/* crypto/engine/hw_aep.c */ /* */ /* ==================================================================== * Copyright (c) 1999 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ #include #include #include #include #include #include "cryptlib.h" #include #include "engine_int.h" #include #ifndef NO_HW #ifndef NO_HW_AEP #ifdef FLAT_INC #include "aep.h" #else #include "vendor_defns/aep.h" #endif static int aep_init(void); static int aep_finish(void); static int aep_get_connection(AEP_CONNECTION_HNDL *hConnection); static int aep_return_connection(AEP_CONNECTION_HNDL hConnection); /* BIGNUM stuff */ static int aep_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx); /* RSA stuff */ static int aep_rsa_mod_exp(BIGNUM *r0, BIGNUM *I, RSA *rsa); /* This function is aliased to mod_exp (with the mont stuff dropped). */ static int aep_mod_exp_mont(BIGNUM *r, BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); /* DSA stuff */ static int aep_dsa_mod_exp(DSA *dsa, BIGNUM *rr, BIGNUM *a1, BIGNUM *p1, BIGNUM *a2, BIGNUM *p2, BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont); static int aep_mod_exp_dsa(DSA *dsa, BIGNUM *r, BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); /* DH stuff */ /* This function is aliased to mod_exp (with the DH and mont dropped). */ static int aep_mod_exp_dh(DH *dh, BIGNUM *r, BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); /* rand stuff */ static int aep_rand(unsigned char *buf, int num); /* Our internal RSA_METHOD that we provide pointers to */ static RSA_METHOD aep_rsa = { "Aep RSA method", NULL, /*rsa_pub_encrypt*/ NULL, /*rsa_pub_decrypt*/ NULL, /*rsa_priv_encrypt*/ NULL, /*rsa_priv_encrypt*/ aep_rsa_mod_exp, /*rsa_mod_exp*/ aep_mod_exp_mont, /*bn_mod_exp*/ NULL, /*init*/ NULL, /*finish*/ 0, /*flags*/ NULL, /*app_data*/ NULL, /*rsa_sign*/ NULL /*rsa_verify*/ }; /* Our internal DSA_METHOD that we provide pointers to */ static DSA_METHOD aep_dsa = { "Aep DSA method", NULL, /* dsa_do_sign */ NULL, /* dsa_sign_setup */ NULL, /* dsa_do_verify */ aep_dsa_mod_exp, /* dsa_mod_exp */ aep_mod_exp_dsa, /* bn_mod_exp */ NULL, /* init */ NULL, /* finish */ 0, /* flags */ NULL /* app_data */ }; /* Our internal DH_METHOD that we provide pointers to */ static DH_METHOD aep_dh = { "Aep DH method", NULL, NULL, aep_mod_exp_dh, NULL, NULL, 0, NULL }; /* our internal RAND_method that we provide pointers to */ static RAND_METHOD aep_random = { /*"AEP RAND method", */ NULL, aep_rand, NULL, NULL, aep_rand, NULL, }; /* Our ENGINE structure. */ static ENGINE engine_aep = { "aep", "Aep hardware engine support", &aep_rsa, &aep_dsa, &aep_dh, &aep_random, aep_mod_exp, NULL, aep_init, aep_finish, NULL, /* no ctrl() */ NULL, /* no load_privkey() */ NULL, /* no load_pubkey() */ 0, /* no flags */ 0, 0, /* no references */ NULL, NULL /* unlinked */ }; /*Define an array of structures to hold connections*/ static AEP_CONNECTION_ENTRY aep_app_conn_table[MAX_PROCESS_CONNECTIONS]; /*Used to determine if this is a new process*/ static pid_t recorded_pid = 0; static int rnd_reference; static AEP_U8 rand_block[RAND_BLK_SIZE]; static AEP_U32 rand_block_bytes = 0; /* As this is only ever called once, there's no need for locking * (indeed - the lock will already be held by our caller!!!) */ ENGINE *ENGINE_aep() { RSA_METHOD *meth1; DSA_METHOD *meth2; DH_METHOD *meth3; /* We know that the "PKCS1_SSLeay()" functions hook properly * to the aep-specific mod_exp and mod_exp_crt so we use * those functions. NB: We don't use ENGINE_openssl() or * anything "more generic" because something like the RSAref * code may not hook properly, and if you own one of these * cards then you have the right to do RSA operations on it * anyway! */ meth1 = RSA_PKCS1_SSLeay(); aep_rsa.rsa_pub_enc = meth1->rsa_pub_enc; aep_rsa.rsa_pub_dec = meth1->rsa_pub_dec; aep_rsa.rsa_priv_enc = meth1->rsa_priv_enc; aep_rsa.rsa_priv_dec = meth1->rsa_priv_dec; /* Use the DSA_OpenSSL() method and just hook the mod_exp-ish * bits. */ meth2 = DSA_OpenSSL(); aep_dsa.dsa_do_sign = meth2->dsa_do_sign; aep_dsa.dsa_sign_setup = meth2->dsa_sign_setup; aep_dsa.dsa_do_verify = meth2->dsa_do_verify; aep_dsa = *DSA_get_default_openssl_method(); aep_dsa.dsa_mod_exp = aep_dsa_mod_exp; aep_dsa.bn_mod_exp = aep_mod_exp_dsa; /* Much the same for Diffie-Hellman */ meth3 = DH_OpenSSL(); aep_dh.generate_key = meth3->generate_key; aep_dh.compute_key = meth3->compute_key; aep_dh.bn_mod_exp = meth3->bn_mod_exp; return &engine_aep; } /* This is a process-global DSO handle used for loading and unloading * the Aep library. NB: This is only set (or unset) during an * init() or finish() call (reference counts permitting) and they're * operating with global locks, so this should be thread-safe * implicitly. */ static DSO *aep_dso = NULL; /* These are the function pointers that are (un)set when the library has * successfully (un)loaded. */ static t_AEP_OpenConnection *p_AEP_OpenConnection = NULL; static t_AEP_ModExp *p_AEP_ModExp = NULL; static t_AEP_ModExpCrt *p_AEP_ModExpCrt = NULL; static t_AEP_GenRandom *p_AEP_GenRandom = NULL; static t_AEP_Initialize *p_AEP_Initialize = NULL; static t_AEP_Finalize *p_AEP_Finalize = NULL; static t_AEP_SetBNCallBacks *p_AEP_SetBNCallBacks = NULL; /* (de)initialisation functions. */ static int aep_init() { t_AEP_ModExp *p1; t_AEP_ModExpCrt *p2; t_AEP_GenRandom *p3; t_AEP_Finalize *p4; t_AEP_Initialize *p5; t_AEP_OpenConnection *p6; t_AEP_SetBNCallBacks *p7; unsigned int hConnection,rv; int to_return = 0; if(aep_dso != NULL) { ENGINEerr(ENGINE_F_AEP_INIT,ENGINE_R_ALREADY_LOADED); goto err; } /* Attempt to load libaep.so. */ aep_dso = DSO_load(NULL, AEP_LIBNAME, NULL, DSO_FLAG_NAME_TRANSLATION); if(aep_dso == NULL) { ENGINEerr(ENGINE_F_AEP_INIT,ENGINE_R_DSO_FAILURE); goto err; } if(!(p1 = (t_AEP_ModExp *) DSO_bind_func( aep_dso,AEP_F1)) || !(p2 = (t_AEP_ModExpCrt*) DSO_bind_func( aep_dso,AEP_F2)) || !(p3 = (t_AEP_GenRandom*) DSO_bind_func( aep_dso,AEP_F3)) || !(p4 = (t_AEP_Finalize*) DSO_bind_func( aep_dso,AEP_F4)) || !(p5 = (t_AEP_Initialize*) DSO_bind_func( aep_dso,AEP_F5)) || !(p6 = (t_AEP_OpenConnection*) DSO_bind_func( aep_dso,AEP_F6)) || !(p7 = (t_AEP_SetBNCallBacks*) DSO_bind_func( aep_dso,AEP_F7))) { ENGINEerr(ENGINE_F_AEP_INIT,ENGINE_R_DSO_FAILURE); goto err; } /* Copy the pointers */ p_AEP_ModExp = p1; p_AEP_ModExpCrt = p2; p_AEP_GenRandom = p3; p_AEP_Finalize = p4; p_AEP_Initialize = p5; p_AEP_OpenConnection = p6; p_AEP_SetBNCallBacks = p7; /* Perform a basic test to see if there's actually any unit * running. */ CRYPTO_add(&rnd_reference, 1, CRYPTO_LOCK_DYNLOCK); rv = aep_get_connection(&hConnection); if (rv != AEP_R_OK) goto err; /* Everything's fine. */ rv = aep_return_connection(hConnection); to_return = 1; return to_return; err: if(aep_dso) DSO_free(aep_dso); p_AEP_OpenConnection = NULL; p_AEP_ModExp = NULL; p_AEP_ModExpCrt = NULL; p_AEP_GenRandom = NULL; p_AEP_Initialize = NULL; p_AEP_Finalize = NULL; p_AEP_SetBNCallBacks = NULL; return to_return; } static int aep_finish() { int to_return = 0; if(aep_dso == NULL) { ENGINEerr(ENGINE_F_AEP_FINISH,ENGINE_R_NOT_LOADED); goto err; } if(!DSO_free(aep_dso)) { ENGINEerr(ENGINE_F_AEP_FINISH,ENGINE_R_DSO_FAILURE); goto err; } aep_dso = NULL; p_AEP_OpenConnection = NULL; p_AEP_ModExp = NULL; p_AEP_ModExpCrt = NULL; p_AEP_GenRandom = NULL; p_AEP_Initialize = NULL; p_AEP_Finalize = NULL; p_AEP_SetBNCallBacks = NULL; CRYPTO_add(&rnd_reference, -1, CRYPTO_LOCK_DYNLOCK); to_return = 1; err: return to_return; } static int aep_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx) { int to_return = 0; unsigned int hConnection, rv; /*Grab a connection from the pool*/ rv = aep_get_connection(&hConnection); if (rv != AEP_R_OK) { ENGINEerr(ENGINE_F_AEP_MOD_EXP,ENGINE_R_GET_HANDLE_FAILED); goto err; } /*To the card with the mod exp*/ rv = p_AEP_ModExp(hConnection,(void*)a, (void*)p,(void*)m, (void*)r,NULL); if (rv != AEP_R_OK) { ENGINEerr(ENGINE_F_AEP_MOD_EXP,ENGINE_R_MOD_EXP_FAILED); rv = aep_return_connection(hConnection); goto err; } /*Return the connection to the pool*/ rv = aep_return_connection(hConnection); if (rv != AEP_R_OK) { ENGINEerr(ENGINE_F_AEP_RAND,ENGINE_R_RETURN_CONNECTION_FAILED); goto err; } to_return = 1; err: return to_return; } static int aep_mod_exp_crt(BIGNUM *r, BIGNUM *a, const BIGNUM *p, const BIGNUM *q , const BIGNUM *dmp1,const BIGNUM *dmq1,const BIGNUM *iqmp, BN_CTX *ctx) { AEP_RV rv = AEP_R_OK; AEP_U32 hConnection; /*Grab a connection from the pool*/ rv = aep_get_connection(&hConnection); if (rv != AEP_R_OK) { ENGINEerr(ENGINE_F_AEP_MOD_EXP_CRT,ENGINE_R_GET_HANDLE_FAILED); goto err; } /*To the card with the mod exp*/ rv = p_AEP_ModExpCrt(hConnection,(void*)a, (void*)p, (void*)q, (void*)dmp1,(void*)dmq1, (void*)iqmp,(void*)r,NULL); if (rv != AEP_R_OK) { ENGINEerr(ENGINE_F_AEP_MOD_EXP_CRT,ENGINE_R_MOD_EXP_CRT_FAILED); rv = aep_return_connection(hConnection); goto err; } /*Return the connection to the pool*/ rv = aep_return_connection(hConnection); if (rv != AEP_R_OK) { ENGINEerr(ENGINE_F_AEP_RAND,ENGINE_R_RETURN_CONNECTION_FAILED); goto err; } err: return rv; } static int aep_rand(unsigned char *buf,int len ) { AEP_RV rv = AEP_R_OK; AEP_U32 hConnection; int to_return = 0; CRYPTO_w_lock(CRYPTO_LOCK_DYNLOCK); /*Can the request be serviced with what's already in the buffer?*/ if (len <= rand_block_bytes) { memcpy(buf, &rand_block[RAND_BLK_SIZE - rand_block_bytes], len); rand_block_bytes -= len; } else /*If not the get another block of random bytes*/ { rv = aep_get_connection(&hConnection); if (rv != AEP_R_OK) { ENGINEerr(ENGINE_F_AEP_RAND,ENGINE_R_GET_HANDLE_FAILED); CRYPTO_w_unlock(CRYPTO_LOCK_DYNLOCK); goto err; } if (len > RAND_BLK_SIZE) { rv = p_AEP_GenRandom(hConnection, len, 2, buf, NULL); if (rv != AEP_R_OK) { ENGINEerr(ENGINE_F_AEP_RAND,ENGINE_R_GET_RANDOM_FAILED); CRYPTO_w_unlock(CRYPTO_LOCK_DYNLOCK); goto err; } } else { rv = p_AEP_GenRandom(hConnection, RAND_BLK_SIZE, 2, &rand_block[0], NULL); if (rv != AEP_R_OK) { ENGINEerr(ENGINE_F_AEP_RAND,ENGINE_R_GET_RANDOM_FAILED); CRYPTO_w_unlock(CRYPTO_LOCK_DYNLOCK); goto err; } rand_block_bytes = RAND_BLK_SIZE; memcpy(buf, &rand_block[RAND_BLK_SIZE - rand_block_bytes], len); rand_block_bytes -= len; } rv = aep_return_connection(hConnection); if (rv != AEP_R_OK) { ENGINEerr(ENGINE_F_AEP_RAND,ENGINE_R_RETURN_CONNECTION_FAILED); CRYPTO_w_unlock(CRYPTO_LOCK_DYNLOCK); goto err; } } CRYPTO_w_unlock(CRYPTO_LOCK_DYNLOCK); to_return = 1; err: return to_return; } static int aep_rsa_mod_exp(BIGNUM *r0, BIGNUM *I, RSA *rsa) { BN_CTX *ctx = NULL; int to_return = 0; AEP_RV rv = AEP_R_OK; if (!aep_dso) { ENGINEerr(ENGINE_F_AEP_RSA_MOD_EXP,ENGINE_R_NOT_LOADED); goto err; } /*See if we have all the necessary bits for a crt*/ if (rsa->q && rsa->dmp1 && rsa->dmq1 && rsa->iqmp) { rv = aep_mod_exp_crt(r0,I,rsa->p,rsa->q, rsa->dmp1,rsa->dmq1,rsa->iqmp,ctx); if (rv != AEP_R_OK) goto err; } else { if (!rsa->d || !rsa->n) { ENGINEerr(ENGINE_F_AEP_RSA_MOD_EXP,ENGINE_R_MISSING_KEY_COMPONENTS); goto err; } rv = aep_mod_exp(r0,I,rsa->d,rsa->n,ctx); if (rv != AEP_R_OK) goto err; } to_return = 1; err: if(ctx) BN_CTX_free(ctx); return to_return; } static int aep_dsa_mod_exp(DSA *dsa, BIGNUM *rr, BIGNUM *a1, BIGNUM *p1, BIGNUM *a2, BIGNUM *p2, BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) { BIGNUM t; int to_return = 0; BN_init(&t); /* let rr = a1 ^ p1 mod m */ if (!aep_mod_exp(rr,a1,p1,m,ctx)) goto end; /* let t = a2 ^ p2 mod m */ if (!aep_mod_exp(&t,a2,p2,m,ctx)) goto end; /* let rr = rr * t mod m */ if (!BN_mod_mul(rr,rr,&t,m,ctx)) goto end; to_return = 1; end: BN_free(&t); return to_return; } static int aep_mod_exp_dsa(DSA *dsa, BIGNUM *r, BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx) { return aep_mod_exp(r, a, p, m, ctx); } /* This function is aliased to mod_exp (with the mont stuff dropped). */ static int aep_mod_exp_mont(BIGNUM *r, BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx) { return aep_mod_exp(r, a, p, m, ctx); } /* This function is aliased to mod_exp (with the dh and mont dropped). */ static int aep_mod_exp_dh(DH *dh, BIGNUM *r, BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx) { return aep_mod_exp(r, a, p, m, ctx); } static int aep_get_connection(AEP_CONNECTION_HNDL *hConnection) { int count; AEP_RV rv = AEP_R_OK; /*Get the current process id*/ pid_t curr_pid; CRYPTO_w_lock(CRYPTO_LOCK_ENGINE); curr_pid = getpid(); /*Check if this is the first time this is being called from the current process*/ if (recorded_pid != curr_pid) { recorded_pid = curr_pid; /*Call Finalize to make sure we have not inherited some data from a parent process*/ p_AEP_Finalize(); /*Initialise the AEP API*/ rv = p_AEP_Initialize(NULL); if (rv != AEP_R_OK) { ENGINEerr(ENGINE_F_AEP_INIT,ENGINE_R_AEP_INIT_FAILURE); recorded_pid = 0; CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); return rv; } /*Set the AEP big num call back functions*/ rv = p_AEP_SetBNCallBacks(&GetBigNumSize, &MakeAEPBigNum, &ConvertAEPBigNum); if (rv != AEP_R_OK) { ENGINEerr(ENGINE_F_AEP_INIT,ENGINE_R_SETBNCALLBACK_FAILURE); recorded_pid = 0; CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); return rv; } /*Reset the rand byte count*/ rand_block_bytes = 0; /*Init the structures*/ for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++) { aep_app_conn_table[count].conn_state = NotConnected; aep_app_conn_table[count].conn_hndl = 0; } /*Open a connection*/ rv = p_AEP_OpenConnection(hConnection); if (rv != AEP_R_OK) { ENGINEerr(ENGINE_F_AEP_INIT,ENGINE_R_UNIT_FAILURE); recorded_pid = 0; CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); return rv; } aep_app_conn_table[0].conn_state = InUse; aep_app_conn_table[0].conn_hndl = *hConnection; CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); return (rv); } /*Check the existing connections to see if we can find a free one*/ for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++) { if (aep_app_conn_table[count].conn_state == Connected) { aep_app_conn_table[count].conn_state = InUse; *hConnection = aep_app_conn_table[count].conn_hndl; CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); return rv; } } /*If no connections available, we're going to have to try to open a new one*/ for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++) { if (aep_app_conn_table[count].conn_state == NotConnected) { /*Open a connection*/ rv = p_AEP_OpenConnection(hConnection); if (rv != AEP_R_OK) { ENGINEerr(ENGINE_F_AEP_INIT,ENGINE_R_UNIT_FAILURE); CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); return rv; } aep_app_conn_table[count].conn_state = InUse; aep_app_conn_table[count].conn_hndl = *hConnection; CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); return rv; } } CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); return AEP_R_GENERAL_ERROR; } static int aep_return_connection(AEP_CONNECTION_HNDL hConnection) { int count; CRYPTO_w_lock(CRYPTO_LOCK_ENGINE); /*Find the connection item that matches this connection handle*/ for(count = 0;count < MAX_PROCESS_CONNECTIONS;count ++) { if (aep_app_conn_table[count].conn_hndl == hConnection) { aep_app_conn_table[count].conn_state = Connected; break; } } CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE); return AEP_R_OK; } /*BigNum call back functions, used to convert OpenSSL bignums into AEP bignums. Note only 32bit Openssl build support*/ AEP_RV GetBigNumSize(void* ArbBigNum, AEP_U32* BigNumSize) { BIGNUM* bn; /*Cast the ArbBigNum pointer to our BIGNUM struct*/ bn = (BIGNUM*) ArbBigNum; #ifdef SIXTY_FOUR_BIT_LONG *BigNumSize = bn->top << 3; #else /*Size of the bignum in bytes is equal to the bn->top (no of 32 bit words) multiplies by 4*/ *BigNumSize = bn->top << 2; #endif return AEP_R_OK; } AEP_RV MakeAEPBigNum(void* ArbBigNum, AEP_U32 BigNumSize, unsigned char* AEP_BigNum) { BIGNUM* bn; #ifndef SIXTY_FOUR_BIT_LONG unsigned char* buf; int i; #endif /*Cast the ArbBigNum pointer to our BIGNUM struct*/ bn = (BIGNUM*) ArbBigNum; #ifdef SIXTY_FOUR_BIT_LONG memcpy(AEP_BigNum, bn->d, BigNumSize); #else /*Must copy data into a (monotone) least significant byte first format performing endian conversion if necessary*/ for(i=0;itop;i++) { buf = (unsigned char*)&bn->d[i]; *((AEP_U32*)AEP_BigNum) = (AEP_U32) ((unsigned) buf[1] << 8 | buf[0]) | ((unsigned) buf[3] << 8 | buf[2]) << 16; AEP_BigNum += 4; } #endif return AEP_R_OK; } /*Turn an AEP Big Num back to a user big num*/ AEP_RV ConvertAEPBigNum(void* ArbBigNum, AEP_U32 BigNumSize, unsigned char* AEP_BigNum) { BIGNUM* bn; #ifndef SIXTY_FOUR_BIT_LONG int i; #endif bn = (BIGNUM*)ArbBigNum; /*Expand the result bn so that it can hold our big num. Size is in bits*/ bn_expand(bn, (int)(BigNumSize << 3)); #ifdef SIXTY_FOUR_BIT_LONG bn->top = BigNumSize >> 3; if((BigNumSize & 7) != 0) bn->top++; memset(bn->d, 0, bn->top << 3); memcpy(bn->d, AEP_BigNum, BigNumSize); #else bn->top = BigNumSize >> 2; for(i=0;itop;i++) { bn->d[i] = (AEP_U32) ((unsigned) AEP_BigNum[3] << 8 | AEP_BigNum[2]) << 16 | ((unsigned) AEP_BigNum[1] << 8 | AEP_BigNum[0]); AEP_BigNum += 4; } #endif return AEP_R_OK; } #endif /* !NO_HW_AEP */ #endif /* !NO_HW */