/* ==================================================================== * Copyright (c) 2010 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== */ #include #include "modes_lcl.h" #include #ifndef MODES_DEBUG # ifndef NDEBUG # define NDEBUG # endif #endif #include #if defined(BSWAP4) && defined(STRICT_ALIGNMENT) /* redefine, because alignment is ensured */ # undef GETU32 # define GETU32(p) BSWAP4(*(const u32 *)(p)) # undef PUTU32 # define PUTU32(p,v) *(u32 *)(p) = BSWAP4(v) #endif #define PACK(s) ((size_t)(s)<<(sizeof(size_t)*8-16)) #define REDUCE1BIT(V) do { \ if (sizeof(size_t)==8) { \ u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \ V.lo = (V.hi<<63)|(V.lo>>1); \ V.hi = (V.hi>>1 )^T; \ } \ else { \ u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \ V.lo = (V.hi<<63)|(V.lo>>1); \ V.hi = (V.hi>>1 )^((u64)T<<32); \ } \ } while(0) /*- * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should * never be set to 8. 8 is effectively reserved for testing purposes. * TABLE_BITS>1 are lookup-table-driven implementations referred to as * "Shoup's" in GCM specification. In other words OpenSSL does not cover * whole spectrum of possible table driven implementations. Why? In * non-"Shoup's" case memory access pattern is segmented in such manner, * that it's trivial to see that cache timing information can reveal * fair portion of intermediate hash value. Given that ciphertext is * always available to attacker, it's possible for him to attempt to * deduce secret parameter H and if successful, tamper with messages * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's * not as trivial, but there is no reason to believe that it's resistant * to cache-timing attack. And the thing about "8-bit" implementation is * that it consumes 16 (sixteen) times more memory, 4KB per individual * key + 1KB shared. Well, on pros side it should be twice as fast as * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version * was observed to run ~75% faster, closer to 100% for commercial * compilers... Yet "4-bit" procedure is preferred, because it's * believed to provide better security-performance balance and adequate * all-round performance. "All-round" refers to things like: * * - shorter setup time effectively improves overall timing for * handling short messages; * - larger table allocation can become unbearable because of VM * subsystem penalties (for example on Windows large enough free * results in VM working set trimming, meaning that consequent * malloc would immediately incur working set expansion); * - larger table has larger cache footprint, which can affect * performance of other code paths (not necessarily even from same * thread in Hyper-Threading world); * * Value of 1 is not appropriate for performance reasons. */ #if TABLE_BITS==8 static void gcm_init_8bit(u128 Htable[256], u64 H[2]) { int i, j; u128 V; Htable[0].hi = 0; Htable[0].lo = 0; V.hi = H[0]; V.lo = H[1]; for (Htable[128] = V, i = 64; i > 0; i >>= 1) { REDUCE1BIT(V); Htable[i] = V; } for (i = 2; i < 256; i <<= 1) { u128 *Hi = Htable + i, H0 = *Hi; for (j = 1; j < i; ++j) { Hi[j].hi = H0.hi ^ Htable[j].hi; Hi[j].lo = H0.lo ^ Htable[j].lo; } } } static void gcm_gmult_8bit(u64 Xi[2], const u128 Htable[256]) { u128 Z = { 0, 0 }; const u8 *xi = (const u8 *)Xi + 15; size_t rem, n = *xi; const union { long one; char little; } is_endian = { 1 }; static const size_t rem_8bit[256] = { PACK(0x0000), PACK(0x01C2), PACK(0x0384), PACK(0x0246), PACK(0x0708), PACK(0x06CA), PACK(0x048C), PACK(0x054E), PACK(0x0E10), PACK(0x0FD2), PACK(0x0D94), PACK(0x0C56), PACK(0x0918), PACK(0x08DA), PACK(0x0A9C), PACK(0x0B5E), PACK(0x1C20), PACK(0x1DE2), PACK(0x1FA4), PACK(0x1E66), PACK(0x1B28), PACK(0x1AEA), PACK(0x18AC), PACK(0x196E), PACK(0x1230), PACK(0x13F2), PACK(0x11B4), PACK(0x1076), PACK(0x1538), PACK(0x14FA), PACK(0x16BC), PACK(0x177E), PACK(0x3840), PACK(0x3982), PACK(0x3BC4), PACK(0x3A06), PACK(0x3F48), PACK(0x3E8A), PACK(0x3CCC), PACK(0x3D0E), PACK(0x3650), PACK(0x3792), PACK(0x35D4), PACK(0x3416), PACK(0x3158), PACK(0x309A), PACK(0x32DC), PACK(0x331E), PACK(0x2460), PACK(0x25A2), PACK(0x27E4), PACK(0x2626), PACK(0x2368), PACK(0x22AA), PACK(0x20EC), PACK(0x212E), PACK(0x2A70), PACK(0x2BB2), PACK(0x29F4), PACK(0x2836), PACK(0x2D78), PACK(0x2CBA), PACK(0x2EFC), PACK(0x2F3E), PACK(0x7080), PACK(0x7142), PACK(0x7304), PACK(0x72C6), PACK(0x7788), PACK(0x764A), PACK(0x740C), PACK(0x75CE), PACK(0x7E90), PACK(0x7F52), PACK(0x7D14), PACK(0x7CD6), PACK(0x7998), PACK(0x785A), PACK(0x7A1C), PACK(0x7BDE), PACK(0x6CA0), PACK(0x6D62), PACK(0x6F24), PACK(0x6EE6), PACK(0x6BA8), PACK(0x6A6A), PACK(0x682C), PACK(0x69EE), PACK(0x62B0), PACK(0x6372), PACK(0x6134), PACK(0x60F6), PACK(0x65B8), PACK(0x647A), PACK(0x663C), PACK(0x67FE), PACK(0x48C0), PACK(0x4902), PACK(0x4B44), PACK(0x4A86), PACK(0x4FC8), PACK(0x4E0A), PACK(0x4C4C), PACK(0x4D8E), PACK(0x46D0), PACK(0x4712), PACK(0x4554), PACK(0x4496), PACK(0x41D8), PACK(0x401A), PACK(0x425C), PACK(0x439E), PACK(0x54E0), PACK(0x5522), PACK(0x5764), PACK(0x56A6), PACK(0x53E8), PACK(0x522A), PACK(0x506C), PACK(0x51AE), PACK(0x5AF0), PACK(0x5B32), PACK(0x5974), PACK(0x58B6), PACK(0x5DF8), PACK(0x5C3A), PACK(0x5E7C), PACK(0x5FBE), PACK(0xE100), PACK(0xE0C2), PACK(0xE284), PACK(0xE346), PACK(0xE608), PACK(0xE7CA), PACK(0xE58C), PACK(0xE44E), PACK(0xEF10), PACK(0xEED2), PACK(0xEC94), PACK(0xED56), PACK(0xE818), PACK(0xE9DA), PACK(0xEB9C), PACK(0xEA5E), PACK(0xFD20), PACK(0xFCE2), PACK(0xFEA4), PACK(0xFF66), PACK(0xFA28), PACK(0xFBEA), PACK(0xF9AC), PACK(0xF86E), PACK(0xF330), PACK(0xF2F2), PACK(0xF0B4), PACK(0xF176), PACK(0xF438), PACK(0xF5FA), PACK(0xF7BC), PACK(0xF67E), PACK(0xD940), PACK(0xD882), PACK(0xDAC4), PACK(0xDB06), PACK(0xDE48), PACK(0xDF8A), PACK(0xDDCC), PACK(0xDC0E), PACK(0xD750), PACK(0xD692), PACK(0xD4D4), PACK(0xD516), PACK(0xD058), PACK(0xD19A), PACK(0xD3DC), PACK(0xD21E), PACK(0xC560), PACK(0xC4A2), PACK(0xC6E4), PACK(0xC726), PACK(0xC268), PACK(0xC3AA), PACK(0xC1EC), PACK(0xC02E), PACK(0xCB70), PACK(0xCAB2), PACK(0xC8F4), PACK(0xC936), PACK(0xCC78), PACK(0xCDBA), PACK(0xCFFC), PACK(0xCE3E), PACK(0x9180), PACK(0x9042), PACK(0x9204), PACK(0x93C6), PACK(0x9688), PACK(0x974A), PACK(0x950C), PACK(0x94CE), PACK(0x9F90), PACK(0x9E52), PACK(0x9C14), PACK(0x9DD6), PACK(0x9898), PACK(0x995A), PACK(0x9B1C), PACK(0x9ADE), PACK(0x8DA0), PACK(0x8C62), PACK(0x8E24), PACK(0x8FE6), PACK(0x8AA8), PACK(0x8B6A), PACK(0x892C), PACK(0x88EE), PACK(0x83B0), PACK(0x8272), PACK(0x8034), PACK(0x81F6), PACK(0x84B8), PACK(0x857A), PACK(0x873C), PACK(0x86FE), PACK(0xA9C0), PACK(0xA802), PACK(0xAA44), PACK(0xAB86), PACK(0xAEC8), PACK(0xAF0A), PACK(0xAD4C), PACK(0xAC8E), PACK(0xA7D0), PACK(0xA612), PACK(0xA454), PACK(0xA596), PACK(0xA0D8), PACK(0xA11A), PACK(0xA35C), PACK(0xA29E), PACK(0xB5E0), PACK(0xB422), PACK(0xB664), PACK(0xB7A6), PACK(0xB2E8), PACK(0xB32A), PACK(0xB16C), PACK(0xB0AE), PACK(0xBBF0), PACK(0xBA32), PACK(0xB874), PACK(0xB9B6), PACK(0xBCF8), PACK(0xBD3A), PACK(0xBF7C), PACK(0xBEBE) }; while (1) { Z.hi ^= Htable[n].hi; Z.lo ^= Htable[n].lo; if ((u8 *)Xi == xi) break; n = *(--xi); rem = (size_t)Z.lo & 0xff; Z.lo = (Z.hi << 56) | (Z.lo >> 8); Z.hi = (Z.hi >> 8); if (sizeof(size_t) == 8) Z.hi ^= rem_8bit[rem]; else Z.hi ^= (u64)rem_8bit[rem] << 32; } if (is_endian.little) { # ifdef BSWAP8 Xi[0] = BSWAP8(Z.hi); Xi[1] = BSWAP8(Z.lo); # else u8 *p = (u8 *)Xi; u32 v; v = (u32)(Z.hi >> 32); PUTU32(p, v); v = (u32)(Z.hi); PUTU32(p + 4, v); v = (u32)(Z.lo >> 32); PUTU32(p + 8, v); v = (u32)(Z.lo); PUTU32(p + 12, v); # endif } else { Xi[0] = Z.hi; Xi[1] = Z.lo; } } # define GCM_MUL(ctx,Xi) gcm_gmult_8bit(ctx->Xi.u,ctx->Htable) #elif TABLE_BITS==4 static void gcm_init_4bit(u128 Htable[16], u64 H[2]) { u128 V; # if defined(OPENSSL_SMALL_FOOTPRINT) int i; # endif Htable[0].hi = 0; Htable[0].lo = 0; V.hi = H[0]; V.lo = H[1]; # if defined(OPENSSL_SMALL_FOOTPRINT) for (Htable[8] = V, i = 4; i > 0; i >>= 1) { REDUCE1BIT(V); Htable[i] = V; } for (i = 2; i < 16; i <<= 1) { u128 *Hi = Htable + i; int j; for (V = *Hi, j = 1; j < i; ++j) { Hi[j].hi = V.hi ^ Htable[j].hi; Hi[j].lo = V.lo ^ Htable[j].lo; } } # else Htable[8] = V; REDUCE1BIT(V); Htable[4] = V; REDUCE1BIT(V); Htable[2] = V; REDUCE1BIT(V); Htable[1] = V; Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo; V = Htable[4]; Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo; Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo; Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo; V = Htable[8]; Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo; Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo; Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo; Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo; Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo; Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo; Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo; # endif # if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm)) /* * ARM assembler expects specific dword order in Htable. */ { int j; const union { long one; char little; } is_endian = { 1 }; if (is_endian.little) for (j = 0; j < 16; ++j) { V = Htable[j]; Htable[j].hi = V.lo; Htable[j].lo = V.hi; } else for (j = 0; j < 16; ++j) { V = Htable[j]; Htable[j].hi = V.lo << 32 | V.lo >> 32; Htable[j].lo = V.hi << 32 | V.hi >> 32; } } # endif } # ifndef GHASH_ASM static const size_t rem_4bit[16] = { PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460), PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0), PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560), PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0) }; static void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]) { u128 Z; int cnt = 15; size_t rem, nlo, nhi; const union { long one; char little; } is_endian = { 1 }; nlo = ((const u8 *)Xi)[15]; nhi = nlo >> 4; nlo &= 0xf; Z.hi = Htable[nlo].hi; Z.lo = Htable[nlo].lo; while (1) { rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60) | (Z.lo >> 4); Z.hi = (Z.hi >> 4); if (sizeof(size_t) == 8) Z.hi ^= rem_4bit[rem]; else Z.hi ^= (u64)rem_4bit[rem] << 32; Z.hi ^= Htable[nhi].hi; Z.lo ^= Htable[nhi].lo; if (--cnt < 0) break; nlo = ((const u8 *)Xi)[cnt]; nhi = nlo >> 4; nlo &= 0xf; rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60) | (Z.lo >> 4); Z.hi = (Z.hi >> 4); if (sizeof(size_t) == 8) Z.hi ^= rem_4bit[rem]; else Z.hi ^= (u64)rem_4bit[rem] << 32; Z.hi ^= Htable[nlo].hi; Z.lo ^= Htable[nlo].lo; } if (is_endian.little) { # ifdef BSWAP8 Xi[0] = BSWAP8(Z.hi); Xi[1] = BSWAP8(Z.lo); # else u8 *p = (u8 *)Xi; u32 v; v = (u32)(Z.hi >> 32); PUTU32(p, v); v = (u32)(Z.hi); PUTU32(p + 4, v); v = (u32)(Z.lo >> 32); PUTU32(p + 8, v); v = (u32)(Z.lo); PUTU32(p + 12, v); # endif } else { Xi[0] = Z.hi; Xi[1] = Z.lo; } } # if !defined(OPENSSL_SMALL_FOOTPRINT) /* * Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for * details... Compiler-generated code doesn't seem to give any * performance improvement, at least not on x86[_64]. It's here * mostly as reference and a placeholder for possible future * non-trivial optimization[s]... */ static void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len) { u128 Z; int cnt; size_t rem, nlo, nhi; const union { long one; char little; } is_endian = { 1 }; # if 1 do { cnt = 15; nlo = ((const u8 *)Xi)[15]; nlo ^= inp[15]; nhi = nlo >> 4; nlo &= 0xf; Z.hi = Htable[nlo].hi; Z.lo = Htable[nlo].lo; while (1) { rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60) | (Z.lo >> 4); Z.hi = (Z.hi >> 4); if (sizeof(size_t) == 8) Z.hi ^= rem_4bit[rem]; else Z.hi ^= (u64)rem_4bit[rem] << 32; Z.hi ^= Htable[nhi].hi; Z.lo ^= Htable[nhi].lo; if (--cnt < 0) break; nlo = ((const u8 *)Xi)[cnt]; nlo ^= inp[cnt]; nhi = nlo >> 4; nlo &= 0xf; rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60) | (Z.lo >> 4); Z.hi = (Z.hi >> 4); if (sizeof(size_t) == 8) Z.hi ^= rem_4bit[rem]; else Z.hi ^= (u64)rem_4bit[rem] << 32; Z.hi ^= Htable[nlo].hi; Z.lo ^= Htable[nlo].lo; } # else /* * Extra 256+16 bytes per-key plus 512 bytes shared tables * [should] give ~50% improvement... One could have PACK()-ed * the rem_8bit even here, but the priority is to minimize * cache footprint... */ u128 Hshr4[16]; /* Htable shifted right by 4 bits */ u8 Hshl4[16]; /* Htable shifted left by 4 bits */ static const unsigned short rem_8bit[256] = { 0x0000, 0x01C2, 0x0384, 0x0246, 0x0708, 0x06CA, 0x048C, 0x054E, 0x0E10, 0x0FD2, 0x0D94, 0x0C56, 0x0918, 0x08DA, 0x0A9C, 0x0B5E, 0x1C20, 0x1DE2, 0x1FA4, 0x1E66, 0x1B28, 0x1AEA, 0x18AC, 0x196E, 0x1230, 0x13F2, 0x11B4, 0x1076, 0x1538, 0x14FA, 0x16BC, 0x177E, 0x3840, 0x3982, 0x3BC4, 0x3A06, 0x3F48, 0x3E8A, 0x3CCC, 0x3D0E, 0x3650, 0x3792, 0x35D4, 0x3416, 0x3158, 0x309A, 0x32DC, 0x331E, 0x2460, 0x25A2, 0x27E4, 0x2626, 0x2368, 0x22AA, 0x20EC, 0x212E, 0x2A70, 0x2BB2, 0x29F4, 0x2836, 0x2D78, 0x2CBA, 0x2EFC, 0x2F3E, 0x7080, 0x7142, 0x7304, 0x72C6, 0x7788, 0x764A, 0x740C, 0x75CE, 0x7E90, 0x7F52, 0x7D14, 0x7CD6, 0x7998, 0x785A, 0x7A1C, 0x7BDE, 0x6CA0, 0x6D62, 0x6F24, 0x6EE6, 0x6BA8, 0x6A6A, 0x682C, 0x69EE, 0x62B0, 0x6372, 0x6134, 0x60F6, 0x65B8, 0x647A, 0x663C, 0x67FE, 0x48C0, 0x4902, 0x4B44, 0x4A86, 0x4FC8, 0x4E0A, 0x4C4C, 0x4D8E, 0x46D0, 0x4712, 0x4554, 0x4496, 0x41D8, 0x401A, 0x425C, 0x439E, 0x54E0, 0x5522, 0x5764, 0x56A6, 0x53E8, 0x522A, 0x506C, 0x51AE, 0x5AF0, 0x5B32, 0x5974, 0x58B6, 0x5DF8, 0x5C3A, 0x5E7C, 0x5FBE, 0xE100, 0xE0C2, 0xE284, 0xE346, 0xE608, 0xE7CA, 0xE58C, 0xE44E, 0xEF10, 0xEED2, 0xEC94, 0xED56, 0xE818, 0xE9DA, 0xEB9C, 0xEA5E, 0xFD20, 0xFCE2, 0xFEA4, 0xFF66, 0xFA28, 0xFBEA, 0xF9AC, 0xF86E, 0xF330, 0xF2F2, 0xF0B4, 0xF176, 0xF438, 0xF5FA, 0xF7BC, 0xF67E, 0xD940, 0xD882, 0xDAC4, 0xDB06, 0xDE48, 0xDF8A, 0xDDCC, 0xDC0E, 0xD750, 0xD692, 0xD4D4, 0xD516, 0xD058, 0xD19A, 0xD3DC, 0xD21E, 0xC560, 0xC4A2, 0xC6E4, 0xC726, 0xC268, 0xC3AA, 0xC1EC, 0xC02E, 0xCB70, 0xCAB2, 0xC8F4, 0xC936, 0xCC78, 0xCDBA, 0xCFFC, 0xCE3E, 0x9180, 0x9042, 0x9204, 0x93C6, 0x9688, 0x974A, 0x950C, 0x94CE, 0x9F90, 0x9E52, 0x9C14, 0x9DD6, 0x9898, 0x995A, 0x9B1C, 0x9ADE, 0x8DA0, 0x8C62, 0x8E24, 0x8FE6, 0x8AA8, 0x8B6A, 0x892C, 0x88EE, 0x83B0, 0x8272, 0x8034, 0x81F6, 0x84B8, 0x857A, 0x873C, 0x86FE, 0xA9C0, 0xA802, 0xAA44, 0xAB86, 0xAEC8, 0xAF0A, 0xAD4C, 0xAC8E, 0xA7D0, 0xA612, 0xA454, 0xA596, 0xA0D8, 0xA11A, 0xA35C, 0xA29E, 0xB5E0, 0xB422, 0xB664, 0xB7A6, 0xB2E8, 0xB32A, 0xB16C, 0xB0AE, 0xBBF0, 0xBA32, 0xB874, 0xB9B6, 0xBCF8, 0xBD3A, 0xBF7C, 0xBEBE }; /* * This pre-processing phase slows down procedure by approximately * same time as it makes each loop spin faster. In other words * single block performance is approximately same as straightforward * "4-bit" implementation, and then it goes only faster... */ for (cnt = 0; cnt < 16; ++cnt) { Z.hi = Htable[cnt].hi; Z.lo = Htable[cnt].lo; Hshr4[cnt].lo = (Z.hi << 60) | (Z.lo >> 4); Hshr4[cnt].hi = (Z.hi >> 4); Hshl4[cnt] = (u8)(Z.lo << 4); } do { for (Z.lo = 0, Z.hi = 0, cnt = 15; cnt; --cnt) { nlo = ((const u8 *)Xi)[cnt]; nlo ^= inp[cnt]; nhi = nlo >> 4; nlo &= 0xf; Z.hi ^= Htable[nlo].hi; Z.lo ^= Htable[nlo].lo; rem = (size_t)Z.lo & 0xff; Z.lo = (Z.hi << 56) | (Z.lo >> 8); Z.hi = (Z.hi >> 8); Z.hi ^= Hshr4[nhi].hi; Z.lo ^= Hshr4[nhi].lo; Z.hi ^= (u64)rem_8bit[rem ^ Hshl4[nhi]] << 48; } nlo = ((const u8 *)Xi)[0]; nlo ^= inp[0]; nhi = nlo >> 4; nlo &= 0xf; Z.hi ^= Htable[nlo].hi; Z.lo ^= Htable[nlo].lo; rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60) | (Z.lo >> 4); Z.hi = (Z.hi >> 4); Z.hi ^= Htable[nhi].hi; Z.lo ^= Htable[nhi].lo; Z.hi ^= ((u64)rem_8bit[rem << 4]) << 48; # endif if (is_endian.little) { # ifdef BSWAP8 Xi[0] = BSWAP8(Z.hi); Xi[1] = BSWAP8(Z.lo); # else u8 *p = (u8 *)Xi; u32 v; v = (u32)(Z.hi >> 32); PUTU32(p, v); v = (u32)(Z.hi); PUTU32(p + 4, v); v = (u32)(Z.lo >> 32); PUTU32(p + 8, v); v = (u32)(Z.lo); PUTU32(p + 12, v); # endif } else { Xi[0] = Z.hi; Xi[1] = Z.lo; } } while (inp += 16, len -= 16); } # endif # else void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # endif # define GCM_MUL(ctx,Xi) gcm_gmult_4bit(ctx->Xi.u,ctx->Htable) # if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT) # define GHASH(ctx,in,len) gcm_ghash_4bit((ctx)->Xi.u,(ctx)->Htable,in,len) /* * GHASH_CHUNK is "stride parameter" missioned to mitigate cache trashing * effect. In other words idea is to hash data while it's still in L1 cache * after encryption pass... */ # define GHASH_CHUNK (3*1024) # endif #else /* TABLE_BITS */ static void gcm_gmult_1bit(u64 Xi[2], const u64 H[2]) { u128 V, Z = { 0, 0 }; long X; int i, j; const long *xi = (const long *)Xi; const union { long one; char little; } is_endian = { 1 }; V.hi = H[0]; /* H is in host byte order, no byte swapping */ V.lo = H[1]; for (j = 0; j < 16 / sizeof(long); ++j) { if (is_endian.little) { if (sizeof(long) == 8) { # ifdef BSWAP8 X = (long)(BSWAP8(xi[j])); # else const u8 *p = (const u8 *)(xi + j); X = (long)((u64)GETU32(p) << 32 | GETU32(p + 4)); # endif } else { const u8 *p = (const u8 *)(xi + j); X = (long)GETU32(p); } } else X = xi[j]; for (i = 0; i < 8 * sizeof(long); ++i, X <<= 1) { u64 M = (u64)(X >> (8 * sizeof(long) - 1)); Z.hi ^= V.hi & M; Z.lo ^= V.lo & M; REDUCE1BIT(V); } } if (is_endian.little) { # ifdef BSWAP8 Xi[0] = BSWAP8(Z.hi); Xi[1] = BSWAP8(Z.lo); # else u8 *p = (u8 *)Xi; u32 v; v = (u32)(Z.hi >> 32); PUTU32(p, v); v = (u32)(Z.hi); PUTU32(p + 4, v); v = (u32)(Z.lo >> 32); PUTU32(p + 8, v); v = (u32)(Z.lo); PUTU32(p + 12, v); # endif } else { Xi[0] = Z.hi; Xi[1] = Z.lo; } } # define GCM_MUL(ctx,Xi) gcm_gmult_1bit(ctx->Xi.u,ctx->H.u) #endif #if TABLE_BITS==4 && (defined(GHASH_ASM) || defined(OPENSSL_CPUID_OBJ)) # if !defined(I386_ONLY) && \ (defined(__i386) || defined(__i386__) || \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64)) # define GHASH_ASM_X86_OR_64 # define GCM_FUNCREF_4BIT extern unsigned int OPENSSL_ia32cap_P[2]; void gcm_init_clmul(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_clmul(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_clmul(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # if defined(__i386) || defined(__i386__) || defined(_M_IX86) # define gcm_init_avx gcm_init_clmul # define gcm_gmult_avx gcm_gmult_clmul # define gcm_ghash_avx gcm_ghash_clmul # else void gcm_init_avx(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_avx(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # endif # if defined(__i386) || defined(__i386__) || defined(_M_IX86) # define GHASH_ASM_X86 void gcm_gmult_4bit_mmx(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_4bit_mmx(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); void gcm_gmult_4bit_x86(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_4bit_x86(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # endif # elif defined(__arm__) || defined(__arm) || defined(__aarch64__) # include "arm_arch.h" # if __ARM_MAX_ARCH__>=7 # define GHASH_ASM_ARM # define GCM_FUNCREF_4BIT # define PMULL_CAPABLE (OPENSSL_armcap_P & ARMV8_PMULL) # if defined(__arm__) || defined(__arm) # define NEON_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON) # endif void gcm_init_neon(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_neon(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_neon(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); void gcm_init_v8(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_v8(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_v8(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # endif # elif defined(__sparc__) || defined(__sparc) # include "sparc_arch.h" # define GHASH_ASM_SPARC # define GCM_FUNCREF_4BIT extern unsigned int OPENSSL_sparcv9cap_P[]; void gcm_init_vis3(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_vis3(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_vis3(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # elif defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC)) # include "ppc_arch.h" # define GHASH_ASM_PPC # define GCM_FUNCREF_4BIT void gcm_init_p8(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_p8(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_p8(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # endif #endif #ifdef GCM_FUNCREF_4BIT # undef GCM_MUL # define GCM_MUL(ctx,Xi) (*gcm_gmult_p)(ctx->Xi.u,ctx->Htable) # ifdef GHASH # undef GHASH # define GHASH(ctx,in,len) (*gcm_ghash_p)(ctx->Xi.u,ctx->Htable,in,len) # endif #endif void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, void *key, block128_f block) { const union { long one; char little; } is_endian = { 1 }; memset(ctx, 0, sizeof(*ctx)); ctx->block = block; ctx->key = key; (*block) (ctx->H.c, ctx->H.c, key); if (is_endian.little) { /* H is stored in host byte order */ #ifdef BSWAP8 ctx->H.u[0] = BSWAP8(ctx->H.u[0]); ctx->H.u[1] = BSWAP8(ctx->H.u[1]); #else u8 *p = ctx->H.c; u64 hi, lo; hi = (u64)GETU32(p) << 32 | GETU32(p + 4); lo = (u64)GETU32(p + 8) << 32 | GETU32(p + 12); ctx->H.u[0] = hi; ctx->H.u[1] = lo; #endif } #if TABLE_BITS==8 gcm_init_8bit(ctx->Htable, ctx->H.u); #elif TABLE_BITS==4 # if defined(GHASH) # define CTX__GHASH(f) (ctx->ghash = (f)) # else # define CTX__GHASH(f) (ctx->ghash = NULL) # endif # if defined(GHASH_ASM_X86_OR_64) # if !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2) if (OPENSSL_ia32cap_P[0] & (1 << 24) && /* check FXSR bit */ OPENSSL_ia32cap_P[1] & (1 << 1)) { /* check PCLMULQDQ bit */ if (((OPENSSL_ia32cap_P[1] >> 22) & 0x41) == 0x41) { /* AVX+MOVBE */ gcm_init_avx(ctx->Htable, ctx->H.u); ctx->gmult = gcm_gmult_avx; CTX__GHASH(gcm_ghash_avx); } else { gcm_init_clmul(ctx->Htable, ctx->H.u); ctx->gmult = gcm_gmult_clmul; CTX__GHASH(gcm_ghash_clmul); } return; } # endif gcm_init_4bit(ctx->Htable, ctx->H.u); # if defined(GHASH_ASM_X86) /* x86 only */ # if defined(OPENSSL_IA32_SSE2) if (OPENSSL_ia32cap_P[0] & (1 << 25)) { /* check SSE bit */ # else if (OPENSSL_ia32cap_P[0] & (1 << 23)) { /* check MMX bit */ # endif ctx->gmult = gcm_gmult_4bit_mmx; CTX__GHASH(gcm_ghash_4bit_mmx); } else { ctx->gmult = gcm_gmult_4bit_x86; CTX__GHASH(gcm_ghash_4bit_x86); } # else ctx->gmult = gcm_gmult_4bit; CTX__GHASH(gcm_ghash_4bit); # endif # elif defined(GHASH_ASM_ARM) # ifdef PMULL_CAPABLE if (PMULL_CAPABLE) { gcm_init_v8(ctx->Htable, ctx->H.u); ctx->gmult = gcm_gmult_v8; CTX__GHASH(gcm_ghash_v8); } else # endif # ifdef NEON_CAPABLE if (NEON_CAPABLE) { gcm_init_neon(ctx->Htable, ctx->H.u); ctx->gmult = gcm_gmult_neon; CTX__GHASH(gcm_ghash_neon); } else # endif { gcm_init_4bit(ctx->Htable, ctx->H.u); ctx->gmult = gcm_gmult_4bit; CTX__GHASH(gcm_ghash_4bit); } # elif defined(GHASH_ASM_SPARC) if (OPENSSL_sparcv9cap_P[0] & SPARCV9_VIS3) { gcm_init_vis3(ctx->Htable, ctx->H.u); ctx->gmult = gcm_gmult_vis3; CTX__GHASH(gcm_ghash_vis3); } else { gcm_init_4bit(ctx->Htable, ctx->H.u); ctx->gmult = gcm_gmult_4bit; CTX__GHASH(gcm_ghash_4bit); } # elif defined(GHASH_ASM_PPC) if (OPENSSL_ppccap_P & PPC_CRYPTO207) { gcm_init_p8(ctx->Htable, ctx->H.u); ctx->gmult = gcm_gmult_p8; CTX__GHASH(gcm_ghash_p8); } else { gcm_init_4bit(ctx->Htable, ctx->H.u); ctx->gmult = gcm_gmult_4bit; CTX__GHASH(gcm_ghash_4bit); } # else gcm_init_4bit(ctx->Htable, ctx->H.u); # endif # undef CTX__GHASH #endif } void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const unsigned char *iv, size_t len) { const union { long one; char little; } is_endian = { 1 }; unsigned int ctr; #ifdef GCM_FUNCREF_4BIT void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; #endif ctx->Yi.u[0] = 0; ctx->Yi.u[1] = 0; ctx->Xi.u[0] = 0; ctx->Xi.u[1] = 0; ctx->len.u[0] = 0; /* AAD length */ ctx->len.u[1] = 0; /* message length */ ctx->ares = 0; ctx->mres = 0; if (len == 12) { memcpy(ctx->Yi.c, iv, 12); ctx->Yi.c[15] = 1; ctr = 1; } else { size_t i; u64 len0 = len; while (len >= 16) { for (i = 0; i < 16; ++i) ctx->Yi.c[i] ^= iv[i]; GCM_MUL(ctx, Yi); iv += 16; len -= 16; } if (len) { for (i = 0; i < len; ++i) ctx->Yi.c[i] ^= iv[i]; GCM_MUL(ctx, Yi); } len0 <<= 3; if (is_endian.little) { #ifdef BSWAP8 ctx->Yi.u[1] ^= BSWAP8(len0); #else ctx->Yi.c[8] ^= (u8)(len0 >> 56); ctx->Yi.c[9] ^= (u8)(len0 >> 48); ctx->Yi.c[10] ^= (u8)(len0 >> 40); ctx->Yi.c[11] ^= (u8)(len0 >> 32); ctx->Yi.c[12] ^= (u8)(len0 >> 24); ctx->Yi.c[13] ^= (u8)(len0 >> 16); ctx->Yi.c[14] ^= (u8)(len0 >> 8); ctx->Yi.c[15] ^= (u8)(len0); #endif } else ctx->Yi.u[1] ^= len0; GCM_MUL(ctx, Yi); if (is_endian.little) #ifdef BSWAP4 ctr = BSWAP4(ctx->Yi.d[3]); #else ctr = GETU32(ctx->Yi.c + 12); #endif else ctr = ctx->Yi.d[3]; } (*ctx->block) (ctx->Yi.c, ctx->EK0.c, ctx->key); ++ctr; if (is_endian.little) #ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); #else PUTU32(ctx->Yi.c + 12, ctr); #endif else ctx->Yi.d[3] = ctr; } int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const unsigned char *aad, size_t len) { size_t i; unsigned int n; u64 alen = ctx->len.u[0]; #ifdef GCM_FUNCREF_4BIT void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; # ifdef GHASH void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len) = ctx->ghash; # endif #endif if (ctx->len.u[1]) return -2; alen += len; if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len)) return -1; ctx->len.u[0] = alen; n = ctx->ares; if (n) { while (n && len) { ctx->Xi.c[n] ^= *(aad++); --len; n = (n + 1) % 16; } if (n == 0) GCM_MUL(ctx, Xi); else { ctx->ares = n; return 0; } } #ifdef GHASH if ((i = (len & (size_t)-16))) { GHASH(ctx, aad, i); aad += i; len -= i; } #else while (len >= 16) { for (i = 0; i < 16; ++i) ctx->Xi.c[i] ^= aad[i]; GCM_MUL(ctx, Xi); aad += 16; len -= 16; } #endif if (len) { n = (unsigned int)len; for (i = 0; i < len; ++i) ctx->Xi.c[i] ^= aad[i]; } ctx->ares = n; return 0; } int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len) { const union { long one; char little; } is_endian = { 1 }; unsigned int n, ctr; size_t i; u64 mlen = ctx->len.u[1]; block128_f block = ctx->block; void *key = ctx->key; #ifdef GCM_FUNCREF_4BIT void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; # if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len) = ctx->ghash; # endif #endif mlen += len; if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) return -1; ctx->len.u[1] = mlen; if (ctx->ares) { /* First call to encrypt finalizes GHASH(AAD) */ GCM_MUL(ctx, Xi); ctx->ares = 0; } if (is_endian.little) #ifdef BSWAP4 ctr = BSWAP4(ctx->Yi.d[3]); #else ctr = GETU32(ctx->Yi.c + 12); #endif else ctr = ctx->Yi.d[3]; n = ctx->mres; #if !defined(OPENSSL_SMALL_FOOTPRINT) if (16 % sizeof(size_t) == 0) { /* always true actually */ do { if (n) { while (n && len) { ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) GCM_MUL(ctx, Xi); else { ctx->mres = n; return 0; } } # if defined(STRICT_ALIGNMENT) if (((size_t)in | (size_t)out) % sizeof(size_t) != 0) break; # endif # if defined(GHASH) # if defined(GHASH_CHUNK) while (len >= GHASH_CHUNK) { size_t j = GHASH_CHUNK; while (j) { size_t *out_t = (size_t *)out; const size_t *in_t = (const size_t *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) out_t[i] = in_t[i] ^ ctx->EKi.t[i]; out += 16; in += 16; j -= 16; } GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK); len -= GHASH_CHUNK; } # endif if ((i = (len & (size_t)-16))) { size_t j = i; while (len >= 16) { size_t *out_t = (size_t *)out; const size_t *in_t = (const size_t *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) out_t[i] = in_t[i] ^ ctx->EKi.t[i]; out += 16; in += 16; len -= 16; } GHASH(ctx, out - j, j); } # else while (len >= 16) { size_t *out_t = (size_t *)out; const size_t *in_t = (const size_t *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) ctx->Xi.t[i] ^= out_t[i] = in_t[i] ^ ctx->EKi.t[i]; GCM_MUL(ctx, Xi); out += 16; in += 16; len -= 16; } # endif if (len) { (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; while (len--) { ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; ++n; } } ctx->mres = n; return 0; } while (0); } #endif for (i = 0; i < len; ++i) { if (n == 0) { (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) #ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); #else PUTU32(ctx->Yi.c + 12, ctr); #endif else ctx->Yi.d[3] = ctr; } ctx->Xi.c[n] ^= out[i] = in[i] ^ ctx->EKi.c[n]; n = (n + 1) % 16; if (n == 0) GCM_MUL(ctx, Xi); } ctx->mres = n; return 0; } int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len) { const union { long one; char little; } is_endian = { 1 }; unsigned int n, ctr; size_t i; u64 mlen = ctx->len.u[1]; block128_f block = ctx->block; void *key = ctx->key; #ifdef GCM_FUNCREF_4BIT void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; # if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len) = ctx->ghash; # endif #endif mlen += len; if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) return -1; ctx->len.u[1] = mlen; if (ctx->ares) { /* First call to decrypt finalizes GHASH(AAD) */ GCM_MUL(ctx, Xi); ctx->ares = 0; } if (is_endian.little) #ifdef BSWAP4 ctr = BSWAP4(ctx->Yi.d[3]); #else ctr = GETU32(ctx->Yi.c + 12); #endif else ctr = ctx->Yi.d[3]; n = ctx->mres; #if !defined(OPENSSL_SMALL_FOOTPRINT) if (16 % sizeof(size_t) == 0) { /* always true actually */ do { if (n) { while (n && len) { u8 c = *(in++); *(out++) = c ^ ctx->EKi.c[n]; ctx->Xi.c[n] ^= c; --len; n = (n + 1) % 16; } if (n == 0) GCM_MUL(ctx, Xi); else { ctx->mres = n; return 0; } } # if defined(STRICT_ALIGNMENT) if (((size_t)in | (size_t)out) % sizeof(size_t) != 0) break; # endif # if defined(GHASH) # if defined(GHASH_CHUNK) while (len >= GHASH_CHUNK) { size_t j = GHASH_CHUNK; GHASH(ctx, in, GHASH_CHUNK); while (j) { size_t *out_t = (size_t *)out; const size_t *in_t = (const size_t *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) out_t[i] = in_t[i] ^ ctx->EKi.t[i]; out += 16; in += 16; j -= 16; } len -= GHASH_CHUNK; } # endif if ((i = (len & (size_t)-16))) { GHASH(ctx, in, i); while (len >= 16) { size_t *out_t = (size_t *)out; const size_t *in_t = (const size_t *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) out_t[i] = in_t[i] ^ ctx->EKi.t[i]; out += 16; in += 16; len -= 16; } } # else while (len >= 16) { size_t *out_t = (size_t *)out; const size_t *in_t = (const size_t *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) { size_t c = in[i]; out[i] = c ^ ctx->EKi.t[i]; ctx->Xi.t[i] ^= c; } GCM_MUL(ctx, Xi); out += 16; in += 16; len -= 16; } # endif if (len) { (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; while (len--) { u8 c = in[n]; ctx->Xi.c[n] ^= c; out[n] = c ^ ctx->EKi.c[n]; ++n; } } ctx->mres = n; return 0; } while (0); } #endif for (i = 0; i < len; ++i) { u8 c; if (n == 0) { (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) #ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); #else PUTU32(ctx->Yi.c + 12, ctr); #endif else ctx->Yi.d[3] = ctr; } c = in[i]; out[i] = c ^ ctx->EKi.c[n]; ctx->Xi.c[n] ^= c; n = (n + 1) % 16; if (n == 0) GCM_MUL(ctx, Xi); } ctx->mres = n; return 0; } int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len, ctr128_f stream) { #if defined(OPENSSL_SMALL_FOOTPRINT) return CRYPTO_gcm128_encrypt(ctx, in, out, len); #else const union { long one; char little; } is_endian = { 1 }; unsigned int n, ctr; size_t i; u64 mlen = ctx->len.u[1]; void *key = ctx->key; # ifdef GCM_FUNCREF_4BIT void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; # ifdef GHASH void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len) = ctx->ghash; # endif # endif mlen += len; if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) return -1; ctx->len.u[1] = mlen; if (ctx->ares) { /* First call to encrypt finalizes GHASH(AAD) */ GCM_MUL(ctx, Xi); ctx->ares = 0; } if (is_endian.little) # ifdef BSWAP4 ctr = BSWAP4(ctx->Yi.d[3]); # else ctr = GETU32(ctx->Yi.c + 12); # endif else ctr = ctx->Yi.d[3]; n = ctx->mres; if (n) { while (n && len) { ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) GCM_MUL(ctx, Xi); else { ctx->mres = n; return 0; } } # if defined(GHASH) && defined(GHASH_CHUNK) while (len >= GHASH_CHUNK) { (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); ctr += GHASH_CHUNK / 16; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; GHASH(ctx, out, GHASH_CHUNK); out += GHASH_CHUNK; in += GHASH_CHUNK; len -= GHASH_CHUNK; } # endif if ((i = (len & (size_t)-16))) { size_t j = i / 16; (*stream) (in, out, j, key, ctx->Yi.c); ctr += (unsigned int)j; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; in += i; len -= i; # if defined(GHASH) GHASH(ctx, out, i); out += i; # else while (j--) { for (i = 0; i < 16; ++i) ctx->Xi.c[i] ^= out[i]; GCM_MUL(ctx, Xi); out += 16; } # endif } if (len) { (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; while (len--) { ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; ++n; } } ctx->mres = n; return 0; #endif } int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len, ctr128_f stream) { #if defined(OPENSSL_SMALL_FOOTPRINT) return CRYPTO_gcm128_decrypt(ctx, in, out, len); #else const union { long one; char little; } is_endian = { 1 }; unsigned int n, ctr; size_t i; u64 mlen = ctx->len.u[1]; void *key = ctx->key; # ifdef GCM_FUNCREF_4BIT void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; # ifdef GHASH void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len) = ctx->ghash; # endif # endif mlen += len; if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) return -1; ctx->len.u[1] = mlen; if (ctx->ares) { /* First call to decrypt finalizes GHASH(AAD) */ GCM_MUL(ctx, Xi); ctx->ares = 0; } if (is_endian.little) # ifdef BSWAP4 ctr = BSWAP4(ctx->Yi.d[3]); # else ctr = GETU32(ctx->Yi.c + 12); # endif else ctr = ctx->Yi.d[3]; n = ctx->mres; if (n) { while (n && len) { u8 c = *(in++); *(out++) = c ^ ctx->EKi.c[n]; ctx->Xi.c[n] ^= c; --len; n = (n + 1) % 16; } if (n == 0) GCM_MUL(ctx, Xi); else { ctx->mres = n; return 0; } } # if defined(GHASH) && defined(GHASH_CHUNK) while (len >= GHASH_CHUNK) { GHASH(ctx, in, GHASH_CHUNK); (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); ctr += GHASH_CHUNK / 16; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; out += GHASH_CHUNK; in += GHASH_CHUNK; len -= GHASH_CHUNK; } # endif if ((i = (len & (size_t)-16))) { size_t j = i / 16; # if defined(GHASH) GHASH(ctx, in, i); # else while (j--) { size_t k; for (k = 0; k < 16; ++k) ctx->Xi.c[k] ^= in[k]; GCM_MUL(ctx, Xi); in += 16; } j = i / 16; in -= i; # endif (*stream) (in, out, j, key, ctx->Yi.c); ctr += (unsigned int)j; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; out += i; in += i; len -= i; } if (len) { (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (is_endian.little) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; while (len--) { u8 c = in[n]; ctx->Xi.c[n] ^= c; out[n] = c ^ ctx->EKi.c[n]; ++n; } } ctx->mres = n; return 0; #endif } int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const unsigned char *tag, size_t len) { const union { long one; char little; } is_endian = { 1 }; u64 alen = ctx->len.u[0] << 3; u64 clen = ctx->len.u[1] << 3; #ifdef GCM_FUNCREF_4BIT void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; #endif if (ctx->mres || ctx->ares) GCM_MUL(ctx, Xi); if (is_endian.little) { #ifdef BSWAP8 alen = BSWAP8(alen); clen = BSWAP8(clen); #else u8 *p = ctx->len.c; ctx->len.u[0] = alen; ctx->len.u[1] = clen; alen = (u64)GETU32(p) << 32 | GETU32(p + 4); clen = (u64)GETU32(p + 8) << 32 | GETU32(p + 12); #endif } ctx->Xi.u[0] ^= alen; ctx->Xi.u[1] ^= clen; GCM_MUL(ctx, Xi); ctx->Xi.u[0] ^= ctx->EK0.u[0]; ctx->Xi.u[1] ^= ctx->EK0.u[1]; if (tag && len <= sizeof(ctx->Xi)) return memcmp(ctx->Xi.c, tag, len); else return -1; } void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) { CRYPTO_gcm128_finish(ctx, NULL, 0); memcpy(tag, ctx->Xi.c, len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c)); } GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block) { GCM128_CONTEXT *ret; if ((ret = OPENSSL_malloc(sizeof(GCM128_CONTEXT)))) CRYPTO_gcm128_init(ret, key, block); return ret; } void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx) { OPENSSL_clear_free(ctx, sizeof(*ctx)); } #if defined(SELFTEST) # include # include /* Test Case 1 */ static const u8 K1[16], *P1 = NULL, *A1 = NULL, IV1[12], *C1 = NULL; static const u8 T1[] = { 0x58, 0xe2, 0xfc, 0xce, 0xfa, 0x7e, 0x30, 0x61, 0x36, 0x7f, 0x1d, 0x57, 0xa4, 0xe7, 0x45, 0x5a }; /* Test Case 2 */ # define K2 K1 # define A2 A1 # define IV2 IV1 static const u8 P2[16]; static const u8 C2[] = { 0x03, 0x88, 0xda, 0xce, 0x60, 0xb6, 0xa3, 0x92, 0xf3, 0x28, 0xc2, 0xb9, 0x71, 0xb2, 0xfe, 0x78 }; static const u8 T2[] = { 0xab, 0x6e, 0x47, 0xd4, 0x2c, 0xec, 0x13, 0xbd, 0xf5, 0x3a, 0x67, 0xb2, 0x12, 0x57, 0xbd, 0xdf }; /* Test Case 3 */ # define A3 A2 static const u8 K3[] = { 0xfe, 0xff, 0xe9, 0x92, 0x86, 0x65, 0x73, 0x1c, 0x6d, 0x6a, 0x8f, 0x94, 0x67, 0x30, 0x83, 0x08 }; static const u8 P3[] = { 0xd9, 0x31, 0x32, 0x25, 0xf8, 0x84, 0x06, 0xe5, 0xa5, 0x59, 0x09, 0xc5, 0xaf, 0xf5, 0x26, 0x9a, 0x86, 0xa7, 0xa9, 0x53, 0x15, 0x34, 0xf7, 0xda, 0x2e, 0x4c, 0x30, 0x3d, 0x8a, 0x31, 0x8a, 0x72, 0x1c, 0x3c, 0x0c, 0x95, 0x95, 0x68, 0x09, 0x53, 0x2f, 0xcf, 0x0e, 0x24, 0x49, 0xa6, 0xb5, 0x25, 0xb1, 0x6a, 0xed, 0xf5, 0xaa, 0x0d, 0xe6, 0x57, 0xba, 0x63, 0x7b, 0x39, 0x1a, 0xaf, 0xd2, 0x55 }; static const u8 IV3[] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88 }; static const u8 C3[] = { 0x42, 0x83, 0x1e, 0xc2, 0x21, 0x77, 0x74, 0x24, 0x4b, 0x72, 0x21, 0xb7, 0x84, 0xd0, 0xd4, 0x9c, 0xe3, 0xaa, 0x21, 0x2f, 0x2c, 0x02, 0xa4, 0xe0, 0x35, 0xc1, 0x7e, 0x23, 0x29, 0xac, 0xa1, 0x2e, 0x21, 0xd5, 0x14, 0xb2, 0x54, 0x66, 0x93, 0x1c, 0x7d, 0x8f, 0x6a, 0x5a, 0xac, 0x84, 0xaa, 0x05, 0x1b, 0xa3, 0x0b, 0x39, 0x6a, 0x0a, 0xac, 0x97, 0x3d, 0x58, 0xe0, 0x91, 0x47, 0x3f, 0x59, 0x85 }; static const u8 T3[] = { 0x4d, 0x5c, 0x2a, 0xf3, 0x27, 0xcd, 0x64, 0xa6, 0x2c, 0xf3, 0x5a, 0xbd, 0x2b, 0xa6, 0xfa, 0xb4 }; /* Test Case 4 */ # define K4 K3 # define IV4 IV3 static const u8 P4[] = { 0xd9, 0x31, 0x32, 0x25, 0xf8, 0x84, 0x06, 0xe5, 0xa5, 0x59, 0x09, 0xc5, 0xaf, 0xf5, 0x26, 0x9a, 0x86, 0xa7, 0xa9, 0x53, 0x15, 0x34, 0xf7, 0xda, 0x2e, 0x4c, 0x30, 0x3d, 0x8a, 0x31, 0x8a, 0x72, 0x1c, 0x3c, 0x0c, 0x95, 0x95, 0x68, 0x09, 0x53, 0x2f, 0xcf, 0x0e, 0x24, 0x49, 0xa6, 0xb5, 0x25, 0xb1, 0x6a, 0xed, 0xf5, 0xaa, 0x0d, 0xe6, 0x57, 0xba, 0x63, 0x7b, 0x39 }; static const u8 A4[] = { 0xfe, 0xed, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfe, 0xed, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xab, 0xad, 0xda, 0xd2 }; static const u8 C4[] = { 0x42, 0x83, 0x1e, 0xc2, 0x21, 0x77, 0x74, 0x24, 0x4b, 0x72, 0x21, 0xb7, 0x84, 0xd0, 0xd4, 0x9c, 0xe3, 0xaa, 0x21, 0x2f, 0x2c, 0x02, 0xa4, 0xe0, 0x35, 0xc1, 0x7e, 0x23, 0x29, 0xac, 0xa1, 0x2e, 0x21, 0xd5, 0x14, 0xb2, 0x54, 0x66, 0x93, 0x1c, 0x7d, 0x8f, 0x6a, 0x5a, 0xac, 0x84, 0xaa, 0x05, 0x1b, 0xa3, 0x0b, 0x39, 0x6a, 0x0a, 0xac, 0x97, 0x3d, 0x58, 0xe0, 0x91 }; static const u8 T4[] = { 0x5b, 0xc9, 0x4f, 0xbc, 0x32, 0x21, 0xa5, 0xdb, 0x94, 0xfa, 0xe9, 0x5a, 0xe7, 0x12, 0x1a, 0x47 }; /* Test Case 5 */ # define K5 K4 # define P5 P4 # define A5 A4 static const u8 IV5[] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad }; static const u8 C5[] = { 0x61, 0x35, 0x3b, 0x4c, 0x28, 0x06, 0x93, 0x4a, 0x77, 0x7f, 0xf5, 0x1f, 0xa2, 0x2a, 0x47, 0x55, 0x69, 0x9b, 0x2a, 0x71, 0x4f, 0xcd, 0xc6, 0xf8, 0x37, 0x66, 0xe5, 0xf9, 0x7b, 0x6c, 0x74, 0x23, 0x73, 0x80, 0x69, 0x00, 0xe4, 0x9f, 0x24, 0xb2, 0x2b, 0x09, 0x75, 0x44, 0xd4, 0x89, 0x6b, 0x42, 0x49, 0x89, 0xb5, 0xe1, 0xeb, 0xac, 0x0f, 0x07, 0xc2, 0x3f, 0x45, 0x98 }; static const u8 T5[] = { 0x36, 0x12, 0xd2, 0xe7, 0x9e, 0x3b, 0x07, 0x85, 0x56, 0x1b, 0xe1, 0x4a, 0xac, 0xa2, 0xfc, 0xcb }; /* Test Case 6 */ # define K6 K5 # define P6 P5 # define A6 A5 static const u8 IV6[] = { 0x93, 0x13, 0x22, 0x5d, 0xf8, 0x84, 0x06, 0xe5, 0x55, 0x90, 0x9c, 0x5a, 0xff, 0x52, 0x69, 0xaa, 0x6a, 0x7a, 0x95, 0x38, 0x53, 0x4f, 0x7d, 0xa1, 0xe4, 0xc3, 0x03, 0xd2, 0xa3, 0x18, 0xa7, 0x28, 0xc3, 0xc0, 0xc9, 0x51, 0x56, 0x80, 0x95, 0x39, 0xfc, 0xf0, 0xe2, 0x42, 0x9a, 0x6b, 0x52, 0x54, 0x16, 0xae, 0xdb, 0xf5, 0xa0, 0xde, 0x6a, 0x57, 0xa6, 0x37, 0xb3, 0x9b }; static const u8 C6[] = { 0x8c, 0xe2, 0x49, 0x98, 0x62, 0x56, 0x15, 0xb6, 0x03, 0xa0, 0x33, 0xac, 0xa1, 0x3f, 0xb8, 0x94, 0xbe, 0x91, 0x12, 0xa5, 0xc3, 0xa2, 0x11, 0xa8, 0xba, 0x26, 0x2a, 0x3c, 0xca, 0x7e, 0x2c, 0xa7, 0x01, 0xe4, 0xa9, 0xa4, 0xfb, 0xa4, 0x3c, 0x90, 0xcc, 0xdc, 0xb2, 0x81, 0xd4, 0x8c, 0x7c, 0x6f, 0xd6, 0x28, 0x75, 0xd2, 0xac, 0xa4, 0x17, 0x03, 0x4c, 0x34, 0xae, 0xe5 }; static const u8 T6[] = { 0x61, 0x9c, 0xc5, 0xae, 0xff, 0xfe, 0x0b, 0xfa, 0x46, 0x2a, 0xf4, 0x3c, 0x16, 0x99, 0xd0, 0x50 }; /* Test Case 7 */ static const u8 K7[24], *P7 = NULL, *A7 = NULL, IV7[12], *C7 = NULL; static const u8 T7[] = { 0xcd, 0x33, 0xb2, 0x8a, 0xc7, 0x73, 0xf7, 0x4b, 0xa0, 0x0e, 0xd1, 0xf3, 0x12, 0x57, 0x24, 0x35 }; /* Test Case 8 */ # define K8 K7 # define IV8 IV7 # define A8 A7 static const u8 P8[16]; static const u8 C8[] = { 0x98, 0xe7, 0x24, 0x7c, 0x07, 0xf0, 0xfe, 0x41, 0x1c, 0x26, 0x7e, 0x43, 0x84, 0xb0, 0xf6, 0x00 }; static const u8 T8[] = { 0x2f, 0xf5, 0x8d, 0x80, 0x03, 0x39, 0x27, 0xab, 0x8e, 0xf4, 0xd4, 0x58, 0x75, 0x14, 0xf0, 0xfb }; /* Test Case 9 */ # define A9 A8 static const u8 K9[] = { 0xfe, 0xff, 0xe9, 0x92, 0x86, 0x65, 0x73, 0x1c, 0x6d, 0x6a, 0x8f, 0x94, 0x67, 0x30, 0x83, 0x08, 0xfe, 0xff, 0xe9, 0x92, 0x86, 0x65, 0x73, 0x1c }; static const u8 P9[] = { 0xd9, 0x31, 0x32, 0x25, 0xf8, 0x84, 0x06, 0xe5, 0xa5, 0x59, 0x09, 0xc5, 0xaf, 0xf5, 0x26, 0x9a, 0x86, 0xa7, 0xa9, 0x53, 0x15, 0x34, 0xf7, 0xda, 0x2e, 0x4c, 0x30, 0x3d, 0x8a, 0x31, 0x8a, 0x72, 0x1c, 0x3c, 0x0c, 0x95, 0x95, 0x68, 0x09, 0x53, 0x2f, 0xcf, 0x0e, 0x24, 0x49, 0xa6, 0xb5, 0x25, 0xb1, 0x6a, 0xed, 0xf5, 0xaa, 0x0d, 0xe6, 0x57, 0xba, 0x63, 0x7b, 0x39, 0x1a, 0xaf, 0xd2, 0x55 }; static const u8 IV9[] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88 }; static const u8 C9[] = { 0x39, 0x80, 0xca, 0x0b, 0x3c, 0x00, 0xe8, 0x41, 0xeb, 0x06, 0xfa, 0xc4, 0x87, 0x2a, 0x27, 0x57, 0x85, 0x9e, 0x1c, 0xea, 0xa6, 0xef, 0xd9, 0x84, 0x62, 0x85, 0x93, 0xb4, 0x0c, 0xa1, 0xe1, 0x9c, 0x7d, 0x77, 0x3d, 0x00, 0xc1, 0x44, 0xc5, 0x25, 0xac, 0x61, 0x9d, 0x18, 0xc8, 0x4a, 0x3f, 0x47, 0x18, 0xe2, 0x44, 0x8b, 0x2f, 0xe3, 0x24, 0xd9, 0xcc, 0xda, 0x27, 0x10, 0xac, 0xad, 0xe2, 0x56 }; static const u8 T9[] = { 0x99, 0x24, 0xa7, 0xc8, 0x58, 0x73, 0x36, 0xbf, 0xb1, 0x18, 0x02, 0x4d, 0xb8, 0x67, 0x4a, 0x14 }; /* Test Case 10 */ # define K10 K9 # define IV10 IV9 static const u8 P10[] = { 0xd9, 0x31, 0x32, 0x25, 0xf8, 0x84, 0x06, 0xe5, 0xa5, 0x59, 0x09, 0xc5, 0xaf, 0xf5, 0x26, 0x9a, 0x86, 0xa7, 0xa9, 0x53, 0x15, 0x34, 0xf7, 0xda, 0x2e, 0x4c, 0x30, 0x3d, 0x8a, 0x31, 0x8a, 0x72, 0x1c, 0x3c, 0x0c, 0x95, 0x95, 0x68, 0x09, 0x53, 0x2f, 0xcf, 0x0e, 0x24, 0x49, 0xa6, 0xb5, 0x25, 0xb1, 0x6a, 0xed, 0xf5, 0xaa, 0x0d, 0xe6, 0x57, 0xba, 0x63, 0x7b, 0x39 }; static const u8 A10[] = { 0xfe, 0xed, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfe, 0xed, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xab, 0xad, 0xda, 0xd2 }; static const u8 C10[] = { 0x39, 0x80, 0xca, 0x0b, 0x3c, 0x00, 0xe8, 0x41, 0xeb, 0x06, 0xfa, 0xc4, 0x87, 0x2a, 0x27, 0x57, 0x85, 0x9e, 0x1c, 0xea, 0xa6, 0xef, 0xd9, 0x84, 0x62, 0x85, 0x93, 0xb4, 0x0c, 0xa1, 0xe1, 0x9c, 0x7d, 0x77, 0x3d, 0x00, 0xc1, 0x44, 0xc5, 0x25, 0xac, 0x61, 0x9d, 0x18, 0xc8, 0x4a, 0x3f, 0x47, 0x18, 0xe2, 0x44, 0x8b, 0x2f, 0xe3, 0x24, 0xd9, 0xcc, 0xda, 0x27, 0x10 }; static const u8 T10[] = { 0x25, 0x19, 0x49, 0x8e, 0x80, 0xf1, 0x47, 0x8f, 0x37, 0xba, 0x55, 0xbd, 0x6d, 0x27, 0x61, 0x8c }; /* Test Case 11 */ # define K11 K10 # define P11 P10 # define A11 A10 static const u8 IV11[] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad }; static const u8 C11[] = { 0x0f, 0x10, 0xf5, 0x99, 0xae, 0x14, 0xa1, 0x54, 0xed, 0x24, 0xb3, 0x6e, 0x25, 0x32, 0x4d, 0xb8, 0xc5, 0x66, 0x63, 0x2e, 0xf2, 0xbb, 0xb3, 0x4f, 0x83, 0x47, 0x28, 0x0f, 0xc4, 0x50, 0x70, 0x57, 0xfd, 0xdc, 0x29, 0xdf, 0x9a, 0x47, 0x1f, 0x75, 0xc6, 0x65, 0x41, 0xd4, 0xd4, 0xda, 0xd1, 0xc9, 0xe9, 0x3a, 0x19, 0xa5, 0x8e, 0x8b, 0x47, 0x3f, 0xa0, 0xf0, 0x62, 0xf7 }; static const u8 T11[] = { 0x65, 0xdc, 0xc5, 0x7f, 0xcf, 0x62, 0x3a, 0x24, 0x09, 0x4f, 0xcc, 0xa4, 0x0d, 0x35, 0x33, 0xf8 }; /* Test Case 12 */ # define K12 K11 # define P12 P11 # define A12 A11 static const u8 IV12[] = { 0x93, 0x13, 0x22, 0x5d, 0xf8, 0x84, 0x06, 0xe5, 0x55, 0x90, 0x9c, 0x5a, 0xff, 0x52, 0x69, 0xaa, 0x6a, 0x7a, 0x95, 0x38, 0x53, 0x4f, 0x7d, 0xa1, 0xe4, 0xc3, 0x03, 0xd2, 0xa3, 0x18, 0xa7, 0x28, 0xc3, 0xc0, 0xc9, 0x51, 0x56, 0x80, 0x95, 0x39, 0xfc, 0xf0, 0xe2, 0x42, 0x9a, 0x6b, 0x52, 0x54, 0x16, 0xae, 0xdb, 0xf5, 0xa0, 0xde, 0x6a, 0x57, 0xa6, 0x37, 0xb3, 0x9b }; static const u8 C12[] = { 0xd2, 0x7e, 0x88, 0x68, 0x1c, 0xe3, 0x24, 0x3c, 0x48, 0x30, 0x16, 0x5a, 0x8f, 0xdc, 0xf9, 0xff, 0x1d, 0xe9, 0xa1, 0xd8, 0xe6, 0xb4, 0x47, 0xef, 0x6e, 0xf7, 0xb7, 0x98, 0x28, 0x66, 0x6e, 0x45, 0x81, 0xe7, 0x90, 0x12, 0xaf, 0x34, 0xdd, 0xd9, 0xe2, 0xf0, 0x37, 0x58, 0x9b, 0x29, 0x2d, 0xb3, 0xe6, 0x7c, 0x03, 0x67, 0x45, 0xfa, 0x22, 0xe7, 0xe9, 0xb7, 0x37, 0x3b }; static const u8 T12[] = { 0xdc, 0xf5, 0x66, 0xff, 0x29, 0x1c, 0x25, 0xbb, 0xb8, 0x56, 0x8f, 0xc3, 0xd3, 0x76, 0xa6, 0xd9 }; /* Test Case 13 */ static const u8 K13[32], *P13 = NULL, *A13 = NULL, IV13[12], *C13 = NULL; static const u8 T13[] = { 0x53, 0x0f, 0x8a, 0xfb, 0xc7, 0x45, 0x36, 0xb9, 0xa9, 0x63, 0xb4, 0xf1, 0xc4, 0xcb, 0x73, 0x8b }; /* Test Case 14 */ # define K14 K13 # define A14 A13 static const u8 P14[16], IV14[12]; static const u8 C14[] = { 0xce, 0xa7, 0x40, 0x3d, 0x4d, 0x60, 0x6b, 0x6e, 0x07, 0x4e, 0xc5, 0xd3, 0xba, 0xf3, 0x9d, 0x18 }; static const u8 T14[] = { 0xd0, 0xd1, 0xc8, 0xa7, 0x99, 0x99, 0x6b, 0xf0, 0x26, 0x5b, 0x98, 0xb5, 0xd4, 0x8a, 0xb9, 0x19 }; /* Test Case 15 */ # define A15 A14 static const u8 K15[] = { 0xfe, 0xff, 0xe9, 0x92, 0x86, 0x65, 0x73, 0x1c, 0x6d, 0x6a, 0x8f, 0x94, 0x67, 0x30, 0x83, 0x08, 0xfe, 0xff, 0xe9, 0x92, 0x86, 0x65, 0x73, 0x1c, 0x6d, 0x6a, 0x8f, 0x94, 0x67, 0x30, 0x83, 0x08 }; static const u8 P15[] = { 0xd9, 0x31, 0x32, 0x25, 0xf8, 0x84, 0x06, 0xe5, 0xa5, 0x59, 0x09, 0xc5, 0xaf, 0xf5, 0x26, 0x9a, 0x86, 0xa7, 0xa9, 0x53, 0x15, 0x34, 0xf7, 0xda, 0x2e, 0x4c, 0x30, 0x3d, 0x8a, 0x31, 0x8a, 0x72, 0x1c, 0x3c, 0x0c, 0x95, 0x95, 0x68, 0x09, 0x53, 0x2f, 0xcf, 0x0e, 0x24, 0x49, 0xa6, 0xb5, 0x25, 0xb1, 0x6a, 0xed, 0xf5, 0xaa, 0x0d, 0xe6, 0x57, 0xba, 0x63, 0x7b, 0x39, 0x1a, 0xaf, 0xd2, 0x55 }; static const u8 IV15[] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88 }; static const u8 C15[] = { 0x52, 0x2d, 0xc1, 0xf0, 0x99, 0x56, 0x7d, 0x07, 0xf4, 0x7f, 0x37, 0xa3, 0x2a, 0x84, 0x42, 0x7d, 0x64, 0x3a, 0x8c, 0xdc, 0xbf, 0xe5, 0xc0, 0xc9, 0x75, 0x98, 0xa2, 0xbd, 0x25, 0x55, 0xd1, 0xaa, 0x8c, 0xb0, 0x8e, 0x48, 0x59, 0x0d, 0xbb, 0x3d, 0xa7, 0xb0, 0x8b, 0x10, 0x56, 0x82, 0x88, 0x38, 0xc5, 0xf6, 0x1e, 0x63, 0x93, 0xba, 0x7a, 0x0a, 0xbc, 0xc9, 0xf6, 0x62, 0x89, 0x80, 0x15, 0xad }; static const u8 T15[] = { 0xb0, 0x94, 0xda, 0xc5, 0xd9, 0x34, 0x71, 0xbd, 0xec, 0x1a, 0x50, 0x22, 0x70, 0xe3, 0xcc, 0x6c }; /* Test Case 16 */ # define K16 K15 # define IV16 IV15 static const u8 P16[] = { 0xd9, 0x31, 0x32, 0x25, 0xf8, 0x84, 0x06, 0xe5, 0xa5, 0x59, 0x09, 0xc5, 0xaf, 0xf5, 0x26, 0x9a, 0x86, 0xa7, 0xa9, 0x53, 0x15, 0x34, 0xf7, 0xda, 0x2e, 0x4c, 0x30, 0x3d, 0x8a, 0x31, 0x8a, 0x72, 0x1c, 0x3c, 0x0c, 0x95, 0x95, 0x68, 0x09, 0x53, 0x2f, 0xcf, 0x0e, 0x24, 0x49, 0xa6, 0xb5, 0x25, 0xb1, 0x6a, 0xed, 0xf5, 0xaa, 0x0d, 0xe6, 0x57, 0xba, 0x63, 0x7b, 0x39 }; static const u8 A16[] = { 0xfe, 0xed, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfe, 0xed, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xab, 0xad, 0xda, 0xd2 }; static const u8 C16[] = { 0x52, 0x2d, 0xc1, 0xf0, 0x99, 0x56, 0x7d, 0x07, 0xf4, 0x7f, 0x37, 0xa3, 0x2a, 0x84, 0x42, 0x7d, 0x64, 0x3a, 0x8c, 0xdc, 0xbf, 0xe5, 0xc0, 0xc9, 0x75, 0x98, 0xa2, 0xbd, 0x25, 0x55, 0xd1, 0xaa, 0x8c, 0xb0, 0x8e, 0x48, 0x59, 0x0d, 0xbb, 0x3d, 0xa7, 0xb0, 0x8b, 0x10, 0x56, 0x82, 0x88, 0x38, 0xc5, 0xf6, 0x1e, 0x63, 0x93, 0xba, 0x7a, 0x0a, 0xbc, 0xc9, 0xf6, 0x62 }; static const u8 T16[] = { 0x76, 0xfc, 0x6e, 0xce, 0x0f, 0x4e, 0x17, 0x68, 0xcd, 0xdf, 0x88, 0x53, 0xbb, 0x2d, 0x55, 0x1b }; /* Test Case 17 */ # define K17 K16 # define P17 P16 # define A17 A16 static const u8 IV17[] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad }; static const u8 C17[] = { 0xc3, 0x76, 0x2d, 0xf1, 0xca, 0x78, 0x7d, 0x32, 0xae, 0x47, 0xc1, 0x3b, 0xf1, 0x98, 0x44, 0xcb, 0xaf, 0x1a, 0xe1, 0x4d, 0x0b, 0x97, 0x6a, 0xfa, 0xc5, 0x2f, 0xf7, 0xd7, 0x9b, 0xba, 0x9d, 0xe0, 0xfe, 0xb5, 0x82, 0xd3, 0x39, 0x34, 0xa4, 0xf0, 0x95, 0x4c, 0xc2, 0x36, 0x3b, 0xc7, 0x3f, 0x78, 0x62, 0xac, 0x43, 0x0e, 0x64, 0xab, 0xe4, 0x99, 0xf4, 0x7c, 0x9b, 0x1f }; static const u8 T17[] = { 0x3a, 0x33, 0x7d, 0xbf, 0x46, 0xa7, 0x92, 0xc4, 0x5e, 0x45, 0x49, 0x13, 0xfe, 0x2e, 0xa8, 0xf2 }; /* Test Case 18 */ # define K18 K17 # define P18 P17 # define A18 A17 static const u8 IV18[] = { 0x93, 0x13, 0x22, 0x5d, 0xf8, 0x84, 0x06, 0xe5, 0x55, 0x90, 0x9c, 0x5a, 0xff, 0x52, 0x69, 0xaa, 0x6a, 0x7a, 0x95, 0x38, 0x53, 0x4f, 0x7d, 0xa1, 0xe4, 0xc3, 0x03, 0xd2, 0xa3, 0x18, 0xa7, 0x28, 0xc3, 0xc0, 0xc9, 0x51, 0x56, 0x80, 0x95, 0x39, 0xfc, 0xf0, 0xe2, 0x42, 0x9a, 0x6b, 0x52, 0x54, 0x16, 0xae, 0xdb, 0xf5, 0xa0, 0xde, 0x6a, 0x57, 0xa6, 0x37, 0xb3, 0x9b }; static const u8 C18[] = { 0x5a, 0x8d, 0xef, 0x2f, 0x0c, 0x9e, 0x53, 0xf1, 0xf7, 0x5d, 0x78, 0x53, 0x65, 0x9e, 0x2a, 0x20, 0xee, 0xb2, 0xb2, 0x2a, 0xaf, 0xde, 0x64, 0x19, 0xa0, 0x58, 0xab, 0x4f, 0x6f, 0x74, 0x6b, 0xf4, 0x0f, 0xc0, 0xc3, 0xb7, 0x80, 0xf2, 0x44, 0x45, 0x2d, 0xa3, 0xeb, 0xf1, 0xc5, 0xd8, 0x2c, 0xde, 0xa2, 0x41, 0x89, 0x97, 0x20, 0x0e, 0xf8, 0x2e, 0x44, 0xae, 0x7e, 0x3f }; static const u8 T18[] = { 0xa4, 0x4a, 0x82, 0x66, 0xee, 0x1c, 0x8e, 0xb0, 0xc8, 0xb5, 0xd4, 0xcf, 0x5a, 0xe9, 0xf1, 0x9a }; /* Test Case 19 */ # define K19 K1 # define P19 P1 # define IV19 IV1 # define C19 C1 static const u8 A19[] = { 0xd9, 0x31, 0x32, 0x25, 0xf8, 0x84, 0x06, 0xe5, 0xa5, 0x59, 0x09, 0xc5, 0xaf, 0xf5, 0x26, 0x9a, 0x86, 0xa7, 0xa9, 0x53, 0x15, 0x34, 0xf7, 0xda, 0x2e, 0x4c, 0x30, 0x3d, 0x8a, 0x31, 0x8a, 0x72, 0x1c, 0x3c, 0x0c, 0x95, 0x95, 0x68, 0x09, 0x53, 0x2f, 0xcf, 0x0e, 0x24, 0x49, 0xa6, 0xb5, 0x25, 0xb1, 0x6a, 0xed, 0xf5, 0xaa, 0x0d, 0xe6, 0x57, 0xba, 0x63, 0x7b, 0x39, 0x1a, 0xaf, 0xd2, 0x55, 0x52, 0x2d, 0xc1, 0xf0, 0x99, 0x56, 0x7d, 0x07, 0xf4, 0x7f, 0x37, 0xa3, 0x2a, 0x84, 0x42, 0x7d, 0x64, 0x3a, 0x8c, 0xdc, 0xbf, 0xe5, 0xc0, 0xc9, 0x75, 0x98, 0xa2, 0xbd, 0x25, 0x55, 0xd1, 0xaa, 0x8c, 0xb0, 0x8e, 0x48, 0x59, 0x0d, 0xbb, 0x3d, 0xa7, 0xb0, 0x8b, 0x10, 0x56, 0x82, 0x88, 0x38, 0xc5, 0xf6, 0x1e, 0x63, 0x93, 0xba, 0x7a, 0x0a, 0xbc, 0xc9, 0xf6, 0x62, 0x89, 0x80, 0x15, 0xad }; static const u8 T19[] = { 0x5f, 0xea, 0x79, 0x3a, 0x2d, 0x6f, 0x97, 0x4d, 0x37, 0xe6, 0x8e, 0x0c, 0xb8, 0xff, 0x94, 0x92 }; /* Test Case 20 */ # define K20 K1 # define A20 A1 /* this results in 0xff in counter LSB */ static const u8 IV20[64] = { 0xff, 0xff, 0xff, 0xff }; static const u8 P20[288]; static const u8 C20[] = { 0x56, 0xb3, 0x37, 0x3c, 0xa9, 0xef, 0x6e, 0x4a, 0x2b, 0x64, 0xfe, 0x1e, 0x9a, 0x17, 0xb6, 0x14, 0x25, 0xf1, 0x0d, 0x47, 0xa7, 0x5a, 0x5f, 0xce, 0x13, 0xef, 0xc6, 0xbc, 0x78, 0x4a, 0xf2, 0x4f, 0x41, 0x41, 0xbd, 0xd4, 0x8c, 0xf7, 0xc7, 0x70, 0x88, 0x7a, 0xfd, 0x57, 0x3c, 0xca, 0x54, 0x18, 0xa9, 0xae, 0xff, 0xcd, 0x7c, 0x5c, 0xed, 0xdf, 0xc6, 0xa7, 0x83, 0x97, 0xb9, 0xa8, 0x5b, 0x49, 0x9d, 0xa5, 0x58, 0x25, 0x72, 0x67, 0xca, 0xab, 0x2a, 0xd0, 0xb2, 0x3c, 0xa4, 0x76, 0xa5, 0x3c, 0xb1, 0x7f, 0xb4, 0x1c, 0x4b, 0x8b, 0x47, 0x5c, 0xb4, 0xf3, 0xf7, 0x16, 0x50, 0x94, 0xc2, 0x29, 0xc9, 0xe8, 0xc4, 0xdc, 0x0a, 0x2a, 0x5f, 0xf1, 0x90, 0x3e, 0x50, 0x15, 0x11, 0x22, 0x13, 0x76, 0xa1, 0xcd, 0xb8, 0x36, 0x4c, 0x50, 0x61, 0xa2, 0x0c, 0xae, 0x74, 0xbc, 0x4a, 0xcd, 0x76, 0xce, 0xb0, 0xab, 0xc9, 0xfd, 0x32, 0x17, 0xef, 0x9f, 0x8c, 0x90, 0xbe, 0x40, 0x2d, 0xdf, 0x6d, 0x86, 0x97, 0xf4, 0xf8, 0x80, 0xdf, 0xf1, 0x5b, 0xfb, 0x7a, 0x6b, 0x28, 0x24, 0x1e, 0xc8, 0xfe, 0x18, 0x3c, 0x2d, 0x59, 0xe3, 0xf9, 0xdf, 0xff, 0x65, 0x3c, 0x71, 0x26, 0xf0, 0xac, 0xb9, 0xe6, 0x42, 0x11, 0xf4, 0x2b, 0xae, 0x12, 0xaf, 0x46, 0x2b, 0x10, 0x70, 0xbe, 0xf1, 0xab, 0x5e, 0x36, 0x06, 0x87, 0x2c, 0xa1, 0x0d, 0xee, 0x15, 0xb3, 0x24, 0x9b, 0x1a, 0x1b, 0x95, 0x8f, 0x23, 0x13, 0x4c, 0x4b, 0xcc, 0xb7, 0xd0, 0x32, 0x00, 0xbc, 0xe4, 0x20, 0xa2, 0xf8, 0xeb, 0x66, 0xdc, 0xf3, 0x64, 0x4d, 0x14, 0x23, 0xc1, 0xb5, 0x69, 0x90, 0x03, 0xc1, 0x3e, 0xce, 0xf4, 0xbf, 0x38, 0xa3, 0xb6, 0x0e, 0xed, 0xc3, 0x40, 0x33, 0xba, 0xc1, 0x90, 0x27, 0x83, 0xdc, 0x6d, 0x89, 0xe2, 0xe7, 0x74, 0x18, 0x8a, 0x43, 0x9c, 0x7e, 0xbc, 0xc0, 0x67, 0x2d, 0xbd, 0xa4, 0xdd, 0xcf, 0xb2, 0x79, 0x46, 0x13, 0xb0, 0xbe, 0x41, 0x31, 0x5e, 0xf7, 0x78, 0x70, 0x8a, 0x70, 0xee, 0x7d, 0x75, 0x16, 0x5c }; static const u8 T20[] = { 0x8b, 0x30, 0x7f, 0x6b, 0x33, 0x28, 0x6d, 0x0a, 0xb0, 0x26, 0xa9, 0xed, 0x3f, 0xe1, 0xe8, 0x5f }; # define TEST_CASE(n) do { \ u8 out[sizeof(P##n)]; \ AES_set_encrypt_key(K##n,sizeof(K##n)*8,&key); \ CRYPTO_gcm128_init(&ctx,&key,(block128_f)AES_encrypt); \ CRYPTO_gcm128_setiv(&ctx,IV##n,sizeof(IV##n)); \ memset(out,0,sizeof(out)); \ if (A##n) CRYPTO_gcm128_aad(&ctx,A##n,sizeof(A##n)); \ if (P##n) CRYPTO_gcm128_encrypt(&ctx,P##n,out,sizeof(out)); \ if (CRYPTO_gcm128_finish(&ctx,T##n,16) || \ (C##n && memcmp(out,C##n,sizeof(out)))) \ ret++, printf ("encrypt test#%d failed.\n",n); \ CRYPTO_gcm128_setiv(&ctx,IV##n,sizeof(IV##n)); \ memset(out,0,sizeof(out)); \ if (A##n) CRYPTO_gcm128_aad(&ctx,A##n,sizeof(A##n)); \ if (C##n) CRYPTO_gcm128_decrypt(&ctx,C##n,out,sizeof(out)); \ if (CRYPTO_gcm128_finish(&ctx,T##n,16) || \ (P##n && memcmp(out,P##n,sizeof(out)))) \ ret++, printf ("decrypt test#%d failed.\n",n); \ } while(0) int main() { GCM128_CONTEXT ctx; AES_KEY key; int ret = 0; TEST_CASE(1); TEST_CASE(2); TEST_CASE(3); TEST_CASE(4); TEST_CASE(5); TEST_CASE(6); TEST_CASE(7); TEST_CASE(8); TEST_CASE(9); TEST_CASE(10); TEST_CASE(11); TEST_CASE(12); TEST_CASE(13); TEST_CASE(14); TEST_CASE(15); TEST_CASE(16); TEST_CASE(17); TEST_CASE(18); TEST_CASE(19); TEST_CASE(20); # ifdef OPENSSL_CPUID_OBJ { size_t start, stop, gcm_t, ctr_t, OPENSSL_rdtsc(); union { u64 u; u8 c[1024]; } buf; int i; AES_set_encrypt_key(K1, sizeof(K1) * 8, &key); CRYPTO_gcm128_init(&ctx, &key, (block128_f) AES_encrypt); CRYPTO_gcm128_setiv(&ctx, IV1, sizeof(IV1)); CRYPTO_gcm128_encrypt(&ctx, buf.c, buf.c, sizeof(buf)); start = OPENSSL_rdtsc(); CRYPTO_gcm128_encrypt(&ctx, buf.c, buf.c, sizeof(buf)); gcm_t = OPENSSL_rdtsc() - start; CRYPTO_ctr128_encrypt(buf.c, buf.c, sizeof(buf), &key, ctx.Yi.c, ctx.EKi.c, &ctx.mres, (block128_f) AES_encrypt); start = OPENSSL_rdtsc(); CRYPTO_ctr128_encrypt(buf.c, buf.c, sizeof(buf), &key, ctx.Yi.c, ctx.EKi.c, &ctx.mres, (block128_f) AES_encrypt); ctr_t = OPENSSL_rdtsc() - start; printf("%.2f-%.2f=%.2f\n", gcm_t / (double)sizeof(buf), ctr_t / (double)sizeof(buf), (gcm_t - ctr_t) / (double)sizeof(buf)); # ifdef GHASH { void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len) = ctx.ghash; GHASH((&ctx), buf.c, sizeof(buf)); start = OPENSSL_rdtsc(); for (i = 0; i < 100; ++i) GHASH((&ctx), buf.c, sizeof(buf)); gcm_t = OPENSSL_rdtsc() - start; printf("%.2f\n", gcm_t / (double)sizeof(buf) / (double)i); } # endif } # endif return ret; } #endif