_mask; int i; unsigned char mask[15]; union ublock locin; union ublock locout; locin.ocbblk = in; locout.ocbblk = out; shift_mask = 0xff; shift_mask <<= (8 - shift); for (i = 15; i >= 0; i--) { if (i > 0) { mask[i - 1] = locin.chrblk[i] & shift_mask; mask[i - 1] >>= 8 - shift; } locout.chrblk[i] = locin.chrblk[i] << shift; if (i != 15) { locout.chrblk[i] ^= mask[i]; } } } /* * Perform a "double" operation as per OCB spec */ static void ocb_double(OCB_BLOCK *in, OCB_BLOCK *out) { unsigned char mask; union ublock locin; union ublock locout; locin.ocbblk = in; locout.ocbblk = out; /* * Calculate the mask based on the most significant bit. There are more * efficient ways to do this - but this way is constant time */ mask = locin.chrblk[0] & 0x80; mask >>= 7; mask *= 135; ocb_block_lshift(in, 1, out); locout.chrblk[15] ^= mask; } /* * Perform an xor on in1 and in2 - each of len bytes. Store result in out */ static void ocb_block_xor(const unsigned char *in1, const unsigned char *in2, size_t len, unsigned char *out) { size_t i; for (i = 0; i < len; i++) { out[i] = in1[i] ^ in2[i]; } } /* * Lookup L_index in our lookup table. If we haven't already got it we need to * calculate it */ static OCB_BLOCK *ocb_lookup_l(OCB128_CONTEXT *ctx, size_t idx) { size_t l_index = ctx->l_index; if (idx <= l_index) { return ctx->l + idx; } /* We don't have it - so calculate it */ if (idx >= ctx->max_l_index) { /* * Each additional entry allows to process almost double as * much data, so that in linear world the table will need to * be expanded with smaller and smaller increments. Originally * it was doubling in size, which was a waste. Growing it * linearly is not formally optimal, but is simpler to implement. * We grow table by minimally required 4*n that would accommodate * the index. */ ctx->max_l_index += (idx - ctx->max_l_index + 4) & ~3; ctx->l = OPENSSL_realloc(ctx->l, ctx->max_l_index * sizeof(OCB_BLOCK)); if (!ctx->l) return NULL; } while (l_index <= idx) { ocb_double(ctx->l + l_index, ctx->l + l_index + 1); l_index++; } ctx->l_index = l_index; return ctx->l + idx; } /* * Encrypt a block from |in| and store the result in |out| */ static void ocb_encrypt(OCB128_CONTEXT *ctx, OCB_BLOCK *in, OCB_BLOCK *out, void *keyenc) { union ublock locin; union ublock locout; locin.ocbblk = in; locout.ocbblk = out; ctx->encrypt(locin.chrblk, locout.chrblk, keyenc); } /* * Decrypt a block from |in| and store the result in |out| */ static void ocb_decrypt(OCB128_CONTEXT *ctx, OCB_BLOCK *in, OCB_BLOCK *out, void *keydec) { union ublock locin; union ublock locout; locin.ocbblk = in; locout.ocbblk = out; ctx->decrypt(locin.chrblk, locout.chrblk, keydec); } /* * Create a new OCB128_CONTEXT */ OCB128_CONTEXT *CRYPTO_ocb128_new(void *keyenc, void *keydec, block128_f encrypt, block128_f decrypt) { OCB128_CONTEXT *octx; int ret; if ((octx = OPENSSL_malloc(sizeof(*octx))) != NULL) { ret = CRYPTO_ocb128_init(octx, keyenc, keydec, encrypt, decrypt); if (ret) return octx; OPENSSL_free(octx); } return NULL; } /* * Initialise an existing OCB128_CONTEXT */ int CRYPTO_ocb128_init(OCB128_CONTEXT *ctx, void *keyenc, void *keydec, block128_f encrypt, block128_f decrypt) { memset(ctx, 0, sizeof(*ctx)); ctx->l_index = 0; ctx->max_l_index = 5; ctx->l = OPENSSL_malloc(ctx->max_l_index * 16); if (ctx->l == NULL) return 0; /* * We set both the encryption and decryption key schedules - decryption * needs both. Don't really need decryption schedule if only doing * encryption - but it simplifies things to take it anyway */ ctx->encrypt = encrypt; ctx->decrypt = decrypt; ctx->keyenc = keyenc; ctx->keydec = keydec; /* L_* = ENCIPHER(K, zeros(128)) */ ocb_encrypt(ctx, &ctx->l_star, &ctx->l_star, ctx->keyenc); /* L_$ = double(L_*) */ ocb_double(&ctx->l_star, &ctx->l_dollar); /* L_0 = double(L_$) */ ocb_double(&ctx->l_dollar, ctx->l); /* L_{i} = double(L_{i-1}) */ ocb_double(ctx->l, ctx->l+1); ocb_double(ctx->l+1, ctx->l+2); ocb_double(ctx->l+2, ctx->l+3); ocb_double(ctx->l+3, ctx->l+4); ctx->l_index = 4; /* enough to process up to 496 bytes */ return 1; } /* * Copy an OCB128_CONTEXT object */ int CRYPTO_ocb128_copy_ctx(OCB128_CONTEXT *dest, OCB128_CONTEXT *src, void *keyenc, void *keydec) { memcpy(dest, src, sizeof(OCB128_CONTEXT)); if (keyenc) dest->keyenc = keyenc; if (keydec) dest->keydec = keydec; if (src->l) { dest->l = OPENSSL_malloc(src->max_l_index * 16); if (dest->l == NULL) return 0; memcpy(dest->l, src->l, (src->l_index + 1) * 16); } return 1; } /* * Set the IV to be used for this operation. Must be 1 - 15 bytes. */ int CRYPTO_ocb128_setiv(OCB128_CONTEXT *ctx, const unsigned char *iv, size_t len, size_t taglen) { unsigned char ktop[16], tmp[16], mask; unsigned char stretch[24], nonce[16]; size_t bottom, shift; union ublock offset; offset.ocbblk = &ctx->offset; /* * Spec says IV is 120 bits or fewer - it allows non byte aligned lengths. * We don't support this at this stage */ if ((len > 15) || (len < 1) || (taglen > 16) || (taglen < 1)) { return -1; } /* Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N */ nonce[0] = ((taglen * 8) % 128) << 1; memset(nonce + 1, 0, 15); memcpy(nonce + 16 - len, iv, len); nonce[15 - len] |= 1; /* Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6)) */ memcpy(tmp, nonce, 16); tmp[15] &= 0xc0; ctx->encrypt(tmp, ktop, ctx->keyenc); /* Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72]) */ memcpy(stretch, ktop, 16); ocb_block_xor(ktop, ktop + 1, 8, stretch + 16); /* bottom = str2num(Nonce[123..128]) */ bottom = nonce[15] & 0x3f; /* Offset_0 = Stretch[1+bottom..128+bottom] */ shift = bottom % 8; ocb_block_lshift((OCB_BLOCK *)(stretch + (bottom / 8)), shift, &ctx->offset); mask = 0xff; mask <<= 8 - shift; offset.chrblk[15] |= (*(stretch + (bottom / 8) + 16) & mask) >> (8 - shift); return 1; } /* * Provide any AAD. This can be called multiple times. Only the final time can * have a partial block */ int CRYPTO_ocb128_aad(OCB128_CONTEXT *ctx, const unsigned char *aad, size_t len) { u64 all_num_blocks, num_blocks; u64 i; OCB_BLOCK tmp1; OCB_BLOCK tmp2; int last_len; /* Calculate the number of blocks of AAD provided now, and so far */ num_blocks = len / 16; all_num_blocks = num_blocks + ctx->blocks_hashed; /* Loop through all full blocks of AAD */ for (i = ctx->blocks_hashed + 1; i <= all_num_blocks; i++) { OCB_BLOCK *lookup; OCB_BLOCK *aad_block; /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ lookup = ocb_lookup_l(ctx, ocb_ntz(i)); if (!lookup) return 0; ocb_block16_xor(&ctx->offset_aad, lookup, &ctx->offset_aad); /* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */ aad_block = (OCB_BLOCK *)(aad + ((i - ctx->blocks_hashed - 1) * 16)); ocb_block16_xor(&ctx->offset_aad, aad_block, &tmp1); ocb_encrypt(ctx, &tmp1, &tmp2, ctx->keyenc); ocb_block16_xor(&ctx->sum, &tmp2, &ctx->sum); } /* * Check if we have any partial blocks left over. This is only valid in the * last call to this function */ last_len = len % 16; if (last_len > 0) { /* Offset_* = Offset_m xor L_* */ ocb_block16_xor(&ctx->offset_aad, &ctx->l_star, &ctx->offset_aad); /* CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_* */ memset(&tmp1, 0, 16); memcpy(&tmp1, aad + (num_blocks * 16), last_len); ((unsigned char *)&tmp1)[last_len] = 0x80; ocb_block16_xor(&ctx->offset_aad, &tmp1, &tmp2); /* Sum = Sum_m xor ENCIPHER(K, CipherInput) */ ocb_encrypt(ctx, &tmp2, &tmp1, ctx->keyenc); ocb_block16_xor(&ctx->sum, &tmp1, &ctx->sum); } ctx->blocks_hashed = all_num_blocks; return 1; } /* * Provide any data to be encrypted. This can be called multiple times. Only * the final time can have a partial block */ int CRYPTO_ocb128_encrypt(OCB128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len) { u64 i; u64 all_num_blocks, num_blocks; OCB_BLOCK tmp1; OCB_BLOCK tmp2; OCB_BLOCK pad; int last_len; /* * Calculate the number of blocks of data to be encrypted provided now, and * so far */ num_blocks = len / 16; all_num_blocks = num_blocks + ctx->blocks_processed; /* Loop through all full blocks to be encrypted */ for (i = ctx->blocks_processed + 1; i <= all_num_blocks; i++) { OCB_BLOCK *lookup; OCB_BLOCK *inblock; OCB_BLOCK *outblock; /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ lookup = ocb_lookup_l(ctx, ocb_ntz(i)); if (!lookup) return 0; ocb_block16_xor(&ctx->offset, lookup, &ctx->offset); /* C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i) */ inblock = (OCB_BLOCK *)(in + ((i - ctx->blocks_processed - 1) * 16)); ocb_block16_xor(&ctx->offset, inblock, &tmp1); /* Checksum_i = Checksum_{i-1} xor P_i */ ocb_block16_xor(&ctx->checksum, inblock, &ctx->checksum); ocb_encrypt(ctx, &tmp1, &tmp2, ctx->keyenc); outblock = (OCB_BLOCK *)(out + ((i - ctx->blocks_processed - 1) * 16)); ocb_block16_xor(&ctx->offset, &tmp2, outblock); } /* * Check if we have any partial blocks left over. This is only valid in the * last call to this function */ last_len = len % 16; if (last_len > 0) { /* Offset_* = Offset_m xor L_* */ ocb_block16_xor(&ctx->offset, &ctx->l_star, &ctx->offset); /* Pad = ENCIPHER(K, Offset_*) */ ocb_encrypt(ctx, &ctx->offset, &pad, ctx->keyenc); /* C_* = P_* xor Pad[1..bitlen(P_*)] */ ocb_block_xor(in + (len / 16) * 16, (unsigned char *)&pad, last_len, out + (num_blocks * 16)); /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */ memset(&tmp1, 0, 16); memcpy(&tmp1, in + (len / 16) * 16, last_len); ((unsigned char *)(&tmp1))[last_len] = 0x80; ocb_block16_xor(&ctx->checksum, &tmp1, &ctx->checksum); } ctx->blocks_processed = all_num_blocks; return 1; } /* * Provide any data to be decrypted. This can be called multiple times. Only * the final time can have a partial block */ int CRYPTO_ocb128_decrypt(OCB128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len) { u64 i; u64 all_num_blocks, num_blocks; OCB_BLOCK tmp1; OCB_BLOCK tmp2; OCB_BLOCK pad; int last_len; /* * Calculate the number of blocks of data to be decrypted provided now, and * so far */ num_blocks = len / 16; all_num_blocks = num_blocks + ctx->blocks_processed; /* Loop through all full blocks to be decrypted */ for (i = ctx->blocks_processed + 1; i <= all_num_blocks; i++) { OCB_BLOCK *inblock; OCB_BLOCK *outblock; /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ OCB_BLOCK *lookup = ocb_lookup_l(ctx, ocb_ntz(i)); if (!lookup) return 0; ocb_block16_xor(&ctx->offset, lookup, &ctx->offset); /* P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i) */ inblock = (OCB_BLOCK *)(in + ((i - ctx->blocks_processed - 1) * 16)); ocb_block16_xor(&ctx->offset, inblock, &tmp1); ocb_decrypt(ctx, &tmp1, &tmp2, ctx->keydec); outblock = (OCB_BLOCK *)(out + ((i - ctx->blocks_processed - 1) * 16)); ocb_block16_xor(&ctx->offset, &tmp2, outblock); /* Checksum_i = Checksum_{i-1} xor P_i */ ocb_block16_xor(&ctx->checksum, outblock, &ctx->checksum); } /* * Check if we have any partial blocks left over. This is only valid in the * last call to this function */ last_len = len % 16; if (last_len > 0) { /* Offset_* = Offset_m xor L_* */ ocb_block16_xor(&ctx->offset, &ctx->l_star, &ctx->offset); /* Pad = ENCIPHER(K, Offset_*) */ ocb_encrypt(ctx, &ctx->offset, &pad, ctx->keyenc); /* P_* = C_* xor Pad[1..bitlen(C_*)] */ ocb_block_xor(in + (len / 16) * 16, (unsigned char *)&pad, last_len, out + (num_blocks * 16)); /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */ memset(&tmp1, 0, 16); memcpy(&tmp1, out + (len / 16) * 16, last_len); ((unsigned char *)(&tmp1))[last_len] = 0x80; ocb_block16_xor(&ctx->checksum, &tmp1, &ctx->checksum); } ctx->blocks_processed = all_num_blocks; return 1; } /* * Calculate the tag and verify it against the supplied tag */ int CRYPTO_ocb128_finish(OCB128_CONTEXT *ctx, const unsigned char *tag, size_t len) { OCB_BLOCK tmp1, tmp2; /* * Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A) */ ocb_block16_xor(&ctx->checksum, &ctx->offset, &tmp1); ocb_block16_xor(&tmp1, &ctx->l_dollar, &tmp2); ocb_encrypt(ctx, &tmp2, &tmp1, ctx->keyenc); ocb_block16_xor(&tmp1, &ctx->sum, &ctx->tag); if (len > 16 || len < 1) { return -1; } /* Compare the tag if we've been given one */ if (tag) return CRYPTO_memcmp(&ctx->tag, tag, len); else return -1; } /* * Retrieve the calculated tag */ int CRYPTO_ocb128_tag(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len) { if (len > 16 || len < 1) { return -1; } /* Calculate the tag */ CRYPTO_ocb128_finish(ctx, NULL, 0); /* Copy the tag into the supplied buffer */ memcpy(tag, &ctx->tag, len); return 1; } /* * Release all resources */ void CRYPTO_ocb128_cleanup(OCB128_CONTEXT *ctx) { if (ctx) { OPENSSL_clear_free(ctx->l, ctx->max_l_index * 16); OPENSSL_cleanse(ctx, sizeof(*ctx)); } } #endif /* OPENSSL_NO_OCB */