/* crypto/md2/md2_dgst.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include const char MD2_version[] = "MD2" OPENSSL_VERSION_PTEXT; /* * Implemented from RFC1319 The MD2 Message-Digest Algorithm */ #define UCHAR unsigned char static void md2_block(MD2_CTX *c, const unsigned char *d); /* * The magic S table - I have converted it to hex since it is basically just * a random byte string. */ static const MD2_INT S[256] = { 0x29, 0x2E, 0x43, 0xC9, 0xA2, 0xD8, 0x7C, 0x01, 0x3D, 0x36, 0x54, 0xA1, 0xEC, 0xF0, 0x06, 0x13, 0x62, 0xA7, 0x05, 0xF3, 0xC0, 0xC7, 0x73, 0x8C, 0x98, 0x93, 0x2B, 0xD9, 0xBC, 0x4C, 0x82, 0xCA, 0x1E, 0x9B, 0x57, 0x3C, 0xFD, 0xD4, 0xE0, 0x16, 0x67, 0x42, 0x6F, 0x18, 0x8A, 0x17, 0xE5, 0x12, 0xBE, 0x4E, 0xC4, 0xD6, 0xDA, 0x9E, 0xDE, 0x49, 0xA0, 0xFB, 0xF5, 0x8E, 0xBB, 0x2F, 0xEE, 0x7A, 0xA9, 0x68, 0x79, 0x91, 0x15, 0xB2, 0x07, 0x3F, 0x94, 0xC2, 0x10, 0x89, 0x0B, 0x22, 0x5F, 0x21, 0x80, 0x7F, 0x5D, 0x9A, 0x5A, 0x90, 0x32, 0x27, 0x35, 0x3E, 0xCC, 0xE7, 0xBF, 0xF7, 0x97, 0x03, 0xFF, 0x19, 0x30, 0xB3, 0x48, 0xA5, 0xB5, 0xD1, 0xD7, 0x5E, 0x92, 0x2A, 0xAC, 0x56, 0xAA, 0xC6, 0x4F, 0xB8, 0x38, 0xD2, 0x96, 0xA4, 0x7D, 0xB6, 0x76, 0xFC, 0x6B, 0xE2, 0x9C, 0x74, 0x04, 0xF1, 0x45, 0x9D, 0x70, 0x59, 0x64, 0x71, 0x87, 0x20, 0x86, 0x5B, 0xCF, 0x65, 0xE6, 0x2D, 0xA8, 0x02, 0x1B, 0x60, 0x25, 0xAD, 0xAE, 0xB0, 0xB9, 0xF6, 0x1C, 0x46, 0x61, 0x69, 0x34, 0x40, 0x7E, 0x0F, 0x55, 0x47, 0xA3, 0x23, 0xDD, 0x51, 0xAF, 0x3A, 0xC3, 0x5C, 0xF9, 0xCE, 0xBA, 0xC5, 0xEA, 0x26, 0x2C, 0x53, 0x0D, 0x6E, 0x85, 0x28, 0x84, 0x09, 0xD3, 0xDF, 0xCD, 0xF4, 0x41, 0x81, 0x4D, 0x52, 0x6A, 0xDC, 0x37, 0xC8, 0x6C, 0xC1, 0xAB, 0xFA, 0x24, 0xE1, 0x7B, 0x08, 0x0C, 0xBD, 0xB1, 0x4A, 0x78, 0x88, 0x95, 0x8B, 0xE3, 0x63, 0xE8, 0x6D, 0xE9, 0xCB, 0xD5, 0xFE, 0x3B, 0x00, 0x1D, 0x39, 0xF2, 0xEF, 0xB7, 0x0E, 0x66, 0x58, 0xD0, 0xE4, 0xA6, 0x77, 0x72, 0xF8, 0xEB, 0x75, 0x4B, 0x0A, 0x31, 0x44, 0x50, 0xB4, 0x8F, 0xED, 0x1F, 0x1A, 0xDB, 0x99, 0x8D, 0x33, 0x9F, 0x11, 0x83, 0x14, }; const char *MD2_options(void) { if (sizeof(MD2_INT) == 1) return ("md2(char)"); else return ("md2(int)"); } int MD2_Init(MD2_CTX *c) { c->num = 0; memset(c->state, 0, sizeof(c->state)); memset(c->cksm, 0, sizeof(c->cksm)); memset(c->data, 0, sizeof(c->data)); return 1; } int MD2_Update(MD2_CTX *c, const unsigned char *data, size_t len) { register UCHAR *p; if (len == 0) return 1; p = c->data; if (c->num != 0) { if ((c->num + len) >= MD2_BLOCK) { memcpy(&(p[c->num]), data, MD2_BLOCK - c->num); md2_block(c, c->data); data += (MD2_BLOCK - c->num); len -= (MD2_BLOCK - c->num); c->num = 0; /* drop through and do the rest */ } else { memcpy(&(p[c->num]), data, len); /* data+=len; */ c->num += (int)len; return 1; } } /* * we now can process the input data in blocks of MD2_BLOCK chars and * save the leftovers to c->data. */ while (len >= MD2_BLOCK) { md2_block(c, data); data += MD2_BLOCK; len -= MD2_BLOCK; } memcpy(p, data, len); c->num = (int)len; return 1; } static void md2_block(MD2_CTX *c, const unsigned char *d) { register MD2_INT t, *sp1, *sp2; register int i, j; MD2_INT state[48]; sp1 = c->state; sp2 = c->cksm; j = sp2[MD2_BLOCK - 1]; for (i = 0; i < 16; i++) { state[i] = sp1[i]; state[i + 16] = t = d[i]; state[i + 32] = (t ^ sp1[i]); j = sp2[i] ^= S[t ^ j]; } t = 0; for (i = 0; i < 18; i++) { for (j = 0; j < 48; j += 8) { t = state[j + 0] ^= S[t]; t = state[j + 1] ^= S[t]; t = state[j + 2] ^= S[t]; t = state[j + 3] ^= S[t]; t = state[j + 4] ^= S[t]; t = state[j + 5] ^= S[t]; t = state[j + 6] ^= S[t]; t = state[j + 7] ^= S[t]; } t = (t + i) & 0xff; } memcpy(sp1, state, 16 * sizeof(MD2_INT)); OPENSSL_cleanse(state, 48 * sizeof(MD2_INT)); } int MD2_Final(unsigned char *md, MD2_CTX *c) { int i, v; register UCHAR *cp; register MD2_INT *p1, *p2; cp = c->data; p1 = c->state; p2 = c->cksm; v = MD2_BLOCK - c->num; for (i = c->num; i < MD2_BLOCK; i++) cp[i] = (UCHAR) v; md2_block(c, cp); for (i = 0; i < MD2_BLOCK; i++) cp[i] = (UCHAR) p2[i]; md2_block(c, cp); for (i = 0; i < 16; i++) md[i] = (UCHAR) (p1[i] & 0xff); memset(&c, 0, sizeof(c)); return 1; }