#!/usr/bin/env perl ################################################################### ### AES-128 [originally in CTR mode] ### ### bitsliced implementation for Intel Core 2 processors ### ### requires support of SSE extensions up to SSSE3 ### ### Author: Emilia Käsper and Peter Schwabe ### ### Date: 2009-03-19 ### ### Public domain ### ### ### ### See http://homes.esat.kuleuven.be/~ekasper/#software for ### ### further information. ### ################################################################### # # September 2011. # # Started as transliteration to "perlasm" the original code has # undergone following changes: # # - code was made position-independent; # - rounds were folded into a loop resulting in >5x size reduction # from 12.5KB to 2.2KB; # - above was possibile thanks to mixcolumns() modification that # allowed to feed its output back to aesenc[last], this was # achieved at cost of two additional inter-registers moves; # - some instruction reordering and interleaving; # - this module doesn't implement key setup subroutine, instead it # relies on conversion of "conventional" key schedule as returned # by AES_set_encrypt_key (see discussion below); # - first and last round keys are treated differently, which allowed # to skip one shiftrows(), reduce bit-sliced key schedule and # speed-up conversion by 22%; # - support for 192- and 256-bit keys was added; # # Resulting performance in CPU cycles spent to encrypt one byte out # of 4096-byte buffer with 128-bit key is: # # Emilia's this(*) difference # # Core 2 9.30 8.69 +7% # Nehalem(**) 7.63 6.88 +11% # Atom 17.1 16.4 +4% # # (*) Comparison is not completely fair, because "this" is ECB, # i.e. no extra processing such as counter values calculation # and xor-ing input as in Emilia's CTR implementation is # performed. However, the CTR calculations stand for not more # than 1% of total time, so comparison is *rather* fair. # # (**) Results were collected on Westmere, which is considered to # be equivalent to Nehalem for this code. # # As for key schedule conversion subroutine. Interface to OpenSSL # relies on per-invocation on-the-fly conversion. This naturally # has impact on performance, especially for short inputs. Conversion # time in CPU cycles and its ratio to CPU cycles spent in 8x block # function is: # # conversion conversion/8x block # Core 2 240 0.22 # Nehalem 180 0.20 # Atom 430 0.20 # # The ratio values mean that 128-byte blocks will be processed # 16-18% slower, 256-byte blocks - 9-10%, 384-byte blocks - 6-7%, # etc. Then keep in mind that input sizes not divisible by 128 are # *effectively* slower, especially shortest ones, e.g. consecutive # 144-byte blocks are processed 44% slower than one would expect, # 272 - 29%, 400 - 22%, etc. Yet, despite all these "shortcomings" # it's still faster than ["hyper-threading-safe" code path in] # aes-x86_64.pl on all lengths above 64 bytes... # # October 2011. # # Add decryption procedure. Performance in CPU cycles spent to decrypt # one byte out of 4096-byte buffer with 128-bit key is: # # Core 2 9.98 # Nehalem 7.80 # Atom 17.9 # # November 2011. # # Add bsaes_xts_[en|de]crypt. Less-than-80-bytes-block performance is # suboptimal, but XTS is meant to be used with larger blocks... # # <appro@openssl.org> $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" $xlate $flavour $output"; *STDOUT=*OUT; my ($inp,$out,$len,$key,$ivp)=("%rdi","%rsi","%rdx","%rcx"); my @XMM=map("%xmm$_",(15,0..14)); # best on Atom, +10% over (0..15) my $ecb=0; # suppress unreferenced ECB subroutines, spare some space... { my ($key,$rounds,$const)=("%rax","%r10d","%r11"); sub Sbox { # input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb # output in lsb > [b0, b1, b4, b6, b3, b7, b2, b5] < msb my @b=@_[0..7]; my @t=@_[8..11]; my @s=@_[12..15]; &InBasisChange (@b); &Inv_GF256 (@b[6,5,0,3,7,1,4,2],@t,@s); &OutBasisChange (@b[7,1,4,2,6,5,0,3]); } sub InBasisChange { # input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb # output in lsb > [b6, b5, b0, b3, b7, b1, b4, b2] < msb my @b=@_[0..7]; $code.=<<___; pxor @b[6], @b[5] pxor @b[1], @b[2] pxor @b[0], @b[3] pxor @b[2], @b[6] pxor @b[0], @b[5] pxor @b[3], @b[6] pxor @b[7], @b[3] pxor @b[5], @b[7] pxor @b[4], @b[3] pxor @b[5], @b[4] pxor @b[1], @b[3] pxor @b[7], @b[2] pxor @b[5], @b[1] ___ } sub OutBasisChange { # input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb # output in lsb > [b6, b1, b2, b4, b7, b0, b3, b5] < msb my @b=@_[0..7]; $code.=<<___; pxor @b[6], @b[0] pxor @b[4], @b[1] pxor @b[0], @b[2] pxor @b[6], @b[4] pxor @b[1], @b[6] pxor @b[5], @b[1] pxor @b[3], @b[5] pxor @b[7], @b[3] pxor @b[5], @b[7] pxor @b[5], @b[2] pxor @b[7], @b[4] ___ } sub InvSbox { # input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb # output in lsb > [b0, b1, b6, b4, b2, b7, b3, b5] < msb my @b=@_[0..7]; my @t=@_[8..11]; my @s=@_[12..15]; &InvInBasisChange (@b); &Inv_GF256 (@b[5,1,2,6,3,7,0,4],@t,@s); &InvOutBasisChange (@b[3,7,0,4,5,1,2,6]); } sub InvInBasisChange { # OutBasisChange in reverse my @b=@_[5,1,2,6,3,7,0,4]; $code.=<<___ pxor @b[7], @b[4] pxor @b[5], @b[7] pxor @b[5], @b[2] pxor @b[7], @b[3] pxor @b[3], @b[5] pxor @b[5], @b[1] pxor @b[1], @b[6] pxor @b[0], @b[2] pxor @b[6], @b[4] pxor @b[6], @b[0] pxor @b[4], @b[1] ___ } sub InvOutBasisChange { # InBasisChange in reverse my @b=@_[2,5,7,3,6,1,0,4]; $code.=<<___; pxor @b[5], @b[1] pxor @b[7], @b[2] pxor @b[1], @b[3] pxor @b[5], @b[4] pxor @b[5], @b[7] pxor @b[4], @b[3] pxor @b[0], @b[5] pxor @b[7], @b[3] pxor @b[2], @b[6] pxor @b[1], @b[2] pxor @b[3], @b[6] pxor @b[0], @b[3] pxor @b[6], @b[5] ___ } sub Mul_GF4 { #;************************************************************* #;* Mul_GF4: Input x0-x1,y0-y1 Output x0-x1 Temp t0 (8) * #;************************************************************* my ($x0,$x1,$y0,$y1,$t0)=@_; $code.=<<___; movdqa $y0, $t0 pxor $y1, $t0 pand $x0, $t0 pxor $x1, $x0 pand $y0, $x1 pand $y1, $x0 pxor $x1, $x0 pxor $t0, $x1 ___ } sub Mul_GF4_N { # not used, see next subroutine # multiply and scale by N my ($x0,$x1,$y0,$y1,$t0)=@_; $code.=<<___; movdqa $y0, $t0 pxor $y1, $t0 pand $x0, $t0 pxor $x1, $x0 pand $y0, $x1 pand $y1, $x0 pxor $x0, $x1 pxor $t0, $x0 ___ } sub Mul_GF4_N_GF4 { # interleaved Mul_GF4_N and Mul_GF4 my ($x0,$x1,$y0,$y1,$t0, $x2,$x3,$y2,$y3,$t1)=@_; $code.=<<___; movdqa $y0, $t0 movdqa $y2, $t1 pxor $y1, $t0 pxor $y3, $t1 pand $x0, $t0 pand $x2, $t1 pxor $x1, $x0 pxor $x3, $x2 pand $y0, $x1 pand $y2, $x3 pand $y1, $x0 pand $y3, $x2 pxor $x0, $x1 pxor $x3, $x2 pxor $t0, $x0 pxor $t1, $x3 ___ } sub Mul_GF16_2 { my @x=@_[0..7]; my @y=@_[8..11]; my @t=@_[12..15]; $code.=<<___; movdqa @x[0], @t[0] movdqa @x[1], @t[1] ___ &Mul_GF4 (@x[0], @x[1], @y[0], @y[1], @t[2]); $code.=<<___; pxor @x[2], @t[0] pxor @x[3], @t[1] pxor @y[2], @y[0] pxor @y[3], @y[1] ___ Mul_GF4_N_GF4 (@t[0], @t[1], @y[0], @y[1], @t[3], @x[2], @x[3], @y[2], @y[3], @t[2]); $code.=<<___; pxor @t[0], @x[0] pxor @t[0], @x[2] pxor @t[1], @x[1] pxor @t[1], @x[3] movdqa @x[4], @t[0] movdqa @x[5], @t[1] pxor @x[6], @t[0] pxor @x[7], @t[1] ___ &Mul_GF4_N_GF4 (@t[0], @t[1], @y[0], @y[1], @t[3], @x[6], @x[7], @y[2], @y[3], @t[2]); $code.=<<___; pxor @y[2], @y[0] pxor @y[3], @y[1] ___ &Mul_GF4 (@x[4], @x[5], @y[0], @y[1], @t[3]); $code.=<<___; pxor @t[0], @x[4] pxor @t[0], @x[6] pxor @t[1], @x[5] pxor @t[1], @x[7] ___ } sub Inv_GF256 { #;******************************************************************** #;* Inv_GF256: Input x0-x7 Output x0-x7 Temp t0-t3,s0-s3 (144) * #;******************************************************************** my @x=@_[0..7]; my @t=@_[8..11]; my @s=@_[12..15]; # direct optimizations from hardware $code.=<<___; movdqa @x[4], @t[3] movdqa @x[5], @t[2] movdqa @x[1], @t[1] movdqa @x[7], @s[1] movdqa @x[0], @s[0] pxor @x[6], @t[3] pxor @x[7], @t[2] pxor @x[3], @t[1] movdqa @t[3], @s[2] pxor @x[6], @s[1] movdqa @t[2], @t[0] pxor @x[2], @s[0] movdqa @t[3], @s[3] por @t[1], @t[2] por @s[0], @t[3] pxor @t[0], @s[3] pand @s[0], @s[2] pxor @t[1], @s[0] pand @t[1], @t[0] pand @s[0], @s[3] movdqa @x[3], @s[0] pxor @x[2], @s[0] pand @s[0], @s[1] pxor @s[1], @t[3] pxor @s[1], @t[2] movdqa @x[4], @s[1] movdqa @x[1], @s[0] pxor @x[5], @s[1] pxor @x[0], @s[0] movdqa @s[1], @t[1] pand @s[0], @s[1] por @s[0], @t[1] pxor @s[1], @t[0] pxor @s[3], @t[3] pxor @s[2], @t[2] pxor @s[3], @t[1] movdqa @x[7], @s[0] pxor @s[2], @t[0] movdqa @x[6], @s[1] pxor @s[2], @t[1] movdqa @x[5], @s[2] pand @x[3], @s[0] movdqa @x[4], @s[3] pand @x[2], @s[1] pand @x[1], @s[2] por @x[0], @s[3] pxor @s[0], @t[3] pxor @s[1], @t[2] pxor @s[2], @t[1] pxor @s[3], @t[0] #Inv_GF16 \t0, \t1, \t2, \t3, \s0, \s1, \s2, \s3 # new smaller inversion movdqa @t[3], @s[0] pand @t[1], @t[3] pxor @t[2], @s[0] movdqa @t[0], @s[2] movdqa @s[0], @s[3] pxor @t[3], @s[2] pand @s[2], @s[3] movdqa @t[1], @s[1] pxor @t[2], @s[3] pxor @t[0], @s[1] pxor @t[2], @t[3] pand @t[3], @s[1] movdqa @s[2], @t[2] pxor @t[0], @s[1] pxor @s[1], @t[2] pxor @s[1], @t[1] pand @t[0], @t[2] pxor @t[2], @s[2] pxor @t[2], @t[1] pand @s[3], @s[2] pxor @s[0], @s[2] ___ # output in s3, s2, s1, t1 # Mul_GF16_2 \x0, \x1, \x2, \x3, \x4, \x5, \x6, \x7, \t2, \t3, \t0, \t1, \s0, \s1, \s2, \s3 # Mul_GF16_2 \x0, \x1, \x2, \x3, \x4, \x5, \x6, \x7, \s3, \s2, \s1, \t1, \s0, \t0, \t2, \t3 &Mul_GF16_2(@x,@s[3,2,1],@t[1],@s[0],@t[0,2,3]); ### output msb > [x3,x2,x1,x0,x7,x6,x5,x4] < lsb } # AES linear components sub ShiftRows { my @x=@_[0..7]; my $mask=pop; $code.=<<___; pxor 0x00($key),@x[0] pxor 0x10($key),@x[1] pxor 0x20($key),@x[2] pxor 0x30($key),@x[3] pshufb $mask,@x[0] pshufb $mask,@x[1] pxor 0x40($key),@x[4] pxor 0x50($key),@x[5] pshufb $mask,@x[2] pshufb $mask,@x[3] pxor 0x60($key),@x[6] pxor 0x70($key),@x[7] pshufb $mask,@x[4] pshufb $mask,@x[5] pshufb $mask,@x[6] pshufb $mask,@x[7] lea 0x80($key),$key ___ } sub MixColumns { # modified to emit output in order suitable for feeding back to aesenc[last] my @x=@_[0..7]; my @t=@_[8..15]; my $inv=@_[16]; # optional $code.=<<___; pshufd \$0x93, @x[0], @t[0] # x0 <<< 32 pshufd \$0x93, @x[1], @t[1] pxor @t[0], @x[0] # x0 ^ (x0 <<< 32) pshufd \$0x93, @x[2], @t[2] pxor @t[1], @x[1] pshufd \$0x93, @x[3], @t[3] pxor @t[2], @x[2] pshufd \$0x93, @x[4], @t[4] pxor @t[3], @x[3] pshufd \$0x93, @x[5], @t[5] pxor @t[4], @x[4] pshufd \$0x93, @x[6], @t[6] pxor @t[5], @x[5] pshufd \$0x93, @x[7], @t[7] pxor @t[6], @x[6] pxor @t[7], @x[7] pxor @x[0], @t[1] pxor @x[7], @t[0] pxor @x[7], @t[1] pshufd \$0x4E, @x[0], @x[0] # (x0 ^ (x0 <<< 32)) <<< 64) pxor @x[1], @t[2] pshufd \$0x4E, @x[1], @x[1] pxor @x[4], @t[5] pxor @t[0], @x[0] pxor @x[5], @t[6] pxor @t[1], @x[1] pxor @x[3], @t[4] pshufd \$0x4E, @x[4], @t[0] pxor @x[6], @t[7] pshufd \$0x4E, @x[5], @t[1] pxor @x[2], @t[3] pshufd \$0x4E, @x[3], @x[4] pxor @x[7], @t[3] pshufd \$0x4E, @x[7], @x[5] pxor @x[7], @t[4] pshufd \$0x4E, @x[6], @x[3] pxor @t[4], @t[0] pshufd \$0x4E, @x[2], @x[6] pxor @t[5], @t[1] ___ $code.=<<___ if (!$inv); pxor @t[3], @x[4] pxor @t[7], @x[5] pxor @t[6], @x[3] movdqa @t[0], @x[2] pxor @t[2], @x[6] movdqa @t[1], @x[7] ___ $code.=<<___ if ($inv); pxor @x[4], @t[3] pxor @t[7], @x[5] pxor @x[3], @t[6] movdqa @t[0], @x[3] pxor @t[2], @x[6] movdqa @t[6], @x[2] movdqa @t[1], @x[7] movdqa @x[6], @x[4] movdqa @t[3], @x[6] ___ } sub InvMixColumns_orig { my @x=@_[0..7]; my @t=@_[8..15]; $code.=<<___; # multiplication by 0x0e pshufd \$0x93, @x[7], @t[7] movdqa @x[2], @t[2] pxor @x[5], @x[7] # 7 5 pxor @x[5], @x[2] # 2 5 pshufd \$0x93, @x[0], @t[0] movdqa @x[5], @t[5] pxor @x[0], @x[5] # 5 0 [1] pxor @x[1], @x[0] # 0 1 pshufd \$0x93, @x[1], @t[1] pxor @x[2], @x[1] # 1 25 pxor @x[6], @x[0] # 01 6 [2] pxor @x[3], @x[1] # 125 3 [4] pshufd \$0x93, @x[3], @t[3] pxor @x[0], @x[2] # 25 016 [3] pxor @x[7], @x[3] # 3 75 pxor @x[6], @x[7] # 75 6 [0] pshufd \$0x93, @x[6], @t[6] movdqa @x[4], @t[4] pxor @x[4], @x[6] # 6 4 pxor @x[3], @x[4] # 4 375 [6] pxor @x[7], @x[3] # 375 756=36 pxor @t[5], @x[6] # 64 5 [7] pxor @t[2], @x[3] # 36 2 pxor @t[4], @x[3] # 362 4 [5] pshufd \$0x93, @t[5], @t[5] ___ my @y = @x[7,5,0,2,1,3,4,6]; $code.=<<___; # multiplication by 0x0b pxor @y[0], @y[1] pxor @t[0], @y[0] pxor @t[1], @y[1] pshufd \$0x93, @t[2], @t[2] pxor @t[5], @y[0] pxor @t[6], @y[1] pxor @t[7], @y[0] pshufd \$0x93, @t[4], @t[4] pxor @t[6], @t[7] # clobber t[7] pxor @y[0], @y[1] pxor @t[0], @y[3] pshufd \$0x93, @t[0], @t[0] pxor @t[1], @y[2] pxor @t[1], @y[4] pxor @t[2], @y[2] pshufd \$0x93, @t[1], @t[1] pxor @t[2], @y[3] pxor @t[2], @y[5] pxor @t[7], @y[2] pshufd \$0x93, @t[2], @t[2] pxor @t[3], @y[3] pxor @t[3], @y[6] pxor @t[3], @y[4] pshufd \$0x93, @t[3], @t[3] pxor @t[4], @y[7] pxor @t[4], @y[5] pxor @t[7], @y[7] pxor @t[5], @y[3] pxor @t[4], @y[4] pxor @t[5], @t[7] # clobber t[7] even more pxor @t[7], @y[5] pshufd \$0x93, @t[4], @t[4] pxor @t[7], @y[6] pxor @t[7], @y[4] pxor @t[5], @t[7] pshufd \$0x93, @t[5], @t[5] pxor @t[6], @t[7] # restore t[7] # multiplication by 0x0d pxor @y[7], @y[4] pxor @t[4], @y[7] pshufd \$0x93, @t[6], @t[6] pxor @t[0], @y[2] pxor @t[5], @y[7] pxor @t[2], @y[2] pshufd \$0x93, @t[7], @t[7] pxor @y[1], @y[3] pxor @t[1], @y[1] pxor @t[0], @y[0] pxor @t[0], @y[3] pxor @t[5], @y[1] pxor @t[5], @y[0] pxor @t[7], @y[1] pshufd \$0x93, @t[0], @t[0] pxor @t[6], @y[0] pxor @y[1], @y[3] pxor @t[1], @y[4] pshufd \$0x93, @t[1], @t[1] pxor @t[7], @y[7] pxor @t[2], @y[4] pxor @t[2], @y[5] pshufd \$0x93, @t[2], @t[2] pxor @t[6], @y[2] pxor @t[3], @t[6] # clobber t[6] pxor @y[7], @y[4] pxor @t[6], @y[3] pxor @t[6], @y[6] pxor @t[5], @y[5] pxor @t[4], @y[6] pshufd \$0x93, @t[4], @t[4] pxor @t[6], @y[5] pxor @t[7], @y[6] pxor @t[3], @t[6] # restore t[6] pshufd \$0x93, @t[5], @t[5] pshufd \$0x93, @t[6], @t[6] pshufd \$0x93, @t[7], @t[7] pshufd \$0x93, @t[3], @t[3] # multiplication by 0x09 pxor @y[1], @y[4] pxor @y[1], @t[1] # t[1]=y[1] pxor @t[5], @t[0] # clobber t[0] pxor @t[5], @t[1] pxor @t[0], @y[3] pxor @y[0], @t[0] # t[0]=y[0] pxor @t[6], @t[1] pxor @t[7], @t[6] # clobber t[6] pxor @t[1], @y[4] pxor @t[4], @y[7] pxor @y[4], @t[4] # t[4]=y[4] pxor @t[3], @y[6] pxor @y[3], @t[3] # t[3]=y[3] pxor @t[2], @y[5] pxor @y[2], @t[2] # t[2]=y[2] pxor @t[7], @t[3] pxor @y[5], @t[5] # t[5]=y[5] pxor @t[6], @t[2] pxor @t[6], @t[5] pxor @y[6], @t[6] # t[6]=y[6] pxor @y[7], @t[7] # t[7]=y[7] movdqa @t[0],@XMM[0] movdqa @t[1],@XMM[1] movdqa @t[2],@XMM[2] movdqa @t[3],@XMM[3] movdqa @t[4],@XMM[4] movdqa @t[5],@XMM[5] movdqa @t[6],@XMM[6] movdqa @t[7],@XMM[7] ___ } sub InvMixColumns { my @x=@_[0..7]; my @t=@_[8..15]; # Thanks to Jussi Kivilinna for providing pointer to # # | 0e 0b 0d 09 | | 02 03 01 01 | | 05 00 04 00 | # | 09 0e 0b 0d | = | 01 02 03 01 | x | 00 05 00 04 | # | 0d 09 0e 0b | | 01 01 02 03 | | 04 00 05 00 | # | 0b 0d 09 0e | | 03 01 01 02 | | 00 04 00 05 | $code.=<<___; # multiplication by 0x05-0x00-0x04-0x00 pshufd \$0x4E, @x[0], @t[0] pshufd \$0x4E, @x[6], @t[6] pxor @x[0], @t[0] pshufd \$0x4E, @x[7], @t[7] pxor @x[6], @t[6] pshufd \$0x4E, @x[1], @t[1] pxor @x[7], @t[7] pshufd \$0x4E, @x[2], @t[2] pxor @x[1], @t[1] pshufd \$0x4E, @x[3], @t[3] pxor @x[2], @t[2] pxor @t[6], @x[0] pxor @t[6], @x[1] pshufd \$0x4E, @x[4], @t[4] pxor @x[3], @t[3] pxor @t[0], @x[2] pxor @t[1], @x[3] pshufd \$0x4E, @x[5], @t[5] pxor @x[4], @t[4] pxor @t[7], @x[1] pxor @t[2], @x[4] pxor @x[5], @t[5] pxor @t[7], @x[2] pxor @t[6], @x[3] pxor @t[6], @x[4] pxor @t[3], @x[5] pxor @t[4], @x[6] pxor @t[7], @x[4] pxor @t[7], @x[5] pxor @t[5], @x[7] ___ &MixColumns (@x,@t,1); # flipped 2<->3 and 4<->6 } sub aesenc { # not used my @b=@_[0..7]; my @t=@_[8..15]; $code.=<<___; movdqa 0x30($const),@t[0] # .LSR ___ &ShiftRows (@b,@t[0]); &Sbox (@b,@t); &MixColumns (@b[0,1,4,6,3,7,2,5],@t); } sub aesenclast { # not used my @b=@_[0..7]; my @t=@_[8..15]; $code.=<<___; movdqa 0x40($const),@t[0] # .LSRM0 ___ &ShiftRows (@b,@t[0]); &Sbox (@b,@t); $code.=<<___ pxor 0x00($key),@b[0] pxor 0x10($key),@b[1] pxor 0x20($key),@b[4] pxor 0x30($key),@b[6] pxor 0x40($key),@b[3] pxor 0x50($key),@b[7] pxor 0x60($key),@b[2] pxor 0x70($key),@b[5] ___ } sub swapmove { my ($a,$b,$n,$mask,$t)=@_; $code.=<<___; movdqa $b,$t psrlq \$$n,$b pxor $a,$b pand $mask,$b pxor $b,$a psllq \$$n,$b pxor $t,$b ___ } sub swapmove2x { my ($a0,$b0,$a1,$b1,$n,$mask,$t0,$t1)=@_; $code.=<<___; movdqa $b0,$t0 psrlq \$$n,$b0 movdqa $b1,$t1 psrlq \$$n,$b1 pxor $a0,$b0 pxor $a1,$b1 pand $mask,$b0 pand $mask,$b1 pxor $b0,$a0 psllq \$$n,$b0 pxor $b1,$a1 psllq \$$n,$b1 pxor $t0,$b0 pxor $t1,$b1 ___ } sub bitslice { my @x=reverse(@_[0..7]); my ($t0,$t1,$t2,$t3)=@_[8..11]; $code.=<<___; movdqa 0x00($const),$t0 # .LBS0 movdqa 0x10($const),$t1 # .LBS1 ___ &swapmove2x(@x[0,1,2,3],1,$t0,$t2,$t3); &swapmove2x(@x[4,5,6,7],1,$t0,$t2,$t3); $code.=<<___; movdqa 0x20($const),$t0 # .LBS2 ___ &swapmove2x(@x[0,2,1,3],2,$t1,$t2,$t3); &swapmove2x(@x[4,6,5,7],2,$t1,$t2,$t3); &swapmove2x(@x[0,4,1,5],4,$t0,$t2,$t3); &swapmove2x(@x[2,6,3,7],4,$t0,$t2,$t3); } $code.=<<___; .text .extern asm_AES_encrypt .extern asm_AES_decrypt .type _bsaes_encrypt8,\@abi-omnipotent .align 64 _bsaes_encrypt8: lea .LBS0(%rip), $const # constants table movdqa ($key), @XMM[9] # round 0 key lea 0x10($key), $key movdqa 0x50($const), @XMM[8] # .LM0SR pxor @XMM[9], @XMM[0] # xor with round0 key pxor @XMM[9], @XMM[1] pxor @XMM[9], @XMM[2] pxor @XMM[9], @XMM[3] pshufb @XMM[8], @XMM[0] pshufb @XMM[8], @XMM[1] pxor @XMM[9], @XMM[4] pxor @XMM[9], @XMM[5] pshufb @XMM[8], @XMM[2] pshufb @XMM[8], @XMM[3] pxor @XMM[9], @XMM[6] pxor @XMM[9], @XMM[7] pshufb @XMM[8], @XMM[4] pshufb @XMM[8], @XMM[5] pshufb @XMM[8], @XMM[6] pshufb @XMM[8], @XMM[7] _bsaes_encrypt8_bitslice: ___ &bitslice (@XMM[0..7, 8..11]); $code.=<<___; dec $rounds jmp .Lenc_sbox .align 16 .Lenc_loop: ___ &ShiftRows (@XMM[0..7, 8]); $code.=".Lenc_sbox:\n"; &Sbox (@XMM[0..7, 8..15]); $code.=<<___; dec $rounds jl .Lenc_done ___ &MixColumns (@XMM[0,1,4,6,3,7,2,5, 8..15]); $code.=<<___; movdqa 0x30($const), @XMM[8] # .LSR jnz .Lenc_loop movdqa 0x40($const), @XMM[8] # .LSRM0 jmp .Lenc_loop .align 16 .Lenc_done: ___ # output in lsb > [t0, t1, t4, t6, t3, t7, t2, t5] < msb &bitslice (@XMM[0,1,4,6,3,7,2,5, 8..11]); $code.=<<___; movdqa ($key), @XMM[8] # last round key pxor @XMM[8], @XMM[4] pxor @XMM[8], @XMM[6] pxor @XMM[8], @XMM[3] pxor @XMM[8], @XMM[7] pxor @XMM[8], @XMM[2] pxor @XMM[8], @XMM[5] pxor @XMM[8], @XMM[0] pxor @XMM[8], @XMM[1] ret .size _bsaes_encrypt8,.-_bsaes_encrypt8 .type _bsaes_decrypt8,\@abi-omnipotent .align 64 _bsaes_decrypt8: lea .LBS0(%rip), $const # constants table movdqa ($key), @XMM[9] # round 0 key lea 0x10($key), $key movdqa -0x30($const), @XMM[8] # .LM0ISR pxor @XMM[9], @XMM[0] # xor with round0 key pxor @XMM[9], @XMM[1] pxor @XMM[9], @XMM[2] pxor @XMM[9], @XMM[3] pshufb @XMM[8], @XMM[0] pshufb @XMM[8], @XMM[1] pxor @XMM[9], @XMM[4] pxor @XMM[9], @XMM[5] pshufb @XMM[8], @XMM[2] pshufb @XMM[8], @XMM[3] pxor @XMM[9], @XMM[6] pxor @XMM[9], @XMM[7] pshufb @XMM[8], @XMM[4] pshufb @XMM[8], @XMM[5] pshufb @XMM[8], @XMM[6] pshufb @XMM[8], @XMM[7] ___ &bitslice (@XMM[0..7, 8..11]); $code.=<<___; dec $rounds jmp .Ldec_sbox .align 16 .Ldec_loop: ___ &ShiftRows (@XMM[0..7, 8]); $code.=".Ldec_sbox:\n"; &InvSbox (@XMM[0..7, 8..15]); $code.=<<___; dec $rounds jl .Ldec_done ___ &InvMixColumns (@XMM[0,1,6,4,2,7,3,5, 8..15]); $code.=<<___; movdqa -0x10($const), @XMM[8] # .LISR jnz .Ldec_loop movdqa -0x20($const), @XMM[8] # .LISRM0 jmp .Ldec_loop .align 16 .Ldec_done: ___ &bitslice (@XMM[0,1,6,4,2,7,3,5, 8..11]); $code.=<<___; movdqa ($key), @XMM[8] # last round key pxor @XMM[8], @XMM[6] pxor @XMM[8], @XMM[4] pxor @XMM[8], @XMM[2] pxor @XMM[8], @XMM[7] pxor @XMM[8], @XMM[3] pxor @XMM[8], @XMM[5] pxor @XMM[8], @XMM[0] pxor @XMM[8], @XMM[1] ret .size _bsaes_decrypt8,.-_bsaes_decrypt8 ___ } { my ($out,$inp,$rounds,$const)=("%rax","%rcx","%r10d","%r11"); sub bitslice_key { my @x=reverse(@_[0..7]); my ($bs0,$bs1,$bs2,$t2,$t3)=@_[8..12]; &swapmove (@x[0,1],1,$bs0,$t2,$t3); $code.=<<___; #&swapmove(@x[2,3],1,$t0,$t2,$t3); movdqa @x[0], @x[2] movdqa @x[1], @x[3] ___ #&swapmove2x(@x[4,5,6,7],1,$t0,$t2,$t3); &swapmove2x (@x[0,2,1,3],2,$bs1,$t2,$t3); $code.=<<___; #&swapmove2x(@x[4,6,5,7],2,$t1,$t2,$t3); movdqa @x[0], @x[4] movdqa @x[2], @x[6] movdqa @x[1], @x[5] movdqa @x[3], @x[7] ___ &swapmove2x (@x[0,4,1,5],4,$bs2,$t2,$t3); &swapmove2x (@x[2,6,3,7],4,$bs2,$t2,$t3); } $code.=<<___; .type _bsaes_key_convert,\@abi-omnipotent .align 16 _bsaes_key_convert: lea .Lmasks(%rip), $const movdqu ($inp), %xmm7 # load round 0 key lea 0x10($inp), $inp movdqa 0x00($const), %xmm0 # 0x01... movdqa 0x10($const), %xmm1 # 0x02... movdqa 0x20($const), %xmm2 # 0x04... movdqa 0x30($const), %xmm3 # 0x08... movdqa 0x40($const), %xmm4 # .LM0 pcmpeqd %xmm5, %xmm5 # .LNOT movdqu ($inp), %xmm6 # load round 1 key movdqa %xmm7, ($out) # save round 0 key lea 0x10($out), $out dec $rounds jmp .Lkey_loop .align 16 .Lkey_loop: pshufb %xmm4, %xmm6 # .LM0 movdqa %xmm0, %xmm8 movdqa %xmm1, %xmm9 pand %xmm6, %xmm8 pand %xmm6, %xmm9 movdqa %xmm2, %xmm10 pcmpeqb %xmm0, %xmm8 psllq \$4, %xmm0 # 0x10... movdqa %xmm3, %xmm11 pcmpeqb %xmm1, %xmm9 psllq \$4, %xmm1 # 0x20... pand %xmm6, %xmm10 pand %xmm6, %xmm11 movdqa %xmm0, %xmm12 pcmpeqb %xmm2, %xmm10 psllq \$4, %xmm2 # 0x40... movdqa %xmm1, %xmm13 pcmpeqb %xmm3, %xmm11 psllq \$4, %xmm3 # 0x80... movdqa %xmm2, %xmm14 movdqa %xmm3, %xmm15 pxor %xmm5, %xmm8 # "pnot" pxor %xmm5, %xmm9 pand %xmm6, %xmm12 pand %xmm6, %xmm13 movdqa %xmm8, 0x00($out) # write bit-sliced round key pcmpeqb %xmm0, %xmm12 psrlq \$4, %xmm0 # 0x01... movdqa %xmm9, 0x10($out) pcmpeqb %xmm1, %xmm13 psrlq \$4, %xmm1 # 0x02... lea 0x10($inp), $inp pand %xmm6, %xmm14 pand %xmm6, %xmm15 movdqa %xmm10, 0x20($out) pcmpeqb %xmm2, %xmm14 psrlq \$4, %xmm2 # 0x04... movdqa %xmm11, 0x30($out) pcmpeqb %xmm3, %xmm15 psrlq \$4, %xmm3 # 0x08... movdqu ($inp), %xmm6 # load next round key pxor %xmm5, %xmm13 # "pnot" pxor %xmm5, %xmm14 movdqa %xmm12, 0x40($out) movdqa %xmm13, 0x50($out) movdqa %xmm14, 0x60($out) movdqa %xmm15, 0x70($out) lea 0x80($out),$out dec $rounds jnz .Lkey_loop movdqa 0x50($const), %xmm7 # .L63 #movdqa %xmm6, ($out) # don't save last round key ret .size _bsaes_key_convert,.-_bsaes_key_convert ___ } if (0 && !$win64) { # following four functions are unsupported interface # used for benchmarking... $code.=<<___; .globl bsaes_enc_key_convert .type bsaes_enc_key_convert,\@function,2 .align 16 bsaes_enc_key_convert: mov 240($inp),%r10d # pass rounds mov $inp,%rcx # pass key mov $out,%rax # pass key schedule call _bsaes_key_convert pxor %xmm6,%xmm7 # fix up last round key movdqa %xmm7,(%rax) # save last round key ret .size bsaes_enc_key_convert,.-bsaes_enc_key_convert .globl bsaes_encrypt_128 .type bsaes_encrypt_128,\@function,4 .align 16 bsaes_encrypt_128: .Lenc128_loop: movdqu 0x00($inp), @XMM[0] # load input movdqu 0x10($inp), @XMM[1] movdqu 0x20($inp), @XMM[2] movdqu 0x30($inp), @XMM[3] movdqu 0x40($inp), @XMM[4] movdqu 0x50($inp), @XMM[5] movdqu 0x60($inp), @XMM[6] movdqu 0x70($inp), @XMM[7] mov $key, %rax # pass the $key lea 0x80($inp), $inp mov \$10,%r10d call _bsaes_encrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[4], 0x20($out) movdqu @XMM[6], 0x30($out) movdqu @XMM[3], 0x40($out) movdqu @XMM[7], 0x50($out) movdqu @XMM[2], 0x60($out) movdqu @XMM[5], 0x70($out) lea 0x80($out), $out sub \$0x80,$len ja .Lenc128_loop ret .size bsaes_encrypt_128,.-bsaes_encrypt_128 .globl bsaes_dec_key_convert .type bsaes_dec_key_convert,\@function,2 .align 16 bsaes_dec_key_convert: mov 240($inp),%r10d # pass rounds mov $inp,%rcx # pass key mov $out,%rax # pass key schedule call _bsaes_key_convert pxor ($out),%xmm7 # fix up round 0 key movdqa %xmm6,(%rax) # save last round key movdqa %xmm7,($out) ret .size bsaes_dec_key_convert,.-bsaes_dec_key_convert .globl bsaes_decrypt_128 .type bsaes_decrypt_128,\@function,4 .align 16 bsaes_decrypt_128: .Ldec128_loop: movdqu 0x00($inp), @XMM[0] # load input movdqu 0x10($inp), @XMM[1] movdqu 0x20($inp), @XMM[2] movdqu 0x30($inp), @XMM[3] movdqu 0x40($inp), @XMM[4] movdqu 0x50($inp), @XMM[5] movdqu 0x60($inp), @XMM[6] movdqu 0x70($inp), @XMM[7] mov $key, %rax # pass the $key lea 0x80($inp), $inp mov \$10,%r10d call _bsaes_decrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[6], 0x20($out) movdqu @XMM[4], 0x30($out) movdqu @XMM[2], 0x40($out) movdqu @XMM[7], 0x50($out) movdqu @XMM[3], 0x60($out) movdqu @XMM[5], 0x70($out) lea 0x80($out), $out sub \$0x80,$len ja .Ldec128_loop ret .size bsaes_decrypt_128,.-bsaes_decrypt_128 ___ } { ###################################################################### # # OpenSSL interface # my ($arg1,$arg2,$arg3,$arg4,$arg5,$arg6)=$win64 ? ("%rcx","%rdx","%r8","%r9","%r10","%r11d") : ("%rdi","%rsi","%rdx","%rcx","%r8","%r9d"); my ($inp,$out,$len,$key)=("%r12","%r13","%r14","%r15"); if ($ecb) { $code.=<<___; .globl bsaes_ecb_encrypt_blocks .type bsaes_ecb_encrypt_blocks,\@abi-omnipotent .align 16 bsaes_ecb_encrypt_blocks: mov %rsp, %rax .Lecb_enc_prologue: push %rbp push %rbx push %r12 push %r13 push %r14 push %r15 lea -0x48(%rsp),%rsp ___ $code.=<<___ if ($win64); lea -0xa0(%rsp), %rsp movaps %xmm6, 0x40(%rsp) movaps %xmm7, 0x50(%rsp) movaps %xmm8, 0x60(%rsp) movaps %xmm9, 0x70(%rsp) movaps %xmm10, 0x80(%rsp) movaps %xmm11, 0x90(%rsp) movaps %xmm12, 0xa0(%rsp) movaps %xmm13, 0xb0(%rsp) movaps %xmm14, 0xc0(%rsp) movaps %xmm15, 0xd0(%rsp) .Lecb_enc_body: ___ $code.=<<___; mov %rsp,%rbp # backup %rsp mov 240($arg4),%eax # rounds mov $arg1,$inp # backup arguments mov $arg2,$out mov $arg3,$len mov $arg4,$key cmp \$8,$arg3 jb .Lecb_enc_short mov %eax,%ebx # backup rounds shl \$7,%rax # 128 bytes per inner round key sub \$`128-32`,%rax # size of bit-sliced key schedule sub %rax,%rsp mov %rsp,%rax # pass key schedule mov $key,%rcx # pass key mov %ebx,%r10d # pass rounds call _bsaes_key_convert pxor %xmm6,%xmm7 # fix up last round key movdqa %xmm7,(%rax) # save last round key sub \$8,$len .Lecb_enc_loop: movdqu 0x00($inp), @XMM[0] # load input movdqu 0x10($inp), @XMM[1] movdqu 0x20($inp), @XMM[2] movdqu 0x30($inp), @XMM[3] movdqu 0x40($inp), @XMM[4] movdqu 0x50($inp), @XMM[5] mov %rsp, %rax # pass key schedule movdqu 0x60($inp), @XMM[6] mov %ebx,%r10d # pass rounds movdqu 0x70($inp), @XMM[7] lea 0x80($inp), $inp call _bsaes_encrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[4], 0x20($out) movdqu @XMM[6], 0x30($out) movdqu @XMM[3], 0x40($out) movdqu @XMM[7], 0x50($out) movdqu @XMM[2], 0x60($out) movdqu @XMM[5], 0x70($out) lea 0x80($out), $out sub \$8,$len jnc .Lecb_enc_loop add \$8,$len jz .Lecb_enc_done movdqu 0x00($inp), @XMM[0] # load input mov %rsp, %rax # pass key schedule mov %ebx,%r10d # pass rounds cmp \$2,$len jb .Lecb_enc_one movdqu 0x10($inp), @XMM[1] je .Lecb_enc_two movdqu 0x20($inp), @XMM[2] cmp \$4,$len jb .Lecb_enc_three movdqu 0x30($inp), @XMM[3] je .Lecb_enc_four movdqu 0x40($inp), @XMM[4] cmp \$6,$len jb .Lecb_enc_five movdqu 0x50($inp), @XMM[5] je .Lecb_enc_six movdqu 0x60($inp), @XMM[6] call _bsaes_encrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[4], 0x20($out) movdqu @XMM[6], 0x30($out) movdqu @XMM[3], 0x40($out) movdqu @XMM[7], 0x50($out) movdqu @XMM[2], 0x60($out) jmp .Lecb_enc_done .align 16 .Lecb_enc_six: call _bsaes_encrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[4], 0x20($out) movdqu @XMM[6], 0x30($out) movdqu @XMM[3], 0x40($out) movdqu @XMM[7], 0x50($out) jmp .Lecb_enc_done .align 16 .Lecb_enc_five: call _bsaes_encrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[4], 0x20($out) movdqu @XMM[6], 0x30($out) movdqu @XMM[3], 0x40($out) jmp .Lecb_enc_done .align 16 .Lecb_enc_four: call _bsaes_encrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[4], 0x20($out) movdqu @XMM[6], 0x30($out) jmp .Lecb_enc_done .align 16 .Lecb_enc_three: call _bsaes_encrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[4], 0x20($out) jmp .Lecb_enc_done .align 16 .Lecb_enc_two: call _bsaes_encrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) jmp .Lecb_enc_done .align 16 .Lecb_enc_one: call _bsaes_encrypt8 movdqu @XMM[0], 0x00($out) # write output jmp .Lecb_enc_done .align 16 .Lecb_enc_short: lea ($inp), $arg1 lea ($out), $arg2 lea ($key), $arg3 call asm_AES_encrypt lea 16($inp), $inp lea 16($out), $out dec $len jnz .Lecb_enc_short .Lecb_enc_done: lea (%rsp),%rax pxor %xmm0, %xmm0 .Lecb_enc_bzero: # wipe key schedule [if any] movdqa %xmm0, 0x00(%rax) movdqa %xmm0, 0x10(%rax) lea 0x20(%rax), %rax cmp %rax, %rbp jb .Lecb_enc_bzero lea (%rbp),%rsp # restore %rsp ___ $code.=<<___ if ($win64); movaps 0x40(%rbp), %xmm6 movaps 0x50(%rbp), %xmm7 movaps 0x60(%rbp), %xmm8 movaps 0x70(%rbp), %xmm9 movaps 0x80(%rbp), %xmm10 movaps 0x90(%rbp), %xmm11 movaps 0xa0(%rbp), %xmm12 movaps 0xb0(%rbp), %xmm13 movaps 0xc0(%rbp), %xmm14 movaps 0xd0(%rbp), %xmm15 lea 0xa0(%rbp), %rsp ___ $code.=<<___; mov 0x48(%rsp), %r15 mov 0x50(%rsp), %r14 mov 0x58(%rsp), %r13 mov 0x60(%rsp), %r12 mov 0x68(%rsp), %rbx mov 0x70(%rsp), %rax lea 0x78(%rsp), %rsp mov %rax, %rbp .Lecb_enc_epilogue: ret .size bsaes_ecb_encrypt_blocks,.-bsaes_ecb_encrypt_blocks .globl bsaes_ecb_decrypt_blocks .type bsaes_ecb_decrypt_blocks,\@abi-omnipotent .align 16 bsaes_ecb_decrypt_blocks: mov %rsp, %rax .Lecb_dec_prologue: push %rbp push %rbx push %r12 push %r13 push %r14 push %r15 lea -0x48(%rsp),%rsp ___ $code.=<<___ if ($win64); lea -0xa0(%rsp), %rsp movaps %xmm6, 0x40(%rsp) movaps %xmm7, 0x50(%rsp) movaps %xmm8, 0x60(%rsp) movaps %xmm9, 0x70(%rsp) movaps %xmm10, 0x80(%rsp) movaps %xmm11, 0x90(%rsp) movaps %xmm12, 0xa0(%rsp) movaps %xmm13, 0xb0(%rsp) movaps %xmm14, 0xc0(%rsp) movaps %xmm15, 0xd0(%rsp) .Lecb_dec_body: ___ $code.=<<___; mov %rsp,%rbp # backup %rsp mov 240($arg4),%eax # rounds mov $arg1,$inp # backup arguments mov $arg2,$out mov $arg3,$len mov $arg4,$key cmp \$8,$arg3 jb .Lecb_dec_short mov %eax,%ebx # backup rounds shl \$7,%rax # 128 bytes per inner round key sub \$`128-32`,%rax # size of bit-sliced key schedule sub %rax,%rsp mov %rsp,%rax # pass key schedule mov $key,%rcx # pass key mov %ebx,%r10d # pass rounds call _bsaes_key_convert pxor (%rsp),%xmm7 # fix up 0 round key movdqa %xmm6,(%rax) # save last round key movdqa %xmm7,(%rsp) sub \$8,$len .Lecb_dec_loop: movdqu 0x00($inp), @XMM[0] # load input movdqu 0x10($inp), @XMM[1] movdqu 0x20($inp), @XMM[2] movdqu 0x30($inp), @XMM[3] movdqu 0x40($inp), @XMM[4] movdqu 0x50($inp), @XMM[5] mov %rsp, %rax # pass key schedule movdqu 0x60($inp), @XMM[6] mov %ebx,%r10d # pass rounds movdqu 0x70($inp), @XMM[7] lea 0x80($inp), $inp call _bsaes_decrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[6], 0x20($out) movdqu @XMM[4], 0x30($out) movdqu @XMM[2], 0x40($out) movdqu @XMM[7], 0x50($out) movdqu @XMM[3], 0x60($out) movdqu @XMM[5], 0x70($out) lea 0x80($out), $out sub \$8,$len jnc .Lecb_dec_loop add \$8,$len jz .Lecb_dec_done movdqu 0x00($inp), @XMM[0] # load input mov %rsp, %rax # pass key schedule mov %ebx,%r10d # pass rounds cmp \$2,$len jb .Lecb_dec_one movdqu 0x10($inp), @XMM[1] je .Lecb_dec_two movdqu 0x20($inp), @XMM[2] cmp \$4,$len jb .Lecb_dec_three movdqu 0x30($inp), @XMM[3] je .Lecb_dec_four movdqu 0x40($inp), @XMM[4] cmp \$6,$len jb .Lecb_dec_five movdqu 0x50($inp), @XMM[5] je .Lecb_dec_six movdqu 0x60($inp), @XMM[6] call _bsaes_decrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[6], 0x20($out) movdqu @XMM[4], 0x30($out) movdqu @XMM[2], 0x40($out) movdqu @XMM[7], 0x50($out) movdqu @XMM[3], 0x60($out) jmp .Lecb_dec_done .align 16 .Lecb_dec_six: call _bsaes_decrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[6], 0x20($out) movdqu @XMM[4], 0x30($out) movdqu @XMM[2], 0x40($out) movdqu @XMM[7], 0x50($out) jmp .Lecb_dec_done .align 16 .Lecb_dec_five: call _bsaes_decrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[6], 0x20($out) movdqu @XMM[4], 0x30($out) movdqu @XMM[2], 0x40($out) jmp .Lecb_dec_done .align 16 .Lecb_dec_four: call _bsaes_decrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[6], 0x20($out) movdqu @XMM[4], 0x30($out) jmp .Lecb_dec_done .align 16 .Lecb_dec_three: call _bsaes_decrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[6], 0x20($out) jmp .Lecb_dec_done .align 16 .Lecb_dec_two: call _bsaes_decrypt8 movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) jmp .Lecb_dec_done .align 16 .Lecb_dec_one: call _bsaes_decrypt8 movdqu @XMM[0], 0x00($out) # write output jmp .Lecb_dec_done .align 16 .Lecb_dec_short: lea ($inp), $arg1 lea ($out), $arg2 lea ($key), $arg3 call asm_AES_decrypt lea 16($inp), $inp lea 16($out), $out dec $len jnz .Lecb_dec_short .Lecb_dec_done: lea (%rsp),%rax pxor %xmm0, %xmm0 .Lecb_dec_bzero: # wipe key schedule [if any] movdqa %xmm0, 0x00(%rax) movdqa %xmm0, 0x10(%rax) lea 0x20(%rax), %rax cmp %rax, %rbp jb .Lecb_dec_bzero lea (%rbp),%rsp # restore %rsp ___ $code.=<<___ if ($win64); movaps 0x40(%rbp), %xmm6 movaps 0x50(%rbp), %xmm7 movaps 0x60(%rbp), %xmm8 movaps 0x70(%rbp), %xmm9 movaps 0x80(%rbp), %xmm10 movaps 0x90(%rbp), %xmm11 movaps 0xa0(%rbp), %xmm12 movaps 0xb0(%rbp), %xmm13 movaps 0xc0(%rbp), %xmm14 movaps 0xd0(%rbp), %xmm15 lea 0xa0(%rbp), %rsp ___ $code.=<<___; mov 0x48(%rsp), %r15 mov 0x50(%rsp), %r14 mov 0x58(%rsp), %r13 mov 0x60(%rsp), %r12 mov 0x68(%rsp), %rbx mov 0x70(%rsp), %rax lea 0x78(%rsp), %rsp mov %rax, %rbp .Lecb_dec_epilogue: ret .size bsaes_ecb_decrypt_blocks,.-bsaes_ecb_decrypt_blocks ___ } $code.=<<___; .extern asm_AES_cbc_encrypt .globl bsaes_cbc_encrypt .type bsaes_cbc_encrypt,\@abi-omnipotent .align 16 bsaes_cbc_encrypt: ___ $code.=<<___ if ($win64); mov 48(%rsp),$arg6 # pull direction flag ___ $code.=<<___; cmp \$0,$arg6 jne asm_AES_cbc_encrypt cmp \$128,$arg3 jb asm_AES_cbc_encrypt mov %rsp, %rax .Lcbc_dec_prologue: push %rbp push %rbx push %r12 push %r13 push %r14 push %r15 lea -0x48(%rsp), %rsp ___ $code.=<<___ if ($win64); mov 0xa0(%rsp),$arg5 # pull ivp lea -0xa0(%rsp), %rsp movaps %xmm6, 0x40(%rsp) movaps %xmm7, 0x50(%rsp) movaps %xmm8, 0x60(%rsp) movaps %xmm9, 0x70(%rsp) movaps %xmm10, 0x80(%rsp) movaps %xmm11, 0x90(%rsp) movaps %xmm12, 0xa0(%rsp) movaps %xmm13, 0xb0(%rsp) movaps %xmm14, 0xc0(%rsp) movaps %xmm15, 0xd0(%rsp) .Lcbc_dec_body: ___ $code.=<<___; mov %rsp, %rbp # backup %rsp mov 240($arg4), %eax # rounds mov $arg1, $inp # backup arguments mov $arg2, $out mov $arg3, $len mov $arg4, $key mov $arg5, %rbx shr \$4, $len # bytes to blocks mov %eax, %edx # rounds shl \$7, %rax # 128 bytes per inner round key sub \$`128-32`, %rax # size of bit-sliced key schedule sub %rax, %rsp mov %rsp, %rax # pass key schedule mov $key, %rcx # pass key mov %edx, %r10d # pass rounds call _bsaes_key_convert pxor (%rsp),%xmm7 # fix up 0 round key movdqa %xmm6,(%rax) # save last round key movdqa %xmm7,(%rsp) movdqu (%rbx), @XMM[15] # load IV sub \$8,$len .Lcbc_dec_loop: movdqu 0x00($inp), @XMM[0] # load input movdqu 0x10($inp), @XMM[1] movdqu 0x20($inp), @XMM[2] movdqu 0x30($inp), @XMM[3] movdqu 0x40($inp), @XMM[4] movdqu 0x50($inp), @XMM[5] mov %rsp, %rax # pass key schedule movdqu 0x60($inp), @XMM[6] mov %edx,%r10d # pass rounds movdqu 0x70($inp), @XMM[7] movdqa @XMM[15], 0x20(%rbp) # put aside IV call _bsaes_decrypt8 pxor 0x20(%rbp), @XMM[0] # ^= IV movdqu 0x00($inp), @XMM[8] # re-load input movdqu 0x10($inp), @XMM[9] pxor @XMM[8], @XMM[1] movdqu 0x20($inp), @XMM[10] pxor @XMM[9], @XMM[6] movdqu 0x30($inp), @XMM[11] pxor @XMM[10], @XMM[4] movdqu 0x40($inp), @XMM[12] pxor @XMM[11], @XMM[2] movdqu 0x50($inp), @XMM[13] pxor @XMM[12], @XMM[7] movdqu 0x60($inp), @XMM[14] pxor @XMM[13], @XMM[3] movdqu 0x70($inp), @XMM[15] # IV pxor @XMM[14], @XMM[5] movdqu @XMM[0], 0x00($out) # write output lea 0x80($inp), $inp movdqu @XMM[1], 0x10($out) movdqu @XMM[6], 0x20($out) movdqu @XMM[4], 0x30($out) movdqu @XMM[2], 0x40($out) movdqu @XMM[7], 0x50($out) movdqu @XMM[3], 0x60($out) movdqu @XMM[5], 0x70($out) lea 0x80($out), $out sub \$8,$len jnc .Lcbc_dec_loop add \$8,$len jz .Lcbc_dec_done movdqu 0x00($inp), @XMM[0] # load input mov %rsp, %rax # pass key schedule mov %edx, %r10d # pass rounds cmp \$2,$len jb .Lcbc_dec_one movdqu 0x10($inp), @XMM[1] je .Lcbc_dec_two movdqu 0x20($inp), @XMM[2] cmp \$4,$len jb .Lcbc_dec_three movdqu 0x30($inp), @XMM[3] je .Lcbc_dec_four movdqu 0x40($inp), @XMM[4] cmp \$6,$len jb .Lcbc_dec_five movdqu 0x50($inp), @XMM[5] je .Lcbc_dec_six movdqu 0x60($inp), @XMM[6] movdqa @XMM[15], 0x20(%rbp) # put aside IV call _bsaes_decrypt8 pxor 0x20(%rbp), @XMM[0] # ^= IV movdqu 0x00($inp), @XMM[8] # re-load input movdqu 0x10($inp), @XMM[9] pxor @XMM[8], @XMM[1] movdqu 0x20($inp), @XMM[10] pxor @XMM[9], @XMM[6] movdqu 0x30($inp), @XMM[11] pxor @XMM[10], @XMM[4] movdqu 0x40($inp), @XMM[12] pxor @XMM[11], @XMM[2] movdqu 0x50($inp), @XMM[13] pxor @XMM[12], @XMM[7] movdqu 0x60($inp), @XMM[15] # IV pxor @XMM[13], @XMM[3] movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[6], 0x20($out) movdqu @XMM[4], 0x30($out) movdqu @XMM[2], 0x40($out) movdqu @XMM[7], 0x50($out) movdqu @XMM[3], 0x60($out) jmp .Lcbc_dec_done .align 16 .Lcbc_dec_six: movdqa @XMM[15], 0x20(%rbp) # put aside IV call _bsaes_decrypt8 pxor 0x20(%rbp), @XMM[0] # ^= IV movdqu 0x00($inp), @XMM[8] # re-load input movdqu 0x10($inp), @XMM[9] pxor @XMM[8], @XMM[1] movdqu 0x20($inp), @XMM[10] pxor @XMM[9], @XMM[6] movdqu 0x30($inp), @XMM[11] pxor @XMM[10], @XMM[4] movdqu 0x40($inp), @XMM[12] pxor @XMM[11], @XMM[2] movdqu 0x50($inp), @XMM[15] # IV pxor @XMM[12], @XMM[7] movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[6], 0x20($out) movdqu @XMM[4], 0x30($out) movdqu @XMM[2], 0x40($out) movdqu @XMM[7], 0x50($out) jmp .Lcbc_dec_done .align 16 .Lcbc_dec_five: movdqa @XMM[15], 0x20(%rbp) # put aside IV call _bsaes_decrypt8 pxor 0x20(%rbp), @XMM[0] # ^= IV movdqu 0x00($inp), @XMM[8] # re-load input movdqu 0x10($inp), @XMM[9] pxor @XMM[8], @XMM[1] movdqu 0x20($inp), @XMM[10] pxor @XMM[9], @XMM[6] movdqu 0x30($inp), @XMM[11] pxor @XMM[10], @XMM[4] movdqu 0x40($inp), @XMM[15] # IV pxor @XMM[11], @XMM[2] movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[6], 0x20($out) movdqu @XMM[4], 0x30($out) movdqu @XMM[2], 0x40($out) jmp .Lcbc_dec_done .align 16 .Lcbc_dec_four: movdqa @XMM[15], 0x20(%rbp) # put aside IV call _bsaes_decrypt8 pxor 0x20(%rbp), @XMM[0] # ^= IV movdqu 0x00($inp), @XMM[8] # re-load input movdqu 0x10($inp), @XMM[9] pxor @XMM[8], @XMM[1] movdqu 0x20($inp), @XMM[10] pxor @XMM[9], @XMM[6] movdqu 0x30($inp), @XMM[15] # IV pxor @XMM[10], @XMM[4] movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[6], 0x20($out) movdqu @XMM[4], 0x30($out) jmp .Lcbc_dec_done .align 16 .Lcbc_dec_three: movdqa @XMM[15], 0x20(%rbp) # put aside IV call _bsaes_decrypt8 pxor 0x20(%rbp), @XMM[0] # ^= IV movdqu 0x00($inp), @XMM[8] # re-load input movdqu 0x10($inp), @XMM[9] pxor @XMM[8], @XMM[1] movdqu 0x20($inp), @XMM[15] # IV pxor @XMM[9], @XMM[6] movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) movdqu @XMM[6], 0x20($out) jmp .Lcbc_dec_done .align 16 .Lcbc_dec_two: movdqa @XMM[15], 0x20(%rbp) # put aside IV call _bsaes_decrypt8 pxor 0x20(%rbp), @XMM[0] # ^= IV movdqu 0x00($inp), @XMM[8] # re-load input movdqu 0x10($inp), @XMM[15] # IV pxor @XMM[8], @XMM[1] movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) jmp .Lcbc_dec_done .align 16 .Lcbc_dec_one: lea ($inp), $arg1 lea 0x20(%rbp), $arg2 # buffer output lea ($key), $arg3 call asm_AES_decrypt # doesn't touch %xmm pxor 0x20(%rbp), @XMM[15] # ^= IV movdqu @XMM[15], ($out) # write output movdqa @XMM[0], @XMM[15] # IV .Lcbc_dec_done: movdqu @XMM[15], (%rbx) # return IV lea (%rsp), %rax pxor %xmm0, %xmm0 .Lcbc_dec_bzero: # wipe key schedule [if any] movdqa %xmm0, 0x00(%rax) movdqa %xmm0, 0x10(%rax) lea 0x20(%rax), %rax cmp %rax, %rbp ja .Lcbc_dec_bzero lea (%rbp),%rsp # restore %rsp ___ $code.=<<___ if ($win64); movaps 0x40(%rbp), %xmm6 movaps 0x50(%rbp), %xmm7 movaps 0x60(%rbp), %xmm8 movaps 0x70(%rbp), %xmm9 movaps 0x80(%rbp), %xmm10 movaps 0x90(%rbp), %xmm11 movaps 0xa0(%rbp), %xmm12 movaps 0xb0(%rbp), %xmm13 movaps 0xc0(%rbp), %xmm14 movaps 0xd0(%rbp), %xmm15 lea 0xa0(%rbp), %rsp ___ $code.=<<___; mov 0x48(%rsp), %r15 mov 0x50(%rsp), %r14 mov 0x58(%rsp), %r13 mov 0x60(%rsp), %r12 mov 0x68(%rsp), %rbx mov 0x70(%rsp), %rax lea 0x78(%rsp), %rsp mov %rax, %rbp .Lcbc_dec_epilogue: ret .size bsaes_cbc_encrypt,.-bsaes_cbc_encrypt .globl bsaes_ctr32_encrypt_blocks .type bsaes_ctr32_encrypt_blocks,\@abi-omnipotent .align 16 bsaes_ctr32_encrypt_blocks: mov %rsp, %rax .Lctr_enc_prologue: push %rbp push %rbx push %r12 push %r13 push %r14 push %r15 lea -0x48(%rsp), %rsp ___ $code.=<<___ if ($win64); mov 0xa0(%rsp),$arg5 # pull ivp lea -0xa0(%rsp), %rsp movaps %xmm6, 0x40(%rsp) movaps %xmm7, 0x50(%rsp) movaps %xmm8, 0x60(%rsp) movaps %xmm9, 0x70(%rsp) movaps %xmm10, 0x80(%rsp) movaps %xmm11, 0x90(%rsp) movaps %xmm12, 0xa0(%rsp) movaps %xmm13, 0xb0(%rsp) movaps %xmm14, 0xc0(%rsp) movaps %xmm15, 0xd0(%rsp) .Lctr_enc_body: ___ $code.=<<___; mov %rsp, %rbp # backup %rsp movdqu ($arg5), %xmm0 # load counter mov 240($arg4), %eax # rounds mov $arg1, $inp # backup arguments mov $arg2, $out mov $arg3, $len mov $arg4, $key movdqa %xmm0, 0x20(%rbp) # copy counter cmp \$8, $arg3 jb .Lctr_enc_short mov %eax, %ebx # rounds shl \$7, %rax # 128 bytes per inner round key sub \$`128-32`, %rax # size of bit-sliced key schedule sub %rax, %rsp mov %rsp, %rax # pass key schedule mov $key, %rcx # pass key mov %ebx, %r10d # pass rounds call _bsaes_key_convert pxor %xmm6,%xmm7 # fix up last round key movdqa %xmm7,(%rax) # save last round key movdqa (%rsp), @XMM[9] # load round0 key lea .LADD1(%rip), %r11 movdqa 0x20(%rbp), @XMM[0] # counter copy movdqa -0x20(%r11), @XMM[8] # .LSWPUP pshufb @XMM[8], @XMM[9] # byte swap upper part pshufb @XMM[8], @XMM[0] movdqa @XMM[9], (%rsp) # save adjusted round0 key jmp .Lctr_enc_loop .align 16 .Lctr_enc_loop: movdqa @XMM[0], 0x20(%rbp) # save counter movdqa @XMM[0], @XMM[1] # prepare 8 counter values movdqa @XMM[0], @XMM[2] paddd 0x00(%r11), @XMM[1] # .LADD1 movdqa @XMM[0], @XMM[3] paddd 0x10(%r11), @XMM[2] # .LADD2 movdqa @XMM[0], @XMM[4] paddd 0x20(%r11), @XMM[3] # .LADD3 movdqa @XMM[0], @XMM[5] paddd 0x30(%r11), @XMM[4] # .LADD4 movdqa @XMM[0], @XMM[6] paddd 0x40(%r11), @XMM[5] # .LADD5 movdqa @XMM[0], @XMM[7] paddd 0x50(%r11), @XMM[6] # .LADD6 paddd 0x60(%r11), @XMM[7] # .LADD7 # Borrow prologue from _bsaes_encrypt8 to use the opportunity # to flip byte order in 32-bit counter movdqa (%rsp), @XMM[9] # round 0 key lea 0x10(%rsp), %rax # pass key schedule movdqa -0x10(%r11), @XMM[8] # .LSWPUPM0SR pxor @XMM[9], @XMM[0] # xor with round0 key pxor @XMM[9], @XMM[1] pxor @XMM[9], @XMM[2] pxor @XMM[9], @XMM[3] pshufb @XMM[8], @XMM[0] pshufb @XMM[8], @XMM[1] pxor @XMM[9], @XMM[4] pxor @XMM[9], @XMM[5] pshufb @XMM[8], @XMM[2] pshufb @XMM[8], @XMM[3] pxor @XMM[9], @XMM[6] pxor @XMM[9], @XMM[7] pshufb @XMM[8], @XMM[4] pshufb @XMM[8], @XMM[5] pshufb @XMM[8], @XMM[6] pshufb @XMM[8], @XMM[7] lea .LBS0(%rip), %r11 # constants table mov %ebx,%r10d # pass rounds call _bsaes_encrypt8_bitslice sub \$8,$len jc .Lctr_enc_loop_done movdqu 0x00($inp), @XMM[8] # load input movdqu 0x10($inp), @XMM[9] movdqu 0x20($inp), @XMM[10] movdqu 0x30($inp), @XMM[11] movdqu 0x40($inp), @XMM[12] movdqu 0x50($inp), @XMM[13] movdqu 0x60($inp), @XMM[14] movdqu 0x70($inp), @XMM[15] lea 0x80($inp),$inp pxor @XMM[0], @XMM[8] movdqa 0x20(%rbp), @XMM[0] # load counter pxor @XMM[9], @XMM[1] movdqu @XMM[8], 0x00($out) # write output pxor @XMM[10], @XMM[4] movdqu @XMM[1], 0x10($out) pxor @XMM[11], @XMM[6] movdqu @XMM[4], 0x20($out) pxor @XMM[12], @XMM[3] movdqu @XMM[6], 0x30($out) pxor @XMM[13], @XMM[7] movdqu @XMM[3], 0x40($out) pxor @XMM[14], @XMM[2] movdqu @XMM[7], 0x50($out) pxor @XMM[15], @XMM[5] movdqu @XMM[2], 0x60($out) lea .LADD1(%rip), %r11 movdqu @XMM[5], 0x70($out) lea 0x80($out), $out paddd 0x70(%r11), @XMM[0] # .LADD8 jnz .Lctr_enc_loop jmp .Lctr_enc_done .align 16 .Lctr_enc_loop_done: add \$8, $len movdqu 0x00($inp), @XMM[8] # load input pxor @XMM[8], @XMM[0] movdqu @XMM[0], 0x00($out) # write output cmp \$2,$len jb .Lctr_enc_done movdqu 0x10($inp), @XMM[9] pxor @XMM[9], @XMM[1] movdqu @XMM[1], 0x10($out) je .Lctr_enc_done movdqu 0x20($inp), @XMM[10] pxor @XMM[10], @XMM[4] movdqu @XMM[4], 0x20($out) cmp \$4,$len jb .Lctr_enc_done movdqu 0x30($inp), @XMM[11] pxor @XMM[11], @XMM[6] movdqu @XMM[6], 0x30($out) je .Lctr_enc_done movdqu 0x40($inp), @XMM[12] pxor @XMM[12], @XMM[3] movdqu @XMM[3], 0x40($out) cmp \$6,$len jb .Lctr_enc_done movdqu 0x50($inp), @XMM[13] pxor @XMM[13], @XMM[7] movdqu @XMM[7], 0x50($out) je .Lctr_enc_done movdqu 0x60($inp), @XMM[14] pxor @XMM[14], @XMM[2] movdqu @XMM[2], 0x60($out) jmp .Lctr_enc_done .align 16 .Lctr_enc_short: lea 0x20(%rbp), $arg1 lea 0x30(%rbp), $arg2 lea ($key), $arg3 call asm_AES_encrypt movdqu ($inp), @XMM[1] lea 16($inp), $inp mov 0x2c(%rbp), %eax # load 32-bit counter bswap %eax pxor 0x30(%rbp), @XMM[1] inc %eax # increment movdqu @XMM[1], ($out) bswap %eax lea 16($out), $out mov %eax, 0x2c(%rsp) # save 32-bit counter dec $len jnz .Lctr_enc_short .Lctr_enc_done: lea (%rsp), %rax pxor %xmm0, %xmm0 .Lctr_enc_bzero: # wipe key schedule [if any] movdqa %xmm0, 0x00(%rax) movdqa %xmm0, 0x10(%rax) lea 0x20(%rax), %rax cmp %rax, %rbp ja .Lctr_enc_bzero lea (%rbp),%rsp # restore %rsp ___ $code.=<<___ if ($win64); movaps 0x40(%rbp), %xmm6 movaps 0x50(%rbp), %xmm7 movaps 0x60(%rbp), %xmm8 movaps 0x70(%rbp), %xmm9 movaps 0x80(%rbp), %xmm10 movaps 0x90(%rbp), %xmm11 movaps 0xa0(%rbp), %xmm12 movaps 0xb0(%rbp), %xmm13 movaps 0xc0(%rbp), %xmm14 movaps 0xd0(%rbp), %xmm15 lea 0xa0(%rbp), %rsp ___ $code.=<<___; mov 0x48(%rsp), %r15 mov 0x50(%rsp), %r14 mov 0x58(%rsp), %r13 mov 0x60(%rsp), %r12 mov 0x68(%rsp), %rbx mov 0x70(%rsp), %rax lea 0x78(%rsp), %rsp mov %rax, %rbp .Lctr_enc_epilogue: ret .size bsaes_ctr32_encrypt_blocks,.-bsaes_ctr32_encrypt_blocks ___ ###################################################################### # void bsaes_xts_[en|de]crypt(const char *inp,char *out,size_t len, # const AES_KEY *key1, const AES_KEY *key2, # const unsigned char iv[16]); # my ($twmask,$twres,$twtmp)=@XMM[13..15]; $arg6=~s/d$//; $code.=<<___; .globl bsaes_xts_encrypt .type bsaes_xts_encrypt,\@abi-omnipotent .align 16 bsaes_xts_encrypt: mov %rsp, %rax .Lxts_enc_prologue: push %rbp push %rbx push %r12 push %r13 push %r14 push %r15 lea -0x48(%rsp), %rsp ___ $code.=<<___ if ($win64); mov 0xa0(%rsp),$arg5 # pull key2 mov 0xa8(%rsp),$arg6 # pull ivp lea -0xa0(%rsp), %rsp movaps %xmm6, 0x40(%rsp) movaps %xmm7, 0x50(%rsp) movaps %xmm8, 0x60(%rsp) movaps %xmm9, 0x70(%rsp) movaps %xmm10, 0x80(%rsp) movaps %xmm11, 0x90(%rsp) movaps %xmm12, 0xa0(%rsp) movaps %xmm13, 0xb0(%rsp) movaps %xmm14, 0xc0(%rsp) movaps %xmm15, 0xd0(%rsp) .Lxts_enc_body: ___ $code.=<<___; mov %rsp, %rbp # backup %rsp mov $arg1, $inp # backup arguments mov $arg2, $out mov $arg3, $len mov $arg4, $key lea ($arg6), $arg1 lea 0x20(%rbp), $arg2 lea ($arg5), $arg3 call asm_AES_encrypt # generate initial tweak mov 240($key), %eax # rounds mov $len, %rbx # backup $len mov %eax, %edx # rounds shl \$7, %rax # 128 bytes per inner round key sub \$`128-32`, %rax # size of bit-sliced key schedule sub %rax, %rsp mov %rsp, %rax # pass key schedule mov $key, %rcx # pass key mov %edx, %r10d # pass rounds call _bsaes_key_convert pxor %xmm6, %xmm7 # fix up last round key movdqa %xmm7, (%rax) # save last round key and \$-16, $len sub \$0x80, %rsp # place for tweak[8] movdqa 0x20(%rbp), @XMM[7] # initial tweak pxor $twtmp, $twtmp movdqa .Lxts_magic(%rip), $twmask pcmpgtd @XMM[7], $twtmp # broadcast upper bits sub \$0x80, $len jc .Lxts_enc_short jmp .Lxts_enc_loop .align 16 .Lxts_enc_loop: ___ for ($i=0;$i<7;$i++) { $code.=<<___; pshufd \$0x13, $twtmp, $twres pxor $twtmp, $twtmp movdqa @XMM[7], @XMM[$i] movdqa @XMM[7], `0x10*$i`(%rsp)# save tweak[$i] paddq @XMM[7], @XMM[7] # psllq 1,$tweak pand $twmask, $twres # isolate carry and residue pcmpgtd @XMM[7], $twtmp # broadcast upper bits pxor $twres, @XMM[7] ___ $code.=<<___ if ($i>=1); movdqu `0x10*($i-1)`($inp), @XMM[8+$i-1] ___ $code.=<<___ if ($i>=2); pxor @XMM[8+$i-2], @XMM[$i-2]# input[] ^ tweak[] ___ } $code.=<<___; movdqu 0x60($inp), @XMM[8+6] pxor @XMM[8+5], @XMM[5] movdqu 0x70($inp), @XMM[8+7] lea 0x80($inp), $inp movdqa @XMM[7], 0x70(%rsp) pxor @XMM[8+6], @XMM[6] lea 0x80(%rsp), %rax # pass key schedule pxor @XMM[8+7], @XMM[7] mov %edx, %r10d # pass rounds call _bsaes_encrypt8 pxor 0x00(%rsp), @XMM[0] # ^= tweak[] pxor 0x10(%rsp), @XMM[1] movdqu @XMM[0], 0x00($out) # write output pxor 0x20(%rsp), @XMM[4] movdqu @XMM[1], 0x10($out) pxor 0x30(%rsp), @XMM[6] movdqu @XMM[4], 0x20($out) pxor 0x40(%rsp), @XMM[3] movdqu @XMM[6], 0x30($out) pxor 0x50(%rsp), @XMM[7] movdqu @XMM[3], 0x40($out) pxor 0x60(%rsp), @XMM[2] movdqu @XMM[7], 0x50($out) pxor 0x70(%rsp), @XMM[5] movdqu @XMM[2], 0x60($out) movdqu @XMM[5], 0x70($out) lea 0x80($out), $out movdqa 0x70(%rsp), @XMM[7] # prepare next iteration tweak pxor $twtmp, $twtmp movdqa .Lxts_magic(%rip), $twmask pcmpgtd @XMM[7], $twtmp pshufd \$0x13, $twtmp, $twres pxor $twtmp, $twtmp paddq @XMM[7], @XMM[7] # psllq 1,$tweak pand $twmask, $twres # isolate carry and residue pcmpgtd @XMM[7], $twtmp # broadcast upper bits pxor $twres, @XMM[7] sub \$0x80,$len jnc .Lxts_enc_loop .Lxts_enc_short: add \$0x80, $len jz .Lxts_enc_done ___ for ($i=0;$i<7;$i++) { $code.=<<___; pshufd \$0x13, $twtmp, $twres pxor $twtmp, $twtmp movdqa @XMM[7], @XMM[$i] movdqa @XMM[7], `0x10*$i`(%rsp)# save tweak[$i] paddq @XMM[7], @XMM[7] # psllq 1,$tweak pand $twmask, $twres # isolate carry and residue pcmpgtd @XMM[7], $twtmp # broadcast upper bits pxor $twres, @XMM[7] ___ $code.=<<___ if ($i>=1); movdqu `0x10*($i-1)`($inp), @XMM[8+$i-1] cmp \$`0x10*$i`,$len je .Lxts_enc_$i ___ $code.=<<___ if ($i>=2); pxor @XMM[8+$i-2], @XMM[$i-2]# input[] ^ tweak[] ___ } $code.=<<___; movdqu 0x60($inp), @XMM[8+6] pxor @XMM[8+5], @XMM[5] movdqa @XMM[7], 0x70(%rsp) lea 0x70($inp), $inp pxor @XMM[8+6], @XMM[6] lea 0x80(%rsp), %rax # pass key schedule mov %edx, %r10d # pass rounds call _bsaes_encrypt8 pxor 0x00(%rsp), @XMM[0] # ^= tweak[] pxor 0x10(%rsp), @XMM[1] movdqu @XMM[0], 0x00($out) # write output pxor 0x20(%rsp), @XMM[4] movdqu @XMM[1], 0x10($out) pxor 0x30(%rsp), @XMM[6] movdqu @XMM[4], 0x20($out) pxor 0x40(%rsp), @XMM[3] movdqu @XMM[6], 0x30($out) pxor 0x50(%rsp), @XMM[7] movdqu @XMM[3], 0x40($out) pxor 0x60(%rsp), @XMM[2] movdqu @XMM[7], 0x50($out) movdqu @XMM[2], 0x60($out) lea 0x70($out), $out movdqa 0x70(%rsp), @XMM[7] # next iteration tweak jmp .Lxts_enc_done .align 16 .Lxts_enc_6: pxor @XMM[8+4], @XMM[4] lea 0x60($inp), $inp pxor @XMM[8+5], @XMM[5] lea 0x80(%rsp), %rax # pass key schedule mov %edx, %r10d # pass rounds call _bsaes_encrypt8 pxor 0x00(%rsp), @XMM[0] # ^= tweak[] pxor 0x10(%rsp), @XMM[1] movdqu @XMM[0], 0x00($out) # write output pxor 0x20(%rsp), @XMM[4] movdqu @XMM[1], 0x10($out) pxor 0x30(%rsp), @XMM[6] movdqu @XMM[4], 0x20($out) pxor 0x40(%rsp), @XMM[3] movdqu @XMM[6], 0x30($out) pxor 0x50(%rsp), @XMM[7] movdqu @XMM[3], 0x40($out) movdqu @XMM[7], 0x50($out) lea 0x60($out), $out movdqa 0x60(%rsp), @XMM[7] # next iteration tweak jmp .Lxts_enc_done .align 16 .Lxts_enc_5: pxor @XMM[8+3], @XMM[3] lea 0x50($inp), $inp pxor @XMM[8+4], @XMM[4] lea 0x80(%rsp), %rax # pass key schedule mov %edx, %r10d # pass rounds call _bsaes_encrypt8 pxor 0x00(%rsp), @XMM[0] # ^= tweak[] pxor 0x10(%rsp), @XMM[1] movdqu @XMM[0], 0x00($out) # write output pxor 0x20(%rsp), @XMM[4] movdqu @XMM[1], 0x10($out) pxor 0x30(%rsp), @XMM[6] movdqu @XMM[4], 0x20($out) pxor 0x40(%rsp), @XMM[3] movdqu @XMM[6], 0x30($out) movdqu @XMM[3], 0x40($out) lea 0x50($out), $out movdqa 0x50(%rsp), @XMM[7] # next iteration tweak jmp .Lxts_enc_done .align 16 .Lxts_enc_4: pxor @XMM[8+2], @XMM[2] lea 0x40($inp), $inp pxor @XMM[8+3], @XMM[3] lea 0x80(%rsp), %rax # pass key schedule mov %edx, %r10d # pass rounds call _bsaes_encrypt8 pxor 0x00(%rsp), @XMM[0] # ^= tweak[] pxor 0x10(%rsp), @XMM[1] movdqu @XMM[0], 0x00($out) # write output pxor 0x20(%rsp), @XMM[4] movdqu @XMM[1], 0x10($out) pxor 0x30(%rsp), @XMM[6] movdqu @XMM[4], 0x20($out) movdqu @XMM[6], 0x30($out) lea 0x40($out), $out movdqa 0x40(%rsp), @XMM[7] # next iteration tweak jmp .Lxts_enc_done .align 16 .Lxts_enc_3: pxor @XMM[8+1], @XMM[1] lea 0x30($inp), $inp pxor @XMM[8+2], @XMM[2] lea 0x80(%rsp), %rax # pass key schedule mov %edx, %r10d # pass rounds call _bsaes_encrypt8 pxor 0x00(%rsp), @XMM[0] # ^= tweak[] pxor 0x10(%rsp), @XMM[1] movdqu @XMM[0], 0x00($out) # write output pxor 0x20(%rsp), @XMM[4] movdqu @XMM[1], 0x10($out) movdqu @XMM[4], 0x20($out) lea 0x30($out), $out movdqa 0x30(%rsp), @XMM[7] # next iteration tweak jmp .Lxts_enc_done .align 16 .Lxts_enc_2: pxor @XMM[8+0], @XMM[0] lea 0x20($inp), $inp pxor @XMM[8+1], @XMM[1] lea 0x80(%rsp), %rax # pass key schedule mov %edx, %r10d # pass rounds call _bsaes_encrypt8 pxor 0x00(%rsp), @XMM[0] # ^= tweak[] pxor 0x10(%rsp), @XMM[1] movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) lea 0x20($out), $out movdqa 0x20(%rsp), @XMM[7] # next iteration tweak jmp .Lxts_enc_done .align 16 .Lxts_enc_1: pxor @XMM[0], @XMM[8] lea 0x10($inp), $inp movdqa @XMM[8], 0x20(%rbp) lea 0x20(%rbp), $arg1 lea 0x20(%rbp), $arg2 lea ($key), $arg3 call asm_AES_encrypt # doesn't touch %xmm pxor 0x20(%rbp), @XMM[0] # ^= tweak[] #pxor @XMM[8], @XMM[0] #lea 0x80(%rsp), %rax # pass key schedule #mov %edx, %r10d # pass rounds #call _bsaes_encrypt8 #pxor 0x00(%rsp), @XMM[0] # ^= tweak[] movdqu @XMM[0], 0x00($out) # write output lea 0x10($out), $out movdqa 0x10(%rsp), @XMM[7] # next iteration tweak .Lxts_enc_done: and \$15, %ebx jz .Lxts_enc_ret mov $out, %rdx .Lxts_enc_steal: movzb ($inp), %eax movzb -16(%rdx), %ecx lea 1($inp), $inp mov %al, -16(%rdx) mov %cl, 0(%rdx) lea 1(%rdx), %rdx sub \$1,%ebx jnz .Lxts_enc_steal movdqu -16($out), @XMM[0] lea 0x20(%rbp), $arg1 pxor @XMM[7], @XMM[0] lea 0x20(%rbp), $arg2 movdqa @XMM[0], 0x20(%rbp) lea ($key), $arg3 call asm_AES_encrypt # doesn't touch %xmm pxor 0x20(%rbp), @XMM[7] movdqu @XMM[7], -16($out) .Lxts_enc_ret: lea (%rsp), %rax pxor %xmm0, %xmm0 .Lxts_enc_bzero: # wipe key schedule [if any] movdqa %xmm0, 0x00(%rax) movdqa %xmm0, 0x10(%rax) lea 0x20(%rax), %rax cmp %rax, %rbp ja .Lxts_enc_bzero lea (%rbp),%rsp # restore %rsp ___ $code.=<<___ if ($win64); movaps 0x40(%rbp), %xmm6 movaps 0x50(%rbp), %xmm7 movaps 0x60(%rbp), %xmm8 movaps 0x70(%rbp), %xmm9 movaps 0x80(%rbp), %xmm10 movaps 0x90(%rbp), %xmm11 movaps 0xa0(%rbp), %xmm12 movaps 0xb0(%rbp), %xmm13 movaps 0xc0(%rbp), %xmm14 movaps 0xd0(%rbp), %xmm15 lea 0xa0(%rbp), %rsp ___ $code.=<<___; mov 0x48(%rsp), %r15 mov 0x50(%rsp), %r14 mov 0x58(%rsp), %r13 mov 0x60(%rsp), %r12 mov 0x68(%rsp), %rbx mov 0x70(%rsp), %rax lea 0x78(%rsp), %rsp mov %rax, %rbp .Lxts_enc_epilogue: ret .size bsaes_xts_encrypt,.-bsaes_xts_encrypt .globl bsaes_xts_decrypt .type bsaes_xts_decrypt,\@abi-omnipotent .align 16 bsaes_xts_decrypt: mov %rsp, %rax .Lxts_dec_prologue: push %rbp push %rbx push %r12 push %r13 push %r14 push %r15 lea -0x48(%rsp), %rsp ___ $code.=<<___ if ($win64); mov 0xa0(%rsp),$arg5 # pull key2 mov 0xa8(%rsp),$arg6 # pull ivp lea -0xa0(%rsp), %rsp movaps %xmm6, 0x40(%rsp) movaps %xmm7, 0x50(%rsp) movaps %xmm8, 0x60(%rsp) movaps %xmm9, 0x70(%rsp) movaps %xmm10, 0x80(%rsp) movaps %xmm11, 0x90(%rsp) movaps %xmm12, 0xa0(%rsp) movaps %xmm13, 0xb0(%rsp) movaps %xmm14, 0xc0(%rsp) movaps %xmm15, 0xd0(%rsp) .Lxts_dec_body: ___ $code.=<<___; mov %rsp, %rbp # backup %rsp mov $arg1, $inp # backup arguments mov $arg2, $out mov $arg3, $len mov $arg4, $key lea ($arg6), $arg1 lea 0x20(%rbp), $arg2 lea ($arg5), $arg3 call asm_AES_encrypt # generate initial tweak mov 240($key), %eax # rounds mov $len, %rbx # backup $len mov %eax, %edx # rounds shl \$7, %rax # 128 bytes per inner round key sub \$`128-32`, %rax # size of bit-sliced key schedule sub %rax, %rsp mov %rsp, %rax # pass key schedule mov $key, %rcx # pass key mov %edx, %r10d # pass rounds call _bsaes_key_convert pxor (%rsp), %xmm7 # fix up round 0 key movdqa %xmm6, (%rax) # save last round key movdqa %xmm7, (%rsp) xor %eax, %eax # if ($len%16) len-=16; and \$-16, $len test \$15, %ebx setnz %al shl \$4, %rax sub %rax, $len sub \$0x80, %rsp # place for tweak[8] movdqa 0x20(%rbp), @XMM[7] # initial tweak pxor $twtmp, $twtmp movdqa .Lxts_magic(%rip), $twmask pcmpgtd @XMM[7], $twtmp # broadcast upper bits sub \$0x80, $len jc .Lxts_dec_short jmp .Lxts_dec_loop .align 16 .Lxts_dec_loop: ___ for ($i=0;$i<7;$i++) { $code.=<<___; pshufd \$0x13, $twtmp, $twres pxor $twtmp, $twtmp movdqa @XMM[7], @XMM[$i] movdqa @XMM[7], `0x10*$i`(%rsp)# save tweak[$i] paddq @XMM[7], @XMM[7] # psllq 1,$tweak pand $twmask, $twres # isolate carry and residue pcmpgtd @XMM[7], $twtmp # broadcast upper bits pxor $twres, @XMM[7] ___ $code.=<<___ if ($i>=1); movdqu `0x10*($i-1)`($inp), @XMM[8+$i-1] ___ $code.=<<___ if ($i>=2); pxor @XMM[8+$i-2], @XMM[$i-2]# input[] ^ tweak[] ___ } $code.=<<___; movdqu 0x60($inp), @XMM[8+6] pxor @XMM[8+5], @XMM[5] movdqu 0x70($inp), @XMM[8+7] lea 0x80($inp), $inp movdqa @XMM[7], 0x70(%rsp) pxor @XMM[8+6], @XMM[6] lea 0x80(%rsp), %rax # pass key schedule pxor @XMM[8+7], @XMM[7] mov %edx, %r10d # pass rounds call _bsaes_decrypt8 pxor 0x00(%rsp), @XMM[0] # ^= tweak[] pxor 0x10(%rsp), @XMM[1] movdqu @XMM[0], 0x00($out) # write output pxor 0x20(%rsp), @XMM[6] movdqu @XMM[1], 0x10($out) pxor 0x30(%rsp), @XMM[4] movdqu @XMM[6], 0x20($out) pxor 0x40(%rsp), @XMM[2] movdqu @XMM[4], 0x30($out) pxor 0x50(%rsp), @XMM[7] movdqu @XMM[2], 0x40($out) pxor 0x60(%rsp), @XMM[3] movdqu @XMM[7], 0x50($out) pxor 0x70(%rsp), @XMM[5] movdqu @XMM[3], 0x60($out) movdqu @XMM[5], 0x70($out) lea 0x80($out), $out movdqa 0x70(%rsp), @XMM[7] # prepare next iteration tweak pxor $twtmp, $twtmp movdqa .Lxts_magic(%rip), $twmask pcmpgtd @XMM[7], $twtmp pshufd \$0x13, $twtmp, $twres pxor $twtmp, $twtmp paddq @XMM[7], @XMM[7] # psllq 1,$tweak pand $twmask, $twres # isolate carry and residue pcmpgtd @XMM[7], $twtmp # broadcast upper bits pxor $twres, @XMM[7] sub \$0x80,$len jnc .Lxts_dec_loop .Lxts_dec_short: add \$0x80, $len jz .Lxts_dec_done ___ for ($i=0;$i<7;$i++) { $code.=<<___; pshufd \$0x13, $twtmp, $twres pxor $twtmp, $twtmp movdqa @XMM[7], @XMM[$i] movdqa @XMM[7], `0x10*$i`(%rsp)# save tweak[$i] paddq @XMM[7], @XMM[7] # psllq 1,$tweak pand $twmask, $twres # isolate carry and residue pcmpgtd @XMM[7], $twtmp # broadcast upper bits pxor $twres, @XMM[7] ___ $code.=<<___ if ($i>=1); movdqu `0x10*($i-1)`($inp), @XMM[8+$i-1] cmp \$`0x10*$i`,$len je .Lxts_dec_$i ___ $code.=<<___ if ($i>=2); pxor @XMM[8+$i-2], @XMM[$i-2]# input[] ^ tweak[] ___ } $code.=<<___; movdqu 0x60($inp), @XMM[8+6] pxor @XMM[8+5], @XMM[5] movdqa @XMM[7], 0x70(%rsp) lea 0x70($inp), $inp pxor @XMM[8+6], @XMM[6] lea 0x80(%rsp), %rax # pass key schedule mov %edx, %r10d # pass rounds call _bsaes_decrypt8 pxor 0x00(%rsp), @XMM[0] # ^= tweak[] pxor 0x10(%rsp), @XMM[1] movdqu @XMM[0], 0x00($out) # write output pxor 0x20(%rsp), @XMM[6] movdqu @XMM[1], 0x10($out) pxor 0x30(%rsp), @XMM[4] movdqu @XMM[6], 0x20($out) pxor 0x40(%rsp), @XMM[2] movdqu @XMM[4], 0x30($out) pxor 0x50(%rsp), @XMM[7] movdqu @XMM[2], 0x40($out) pxor 0x60(%rsp), @XMM[3] movdqu @XMM[7], 0x50($out) movdqu @XMM[3], 0x60($out) lea 0x70($out), $out movdqa 0x70(%rsp), @XMM[7] # next iteration tweak jmp .Lxts_dec_done .align 16 .Lxts_dec_6: pxor @XMM[8+4], @XMM[4] lea 0x60($inp), $inp pxor @XMM[8+5], @XMM[5] lea 0x80(%rsp), %rax # pass key schedule mov %edx, %r10d # pass rounds call _bsaes_decrypt8 pxor 0x00(%rsp), @XMM[0] # ^= tweak[] pxor 0x10(%rsp), @XMM[1] movdqu @XMM[0], 0x00($out) # write output pxor 0x20(%rsp), @XMM[6] movdqu @XMM[1], 0x10($out) pxor 0x30(%rsp), @XMM[4] movdqu @XMM[6], 0x20($out) pxor 0x40(%rsp), @XMM[2] movdqu @XMM[4], 0x30($out) pxor 0x50(%rsp), @XMM[7] movdqu @XMM[2], 0x40($out) movdqu @XMM[7], 0x50($out) lea 0x60($out), $out movdqa 0x60(%rsp), @XMM[7] # next iteration tweak jmp .Lxts_dec_done .align 16 .Lxts_dec_5: pxor @XMM[8+3], @XMM[3] lea 0x50($inp), $inp pxor @XMM[8+4], @XMM[4] lea 0x80(%rsp), %rax # pass key schedule mov %edx, %r10d # pass rounds call _bsaes_decrypt8 pxor 0x00(%rsp), @XMM[0] # ^= tweak[] pxor 0x10(%rsp), @XMM[1] movdqu @XMM[0], 0x00($out) # write output pxor 0x20(%rsp), @XMM[6] movdqu @XMM[1], 0x10($out) pxor 0x30(%rsp), @XMM[4] movdqu @XMM[6], 0x20($out) pxor 0x40(%rsp), @XMM[2] movdqu @XMM[4], 0x30($out) movdqu @XMM[2], 0x40($out) lea 0x50($out), $out movdqa 0x50(%rsp), @XMM[7] # next iteration tweak jmp .Lxts_dec_done .align 16 .Lxts_dec_4: pxor @XMM[8+2], @XMM[2] lea 0x40($inp), $inp pxor @XMM[8+3], @XMM[3] lea 0x80(%rsp), %rax # pass key schedule mov %edx, %r10d # pass rounds call _bsaes_decrypt8 pxor 0x00(%rsp), @XMM[0] # ^= tweak[] pxor 0x10(%rsp), @XMM[1] movdqu @XMM[0], 0x00($out) # write output pxor 0x20(%rsp), @XMM[6] movdqu @XMM[1], 0x10($out) pxor 0x30(%rsp), @XMM[4] movdqu @XMM[6], 0x20($out) movdqu @XMM[4], 0x30($out) lea 0x40($out), $out movdqa 0x40(%rsp), @XMM[7] # next iteration tweak jmp .Lxts_dec_done .align 16 .Lxts_dec_3: pxor @XMM[8+1], @XMM[1] lea 0x30($inp), $inp pxor @XMM[8+2], @XMM[2] lea 0x80(%rsp), %rax # pass key schedule mov %edx, %r10d # pass rounds call _bsaes_decrypt8 pxor 0x00(%rsp), @XMM[0] # ^= tweak[] pxor 0x10(%rsp), @XMM[1] movdqu @XMM[0], 0x00($out) # write output pxor 0x20(%rsp), @XMM[6] movdqu @XMM[1], 0x10($out) movdqu @XMM[6], 0x20($out) lea 0x30($out), $out movdqa 0x30(%rsp), @XMM[7] # next iteration tweak jmp .Lxts_dec_done .align 16 .Lxts_dec_2: pxor @XMM[8+0], @XMM[0] lea 0x20($inp), $inp pxor @XMM[8+1], @XMM[1] lea 0x80(%rsp), %rax # pass key schedule mov %edx, %r10d # pass rounds call _bsaes_decrypt8 pxor 0x00(%rsp), @XMM[0] # ^= tweak[] pxor 0x10(%rsp), @XMM[1] movdqu @XMM[0], 0x00($out) # write output movdqu @XMM[1], 0x10($out) lea 0x20($out), $out movdqa 0x20(%rsp), @XMM[7] # next iteration tweak jmp .Lxts_dec_done .align 16 .Lxts_dec_1: pxor @XMM[0], @XMM[8] lea 0x10($inp), $inp movdqa @XMM[8], 0x20(%rbp) lea 0x20(%rbp), $arg1 lea 0x20(%rbp), $arg2 lea ($key), $arg3 call asm_AES_decrypt # doesn't touch %xmm pxor 0x20(%rbp), @XMM[0] # ^= tweak[] #pxor @XMM[8], @XMM[0] #lea 0x80(%rsp), %rax # pass key schedule #mov %edx, %r10d # pass rounds #call _bsaes_decrypt8 #pxor 0x00(%rsp), @XMM[0] # ^= tweak[] movdqu @XMM[0], 0x00($out) # write output lea 0x10($out), $out movdqa 0x10(%rsp), @XMM[7] # next iteration tweak .Lxts_dec_done: and \$15, %ebx jz .Lxts_dec_ret pxor $twtmp, $twtmp movdqa .Lxts_magic(%rip), $twmask pcmpgtd @XMM[7], $twtmp pshufd \$0x13, $twtmp, $twres movdqa @XMM[7], @XMM[6] paddq @XMM[7], @XMM[7] # psllq 1,$tweak pand $twmask, $twres # isolate carry and residue movdqu ($inp), @XMM[0] pxor $twres, @XMM[7] lea 0x20(%rbp), $arg1 pxor @XMM[7], @XMM[0] lea 0x20(%rbp), $arg2 movdqa @XMM[0], 0x20(%rbp) lea ($key), $arg3 call asm_AES_decrypt # doesn't touch %xmm pxor 0x20(%rbp), @XMM[7] mov $out, %rdx movdqu @XMM[7], ($out) .Lxts_dec_steal: movzb 16($inp), %eax movzb (%rdx), %ecx lea 1($inp), $inp mov %al, (%rdx) mov %cl, 16(%rdx) lea 1(%rdx), %rdx sub \$1,%ebx jnz .Lxts_dec_steal movdqu ($out), @XMM[0] lea 0x20(%rbp), $arg1 pxor @XMM[6], @XMM[0] lea 0x20(%rbp), $arg2 movdqa @XMM[0], 0x20(%rbp) lea ($key), $arg3 call asm_AES_decrypt # doesn't touch %xmm pxor 0x20(%rbp), @XMM[6] movdqu @XMM[6], ($out) .Lxts_dec_ret: lea (%rsp), %rax pxor %xmm0, %xmm0 .Lxts_dec_bzero: # wipe key schedule [if any] movdqa %xmm0, 0x00(%rax) movdqa %xmm0, 0x10(%rax) lea 0x20(%rax), %rax cmp %rax, %rbp ja .Lxts_dec_bzero lea (%rbp),%rsp # restore %rsp ___ $code.=<<___ if ($win64); movaps 0x40(%rbp), %xmm6 movaps 0x50(%rbp), %xmm7 movaps 0x60(%rbp), %xmm8 movaps 0x70(%rbp), %xmm9 movaps 0x80(%rbp), %xmm10 movaps 0x90(%rbp), %xmm11 movaps 0xa0(%rbp), %xmm12 movaps 0xb0(%rbp), %xmm13 movaps 0xc0(%rbp), %xmm14 movaps 0xd0(%rbp), %xmm15 lea 0xa0(%rbp), %rsp ___ $code.=<<___; mov 0x48(%rsp), %r15 mov 0x50(%rsp), %r14 mov 0x58(%rsp), %r13 mov 0x60(%rsp), %r12 mov 0x68(%rsp), %rbx mov 0x70(%rsp), %rax lea 0x78(%rsp), %rsp mov %rax, %rbp .Lxts_dec_epilogue: ret .size bsaes_xts_decrypt,.-bsaes_xts_decrypt ___ } $code.=<<___; .type _bsaes_const,\@object .align 64 _bsaes_const: .LM0ISR: # InvShiftRows constants .quad 0x0a0e0206070b0f03, 0x0004080c0d010509 .LISRM0: .quad 0x01040b0e0205080f, 0x0306090c00070a0d .LISR: .quad 0x0504070602010003, 0x0f0e0d0c080b0a09 .LBS0: # bit-slice constants .quad 0x5555555555555555, 0x5555555555555555 .LBS1: .quad 0x3333333333333333, 0x3333333333333333 .LBS2: .quad 0x0f0f0f0f0f0f0f0f, 0x0f0f0f0f0f0f0f0f .LSR: # shiftrows constants .quad 0x0504070600030201, 0x0f0e0d0c0a09080b .LSRM0: .quad 0x0304090e00050a0f, 0x01060b0c0207080d .LM0SR: .quad 0x0a0e02060f03070b, 0x0004080c05090d01 .LSWPUP: # byte-swap upper dword .quad 0x0706050403020100, 0x0c0d0e0f0b0a0908 .LSWPUPM0SR: .quad 0x0a0d02060c03070b, 0x0004080f05090e01 .LADD1: # counter increment constants .quad 0x0000000000000000, 0x0000000100000000 .LADD2: .quad 0x0000000000000000, 0x0000000200000000 .LADD3: .quad 0x0000000000000000, 0x0000000300000000 .LADD4: .quad 0x0000000000000000, 0x0000000400000000 .LADD5: .quad 0x0000000000000000, 0x0000000500000000 .LADD6: .quad 0x0000000000000000, 0x0000000600000000 .LADD7: .quad 0x0000000000000000, 0x0000000700000000 .LADD8: .quad 0x0000000000000000, 0x0000000800000000 .Lxts_magic: .long 0x87,0,1,0 .Lmasks: .quad 0x0101010101010101, 0x0101010101010101 .quad 0x0202020202020202, 0x0202020202020202 .quad 0x0404040404040404, 0x0404040404040404 .quad 0x0808080808080808, 0x0808080808080808 .LM0: .quad 0x02060a0e03070b0f, 0x0004080c0105090d .L63: .quad 0x6363636363636363, 0x6363636363636363 .asciz "Bit-sliced AES for x86_64/SSSE3, Emilia Käsper, Peter Schwabe, Andy Polyakov" .align 64 .size _bsaes_const,.-_bsaes_const ___ # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type se_handler,\@abi-omnipotent .align 16 se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->Rip<prologue label jb .Lin_prologue mov 152($context),%rax # pull context->Rsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lin_prologue mov 160($context),%rax # pull context->Rbp lea 0x40(%rax),%rsi # %xmm save area lea 512($context),%rdi # &context.Xmm6 mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax) .long 0xa548f3fc # cld; rep movsq lea 0xa0(%rax),%rax # adjust stack pointer mov 0x70(%rax),%rbp mov 0x68(%rax),%rbx mov 0x60(%rax),%r12 mov 0x58(%rax),%r13 mov 0x50(%rax),%r14 mov 0x48(%rax),%r15 lea 0x78(%rax),%rax # adjust stack pointer mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 .Lin_prologue: mov %rax,152($context) # restore context->Rsp mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$`1232/8`,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size se_handler,.-se_handler .section .pdata .align 4 ___ $code.=<<___ if ($ecb); .rva .Lecb_enc_prologue .rva .Lecb_enc_epilogue .rva .Lecb_enc_info .rva .Lecb_dec_prologue .rva .Lecb_dec_epilogue .rva .Lecb_dec_info ___ $code.=<<___; .rva .Lcbc_dec_prologue .rva .Lcbc_dec_epilogue .rva .Lcbc_dec_info .rva .Lctr_enc_prologue .rva .Lctr_enc_epilogue .rva .Lctr_enc_info .rva .Lxts_enc_prologue .rva .Lxts_enc_epilogue .rva .Lxts_enc_info .rva .Lxts_dec_prologue .rva .Lxts_dec_epilogue .rva .Lxts_dec_info .section .xdata .align 8 ___ $code.=<<___ if ($ecb); .Lecb_enc_info: .byte 9,0,0,0 .rva se_handler .rva .Lecb_enc_body,.Lecb_enc_epilogue # HandlerData[] .Lecb_dec_info: .byte 9,0,0,0 .rva se_handler .rva .Lecb_dec_body,.Lecb_dec_epilogue # HandlerData[] ___ $code.=<<___; .Lcbc_dec_info: .byte 9,0,0,0 .rva se_handler .rva .Lcbc_dec_body,.Lcbc_dec_epilogue # HandlerData[] .Lctr_enc_info: .byte 9,0,0,0 .rva se_handler .rva .Lctr_enc_body,.Lctr_enc_epilogue # HandlerData[] .Lxts_enc_info: .byte 9,0,0,0 .rva se_handler .rva .Lxts_enc_body,.Lxts_enc_epilogue # HandlerData[] .Lxts_dec_info: .byte 9,0,0,0 .rva se_handler .rva .Lxts_dec_body,.Lxts_dec_epilogue # HandlerData[] ___ } $code =~ s/\`([^\`]*)\`/eval($1)/gem; print $code; close STDOUT;