/* ssl/record/rec_layer_s3.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ #include #include #include #define USE_SOCKETS #include "../ssl_locl.h" #include #include #include #include "record_locl.h" #ifndef EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK # define EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK 0 #endif #if defined(OPENSSL_SMALL_FOOTPRINT) || \ !( defined(AES_ASM) && ( \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined(_M_X64) || \ defined(__INTEL__) ) \ ) # undef EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK # define EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK 0 #endif void RECORD_LAYER_init(RECORD_LAYER *rl, SSL *s) { rl->s = s; SSL3_RECORD_clear(&rl->rrec); SSL3_RECORD_clear(&rl->wrec); } void RECORD_LAYER_clear(RECORD_LAYER *rl) { rl->rstate = SSL_ST_READ_HEADER; /* Do I need to clear read_ahead? As far as I can tell read_ahead did not * previously get reset by SSL_clear...so I'll keep it that way..but is * that right? */ rl->packet = NULL; rl->packet_length = 0; rl->wnum = 0; memset(rl->alert_fragment, 0, sizeof(rl->alert_fragment)); rl->alert_fragment_len = 0; memset(rl->handshake_fragment, 0, sizeof(rl->handshake_fragment)); rl->handshake_fragment_len = 0; rl->wpend_tot = 0; rl->wpend_type = 0; rl->wpend_ret = 0; rl->wpend_buf = NULL; SSL3_BUFFER_clear(&rl->rbuf); SSL3_BUFFER_clear(&rl->wbuf); SSL3_RECORD_clear(&rl->rrec); SSL3_RECORD_clear(&rl->wrec); memset(rl->read_sequence, 0, sizeof(rl->read_sequence)); memset(rl->write_sequence, 0, sizeof(rl->write_sequence)); if (rl->d) DTLS_RECORD_LAYER_clear(rl); } void RECORD_LAYER_release(RECORD_LAYER *rl) { if (SSL3_BUFFER_is_initialised(&rl->rbuf)) ssl3_release_read_buffer(rl->s); if (SSL3_BUFFER_is_initialised(&rl->wbuf)) ssl3_release_write_buffer(rl->s); SSL3_RECORD_release(&rl->rrec); } int RECORD_LAYER_read_pending(RECORD_LAYER *rl) { return SSL3_BUFFER_get_left(&rl->rbuf) != 0; } int RECORD_LAYER_write_pending(RECORD_LAYER *rl) { return SSL3_BUFFER_get_left(&rl->wbuf) != 0; } int RECORD_LAYER_set_data(RECORD_LAYER *rl, const unsigned char *buf, int len) { rl->packet_length = len; if (len != 0) { rl->rstate = SSL_ST_READ_HEADER; if (!SSL3_BUFFER_is_initialised(&rl->rbuf)) if (!ssl3_setup_read_buffer(rl->s)) return 0; } rl->packet = SSL3_BUFFER_get_buf(&rl->rbuf); SSL3_BUFFER_set_data(&rl->rbuf, buf, len); return 1; } void RECORD_LAYER_dup(RECORD_LAYER *dst, RECORD_LAYER *src) { /* * Currently only called from SSL_dup...which only seems to expect the * rstate to be duplicated and nothing else from the RECORD_LAYER??? */ dst->rstate = src->rstate; } void RECORD_LAYER_reset_read_sequence(RECORD_LAYER *rl) { memset(rl->read_sequence, 0, 8); } void RECORD_LAYER_reset_write_sequence(RECORD_LAYER *rl) { memset(rl->write_sequence, 0, 8); } int RECORD_LAYER_setup_comp_buffer(RECORD_LAYER *rl) { return SSL3_RECORD_setup(&(rl)->rrec); } int ssl3_pending(const SSL *s) { if (s->rlayer.rstate == SSL_ST_READ_BODY) return 0; return (SSL3_RECORD_get_type(&s->rlayer.rrec) == SSL3_RT_APPLICATION_DATA) ? SSL3_RECORD_get_length(&s->rlayer.rrec) : 0; } const char *SSL_rstate_string_long(const SSL *s) { const char *str; switch (s->rlayer.rstate) { case SSL_ST_READ_HEADER: str = "read header"; break; case SSL_ST_READ_BODY: str = "read body"; break; case SSL_ST_READ_DONE: str = "read done"; break; default: str = "unknown"; break; } return (str); } const char *SSL_rstate_string(const SSL *s) { const char *str; switch (s->rlayer.rstate) { case SSL_ST_READ_HEADER: str = "RH"; break; case SSL_ST_READ_BODY: str = "RB"; break; case SSL_ST_READ_DONE: str = "RD"; break; default: str = "unknown"; break; } return (str); } int ssl3_read_n(SSL *s, int n, int max, int extend) { /* * If extend == 0, obtain new n-byte packet; if extend == 1, increase * packet by another n bytes. The packet will be in the sub-array of * s->s3->rbuf.buf specified by s->packet and s->packet_length. (If * s->rlayer.read_ahead is set, 'max' bytes may be stored in rbuf [plus * s->packet_length bytes if extend == 1].) */ int i, len, left; long align = 0; unsigned char *pkt; SSL3_BUFFER *rb; if (n <= 0) return n; rb = &s->rlayer.rbuf; if (rb->buf == NULL) if (!ssl3_setup_read_buffer(s)) return -1; left = rb->left; #if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0 align = (long)rb->buf + SSL3_RT_HEADER_LENGTH; align = (-align) & (SSL3_ALIGN_PAYLOAD - 1); #endif if (!extend) { /* start with empty packet ... */ if (left == 0) rb->offset = align; else if (align != 0 && left >= SSL3_RT_HEADER_LENGTH) { /* * check if next packet length is large enough to justify payload * alignment... */ pkt = rb->buf + rb->offset; if (pkt[0] == SSL3_RT_APPLICATION_DATA && (pkt[3] << 8 | pkt[4]) >= 128) { /* * Note that even if packet is corrupted and its length field * is insane, we can only be led to wrong decision about * whether memmove will occur or not. Header values has no * effect on memmove arguments and therefore no buffer * overrun can be triggered. */ memmove(rb->buf + align, pkt, left); rb->offset = align; } } s->rlayer.packet = rb->buf + rb->offset; s->rlayer.packet_length = 0; /* ... now we can act as if 'extend' was set */ } /* * For DTLS/UDP reads should not span multiple packets because the read * operation returns the whole packet at once (as long as it fits into * the buffer). */ if (SSL_IS_DTLS(s)) { if (left == 0 && extend) return 0; if (left > 0 && n > left) n = left; } /* if there is enough in the buffer from a previous read, take some */ if (left >= n) { s->rlayer.packet_length += n; rb->left = left - n; rb->offset += n; return (n); } /* else we need to read more data */ len = s->rlayer.packet_length; pkt = rb->buf + align; /* * Move any available bytes to front of buffer: 'len' bytes already * pointed to by 'packet', 'left' extra ones at the end */ if (s->rlayer.packet != pkt) { /* len > 0 */ memmove(pkt, s->rlayer.packet, len + left); s->rlayer.packet = pkt; rb->offset = len + align; } if (n > (int)(rb->len - rb->offset)) { /* does not happen */ SSLerr(SSL_F_SSL3_READ_N, ERR_R_INTERNAL_ERROR); return -1; } /* We always act like read_ahead is set for DTLS */ if (!s->rlayer.read_ahead && !SSL_IS_DTLS(s)) /* ignore max parameter */ max = n; else { if (max < n) max = n; if (max > (int)(rb->len - rb->offset)) max = rb->len - rb->offset; } while (left < n) { /* * Now we have len+left bytes at the front of s->s3->rbuf.buf and * need to read in more until we have len+n (up to len+max if * possible) */ clear_sys_error(); if (s->rbio != NULL) { s->rwstate = SSL_READING; i = BIO_read(s->rbio, pkt + len + left, max - left); } else { SSLerr(SSL_F_SSL3_READ_N, SSL_R_READ_BIO_NOT_SET); i = -1; } if (i <= 0) { rb->left = left; if (s->mode & SSL_MODE_RELEASE_BUFFERS && !SSL_IS_DTLS(s)) if (len + left == 0) ssl3_release_read_buffer(s); return (i); } left += i; /* * reads should *never* span multiple packets for DTLS because the * underlying transport protocol is message oriented as opposed to * byte oriented as in the TLS case. */ if (SSL_IS_DTLS(s)) { if (n > left) n = left; /* makes the while condition false */ } } /* done reading, now the book-keeping */ rb->offset += n; rb->left = left - n; s->rlayer.packet_length += n; s->rwstate = SSL_NOTHING; return (n); } /* * Call this to write data in records of type 'type' It will return <= 0 if * not all data has been sent or non-blocking IO. */ int ssl3_write_bytes(SSL *s, int type, const void *buf_, int len) { const unsigned char *buf = buf_; int tot; unsigned int n, nw; #if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK unsigned int max_send_fragment; unsigned int u_len = (unsigned int)len; #endif SSL3_BUFFER *wb = &s->rlayer.wbuf; int i; if (len < 0) { SSLerr(SSL_F_SSL3_WRITE_BYTES, SSL_R_SSL_NEGATIVE_LENGTH); return -1; } s->rwstate = SSL_NOTHING; OPENSSL_assert(s->rlayer.wnum <= INT_MAX); tot = s->rlayer.wnum; s->rlayer.wnum = 0; if (SSL_in_init(s) && !s->in_handshake) { i = s->handshake_func(s); if (i < 0) return (i); if (i == 0) { SSLerr(SSL_F_SSL3_WRITE_BYTES, SSL_R_SSL_HANDSHAKE_FAILURE); return -1; } } /* * ensure that if we end up with a smaller value of data to write out * than the the original len from a write which didn't complete for * non-blocking I/O and also somehow ended up avoiding the check for * this in ssl3_write_pending/SSL_R_BAD_WRITE_RETRY as it must never be * possible to end up with (len-tot) as a large number that will then * promptly send beyond the end of the users buffer ... so we trap and * report the error in a way the user will notice */ if (len < tot) { SSLerr(SSL_F_SSL3_WRITE_BYTES, SSL_R_BAD_LENGTH); return (-1); } /* * first check if there is a SSL3_BUFFER still being written out. This * will happen with non blocking IO */ if (wb->left != 0) { i = ssl3_write_pending(s, type, &buf[tot], s->rlayer.wpend_tot); if (i <= 0) { /* XXX should we ssl3_release_write_buffer if i<0? */ s->rlayer.wnum = tot; return i; } tot += i; /* this might be last fragment */ } #if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK /* * Depending on platform multi-block can deliver several *times* * better performance. Downside is that it has to allocate * jumbo buffer to accomodate up to 8 records, but the * compromise is considered worthy. */ if (type == SSL3_RT_APPLICATION_DATA && u_len >= 4 * (max_send_fragment = s->max_send_fragment) && s->compress == NULL && s->msg_callback == NULL && !SSL_USE_ETM(s) && SSL_USE_EXPLICIT_IV(s) && EVP_CIPHER_flags(s->enc_write_ctx->cipher) & EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK) { unsigned char aad[13]; EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param; int packlen; /* minimize address aliasing conflicts */ if ((max_send_fragment & 0xfff) == 0) max_send_fragment -= 512; if (tot == 0 || wb->buf == NULL) { /* allocate jumbo buffer */ ssl3_release_write_buffer(s); packlen = EVP_CIPHER_CTX_ctrl(s->enc_write_ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE, max_send_fragment, NULL); if (u_len >= 8 * max_send_fragment) packlen *= 8; else packlen *= 4; wb->buf = OPENSSL_malloc(packlen); if (!wb->buf) { SSLerr(SSL_F_SSL3_WRITE_BYTES, ERR_R_MALLOC_FAILURE); return -1; } wb->len = packlen; } else if (tot == len) { /* done? */ OPENSSL_free(wb->buf); /* free jumbo buffer */ wb->buf = NULL; return tot; } n = (len - tot); for (;;) { if (n < 4 * max_send_fragment) { OPENSSL_free(wb->buf); /* free jumbo buffer */ wb->buf = NULL; break; } if (s->s3->alert_dispatch) { i = s->method->ssl_dispatch_alert(s); if (i <= 0) { s->rlayer.wnum = tot; return i; } } if (n >= 8 * max_send_fragment) nw = max_send_fragment * (mb_param.interleave = 8); else nw = max_send_fragment * (mb_param.interleave = 4); memcpy(aad, s->rlayer.write_sequence, 8); aad[8] = type; aad[9] = (unsigned char)(s->version >> 8); aad[10] = (unsigned char)(s->version); aad[11] = 0; aad[12] = 0; mb_param.out = NULL; mb_param.inp = aad; mb_param.len = nw; packlen = EVP_CIPHER_CTX_ctrl(s->enc_write_ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD, sizeof(mb_param), &mb_param); if (packlen <= 0 || packlen > (int)wb->len) { /* never happens */ OPENSSL_free(wb->buf); /* free jumbo buffer */ wb->buf = NULL; break; } mb_param.out = wb->buf; mb_param.inp = &buf[tot]; mb_param.len = nw; if (EVP_CIPHER_CTX_ctrl(s->enc_write_ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT, sizeof(mb_param), &mb_param) <= 0) return -1; s->rlayer.write_sequence[7] += mb_param.interleave; if (s->rlayer.write_sequence[7] < mb_param.interleave) { int j = 6; while (j >= 0 && (++s->rlayer.write_sequence[j--]) == 0) ; } wb->offset = 0; wb->left = packlen; s->rlayer.wpend_tot = nw; s->rlayer.wpend_buf = &buf[tot]; s->rlayer.wpend_type = type; s->rlayer.wpend_ret = nw; i = ssl3_write_pending(s, type, &buf[tot], nw); if (i <= 0) { if (i < 0 && (!s->wbio || !BIO_should_retry(s->wbio))) { OPENSSL_free(wb->buf); wb->buf = NULL; } s->rlayer.wnum = tot; return i; } if (i == (int)n) { OPENSSL_free(wb->buf); /* free jumbo buffer */ wb->buf = NULL; return tot + i; } n -= i; tot += i; } } else #endif if (tot == len) { /* done? */ if (s->mode & SSL_MODE_RELEASE_BUFFERS && !SSL_IS_DTLS(s)) ssl3_release_write_buffer(s); return tot; } n = (len - tot); for (;;) { if (n > s->max_send_fragment) nw = s->max_send_fragment; else nw = n; i = do_ssl3_write(s, type, &(buf[tot]), nw, 0); if (i <= 0) { /* XXX should we ssl3_release_write_buffer if i<0? */ s->rlayer.wnum = tot; return i; } if ((i == (int)n) || (type == SSL3_RT_APPLICATION_DATA && (s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE))) { /* * next chunk of data should get another prepended empty fragment * in ciphersuites with known-IV weakness: */ s->s3->empty_fragment_done = 0; if ((i == (int)n) && s->mode & SSL_MODE_RELEASE_BUFFERS && !SSL_IS_DTLS(s)) ssl3_release_write_buffer(s); return tot + i; } n -= i; tot += i; } } int do_ssl3_write(SSL *s, int type, const unsigned char *buf, unsigned int len, int create_empty_fragment) { unsigned char *p, *plen; int i, mac_size, clear = 0; int prefix_len = 0; int eivlen; long align = 0; SSL3_RECORD *wr; SSL3_BUFFER *wb = &s->rlayer.wbuf; SSL_SESSION *sess; /* * first check if there is a SSL3_BUFFER still being written out. This * will happen with non blocking IO */ if (SSL3_BUFFER_get_left(wb) != 0) return (ssl3_write_pending(s, type, buf, len)); /* If we have an alert to send, lets send it */ if (s->s3->alert_dispatch) { i = s->method->ssl_dispatch_alert(s); if (i <= 0) return (i); /* if it went, fall through and send more stuff */ } if (!SSL3_BUFFER_is_initialised(wb)) if (!ssl3_setup_write_buffer(s)) return -1; if (len == 0 && !create_empty_fragment) return 0; wr = &s->rlayer.wrec; sess = s->session; if ((sess == NULL) || (s->enc_write_ctx == NULL) || (EVP_MD_CTX_md(s->write_hash) == NULL)) { clear = s->enc_write_ctx ? 0 : 1; /* must be AEAD cipher */ mac_size = 0; } else { mac_size = EVP_MD_CTX_size(s->write_hash); if (mac_size < 0) goto err; } /* * 'create_empty_fragment' is true only when this function calls itself */ if (!clear && !create_empty_fragment && !s->s3->empty_fragment_done) { /* * countermeasure against known-IV weakness in CBC ciphersuites (see * http://www.openssl.org/~bodo/tls-cbc.txt) */ if (s->s3->need_empty_fragments && type == SSL3_RT_APPLICATION_DATA) { /* * recursive function call with 'create_empty_fragment' set; this * prepares and buffers the data for an empty fragment (these * 'prefix_len' bytes are sent out later together with the actual * payload) */ prefix_len = do_ssl3_write(s, type, buf, 0, 1); if (prefix_len <= 0) goto err; if (prefix_len > (SSL3_RT_HEADER_LENGTH + SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD)) { /* insufficient space */ SSLerr(SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR); goto err; } } s->s3->empty_fragment_done = 1; } if (create_empty_fragment) { #if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0 /* * extra fragment would be couple of cipher blocks, which would be * multiple of SSL3_ALIGN_PAYLOAD, so if we want to align the real * payload, then we can just pretent we simply have two headers. */ align = (long)SSL3_BUFFER_get_buf(wb) + 2 * SSL3_RT_HEADER_LENGTH; align = (-align) & (SSL3_ALIGN_PAYLOAD - 1); #endif p = SSL3_BUFFER_get_buf(wb) + align; SSL3_BUFFER_set_offset(wb, align); } else if (prefix_len) { p = SSL3_BUFFER_get_buf(wb) + SSL3_BUFFER_get_offset(wb) + prefix_len; } else { #if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0 align = (long)SSL3_BUFFER_get_buf(wb) + SSL3_RT_HEADER_LENGTH; align = (-align) & (SSL3_ALIGN_PAYLOAD - 1); #endif p = SSL3_BUFFER_get_buf(wb) + align; SSL3_BUFFER_set_offset(wb, align); } /* write the header */ *(p++) = type & 0xff; SSL3_RECORD_set_type(wr, type); *(p++) = (s->version >> 8); /* * Some servers hang if iniatial client hello is larger than 256 bytes * and record version number > TLS 1.0 */ if (s->state == SSL3_ST_CW_CLNT_HELLO_B && !s->renegotiate && TLS1_get_version(s) > TLS1_VERSION) *(p++) = 0x1; else *(p++) = s->version & 0xff; /* field where we are to write out packet length */ plen = p; p += 2; /* Explicit IV length, block ciphers appropriate version flag */ if (s->enc_write_ctx && SSL_USE_EXPLICIT_IV(s)) { int mode = EVP_CIPHER_CTX_mode(s->enc_write_ctx); if (mode == EVP_CIPH_CBC_MODE) { eivlen = EVP_CIPHER_CTX_iv_length(s->enc_write_ctx); if (eivlen <= 1) eivlen = 0; } /* Need explicit part of IV for GCM mode */ else if (mode == EVP_CIPH_GCM_MODE) eivlen = EVP_GCM_TLS_EXPLICIT_IV_LEN; else eivlen = 0; } else eivlen = 0; /* lets setup the record stuff. */ SSL3_RECORD_set_data(wr, p + eivlen); SSL3_RECORD_set_length(wr, (int)len); SSL3_RECORD_set_input(wr, (unsigned char *)buf); /* * we now 'read' from wr->input, wr->length bytes into wr->data */ /* first we compress */ if (s->compress != NULL) { if (!ssl3_do_compress(s)) { SSLerr(SSL_F_DO_SSL3_WRITE, SSL_R_COMPRESSION_FAILURE); goto err; } } else { memcpy(wr->data, wr->input, wr->length); SSL3_RECORD_reset_input(wr); } /* * we should still have the output to wr->data and the input from * wr->input. Length should be wr->length. wr->data still points in the * wb->buf */ if (!SSL_USE_ETM(s) && mac_size != 0) { if (s->method->ssl3_enc->mac(s, &(p[wr->length + eivlen]), 1) < 0) goto err; SSL3_RECORD_add_length(wr, mac_size); } SSL3_RECORD_set_data(wr, p); SSL3_RECORD_reset_input(wr); if (eivlen) { /* * if (RAND_pseudo_bytes(p, eivlen) <= 0) goto err; */ SSL3_RECORD_add_length(wr, eivlen); } if (s->method->ssl3_enc->enc(s, 1) < 1) goto err; if (SSL_USE_ETM(s) && mac_size != 0) { if (s->method->ssl3_enc->mac(s, p + wr->length, 1) < 0) goto err; SSL3_RECORD_add_length(wr, mac_size); } /* record length after mac and block padding */ s2n(SSL3_RECORD_get_length(wr), plen); if (s->msg_callback) s->msg_callback(1, 0, SSL3_RT_HEADER, plen - 5, 5, s, s->msg_callback_arg); /* * we should now have wr->data pointing to the encrypted data, which is * wr->length long */ SSL3_RECORD_set_type(wr, type); /* not needed but helps for debugging */ SSL3_RECORD_add_length(wr, SSL3_RT_HEADER_LENGTH); if (create_empty_fragment) { /* * we are in a recursive call; just return the length, don't write * out anything here */ return SSL3_RECORD_get_length(wr); } /* now let's set up wb */ SSL3_BUFFER_set_left(wb, prefix_len + SSL3_RECORD_get_length(wr)); /* * memorize arguments so that ssl3_write_pending can detect bad write * retries later */ s->rlayer.wpend_tot = len; s->rlayer.wpend_buf = buf; s->rlayer.wpend_type = type; s->rlayer.wpend_ret = len; /* we now just need to write the buffer */ return ssl3_write_pending(s, type, buf, len); err: return -1; } /* if s->s3->wbuf.left != 0, we need to call this */ int ssl3_write_pending(SSL *s, int type, const unsigned char *buf, unsigned int len) { int i; SSL3_BUFFER *wb = &s->rlayer.wbuf; /* XXXX */ if ((s->rlayer.wpend_tot > (int)len) || ((s->rlayer.wpend_buf != buf) && !(s->mode & SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER)) || (s->rlayer.wpend_type != type)) { SSLerr(SSL_F_SSL3_WRITE_PENDING, SSL_R_BAD_WRITE_RETRY); return (-1); } for (;;) { clear_sys_error(); if (s->wbio != NULL) { s->rwstate = SSL_WRITING; i = BIO_write(s->wbio, (char *)&(SSL3_BUFFER_get_buf(wb)[SSL3_BUFFER_get_offset(wb)]), (unsigned int)SSL3_BUFFER_get_left(wb)); } else { SSLerr(SSL_F_SSL3_WRITE_PENDING, SSL_R_BIO_NOT_SET); i = -1; } if (i == SSL3_BUFFER_get_left(wb)) { SSL3_BUFFER_set_left(wb, 0); SSL3_BUFFER_add_offset(wb, i); s->rwstate = SSL_NOTHING; return (s->rlayer.wpend_ret); } else if (i <= 0) { if (SSL_IS_DTLS(s)) { /* * For DTLS, just drop it. That's kind of the whole point in * using a datagram service */ SSL3_BUFFER_set_left(wb, 0); } return (i); } SSL3_BUFFER_add_offset(wb, i); SSL3_BUFFER_add_left(wb, -i); } } /*- * Return up to 'len' payload bytes received in 'type' records. * 'type' is one of the following: * * - SSL3_RT_HANDSHAKE (when ssl3_get_message calls us) * - SSL3_RT_APPLICATION_DATA (when ssl3_read calls us) * - 0 (during a shutdown, no data has to be returned) * * If we don't have stored data to work from, read a SSL/TLS record first * (possibly multiple records if we still don't have anything to return). * * This function must handle any surprises the peer may have for us, such as * Alert records (e.g. close_notify), ChangeCipherSpec records (not really * a surprise, but handled as if it were), or renegotiation requests. * Also if record payloads contain fragments too small to process, we store * them until there is enough for the respective protocol (the record protocol * may use arbitrary fragmentation and even interleaving): * Change cipher spec protocol * just 1 byte needed, no need for keeping anything stored * Alert protocol * 2 bytes needed (AlertLevel, AlertDescription) * Handshake protocol * 4 bytes needed (HandshakeType, uint24 length) -- we just have * to detect unexpected Client Hello and Hello Request messages * here, anything else is handled by higher layers * Application data protocol * none of our business */ int ssl3_read_bytes(SSL *s, int type, unsigned char *buf, int len, int peek) { int al, i, j, ret; unsigned int n; SSL3_RECORD *rr; void (*cb) (const SSL *ssl, int type2, int val) = NULL; if (!SSL3_BUFFER_is_initialised(&s->rlayer.rbuf)) { /* Not initialized yet */ if (!ssl3_setup_read_buffer(s)) return (-1); } if ((type && (type != SSL3_RT_APPLICATION_DATA) && (type != SSL3_RT_HANDSHAKE)) || (peek && (type != SSL3_RT_APPLICATION_DATA))) { SSLerr(SSL_F_SSL3_READ_BYTES, ERR_R_INTERNAL_ERROR); return -1; } if ((type == SSL3_RT_HANDSHAKE) && (s->rlayer.handshake_fragment_len > 0)) /* (partially) satisfy request from storage */ { unsigned char *src = s->rlayer.handshake_fragment; unsigned char *dst = buf; unsigned int k; /* peek == 0 */ n = 0; while ((len > 0) && (s->rlayer.handshake_fragment_len > 0)) { *dst++ = *src++; len--; s->rlayer.handshake_fragment_len--; n++; } /* move any remaining fragment bytes: */ for (k = 0; k < s->rlayer.handshake_fragment_len; k++) s->rlayer.handshake_fragment[k] = *src++; return n; } /* * Now s->rlayer.handshake_fragment_len == 0 if type == SSL3_RT_HANDSHAKE. */ if (!s->in_handshake && SSL_in_init(s)) { /* type == SSL3_RT_APPLICATION_DATA */ i = s->handshake_func(s); if (i < 0) return (i); if (i == 0) { SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_SSL_HANDSHAKE_FAILURE); return (-1); } } start: s->rwstate = SSL_NOTHING; /*- * s->s3->rrec.type - is the type of record * s->s3->rrec.data, - data * s->s3->rrec.off, - offset into 'data' for next read * s->s3->rrec.length, - number of bytes. */ rr = &s->rlayer.rrec; /* get new packet if necessary */ if ((SSL3_RECORD_get_length(rr) == 0) || (s->rlayer.rstate == SSL_ST_READ_BODY)) { ret = ssl3_get_record(s); if (ret <= 0) return (ret); } /* we now have a packet which can be read and processed */ if (s->s3->change_cipher_spec /* set when we receive ChangeCipherSpec, * reset by ssl3_get_finished */ && (SSL3_RECORD_get_type(rr) != SSL3_RT_HANDSHAKE)) { al = SSL_AD_UNEXPECTED_MESSAGE; SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_DATA_BETWEEN_CCS_AND_FINISHED); goto f_err; } /* * If the other end has shut down, throw anything we read away (even in * 'peek' mode) */ if (s->shutdown & SSL_RECEIVED_SHUTDOWN) { SSL3_RECORD_set_length(rr, 0); s->rwstate = SSL_NOTHING; return (0); } if (type == SSL3_RECORD_get_type(rr)) { /* SSL3_RT_APPLICATION_DATA or * SSL3_RT_HANDSHAKE */ /* * make sure that we are not getting application data when we are * doing a handshake for the first time */ if (SSL_in_init(s) && (type == SSL3_RT_APPLICATION_DATA) && (s->enc_read_ctx == NULL)) { al = SSL_AD_UNEXPECTED_MESSAGE; SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_APP_DATA_IN_HANDSHAKE); goto f_err; } if (len <= 0) return (len); if ((unsigned int)len > SSL3_RECORD_get_length(rr)) n = SSL3_RECORD_get_length(rr); else n = (unsigned int)len; memcpy(buf, &(rr->data[rr->off]), n); if (!peek) { SSL3_RECORD_add_length(rr, -n); SSL3_RECORD_add_off(rr, n); if (SSL3_RECORD_get_length(rr) == 0) { s->rlayer.rstate = SSL_ST_READ_HEADER; SSL3_RECORD_set_off(rr, 0); if (s->mode & SSL_MODE_RELEASE_BUFFERS && SSL3_BUFFER_get_left(&s->rlayer.rbuf) == 0) ssl3_release_read_buffer(s); } } return (n); } /* * If we get here, then type != rr->type; if we have a handshake message, * then it was unexpected (Hello Request or Client Hello). */ /* * Lets just double check that we've not got an SSLv2 record */ if (rr->rec_version == SSL2_VERSION) { /* * Should never happen. ssl3_get_record() should only give us an SSLv2 * record back if this is the first packet and we are looking for an * initial ClientHello. Therefore |type| should always be equal to * |rr->type|. If not then something has gone horribly wrong */ al = SSL_AD_INTERNAL_ERROR; SSLerr(SSL_F_SSL3_READ_BYTES, ERR_R_INTERNAL_ERROR); goto f_err; } if(s->method->version == TLS_ANY_VERSION && (s->server || rr->type != SSL3_RT_ALERT)) { /* * If we've got this far and still haven't decided on what version * we're using then this must be a client side alert we're dealing with * (we don't allow heartbeats yet). We shouldn't be receiving anything * other than a ClientHello if we are a server. */ s->version = rr->rec_version; al = SSL_AD_UNEXPECTED_MESSAGE; SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_UNEXPECTED_MESSAGE); goto f_err; } /* * In case of record types for which we have 'fragment' storage, fill * that so that we can process the data at a fixed place. */ { unsigned int dest_maxlen = 0; unsigned char *dest = NULL; unsigned int *dest_len = NULL; if (SSL3_RECORD_get_type(rr) == SSL3_RT_HANDSHAKE) { dest_maxlen = sizeof s->rlayer.handshake_fragment; dest = s->rlayer.handshake_fragment; dest_len = &s->rlayer.handshake_fragment_len; } else if (SSL3_RECORD_get_type(rr) == SSL3_RT_ALERT) { dest_maxlen = sizeof s->rlayer.alert_fragment; dest = s->rlayer.alert_fragment; dest_len = &s->rlayer.alert_fragment_len; } #ifndef OPENSSL_NO_HEARTBEATS else if (SSL3_RECORD_get_type(rr)== TLS1_RT_HEARTBEAT) { /* We can ignore 0 return values */ if (tls1_process_heartbeat(s, SSL3_RECORD_get_data(rr), SSL3_RECORD_get_length(rr)) < 0) { return -1; } /* Exit and notify application to read again */ SSL3_RECORD_set_length(rr, 0); s->rwstate = SSL_READING; BIO_clear_retry_flags(SSL_get_rbio(s)); BIO_set_retry_read(SSL_get_rbio(s)); return (-1); } #endif if (dest_maxlen > 0) { n = dest_maxlen - *dest_len; /* available space in 'dest' */ if (SSL3_RECORD_get_length(rr) < n) n = SSL3_RECORD_get_length(rr); /* available bytes */ /* now move 'n' bytes: */ while (n-- > 0) { dest[(*dest_len)++] = SSL3_RECORD_get_data(rr)[SSL3_RECORD_get_off(rr)]; SSL3_RECORD_add_off(rr, 1); SSL3_RECORD_add_length(rr, -1); } if (*dest_len < dest_maxlen) goto start; /* fragment was too small */ } } /*- * s->rlayer.handshake_fragment_len == 4 iff rr->type == SSL3_RT_HANDSHAKE; * s->rlayer.alert_fragment_len == 2 iff rr->type == SSL3_RT_ALERT. * (Possibly rr is 'empty' now, i.e. rr->length may be 0.) */ /* If we are a client, check for an incoming 'Hello Request': */ if ((!s->server) && (s->rlayer.handshake_fragment_len >= 4) && (s->rlayer.handshake_fragment[0] == SSL3_MT_HELLO_REQUEST) && (s->session != NULL) && (s->session->cipher != NULL)) { s->rlayer.handshake_fragment_len = 0; if ((s->rlayer.handshake_fragment[1] != 0) || (s->rlayer.handshake_fragment[2] != 0) || (s->rlayer.handshake_fragment[3] != 0)) { al = SSL_AD_DECODE_ERROR; SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_BAD_HELLO_REQUEST); goto f_err; } if (s->msg_callback) s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE, s->rlayer.handshake_fragment, 4, s, s->msg_callback_arg); if (SSL_is_init_finished(s) && !(s->s3->flags & SSL3_FLAGS_NO_RENEGOTIATE_CIPHERS) && !s->s3->renegotiate) { ssl3_renegotiate(s); if (ssl3_renegotiate_check(s)) { i = s->handshake_func(s); if (i < 0) return (i); if (i == 0) { SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_SSL_HANDSHAKE_FAILURE); return (-1); } if (!(s->mode & SSL_MODE_AUTO_RETRY)) { if (SSL3_BUFFER_get_left(&s->rlayer.rbuf) == 0) { /* no read-ahead left? */ BIO *bio; /* * In the case where we try to read application data, * but we trigger an SSL handshake, we return -1 with * the retry option set. Otherwise renegotiation may * cause nasty problems in the blocking world */ s->rwstate = SSL_READING; bio = SSL_get_rbio(s); BIO_clear_retry_flags(bio); BIO_set_retry_read(bio); return (-1); } } } } /* * we either finished a handshake or ignored the request, now try * again to obtain the (application) data we were asked for */ goto start; } /* * If we are a server and get a client hello when renegotiation isn't * allowed send back a no renegotiation alert and carry on. WARNING: * experimental code, needs reviewing (steve) */ if (s->server && SSL_is_init_finished(s) && !s->s3->send_connection_binding && (s->version > SSL3_VERSION) && (s->rlayer.handshake_fragment_len >= 4) && (s->rlayer.handshake_fragment[0] == SSL3_MT_CLIENT_HELLO) && (s->session != NULL) && (s->session->cipher != NULL) && !(s->ctx->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) { SSL3_RECORD_set_length(rr, 0); ssl3_send_alert(s, SSL3_AL_WARNING, SSL_AD_NO_RENEGOTIATION); goto start; } if (s->rlayer.alert_fragment_len >= 2) { int alert_level = s->rlayer.alert_fragment[0]; int alert_descr = s->rlayer.alert_fragment[1]; s->rlayer.alert_fragment_len = 0; if (s->msg_callback) s->msg_callback(0, s->version, SSL3_RT_ALERT, s->rlayer.alert_fragment, 2, s, s->msg_callback_arg); if (s->info_callback != NULL) cb = s->info_callback; else if (s->ctx->info_callback != NULL) cb = s->ctx->info_callback; if (cb != NULL) { j = (alert_level << 8) | alert_descr; cb(s, SSL_CB_READ_ALERT, j); } if (alert_level == SSL3_AL_WARNING) { s->s3->warn_alert = alert_descr; if (alert_descr == SSL_AD_CLOSE_NOTIFY) { s->shutdown |= SSL_RECEIVED_SHUTDOWN; return (0); } /* * This is a warning but we receive it if we requested * renegotiation and the peer denied it. Terminate with a fatal * alert because if application tried to renegotiatie it * presumably had a good reason and expects it to succeed. In * future we might have a renegotiation where we don't care if * the peer refused it where we carry on. */ else if (alert_descr == SSL_AD_NO_RENEGOTIATION) { al = SSL_AD_HANDSHAKE_FAILURE; SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_NO_RENEGOTIATION); goto f_err; } #ifdef SSL_AD_MISSING_SRP_USERNAME else if (alert_descr == SSL_AD_MISSING_SRP_USERNAME) return (0); #endif } else if (alert_level == SSL3_AL_FATAL) { char tmp[16]; s->rwstate = SSL_NOTHING; s->s3->fatal_alert = alert_descr; SSLerr(SSL_F_SSL3_READ_BYTES, SSL_AD_REASON_OFFSET + alert_descr); BIO_snprintf(tmp, sizeof tmp, "%d", alert_descr); ERR_add_error_data(2, "SSL alert number ", tmp); s->shutdown |= SSL_RECEIVED_SHUTDOWN; SSL_CTX_remove_session(s->ctx, s->session); return (0); } else { al = SSL_AD_ILLEGAL_PARAMETER; SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_UNKNOWN_ALERT_TYPE); goto f_err; } goto start; } if (s->shutdown & SSL_SENT_SHUTDOWN) { /* but we have not received a * shutdown */ s->rwstate = SSL_NOTHING; SSL3_RECORD_set_length(rr, 0); return (0); } if (SSL3_RECORD_get_type(rr) == SSL3_RT_CHANGE_CIPHER_SPEC) { /* * 'Change Cipher Spec' is just a single byte, so we know exactly * what the record payload has to look like */ if ((SSL3_RECORD_get_length(rr) != 1) || (SSL3_RECORD_get_off(rr) != 0) || (SSL3_RECORD_get_data(rr)[0] != SSL3_MT_CCS)) { al = SSL_AD_ILLEGAL_PARAMETER; SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_BAD_CHANGE_CIPHER_SPEC); goto f_err; } /* Check we have a cipher to change to */ if (s->s3->tmp.new_cipher == NULL) { al = SSL_AD_UNEXPECTED_MESSAGE; SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_CCS_RECEIVED_EARLY); goto f_err; } if (!(s->s3->flags & SSL3_FLAGS_CCS_OK)) { al = SSL_AD_UNEXPECTED_MESSAGE; SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_CCS_RECEIVED_EARLY); goto f_err; } s->s3->flags &= ~SSL3_FLAGS_CCS_OK; SSL3_RECORD_set_length(rr, 0); if (s->msg_callback) s->msg_callback(0, s->version, SSL3_RT_CHANGE_CIPHER_SPEC, SSL3_RECORD_get_data(rr), 1, s, s->msg_callback_arg); s->s3->change_cipher_spec = 1; if (!ssl3_do_change_cipher_spec(s)) goto err; else goto start; } /* * Unexpected handshake message (Client Hello, or protocol violation) */ if ((s->rlayer.handshake_fragment_len >= 4) && !s->in_handshake) { if (((s->state & SSL_ST_MASK) == SSL_ST_OK) && !(s->s3->flags & SSL3_FLAGS_NO_RENEGOTIATE_CIPHERS)) { s->state = s->server ? SSL_ST_ACCEPT : SSL_ST_CONNECT; s->renegotiate = 1; s->new_session = 1; } i = s->handshake_func(s); if (i < 0) return (i); if (i == 0) { SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_SSL_HANDSHAKE_FAILURE); return (-1); } if (!(s->mode & SSL_MODE_AUTO_RETRY)) { if (SSL3_BUFFER_get_left(&s->rlayer.rbuf) == 0) { /* no read-ahead left? */ BIO *bio; /* * In the case where we try to read application data, but we * trigger an SSL handshake, we return -1 with the retry * option set. Otherwise renegotiation may cause nasty * problems in the blocking world */ s->rwstate = SSL_READING; bio = SSL_get_rbio(s); BIO_clear_retry_flags(bio); BIO_set_retry_read(bio); return (-1); } } goto start; } switch (SSL3_RECORD_get_type(rr)) { default: /* * TLS up to v1.1 just ignores unknown message types: TLS v1.2 give * an unexpected message alert. */ if (s->version >= TLS1_VERSION && s->version <= TLS1_1_VERSION) { SSL3_RECORD_set_length(rr, 0); goto start; } al = SSL_AD_UNEXPECTED_MESSAGE; SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_UNEXPECTED_RECORD); goto f_err; case SSL3_RT_CHANGE_CIPHER_SPEC: case SSL3_RT_ALERT: case SSL3_RT_HANDSHAKE: /* * we already handled all of these, with the possible exception of * SSL3_RT_HANDSHAKE when s->in_handshake is set, but that should not * happen when type != rr->type */ al = SSL_AD_UNEXPECTED_MESSAGE; SSLerr(SSL_F_SSL3_READ_BYTES, ERR_R_INTERNAL_ERROR); goto f_err; case SSL3_RT_APPLICATION_DATA: /* * At this point, we were expecting handshake data, but have * application data. If the library was running inside ssl3_read() * (i.e. in_read_app_data is set) and it makes sense to read * application data at this point (session renegotiation not yet * started), we will indulge it. */ if (s->s3->in_read_app_data && (s->s3->total_renegotiations != 0) && (((s->state & SSL_ST_CONNECT) && (s->state >= SSL3_ST_CW_CLNT_HELLO_A) && (s->state <= SSL3_ST_CR_SRVR_HELLO_A) ) || ((s->state & SSL_ST_ACCEPT) && (s->state <= SSL3_ST_SW_HELLO_REQ_A) && (s->state >= SSL3_ST_SR_CLNT_HELLO_A) ) )) { s->s3->in_read_app_data = 2; return (-1); } else { al = SSL_AD_UNEXPECTED_MESSAGE; SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_UNEXPECTED_RECORD); goto f_err; } } /* not reached */ f_err: ssl3_send_alert(s, SSL3_AL_FATAL, al); err: return (-1); } void ssl3_record_sequence_update(unsigned char *seq) { int i; for (i = 7; i >= 0; i--) { ++seq[i]; if (seq[i] != 0) break; } } /* * Returns true if the current rrec was sent in SSLv2 backwards compatible * format and false otherwise. */ int RECORD_LAYER_is_sslv2_record(RECORD_LAYER *rl) { return SSL3_RECORD_is_sslv2_record(&rl->rrec); } /* * Returns the length in bytes of the current rrec */ unsigned int RECORD_LAYER_get_rrec_length(RECORD_LAYER *rl) { return SSL3_RECORD_get_length(&rl->rrec); }