/* crypto/rand/md_rand.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ #define ENTROPY_NEEDED 20 /* require 160 bits = 20 bytes of randomness */ #ifndef MD_RAND_DEBUG # ifndef NDEBUG # define NDEBUG # endif #endif #include #include #include #include #include "openssl/e_os.h" #include #include #if !defined(USE_MD5_RAND) && !defined(USE_SHA1_RAND) && !defined(USE_MDC2_RAND) && !defined(USE_MD2_RAND) #if !defined(NO_SHA) && !defined(NO_SHA1) #define USE_SHA1_RAND #elif !defined(NO_MD5) #define USE_MD5_RAND #elif !defined(NO_MDC2) && !defined(NO_DES) #define USE_MDC2_RAND #elif !defined(NO_MD2) #define USE_MD2_RAND #else #error No message digest algorithm available #endif #endif /* Changed how the state buffer used. I now attempt to 'wrap' such * that I don't run over the same locations the next time go through * the 1023 bytes - many thanks to * Robert J. LeBlanc for his comments */ #if defined(USE_MD5_RAND) #include #define MD_DIGEST_LENGTH MD5_DIGEST_LENGTH #define MD_CTX MD5_CTX #define MD_Init(a) MD5_Init(a) #define MD_Update(a,b,c) MD5_Update(a,b,c) #define MD_Final(a,b) MD5_Final(a,b) #define MD(a,b,c) MD5(a,b,c) #elif defined(USE_SHA1_RAND) #include #define MD_DIGEST_LENGTH SHA_DIGEST_LENGTH #define MD_CTX SHA_CTX #define MD_Init(a) SHA1_Init(a) #define MD_Update(a,b,c) SHA1_Update(a,b,c) #define MD_Final(a,b) SHA1_Final(a,b) #define MD(a,b,c) SHA1(a,b,c) #elif defined(USE_MDC2_RAND) #include #define MD_DIGEST_LENGTH MDC2_DIGEST_LENGTH #define MD_CTX MDC2_CTX #define MD_Init(a) MDC2_Init(a) #define MD_Update(a,b,c) MDC2_Update(a,b,c) #define MD_Final(a,b) MDC2_Final(a,b) #define MD(a,b,c) MDC2(a,b,c) #elif defined(USE_MD2_RAND) #include #define MD_DIGEST_LENGTH MD2_DIGEST_LENGTH #define MD_CTX MD2_CTX #define MD_Init(a) MD2_Init(a) #define MD_Update(a,b,c) MD2_Update(a,b,c) #define MD_Final(a,b) MD2_Final(a,b) #define MD(a,b,c) MD2(a,b,c) #endif #include #ifdef BN_DEBUG # define PREDICT #endif /* #define NORAND 1 */ /* #define PREDICT 1 */ #define STATE_SIZE 1023 static int state_num=0,state_index=0; static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH]; static unsigned char md[MD_DIGEST_LENGTH]; static long md_count[2]={0,0}; static double entropy=0; static int initialized=0; #ifdef PREDICT int rand_predictable=0; #endif const char *RAND_version="RAND" OPENSSL_VERSION_PTEXT; static void ssleay_rand_cleanup(void); static void ssleay_rand_seed(const void *buf, int num); static void ssleay_rand_add(const void *buf, int num, double add_entropy); static int ssleay_rand_bytes(unsigned char *buf, int num); static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num); static int ssleay_rand_status(void); RAND_METHOD rand_ssleay_meth={ ssleay_rand_seed, ssleay_rand_bytes, ssleay_rand_cleanup, ssleay_rand_add, ssleay_rand_pseudo_bytes, ssleay_rand_status }; RAND_METHOD *RAND_SSLeay(void) { return(&rand_ssleay_meth); } static void ssleay_rand_cleanup(void) { memset(state,0,sizeof(state)); state_num=0; state_index=0; memset(md,0,MD_DIGEST_LENGTH); md_count[0]=0; md_count[1]=0; entropy=0; } static void ssleay_rand_add(const void *buf, int num, double add) { int i,j,k,st_idx; long md_c[2]; unsigned char local_md[MD_DIGEST_LENGTH]; MD_CTX m; #ifdef NORAND return; #endif /* * (Based on the rand(3) manpage) * * The input is chopped up into units of 20 bytes (or less for * the last block). Each of these blocks is run through the hash * function as follows: The data passed to the hash function * is the current 'md', the same number of bytes from the 'state' * (the location determined by in incremented looping index) as * the current 'block', the new key data 'block', and 'count' * (which is incremented after each use). * The result of this is kept in 'md' and also xored into the * 'state' at the same locations that were used as input into the * hash function. */ CRYPTO_w_lock(CRYPTO_LOCK_RAND); st_idx=state_index; /* use our own copies of the counters so that even * if a concurrent thread seeds with exactly the * same data and uses the same subarray there's _some_ * difference */ md_c[0] = md_count[0]; md_c[1] = md_count[1]; memcpy(local_md, md, sizeof md); /* state_index <= state_num <= STATE_SIZE */ state_index += num; if (state_index >= STATE_SIZE) { state_index%=STATE_SIZE; state_num=STATE_SIZE; } else if (state_num < STATE_SIZE) { if (state_index > state_num) state_num=state_index; } /* state_index <= state_num <= STATE_SIZE */ /* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE] * are what we will use now, but other threads may use them * as well */ md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0); CRYPTO_w_unlock(CRYPTO_LOCK_RAND); for (i=0; i MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j; MD_Init(&m); MD_Update(&m,local_md,MD_DIGEST_LENGTH); k=(st_idx+j)-STATE_SIZE; if (k > 0) { MD_Update(&m,&(state[st_idx]),j-k); MD_Update(&m,&(state[0]),k); } else MD_Update(&m,&(state[st_idx]),j); MD_Update(&m,buf,j); MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c)); MD_Final(local_md,&m); md_c[1]++; buf=(const char *)buf + j; for (k=0; k= STATE_SIZE) st_idx=0; } } memset((char *)&m,0,sizeof(m)); CRYPTO_w_lock(CRYPTO_LOCK_RAND); /* Don't just copy back local_md into md -- this could mean that * other thread's seeding remains without effect (except for * the incremented counter). By XORing it we keep at least as * much entropy as fits into md. */ for (k = 0; k < sizeof md; k++) { md[k] ^= local_md[k]; } if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */ entropy += add; CRYPTO_w_unlock(CRYPTO_LOCK_RAND); #ifndef THREADS assert(md_c[1] == md_count[1]); #endif } static void ssleay_rand_seed(const void *buf, int num) { ssleay_rand_add(buf, num, num); } static void ssleay_rand_initialize(void) { unsigned long l; #ifndef GETPID_IS_MEANINGLESS pid_t curr_pid = getpid(); #endif #ifdef DEVRANDOM FILE *fh; #endif #ifdef NORAND return; #endif CRYPTO_w_unlock(CRYPTO_LOCK_RAND); /* put in some default random data, we need more than just this */ #ifndef GETPID_IS_MEANINGLESS l=curr_pid; RAND_add(&l,sizeof(l),0); l=getuid(); RAND_add(&l,sizeof(l),0); #endif l=time(NULL); RAND_add(&l,sizeof(l),0); #ifdef DEVRANDOM /* Use a random entropy pool device. Linux, FreeBSD and OpenBSD * have this. Use /dev/urandom if you can as /dev/random may block * if it runs out of random entries. */ if ((fh = fopen(DEVRANDOM, "r")) != NULL) { unsigned char tmpbuf[ENTROPY_NEEDED]; int n; setvbuf(fh, NULL, _IONBF, 0); n=fread((unsigned char *)tmpbuf,1,ENTROPY_NEEDED,fh); fclose(fh); RAND_add(tmpbuf,sizeof tmpbuf,n); memset(tmpbuf,0,n); } #endif #ifdef PURIFY memset(state,0,STATE_SIZE); memset(md,0,MD_DIGEST_LENGTH); #endif CRYPTO_w_lock(CRYPTO_LOCK_RAND); initialized=1; } static int ssleay_rand_bytes(unsigned char *buf, int num) { static volatile int stirred_pool = 0; int i,j,k,st_num,st_idx; int ok; long md_c[2]; unsigned char local_md[MD_DIGEST_LENGTH]; MD_CTX m; #ifndef GETPID_IS_MEANINGLESS pid_t curr_pid = getpid(); #endif int do_stir_pool = 0; #ifdef PREDICT if (rand_predictable) { static unsigned char val=0; for (i=0; i= ENTROPY_NEEDED); if (!ok) { /* If the PRNG state is not yet unpredictable, then seeing * the PRNG output may help attackers to determine the new * state; thus we have to decrease the entropy estimate. * Once we've had enough initial seeding we don't bother to * adjust the entropy count, though, because we're not ambitious * to provide *information-theoretic* randomness. * * NOTE: This approach fails if the program forks before * we have enough entropy. Entropy should be collected * in a separate input pool and be transferred to the * output pool only when the entropy limit has been reached. */ entropy -= num; if (entropy < 0) entropy = 0; } if (do_stir_pool) { /* Our output function chains only half of 'md', so we better * make sure that the required entropy gets 'evenly distributed' * through 'state', our randomness pool. The input function * (ssleay_rand_add) chains all of 'md', which makes it more * suitable for this purpose. */ int n = STATE_SIZE; /* so that the complete pool gets accessed */ while (n > 0) { #if MD_DIGEST_LENGTH > 20 # error "Please adjust DUMMY_SEED." #endif #define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */ /* Note that the seed does not matter, it's just that * ssleay_rand_add expects to have something to hash. */ ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0); n -= MD_DIGEST_LENGTH; } if (ok) stirred_pool = 1; } st_idx=state_index; st_num=state_num; md_c[0] = md_count[0]; md_c[1] = md_count[1]; memcpy(local_md, md, sizeof md); state_index+=num; if (state_index > state_num) state_index %= state_num; /* state[st_idx], ..., state[(st_idx + num - 1) % st_num] * are now ours (but other threads may use them too) */ md_count[0] += 1; CRYPTO_w_unlock(CRYPTO_LOCK_RAND); while (num > 0) { j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num; num-=j; MD_Init(&m); #ifndef GETPID_IS_MEANINGLESS if (curr_pid) /* just in the first iteration to save time */ { MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid); curr_pid = 0; } #endif MD_Update(&m,&(local_md[MD_DIGEST_LENGTH/2]),MD_DIGEST_LENGTH/2); MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c)); #ifndef PURIFY MD_Update(&m,buf,j); /* purify complains */ #endif k=(st_idx+j)-st_num; if (k > 0) { MD_Update(&m,&(state[st_idx]),j-k); MD_Update(&m,&(state[0]),k); } else MD_Update(&m,&(state[st_idx]),j); MD_Final(local_md,&m); for (i=0; i= st_num) st_idx=0; } } MD_Init(&m); MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c)); MD_Update(&m,local_md,MD_DIGEST_LENGTH); CRYPTO_w_lock(CRYPTO_LOCK_RAND); MD_Update(&m,md,MD_DIGEST_LENGTH); MD_Final(md,&m); CRYPTO_w_unlock(CRYPTO_LOCK_RAND); memset(&m,0,sizeof(m)); if (ok) return(1); else { RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED); return(0); } } /* pseudo-random bytes that are guaranteed to be unique but not unpredictable */ static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num) { int ret, err; ret = RAND_bytes(buf, num); if (ret == 0) { err = ERR_peek_error(); if (ERR_GET_LIB(err) == ERR_LIB_RAND && ERR_GET_REASON(err) == RAND_R_PRNG_NOT_SEEDED) (void)ERR_get_error(); } return (ret); } static int ssleay_rand_status(void) { int ret; CRYPTO_w_lock(CRYPTO_LOCK_RAND); if (!initialized) ssleay_rand_initialize(); ret = entropy >= ENTROPY_NEEDED; CRYPTO_w_unlock(CRYPTO_LOCK_RAND); return ret; } #ifdef WINDOWS #include #include int RAND_event(UINT iMsg, WPARAM wParam, LPARAM lParam) { double add_entropy=0; SYSTEMTIME t; switch (iMsg) { case WM_KEYDOWN: { static WPARAM key; if (key != wParam) add_entropy = 0.05; key = wParam; } break; case WM_MOUSEMOVE: { static int lastx,lasty,lastdx,lastdy; int x,y,dx,dy; x=LOWORD(lParam); y=HIWORD(lParam); dx=lastx-x; dy=lasty-y; if (dx != 0 && dy != 0 && dx-lastdx != 0 && dy-lastdy != 0) add_entropy=.2; lastx=x, lasty=y; lastdx=dx, lastdy=dy; } break; } GetSystemTime(&t); RAND_add(&iMsg, sizeof(iMsg), add_entropy); RAND_add(&wParam, sizeof(wParam), 0); RAND_add(&lParam, sizeof(lParam), 0); RAND_add(&t, sizeof(t), 0); return (RAND_status()); } /***************************************************************************** * Initialisation function for the SSL random generator. Takes the contents * of the screen as random seed. * * Created 960901 by Gertjan van Oosten, gertjan@West.NL, West Consulting B.V. * * Code adapted from * ; * the original copyright message is: * * (C) Copyright Microsoft Corp. 1993. All rights reserved. * * You have a royalty-free right to use, modify, reproduce and * distribute the Sample Files (and/or any modified version) in * any way you find useful, provided that you agree that * Microsoft has no warranty obligations or liability for any * Sample Application Files which are modified. */ /* * I have modified the loading of bytes via RAND_seed() mechanism since * the original would have been very very CPU intensive since RAND_seed() * does an MD5 per 16 bytes of input. The cost to digest 16 bytes is the same * as that to digest 56 bytes. So under the old system, a screen of * 1024*768*256 would have been CPU cost of approximately 49,000 56 byte MD5 * digests or digesting 2.7 mbytes. What I have put in place would * be 48 16k MD5 digests, or effectively 48*16+48 MD5 bytes or 816 kbytes * or about 3.5 times as much. * - eric */ void RAND_screen(void) { HDC hScrDC; /* screen DC */ HDC hMemDC; /* memory DC */ HBITMAP hBitmap; /* handle for our bitmap */ HBITMAP hOldBitmap; /* handle for previous bitmap */ BITMAP bm; /* bitmap properties */ unsigned int size; /* size of bitmap */ char *bmbits; /* contents of bitmap */ int w; /* screen width */ int h; /* screen height */ int y; /* y-coordinate of screen lines to grab */ int n = 16; /* number of screen lines to grab at a time */ /* Create a screen DC and a memory DC compatible to screen DC */ hScrDC = CreateDC("DISPLAY", NULL, NULL, NULL); hMemDC = CreateCompatibleDC(hScrDC); /* Get screen resolution */ w = GetDeviceCaps(hScrDC, HORZRES); h = GetDeviceCaps(hScrDC, VERTRES); /* Create a bitmap compatible with the screen DC */ hBitmap = CreateCompatibleBitmap(hScrDC, w, n); /* Select new bitmap into memory DC */ hOldBitmap = SelectObject(hMemDC, hBitmap); /* Get bitmap properties */ GetObject(hBitmap, sizeof(BITMAP), (LPSTR)&bm); size = (unsigned int)bm.bmWidthBytes * bm.bmHeight * bm.bmPlanes; bmbits = Malloc(size); if (bmbits) { /* Now go through the whole screen, repeatedly grabbing n lines */ for (y = 0; y < h-n; y += n) { unsigned char md[MD_DIGEST_LENGTH]; /* Bitblt screen DC to memory DC */ BitBlt(hMemDC, 0, 0, w, n, hScrDC, 0, y, SRCCOPY); /* Copy bitmap bits from memory DC to bmbits */ GetBitmapBits(hBitmap, size, bmbits); /* Get the MD5 of the bitmap */ MD(bmbits,size,md); /* Seed the random generator with the MD5 digest */ RAND_seed(md, MD_DIGEST_LENGTH); } Free(bmbits); } /* Select old bitmap back into memory DC */ hBitmap = SelectObject(hMemDC, hOldBitmap); /* Clean up */ DeleteObject(hBitmap); DeleteDC(hMemDC); DeleteDC(hScrDC); } #endif