/* dsa_asn1.c */ /* * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL project * 2000. */ /* ==================================================================== * Copyright (c) 2000-2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ #include #include "cryptlib.h" #include #include #include #include /* Override the default new methods */ static int sig_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { if (operation == ASN1_OP_NEW_PRE) { DSA_SIG *sig; sig = OPENSSL_malloc(sizeof(DSA_SIG)); if (!sig) { DSAerr(DSA_F_SIG_CB, ERR_R_MALLOC_FAILURE); return 0; } sig->r = NULL; sig->s = NULL; *pval = (ASN1_VALUE *)sig; return 2; } return 1; } ASN1_SEQUENCE_cb(DSA_SIG, sig_cb) = { ASN1_SIMPLE(DSA_SIG, r, CBIGNUM), ASN1_SIMPLE(DSA_SIG, s, CBIGNUM) } ASN1_SEQUENCE_END_cb(DSA_SIG, DSA_SIG) IMPLEMENT_ASN1_FUNCTIONS_const(DSA_SIG) /* Override the default free and new methods */ static int dsa_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { if (operation == ASN1_OP_NEW_PRE) { *pval = (ASN1_VALUE *)DSA_new(); if (*pval) return 2; return 0; } else if (operation == ASN1_OP_FREE_PRE) { DSA_free((DSA *)*pval); *pval = NULL; return 2; } return 1; } ASN1_SEQUENCE_cb(DSAPrivateKey, dsa_cb) = { ASN1_SIMPLE(DSA, version, LONG), ASN1_SIMPLE(DSA, p, BIGNUM), ASN1_SIMPLE(DSA, q, BIGNUM), ASN1_SIMPLE(DSA, g, BIGNUM), ASN1_SIMPLE(DSA, pub_key, BIGNUM), ASN1_SIMPLE(DSA, priv_key, BIGNUM) } ASN1_SEQUENCE_END_cb(DSA, DSAPrivateKey) IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(DSA, DSAPrivateKey, DSAPrivateKey) ASN1_SEQUENCE_cb(DSAparams, dsa_cb) = { ASN1_SIMPLE(DSA, p, BIGNUM), ASN1_SIMPLE(DSA, q, BIGNUM), ASN1_SIMPLE(DSA, g, BIGNUM), } ASN1_SEQUENCE_END_cb(DSA, DSAparams) IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(DSA, DSAparams, DSAparams) /* * DSA public key is a bit trickier... its effectively a CHOICE type decided * by a field called write_params which can either write out just the public * key as an INTEGER or the parameters and public key in a SEQUENCE */ ASN1_SEQUENCE(DSAPublicKey) = { ASN1_SIMPLE(DSA, pub_key, BIGNUM), ASN1_SIMPLE(DSA, p, BIGNUM), ASN1_SIMPLE(DSA, q, BIGNUM), ASN1_SIMPLE(DSA, g, BIGNUM) } ASN1_SEQUENCE_END_name(DSA, DSAPublicKey) IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(DSA, DSAPublicKey, DSAPublicKey) DSA *DSAparams_dup(DSA *dsa) { return ASN1_item_dup(ASN1_ITEM_rptr(DSAparams), dsa); } int DSA_sign(int type, const unsigned char *dgst, int dlen, unsigned char *sig, unsigned int *siglen, DSA *dsa) { DSA_SIG *s; RAND_seed(dgst, dlen); s = DSA_do_sign(dgst, dlen, dsa); if (s == NULL) { *siglen = 0; return (0); } *siglen = i2d_DSA_SIG(s, &sig); DSA_SIG_free(s); return (1); } /* data has already been hashed (probably with SHA or SHA-1). */ /*- * returns * 1: correct signature * 0: incorrect signature * -1: error */ int DSA_verify(int type, const unsigned char *dgst, int dgst_len, const unsigned char *sigbuf, int siglen, DSA *dsa) { DSA_SIG *s; const unsigned char *p = sigbuf; unsigned char *der = NULL; int derlen = -1; int ret = -1; s = DSA_SIG_new(); if (s == NULL) return (ret); if (d2i_DSA_SIG(&s, &p, siglen) == NULL) goto err; /* Ensure signature uses DER and doesn't have trailing garbage */ derlen = i2d_DSA_SIG(s, &der); if (derlen != siglen || memcmp(sigbuf, der, derlen)) goto err; ret = DSA_do_verify(dgst, dgst_len, s, dsa); err: OPENSSL_clear_free(der, derlen); DSA_SIG_free(s); return (ret); }