/* * Copyright 2004-2014, Akamai Technologies. All Rights Reserved. * This file is distributed under the terms of the OpenSSL license. */ /* * This file is in two halves. The first half implements the public API * to be used by external consumers, and to be used by OpenSSL to store * data in a "secure arena." The second half implements the secure arena. * For details on that implementation, see below (look for uppercase * "SECURE HEAP IMPLEMENTATION"). */ #include #include #if defined(OPENSSL_SYS_LINUX) || defined(OPENSSL_SYS_UNIX) # define IMPLEMENTED # include # include # include # include # include # include #endif #define LOCK() CRYPTO_w_lock(CRYPTO_LOCK_MALLOC) #define UNLOCK() CRYPTO_w_unlock(CRYPTO_LOCK_MALLOC) #define CLEAR(p, s) OPENSSL_cleanse(p, s) #define PAGE_SIZE 4096 #ifdef IMPLEMENTED size_t secure_mem_used; static int secure_mem_initialized; static int too_late; /* * These are the functions that must be implemented by a secure heap (sh). */ static int sh_init(size_t size, int minsize); static char *sh_malloc(size_t size); static void sh_free(char *ptr); static void sh_done(void); static int sh_actual_size(char *ptr); static int sh_allocated(const char *ptr); #endif int CRYPTO_secure_malloc_init(size_t size, int minsize) { #ifdef IMPLEMENTED int ret = 0; if (too_late) return ret; LOCK(); OPENSSL_assert(!secure_mem_initialized); if (!secure_mem_initialized) { ret = sh_init(size, minsize); secure_mem_initialized = 1; } UNLOCK(); return ret; #else return 0; #endif /* IMPLEMENTED */ } void CRYPTO_secure_malloc_done() { #ifdef IMPLEMENTED LOCK(); sh_done(); secure_mem_initialized = 0; UNLOCK(); #endif /* IMPLEMENTED */ } int CRYPTO_secure_malloc_initialized() { #ifdef IMPLEMENTED return secure_mem_initialized; #else return 0; #endif /* IMPLEMENTED */ } void *CRYPTO_secure_malloc(int num, const char *file, int line) { #ifdef IMPLEMENTED void *ret; size_t actual_size; if (!secure_mem_initialized) { too_late = 1; return CRYPTO_malloc(num, file, line); } LOCK(); ret = sh_malloc(num); actual_size = ret ? sh_actual_size(ret) : 0; secure_mem_used += actual_size; UNLOCK(); return ret; #else return CRYPTO_malloc(num, file, line); #endif /* IMPLEMENTED */ } void CRYPTO_secure_free(void *ptr) { #ifdef IMPLEMENTED size_t actual_size; if (ptr == NULL) return; if (!secure_mem_initialized) { CRYPTO_free(ptr); return; } LOCK(); actual_size = sh_actual_size(ptr); CLEAR(ptr, actual_size); secure_mem_used -= actual_size; sh_free(ptr); UNLOCK(); #else CRYPTO_free(ptr); #endif /* IMPLEMENTED */ } int CRYPTO_secure_allocated(const void *ptr) { #ifdef IMPLEMENTED int ret; if (!secure_mem_initialized) return 0; LOCK(); ret = sh_allocated(ptr); UNLOCK(); return ret; #else return 0; #endif /* IMPLEMENTED */ } /* END OF PAGE ... ... START OF PAGE */ /* * SECURE HEAP IMPLEMENTATION */ #ifdef IMPLEMENTED /* * The implementation provided here uses a fixed-sized mmap() heap, * which is locked into memory, not written to core files, and protected * on either side by an unmapped page, which will catch pointer overruns * (or underruns) and an attempt to read data out of the secure heap. * Free'd memory is zero'd or otherwise cleansed. * * This is a pretty standard buddy allocator. We keep areas in a multiple * of "sh.minsize" units. The freelist and bitmaps are kept separately, * so all (and only) data is kept in the mmap'd heap. * * This code assumes eight-bit bytes. The numbers 3 and 7 are all over the * place. */ # define TESTBIT(t, b) (t[(b) >> 3] & (1 << ((b) & 7))) # define SETBIT(t, b) (t[(b) >> 3] |= (1 << ((b) & 7))) # define CLEARBIT(t, b) (t[(b) >> 3] &= (0xFF & ~(1 << ((b) & 7)))) #define WITHIN_ARENA(p) \ ((char*)(p) >= sh.arena && (char*)(p) < &sh.arena[sh.arena_size]) #define WITHIN_FREELIST(p) \ ((char*)(p) >= (char*)sh.freelist && (char*)(p) < (char*)&sh.freelist[sh.freelist_size]) typedef struct sh_list_st { struct sh_list_st *next; struct sh_list_st **p_next; } SH_LIST; typedef struct sh_st { char* map_result; size_t map_size; char *arena; int arena_size; char **freelist; int freelist_size; int minsize; unsigned char *bittable; unsigned char *bitmalloc; int bittable_size; /* size in bits */ } SH; static SH sh; static int sh_getlist(char *ptr) { int list = sh.freelist_size - 1; int bit = (sh.arena_size + ptr - sh.arena) / sh.minsize; for (; bit; bit >>= 1, list--) { if (TESTBIT(sh.bittable, bit)) break; OPENSSL_assert((bit & 1) == 0); } return list; } static int sh_testbit(char *ptr, int list, unsigned char *table) { int bit; OPENSSL_assert(list >= 0 && list < sh.freelist_size); OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0); bit = (1 << list) + ((ptr - sh.arena) / (sh.arena_size >> list)); OPENSSL_assert(bit > 0 && bit < sh.bittable_size); return TESTBIT(table, bit); } static void sh_clearbit(char *ptr, int list, unsigned char *table) { int bit; OPENSSL_assert(list >= 0 && list < sh.freelist_size); OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0); bit = (1 << list) + ((ptr - sh.arena) / (sh.arena_size >> list)); OPENSSL_assert(bit > 0 && bit < sh.bittable_size); OPENSSL_assert(TESTBIT(table, bit)); CLEARBIT(table, bit); } static void sh_setbit(char *ptr, int list, unsigned char *table) { int bit; OPENSSL_assert(list >= 0 && list < sh.freelist_size); OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0); bit = (1 << list) + ((ptr - sh.arena) / (sh.arena_size >> list)); OPENSSL_assert(bit > 0 && bit < sh.bittable_size); OPENSSL_assert(!TESTBIT(table, bit)); SETBIT(table, bit); } static void sh_add_to_list(char **list, char *ptr) { SH_LIST *temp; OPENSSL_assert(WITHIN_FREELIST(list)); OPENSSL_assert(WITHIN_ARENA(ptr)); temp = (SH_LIST *)ptr; temp->next = *(SH_LIST **)list; OPENSSL_assert(temp->next == NULL || WITHIN_ARENA(temp->next)); temp->p_next = (SH_LIST **)list; if (temp->next != NULL) { OPENSSL_assert((char **)temp->next->p_next == list); temp->next->p_next = &(temp->next); } *list = ptr; } static void sh_remove_from_list(char *ptr, char *list) { SH_LIST *temp, *temp2; temp = (SH_LIST *)ptr; if (temp->next != NULL) temp->next->p_next = temp->p_next; *temp->p_next = temp->next; if (temp->next == NULL) return; temp2 = temp->next; OPENSSL_assert(WITHIN_FREELIST(temp2->p_next) || WITHIN_ARENA(temp2->p_next)); } static int sh_init(size_t size, int minsize) { int i, ret; size_t pgsize; size_t aligned; memset(&sh, 0, sizeof sh); /* make sure size and minsize are powers of 2 */ OPENSSL_assert(size > 0); OPENSSL_assert((size & (size - 1)) == 0); OPENSSL_assert(minsize > 0); OPENSSL_assert((minsize & (minsize - 1)) == 0); if (size <= 0 || (size & (size - 1)) != 0) goto err; if (minsize <= 0 || (minsize & (minsize - 1)) != 0) goto err; sh.arena_size = size; sh.minsize = minsize; sh.bittable_size = (sh.arena_size / sh.minsize) * 2; sh.freelist_size = -1; for (i = sh.bittable_size; i; i >>= 1) sh.freelist_size++; sh.freelist = OPENSSL_malloc(sh.freelist_size * sizeof (char *)); OPENSSL_assert(sh.freelist != NULL); if (sh.freelist == NULL) goto err; memset(sh.freelist, 0, sh.freelist_size * sizeof (char *)); sh.bittable = OPENSSL_malloc(sh.bittable_size >> 3); OPENSSL_assert(sh.bittable != NULL); if (sh.bittable == NULL) goto err; memset(sh.bittable, 0, sh.bittable_size >> 3); sh.bitmalloc = OPENSSL_malloc(sh.bittable_size >> 3); OPENSSL_assert(sh.bitmalloc != NULL); if (sh.bitmalloc == NULL) goto err; memset(sh.bitmalloc, 0, sh.bittable_size >> 3); /* Allocate space for heap, and two extra pages as guards */ #ifdef _SC_PAGE_SIZE pgsize = (size_t)sysconf(_SC_PAGE_SIZE); #else pgsize = PAGE_SIZE; #endif sh.map_size = pgsize + sh.arena_size + pgsize; sh.map_result = mmap(NULL, sh.map_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0); OPENSSL_assert(sh.map_result != MAP_FAILED); if (sh.map_result == MAP_FAILED) goto err; sh.arena = (char *)(sh.map_result + pgsize); sh_setbit(sh.arena, 0, sh.bittable); sh_add_to_list(&sh.freelist[0], sh.arena); /* Now try to add guard pages and lock into memory. */ ret = 1; /* Starting guard is already aligned from mmap. */ if (mprotect(sh.map_result, pgsize, PROT_NONE) < 0) ret = 2; /* Ending guard page - need to round up to page boundary */ aligned = (pgsize + sh.arena_size + (pgsize - 1)) & ~(pgsize - 1); if (mprotect(sh.map_result + aligned, pgsize, PROT_NONE) < 0) ret = 2; if (mlock(sh.arena, sh.arena_size) < 0) ret = 2; #ifdef MADV_DONTDUMP if (madvise(sh.arena, sh.arena_size, MADV_DONTDUMP) < 0) ret = 2; #endif return ret; err: sh_done(); return 0; } static void sh_done() { OPENSSL_free(sh.freelist); OPENSSL_free(sh.bittable); OPENSSL_free(sh.bitmalloc); if (sh.map_result != NULL && sh.map_size) munmap(sh.map_result, sh.map_size); memset(&sh, 0, sizeof sh); } static int sh_allocated(const char *ptr) { return WITHIN_ARENA(ptr) ? 1 : 0; } static char *sh_find_my_buddy(char *ptr, int list) { int bit; char *chunk = NULL; bit = (1 << list) + (ptr - sh.arena) / (sh.arena_size >> list); bit ^= 1; if (TESTBIT(sh.bittable, bit) && !TESTBIT(sh.bitmalloc, bit)) chunk = sh.arena + ((bit & ((1 << list) - 1)) * (sh.arena_size >> list)); return chunk; } static char *sh_malloc(size_t size) { int list, slist; size_t i; char *chunk; list = sh.freelist_size - 1; for (i = sh.minsize; i < size; i <<= 1) list--; if (list < 0) return NULL; /* try to find a larger entry to split */ for (slist = list; slist >= 0; slist--) if (sh.freelist[slist] != NULL) break; if (slist < 0) return NULL; /* split larger entry */ while (slist != list) { char *temp = sh.freelist[slist]; /* remove from bigger list */ OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc)); sh_clearbit(temp, slist, sh.bittable); sh_remove_from_list(temp, sh.freelist[slist]); OPENSSL_assert(temp != sh.freelist[slist]); /* done with bigger list */ slist++; /* add to smaller list */ OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc)); sh_setbit(temp, slist, sh.bittable); sh_add_to_list(&sh.freelist[slist], temp); OPENSSL_assert(sh.freelist[slist] == temp); /* split in 2 */ temp += sh.arena_size >> slist; OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc)); sh_setbit(temp, slist, sh.bittable); sh_add_to_list(&sh.freelist[slist], temp); OPENSSL_assert(sh.freelist[slist] == temp); OPENSSL_assert(temp-(sh.arena_size >> slist) == sh_find_my_buddy(temp, slist)); } /* peel off memory to hand back */ chunk = sh.freelist[list]; OPENSSL_assert(sh_testbit(chunk, list, sh.bittable)); sh_setbit(chunk, list, sh.bitmalloc); sh_remove_from_list(chunk, sh.freelist[list]); OPENSSL_assert(WITHIN_ARENA(chunk)); return chunk; } static void sh_free(char *ptr) { int list; char *buddy; if (ptr == NULL) return; OPENSSL_assert(WITHIN_ARENA(ptr)); if (!WITHIN_ARENA(ptr)) return; list = sh_getlist(ptr); OPENSSL_assert(sh_testbit(ptr, list, sh.bittable)); sh_clearbit(ptr, list, sh.bitmalloc); sh_add_to_list(&sh.freelist[list], ptr); /* Try to coalesce two adjacent free areas. */ while ((buddy = sh_find_my_buddy(ptr, list)) != NULL) { OPENSSL_assert(ptr == sh_find_my_buddy(buddy, list)); OPENSSL_assert(ptr != NULL); OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc)); sh_clearbit(ptr, list, sh.bittable); sh_remove_from_list(ptr, sh.freelist[list]); OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc)); sh_clearbit(buddy, list, sh.bittable); sh_remove_from_list(buddy, sh.freelist[list]); list--; if (ptr > buddy) ptr = buddy; OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc)); sh_setbit(ptr, list, sh.bittable); sh_add_to_list(&sh.freelist[list], ptr); OPENSSL_assert(sh.freelist[list] == ptr); } } static int sh_actual_size(char *ptr) { int list; OPENSSL_assert(WITHIN_ARENA(ptr)); if (!WITHIN_ARENA(ptr)) return 0; list = sh_getlist(ptr); OPENSSL_assert(sh_testbit(ptr, list, sh.bittable)); return sh.arena_size / (1 << list); } #endif /* IMPLEMENTED */