#!/usr/bin/env perl # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # ECP_NISTZ256 module for x86/SSE2. # # October 2014. # # Original ECP_NISTZ256 submission targeting x86_64 is detailed in # http://eprint.iacr.org/2013/816. In the process of adaptation # original .c module was made 32-bit savvy in order to make this # implementation possible. # # with/without -DECP_NISTZ256_ASM # Pentium +66-163% # PIII +72-172% # P4 +65-132% # Core2 +90-215% # Sandy Bridge +105-265% (contemporary i[57]-* are all close to this) # Atom +65-155% # Opteron +54-110% # Bulldozer +99-240% # VIA Nano +93-290% # # Ranges denote minimum and maximum improvement coefficients depending # on benchmark. Lower coefficients are for ECDSA sign, server-side # operation. Keep in mind that +200% means 3x improvement. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; &asm_init($ARGV[0],"ecp_nistz256-x86.pl",$ARGV[$#ARGV] eq "386"); $sse2=0; for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } &external_label("OPENSSL_ia32cap_P") if ($sse2); ######################################################################## # Convert ecp_nistz256_table.c to layout expected by ecp_nistz_gather_w7 # open TABLE,") { s/TOBN\(\s*(0x[0-9a-f]+),\s*(0x[0-9a-f]+)\s*\)/push @arr,hex($2),hex($1)/geo; } close TABLE; # See ecp_nistz256_table.c for explanation for why it's 64*16*37. # 64*16*37-1 is because $#arr returns last valid index or @arr, not # amount of elements. die "insane number of elements" if ($#arr != 64*16*37-1); &public_label("ecp_nistz256_precomputed"); &align(4096); &set_label("ecp_nistz256_precomputed"); ######################################################################## # this conversion smashes P256_POINT_AFFINE by individual bytes with # 64 byte interval, similar to # 1111222233334444 # 1234123412341234 for(1..37) { @tbl = splice(@arr,0,64*16); for($i=0;$i<64;$i++) { undef @line; for($j=0;$j<64;$j++) { push @line,(@tbl[$j*16+$i/4]>>(($i%4)*8))&0xff; } &data_byte(join(',',map { sprintf "0x%02x",$_} @line)); } } ######################################################################## # Keep in mind that constants are stored least to most significant word &static_label("RR"); &set_label("RR",64); &data_word(3,0,-1,-5,-2,-1,-3,4); # 2^512 mod P-256 &static_label("ONE_mont"); &set_label("ONE_mont"); &data_word(1,0,0,-1,-1,-1,-2,0); &static_label("ONE"); &set_label("ONE"); &data_word(1,0,0,0,0,0,0,0); &asciz("ECP_NISZ256 for x86/SSE2, CRYPTOGAMS by "); &align(64); ######################################################################## # void ecp_nistz256_mul_by_2(BN_ULONG edi[8],const BN_ULONG esi[8]); &function_begin("ecp_nistz256_mul_by_2"); &mov ("esi",&wparam(1)); &mov ("edi",&wparam(0)); &mov ("ebp","esi"); ######################################################################## # common pattern for internal functions is that %edi is result pointer, # %esi and %ebp are input ones, %ebp being optional. %edi is preserved. &call ("_ecp_nistz256_add"); &function_end("ecp_nistz256_mul_by_2"); ######################################################################## # void ecp_nistz256_mul_by_3(BN_ULONG edi[8],const BN_ULONG esi[8]); &function_begin("ecp_nistz256_mul_by_3"); &mov ("esi",&wparam(1)); # multiplication by 3 is performed # as 2*n+n, but we can't use output # to store 2*n, because if output # pointer equals to input, then # we'll get 2*n+2*n. &stack_push(8); # therefore we need to allocate # 256-bit intermediate buffer. &mov ("edi","esp"); &mov ("ebp","esi"); &call ("_ecp_nistz256_add"); &lea ("esi",&DWP(0,"edi")); &mov ("ebp",&wparam(1)); &mov ("edi",&wparam(0)); &call ("_ecp_nistz256_add"); &stack_pop(8); &function_end("ecp_nistz256_mul_by_3"); ######################################################################## # void ecp_nistz256_div_by_2(BN_ULONG edi[8],const BN_ULONG esi[8]); &function_begin("ecp_nistz256_div_by_2"); &mov ("esi",&wparam(1)); &mov ("edi",&wparam(0)); &call ("_ecp_nistz256_div_by_2"); &function_end("ecp_nistz256_div_by_2"); &function_begin_B("_ecp_nistz256_div_by_2"); # tmp = a is odd ? a+mod : a # # note that because mod has special form, i.e. consists of # 0xffffffff, 1 and 0s, we can conditionally synthesize it by # assigning least significant bit of input to one register, # %ebp, and its negative to another, %edx. &mov ("ebp",&DWP(0,"esi")); &xor ("edx","edx"); &mov ("ebx",&DWP(4,"esi")); &mov ("eax","ebp"); &and ("ebp",1); &mov ("ecx",&DWP(8,"esi")); &sub ("edx","ebp"); &add ("eax","edx"); &adc ("ebx","edx"); &mov (&DWP(0,"edi"),"eax"); &adc ("ecx","edx"); &mov (&DWP(4,"edi"),"ebx"); &mov (&DWP(8,"edi"),"ecx"); &mov ("eax",&DWP(12,"esi")); &mov ("ebx",&DWP(16,"esi")); &adc ("eax",0); &mov ("ecx",&DWP(20,"esi")); &adc ("ebx",0); &mov (&DWP(12,"edi"),"eax"); &adc ("ecx",0); &mov (&DWP(16,"edi"),"ebx"); &mov (&DWP(20,"edi"),"ecx"); &mov ("eax",&DWP(24,"esi")); &mov ("ebx",&DWP(28,"esi")); &adc ("eax","ebp"); &adc ("ebx","edx"); &mov (&DWP(24,"edi"),"eax"); &sbb ("esi","esi"); # broadcast carry bit &mov (&DWP(28,"edi"),"ebx"); # ret = tmp >> 1 &mov ("eax",&DWP(0,"edi")); &mov ("ebx",&DWP(4,"edi")); &mov ("ecx",&DWP(8,"edi")); &mov ("edx",&DWP(12,"edi")); &shr ("eax",1); &mov ("ebp","ebx"); &shl ("ebx",31); &or ("eax","ebx"); &shr ("ebp",1); &mov ("ebx","ecx"); &shl ("ecx",31); &mov (&DWP(0,"edi"),"eax"); &or ("ebp","ecx"); &mov ("eax",&DWP(16,"edi")); &shr ("ebx",1); &mov ("ecx","edx"); &shl ("edx",31); &mov (&DWP(4,"edi"),"ebp"); &or ("ebx","edx"); &mov ("ebp",&DWP(20,"edi")); &shr ("ecx",1); &mov ("edx","eax"); &shl ("eax",31); &mov (&DWP(8,"edi"),"ebx"); &or ("ecx","eax"); &mov ("ebx",&DWP(24,"edi")); &shr ("edx",1); &mov ("eax","ebp"); &shl ("ebp",31); &mov (&DWP(12,"edi"),"ecx"); &or ("edx","ebp"); &mov ("ecx",&DWP(28,"edi")); &shr ("eax",1); &mov ("ebp","ebx"); &shl ("ebx",31); &mov (&DWP(16,"edi"),"edx"); &or ("eax","ebx"); &shr ("ebp",1); &mov ("ebx","ecx"); &shl ("ecx",31); &mov (&DWP(20,"edi"),"eax"); &or ("ebp","ecx"); &shr ("ebx",1); &shl ("esi",31); &mov (&DWP(24,"edi"),"ebp"); &or ("ebx","esi"); # handle top-most carry bit &mov (&DWP(28,"edi"),"ebx"); &ret (); &function_end_B("_ecp_nistz256_div_by_2"); ######################################################################## # void ecp_nistz256_add(BN_ULONG edi[8],const BN_ULONG esi[8], # const BN_ULONG ebp[8]); &function_begin("ecp_nistz256_add"); &mov ("esi",&wparam(1)); &mov ("ebp",&wparam(2)); &mov ("edi",&wparam(0)); &call ("_ecp_nistz256_add"); &function_end("ecp_nistz256_add"); &function_begin_B("_ecp_nistz256_add"); &mov ("eax",&DWP(0,"esi")); &mov ("ebx",&DWP(4,"esi")); &mov ("ecx",&DWP(8,"esi")); &add ("eax",&DWP(0,"ebp")); &mov ("edx",&DWP(12,"esi")); &adc ("ebx",&DWP(4,"ebp")); &mov (&DWP(0,"edi"),"eax"); &adc ("ecx",&DWP(8,"ebp")); &mov (&DWP(4,"edi"),"ebx"); &adc ("edx",&DWP(12,"ebp")); &mov (&DWP(8,"edi"),"ecx"); &mov (&DWP(12,"edi"),"edx"); &mov ("eax",&DWP(16,"esi")); &mov ("ebx",&DWP(20,"esi")); &mov ("ecx",&DWP(24,"esi")); &adc ("eax",&DWP(16,"ebp")); &mov ("edx",&DWP(28,"esi")); &adc ("ebx",&DWP(20,"ebp")); &mov (&DWP(16,"edi"),"eax"); &adc ("ecx",&DWP(24,"ebp")); &mov (&DWP(20,"edi"),"ebx"); &adc ("edx",&DWP(28,"ebp")); &mov (&DWP(24,"edi"),"ecx"); &sbb ("esi","esi"); # broadcast carry bit &mov (&DWP(28,"edi"),"edx"); # if a+b carries, subtract modulus. # # Note that because mod has special form, i.e. consists of # 0xffffffff, 1 and 0s, we can conditionally synthesize it by # assigning carry bit to one register, %ebp, and its negative # to another, %esi. But we started by calculating %esi... &mov ("eax",&DWP(0,"edi")); &mov ("ebp","esi"); &mov ("ebx",&DWP(4,"edi")); &shr ("ebp",31); &mov ("ecx",&DWP(8,"edi")); &sub ("eax","esi"); &mov ("edx",&DWP(12,"edi")); &sbb ("ebx","esi"); &mov (&DWP(0,"edi"),"eax"); &sbb ("ecx","esi"); &mov (&DWP(4,"edi"),"ebx"); &sbb ("edx",0); &mov (&DWP(8,"edi"),"ecx"); &mov (&DWP(12,"edi"),"edx"); &mov ("eax",&DWP(16,"edi")); &mov ("ebx",&DWP(20,"edi")); &mov ("ecx",&DWP(24,"edi")); &sbb ("eax",0); &mov ("edx",&DWP(28,"edi")); &sbb ("ebx",0); &mov (&DWP(16,"edi"),"eax"); &sbb ("ecx","ebp"); &mov (&DWP(20,"edi"),"ebx"); &sbb ("edx","esi"); &mov (&DWP(24,"edi"),"ecx"); &mov (&DWP(28,"edi"),"edx"); &ret (); &function_end_B("_ecp_nistz256_add"); ######################################################################## # void ecp_nistz256_sub(BN_ULONG edi[8],const BN_ULONG esi[8], # const BN_ULONG ebp[8]); &function_begin("ecp_nistz256_sub"); &mov ("esi",&wparam(1)); &mov ("ebp",&wparam(2)); &mov ("edi",&wparam(0)); &call ("_ecp_nistz256_sub"); &function_end("ecp_nistz256_sub"); &function_begin_B("_ecp_nistz256_sub"); &mov ("eax",&DWP(0,"esi")); &mov ("ebx",&DWP(4,"esi")); &mov ("ecx",&DWP(8,"esi")); &sub ("eax",&DWP(0,"ebp")); &mov ("edx",&DWP(12,"esi")); &sbb ("ebx",&DWP(4,"ebp")); &mov (&DWP(0,"edi"),"eax"); &sbb ("ecx",&DWP(8,"ebp")); &mov (&DWP(4,"edi"),"ebx"); &sbb ("edx",&DWP(12,"ebp")); &mov (&DWP(8,"edi"),"ecx"); &mov (&DWP(12,"edi"),"edx"); &mov ("eax",&DWP(16,"esi")); &mov ("ebx",&DWP(20,"esi")); &mov ("ecx",&DWP(24,"esi")); &sbb ("eax",&DWP(16,"ebp")); &mov ("edx",&DWP(28,"esi")); &sbb ("ebx",&DWP(20,"ebp")); &sbb ("ecx",&DWP(24,"ebp")); &mov (&DWP(16,"edi"),"eax"); &sbb ("edx",&DWP(28,"ebp")); &mov (&DWP(20,"edi"),"ebx"); &sbb ("esi","esi"); # broadcast borrow bit &mov (&DWP(24,"edi"),"ecx"); &mov (&DWP(28,"edi"),"edx"); # if a-b borrows, add modulus. # # Note that because mod has special form, i.e. consists of # 0xffffffff, 1 and 0s, we can conditionally synthesize it by # assigning borrow bit to one register, %ebp, and its negative # to another, %esi. But we started by calculating %esi... &mov ("eax",&DWP(0,"edi")); &mov ("ebp","esi"); &mov ("ebx",&DWP(4,"edi")); &shr ("ebp",31); &mov ("ecx",&DWP(8,"edi")); &add ("eax","esi"); &mov ("edx",&DWP(12,"edi")); &adc ("ebx","esi"); &mov (&DWP(0,"edi"),"eax"); &adc ("ecx","esi"); &mov (&DWP(4,"edi"),"ebx"); &adc ("edx",0); &mov (&DWP(8,"edi"),"ecx"); &mov (&DWP(12,"edi"),"edx"); &mov ("eax",&DWP(16,"edi")); &mov ("ebx",&DWP(20,"edi")); &mov ("ecx",&DWP(24,"edi")); &adc ("eax",0); &mov ("edx",&DWP(28,"edi")); &adc ("ebx",0); &mov (&DWP(16,"edi"),"eax"); &adc ("ecx","ebp"); &mov (&DWP(20,"edi"),"ebx"); &adc ("edx","esi"); &mov (&DWP(24,"edi"),"ecx"); &mov (&DWP(28,"edi"),"edx"); &ret (); &function_end_B("_ecp_nistz256_sub"); ######################################################################## # void ecp_nistz256_neg(BN_ULONG edi[8],const BN_ULONG esi[8]); &function_begin("ecp_nistz256_neg"); &mov ("ebp",&wparam(1)); &mov ("edi",&wparam(0)); &xor ("eax","eax"); &stack_push(8); &mov (&DWP(0,"esp"),"eax"); &mov ("esi","esp"); &mov (&DWP(4,"esp"),"eax"); &mov (&DWP(8,"esp"),"eax"); &mov (&DWP(12,"esp"),"eax"); &mov (&DWP(16,"esp"),"eax"); &mov (&DWP(20,"esp"),"eax"); &mov (&DWP(24,"esp"),"eax"); &mov (&DWP(28,"esp"),"eax"); &call ("_ecp_nistz256_sub"); &stack_pop(8); &function_end("ecp_nistz256_neg"); &function_begin_B("_picup_eax"); &mov ("eax",&DWP(0,"esp")); &ret (); &function_end_B("_picup_eax"); ######################################################################## # void ecp_nistz256_to_mont(BN_ULONG edi[8],const BN_ULONG esi[8]); &function_begin("ecp_nistz256_to_mont"); &mov ("esi",&wparam(1)); &call ("_picup_eax"); &set_label("pic"); &lea ("ebp",&DWP(&label("RR")."-".&label("pic"),"eax")); if ($sse2) { &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic")); &mov ("eax",&DWP(0,"eax")); } &mov ("edi",&wparam(0)); &call ("_ecp_nistz256_mul_mont"); &function_end("ecp_nistz256_to_mont"); ######################################################################## # void ecp_nistz256_from_mont(BN_ULONG edi[8],const BN_ULONG esi[8]); &function_begin("ecp_nistz256_from_mont"); &mov ("esi",&wparam(1)); &call ("_picup_eax"); &set_label("pic"); &lea ("ebp",&DWP(&label("ONE")."-".&label("pic"),"eax")); if ($sse2) { &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic")); &mov ("eax",&DWP(0,"eax")); } &mov ("edi",&wparam(0)); &call ("_ecp_nistz256_mul_mont"); &function_end("ecp_nistz256_from_mont"); ######################################################################## # void ecp_nistz256_mul_mont(BN_ULONG edi[8],const BN_ULONG esi[8], # const BN_ULONG ebp[8]); &function_begin("ecp_nistz256_mul_mont"); &mov ("esi",&wparam(1)); &mov ("ebp",&wparam(2)); if ($sse2) { &call ("_picup_eax"); &set_label("pic"); &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic")); &mov ("eax",&DWP(0,"eax")); } &mov ("edi",&wparam(0)); &call ("_ecp_nistz256_mul_mont"); &function_end("ecp_nistz256_mul_mont"); ######################################################################## # void ecp_nistz256_sqr_mont(BN_ULONG edi[8],const BN_ULONG esi[8]); &function_begin("ecp_nistz256_sqr_mont"); &mov ("esi",&wparam(1)); if ($sse2) { &call ("_picup_eax"); &set_label("pic"); &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic")); &mov ("eax",&DWP(0,"eax")); } &mov ("edi",&wparam(0)); &mov ("ebp","esi"); &call ("_ecp_nistz256_mul_mont"); &function_end("ecp_nistz256_sqr_mont"); &function_begin_B("_ecp_nistz256_mul_mont"); if ($sse2) { &and ("eax",1<<24|1<<26); &cmp ("eax",1<<24|1<<26); # see if XMM+SSE2 is on &jne (&label("mul_mont_ialu")); ######################################## # SSE2 code path featuring 32x16-bit # multiplications is ~2x faster than # IALU counterpart (except on Atom)... ######################################## # stack layout: # +------------------------------------+< %esp # | 7 16-byte temporary XMM words, | # | "sliding" toward lower address | # . . # +------------------------------------+ # | unused XMM word | # +------------------------------------+< +128,%ebx # | 8 16-byte XMM words holding copies | # | of a[i]<<64|a[i] | # . . # . . # +------------------------------------+< +256 &mov ("edx","esp"); &sub ("esp",0x100); &movd ("xmm7",&DWP(0,"ebp")); # b[0] -> 0000.00xy &lea ("ebp",&DWP(4,"ebp")); &pcmpeqd("xmm6","xmm6"); &psrlq ("xmm6",48); # compose 0xffff<<64|0xffff &pshuflw("xmm7","xmm7",0b11011100); # 0000.00xy -> 0000.0x0y &and ("esp",-64); &pshufd ("xmm7","xmm7",0b11011100); # 0000.0x0y -> 000x.000y &lea ("ebx",&DWP(0x80,"esp")); &movd ("xmm0",&DWP(4*0,"esi")); # a[0] -> 0000.00xy &pshufd ("xmm0","xmm0",0b11001100); # 0000.00xy -> 00xy.00xy &movd ("xmm1",&DWP(4*1,"esi")); # a[1] -> ... &movdqa (&QWP(0x00,"ebx"),"xmm0"); # offload converted a[0] &pmuludq("xmm0","xmm7"); # a[0]*b[0] &movd ("xmm2",&DWP(4*2,"esi")); &pshufd ("xmm1","xmm1",0b11001100); &movdqa (&QWP(0x10,"ebx"),"xmm1"); &pmuludq("xmm1","xmm7"); # a[1]*b[0] &movq ("xmm4","xmm0"); # clear upper 64 bits &pslldq("xmm4",6); &paddq ("xmm4","xmm0"); &movdqa("xmm5","xmm4"); &psrldq("xmm4",10); # upper 32 bits of a[0]*b[0] &pand ("xmm5","xmm6"); # lower 32 bits of a[0]*b[0] # Upper half of a[0]*b[i] is carried into next multiplication # iteration, while lower one "participates" in actual reduction. # Normally latter is done by accumulating result of multiplication # of modulus by "magic" digit, but thanks to special form of modulus # and "magic" digit it can be performed only with additions and # subtractions (see note in IALU section below). Note that we are # not bothered with carry bits, they are accumulated in "flatten" # phase after all multiplications and reductions. &movd ("xmm3",&DWP(4*3,"esi")); &pshufd ("xmm2","xmm2",0b11001100); &movdqa (&QWP(0x20,"ebx"),"xmm2"); &pmuludq("xmm2","xmm7"); # a[2]*b[0] &paddq ("xmm1","xmm4"); # a[1]*b[0]+hw(a[0]*b[0]), carry &movdqa (&QWP(0x00,"esp"),"xmm1"); # t[0] &movd ("xmm0",&DWP(4*4,"esi")); &pshufd ("xmm3","xmm3",0b11001100); &movdqa (&QWP(0x30,"ebx"),"xmm3"); &pmuludq("xmm3","xmm7"); # a[3]*b[0] &movdqa (&QWP(0x10,"esp"),"xmm2"); &movd ("xmm1",&DWP(4*5,"esi")); &pshufd ("xmm0","xmm0",0b11001100); &movdqa (&QWP(0x40,"ebx"),"xmm0"); &pmuludq("xmm0","xmm7"); # a[4]*b[0] &paddq ("xmm3","xmm5"); # a[3]*b[0]+lw(a[0]*b[0]), reduction step &movdqa (&QWP(0x20,"esp"),"xmm3"); &movd ("xmm2",&DWP(4*6,"esi")); &pshufd ("xmm1","xmm1",0b11001100); &movdqa (&QWP(0x50,"ebx"),"xmm1"); &pmuludq("xmm1","xmm7"); # a[5]*b[0] &movdqa (&QWP(0x30,"esp"),"xmm0"); &pshufd("xmm4","xmm5",0b10110001); # xmm4 = xmm5<<32, reduction step &movd ("xmm3",&DWP(4*7,"esi")); &pshufd ("xmm2","xmm2",0b11001100); &movdqa (&QWP(0x60,"ebx"),"xmm2"); &pmuludq("xmm2","xmm7"); # a[6]*b[0] &movdqa (&QWP(0x40,"esp"),"xmm1"); &psubq ("xmm4","xmm5"); # xmm4 = xmm5*0xffffffff, reduction step &movd ("xmm0",&DWP(0,"ebp")); # b[1] -> 0000.00xy &pshufd ("xmm3","xmm3",0b11001100); &movdqa (&QWP(0x70,"ebx"),"xmm3"); &pmuludq("xmm3","xmm7"); # a[7]*b[0] &pshuflw("xmm7","xmm0",0b11011100); # 0000.00xy -> 0000.0x0y &movdqa ("xmm0",&QWP(0x00,"ebx")); # pre-load converted a[0] &pshufd ("xmm7","xmm7",0b11011100); # 0000.0x0y -> 000x.000y &mov ("ecx",6); &lea ("ebp",&DWP(4,"ebp")); &jmp (&label("madd_sse2")); &set_label("madd_sse2",16); &paddq ("xmm2","xmm5"); # a[6]*b[i-1]+lw(a[0]*b[i-1]), reduction step [modulo-scheduled] &paddq ("xmm3","xmm4"); # a[7]*b[i-1]+lw(a[0]*b[i-1])*0xffffffff, reduction step [modulo-scheduled] &movdqa ("xmm1",&QWP(0x10,"ebx")); &pmuludq("xmm0","xmm7"); # a[0]*b[i] &movdqa(&QWP(0x50,"esp"),"xmm2"); &movdqa ("xmm2",&QWP(0x20,"ebx")); &pmuludq("xmm1","xmm7"); # a[1]*b[i] &movdqa(&QWP(0x60,"esp"),"xmm3"); &paddq ("xmm0",&QWP(0x00,"esp")); &movdqa ("xmm3",&QWP(0x30,"ebx")); &pmuludq("xmm2","xmm7"); # a[2]*b[i] &movq ("xmm4","xmm0"); # clear upper 64 bits &pslldq("xmm4",6); &paddq ("xmm1",&QWP(0x10,"esp")); &paddq ("xmm4","xmm0"); &movdqa("xmm5","xmm4"); &psrldq("xmm4",10); # upper 33 bits of a[0]*b[i]+t[0] &movdqa ("xmm0",&QWP(0x40,"ebx")); &pmuludq("xmm3","xmm7"); # a[3]*b[i] &paddq ("xmm1","xmm4"); # a[1]*b[i]+hw(a[0]*b[i]), carry &paddq ("xmm2",&QWP(0x20,"esp")); &movdqa (&QWP(0x00,"esp"),"xmm1"); &movdqa ("xmm1",&QWP(0x50,"ebx")); &pmuludq("xmm0","xmm7"); # a[4]*b[i] &paddq ("xmm3",&QWP(0x30,"esp")); &movdqa (&QWP(0x10,"esp"),"xmm2"); &pand ("xmm5","xmm6"); # lower 32 bits of a[0]*b[i] &movdqa ("xmm2",&DWP(0x60,"ebx")); &pmuludq("xmm1","xmm7"); # a[5]*b[i] &paddq ("xmm3","xmm5"); # a[3]*b[i]+lw(a[0]*b[i]), reduction step &paddq ("xmm0",&QWP(0x40,"esp")); &movdqa (&QWP(0x20,"esp"),"xmm3"); &pshufd("xmm4","xmm5",0b10110001); # xmm4 = xmm5<<32, reduction step &movdqa ("xmm3","xmm7"); &pmuludq("xmm2","xmm7"); # a[6]*b[i] &movd ("xmm7",&DWP(0,"ebp")); # b[i++] -> 0000.00xy &lea ("ebp",&DWP(4,"ebp")); &paddq ("xmm1",&QWP(0x50,"esp")); &psubq ("xmm4","xmm5"); # xmm4 = xmm5*0xffffffff, reduction step &movdqa (&QWP(0x30,"esp"),"xmm0"); &pshuflw("xmm7","xmm7",0b11011100); # 0000.00xy -> 0000.0x0y &pmuludq("xmm3",&QWP(0x70,"ebx")); # a[7]*b[i] &pshufd("xmm7","xmm7",0b11011100); # 0000.0x0y -> 000x.000y &movdqa("xmm0",&QWP(0x00,"ebx")); # pre-load converted a[0] &movdqa (&QWP(0x40,"esp"),"xmm1"); &paddq ("xmm2",&QWP(0x60,"esp")); &dec ("ecx"); &jnz (&label("madd_sse2")); &paddq ("xmm2","xmm5"); # a[6]*b[6]+lw(a[0]*b[6]), reduction step [modulo-scheduled] &paddq ("xmm3","xmm4"); # a[7]*b[6]+lw(a[0]*b[6])*0xffffffff, reduction step [modulo-scheduled] &movdqa ("xmm1",&QWP(0x10,"ebx")); &pmuludq("xmm0","xmm7"); # a[0]*b[7] &movdqa(&QWP(0x50,"esp"),"xmm2"); &movdqa ("xmm2",&QWP(0x20,"ebx")); &pmuludq("xmm1","xmm7"); # a[1]*b[7] &movdqa(&QWP(0x60,"esp"),"xmm3"); &paddq ("xmm0",&QWP(0x00,"esp")); &movdqa ("xmm3",&QWP(0x30,"ebx")); &pmuludq("xmm2","xmm7"); # a[2]*b[7] &movq ("xmm4","xmm0"); # clear upper 64 bits &pslldq("xmm4",6); &paddq ("xmm1",&QWP(0x10,"esp")); &paddq ("xmm4","xmm0"); &movdqa("xmm5","xmm4"); &psrldq("xmm4",10); # upper 33 bits of a[0]*b[i]+t[0] &movdqa ("xmm0",&QWP(0x40,"ebx")); &pmuludq("xmm3","xmm7"); # a[3]*b[7] &paddq ("xmm1","xmm4"); # a[1]*b[7]+hw(a[0]*b[7]), carry &paddq ("xmm2",&QWP(0x20,"esp")); &movdqa (&QWP(0x00,"esp"),"xmm1"); &movdqa ("xmm1",&QWP(0x50,"ebx")); &pmuludq("xmm0","xmm7"); # a[4]*b[7] &paddq ("xmm3",&QWP(0x30,"esp")); &movdqa (&QWP(0x10,"esp"),"xmm2"); &pand ("xmm5","xmm6"); # lower 32 bits of a[0]*b[i] &movdqa ("xmm2",&DWP(0x60,"ebx")); &pmuludq("xmm1","xmm7"); # a[5]*b[7] &paddq ("xmm3","xmm5"); # reduction step &paddq ("xmm0",&QWP(0x40,"esp")); &movdqa (&QWP(0x20,"esp"),"xmm3"); &pshufd("xmm4","xmm5",0b10110001); # xmm4 = xmm5<<32, reduction step &movdqa ("xmm3",&QWP(0x70,"ebx")); &pmuludq("xmm2","xmm7"); # a[6]*b[7] &paddq ("xmm1",&QWP(0x50,"esp")); &psubq ("xmm4","xmm5"); # xmm4 = xmm5*0xffffffff, reduction step &movdqa (&QWP(0x30,"esp"),"xmm0"); &pmuludq("xmm3","xmm7"); # a[7]*b[7] &pcmpeqd("xmm7","xmm7"); &movdqa ("xmm0",&QWP(0x00,"esp")); &pslldq ("xmm7",8); &movdqa (&QWP(0x40,"esp"),"xmm1"); &paddq ("xmm2",&QWP(0x60,"esp")); &paddq ("xmm2","xmm5"); # a[6]*b[7]+lw(a[0]*b[7]), reduction step &paddq ("xmm3","xmm4"); # a[6]*b[7]+lw(a[0]*b[7])*0xffffffff, reduction step &movdqa(&QWP(0x50,"esp"),"xmm2"); &movdqa(&QWP(0x60,"esp"),"xmm3"); &movdqa ("xmm1",&QWP(0x10,"esp")); &movdqa ("xmm2",&QWP(0x20,"esp")); &movdqa ("xmm3",&QWP(0x30,"esp")); &movq ("xmm4","xmm0"); # "flatten" &pand ("xmm0","xmm7"); &xor ("ebp","ebp"); &pslldq ("xmm4",6); &movq ("xmm5","xmm1"); &paddq ("xmm0","xmm4"); &pand ("xmm1","xmm7"); &psrldq ("xmm0",6); &movd ("eax","xmm0"); &psrldq ("xmm0",4); &paddq ("xmm5","xmm0"); &movdqa ("xmm0",&QWP(0x40,"esp")); &sub ("eax",-1); # start subtracting modulus, # this is used to determine # if result is larger/smaller # than modulus (see below) &pslldq ("xmm5",6); &movq ("xmm4","xmm2"); &paddq ("xmm1","xmm5"); &pand ("xmm2","xmm7"); &psrldq ("xmm1",6); &mov (&DWP(4*0,"edi"),"eax"); &movd ("eax","xmm1"); &psrldq ("xmm1",4); &paddq ("xmm4","xmm1"); &movdqa ("xmm1",&QWP(0x50,"esp")); &sbb ("eax",-1); &pslldq ("xmm4",6); &movq ("xmm5","xmm3"); &paddq ("xmm2","xmm4"); &pand ("xmm3","xmm7"); &psrldq ("xmm2",6); &mov (&DWP(4*1,"edi"),"eax"); &movd ("eax","xmm2"); &psrldq ("xmm2",4); &paddq ("xmm5","xmm2"); &movdqa ("xmm2",&QWP(0x60,"esp")); &sbb ("eax",-1); &pslldq ("xmm5",6); &movq ("xmm4","xmm0"); &paddq ("xmm3","xmm5"); &pand ("xmm0","xmm7"); &psrldq ("xmm3",6); &mov (&DWP(4*2,"edi"),"eax"); &movd ("eax","xmm3"); &psrldq ("xmm3",4); &paddq ("xmm4","xmm3"); &sbb ("eax",0); &pslldq ("xmm4",6); &movq ("xmm5","xmm1"); &paddq ("xmm0","xmm4"); &pand ("xmm1","xmm7"); &psrldq ("xmm0",6); &mov (&DWP(4*3,"edi"),"eax"); &movd ("eax","xmm0"); &psrldq ("xmm0",4); &paddq ("xmm5","xmm0"); &sbb ("eax",0); &pslldq ("xmm5",6); &movq ("xmm4","xmm2"); &paddq ("xmm1","xmm5"); &pand ("xmm2","xmm7"); &psrldq ("xmm1",6); &movd ("ebx","xmm1"); &psrldq ("xmm1",4); &mov ("esp","edx"); &paddq ("xmm4","xmm1"); &pslldq ("xmm4",6); &paddq ("xmm2","xmm4"); &psrldq ("xmm2",6); &movd ("ecx","xmm2"); &psrldq ("xmm2",4); &sbb ("ebx",0); &movd ("edx","xmm2"); &pextrw ("esi","xmm2",2); # top-most overflow bit &sbb ("ecx",1); &sbb ("edx",-1); &sbb ("esi",0); # borrow from subtraction # Final step is "if result > mod, subtract mod", and at this point # we have result - mod written to output buffer, as well as borrow # bit from this subtraction, and if borrow bit is set, we add # modulus back. # # Note that because mod has special form, i.e. consists of # 0xffffffff, 1 and 0s, we can conditionally synthesize it by # assigning borrow bit to one register, %ebp, and its negative # to another, %esi. But we started by calculating %esi... &sub ("ebp","esi"); &add (&DWP(4*0,"edi"),"esi"); # add modulus or zero &adc (&DWP(4*1,"edi"),"esi"); &adc (&DWP(4*2,"edi"),"esi"); &adc (&DWP(4*3,"edi"),0); &adc ("eax",0); &adc ("ebx",0); &mov (&DWP(4*4,"edi"),"eax"); &adc ("ecx","ebp"); &mov (&DWP(4*5,"edi"),"ebx"); &adc ("edx","esi"); &mov (&DWP(4*6,"edi"),"ecx"); &mov (&DWP(4*7,"edi"),"edx"); &ret (); &set_label("mul_mont_ialu",16); } ######################################## # IALU code path suitable for all CPUs. ######################################## # stack layout: # +------------------------------------+< %esp # | 8 32-bit temporary words, accessed | # | as circular buffer | # . . # . . # +------------------------------------+< +32 # | offloaded destination pointer | # +------------------------------------+ # | unused | # +------------------------------------+< +40 &sub ("esp",10*4); &mov ("eax",&DWP(0*4,"esi")); # a[0] &mov ("ebx",&DWP(0*4,"ebp")); # b[0] &mov (&DWP(8*4,"esp"),"edi"); # off-load dst ptr &mul ("ebx"); # a[0]*b[0] &mov (&DWP(0*4,"esp"),"eax"); # t[0] &mov ("eax",&DWP(1*4,"esi")); &mov ("ecx","edx") &mul ("ebx"); # a[1]*b[0] &add ("ecx","eax"); &mov ("eax",&DWP(2*4,"esi")); &adc ("edx",0); &mov (&DWP(1*4,"esp"),"ecx"); # t[1] &mov ("ecx","edx"); &mul ("ebx"); # a[2]*b[0] &add ("ecx","eax"); &mov ("eax",&DWP(3*4,"esi")); &adc ("edx",0); &mov (&DWP(2*4,"esp"),"ecx"); # t[2] &mov ("ecx","edx"); &mul ("ebx"); # a[3]*b[0] &add ("ecx","eax"); &mov ("eax",&DWP(4*4,"esi")); &adc ("edx",0); &mov (&DWP(3*4,"esp"),"ecx"); # t[3] &mov ("ecx","edx"); &mul ("ebx"); # a[4]*b[0] &add ("ecx","eax"); &mov ("eax",&DWP(5*4,"esi")); &adc ("edx",0); &mov (&DWP(4*4,"esp"),"ecx"); # t[4] &mov ("ecx","edx"); &mul ("ebx"); # a[5]*b[0] &add ("ecx","eax"); &mov ("eax",&DWP(6*4,"esi")); &adc ("edx",0); &mov (&DWP(5*4,"esp"),"ecx"); # t[5] &mov ("ecx","edx"); &mul ("ebx"); # a[6]*b[0] &add ("ecx","eax"); &mov ("eax",&DWP(7*4,"esi")); &adc ("edx",0); &mov (&DWP(6*4,"esp"),"ecx"); # t[6] &mov ("ecx","edx"); &xor ("edi","edi"); # initial top-most carry &mul ("ebx"); # a[7]*b[0] &add ("ecx","eax"); # t[7] &mov ("eax",&DWP(0*4,"esp")); # t[0] &adc ("edx",0); # t[8] for ($i=0;$i<7;$i++) { my $j=$i+1; # Reduction iteration is normally performed by accumulating # result of multiplication of modulus by "magic" digit [and # omitting least significant word, which is guaranteed to # be 0], but thanks to special form of modulus and "magic" # digit being equal to least significant word, it can be # performed with additions and subtractions alone. Indeed: # # ffff.0001.0000.0000.0000.ffff.ffff.ffff # * abcd # + xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd # # Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we # rewrite above as: # # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd # + abcd.0000.abcd.0000.0000.abcd.0000.0000.0000 # - abcd.0000.0000.0000.0000.0000.0000.abcd # # or marking redundant operations: # # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.---- # + abcd.0000.abcd.0000.0000.abcd.----.----.---- # - abcd.----.----.----.----.----.----.---- &add (&DWP((($i+3)%8)*4,"esp"),"eax"); # t[3]+=t[0] &adc (&DWP((($i+4)%8)*4,"esp"),0); # t[4]+=0 &adc (&DWP((($i+5)%8)*4,"esp"),0); # t[5]+=0 &adc (&DWP((($i+6)%8)*4,"esp"),"eax"); # t[6]+=t[0] &adc ("ecx",0); # t[7]+=0 &adc ("edx","eax"); # t[8]+=t[0] &adc ("edi",0); # top-most carry &mov ("ebx",&DWP($j*4,"ebp")); # b[i] &sub ("ecx","eax"); # t[7]-=t[0] &mov ("eax",&DWP(0*4,"esi")); # a[0] &sbb ("edx",0); # t[8]-=0 &mov (&DWP((($i+7)%8)*4,"esp"),"ecx"); &sbb ("edi",0); # top-most carry, # keep in mind that # netto result is # *addition* of value # with (abcd<<32)-abcd # on top, so that # underflow is # impossible, because # (abcd<<32)-abcd # doesn't underflow &mov (&DWP((($i+8)%8)*4,"esp"),"edx"); &mul ("ebx"); # a[0]*b[i] &add ("eax",&DWP((($j+0)%8)*4,"esp")); &adc ("edx",0); &mov (&DWP((($j+0)%8)*4,"esp"),"eax"); &mov ("eax",&DWP(1*4,"esi")); &mov ("ecx","edx") &mul ("ebx"); # a[1]*b[i] &add ("ecx",&DWP((($j+1)%8)*4,"esp")); &adc ("edx",0); &add ("ecx","eax"); &adc ("edx",0); &mov ("eax",&DWP(2*4,"esi")); &mov (&DWP((($j+1)%8)*4,"esp"),"ecx"); &mov ("ecx","edx"); &mul ("ebx"); # a[2]*b[i] &add ("ecx",&DWP((($j+2)%8)*4,"esp")); &adc ("edx",0); &add ("ecx","eax"); &adc ("edx",0); &mov ("eax",&DWP(3*4,"esi")); &mov (&DWP((($j+2)%8)*4,"esp"),"ecx"); &mov ("ecx","edx"); &mul ("ebx"); # a[3]*b[i] &add ("ecx",&DWP((($j+3)%8)*4,"esp")); &adc ("edx",0); &add ("ecx","eax"); &adc ("edx",0); &mov ("eax",&DWP(4*4,"esi")); &mov (&DWP((($j+3)%8)*4,"esp"),"ecx"); &mov ("ecx","edx"); &mul ("ebx"); # a[4]*b[i] &add ("ecx",&DWP((($j+4)%8)*4,"esp")); &adc ("edx",0); &add ("ecx","eax"); &adc ("edx",0); &mov ("eax",&DWP(5*4,"esi")); &mov (&DWP((($j+4)%8)*4,"esp"),"ecx"); &mov ("ecx","edx"); &mul ("ebx"); # a[5]*b[i] &add ("ecx",&DWP((($j+5)%8)*4,"esp")); &adc ("edx",0); &add ("ecx","eax"); &adc ("edx",0); &mov ("eax",&DWP(6*4,"esi")); &mov (&DWP((($j+5)%8)*4,"esp"),"ecx"); &mov ("ecx","edx"); &mul ("ebx"); # a[6]*b[i] &add ("ecx",&DWP((($j+6)%8)*4,"esp")); &adc ("edx",0); &add ("ecx","eax"); &adc ("edx",0); &mov ("eax",&DWP(7*4,"esi")); &mov (&DWP((($j+6)%8)*4,"esp"),"ecx"); &mov ("ecx","edx"); &mul ("ebx"); # a[7]*b[i] &add ("ecx",&DWP((($j+7)%8)*4,"esp")); &adc ("edx",0); &add ("ecx","eax"); # t[7] &mov ("eax",&DWP((($j+0)%8)*4,"esp")); # t[0] &adc ("edx","edi"); # t[8] &mov ("edi",0); &adc ("edi",0); # top-most carry } &mov ("ebp",&DWP(8*4,"esp")); # restore dst ptr &xor ("esi","esi"); my $j=$i+1; # last multiplication-less reduction &add (&DWP((($i+3)%8)*4,"esp"),"eax"); # t[3]+=t[0] &adc (&DWP((($i+4)%8)*4,"esp"),0); # t[4]+=0 &adc (&DWP((($i+5)%8)*4,"esp"),0); # t[5]+=0 &adc (&DWP((($i+6)%8)*4,"esp"),"eax"); # t[6]+=t[0] &adc ("ecx",0); # t[7]+=0 &adc ("edx","eax"); # t[8]+=t[0] &adc ("edi",0); # top-most carry &mov ("ebx",&DWP((($j+1)%8)*4,"esp")); &sub ("ecx","eax"); # t[7]-=t[0] &mov ("eax",&DWP((($j+0)%8)*4,"esp")); &sbb ("edx",0); # t[8]-=0 &mov (&DWP((($i+7)%8)*4,"esp"),"ecx"); &sbb ("edi",0); # top-most carry &mov (&DWP((($i+8)%8)*4,"esp"),"edx"); # Final step is "if result > mod, subtract mod", but we do it # "other way around", namely write result - mod to output buffer # and if subtraction borrowed, add modulus back. &mov ("ecx",&DWP((($j+2)%8)*4,"esp")); &sub ("eax",-1); &mov ("edx",&DWP((($j+3)%8)*4,"esp")); &sbb ("ebx",-1); &mov (&DWP(0*4,"ebp"),"eax"); &sbb ("ecx",-1); &mov (&DWP(1*4,"ebp"),"ebx"); &sbb ("edx",0); &mov (&DWP(2*4,"ebp"),"ecx"); &mov (&DWP(3*4,"ebp"),"edx"); &mov ("eax",&DWP((($j+4)%8)*4,"esp")); &mov ("ebx",&DWP((($j+5)%8)*4,"esp")); &mov ("ecx",&DWP((($j+6)%8)*4,"esp")); &sbb ("eax",0); &mov ("edx",&DWP((($j+7)%8)*4,"esp")); &sbb ("ebx",0); &sbb ("ecx",1); &sbb ("edx",-1); &sbb ("edi",0); # Note that because mod has special form, i.e. consists of # 0xffffffff, 1 and 0s, we can conditionally synthesize it by # assigning borrow bit to one register, %ebp, and its negative # to another, %esi. But we started by calculating %esi... &sub ("esi","edi"); &add (&DWP(0*4,"ebp"),"edi"); # add modulus or zero &adc (&DWP(1*4,"ebp"),"edi"); &adc (&DWP(2*4,"ebp"),"edi"); &adc (&DWP(3*4,"ebp"),0); &adc ("eax",0); &adc ("ebx",0); &mov (&DWP(4*4,"ebp"),"eax"); &adc ("ecx","esi"); &mov (&DWP(5*4,"ebp"),"ebx"); &adc ("edx","edi"); &mov (&DWP(6*4,"ebp"),"ecx"); &mov ("edi","ebp"); # fulfill contract &mov (&DWP(7*4,"ebp"),"edx"); &add ("esp",10*4); &ret (); &function_end_B("_ecp_nistz256_mul_mont"); ######################################################################## # void ecp_nistz256_scatter_w5(void *edi,const P256_POINT *esi, # int ebp); &function_begin("ecp_nistz256_scatter_w5"); &mov ("edi",&wparam(0)); &mov ("esi",&wparam(1)); &mov ("ebp",&wparam(2)); &lea ("edi",&DWP(128-4,"edi","ebp",4)); &mov ("ebp",96/16); &set_label("scatter_w5_loop"); &mov ("eax",&DWP(0,"esi")); &mov ("ebx",&DWP(4,"esi")); &mov ("ecx",&DWP(8,"esi")); &mov ("edx",&DWP(12,"esi")); &lea ("esi",&DWP(16,"esi")); &mov (&DWP(64*0-128,"edi"),"eax"); &mov (&DWP(64*1-128,"edi"),"ebx"); &mov (&DWP(64*2-128,"edi"),"ecx"); &mov (&DWP(64*3-128,"edi"),"edx"); &lea ("edi",&DWP(64*4,"edi")); &dec ("ebp"); &jnz (&label("scatter_w5_loop")); &function_end("ecp_nistz256_scatter_w5"); ######################################################################## # void ecp_nistz256_gather_w5(P256_POINT *edi,const void *esi, # int ebp); &function_begin("ecp_nistz256_gather_w5"); &mov ("esi",&wparam(1)); &mov ("ebp",&wparam(2)); &lea ("esi",&DWP(0,"esi","ebp",4)); &neg ("ebp"); &sar ("ebp",31); &mov ("edi",&wparam(0)); &lea ("esi",&DWP(0,"esi","ebp",4)); for($i=0;$i<24;$i+=4) { &mov ("eax",&DWP(64*($i+0),"esi")); &mov ("ebx",&DWP(64*($i+1),"esi")); &mov ("ecx",&DWP(64*($i+2),"esi")); &mov ("edx",&DWP(64*($i+3),"esi")); &and ("eax","ebp"); &and ("ebx","ebp"); &and ("ecx","ebp"); &and ("edx","ebp"); &mov (&DWP(4*($i+0),"edi"),"eax"); &mov (&DWP(4*($i+1),"edi"),"ebx"); &mov (&DWP(4*($i+2),"edi"),"ecx"); &mov (&DWP(4*($i+3),"edi"),"edx"); } &function_end("ecp_nistz256_gather_w5"); ######################################################################## # void ecp_nistz256_scatter_w7(void *edi,const P256_POINT_AFFINE *esi, # int ebp); &function_begin("ecp_nistz256_scatter_w7"); &mov ("edi",&wparam(0)); &mov ("esi",&wparam(1)); &mov ("ebp",&wparam(2)); &lea ("edi",&DWP(-1,"edi","ebp")); &mov ("ebp",64/4); &set_label("scatter_w7_loop"); &mov ("eax",&DWP(0,"esi")); &lea ("esi",&DWP(4,"esi")); &mov (&BP(64*0,"edi"),"al"); &mov (&BP(64*1,"edi"),"ah"); &shr ("eax",16); &mov (&BP(64*2,"edi"),"al"); &mov (&BP(64*3,"edi"),"ah"); &lea ("edi",&DWP(64*4,"edi")); &dec ("ebp"); &jnz (&label("scatter_w7_loop")); &function_end("ecp_nistz256_scatter_w7"); ######################################################################## # void ecp_nistz256_gather_w7(P256_POINT_AFFINE *edi,const void *esi, # int ebp); &function_begin("ecp_nistz256_gather_w7"); &mov ("esi",&wparam(1)); &mov ("ebp",&wparam(2)); &add ("esi","ebp"); &neg ("ebp"), &sar ("ebp",31); &mov ("edi",&wparam(0)); &lea ("esi",&DWP(0,"esi","ebp")); for($i=0;$i<64;$i+=4) { &movz ("eax",&BP(64*($i+0),"esi")); &movz ("ebx",&BP(64*($i+1),"esi")); &movz ("ecx",&BP(64*($i+2),"esi")); &and ("eax","ebp"); &movz ("edx",&BP(64*($i+3),"esi")); &and ("ebx","ebp"); &mov (&BP($i+0,"edi"),"al"); &and ("ecx","ebp"); &mov (&BP($i+1,"edi"),"bl"); &and ("edx","ebp"); &mov (&BP($i+2,"edi"),"cl"); &mov (&BP($i+3,"edi"),"dl"); } &function_end("ecp_nistz256_gather_w7"); ######################################################################## # following subroutines are "literal" implementation of those found in # ecp_nistz256.c # ######################################################################## # void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp); # &function_begin("ecp_nistz256_point_double"); { my ($S,$M,$Zsqr,$in_x,$tmp0)=map(32*$_,(0..4)); &mov ("esi",&wparam(1)); # above map() describes stack layout with 5 temporary # 256-bit vectors on top, then we take extra word for # OPENSS_ia32cap_P copy. &stack_push(8*5+1); if ($sse2) { &call ("_picup_eax"); &set_label("pic"); &picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic")); &mov ("ebp",&DWP(0,"edx")); } &mov ("eax",&DWP(0,"esi")); # copy in_x &mov ("ebx",&DWP(4,"esi")); &mov ("ecx",&DWP(8,"esi")); &mov ("edx",&DWP(12,"esi")); &mov (&DWP($in_x+0,"esp"),"eax"); &mov (&DWP($in_x+4,"esp"),"ebx"); &mov (&DWP($in_x+8,"esp"),"ecx"); &mov (&DWP($in_x+12,"esp"),"edx"); &mov ("eax",&DWP(16,"esi")); &mov ("ebx",&DWP(20,"esi")); &mov ("ecx",&DWP(24,"esi")); &mov ("edx",&DWP(28,"esi")); &mov (&DWP($in_x+16,"esp"),"eax"); &mov (&DWP($in_x+20,"esp"),"ebx"); &mov (&DWP($in_x+24,"esp"),"ecx"); &mov (&DWP($in_x+28,"esp"),"edx"); &mov (&DWP(32*5,"esp"),"ebp"); # OPENSSL_ia32cap_P copy &lea ("ebp",&DWP(32,"esi")); &lea ("esi",&DWP(32,"esi")); &lea ("edi",&DWP($S,"esp")); &call ("_ecp_nistz256_add"); # p256_mul_by_2(S, in_y); &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy &mov ("esi",64); &add ("esi",&wparam(1)); &lea ("edi",&DWP($Zsqr,"esp")); &mov ("ebp","esi"); &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Zsqr, in_z); &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($S,"esp")); &lea ("ebp",&DWP($S,"esp")); &lea ("edi",&DWP($S,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(S, S); &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy &mov ("ebp",&wparam(1)); &lea ("esi",&DWP(32,"ebp")); &lea ("ebp",&DWP(64,"ebp")); &lea ("edi",&DWP($tmp0,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(tmp0, in_z, in_y); &lea ("esi",&DWP($in_x,"esp")); &lea ("ebp",&DWP($Zsqr,"esp")); &lea ("edi",&DWP($M,"esp")); &call ("_ecp_nistz256_add"); # p256_add(M, in_x, Zsqr); &mov ("edi",64); &lea ("esi",&DWP($tmp0,"esp")); &lea ("ebp",&DWP($tmp0,"esp")); &add ("edi",&wparam(0)); &call ("_ecp_nistz256_add"); # p256_mul_by_2(res_z, tmp0); &lea ("esi",&DWP($in_x,"esp")); &lea ("ebp",&DWP($Zsqr,"esp")); &lea ("edi",&DWP($Zsqr,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(Zsqr, in_x, Zsqr); &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($S,"esp")); &lea ("ebp",&DWP($S,"esp")); &lea ("edi",&DWP($tmp0,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(tmp0, S); &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($M,"esp")); &lea ("ebp",&DWP($Zsqr,"esp")); &lea ("edi",&DWP($M,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(M, M, Zsqr); &mov ("edi",32); &lea ("esi",&DWP($tmp0,"esp")); &add ("edi",&wparam(0)); &call ("_ecp_nistz256_div_by_2"); # p256_div_by_2(res_y, tmp0); &lea ("esi",&DWP($M,"esp")); &lea ("ebp",&DWP($M,"esp")); &lea ("edi",&DWP($tmp0,"esp")); &call ("_ecp_nistz256_add"); # 1/2 p256_mul_by_3(M, M); &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in_x,"esp")); &lea ("ebp",&DWP($S,"esp")); &lea ("edi",&DWP($S,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S, S, in_x); &lea ("esi",&DWP($tmp0,"esp")); &lea ("ebp",&DWP($M,"esp")); &lea ("edi",&DWP($M,"esp")); &call ("_ecp_nistz256_add"); # 2/2 p256_mul_by_3(M, M); &lea ("esi",&DWP($S,"esp")); &lea ("ebp",&DWP($S,"esp")); &lea ("edi",&DWP($tmp0,"esp")); &call ("_ecp_nistz256_add"); # p256_mul_by_2(tmp0, S); &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($M,"esp")); &lea ("ebp",&DWP($M,"esp")); &mov ("edi",&wparam(0)); &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(res_x, M); &mov ("esi","edi"); # %edi is still res_x here &lea ("ebp",&DWP($tmp0,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(res_x, res_x, tmp0); &lea ("esi",&DWP($S,"esp")); &mov ("ebp","edi"); # %edi is still res_x &lea ("edi",&DWP($S,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(S, S, res_x); &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy &mov ("esi","edi"); # %edi is still &S &lea ("ebp",&DWP($M,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S, S, M); &mov ("ebp",32); &lea ("esi",&DWP($S,"esp")); &add ("ebp",&wparam(0)); &mov ("edi","ebp"); &call ("_ecp_nistz256_sub"); # p256_sub(res_y, S, res_y); &stack_pop(8*5+1); } &function_end("ecp_nistz256_point_double"); ######################################################################## # void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1, # const P256_POINT *in2); &function_begin("ecp_nistz256_point_add"); { my ($res_x,$res_y,$res_z, $in1_x,$in1_y,$in1_z, $in2_x,$in2_y,$in2_z, $H,$Hsqr,$R,$Rsqr,$Hcub, $U1,$U2,$S1,$S2)=map(32*$_,(0..17)); my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr); &mov ("esi",&wparam(2)); # above map() describes stack layout with 18 temporary # 256-bit vectors on top, then we take extra words for # !in1infty, !in2infty, result of check for zero and # OPENSS_ia32cap_P copy. [one unused word for padding] &stack_push(8*18+5); if ($sse2) { &call ("_picup_eax"); &set_label("pic"); &picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic")); &mov ("ebp",&DWP(0,"edx")); } &lea ("edi",&DWP($in2_x,"esp")); for($i=0;$i<96;$i+=16) { &mov ("eax",&DWP($i+0,"esi")); # copy in2 &mov ("ebx",&DWP($i+4,"esi")); &mov ("ecx",&DWP($i+8,"esi")); &mov ("edx",&DWP($i+12,"esi")); &mov (&DWP($i+0,"edi"),"eax"); &mov (&DWP(32*18+12,"esp"),"ebp") if ($i==0); &mov ("ebp","eax") if ($i==0); &or ("ebp","eax") if ($i!=0 && $i<64); &mov (&DWP($i+4,"edi"),"ebx"); &or ("ebp","ebx") if ($i<64); &mov (&DWP($i+8,"edi"),"ecx"); &or ("ebp","ecx") if ($i<64); &mov (&DWP($i+12,"edi"),"edx"); &or ("ebp","edx") if ($i<64); } &xor ("eax","eax"); &mov ("esi",&wparam(1)); &sub ("eax","ebp"); &or ("ebp","eax"); &sar ("ebp",31); &mov (&DWP(32*18+4,"esp"),"ebp"); # !in2infty &lea ("edi",&DWP($in1_x,"esp")); for($i=0;$i<96;$i+=16) { &mov ("eax",&DWP($i+0,"esi")); # copy in1 &mov ("ebx",&DWP($i+4,"esi")); &mov ("ecx",&DWP($i+8,"esi")); &mov ("edx",&DWP($i+12,"esi")); &mov (&DWP($i+0,"edi"),"eax"); &mov ("ebp","eax") if ($i==0); &or ("ebp","eax") if ($i!=0 && $i<64); &mov (&DWP($i+4,"edi"),"ebx"); &or ("ebp","ebx") if ($i<64); &mov (&DWP($i+8,"edi"),"ecx"); &or ("ebp","ecx") if ($i<64); &mov (&DWP($i+12,"edi"),"edx"); &or ("ebp","edx") if ($i<64); } &xor ("eax","eax"); &sub ("eax","ebp"); &or ("ebp","eax"); &sar ("ebp",31); &mov (&DWP(32*18+0,"esp"),"ebp"); # !in1infty &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in2_z,"esp")); &lea ("ebp",&DWP($in2_z,"esp")); &lea ("edi",&DWP($Z2sqr,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Z2sqr, in2_z); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in1_z,"esp")); &lea ("ebp",&DWP($in1_z,"esp")); &lea ("edi",&DWP($Z1sqr,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Z1sqr, in1_z); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($Z2sqr,"esp")); &lea ("ebp",&DWP($in2_z,"esp")); &lea ("edi",&DWP($S1,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S1, Z2sqr, in2_z); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($Z1sqr,"esp")); &lea ("ebp",&DWP($in1_z,"esp")); &lea ("edi",&DWP($S2,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, Z1sqr, in1_z); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in1_y,"esp")); &lea ("ebp",&DWP($S1,"esp")); &lea ("edi",&DWP($S1,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S1, S1, in1_y); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in2_y,"esp")); &lea ("ebp",&DWP($S2,"esp")); &lea ("edi",&DWP($S2,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, S2, in2_y); &lea ("esi",&DWP($S2,"esp")); &lea ("ebp",&DWP($S1,"esp")); &lea ("edi",&DWP($R,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(R, S2, S1); &or ("ebx","eax"); # see if result is zero &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &or ("ebx","ecx"); &or ("ebx","edx"); &or ("ebx",&DWP(0,"edi")); &or ("ebx",&DWP(4,"edi")); &lea ("esi",&DWP($in1_x,"esp")); &or ("ebx",&DWP(8,"edi")); &lea ("ebp",&DWP($Z2sqr,"esp")); &or ("ebx",&DWP(12,"edi")); &lea ("edi",&DWP($U1,"esp")); &mov (&DWP(32*18+8,"esp"),"ebx"); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U1, in1_x, Z2sqr); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in2_x,"esp")); &lea ("ebp",&DWP($Z1sqr,"esp")); &lea ("edi",&DWP($U2,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, in2_x, Z1sqr); &lea ("esi",&DWP($U2,"esp")); &lea ("ebp",&DWP($U1,"esp")); &lea ("edi",&DWP($H,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(H, U2, U1); &or ("eax","ebx"); # see if result is zero &or ("eax","ecx"); &or ("eax","edx"); &or ("eax",&DWP(0,"edi")); &or ("eax",&DWP(4,"edi")); &or ("eax",&DWP(8,"edi")); &or ("eax",&DWP(12,"edi")); &data_byte(0x3e); # predict taken &jnz (&label("add_proceed")); # is_equal(U1,U2)? &mov ("eax",&DWP(32*18+0,"esp")); &and ("eax",&DWP(32*18+4,"esp")); &mov ("ebx",&DWP(32*18+8,"esp")); &jz (&label("add_proceed")); # (in1infty || in2infty)? &test ("ebx","ebx"); &jz (&label("add_proceed")); # is_equal(S1,S2)? &mov ("edi",&wparam(0)); &xor ("eax","eax"); &mov ("ecx",96/4); &data_byte(0xfc,0xf3,0xab); # cld; stosd &jmp (&label("add_done")); &set_label("add_proceed",16); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($R,"esp")); &lea ("ebp",&DWP($R,"esp")); &lea ("edi",&DWP($Rsqr,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Rsqr, R); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($H,"esp")); &lea ("ebp",&DWP($in1_z,"esp")); &lea ("edi",&DWP($res_z,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_z, H, in1_z); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($H,"esp")); &lea ("ebp",&DWP($H,"esp")); &lea ("edi",&DWP($Hsqr,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Hsqr, H); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in2_z,"esp")); &lea ("ebp",&DWP($res_z,"esp")); &lea ("edi",&DWP($res_z,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_z, res_z, in2_z); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($Hsqr,"esp")); &lea ("ebp",&DWP($U1,"esp")); &lea ("edi",&DWP($U2,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, U1, Hsqr); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($H,"esp")); &lea ("ebp",&DWP($Hsqr,"esp")); &lea ("edi",&DWP($Hcub,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(Hcub, Hsqr, H); &lea ("esi",&DWP($U2,"esp")); &lea ("ebp",&DWP($U2,"esp")); &lea ("edi",&DWP($Hsqr,"esp")); &call ("_ecp_nistz256_add"); # p256_mul_by_2(Hsqr, U2); &lea ("esi",&DWP($Rsqr,"esp")); &lea ("ebp",&DWP($Hsqr,"esp")); &lea ("edi",&DWP($res_x,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(res_x, Rsqr, Hsqr); &lea ("esi",&DWP($res_x,"esp")); &lea ("ebp",&DWP($Hcub,"esp")); &lea ("edi",&DWP($res_x,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(res_x, res_x, Hcub); &lea ("esi",&DWP($U2,"esp")); &lea ("ebp",&DWP($res_x,"esp")); &lea ("edi",&DWP($res_y,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(res_y, U2, res_x); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($Hcub,"esp")); &lea ("ebp",&DWP($S1,"esp")); &lea ("edi",&DWP($S2,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, S1, Hcub); &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($R,"esp")); &lea ("ebp",&DWP($res_y,"esp")); &lea ("edi",&DWP($res_y,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_y, R, res_y); &lea ("esi",&DWP($res_y,"esp")); &lea ("ebp",&DWP($S2,"esp")); &lea ("edi",&DWP($res_y,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(res_y, res_y, S2); &mov ("ebp",&DWP(32*18+0,"esp")); # !in1infty &mov ("esi",&DWP(32*18+4,"esp")); # !in2infty &mov ("edi",&wparam(0)); &mov ("edx","ebp"); ¬ ("ebp"); &and ("edx","esi"); &and ("ebp","esi"); ¬ ("esi"); ######################################## # conditional moves for($i=64;$i<96;$i+=4) { &mov ("eax","edx"); &and ("eax",&DWP($res_x+$i,"esp")); &mov ("ebx","ebp"); &and ("ebx",&DWP($in2_x+$i,"esp")); &mov ("ecx","esi"); &and ("ecx",&DWP($in1_x+$i,"esp")); &or ("eax","ebx"); &or ("eax","ecx"); &mov (&DWP($i,"edi"),"eax"); } for($i=0;$i<64;$i+=4) { &mov ("eax","edx"); &and ("eax",&DWP($res_x+$i,"esp")); &mov ("ebx","ebp"); &and ("ebx",&DWP($in2_x+$i,"esp")); &mov ("ecx","esi"); &and ("ecx",&DWP($in1_x+$i,"esp")); &or ("eax","ebx"); &or ("eax","ecx"); &mov (&DWP($i,"edi"),"eax"); } &set_label("add_done"); &stack_pop(8*18+5); } &function_end("ecp_nistz256_point_add"); ######################################################################## # void ecp_nistz256_point_add_affine(P256_POINT *out, # const P256_POINT *in1, # const P256_POINT_AFFINE *in2); &function_begin("ecp_nistz256_point_add_affine"); { my ($res_x,$res_y,$res_z, $in1_x,$in1_y,$in1_z, $in2_x,$in2_y, $U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..14)); my $Z1sqr = $S2; my @ONE_mont=(1,0,0,-1,-1,-1,-2,0); &mov ("esi",&wparam(1)); # above map() describes stack layout with 15 temporary # 256-bit vectors on top, then we take extra words for # !in1infty, !in2infty, and OPENSS_ia32cap_P copy. &stack_push(8*15+3); if ($sse2) { &call ("_picup_eax"); &set_label("pic"); &picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic")); &mov ("ebp",&DWP(0,"edx")); } &lea ("edi",&DWP($in1_x,"esp")); for($i=0;$i<96;$i+=16) { &mov ("eax",&DWP($i+0,"esi")); # copy in1 &mov ("ebx",&DWP($i+4,"esi")); &mov ("ecx",&DWP($i+8,"esi")); &mov ("edx",&DWP($i+12,"esi")); &mov (&DWP($i+0,"edi"),"eax"); &mov (&DWP(32*15+8,"esp"),"ebp") if ($i==0); &mov ("ebp","eax") if ($i==0); &or ("ebp","eax") if ($i!=0 && $i<64); &mov (&DWP($i+4,"edi"),"ebx"); &or ("ebp","ebx") if ($i<64); &mov (&DWP($i+8,"edi"),"ecx"); &or ("ebp","ecx") if ($i<64); &mov (&DWP($i+12,"edi"),"edx"); &or ("ebp","edx") if ($i<64); } &xor ("eax","eax"); &mov ("esi",&wparam(2)); &sub ("eax","ebp"); &or ("ebp","eax"); &sar ("ebp",31); &mov (&DWP(32*15+0,"esp"),"ebp"); # !in1infty &lea ("edi",&DWP($in2_x,"esp")); for($i=0;$i<64;$i+=16) { &mov ("eax",&DWP($i+0,"esi")); # copy in2 &mov ("ebx",&DWP($i+4,"esi")); &mov ("ecx",&DWP($i+8,"esi")); &mov ("edx",&DWP($i+12,"esi")); &mov (&DWP($i+0,"edi"),"eax"); &mov ("ebp","eax") if ($i==0); &or ("ebp","eax") if ($i!=0); &mov (&DWP($i+4,"edi"),"ebx"); &or ("ebp","ebx"); &mov (&DWP($i+8,"edi"),"ecx"); &or ("ebp","ecx"); &mov (&DWP($i+12,"edi"),"edx"); &or ("ebp","edx"); } &xor ("ebx","ebx"); &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy &sub ("ebx","ebp"); &lea ("esi",&DWP($in1_z,"esp")); &or ("ebx","ebp"); &lea ("ebp",&DWP($in1_z,"esp")); &sar ("ebx",31); &lea ("edi",&DWP($Z1sqr,"esp")); &mov (&DWP(32*15+4,"esp"),"ebx"); # !in2infty &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Z1sqr, in1_z); &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in2_x,"esp")); &mov ("ebp","edi"); # %esi is stull &Z1sqr &lea ("edi",&DWP($U2,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, Z1sqr, in2_x); &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in1_z,"esp")); &lea ("ebp",&DWP($Z1sqr,"esp")); &lea ("edi",&DWP($S2,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, Z1sqr, in1_z); &lea ("esi",&DWP($U2,"esp")); &lea ("ebp",&DWP($in1_x,"esp")); &lea ("edi",&DWP($H,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(H, U2, in1_x); &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in2_y,"esp")); &lea ("ebp",&DWP($S2,"esp")); &lea ("edi",&DWP($S2,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, S2, in2_y); &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in1_z,"esp")); &lea ("ebp",&DWP($H,"esp")); &lea ("edi",&DWP($res_z,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_z, H, in1_z); &lea ("esi",&DWP($S2,"esp")); &lea ("ebp",&DWP($in1_y,"esp")); &lea ("edi",&DWP($R,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(R, S2, in1_y); &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($H,"esp")); &lea ("ebp",&DWP($H,"esp")); &lea ("edi",&DWP($Hsqr,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Hsqr, H); &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($R,"esp")); &lea ("ebp",&DWP($R,"esp")); &lea ("edi",&DWP($Rsqr,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Rsqr, R); &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($in1_x,"esp")); &lea ("ebp",&DWP($Hsqr,"esp")); &lea ("edi",&DWP($U2,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, in1_x, Hsqr); &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($H,"esp")); &lea ("ebp",&DWP($Hsqr,"esp")); &lea ("edi",&DWP($Hcub,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(Hcub, Hsqr, H); &lea ("esi",&DWP($U2,"esp")); &lea ("ebp",&DWP($U2,"esp")); &lea ("edi",&DWP($Hsqr,"esp")); &call ("_ecp_nistz256_add"); # p256_mul_by_2(Hsqr, U2); &lea ("esi",&DWP($Rsqr,"esp")); &lea ("ebp",&DWP($Hsqr,"esp")); &lea ("edi",&DWP($res_x,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(res_x, Rsqr, Hsqr); &lea ("esi",&DWP($res_x,"esp")); &lea ("ebp",&DWP($Hcub,"esp")); &lea ("edi",&DWP($res_x,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(res_x, res_x, Hcub); &lea ("esi",&DWP($U2,"esp")); &lea ("ebp",&DWP($res_x,"esp")); &lea ("edi",&DWP($res_y,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(res_y, U2, res_x); &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($Hcub,"esp")); &lea ("ebp",&DWP($in1_y,"esp")); &lea ("edi",&DWP($S2,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, Hcub, in1_y); &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy &lea ("esi",&DWP($R,"esp")); &lea ("ebp",&DWP($res_y,"esp")); &lea ("edi",&DWP($res_y,"esp")); &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_y, res_y, R); &lea ("esi",&DWP($res_y,"esp")); &lea ("ebp",&DWP($S2,"esp")); &lea ("edi",&DWP($res_y,"esp")); &call ("_ecp_nistz256_sub"); # p256_sub(res_y, res_y, S2); &mov ("ebp",&DWP(32*15+0,"esp")); # !in1infty &mov ("esi",&DWP(32*15+4,"esp")); # !in2infty &mov ("edi",&wparam(0)); &mov ("edx","ebp"); ¬ ("ebp"); &and ("edx","esi"); &and ("ebp","esi"); ¬ ("esi"); ######################################## # conditional moves for($i=64;$i<96;$i+=4) { my $one=@ONE_mont[($i-64)/4]; &mov ("eax","edx"); &and ("eax",&DWP($res_x+$i,"esp")); &mov ("ebx","ebp") if ($one && $one!=-1); &and ("ebx",$one) if ($one && $one!=-1); &mov ("ecx","esi"); &and ("ecx",&DWP($in1_x+$i,"esp")); &or ("eax",$one==-1?"ebp":"ebx") if ($one); &or ("eax","ecx"); &mov (&DWP($i,"edi"),"eax"); } for($i=0;$i<64;$i+=4) { &mov ("eax","edx"); &and ("eax",&DWP($res_x+$i,"esp")); &mov ("ebx","ebp"); &and ("ebx",&DWP($in2_x+$i,"esp")); &mov ("ecx","esi"); &and ("ecx",&DWP($in1_x+$i,"esp")); &or ("eax","ebx"); &or ("eax","ecx"); &mov (&DWP($i,"edi"),"eax"); } &stack_pop(8*15+3); } &function_end("ecp_nistz256_point_add_affine"); &asm_finish();