/* ==================================================================== * Copyright (c) 2011-2013 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== */ #include #include #include #if !defined(OPENSSL_NO_AES) && !defined(OPENSSL_NO_SHA1) #include #include #include #include #include "evp_locl.h" #ifndef EVP_CIPH_FLAG_AEAD_CIPHER #define EVP_CIPH_FLAG_AEAD_CIPHER 0x200000 #define EVP_CTRL_AEAD_TLS1_AAD 0x16 #define EVP_CTRL_AEAD_SET_MAC_KEY 0x17 #endif #if !defined(EVP_CIPH_FLAG_DEFAULT_ASN1) #define EVP_CIPH_FLAG_DEFAULT_ASN1 0 #endif #define TLS1_1_VERSION 0x0302 typedef struct { AES_KEY ks; SHA_CTX head,tail,md; size_t payload_length; /* AAD length in decrypt case */ union { unsigned int tls_ver; unsigned char tls_aad[16]; /* 13 used */ } aux; } EVP_AES_HMAC_SHA1; #define NO_PAYLOAD_LENGTH ((size_t)-1) #if defined(AES_ASM) && ( \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined(_M_X64) || \ defined(__INTEL__) ) #if defined(__GNUC__) && __GNUC__>=2 && !defined(PEDANTIC) # define BSWAP(x) ({ unsigned int r=(x); asm ("bswapl %0":"=r"(r):"0"(r)); r; }) #endif extern unsigned int OPENSSL_ia32cap_P[2]; #define AESNI_CAPABLE (1<<(57-32)) int aesni_set_encrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); int aesni_set_decrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); void aesni_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int enc); void aesni_cbc_sha1_enc (const void *inp, void *out, size_t blocks, const AES_KEY *key, unsigned char iv[16], SHA_CTX *ctx,const void *in0); #define data(ctx) ((EVP_AES_HMAC_SHA1 *)(ctx)->cipher_data) static int aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *inkey, const unsigned char *iv, int enc) { EVP_AES_HMAC_SHA1 *key = data(ctx); int ret; if (enc) ret=aesni_set_encrypt_key(inkey,ctx->key_len*8,&key->ks); else ret=aesni_set_decrypt_key(inkey,ctx->key_len*8,&key->ks); SHA1_Init(&key->head); /* handy when benchmarking */ key->tail = key->head; key->md = key->head; key->payload_length = NO_PAYLOAD_LENGTH; return ret<0?0:1; } #define STITCHED_CALL #if !defined(STITCHED_CALL) #define aes_off 0 #endif void sha1_block_data_order (void *c,const void *p,size_t len); static void sha1_update(SHA_CTX *c,const void *data,size_t len) { const unsigned char *ptr = data; size_t res; if ((res = c->num)) { res = SHA_CBLOCK-res; if (lenNh += len>>29; c->Nl += len<<=3; if (c->Nl<(unsigned int)len) c->Nh++; } if (res) SHA1_Update(c,ptr,res); } #ifdef SHA1_Update #undef SHA1_Update #endif #define SHA1_Update sha1_update static int aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_HMAC_SHA1 *key = data(ctx); unsigned int l; size_t plen = key->payload_length, iv = 0, /* explicit IV in TLS 1.1 and later */ sha_off = 0; #if defined(STITCHED_CALL) size_t aes_off = 0, blocks; sha_off = SHA_CBLOCK-key->md.num; #endif key->payload_length = NO_PAYLOAD_LENGTH; if (len%AES_BLOCK_SIZE) return 0; if (ctx->encrypt) { if (plen==NO_PAYLOAD_LENGTH) plen = len; else if (len!=((plen+SHA_DIGEST_LENGTH+AES_BLOCK_SIZE)&-AES_BLOCK_SIZE)) return 0; else if (key->aux.tls_ver >= TLS1_1_VERSION) iv = AES_BLOCK_SIZE; #if defined(STITCHED_CALL) if (plen>(sha_off+iv) && (blocks=(plen-(sha_off+iv))/SHA_CBLOCK)) { SHA1_Update(&key->md,in+iv,sha_off); aesni_cbc_sha1_enc(in,out,blocks,&key->ks, ctx->iv,&key->md,in+iv+sha_off); blocks *= SHA_CBLOCK; aes_off += blocks; sha_off += blocks; key->md.Nh += blocks>>29; key->md.Nl += blocks<<=3; if (key->md.Nl<(unsigned int)blocks) key->md.Nh++; } else { sha_off = 0; } #endif sha_off += iv; SHA1_Update(&key->md,in+sha_off,plen-sha_off); if (plen!=len) { /* "TLS" mode of operation */ if (in!=out) memcpy(out+aes_off,in+aes_off,plen-aes_off); /* calculate HMAC and append it to payload */ SHA1_Final(out+plen,&key->md); key->md = key->tail; SHA1_Update(&key->md,out+plen,SHA_DIGEST_LENGTH); SHA1_Final(out+plen,&key->md); /* pad the payload|hmac */ plen += SHA_DIGEST_LENGTH; for (l=len-plen-1;plenks,ctx->iv,1); } else { aesni_cbc_encrypt(in+aes_off,out+aes_off,len-aes_off, &key->ks,ctx->iv,1); } } else { union { unsigned int u[SHA_DIGEST_LENGTH/sizeof(unsigned int)]; unsigned char c[SHA_DIGEST_LENGTH]; } mac; /* decrypt HMAC|padding at once */ aesni_cbc_encrypt(in,out,len, &key->ks,ctx->iv,0); if (plen) { /* "TLS" mode of operation */ size_t inp_len, mask, j, i; unsigned int res, maxpad, pad, bitlen; int ret = 1; union { unsigned int u[SHA_LBLOCK]; unsigned char c[SHA_CBLOCK]; } *data = (void *)key->md.data; if ((key->aux.tls_aad[plen-4]<<8|key->aux.tls_aad[plen-3]) >= TLS1_1_VERSION) iv = AES_BLOCK_SIZE; if (len<(iv+SHA_DIGEST_LENGTH+1)) return 0; /* omit explicit iv */ out += iv; len -= iv; /* figure out payload length */ pad = out[len-1]; maxpad = len-(SHA_DIGEST_LENGTH+1); maxpad |= (255-maxpad)>>(sizeof(maxpad)*8-8); maxpad &= 255; inp_len = len - (SHA_DIGEST_LENGTH+pad+1); mask = (0-((inp_len-len)>>(sizeof(inp_len)*8-1))); inp_len &= mask; ret &= (int)mask; key->aux.tls_aad[plen-2] = inp_len>>8; key->aux.tls_aad[plen-1] = inp_len; /* calculate HMAC */ key->md = key->head; SHA1_Update(&key->md,key->aux.tls_aad,plen); #if 1 len -= SHA_DIGEST_LENGTH; /* amend mac */ if (len>=(256+SHA_CBLOCK)) { j = (len-(256+SHA_CBLOCK))&(0-SHA_CBLOCK); j += SHA_CBLOCK-key->md.num; SHA1_Update(&key->md,out,j); out += j; len -= j; inp_len -= j; } /* but pretend as if we hashed padded payload */ bitlen = key->md.Nl+(inp_len<<3); /* at most 18 bits */ mac.c[0] = 0; mac.c[1] = (unsigned char)(bitlen>>16); mac.c[2] = (unsigned char)(bitlen>>8); mac.c[3] = (unsigned char)bitlen; bitlen = mac.u[0]; mac.u[0]=0; mac.u[1]=0; mac.u[2]=0; mac.u[3]=0; mac.u[4]=0; for (res=key->md.num, j=0;j>(sizeof(j)*8-8); c &= mask; c |= 0x80&~mask&~((inp_len-j)>>(sizeof(j)*8-8)); data->c[res++]=(unsigned char)c; if (res!=SHA_CBLOCK) continue; mask = 0-((inp_len+8-j)>>(sizeof(j)*8-1)); data->u[SHA_LBLOCK-1] |= bitlen&mask; sha1_block_data_order(&key->md,data,1); mask &= 0-((j-inp_len-73)>>(sizeof(j)*8-1)); mac.u[0] |= key->md.h0 & mask; mac.u[1] |= key->md.h1 & mask; mac.u[2] |= key->md.h2 & mask; mac.u[3] |= key->md.h3 & mask; mac.u[4] |= key->md.h4 & mask; res=0; } for(i=res;ic[i]=0; if (res>SHA_CBLOCK-8) { mask = 0-((inp_len+8-j)>>(sizeof(j)*8-1)); data->u[SHA_LBLOCK-1] |= bitlen&mask; sha1_block_data_order(&key->md,data,1); mask &= 0-((j-inp_len-73)>>(sizeof(j)*8-1)); mac.u[0] |= key->md.h0 & mask; mac.u[1] |= key->md.h1 & mask; mac.u[2] |= key->md.h2 & mask; mac.u[3] |= key->md.h3 & mask; mac.u[4] |= key->md.h4 & mask; memset(data,0,SHA_CBLOCK); j+=64; } data->u[SHA_LBLOCK-1] = bitlen; sha1_block_data_order(&key->md,data,1); mask = 0-((j-inp_len-73)>>(sizeof(j)*8-1)); mac.u[0] |= key->md.h0 & mask; mac.u[1] |= key->md.h1 & mask; mac.u[2] |= key->md.h2 & mask; mac.u[3] |= key->md.h3 & mask; mac.u[4] |= key->md.h4 & mask; #ifdef BSWAP mac.u[0] = BSWAP(mac.u[0]); mac.u[1] = BSWAP(mac.u[1]); mac.u[2] = BSWAP(mac.u[2]); mac.u[3] = BSWAP(mac.u[3]); mac.u[4] = BSWAP(mac.u[4]); #else for (i=0;i<5;i++) { res = mac.u[i]; mac.c[4*i+0]=(unsigned char)(res>>24); mac.c[4*i+1]=(unsigned char)(res>>16); mac.c[4*i+2]=(unsigned char)(res>>8); mac.c[4*i+3]=(unsigned char)res; } #endif len += SHA_DIGEST_LENGTH; #else SHA1_Update(&key->md,out,inp_len); res = key->md.num; SHA1_Final(mac.c,&key->md); { unsigned int inp_blocks, pad_blocks; /* but pretend as if we hashed padded payload */ inp_blocks = 1+((SHA_CBLOCK-9-res)>>(sizeof(res)*8-1)); res += (unsigned int)(len-inp_len); pad_blocks = res / SHA_CBLOCK; res %= SHA_CBLOCK; pad_blocks += 1+((SHA_CBLOCK-9-res)>>(sizeof(res)*8-1)); for (;inp_blocksmd,data,1); } #endif key->md = key->tail; SHA1_Update(&key->md,mac.c,SHA_DIGEST_LENGTH); SHA1_Final(mac.c,&key->md); /* verify HMAC */ out += inp_len; len -= inp_len; #if 1 { unsigned char *p = out+len-1-maxpad-SHA_DIGEST_LENGTH; size_t off = out-p; unsigned int c, cmask; maxpad += SHA_DIGEST_LENGTH; for (res=0,i=0,j=0;j>(sizeof(int)*8-1); res |= (c^pad)&~cmask; /* ... and padding */ cmask &= ((int)(off-1-j))>>(sizeof(int)*8-1); res |= (c^mac.c[i])&cmask; i += 1&cmask; } maxpad -= SHA_DIGEST_LENGTH; res = 0-((0-res)>>(sizeof(res)*8-1)); ret &= (int)~res; } #else for (res=0,i=0;i>(sizeof(res)*8-1)); ret &= (int)~res; /* verify padding */ pad = (pad&~res) | (maxpad&res); out = out+len-1-pad; for (res=0,i=0;i>(sizeof(res)*8-1); ret &= (int)~res; #endif return ret; } else { SHA1_Update(&key->md,out,len); } } return 1; } static int aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr) { EVP_AES_HMAC_SHA1 *key = data(ctx); switch (type) { case EVP_CTRL_AEAD_SET_MAC_KEY: { unsigned int i; unsigned char hmac_key[64]; memset (hmac_key,0,sizeof(hmac_key)); if (arg > (int)sizeof(hmac_key)) { SHA1_Init(&key->head); SHA1_Update(&key->head,ptr,arg); SHA1_Final(hmac_key,&key->head); } else { memcpy(hmac_key,ptr,arg); } for (i=0;ihead); SHA1_Update(&key->head,hmac_key,sizeof(hmac_key)); for (i=0;itail); SHA1_Update(&key->tail,hmac_key,sizeof(hmac_key)); OPENSSL_cleanse(hmac_key,sizeof(hmac_key)); return 1; } case EVP_CTRL_AEAD_TLS1_AAD: { unsigned char *p=ptr; unsigned int len=p[arg-2]<<8|p[arg-1]; if (ctx->encrypt) { key->payload_length = len; if ((key->aux.tls_ver=p[arg-4]<<8|p[arg-3]) >= TLS1_1_VERSION) { len -= AES_BLOCK_SIZE; p[arg-2] = len>>8; p[arg-1] = len; } key->md = key->head; SHA1_Update(&key->md,p,arg); return (int)(((len+SHA_DIGEST_LENGTH+AES_BLOCK_SIZE)&-AES_BLOCK_SIZE) - len); } else { if (arg>13) arg = 13; memcpy(key->aux.tls_aad,ptr,arg); key->payload_length = arg; return SHA_DIGEST_LENGTH; } } default: return -1; } } static EVP_CIPHER aesni_128_cbc_hmac_sha1_cipher = { #ifdef NID_aes_128_cbc_hmac_sha1 NID_aes_128_cbc_hmac_sha1, #else NID_undef, #endif 16,16,16, EVP_CIPH_CBC_MODE|EVP_CIPH_FLAG_DEFAULT_ASN1|EVP_CIPH_FLAG_AEAD_CIPHER, aesni_cbc_hmac_sha1_init_key, aesni_cbc_hmac_sha1_cipher, NULL, sizeof(EVP_AES_HMAC_SHA1), EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_set_asn1_iv, EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_get_asn1_iv, aesni_cbc_hmac_sha1_ctrl, NULL }; static EVP_CIPHER aesni_256_cbc_hmac_sha1_cipher = { #ifdef NID_aes_256_cbc_hmac_sha1 NID_aes_256_cbc_hmac_sha1, #else NID_undef, #endif 16,32,16, EVP_CIPH_CBC_MODE|EVP_CIPH_FLAG_DEFAULT_ASN1|EVP_CIPH_FLAG_AEAD_CIPHER, aesni_cbc_hmac_sha1_init_key, aesni_cbc_hmac_sha1_cipher, NULL, sizeof(EVP_AES_HMAC_SHA1), EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_set_asn1_iv, EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_get_asn1_iv, aesni_cbc_hmac_sha1_ctrl, NULL }; const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void) { return(OPENSSL_ia32cap_P[1]&AESNI_CAPABLE? &aesni_128_cbc_hmac_sha1_cipher:NULL); } const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void) { return(OPENSSL_ia32cap_P[1]&AESNI_CAPABLE? &aesni_256_cbc_hmac_sha1_cipher:NULL); } #else const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void) { return NULL; } const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void) { return NULL; } #endif #endif