/* ssl/d1_both.c */ /* * DTLS implementation written by Nagendra Modadugu * (nagendra@cs.stanford.edu) for the OpenSSL project 2005. */ /* ==================================================================== * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include "ssl_locl.h" #include #include #include #include #include #define RSMBLY_BITMASK_SIZE(msg_len) (((msg_len) + 7) / 8) #define RSMBLY_BITMASK_MARK(bitmask, start, end) { \ if ((end) - (start) <= 8) { \ long ii; \ for (ii = (start); ii < (end); ii++) bitmask[((ii) >> 3)] |= (1 << ((ii) & 7)); \ } else { \ long ii; \ bitmask[((start) >> 3)] |= bitmask_start_values[((start) & 7)]; \ for (ii = (((start) >> 3) + 1); ii < ((((end) - 1)) >> 3); ii++) bitmask[ii] = 0xff; \ bitmask[(((end) - 1) >> 3)] |= bitmask_end_values[((end) & 7)]; \ } } #define RSMBLY_BITMASK_IS_COMPLETE(bitmask, msg_len, is_complete) { \ long ii; \ OPENSSL_assert((msg_len) > 0); \ is_complete = 1; \ if (bitmask[(((msg_len) - 1) >> 3)] != bitmask_end_values[((msg_len) & 7)]) is_complete = 0; \ if (is_complete) for (ii = (((msg_len) - 1) >> 3) - 1; ii >= 0 ; ii--) \ if (bitmask[ii] != 0xff) { is_complete = 0; break; } } static unsigned char bitmask_start_values[] = { 0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80 }; static unsigned char bitmask_end_values[] = { 0xff, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f }; /* XDTLS: figure out the right values */ static const unsigned int g_probable_mtu[] = { 1500, 512, 256 }; static void dtls1_fix_message_header(SSL *s, unsigned long frag_off, unsigned long frag_len); static unsigned char *dtls1_write_message_header(SSL *s, unsigned char *p); static void dtls1_set_message_header_int(SSL *s, unsigned char mt, unsigned long len, unsigned short seq_num, unsigned long frag_off, unsigned long frag_len); static long dtls1_get_message_fragment(SSL *s, int st1, int stn, long max, int *ok); static hm_fragment *dtls1_hm_fragment_new(unsigned long frag_len, int reassembly) { hm_fragment *frag = NULL; unsigned char *buf = NULL; unsigned char *bitmask = NULL; frag = (hm_fragment *)OPENSSL_malloc(sizeof(hm_fragment)); if (frag == NULL) return NULL; if (frag_len) { buf = (unsigned char *)OPENSSL_malloc(frag_len); if (buf == NULL) { OPENSSL_free(frag); return NULL; } } /* zero length fragment gets zero frag->fragment */ frag->fragment = buf; /* Initialize reassembly bitmask if necessary */ if (reassembly) { bitmask = (unsigned char *)OPENSSL_malloc(RSMBLY_BITMASK_SIZE(frag_len)); if (bitmask == NULL) { if (buf != NULL) OPENSSL_free(buf); OPENSSL_free(frag); return NULL; } memset(bitmask, 0, RSMBLY_BITMASK_SIZE(frag_len)); } frag->reassembly = bitmask; return frag; } void dtls1_hm_fragment_free(hm_fragment *frag) { if (frag->msg_header.is_ccs) { EVP_CIPHER_CTX_free(frag->msg_header. saved_retransmit_state.enc_write_ctx); EVP_MD_CTX_destroy(frag->msg_header. saved_retransmit_state.write_hash); } if (frag->fragment) OPENSSL_free(frag->fragment); if (frag->reassembly) OPENSSL_free(frag->reassembly); OPENSSL_free(frag); } static int dtls1_query_mtu(SSL *s) { if (s->d1->link_mtu) { s->d1->mtu = s->d1->link_mtu - BIO_dgram_get_mtu_overhead(SSL_get_wbio(s)); s->d1->link_mtu = 0; } /* AHA! Figure out the MTU, and stick to the right size */ if (s->d1->mtu < dtls1_min_mtu(s)) { if (!(SSL_get_options(s) & SSL_OP_NO_QUERY_MTU)) { s->d1->mtu = BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL); /* * I've seen the kernel return bogus numbers when it doesn't know * (initial write), so just make sure we have a reasonable number */ if (s->d1->mtu < dtls1_min_mtu(s)) { /* Set to min mtu */ s->d1->mtu = dtls1_min_mtu(s); BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SET_MTU, s->d1->mtu, NULL); } } else return 0; } return 1; } /* * send s->init_buf in records of type 'type' (SSL3_RT_HANDSHAKE or * SSL3_RT_CHANGE_CIPHER_SPEC) */ int dtls1_do_write(SSL *s, int type) { int ret; unsigned int curr_mtu; int retry = 1; unsigned int len, frag_off, mac_size, blocksize, used_len; if (!dtls1_query_mtu(s)) return -1; OPENSSL_assert(s->d1->mtu >= dtls1_min_mtu(s)); /* should have something * reasonable now */ if (s->init_off == 0 && type == SSL3_RT_HANDSHAKE) OPENSSL_assert(s->init_num == (int)s->d1->w_msg_hdr.msg_len + DTLS1_HM_HEADER_LENGTH); if (s->write_hash) { if (s->enc_write_ctx && EVP_CIPHER_CTX_mode(s->enc_write_ctx) == EVP_CIPH_GCM_MODE) mac_size = 0; else mac_size = EVP_MD_CTX_size(s->write_hash); } else mac_size = 0; if (s->enc_write_ctx && (EVP_CIPHER_CTX_mode(s->enc_write_ctx) == EVP_CIPH_CBC_MODE)) blocksize = 2 * EVP_CIPHER_block_size(s->enc_write_ctx->cipher); else blocksize = 0; frag_off = 0; /* s->init_num shouldn't ever be < 0...but just in case */ while (s->init_num > 0) { used_len = BIO_wpending(SSL_get_wbio(s)) + DTLS1_RT_HEADER_LENGTH + mac_size + blocksize; if (s->d1->mtu > used_len) curr_mtu = s->d1->mtu - used_len; else curr_mtu = 0; if (curr_mtu <= DTLS1_HM_HEADER_LENGTH) { /* * grr.. we could get an error if MTU picked was wrong */ ret = BIO_flush(SSL_get_wbio(s)); if (ret <= 0) return ret; used_len = DTLS1_RT_HEADER_LENGTH + mac_size + blocksize; if (s->d1->mtu > used_len + DTLS1_HM_HEADER_LENGTH) { curr_mtu = s->d1->mtu - used_len; } else { /* Shouldn't happen */ return -1; } } /* * We just checked that s->init_num > 0 so this cast should be safe */ if (((unsigned int)s->init_num) > curr_mtu) len = curr_mtu; else len = s->init_num; /* Shouldn't ever happen */ if (len > INT_MAX) len = INT_MAX; /* * XDTLS: this function is too long. split out the CCS part */ if (type == SSL3_RT_HANDSHAKE) { if (s->init_off != 0) { OPENSSL_assert(s->init_off > DTLS1_HM_HEADER_LENGTH); s->init_off -= DTLS1_HM_HEADER_LENGTH; s->init_num += DTLS1_HM_HEADER_LENGTH; /* * We just checked that s->init_num > 0 so this cast should * be safe */ if (((unsigned int)s->init_num) > curr_mtu) len = curr_mtu; else len = s->init_num; } /* Shouldn't ever happen */ if (len > INT_MAX) len = INT_MAX; if (len < DTLS1_HM_HEADER_LENGTH) { /* * len is so small that we really can't do anything sensible * so fail */ return -1; } dtls1_fix_message_header(s, frag_off, len - DTLS1_HM_HEADER_LENGTH); dtls1_write_message_header(s, (unsigned char *)&s->init_buf-> data[s->init_off]); } ret = dtls1_write_bytes(s, type, &s->init_buf->data[s->init_off], len); if (ret < 0) { /* * might need to update MTU here, but we don't know which * previous packet caused the failure -- so can't really * retransmit anything. continue as if everything is fine and * wait for an alert to handle the retransmit */ if (retry && BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_MTU_EXCEEDED, 0, NULL) > 0) { if (!(SSL_get_options(s) & SSL_OP_NO_QUERY_MTU)) { if (!dtls1_query_mtu(s)) return -1; /* Have one more go */ retry = 0; } else return -1; } else { return (-1); } } else { /* * bad if this assert fails, only part of the handshake message * got sent. but why would this happen? */ OPENSSL_assert(len == (unsigned int)ret); if (type == SSL3_RT_HANDSHAKE && !s->d1->retransmitting) { /* * should not be done for 'Hello Request's, but in that case * we'll ignore the result anyway */ unsigned char *p = (unsigned char *)&s->init_buf->data[s->init_off]; const struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr; int xlen; if (frag_off == 0 && s->version != DTLS1_BAD_VER) { /* * reconstruct message header is if it is being sent in * single fragment */ *p++ = msg_hdr->type; l2n3(msg_hdr->msg_len, p); s2n(msg_hdr->seq, p); l2n3(0, p); l2n3(msg_hdr->msg_len, p); p -= DTLS1_HM_HEADER_LENGTH; xlen = ret; } else { p += DTLS1_HM_HEADER_LENGTH; xlen = ret - DTLS1_HM_HEADER_LENGTH; } ssl3_finish_mac(s, p, xlen); } if (ret == s->init_num) { if (s->msg_callback) s->msg_callback(1, s->version, type, s->init_buf->data, (size_t)(s->init_off + s->init_num), s, s->msg_callback_arg); s->init_off = 0; /* done writing this message */ s->init_num = 0; return (1); } s->init_off += ret; s->init_num -= ret; frag_off += (ret -= DTLS1_HM_HEADER_LENGTH); } } return (0); } /* * Obtain handshake message of message type 'mt' (any if mt == -1), maximum * acceptable body length 'max'. Read an entire handshake message. Handshake * messages arrive in fragments. */ long dtls1_get_message(SSL *s, int st1, int stn, int mt, long max, int *ok) { int i, al; struct hm_header_st *msg_hdr; unsigned char *p; unsigned long msg_len; /* * s3->tmp is used to store messages that are unexpected, caused by the * absence of an optional handshake message */ if (s->s3->tmp.reuse_message) { s->s3->tmp.reuse_message = 0; if ((mt >= 0) && (s->s3->tmp.message_type != mt)) { al = SSL_AD_UNEXPECTED_MESSAGE; SSLerr(SSL_F_DTLS1_GET_MESSAGE, SSL_R_UNEXPECTED_MESSAGE); goto f_err; } *ok = 1; s->init_msg = s->init_buf->data + DTLS1_HM_HEADER_LENGTH; s->init_num = (int)s->s3->tmp.message_size; return s->init_num; } msg_hdr = &s->d1->r_msg_hdr; memset(msg_hdr, 0x00, sizeof(struct hm_header_st)); again: i = dtls1_get_message_fragment(s, st1, stn, max, ok); if (i == DTLS1_HM_BAD_FRAGMENT || i == DTLS1_HM_FRAGMENT_RETRY) { /* bad fragment received */ goto again; } else if (i <= 0 && !*ok) { return i; } p = (unsigned char *)s->init_buf->data; msg_len = msg_hdr->msg_len; /* reconstruct message header */ *(p++) = msg_hdr->type; l2n3(msg_len, p); s2n(msg_hdr->seq, p); l2n3(0, p); l2n3(msg_len, p); if (s->version != DTLS1_BAD_VER) { p -= DTLS1_HM_HEADER_LENGTH; msg_len += DTLS1_HM_HEADER_LENGTH; } ssl3_finish_mac(s, p, msg_len); if (s->msg_callback) s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE, p, msg_len, s, s->msg_callback_arg); memset(msg_hdr, 0x00, sizeof(struct hm_header_st)); /* Don't change sequence numbers while listening */ if (!s->d1->listen) s->d1->handshake_read_seq++; s->init_msg = s->init_buf->data + DTLS1_HM_HEADER_LENGTH; return s->init_num; f_err: ssl3_send_alert(s, SSL3_AL_FATAL, al); *ok = 0; return -1; } static int dtls1_preprocess_fragment(SSL *s, struct hm_header_st *msg_hdr, int max) { size_t frag_off, frag_len, msg_len; msg_len = msg_hdr->msg_len; frag_off = msg_hdr->frag_off; frag_len = msg_hdr->frag_len; /* sanity checking */ if ((frag_off + frag_len) > msg_len) { SSLerr(SSL_F_DTLS1_PREPROCESS_FRAGMENT, SSL_R_EXCESSIVE_MESSAGE_SIZE); return SSL_AD_ILLEGAL_PARAMETER; } if ((frag_off + frag_len) > (unsigned long)max) { SSLerr(SSL_F_DTLS1_PREPROCESS_FRAGMENT, SSL_R_EXCESSIVE_MESSAGE_SIZE); return SSL_AD_ILLEGAL_PARAMETER; } if (s->d1->r_msg_hdr.frag_off == 0) { /* first fragment */ /* * msg_len is limited to 2^24, but is effectively checked against max * above */ if (!BUF_MEM_grow_clean (s->init_buf, msg_len + DTLS1_HM_HEADER_LENGTH)) { SSLerr(SSL_F_DTLS1_PREPROCESS_FRAGMENT, ERR_R_BUF_LIB); return SSL_AD_INTERNAL_ERROR; } s->s3->tmp.message_size = msg_len; s->d1->r_msg_hdr.msg_len = msg_len; s->s3->tmp.message_type = msg_hdr->type; s->d1->r_msg_hdr.type = msg_hdr->type; s->d1->r_msg_hdr.seq = msg_hdr->seq; } else if (msg_len != s->d1->r_msg_hdr.msg_len) { /* * They must be playing with us! BTW, failure to enforce upper limit * would open possibility for buffer overrun. */ SSLerr(SSL_F_DTLS1_PREPROCESS_FRAGMENT, SSL_R_EXCESSIVE_MESSAGE_SIZE); return SSL_AD_ILLEGAL_PARAMETER; } return 0; /* no error */ } static int dtls1_retrieve_buffered_fragment(SSL *s, long max, int *ok) { /*- * (0) check whether the desired fragment is available * if so: * (1) copy over the fragment to s->init_buf->data[] * (2) update s->init_num */ pitem *item; hm_fragment *frag; int al; *ok = 0; item = pqueue_peek(s->d1->buffered_messages); if (item == NULL) return 0; frag = (hm_fragment *)item->data; /* Don't return if reassembly still in progress */ if (frag->reassembly != NULL) return 0; if (s->d1->handshake_read_seq == frag->msg_header.seq) { unsigned long frag_len = frag->msg_header.frag_len; pqueue_pop(s->d1->buffered_messages); al = dtls1_preprocess_fragment(s, &frag->msg_header, max); if (al == 0) { /* no alert */ unsigned char *p = (unsigned char *)s->init_buf->data + DTLS1_HM_HEADER_LENGTH; memcpy(&p[frag->msg_header.frag_off], frag->fragment, frag->msg_header.frag_len); } dtls1_hm_fragment_free(frag); pitem_free(item); if (al == 0) { *ok = 1; return frag_len; } ssl3_send_alert(s, SSL3_AL_FATAL, al); s->init_num = 0; *ok = 0; return -1; } else return 0; } /* * dtls1_max_handshake_message_len returns the maximum number of bytes * permitted in a DTLS handshake message for |s|. The minimum is 16KB, but * may be greater if the maximum certificate list size requires it. */ static unsigned long dtls1_max_handshake_message_len(const SSL *s) { unsigned long max_len = DTLS1_HM_HEADER_LENGTH + SSL3_RT_MAX_ENCRYPTED_LENGTH; if (max_len < (unsigned long)s->max_cert_list) return s->max_cert_list; return max_len; } static int dtls1_reassemble_fragment(SSL *s, const struct hm_header_st *msg_hdr, int *ok) { hm_fragment *frag = NULL; pitem *item = NULL; int i = -1, is_complete; unsigned char seq64be[8]; unsigned long frag_len = msg_hdr->frag_len; if ((msg_hdr->frag_off + frag_len) > msg_hdr->msg_len || msg_hdr->msg_len > dtls1_max_handshake_message_len(s)) goto err; if (frag_len == 0) return DTLS1_HM_FRAGMENT_RETRY; /* Try to find item in queue */ memset(seq64be, 0, sizeof(seq64be)); seq64be[6] = (unsigned char)(msg_hdr->seq >> 8); seq64be[7] = (unsigned char)msg_hdr->seq; item = pqueue_find(s->d1->buffered_messages, seq64be); if (item == NULL) { frag = dtls1_hm_fragment_new(msg_hdr->msg_len, 1); if (frag == NULL) goto err; memcpy(&(frag->msg_header), msg_hdr, sizeof(*msg_hdr)); frag->msg_header.frag_len = frag->msg_header.msg_len; frag->msg_header.frag_off = 0; } else { frag = (hm_fragment *)item->data; if (frag->msg_header.msg_len != msg_hdr->msg_len) { item = NULL; frag = NULL; goto err; } } /* * If message is already reassembled, this must be a retransmit and can * be dropped. In this case item != NULL and so frag does not need to be * freed. */ if (frag->reassembly == NULL) { unsigned char devnull[256]; while (frag_len) { i = s->method->ssl_read_bytes(s, SSL3_RT_HANDSHAKE, devnull, frag_len > sizeof(devnull) ? sizeof(devnull) : frag_len, 0); if (i <= 0) goto err; frag_len -= i; } return DTLS1_HM_FRAGMENT_RETRY; } /* read the body of the fragment (header has already been read */ i = s->method->ssl_read_bytes(s, SSL3_RT_HANDSHAKE, frag->fragment + msg_hdr->frag_off, frag_len, 0); if ((unsigned long)i != frag_len) i = -1; if (i <= 0) goto err; RSMBLY_BITMASK_MARK(frag->reassembly, (long)msg_hdr->frag_off, (long)(msg_hdr->frag_off + frag_len)); RSMBLY_BITMASK_IS_COMPLETE(frag->reassembly, (long)msg_hdr->msg_len, is_complete); if (is_complete) { OPENSSL_free(frag->reassembly); frag->reassembly = NULL; } if (item == NULL) { item = pitem_new(seq64be, frag); if (item == NULL) { i = -1; goto err; } item = pqueue_insert(s->d1->buffered_messages, item); /* * pqueue_insert fails iff a duplicate item is inserted. However, * |item| cannot be a duplicate. If it were, |pqueue_find|, above, * would have returned it and control would never have reached this * branch. */ OPENSSL_assert(item != NULL); } return DTLS1_HM_FRAGMENT_RETRY; err: if (frag != NULL && item == NULL) dtls1_hm_fragment_free(frag); *ok = 0; return i; } static int dtls1_process_out_of_seq_message(SSL *s, const struct hm_header_st *msg_hdr, int *ok) { int i = -1; hm_fragment *frag = NULL; pitem *item = NULL; unsigned char seq64be[8]; unsigned long frag_len = msg_hdr->frag_len; if ((msg_hdr->frag_off + frag_len) > msg_hdr->msg_len) goto err; /* Try to find item in queue, to prevent duplicate entries */ memset(seq64be, 0, sizeof(seq64be)); seq64be[6] = (unsigned char)(msg_hdr->seq >> 8); seq64be[7] = (unsigned char)msg_hdr->seq; item = pqueue_find(s->d1->buffered_messages, seq64be); /* * If we already have an entry and this one is a fragment, don't discard * it and rather try to reassemble it. */ if (item != NULL && frag_len != msg_hdr->msg_len) item = NULL; /* * Discard the message if sequence number was already there, is too far * in the future, already in the queue or if we received a FINISHED * before the SERVER_HELLO, which then must be a stale retransmit. */ if (msg_hdr->seq <= s->d1->handshake_read_seq || msg_hdr->seq > s->d1->handshake_read_seq + 10 || item != NULL || (s->d1->handshake_read_seq == 0 && msg_hdr->type == SSL3_MT_FINISHED)) { unsigned char devnull[256]; while (frag_len) { i = s->method->ssl_read_bytes(s, SSL3_RT_HANDSHAKE, devnull, frag_len > sizeof(devnull) ? sizeof(devnull) : frag_len, 0); if (i <= 0) goto err; frag_len -= i; } } else { if (frag_len != msg_hdr->msg_len) return dtls1_reassemble_fragment(s, msg_hdr, ok); if (frag_len > dtls1_max_handshake_message_len(s)) goto err; frag = dtls1_hm_fragment_new(frag_len, 0); if (frag == NULL) goto err; memcpy(&(frag->msg_header), msg_hdr, sizeof(*msg_hdr)); if (frag_len) { /* * read the body of the fragment (header has already been read */ i = s->method->ssl_read_bytes(s, SSL3_RT_HANDSHAKE, frag->fragment, frag_len, 0); if ((unsigned long)i != frag_len) i = -1; if (i <= 0) goto err; } item = pitem_new(seq64be, frag); if (item == NULL) goto err; item = pqueue_insert(s->d1->buffered_messages, item); /* * pqueue_insert fails iff a duplicate item is inserted. However, * |item| cannot be a duplicate. If it were, |pqueue_find|, above, * would have returned it. Then, either |frag_len| != * |msg_hdr->msg_len| in which case |item| is set to NULL and it will * have been processed with |dtls1_reassemble_fragment|, above, or * the record will have been discarded. */ OPENSSL_assert(item != NULL); } return DTLS1_HM_FRAGMENT_RETRY; err: if (frag != NULL && item == NULL) dtls1_hm_fragment_free(frag); *ok = 0; return i; } static long dtls1_get_message_fragment(SSL *s, int st1, int stn, long max, int *ok) { unsigned char wire[DTLS1_HM_HEADER_LENGTH]; unsigned long len, frag_off, frag_len; int i, al; struct hm_header_st msg_hdr; redo: /* see if we have the required fragment already */ if ((frag_len = dtls1_retrieve_buffered_fragment(s, max, ok)) || *ok) { if (*ok) s->init_num = frag_len; return frag_len; } /* read handshake message header */ i = s->method->ssl_read_bytes(s, SSL3_RT_HANDSHAKE, wire, DTLS1_HM_HEADER_LENGTH, 0); if (i <= 0) { /* nbio, or an error */ s->rwstate = SSL_READING; *ok = 0; return i; } /* Handshake fails if message header is incomplete */ if (i != DTLS1_HM_HEADER_LENGTH) { al = SSL_AD_UNEXPECTED_MESSAGE; SSLerr(SSL_F_DTLS1_GET_MESSAGE_FRAGMENT, SSL_R_UNEXPECTED_MESSAGE); goto f_err; } /* parse the message fragment header */ dtls1_get_message_header(wire, &msg_hdr); /* * if this is a future (or stale) message it gets buffered * (or dropped)--no further processing at this time * While listening, we accept seq 1 (ClientHello with cookie) * although we're still expecting seq 0 (ClientHello) */ if (msg_hdr.seq != s->d1->handshake_read_seq && !(s->d1->listen && msg_hdr.seq == 1)) return dtls1_process_out_of_seq_message(s, &msg_hdr, ok); len = msg_hdr.msg_len; frag_off = msg_hdr.frag_off; frag_len = msg_hdr.frag_len; if (frag_len && frag_len < len) return dtls1_reassemble_fragment(s, &msg_hdr, ok); if (!s->server && s->d1->r_msg_hdr.frag_off == 0 && wire[0] == SSL3_MT_HELLO_REQUEST) { /* * The server may always send 'Hello Request' messages -- we are * doing a handshake anyway now, so ignore them if their format is * correct. Does not count for 'Finished' MAC. */ if (wire[1] == 0 && wire[2] == 0 && wire[3] == 0) { if (s->msg_callback) s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE, wire, DTLS1_HM_HEADER_LENGTH, s, s->msg_callback_arg); s->init_num = 0; goto redo; } else { /* Incorrectly formated Hello request */ al = SSL_AD_UNEXPECTED_MESSAGE; SSLerr(SSL_F_DTLS1_GET_MESSAGE_FRAGMENT, SSL_R_UNEXPECTED_MESSAGE); goto f_err; } } if ((al = dtls1_preprocess_fragment(s, &msg_hdr, max))) goto f_err; /* XDTLS: ressurect this when restart is in place */ s->state = stn; if (frag_len > 0) { unsigned char *p = (unsigned char *)s->init_buf->data + DTLS1_HM_HEADER_LENGTH; i = s->method->ssl_read_bytes(s, SSL3_RT_HANDSHAKE, &p[frag_off], frag_len, 0); /* * XDTLS: fix this--message fragments cannot span multiple packets */ if (i <= 0) { s->rwstate = SSL_READING; *ok = 0; return i; } } else i = 0; /* * XDTLS: an incorrectly formatted fragment should cause the handshake * to fail */ if (i != (int)frag_len) { al = SSL3_AD_ILLEGAL_PARAMETER; SSLerr(SSL_F_DTLS1_GET_MESSAGE_FRAGMENT, SSL3_AD_ILLEGAL_PARAMETER); goto f_err; } *ok = 1; /* * Note that s->init_num is *not* used as current offset in * s->init_buf->data, but as a counter summing up fragments' lengths: as * soon as they sum up to handshake packet length, we assume we have got * all the fragments. */ s->init_num = frag_len; return frag_len; f_err: ssl3_send_alert(s, SSL3_AL_FATAL, al); s->init_num = 0; *ok = 0; return (-1); } /*- * for these 2 messages, we need to * ssl->enc_read_ctx re-init * ssl->rlayer.read_sequence zero * ssl->s3->read_mac_secret re-init * ssl->session->read_sym_enc assign * ssl->session->read_compression assign * ssl->session->read_hash assign */ int dtls1_send_change_cipher_spec(SSL *s, int a, int b) { unsigned char *p; if (s->state == a) { p = (unsigned char *)s->init_buf->data; *p++ = SSL3_MT_CCS; s->d1->handshake_write_seq = s->d1->next_handshake_write_seq; s->init_num = DTLS1_CCS_HEADER_LENGTH; if (s->version == DTLS1_BAD_VER) { s->d1->next_handshake_write_seq++; s2n(s->d1->handshake_write_seq, p); s->init_num += 2; } s->init_off = 0; dtls1_set_message_header_int(s, SSL3_MT_CCS, 0, s->d1->handshake_write_seq, 0, 0); /* buffer the message to handle re-xmits */ if(!dtls1_buffer_message(s, 1)) { SSLerr(SSL_F_DTLS1_SEND_CHANGE_CIPHER_SPEC, ERR_R_INTERNAL_ERROR); return -1; } s->state = b; } /* SSL3_ST_CW_CHANGE_B */ return (dtls1_do_write(s, SSL3_RT_CHANGE_CIPHER_SPEC)); } int dtls1_read_failed(SSL *s, int code) { if (code > 0) { fprintf(stderr, "invalid state reached %s:%d", __FILE__, __LINE__); return 1; } if (!dtls1_is_timer_expired(s)) { /* * not a timeout, none of our business, let higher layers handle * this. in fact it's probably an error */ return code; } #ifndef OPENSSL_NO_HEARTBEATS /* done, no need to send a retransmit */ if (!SSL_in_init(s) && !s->tlsext_hb_pending) #else /* done, no need to send a retransmit */ if (!SSL_in_init(s)) #endif { BIO_set_flags(SSL_get_rbio(s), BIO_FLAGS_READ); return code; } return dtls1_handle_timeout(s); } int dtls1_get_queue_priority(unsigned short seq, int is_ccs) { /* * The index of the retransmission queue actually is the message sequence * number, since the queue only contains messages of a single handshake. * However, the ChangeCipherSpec has no message sequence number and so * using only the sequence will result in the CCS and Finished having the * same index. To prevent this, the sequence number is multiplied by 2. * In case of a CCS 1 is subtracted. This does not only differ CSS and * Finished, it also maintains the order of the index (important for * priority queues) and fits in the unsigned short variable. */ return seq * 2 - is_ccs; } int dtls1_retransmit_buffered_messages(SSL *s) { pqueue sent = s->d1->sent_messages; piterator iter; pitem *item; hm_fragment *frag; int found = 0; iter = pqueue_iterator(sent); for (item = pqueue_next(&iter); item != NULL; item = pqueue_next(&iter)) { frag = (hm_fragment *)item->data; if (dtls1_retransmit_message(s, (unsigned short) dtls1_get_queue_priority (frag->msg_header.seq, frag->msg_header.is_ccs), 0, &found) <= 0 && found) { fprintf(stderr, "dtls1_retransmit_message() failed\n"); return -1; } } return 1; } int dtls1_buffer_message(SSL *s, int is_ccs) { pitem *item; hm_fragment *frag; unsigned char seq64be[8]; /* * this function is called immediately after a message has been * serialized */ OPENSSL_assert(s->init_off == 0); frag = dtls1_hm_fragment_new(s->init_num, 0); if (!frag) return 0; memcpy(frag->fragment, s->init_buf->data, s->init_num); if (is_ccs) { /* For DTLS1_BAD_VER the header length is non-standard */ OPENSSL_assert(s->d1->w_msg_hdr.msg_len + ((s->version==DTLS1_BAD_VER)?3:DTLS1_CCS_HEADER_LENGTH) == (unsigned int)s->init_num); } else { OPENSSL_assert(s->d1->w_msg_hdr.msg_len + DTLS1_HM_HEADER_LENGTH == (unsigned int)s->init_num); } frag->msg_header.msg_len = s->d1->w_msg_hdr.msg_len; frag->msg_header.seq = s->d1->w_msg_hdr.seq; frag->msg_header.type = s->d1->w_msg_hdr.type; frag->msg_header.frag_off = 0; frag->msg_header.frag_len = s->d1->w_msg_hdr.msg_len; frag->msg_header.is_ccs = is_ccs; /* save current state */ frag->msg_header.saved_retransmit_state.enc_write_ctx = s->enc_write_ctx; frag->msg_header.saved_retransmit_state.write_hash = s->write_hash; frag->msg_header.saved_retransmit_state.compress = s->compress; frag->msg_header.saved_retransmit_state.session = s->session; frag->msg_header.saved_retransmit_state.epoch = DTLS_RECORD_LAYER_get_w_epoch(&s->rlayer); memset(seq64be, 0, sizeof(seq64be)); seq64be[6] = (unsigned char)(dtls1_get_queue_priority(frag->msg_header.seq, frag->msg_header.is_ccs) >> 8); seq64be[7] = (unsigned char)(dtls1_get_queue_priority(frag->msg_header.seq, frag->msg_header.is_ccs)); item = pitem_new(seq64be, frag); if (item == NULL) { dtls1_hm_fragment_free(frag); return 0; } pqueue_insert(s->d1->sent_messages, item); return 1; } int dtls1_retransmit_message(SSL *s, unsigned short seq, unsigned long frag_off, int *found) { int ret; /* XDTLS: for now assuming that read/writes are blocking */ pitem *item; hm_fragment *frag; unsigned long header_length; unsigned char seq64be[8]; struct dtls1_retransmit_state saved_state; unsigned char save_write_sequence[8]; /*- OPENSSL_assert(s->init_num == 0); OPENSSL_assert(s->init_off == 0); */ /* XDTLS: the requested message ought to be found, otherwise error */ memset(seq64be, 0, sizeof(seq64be)); seq64be[6] = (unsigned char)(seq >> 8); seq64be[7] = (unsigned char)seq; item = pqueue_find(s->d1->sent_messages, seq64be); if (item == NULL) { fprintf(stderr, "retransmit: message %d non-existant\n", seq); *found = 0; return 0; } *found = 1; frag = (hm_fragment *)item->data; if (frag->msg_header.is_ccs) header_length = DTLS1_CCS_HEADER_LENGTH; else header_length = DTLS1_HM_HEADER_LENGTH; memcpy(s->init_buf->data, frag->fragment, frag->msg_header.msg_len + header_length); s->init_num = frag->msg_header.msg_len + header_length; dtls1_set_message_header_int(s, frag->msg_header.type, frag->msg_header.msg_len, frag->msg_header.seq, 0, frag->msg_header.frag_len); /* save current state */ saved_state.enc_write_ctx = s->enc_write_ctx; saved_state.write_hash = s->write_hash; saved_state.compress = s->compress; saved_state.session = s->session; saved_state.epoch = DTLS_RECORD_LAYER_get_w_epoch(&s->rlayer); s->d1->retransmitting = 1; /* restore state in which the message was originally sent */ s->enc_write_ctx = frag->msg_header.saved_retransmit_state.enc_write_ctx; s->write_hash = frag->msg_header.saved_retransmit_state.write_hash; s->compress = frag->msg_header.saved_retransmit_state.compress; s->session = frag->msg_header.saved_retransmit_state.session; DTLS_RECORD_LAYER_set_w_epoch(&s->rlayer, frag->msg_header.saved_retransmit_state.epoch); if (frag->msg_header.saved_retransmit_state.epoch == saved_state.epoch - 1) { memcpy(save_write_sequence, RECORD_LAYER_get_write_sequence(&s->rlayer), sizeof(save_write_sequence)); RECORD_LAYER_set_write_sequence(&s->rlayer, s->d1->last_write_sequence); } ret = dtls1_do_write(s, frag->msg_header.is_ccs ? SSL3_RT_CHANGE_CIPHER_SPEC : SSL3_RT_HANDSHAKE); /* restore current state */ s->enc_write_ctx = saved_state.enc_write_ctx; s->write_hash = saved_state.write_hash; s->compress = saved_state.compress; s->session = saved_state.session; DTLS_RECORD_LAYER_set_w_epoch(&s->rlayer, saved_state.epoch); if (frag->msg_header.saved_retransmit_state.epoch == saved_state.epoch - 1) { memcpy(s->d1->last_write_sequence, RECORD_LAYER_get_write_sequence(&s->rlayer), sizeof(s->d1->last_write_sequence)); RECORD_LAYER_set_write_sequence(&s->rlayer, save_write_sequence); } s->d1->retransmitting = 0; (void)BIO_flush(SSL_get_wbio(s)); return ret; } /* call this function when the buffered messages are no longer needed */ void dtls1_clear_record_buffer(SSL *s) { pitem *item; for (item = pqueue_pop(s->d1->sent_messages); item != NULL; item = pqueue_pop(s->d1->sent_messages)) { dtls1_hm_fragment_free((hm_fragment *)item->data); pitem_free(item); } } void dtls1_set_message_header(SSL *s, unsigned char *p, unsigned char mt, unsigned long len, unsigned long frag_off, unsigned long frag_len) { /* Don't change sequence numbers while listening */ if (frag_off == 0 && !s->d1->listen) { s->d1->handshake_write_seq = s->d1->next_handshake_write_seq; s->d1->next_handshake_write_seq++; } dtls1_set_message_header_int(s, mt, len, s->d1->handshake_write_seq, frag_off, frag_len); } /* don't actually do the writing, wait till the MTU has been retrieved */ static void dtls1_set_message_header_int(SSL *s, unsigned char mt, unsigned long len, unsigned short seq_num, unsigned long frag_off, unsigned long frag_len) { struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr; msg_hdr->type = mt; msg_hdr->msg_len = len; msg_hdr->seq = seq_num; msg_hdr->frag_off = frag_off; msg_hdr->frag_len = frag_len; } static void dtls1_fix_message_header(SSL *s, unsigned long frag_off, unsigned long frag_len) { struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr; msg_hdr->frag_off = frag_off; msg_hdr->frag_len = frag_len; } static unsigned char *dtls1_write_message_header(SSL *s, unsigned char *p) { struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr; *p++ = msg_hdr->type; l2n3(msg_hdr->msg_len, p); s2n(msg_hdr->seq, p); l2n3(msg_hdr->frag_off, p); l2n3(msg_hdr->frag_len, p); return p; } unsigned int dtls1_link_min_mtu(void) { return (g_probable_mtu[(sizeof(g_probable_mtu) / sizeof(g_probable_mtu[0])) - 1]); } unsigned int dtls1_min_mtu(SSL *s) { return dtls1_link_min_mtu() - BIO_dgram_get_mtu_overhead(SSL_get_wbio(s)); } void dtls1_get_message_header(unsigned char *data, struct hm_header_st *msg_hdr) { memset(msg_hdr, 0x00, sizeof(struct hm_header_st)); msg_hdr->type = *(data++); n2l3(data, msg_hdr->msg_len); n2s(data, msg_hdr->seq); n2l3(data, msg_hdr->frag_off); n2l3(data, msg_hdr->frag_len); } void dtls1_get_ccs_header(unsigned char *data, struct ccs_header_st *ccs_hdr) { memset(ccs_hdr, 0x00, sizeof(struct ccs_header_st)); ccs_hdr->type = *(data++); } int dtls1_shutdown(SSL *s) { int ret; #ifndef OPENSSL_NO_SCTP if (BIO_dgram_is_sctp(SSL_get_wbio(s)) && !(s->shutdown & SSL_SENT_SHUTDOWN)) { ret = BIO_dgram_sctp_wait_for_dry(SSL_get_wbio(s)); if (ret < 0) return -1; if (ret == 0) BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_SAVE_SHUTDOWN, 1, NULL); } #endif ret = ssl3_shutdown(s); #ifndef OPENSSL_NO_SCTP BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_SAVE_SHUTDOWN, 0, NULL); #endif return ret; } #ifndef OPENSSL_NO_HEARTBEATS int dtls1_process_heartbeat(SSL *s, unsigned char *p, unsigned int length) { unsigned char *pl; unsigned short hbtype; unsigned int payload; unsigned int padding = 16; /* Use minimum padding */ if (s->msg_callback) s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT, p, length, s, s->msg_callback_arg); /* Read type and payload length first */ if (1 + 2 + 16 > length) return 0; /* silently discard */ if (length > SSL3_RT_MAX_PLAIN_LENGTH) return 0; /* silently discard per RFC 6520 sec. 4 */ hbtype = *p++; n2s(p, payload); if (1 + 2 + payload + 16 > length) return 0; /* silently discard per RFC 6520 sec. 4 */ pl = p; if (hbtype == TLS1_HB_REQUEST) { unsigned char *buffer, *bp; unsigned int write_length = 1 /* heartbeat type */ + 2 /* heartbeat length */ + payload + padding; int r; if (write_length > SSL3_RT_MAX_PLAIN_LENGTH) return 0; /* * Allocate memory for the response, size is 1 byte message type, * plus 2 bytes payload length, plus payload, plus padding */ buffer = OPENSSL_malloc(write_length); if (buffer == NULL) return -1; bp = buffer; /* Enter response type, length and copy payload */ *bp++ = TLS1_HB_RESPONSE; s2n(payload, bp); memcpy(bp, pl, payload); bp += payload; /* Random padding */ if (RAND_bytes(bp, padding) <= 0) { OPENSSL_free(buffer); return -1; } r = dtls1_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, write_length); if (r >= 0 && s->msg_callback) s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT, buffer, write_length, s, s->msg_callback_arg); OPENSSL_free(buffer); if (r < 0) return r; } else if (hbtype == TLS1_HB_RESPONSE) { unsigned int seq; /* * We only send sequence numbers (2 bytes unsigned int), and 16 * random bytes, so we just try to read the sequence number */ n2s(pl, seq); if (payload == 18 && seq == s->tlsext_hb_seq) { dtls1_stop_timer(s); s->tlsext_hb_seq++; s->tlsext_hb_pending = 0; } } return 0; } int dtls1_heartbeat(SSL *s) { unsigned char *buf, *p; int ret = -1; unsigned int payload = 18; /* Sequence number + random bytes */ unsigned int padding = 16; /* Use minimum padding */ /* Only send if peer supports and accepts HB requests... */ if (!(s->tlsext_heartbeat & SSL_TLSEXT_HB_ENABLED) || s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_SEND_REQUESTS) { SSLerr(SSL_F_DTLS1_HEARTBEAT, SSL_R_TLS_HEARTBEAT_PEER_DOESNT_ACCEPT); return -1; } /* ...and there is none in flight yet... */ if (s->tlsext_hb_pending) { SSLerr(SSL_F_DTLS1_HEARTBEAT, SSL_R_TLS_HEARTBEAT_PENDING); return -1; } /* ...and no handshake in progress. */ if (SSL_in_init(s) || s->in_handshake) { SSLerr(SSL_F_DTLS1_HEARTBEAT, SSL_R_UNEXPECTED_MESSAGE); return -1; } /* * Check if padding is too long, payload and padding must not exceed 2^14 * - 3 = 16381 bytes in total. */ OPENSSL_assert(payload + padding <= 16381); /*- * Create HeartBeat message, we just use a sequence number * as payload to distuingish different messages and add * some random stuff. * - Message Type, 1 byte * - Payload Length, 2 bytes (unsigned int) * - Payload, the sequence number (2 bytes uint) * - Payload, random bytes (16 bytes uint) * - Padding */ buf = OPENSSL_malloc(1 + 2 + payload + padding); if (buf == NULL) { SSLerr(SSL_F_DTLS1_HEARTBEAT, ERR_R_MALLOC_FAILURE); return -1; } p = buf; /* Message Type */ *p++ = TLS1_HB_REQUEST; /* Payload length (18 bytes here) */ s2n(payload, p); /* Sequence number */ s2n(s->tlsext_hb_seq, p); /* 16 random bytes */ if (RAND_bytes(p, 16) <= 0) { SSLerr(SSL_F_DTLS1_HEARTBEAT, ERR_R_INTERNAL_ERROR); goto err; } p += 16; /* Random padding */ if (RAND_bytes(p, padding) <= 0) { SSLerr(SSL_F_DTLS1_HEARTBEAT, ERR_R_INTERNAL_ERROR); goto err; } ret = dtls1_write_bytes(s, TLS1_RT_HEARTBEAT, buf, 3 + payload + padding); if (ret >= 0) { if (s->msg_callback) s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT, buf, 3 + payload + padding, s, s->msg_callback_arg); dtls1_start_timer(s); s->tlsext_hb_pending = 1; } err: OPENSSL_free(buf); return ret; } #endif